
7

Efficient Identification of Linchpin Vertices in Dependence Clusters

David Binkley, Loyola University Maryland
Nicolas Gold, University College London
Mark Harman, University College London
Syed Islam, University College London
Jens Krinke, University College London
Zheng Li, Beijing University of Chemical Technology

Several authors have found evidence of large dependence clusters in the source code of a diverse range of systems,
domains, and programming languages. This raises the question of how we might efficiently locate the fragments of code
that give rise to large dependence clusters. We introduce an algorithm for the identification of linchpin vertices, which hold
together large dependence clusters, and prove correctness properties for the algorithm’s primary innovations. We also report
the results of an empirical study concerning the reduction in analysis time that our algorithm yields over its predecessor using
a collection of 38 programs containing almost half a million lines of code. Our empirical findings indicate improvements
of almost two orders of magnitude, making it possible to process larger programs for which it would have previously been
impractical.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—debugging aids; D.2.6 [Soft-
ware Engineering]: Programming Environments; E.1 [Data Structures]: Graphs; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—Program analysis

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Slicing, Internal Representation, Performance Enhancement, Empirical Study

1. INTRODUCTION
A dependence cluster is a maximal set of program elements where each element depends on the
others. Previous work has shown the widespread presence of very large dependence clusters in
source code in a wide range of open source and commercial software [Harman et al. 2009]. The
empirical observation of the prevalence of large dependence clusters, coupled with the belief that
they are potential sources of problems [Binkley et al. 2008], motivates investigation into their causes.

Initial work on the causes of dependence clusters revealed evidence that global variables can be
the source of so-called capillary data flows [Binkley et al. 2009], which lead to the formation of
large dependence clusters. Global scope makes it hard to understand the effect of these variables

Binkley et al.

in isolation and therefore difficult to take any action to ameliorate their potentially harmful effects
without major restructuring. This motivated the study of linchpin edges and vertices [Binkley and
Harman 2009]. A linchpin is a single edge or vertex in a program’s dependence graph through which
so much dependence flows that the linchpin holds together a large cluster.

One obvious and natural way to identify a linchpin is to remove it, re-construct the dependence
graph, and then compare the ‘before’ and ‘after’ graphs to see if the large dependence cluster has
either disappeared or reduced in size. This naı̈ve approach was implemented as a proof of concept to
demonstrate that such linchpins do indeed exist [Binkley and Harman 2009]. That is, there are single
vertices and edges in real world systems, the removal of which causes large dependence clusters to
essentially disappear.

This naı̈ve algorithm is useful as a demonstration that linchpins exist, but it must consider all
vertices as potential linchpins. Unfortunately, this limits its applicability as a useful research tool.
That is, the computational resources required for even mid-sized programs are simply too great
for the approach to be practical. In this paper we improve the applicability of the analysis from
thousands of lines of code to tens of thousands of lines of code by developing a graph-pattern based
theory that provides a foundation for more efficient linchpin detection. Finally, we introduce a new
linchpin detection algorithm based on this theory and report on its performance with an empirical
study of 38 programs containing a total of 494K lines of code.

The theory includes a ratio which we term the ‘risk ratio’. If the risk ratio is sufficiently small then
we know that the impact (as captured by the ratio) of a set of vertices on large dependence clusters
will be negligible. On this basis we are able to define a predicate that guards whether or not we are
able to prune vertices from linchpin consideration. The theory establishes the required properties
of the risk ratio, but only an empirical study can answer whether or not the guarding predicate that
uses this ratio is satisfied sufficiently often to be useful for performance improvement. We therefore
complement the theoretical study with an empirical study that investigates this question. We find
that the predicate is satisfied in all but four of over a million cases. Furthermore, these four all
occur with the strictest configuration in very small programs. This provides empirical evidence to
support the claim that the theory is highly applicable in practice. Our empirical study also reports
the performance improvement obtained by the new algorithm. Finally, we introduce and empirically
study a tuning parameter (the search depth in what we call ‘fringe look ahead’). Our empirical
study investigates the additional performance increase obtained using various values of the tuning
parameter.

Using the new algorithm we were able to study several mid-sized programs ranging up to
66KLoC. This provides a relatively robust set of results on non-trivial systems upon which we
draw evidence to support our empirical findings regarding the improved execution efficiency of the
new algorithm. The results support our claim that the theoretical improvement of our algorithm is
borne out in practice. For instance, to analyze the mid-sized program go, which has 29,246 lines of
code, using the naı̈ve approach takes 101 days. Using the tuned version of the new algorithm this
time is reduced to just 8 days.

The primary contributions of the paper are as follows:

(1) Three theorems, proved in Section 3, identify situations in which it is possible to effectively
exclude vertices from consideration as linchpins. These theoretical findings highlight opportu-
nities for pruning the search for linchpins.

(2) Based on this theory, Section 4 introduces a more efficient linchpin search algorithm that ex-
ploits the pruning opportunities to reduce search time. Section 4 also proves the algorithm’s
correctness with respect to the theory introduced in Section 3.

(3) To empirically investigate the improvement achieved in practice using our new algorithm, Sec-
tion 5 presents the results of an empirical study using a collection of 38 programs. The results
from this study reveal that the basic algorithm can be used, with no tuning at all, to achieve at
least an order of magnitude speedup in execution time. This means that offline linchpin identifi-
cation becomes feasible where it was previously infeasible. We also present results that analyse

Efficient Identification of Linchpin Vertices in Dependence Clusters

vertex set reaching vertices(G, V , excluded edge kinds)
{

work list = V
answer = ∅
while work list ! = ∅
select and remove a vertex v from work list
mark v
insert v into answer
foreach unmarked vertex w such that there is an edge w → v whose kind is

not in excluded edge kinds
insert w into work list

return answer
}

For SDG G,
b1(v) = reaching vertices(G, {v}, {parameter-out})
b2(v) = reaching vertices(G, {v}, {parameter-in, call})

Fig. 1. The function reaching vertices [Binkley 1993] returns all vertices in SDG G from which there is a path to a vertex
in V along edges whose edge-kind is something other than those in the set excluded edge kinds.

the further performance improvements that can be obtained by tuning the basic algorithm.

2. BACKGROUND: LARGE DEPENDENCE CLUSTERS AND THEIR CAUSES
Dependence clusters can be defined in terms of program slices [Binkley and Harman 2005]. This
section briefly reviews the definitions of slice, dependence clusters, and dependence cluster causes,
to motivate the study of dependence clusters in general and of improved techniques for finding
linchpins in particular. More detailed accounts can be found in the literature [Harman et al. 2009].

A backward slice identifies the parts of a program that potentially affect a selected computa-
tion [Weiser 1984], while a forward slice identifies the parts of the program potentially affected by
a selected computation [Horwitz et al. 1990; Reps and Yang 1988]. Both slices can be defined as the
solution to graph reachability problems over a program’s System Dependence Graph (SDG) [Hor-
witz et al. 1990] using two passes over the graph. The passes differ in their treatment of interproce-
dural edges. For example, the backward slice taken with respect to SDG vertex v, denoted b(v), is
computed by the first traversing only edges “up” into calling procedures while the second pass tra-
verses only edges “down” into called procedures. Both passes exploit transitive dependence edges
(summary edges) included at each call site to summarize the dependence paths through the called
procedure. The two passes of a backward slice are referred to as b1 and b2; thus b(v) = b2(b1(v))
where the slice taken with respect to a set of vertices V is defined as the union of the slices taken
with respect to each vertex v ∈ V . For a forward slice f(v) = f2(f1(v)) where f1 traverses only
edges “up” into calling procedures and f2 traverses only edges “down” into called procedures.

Formalizing these slicing operators is done in terms of the interprocedural edges that enter and
exit called procedures. Three such edge kinds exist in an SDG: a parameter-in edge represents the
data dependence of a formal parameter on the value of the actual, a parameter-out edge represents
the data dependence of an actual parameter on the final value of the formal as well as the data
dependence from the returned value, and finally a call edge represents the control dependence of
the called procedure on a call-site. Figure 1 provides the algorithm used to compute b1(v) and b2(v).
The algorithm for forward slicing is the same except edges are traversed in the forward direction.

Example. Figure 2 shows a simplified SDG used to illustrate the key concepts in interprocedural
slicing. Let vertex v be the vertex from procedure double labeled d = d * 2. The first backward-
slicing pass, b1(v), ignores parameter-out edges, but traverses parameter-in and call edges to include
vertices from procedure double and the rightmost two calls. Notice that the summary edges, which

Binkley et al.

control

interprocedural

data

summary

pa
ra

m
et

er
−

ou
t

call

param
eter−

in

call inc

x_in = a a = x_out

call inc call double

d_out = d

 double

d = d_in

d = d * 2

 inc

x = x_in x_out = x

x = x + 1

Edge Key

t = 42

x_in = t t = x_out d_in = t t = d_out

{ inc(x) double(d)
a = inc(a) { {
t = 42 x = x + 1 d = d * 2
t = inc(t) return x return d
t = double(t) } }

}

Fig. 2. An example SDG showing with slice taken with respect to the vertex labeled d = d * 2. The vertices of the slice
are shown bold.

summarize paths through the called procedure, allow Pass 1 to include the initialization of t (t =
42) without descending into procedure inc. The second pass, which excludes parameter-in and call
edges, starts from all the vertices encountered in the first pass. In particular, when starting from
the vertex labeled x = x out the slice descends into procedure inc and thus includes the body of the
procedure. Combined, the two passes respect calling context and thus correctly omit the first call on
procedure inc. The vertices of the slice are shown in bold.

It is possible to compute the slice with respect to any SDG vertex. However, in the experiments
only the vertices representing source code are considered as slice starting points. Furthermore, slice
size is defined as the number of vertices representing source code encountered while slicing. Re-
stricting attention to the vertices representing source code excludes several kinds of ‘internal’ ver-
tices introduced by CodeSurfer [Grammatech Inc. 2002] (the tool used to build the SDGs). For
example, an SDG includes pseudo-parameter vertices representing global variables potentially ac-
cessed by a called procedure.

While alternate definitions are possible, dependence clusters can be defined as maximal sets of
SDG vertices that all have the same backward slice. That is, two vertices that have the same back-
ward slice are deemed to reside in the same cluster. In practice, it turns out that same backward slice
can be very closely approximated by same backward slice size [Binkley and Harman 2005]. This
is a conservative approximation because two backward slices may differ, yet, coincidentally have
the same size. However, two identical backward slices must have the same size. The ‘same size’

Efficient Identification of Linchpin Vertices in Dependence Clusters

approximation has been empirically demonstrated to be over 99% accurate [Binkley and Harman
2005; Harman et al. 2009]. In the following definitions | · · · | is used to denote size. For a set S, |S|
denotes the number of elements in S, while for an SDG G, a slice b(v), or an SDG path P , size is
the number of vertices that represent source code in G, b(v), or along P , respectively, Using slice
size, dependence clusters can be defined as follows

Definition 1 (DEPENDENCE CLUSTER).
The dependence cluster for vertex v of SDG G consists of all vertices that have the same slice size
as v: cluster(v) = {u ∈ G s.t. |b(u)| = |b(v)|}. 2

Our previous work has demonstrated that large dependence clusters are surprisingly prevalent in
traditional systems written in the C programming language, for both open and closed source systems
[Harman et al. 2009; Binkley et al. 2008]. Other authors have subsequently replicated this finding
in other languages and systems, both in open source and proprietary code [Beszédes et al. 2007;
Szegedi et al. 2007; Acharya and Robinson 2011]. Though our work has focused on C programs,
large dependence clusters have also been found by other authors in C++ and Java systems [Beszédes
et al. 2007; Savernik 2007; Szegedi et al. 2007] and there is recent evidence that they are present in
legacy Cobol systems [Hajnal and Forgács 2011].

Large dependence clusters have been linked to dependence ‘anti patterns’ or bad smells that
reflect possible problems for on-going software maintenance and evolution [Savernik 2007; Binkley
et al. 2008; Acharya and Robinson 2011]. Other authors have studied the relationship between
faults, program size, and dependence clusters [Black et al. 2006], and between impact analysis
and dependence clusters [Acharya and Robinson 2011; Harman et al. 2009]. The presence of large
dependence clusters has also been suggested as an opportunity for refactoring intervention [Black
et al. 2009; Binkley and Harman 2005; Islam et al. 2010a].

Because dependence clusters are believed to raise potential problems for software maintenance,
testing, and comprehension, and because they have been shown to be highly prevalent in real sys-
tems, a natural question arises: “What causes large dependence clusters?” Our previous work inves-
tigated the global variables that contribute to creating large clusters of dependence [Binkley et al.
2009]. For example, the global variable representing the board in a chess program creates a large
cluster involving all the pieces. Finding such a global variable can be important for understand-
ing the causes of a cluster. However, global variables, by their nature, permeate the entire program
scope and so the ability to take action based on this knowledge is limited. This motivates the study of
linchpins: small localized pieces of code that cause (in the sense that they hold the cluster together)
the formation of large dependence clusters.

The search for linchpins considers the impact of removing each potential linchpin on the de-
pendence connections in the program. In an SDG the component whose removal has the smallest
dependence impact is a single dependence edge. A vertex, which can have multiple incident edges,
is the next smallest component. Because a linchpin edge’s target vertex must be a linchpin vertex,
it is a quick process to identify linchpin edges once the linchpin vertices have been identified. This
process simply considers each incoming edge of each linchpin vertex in turn [Binkley and Harman
2009]. Thus, in this paper, we characterize the answer to the question of what holds clusters together
in terms of a search for linchpin vertices.

Ignoring the dependencies of a linchpin vertex will cause the dependence cluster to disappear.
For a vertex, it is sufficient to ignore either the vertex’s incoming or outgoing dependence edges.
Without loss of generality, the experiments ignore the incoming dependence edges.

The search is largely automated by considering changes in the Monotone Slice-size Graph
(MSG) [Binkley and Harman 2005]. An MSG is a graph of backward slice sizes plotted in monoton-
ically increasing order on the x-axis. The y-axis measures backward slice size. That is, the backward
slices are sorted according to increasing size and the sizes are plotted on the vertical axis against
slice number, in order, on the horizontal axis. To facilitate comparison, the MSGs shown in this

Binkley et al.

40%

60%

80%

100%

0%

20%

0% 20% 40% 60% 80% 100%

40%

60%

80%

100%

0%

20%

0% 20% 40% 60% 80% 100%

40%

60%

80%

100%

0%

20%

0% 20% 40% 60% 80% 100%

MSG (a) – original MSG (b) – drop only MSG (c) – broken cluster

Fig. 3. The area under the MSG drops under two conditions: the slices of the cluster get smaller (center MSG), or when
the cluster breaks (rightmost MSG). Thus, while a reduction in area is necessary, it is not a sufficient condition for cluster
breaking.

paper use the percentage of the backward slices taken on the x-axis and the percentage of the entire
program on the y-axis.

In general the definitions laid out in the next section will work with an MSG constructed from any
set of vertices. As mentioned above, for the empirical investigation presented in Section 5 the set of
source-code representing vertices is used as both the slice starting points and when determining the
size of a slice. Under this arrangement a cluster appears as a rectangle that is taller than it is wide.

The search considers changes in the area under the MSG, denoted AMSG . This area is the sum
of all the slice sizes that make up the MSG. Formally, if SC is the set of SDG vertices representing
source code then

AMSG =
∑

v ∈ SC

|b(v)|

As illustrated in Figure 3, a reduction in area is a necessary but not a sufficient condition for iden-
tifying a linchpin vertex. This is because there are two possible outcomes: a drop and a break. These
two are illustrated by the center and right-most MSGs shown in Figure 3. Both show a reduction
in area; however, the center MSG reflects only a reduction in the size of the backward slices that
makeup up a cluster. Only the right-most MSG shows a true breaking of the cluster. These two are
clear-cut extreme examples meant to illustrate the concepts of a drop and a break. In reality there
are reductions that incorporate both effects. In the end, the decision if a reduction represents a drop
or a break is subjective.

The detection algorithm presented in Section 4 reports all cases in which the reduction is greater
than a threshold. These must then be inspected to determine if the area reduction represents a true
breaking of a cluster. From the three example MSGs shown in Figure 3, it is clear that a reduction in
area must accompany the breaking of a cluster, but does not imply the breaking of a cluster. Thus, to
test if a Vertex l is a linchpin, the MSG for the program is constructed while ignoring l ’s incoming
dependence edges. If a significant reduction in area occurs, the resulting MSG can then be inspected
to see if the cluster is broken.

The search for linchpins is thus conducted by computing the MSG while ignoring the dependence
associated with a specific vertex. Previous work [Binkley and Harman 2009] has shown that ignoring
dependence associated with vertices could identify linchpin vertices in real programs. However, this
implementation is rather naı̈ve.

Efficient Identification of Linchpin Vertices in Dependence Clusters

x = 1

y = x + 1

z = x * y

v

u

1

c

ba

l

Fig. 4. Simple Example of a vertex (highlighted in bold) that need not be considered as a potential linchpin.

3. THEORETICAL INVESTIGATION OF PROPERTIES OF DEPENDENCE CLUSTER CAUSES
The naı̈ve linchpin search algorithm simply recomputes the MSG while ignoring the incoming de-
pendence edges of each vertex in turn. MSG construction is computationally non-trivial and the
inspection becomes tedious when considering programs with thousands of vertices. Thus, this sec-
tion considers the efficient search for linchpin vertices. The search centers around several graph
patterns that identify vertices that cannot play the role of a linchpin vertex. The section begins with
two examples that illustrate the key concepts.

Figure 4 shows a Vertex l1 that cannot be a linchpin. This is because there are two paths con-
necting Vertex v, labeled x = 1, to Vertex u, labeled z = x * y. Ignoring l1’s incoming dependence
edges does not disconnect v and u and thus the level of ‘overall connectedness’ does not diminish.
Consequently, a backward slice taken with respect to any vertex other than l1 (e.g., a or b) continues
to include v and the vertices v depends on such as c; thus, the backward slice size of all slices except
the one taken with respect to l1 is unchanged.

Figure 5 shows a slightly more involved example in which one of the paths from v to u includes
two vertices l1 and l2 (labeled t = x + 1 and y = t + t). With this example, ignoring the incoming edges
of Vertex l1 changes only the sizes of the backward slices taken with respect to l1 and l2, which have
sizes one and two respectively when the incoming edges of l1 are ignored. Ignoring the incoming
dependence edges of l2 has two effects. First, it reduces to one the size of the backward slice taken
with respect to l2. Second, it reduces the size of all backward slices that include u by one because
they no longer include l1; however, these backward slices continue to include v and the vertices that
it depends on such as c, thus, the reduction is small as formalized in the next section.

Building on these examples, three graph patterns are considered and then proven correct. Each
pattern bounds the reduction in the area under the MSG, AMSG , that ignoring the incoming edges
of a potential linchpin vertex may have. This reduction is formalized by the following two small-
impact properties. Both properties, as well as the remainder of the paper, include a parameter, κ, that
denotes a minimum percentage area reduction below which ignoring a vertex’s incoming edges is
deemed to have an insignificant impact on AMSG . The selection of κ is subjective. In the empirical
analysis of the next section, a range of values is considered.

When identifying vertices that have a small impact it is often useful to exclude from consideration
the impact of a certain (small) set of vertices, V , on the area under the MSG, denoted AMSG\V .
For SDG G, AMSG\V is the sum of the slice sizes for each vertex of G that represents source code

Binkley et al.

x = 1

z = x * y

t = x + 1

y = t + t

v

u

2

1

c

ba

l

l

Fig. 5. A more complex example involving a path of two vertices. Again the bold vertices need not be considered as
potential linchpins.

except those vertices in V . Formally, if SC is the set of vertices representing source code in an SDG
then

AMSG\V =
∑

v ∈ SC−V
|b(v)|

For example, in a graph where all vertices have exactly one edge targeting a common vertex, v,
ignoring v’s incoming edges reduces the area under the MSG by almost 50%, but has no effect on the
area under AMSG\{v}, which ignores the area attributed to v. Such a reduction never corresponds
to the breaking of a cluster and thus is uninteresting. The impact on AMSG\V and AMSG\∅ (i.e.,
with and without ignoring any vertices) is formalized by the following two definitions:

Definition 2 (STRONG SMALL-IMPACT PROPERTY).
Vertex v satisfies the strong small-impact property iff ignoring the incoming dependence edges of v
can reduce AMSG (equivalently AMSG\∅) by at most κ percent.
2

Definition 3 (WEAK SMALL-IMPACT PROPERTY).
Given a (small) set for vertices V , Vertex v satisfies the weak small-impact property iff ignoring the
incoming dependence edges of v can reduce the area under AMSG\V by at most κ percent.
2

A Vertex v that satisfies the strong small-impact property also satisfies the weak small-impact
property, but not vice versa. Thus the strong version is preferred. Both are introduced because some-
times the strong version cannot be proven to hold.

Before presenting the three theorems that prove the correctness of the three graph patterns, a
more formal understanding of the SDG and interprocedural slicing is necessary. This begins with
the definition of same-level realizable path (Definition 4) [Reps and Rosay 1995; Reps et al. 1995;
Sharir and Pnueli 1981]. A same-level path begins and ends in the same procedure and corresponds
to an execution where the call stack may temporarily grow deeper, but never shallower than its
original depth, before eventually returning to its original depth. A realizable path respects calling
context by matching returns with the correct call site. Several different terms have been used for
paths that respect calling context, including feasible paths and realizable paths [Reps and Rosay
1995].

Efficient Identification of Linchpin Vertices in Dependence Clusters

Definition 4 (SAME-LEVEL REALIZABLE PATH [REPS AND ROSAY 1995]).
Let each call-site vertex in SDG G be given a unique index from 1 to k. For each call site ci, label
the outgoing parameter-in edges and the incoming parameter-out edges with the symbols “(i” and
“)i”, respectively; label the outgoing call edge with “(i”. A path in G is a same-level realizable
path iff the sequence of symbols labeling the parameter-in, parameter-out, and call edges on the
path is a string in the language of balanced parentheses generated from the nonterminal matched
of the following grammar.

matched→ matched (i matched)i for 1 ≤ i ≤ k
| ε

2

The formalization next describes valid paths (Definition 5), the paths traversed while slicing:
a vertex u in b(v) is connected to v by a valid path. In the general case u and v are in different
procedures called by a common ancestor. For example in Figure 2 if u is the vertex labeled x = x +
1 and v is the vertex labeled d = d * 2 then the path from u to v is a valid path. A valid path includes
two parts. The first connects u to a vertex in the common ancestor (e.g., the vertex labeled t = x out),
while the second connects this vertex to v. Valid paths and their two parts are used to formally define
six slicing operators (Definition 6). Finally, a set of path composition rules is introduced.

Definition 5 (VALID PATH [REPS AND ROSAY 1995]).
A path in SDG G is a (context) valid path iff the sequence of symbols labeling the parameter-in,
parameter-out, and call edges on the path is a string in the language generated from nonterminal
valid-path given by the following context-free grammar where the non-terminals b1f2-valid-path
and b2f1-valid-path take their names from the two slicing passes used in the implementation of
interprocedural slicing.

valid-path→ b2f1-valid-path b1f2-valid-path
b2f1-valid-path
→ b2f1-valid-path matched)i for 1 ≤ i ≤ k
| matched

b1f2-valid-path
→ matched (i b1f2-valid-path for 1 ≤ i ≤ k
| matched

2

Example. For example, in Figure 2 there are two calls on inc, inc(a) and inc(t). In the SDG
there are interprocedural parameter-in edges from each actual parameter to the vertex labeled x =
x in that represent the transfer of the actual to the formal. Symmetrically there are interprocedural
parameter-out edges that represent the transfer of the returned value back to each caller. In terms
of the grammar, the edges into inc are labeled (1 and (2 while the edges back to the call sites are
labeled)1 and)2. Paths that match (1)1 represent calls through the first call site, inc(a) and those
that match (2)2 represent calls through the second call site, inc(t). However any path that includes (1
)2 is not a valid path as it represents entering inc from the first call site but returning to the second.
One such path connects the vertex labeled x in = a to the vertex labeled d = d * 2

The interprocedural backward slice of an SDG taken with respect to Vertex v, b(v), includes the
program components whose vertices are connected to v via a valid path. The interprocedural forward
slice of an SDG taken with respect to Vertex v, f(v), includes the components whose vertices are
reachable from v via a valid path. Both slices are computed using two passes. This leads to the
following six slicing operators for slicing SDG G.

Definition 6 (INTERPROCEDURAL SLICING OPERATORS [HORWITZ ET AL. 1990; BINKLEY 1993]).
Let u→∗ v denote a path of SDG edges. For vertex v in SDG G,

Binkley et al.

b(v) = {u ∈ G | u→∗ v is a valid path}
b1(v) = {u ∈ G | u→∗ v is a b1f2-valid path}
b2(v) = {u ∈ G | u→∗ v is a b2f1-valid path}
f (v) = {u ∈ G | v →∗ u is a valid path}
f1(v) = {u ∈ G | v →∗ u is a b2f1-valid path}
f2(v) = {u ∈ G | v →∗ u is a b1f2-valid path}

2

Example. In Figure 2 let the v be the vertex labeled d = d * 2, u be the vertex labeled x = x +
1, and w be the vertex labeled t = x out. In the SDG there is a b1f2-valid path from w to v and a
b2f1-valid path from u to w. This places w ∈ b1(v), u ∈ b2(w), and u ∈ b(v). Symmetrically,
w ∈ f1(u), v ∈ f2(w), and v ∈ f(u).

As noted before, the notation is overloaded such that each of the above slicing operators can be
applied to a set of vertices V . The result is the union of the slices taken with respect to each vertex
of V . For example, b(V) = ∪v∈V b(v); thus f(v) = f2(f1(v)) and b(v) = b2(b1(v)).

Finally, the search for linchpin vertices makes use of path composition, denoted p1 ◦ p2, where
path p1’s final vertex is the same as path p2’s first vertex. Some path compositions yield invalid
paths. The following table describes the legal and illegal compositions.

Path Combinations
1 b1f2-valid path ◦ b1f2-valid path → b1f2-valid path
2 b1f2-valid path ◦ b2f1-valid path → invalid path
3 b1f2-valid path ◦ valid path → invalid path
4 b2f1-valid path ◦ b1f2-valid path → valid path
5 b2f1-valid path ◦ b2f1-valid path → b2f1-valid path
6 b2f1-valid path ◦ valid path → valid path
7 valid path ◦ b1f2-valid path → valid path
8 valid path ◦ b2f1-valid path → invalid path
9 valid path ◦ valid path → invalid path

Example. A valid path has two sections: the first (matching b2f1-valid path) includes only un-
matched)i’s, while the second (matching b1f2-valid path) includes only unmatched (i’s. The first
composition rule notes that composing two paths with only unmatched (i’s leaves a path with only
unmatched (i’s. The second and third rules observe that the result of appending a path that includes
unmatched (i’s to a path that includes unmatched)i’s is not a valid path. For example, in Figure 2
composing the b1f2-valid path that connects the vertices labeled x in = a and x = x + 1 with the
b2f1-valid path that connects the vertices labeled x = x + 1 and t = x out results in a path that enters
inc through one call site but exists through the other; this path is not a valid path. However, as seen
in the table, it is always legal to prefix a path with a path that contains unmatched)i’s (rules 4 and
6) and it is always legal to suffix a path with a path that contains unmatched (i’s (rules 4 and 7).

Building on these definitions, Theorem 1 identifies a condition in which the strong small-impact
property holds.

Theorem 1 (SMALL SLICE).
Let l be a vertex from SDG G. If |b(l)| ≤ κAMSG/|G| or |f(l)| ≤ κAMSG/|G| then l satisfies the
strong small-impact property.

PROOF. For both cases, the worst case situation (where there are no other connections between
the vertices of b(l) and f(l) except through l) is illustrated in the left of Figure 6. Typically there are
other connections between these vertices and thus the theorem is a conservative over-approximation
of the actual reduction.

Efficient Identification of Linchpin Vertices in Dependence Clusters

f()l

lb()

l

f()l

l

lb()

l

l

f()l

b()

Fig. 6. Illustration of the cases in Theorem 1. The worst-case illustrated on the left involves an SDG’s vertices being
partitioned into three sets: {l }, b(l), and f(l). The two cases of the proof are illustrated in the middle and on the right.

First, when b(l) is small, the worst case area reduction is bounded by assuming that the vertices
of b(l) are not reachable from any vertex other than l (illustrated in the center of Figure 6). In
this case, ignoring the incoming dependence edges of l reduces each backward slice that includes
l by |b(l)|. In the worst case l is in every backward slice, which produces a maximal reduction of
|b(l)| × |G|. However, the assumption that |b(l)| ≤ κAMSG/|G| implies that the total reduction is
at most κAMSG and consequently the total area reduction is bound by κ.

Second, when f(l) is small (illustrated in the right of Figure 6), note that the backward slices
affected by ignoring the incoming edges of l are those taken with respect to the vertices in f(l).
Thus if |f(l)| is no more than κAMSG/|G| then no more than κAMSG/|G| backward slices are
affected. Because the maximal reduction for a slice is to be reduced to size zero (a reduction of at
most |G|), the total area reduction is bounded by (κAMSG/|G|)× |G|, which is again bound by κ;
therefore, if l has a small backward or a small forward slice then it satisfies the strong small-impact
property.

As born out in the empirical investigation, the area reduction is often much smaller. For example
it is unlikely that l will be in every backward slice. Furthermore, the vertices of b(l) often have
connections to other parts of the SDG that do not go through l . This is illustrated in the example
shown in Figure 4 where ignoring the incoming edges of l1 does not remove v or its predecessors
from backward slices that contain u. Formalizing this observation is done in the dual-path property,
which is built on top of the definition for valid paths (Definition 5). The dual-path property holds
for two vertices when they are connected by two valid paths where one includes the selected vertex
l and the other does not.

Definition 7 (DUAL-PATH PROPERTY).
Vertices l , v, and u satisfy the Dual-Path Property, written dpp(l , v, u), iff there are valid paths vγu
and vβu such that l ∈ γ and l 6∈ β.
2

The value of the dual-path property is that ignoring the incoming dependence edges of l leaves
the endpoints connected via the other path. This observation expands the set of vertices for which
one of the small-impact properties can be shown to hold. For example, in Figure 4, dpp(l1, v, u);
thus, ignoring the incoming edges of l1 does not disconnect v and u. In this example, ignoring l ’s
incoming edges actually has no effect on backward slice sizes other than the obvious effect on the

Binkley et al.

v v = 4
call f(v)

f(a)
{

l b = a
u u = a + b

c = f(42)
x x = b + c

return u
}

x
ul

v

f

Fig. 7. An illustration of the the need for dpp2. Only a subgraph of the SDG is shown.

backward slice taken with respect to l1. This is because ∀v ∈ b(l), dpp(l , v, u) and thus all backward
slices that include l also include u except the backward slice taken with respect to l . The value of
the dual-path property is that this reduction can often be shown to be much smaller than |b(l1)|.

However, because interprocedural dependence is not transitive, an additional property is neces-
sary. The issue arises when a backward slice s includes l , u, and a vertex v′ where dpp(l , v′, u),
but the path from v′ to u is a b1f2-valid path while u is encountered during the second pass of s.
In this case excluding vertices v for which dpp(l , v, u) overestimates the reduction (e.g., it errantly
excludes v′).

Example. This situation is illustrated in Figure 7 where the slice b(x) includes Vertices l , u,
and v, and there are paths vγu and vβu where l ∈ γ and l 6∈ β. Consider the situation when
the incoming edge of l (shown in bold) is ignored. During Pass 2 of b(x) the slice descends into f
along the parameter-out edge through the recursive call (i.e., c = f(42)). Because u is returned by f,
the assignment u = a + b is encountered while slicing; however, Pass 2 does not ascend to calling
procedures and thus the slice does not ascend to the call f(v) and consequently does not reach v.

To correct for the over estimation, a dpp property is introduced to cover encountering u during a
slice’s second pass:

Definition 8 (SECOND PASS DUAL-PATH PROPERTY).
Vertices l , v, and u satisfy the second-pass Dual-Path Property, written dpp2(l , v, u), iff there are
two paths: valid path vγu and b2f1-valid path vβu such that l ∈ γ and l 6∈ β.
2

Both dpp and dpp2 are used in the following theorem to prove that when certain dual paths
exist, l satisfies the weak small-impact property (Definition 3). The weak version is used because
the reduction for a backward slice taken with respect to certain vertices (e.g., l) cannot be tightly
bound. The first corollary to the theorem proves that under certain circumstances, the strong small-
impact property also holds. For a vertex v in the slice b(x), the proof in essence splits the paths
connecting v and x at l and u. The “top half” of these paths is captured by a dual-path property.
while the “bottom half” is captured by the following vertex partitions based on a vertex’s backward
slice’s inclusion of the two vertices l and u.

Set 1 - vertices x where l 6∈ b(x)
Set 2 - vertices x where l ∈ b(x) and u ∈ b(x) where there is a path from u to x that does not

include l .
Set 3 - (the remaining vertices) vertices x where l ∈ b(x) and u 6∈ b(x) or u ∈ b(x) but all paths

from u to x include l .

Efficient Identification of Linchpin Vertices in Dependence Clusters

Example. These three sets can be illustrated using Figure 5 where l is Vertex l1. In this example,
Set 1 is {v, c} because b(v) and b(c) do not include l . For the remaining vertices (e.g., Vertex a) b(x)
includes l . Set 2 is {u, a, b} because the slice taken with respect to each of these vertices includes
u. Finally, Set 3 is {l2} because u, a, and b are not in b(l2) and while c, v, l1, and l2 are in b(l2), all
paths connecting them to l2 include l2.

Similar to the need for both dpp and dpp2, Set 2 is further partitioned based on the slicing pass in
which l and u are encountered.

Set 2.11 - l and u encountered during Pass 1
Set 2.12 - l encountered during Pass 1 and u during Pass 2 (but not Pass 1)
Set 2.21 - l encountered during Pass 2 (but not Pass 1) and u during Pass 1
Set 2.22 - l and u encountered during Pass 2 (but not Pass 1)

Example. Vertices u, a, and b from Figure 5 are all in Set 2.11. Vertex x shown in Figure 7 is in
Set 2.12 because l is encountered during Pass 1 but u is not encountered until Pass 2.

Theorem 2 (DUAL-PATH WEAK IMPACT THEOREM).
Given an SDG G having V vertices, if there exists a Vertex u such that
for Set 2.11 |b(l)− {v ∈ G | dpp(l , v, u)}| ≤ κAMSG/V ,
for Set 2.12 |b(l)− {v ∈ G | dpp2(l , v, u)}| ≤ κAMSG/V ,
for Set 2.21 |b2(l)− {v ∈ G | dpp(l , v, u)}| ≤ κAMSG/V ,

and
for Set 2.22 |b2(l)− {v ∈ G | dpp2(l , v, u)}| ≤ κAMSG/V

then l satisfies the weak small-impact property. In particular, the area reduction underAMSG\Set 3
is bound by κ.

PROOF. The proof is a case analysis using the above partitions. For the first partition, Set 1,
slices without l are unchanged when ignoring l ’s incoming edges. Next consider Set 2.11, which
includes slices where l and u are encountered during Pass 1. Assume that b(x) is such a slice. Thus
there are b1f2-valid paths from l and u to x. Furthermore, reaching l during Pass 1 means that
b(l) ⊆ b(x). Let v be a vertex in b(l); thus v is also in b(x). If dpp(l , v, u) then there is a valid path
from v to u that when composed with the b1f2-valid path from u to x produces a valid path from v
to x; thus v ∈ b(x) even when l ’s incoming edges are ignored. Finally, dpp(l , v, u) is true for most
v’s. In particular because |b(l) − {v ∈ G | dpp(l , v, u)}| ≤ κAMSG/V , the reduction for vertices
in Set 2.11 is bounded by κ.

Next, the argument for Set 2.12 is similar to that of Set 2.11 except that the path from u to
x is a valid path rather than a b1f2-valid path. However the use of dpp2 in the assumption that
|b(l)−{v ∈ G | dpp2(l , v, u)}| ≤ κAMSG/V , means that the path from v to u is a b2f1-valid path
and thus the composition again places v ∈ b(x) even when l ’s incoming edges are ignored. Similar
to the case for Set 2.11, in this case because |b(l) − {v ∈ G | dpp2(l , v, u)}| ≤ κAMSG/V , the
reduction for vertices in Set 2.12 is bounded by κ.

The argument for Set 2.21 is also similar to that for Set 2.11. The difference being that there is a
valid path from l to x rather than a b1f2-valid path and thus only v’s in b2(l) need be considered. In
other words, the path from v to l is a b2f1-valid path. The remainder of the argument is the same as
that for Set 2.11 except the assumption that |b2(l)− {v ∈ G | dpp(l , v, u)}| ≤ κAMSG/V implies
that the reduction for vertices in Set 2.21 is bounded by κ.

The argument for Set 2.22 parallels the above three arguments except that it uses the assumption
that |b2(l) − {v ∈ G | dpp2(l , v, u)}| ≤ κAMSG/V to conclude that the reduction for vertices in
Set 2.21 is bounded by κ.

Finally, Set 3 slices, which include l but not u, are excluded because there is no way to bound
their size change based on u. Combining the six cases, l satisfies the weak small-impact property
because the percent reduction in AMSG\Set 3 is bound by κ.

Binkley et al.

In the preceding theorem the area reduction caused by slices from Set 3 is not tightly bound.
To establish a bound the following corollary makes use of average reduction by balancing vertices
whose backward slices cannot be tightly bound with backward slices that do not change (i.e., those
of Set 1). This average reduction is formalized in the first of three corollaries.

Corollary 2.1 (STRONG IMPACT COROLLARY TO THEOREM 2). Let Si = |Set i|/|V | denote
the proportion of slices in Set i. If S3 × (1 − κ)/κ ≤ S1 then the reduction in the area under
AMSG\∅ is bound by κ and l satisfies the strong small-impact property.

This is a foundational result that underpins the algorithm’s performance improvement. If the
guarding predicate (S3 × (1 − κ)/κ ≤ S1) holds, then the strong small impact property holds
and, therefore, all vertices ignored in the search for linchpins will have little impact on dependence
clusters. The term S3 × (1 − κ)/κ, the guarding predicate for Corollary 2.1, is referred to as the
‘risk ratio,’ because when the ratio is sufficiently small (thereby satisfying the guarding predicate)
there is no risk in ignoring the associated vertices in the linchpin search.

The proof establishes when the corollary holds, but empirical research is needed to determine how
often the guard is satisfied, indicating that the risk ratio is sufficiently low. If this does not happen
sufficiently often then the performance improvements will be purely theoretical. This empirical
question therefore forms the first research question addressed in Section 5.

PROOF. The strong small-impact property requires the total area reduction to be less than κ
percent. To show that the reduction is at most κ, consider the largest reduction possible for each
partition. Each reduction is given as a percentage of V . This yields the inequality 0×S1+κ×S2+
1 × S3 ≤ κ (because Set 1 slices are unchanged, from Theorem 2 slices in Set 2 are bound by κ,
and slices from Set 3 can, in the worst case, include (no more than) the entire graph). The corollary
follows from simplifying and rearranging this inequality as follows

κS2 + S3 ≤ κ
S3 ≤ κ− κS2

S3 ≤ κ(1− S2) = κ(S1 + S3) as 1 = S1 + S2 + S3

S3 ≤ κS1 + κS3

S3 − κS3 ≤ κS1

S3(1− κ)/κ ≤ S1

Thus, for every vertex in Set 3 there needs to be (1− κ)/κ vertices in Set 1. For example, if κ =
5 must be 19 times larger than Set 3. In this case having 19 backward slices showing zero reduction
and one backward slice showing (potentially) 100 reduction. Empirically, if Set 3 is kept below a
size of about 20, then the corollary holds for all but the smallest of programs.

The statement of Theorem 2 requires the existence of a single Vertex u. It is useful to extend this
definition from a single vertex u to a set of vertices U . Figure 8 shows an SDG fragment where
dpp(l , v1, u1) and dpp(l , v2, u2) but not dpp(l , v1, u2) and dpp(l , v2, u1). Thus slices b(x) that
include a but not b require using u1, while those that include b but not a require u2 (those that
include both a and b can use either). However, as the following corollary shows, it is possible to use
the set U = {u1, u2} in place of a single vertex u.

The following corollary generalizes this requirement from a single vertex u to a collection of
vertices, U . The proof makes use of the following subsets of the backward slices of G. Again Set
2 is expanded, this time to take a particular u ∈ U into account. Note that the original subsets
were partitions. This was observed to simplify the presentation of Theorem 2 and its proof. It is
not strictly necessary. When considering vertex x, the sets make use of the following subset of U :
U ′(x) = {u ∈ U | u ∈ b(x) and there is a valid path from u to x that does not include l }.

Set 1 - vertices x where l 6∈ b(x)
Set 2 - vertices x where l ∈ b(x) and U ′(x) 6= ∅

Efficient Identification of Linchpin Vertices in Dependence Clusters

u1

l

u2

t = x + w

z2 = w * tz1 = x * t

v1 x = 1 v2 w = 4

c

a b

Fig. 8. Illustration using a set of vertices U = {u1, u2}.

Set 2.11 - l encountered during Pass 1 and ∃u ∈ U ′(x) encountered during Pass 1
Set 2.12 - l encountered during Pass 1, ∃u ∈ U ′(x) encountered during Pass 2, and

@u ∈ U ′(x) encountered during Pass 1
Set 2.21 - l encountered during Pass 2 (but not Pass 1) and ∃u ∈ U ′(x) encountered during Pass 1
Set 2.22 - l encountered during Pass 2 (but not Pass 1), ∃u ∈ U ′(x) encountered during Pass 2, and

@u ∈ U ′(x) encountered during Pass 1
Set 3 - vertices x where l ∈ b(x) and U ′(x) = ∅

The proof uses the following extensions of the definitions for dpp and dpp2 to a set of vertices U :
dpp(l , v, U) = ∃u ∈ U s.t. dpp(l , v, u)
dpp2(l , v, U) = ∃u ∈ U s.t. dpp2(l , v, u)

Corollary 2.2 (MULTI-PATH IMPACT).
If there exists a collection of vertices U such that
for Set 2.11 |b(l)− {v ∈ G | dpp(l , v, U)}| ≤ κAMSG/V ,
for Set 2.12 |b(l)− {v ∈ G | dpp2(l , v, U)}| ≤ κAMSG/V ,
for Set 2.21 |b2(l)− {v ∈ G | dpp(l , v, U)}| ≤ κAMSG/V ,

and
for Set 2.22 |b2(l)− {v ∈ G | dpp2(l , v, U)}| ≤ κAMSG/V

then l satisfies the weak small-impact property. In particular, the area reduction underAMSG\Set 3
is bound by κ. Furthermore, if |Set 3| × (1− κ)/κ ≤ |Set 1| then l satisfies the strong small-impact
property.

PROOF. As with the proof of Theorem 2, Set 1 slices are unchanged when ignoring the incoming
edges of l . For each subset of Set 2 the proof is the same as in the theorem using one of the u ∈ U .
Thus for AMSG\Set 3, the area reduction is bound by κ and the weak small-impact property holds.
Finally, when |Set 3| × (1− κ)/κ ≤ |Set 1|, then, following Corollary 2.1, the area under AMSG\∅
is also bound by κ; thus, the strong small-impact property holds.

The final corollary observes that it is not strictly necessary for each set to produce a reduction
less than κ as one set being above this bound can be compensated for by another being below the
bound. This observation is formalized in the final corollary of Theorem 2.

Binkley et al.

Corollary 2.3 (AVERAGE IMPACT).
To bound the area reduction for each set required in Corollary 2.2 is not strictly necessary. Rather
it is sufficient to bound the weighted average reduction.

PROOF. Assume the number of vertices in Sets 2.11 and 2.12 are the same. If |b(l)− {v ∈ G |
dpp(l , v, U)}| is greater than κAMSG/V by the same amount that |b(l)−{v ∈ G | dpp2(l , v, U)}|
is less than κAMSG/V , then the total reduction is bounded by κ. In the general case, when the sets
are not the same size, a weighted average is required.

The final theorem exploits a property of the construction of the SDG vertices that represent vari-
able declarations.

Theorem 3 (DECLARATION IMPACT).
All declaration vertices satisfy the weak small-impact property. And if Set 1 includes more than
(1− κ)/κ vertices then the strong small-impact property holds as well.

PROOF. Consider declaration vertex d as l . By construction, there is a single incoming edge
to d, p → d from the procedure entry vertex, p, an edge d → o to each vertex, o, representing an
occurrence (use or definition) of the declared variable, and a path of control edges pβowhere d 6∈ β.
The proof follows from Corollary 2.2 of Theorem 2 where U = {o | o is an occurrence vertex}
because there is a path (of control edges) β from p to every vertex u ∈ U and this path does not
include d; thus, omitting d’s single incoming edge disconnects no vertices and consequently leaves
Set 1 and Set 2 unaffected. Therefore the weak small-impact property holds for a declaration vertex
because the area change for AMSG\Set 3 is zero and thus bound by κ. Finally, because Set 3 is the
singleton set {d}, |Set 3| is one, and thus |Set 3|(1−κ)/κ, simplifies to (1−κ)/κ. Consequently, by
Corollary 2.1 the strong small-impact property holds, assuming that Set 1 includes at least (1−κ)/κ
vertices.

4. AN EFFICIENT LINCHPIN SEARCH ALGORITHM
This section presents an efficient algorithm for finding potential linchpins. The algorithm is based on
the three theorems from Section 3 that remove vertices from linchpin consideration. A preprocessing
step to the algorithm removes vertices with no incoming edges. Such vertices cannot be a part of
a cluster. Initially these are entry vertices of uncalled procedures. Removal of these entry vertices
may leave other vertices with no incoming edges; thus the removal is applied recursively. Unlike
the simple deletion of uncalled procedures, this edge removal allows clusters in (presently) uncalled
procedures to be considered.

The search for linchpins needs to slice while avoiding the (incoming edges of a) potential linch-
pin. This is supported in the implementation by marking the potential linchpin as poison and then
using slicing operators that stop when they reach a poison vertex.

Definition 9 (POISON AVOIDING SLICE).
The slice pb(v) is the same as b(v) except that slicing stops at vertices marked as poison. In other
words, only valid paths free from poison vertices are considered. The remaining slicing operators,
b1, b2, f , f1, and f2 have poison-vertex-avoiding variants pb1, pb2, pf , pf1, and pf2, respectively.
As with b and f , pb(v) = pb2(pb1(v)) and pf(v) = pf2(pf1(v)).
2

The algorithm for vertex exclusion, given in function exclude of Figure 9, takes three inputs: the
vertex to test, l , a fringe search depth k, and a threshold κ percent. It returns true if l can be excluded
from consideration as a linchpin. The second parameter k, investigated in Section 5.3, is used to tune
the algorithm to speculatively search forward for alternative paths around a potential linchpin. The
algorithm first checks if l has a small backward or a small forward slice, or is a declaration vertex.
As shown in Theorems 1 and 3 such vertices cannot be linchpins. For remaining vertices the search
for dual paths is made. This is done by identifying three sets of vertices: poison, core, and fringe.
The sole vertex in the set poison is l . Being marked as poison causes the poison avoiding slices to

Efficient Identification of Linchpin Vertices in Dependence Clusters

boolean fringe search(Vertex l , Vertex v,
depth k, percent κ)

{
let success = true and fail = false
if v marked as core
return success // already processed v

mark v is core
foreach edge v → u
if area reduction bound(l , u) > κ ∗AMSG/V
if k == 0
return fail

else
if fringe search(l , u, k − 1, κ) == fail
return fail

return success
}

boolean exclude(Vertex l , depth k, percent κ)
{

if l is a declaration vertex
or |b(l)| < κ ∗AMSG/V
or |f(l)| < κ ∗AMSG/V

return true
clear all marks()
Mark l poison
return fringe search(l , l , k, κ) == success
}

Fig. 9. The linchpin exclusion algorithm.

stop at l . Vertices in the set core are reachable from l along paths that contain no more than k edges
(k is the function’s second parameter). Finally, the vertices of the set fringe have an incoming edge
from a core vertex but are not core vertices. The intent is that the fringe vertices play the role of U
from Corollary 2.2 of Theorem 2.

Function area reduction bound shown in Figure 10 computes an upper bound on the area reduc-
tion for Vertex l where Vertex u is one of the vertices from the fringe (the set U in Corollary 2.2 of
Theorem 2). In the computation, the size of Set i measures the width of the MSG impacted (i.e., the
number of backward slices impacted). This is multiplied by a bound on the height (slice size) of the
impact (the second multiplicand of each product). To ensure the strong version of the small-impact
property, the impact of Set 3 must be included (the last list of the function). The impact of this set
is ignored when using the weak small-impact property and thus the contribution of Set 3 is ignored.

Two examples are used to illustrate the algorithm. First, consider l1 from Figure 4 with depth
k = 0. This makes l1 the only core vertex and u the only fringe vertex. In this case, Set 1 =
{c, v}, Set 2.11 = {u, a, b}, Sets 2.12, 2.21, and 2.22 are all empty, and Set 3 = {l1}. Furthermore
b(l) = {l , v, c} as does pb(u). Thus |b(l)− pb(u)| is zero. Function area reduction bound returns
2 × 0 + 3 × 0 + 0 × 0 + 0 × 0 + 0 × 0 when considering AMSG\Set 3. And adds 1 × 3 when
considering AMSG . Thus the change in AMSG\Set 3 is 0 vertices and the change in AMSG\∅ is 3
vertices (15% of AMSG). The 15% reduction for AMSG\∅ is comparatively large because the SDG
is very small.

As a second example, consider l1 from Figure 5 with depth k = 0. This makes l1 the only core
vertex and l2 the only fringe vertex. In this case, there are no dual paths connecting the fringe to
v and c causing a potentially large reduction. However using depth k = 1, places l1 and l2 in the

Binkley et al.

int area reduction bound(Vertex l , Vertex u)
{
Let
Set 1 = V − f(l)
Set 2.11 = f2(l) ∩ pf2(u)
Set 2.12 = f2(l) ∩ (pf(u)− pf2(u))
Set 2.21 = (f(l)− f2(l)) ∩ pf2(u)
Set 2.22 = (f(l)− f2(l)) ∩ (pf(u)− pf2(u))
Set 3 = f(l)− ∪i Set 2.i

in
return |Set 1| × 0

+ |Set 2.11| × |b(l)− pb(u)|
+ |Set 2.12| × |b(l)− pb2(u)|
+ |Set 2.21| × |b2(l)− pb(u)|
+ |Set 2.22| × |b2(l)− pb2(u)|
// for the strong version include
+ |Set 3| × | ∪x∈core b(x)|

end
}

Fig. 10. Computation of the bound on the area reduction arising from ignoring the incoming edges of l .

core and u on the fringe. Because there are dual paths connecting u to v and c, the area reduction
is smaller. Further increasing k makes no difference because once a fringe vertex is found along a
path the recursive search stops. Finally the need for a set U with k = 0 is illustrated in Figure 8.

The complexity of area reduction bound is given in terms of the number of vertices V and edges
E, the maximal number of edges incident on a vertex, e, and the search depth k. Note that in the
worst case e is O(V), but in practice is much smaller; thus it is retained in the statement of the
complexity. The implementation of area reduction bound involves eight slices each of which take
O(E) time. The slicing algorithm marks each vertex encountered with a sequence number. This
makes it possible to compute various set operation while slicing. For example, when computing
the size of Set 2.11, assuming that the current sequence number is n, computing f2(l) leaves the
vertices of this slice marked n. Subsequently, while computing pf2(u), which marks vertices with
sequence number n + 1, if a vertex’s mark goes from n to n + 1 then the count of vertices in the
intersection f2(u) ∩ pf2(u) is incremented.

The complexity of the recursive function fringe search involves at most k + 1 recursive
calls. During each call, the foreach loop executes e times and, from the body of the loop, the
call to area reduction bound’s complexity of O(E) dominates. Thus the complexity of a call to
fringe search is O((Ee)k+1). For the untuned version k+1 is the constant 1 and thus the complex-
ity simplifies to is O(Ee).

The complexities of the naı̈ve algorithm and the untuned algorithm are the same as in the worst
case it is possible that no vertices are excluded. In theory the tuning can be more expensive (when
(Ee)k+1 is greater than E2. Empirically, this occurs only once in the range of k’s considered (see
the speedup for program flex-2-5-4 shown in Figure 20).

For a vertex v, the complexity of the three steps of exclude and the MSG construction are O(1)
for the declaration check, O(E) for the small slice check, O((Ee)k+1) for the fringe search, and
O(V E) to construct the MSG. This simplifies to O((Ee)k+1 + V E). For untuned algorithm where
k = 0, O((Ee)k+1) simplifies to O(Ee) and, because e is O(V), the overall complexity simplifies
to O(V E), the same as that of the naı̈ve algorithm.

The correctness of exclude is shown in Theorem 4, which proves that the algorithm satisfies the
weak small-impact property, and when the last line of function area reduction bound is included,
the strong small-impact property. Theorem 4 establishes that exclude is a conservative approxima-

Efficient Identification of Linchpin Vertices in Dependence Clusters

tion to the weak small-impact property. Thus all excluded vertices are guaranteed to have a small
impact and are consequently not linchpins.

Theorem 4 (ALGORITHM CORRECTNESS).
If function exclude from Figure 9 returns true for Vertex l , then l satisfies the weak small-impact
property.

PROOF. There are two steps. The first shows that {v ∈ G | dpp(l , v, u)} ⊆ pb(u) and that
{v ∈ G | dpp2(l , v, u)} ⊆ pb2(u). Then the remainder of the proof shows that the fringe satisfies
the requirements of the set U from the Multi-Path Impact Corollary (Corollary 2.2 of Theorem 2).

To begin with, observe that dpp(l , v, u) requires a valid path from v to u that excludes l . By
Definition 6 this valid path implies that v ∈ b(u) and furthermore, because the path excludes l , v ∈
pb(u). Thus, {v ∈ G | dpp(l , v, u)} ⊆ pb(u). The argument that {v ∈ G | dpp2(l , v, u)} ⊆ pb2(u)
is the same except that b2f1-valid paths are used in place of (full) valid paths. These two subset
containments imply that

b(l)− pb(u)	≤	b(l)− {v ∈ G	dpp(l , v, U)}
b(l)− pb2(u)	≤	b(l)− {v ∈ G	dpp2(l , v, U)}
b2(l)− pb(u)	≤	b2(l)− {v ∈ G	dpp(l , v, U)}
b2(l)− pb2(u)	≤	b2(l)− {v ∈ G	dpp2(l , v, U)}

The second step of the proof establishes that the six sets (Set 1, Set 2.11, Set 2.12, Set 2.21,
Set 2.22, and Set 3) used in Theorem 2 are equivalent to those computed at the top of function
area reduction bound of Figure 10. For each set the argument centers on the observation that when
v is in b(x) then x is in f(v).

For Set 1, observe that backward slices with l (i.e., those that include l) are those in f(l); thus
backward slices without l are those not in f(l), which is the set of vertices V − f(l). For Set 2.11,
first observe that f2 is the dual of b1; thus if v ∈ b1(u) then u ∈ f2(v). This means that all vertices
whose slices include l and u during Pass 1 are in the forward Pass 2 slice of both l and u and thus
in f2(l) ∩ pf2(u).

As with Set 2.11, for Set 2.12 all vertices whose backward slices include l during Pass 1 are in
the forward Pass 2 slice of l . Set 2.12 also includes backward slices where u is included during Pass
2 but not Pass 1. These are backward slices taken with respect to the vertices in pf(u)−pf2(u); thus
Set 2.12 includes the vertices in f2(l) ∩ (pf(u)− pf2(u)). The arguments for Set 2.21 and 2.22 are
similar.

Finally, for a Set 3 vertex, x, the backward slice b(x) includes l but not u. The vertices that
include l in their slice are those of f(l). Those that also include u are in Set 2; thus Set 3 is
efficiently computed as f(l)− ∪iSet 2.i.

The final step in the proof is to observe that by construction the function fringe search identifies
a set of fringe vertices that fulfill the role of the set U from the multi-path impact corollary (Corol-
lary 2.2 of Theorem 2). Thus the average impact corollary (Corollary 2.3) of Theorem 2 implies that
the average reduction for u ∈ U from ignoring the incoming edges of l is bounded by κ.

Corollary 4.1 (STRONG ALGORITHM).
If |core| × (1− κ)/κ ≤ |Set 1| and exclude(l) then l satisfies the strong small-impact property.

PROOF. Theorem 4 proves that the weak small-impact property holds for AMSG\Set 3. Thus
only Set 3 need be considered. By construction all backward slices that encounter a core vertex,
except those taken with respect to core vertices, also encounter a fringe vertex. This implies that
Set 3 includes at most the core vertices. Consequently, under the assumption that |core| is bound by
|core| × (1− κ)/κ ≤ |Set 1|, the strong small-impact property holds.

Binkley et al.

5. EMPIRICAL STUDY OF PERFORMANCE IMPROVEMENT
To empirically investigate the improved search for linchpin vertices, four research questions are
considered and a study designed and executed for each. The design includes considering κ set to
1%, 10%, and 20%. Based on visual inspection of hundreds of MSGs, a 1% or smaller reduction is
never associated with the breaking of a cluster. The 1% reduction is thus included as a conservative
bound on the search. At the other end, while, 20% might seem too liberal, it was chosen as an
optimistic bound to investigate the speed advantages that come from the (potential) exclusion of a
larger number of vertices. Finally, the 10% limit represents a balance point between the likelihood
that no linchpin vertices are missed and the hope the only linchpin vertices are considered.

Three experiments were designed to empirically investigate the following four research ques-
tions. The experiments involve almost half a million lines of code from 38 subject programs written
predominantly in C with some C++. Summary statistics concerning the programs can be found in
Figure 11.

— RQ1: For sufficiently large programs, is the predicate of the Strong Impact Corollary (Corol-
lary 2.1 of Theorem 2) satisfied?
This is an important validation question. Recall that the guarding predicate of Corollary 2.1
determines whether the risk ratio is sufficiently low that we can be certain that the associated
vertex set has no effect in dependence clusters (and can therefore be safely ignored). If this
predicate is satisfied in most cases, then the theoretical performance improvements defined in
Section 3 will become achievable in practice. Therefore, this is a natural first question to study.

— RQ2: Does the new algorithm significantly improve the linchpin-vertex search?
This research question goes to the heart of the empirical results in the paper. It asks whether the
basic algorithm (with no tuning) is able to achieve significant performance enhancements. If this
is the case, then there is evidence to support the claim that the algorithm is practically useful: it
can achieve significant performance enhancements with no tuning required.

— RQ3: What is the effect of tuning the fringe search depth on the performance of the algorithm?
This research question decomposes into two related subquestions:
— RQ3.1: What is the impact of the tuning parameter (the fringe search depth) on the search?

This includes identifying general trends and the specific optimal depth for each of the three
values for κ.

— RQ3.2: Using the empirically chosen best depth, what is the performance improvement that
tuning brings over the naı̈ve search? This is measured in both vertices excluded and time
saved.

The aim of RQ3 is to provide empirical evidence concerning the effects of tuning. This may be
useful to the software engineer who seeks to get the best performance from the algorithm. For
those software engineers who would prefer to simply identify linchpins using an algorithm ‘out
of the box’, the basic (untuned algorithm) should be used. For these ‘end users’ the answer to
RQ2 is sufficient. The answer to RQ3 may also be relevant to researchers interested in finding
ways to further improve and develop fast linchpin search algorithms or those working on related
dependence analysis techniques.

The experiments were run on five identical Linux machines running Ubuntu 10.04.3 LTS and
kernel version 2.6.32-42. Each experimental run is a single process executed on a 3.2GHz Intel
6-Core CPU. To help stabilize the timing, only five of the processor’s six cores were used for the
experimental runs.

The SDGs used in this study were built using CodeSurfer 1.9p3 [Grammatech Inc. 2002].
CodeSurfer can build SDGs for the complete C and C++ languages. For example, it precisely treats
structure fields [Yong et al. 1999] and performs extensive pointer analysis using the algorithm pro-
posed by Fahndrich et al. [Fahndrich et al. 1998], which implements a variant of Andersen’s points-
to algorithm [Andersen 1994] (this includes parameter aliasing).

Efficient Identification of Linchpin Vertices in Dependence Clusters

Program LoC SLoC Vertices Edges SVertices
fass 1,140 978 4,980 12,230 922
interpreter 1,560 1,192 3,921 9,463 947
lottery 1,365 1,249 5,456 13,678 1,004
time-1.7 6,965 4,185 4,943 12,315 1,044
compress 1,937 1,431 5,561 13,311 1,085
which 5,407 3,618 5,247 12,015 1,163
pc2c 1,238 938 7,971 11,185 1,749
wdiff.0.5 6,256 4,112 8,291 17,095 2,421
termutils 7,006 4,908 10,382 23,866 3,113
barcode 5,926 3,975 13,424 35,919 3,909
copia 1,170 1,112 43,975 128,116 4,686
bc 16,763 11,173 20,917 65,084 5,133
indent 6,724 4,834 23,558 107,446 6,748
acct-6.3 10,182 6,764 21,365 41,795 7,250
gcc.cpp 6,399 5,731 26,886 96,316 7,460
gnubg-0.0 10,316 6,988 36,023 104,711 9,556
byacc 6,626 5,501 41,075 80,410 10,151
flex2-4-7 15,813 10,654 49,580 105,954 11,104
space 9,564 6,200 26,841 74,690 11,277
prepro 14,814 8,334 27,415 75,901 11,745
oracolo2 14,864 8,333 27,494 76,085 11,812
tile-forth-2.1 4,510 2,986 90,135 365,467 12,076
EPWIC-1 9,597 5,719 26,734 56,068 12,492
userv-0.95.0 8,009 6,132 71,856 192,649 12,517
flex2-5-4 21,543 15,283 55,161 234,024 14,114
findutils 18,558 11,843 38,033 174,162 14,445
gnuchess 17,775 14,584 56,265 165,933 15,069
cadp 12,930 10,620 45,495 122,792 15,672
ed 13,579 9,046 69,791 108,470 16,533
diffutils 19,811 12,705 52,132 104,252 17,092
ctags 18,663 14,298 188,856 405,383 20,578
wpst 20,499 13,438 140,084 382,603 20,889
ijpeg 30,505 18,585 289,758 822,198 24,029
ftpd 19,470 15,361 72,906 138,630 25,018
espresso 22,050 21,780 157,828 420,576 29,362
go 29,246 25,665 144,299 321,015 35,863
ntpd 47,936 30,773 285,464 1,160,625 40,199
csurf-pkgs 66,109 38,507 564,677 1,821,811 43,044
sum 494,025 342,949 2,694,603 7,953,166 465,914

Fig. 11. Characteristics of the subject programs studied. LoC and SLoC (non-blank - non-comment Lines of Code) are
source code line counts as reported by the linux utilities wc and sloc. Vertices and Edges are counts from the resulting SDG
while SVertices is a count of the source-code-representing vertices. (In this and the remaining figures, programs are shown
ordered by size based on SVertices.)

The subset of the vertices in the SDG that represent source code are considered as potential
linchpins and counted when determining slice size. An SDG includes “pseudo” vertices that do not
directly represent source code. For example, when a call to procedure P may reference a global
variable, the SDG includes vertices representing the passing of the global to P . Finally, vertices are

Binkley et al.

used in place of a source-level artifact such as lines of code because vertex count is more consistent
across programming styles.

5.1. RQ1: Empirical Validation of Strong Small-Impact Property
This section empirically investigates how often the predicate of the Strong Impact Corollary (Corol-
lary 2.1 of Theorem 2) is satisfied. To do so, the linchpin search was configured to produce the MSG
regardless of the value returned by exclude and then verify that the reduction was less than κ percent
of AMSG . Therefore, the function area reduction bound omits the final term for Set 3. Vertices that
produce a reduction greater than κ were then inspected by hand to determine whether the vertices
of Set 3 were the cause.

Because of the execution time involved, six of the larger programs were not considered (the
largest would take a year to complete). The remaining programs include 272,839 source-code rep-
resenting vertices. These were considered for κ = 1%, 10%, and 20%. Of the resulting 818,517
executions, no violations were uncovered. Looking for near miss violations uncovered a strong
trend between near misses and program size with violations growing less likely as program size in-
creased. Given this relationship several very small programs were considered. This uncovered four
violations all for κ = 1%; thus empirically for κ = 10% and κ = 20% the Strong-Impact Property
always held. The four violations, two each from programs with 428 and 723 SLoC, were inspected
and it was confirmed that they came from vertices of the core (i.e., those from Set 3); thus validating
the implementation of exclude. Basically violations only occur with very small programs where a
small number of vertices can have a large percentage impact.

In summary, the Strong Impact Corollary (Corollary 2.1 of Theorem 2) holds for 100% of the
272,839 vertices considered. This result provides an affirmative answer to Research Question RQ1:
for sufficiently large programs, the predicate of the Strong Impact Corollary (Corollary 2.1 of The-
orem 2) is satisfied.

5.2. RQ2: Time Improvement
For each value of κ considered, the average impact is broken down in Figure 12. Over all 38 pro-
grams, the figure shows the weighted average percentage of vertices in each of four categories:
declarations, small slice, dual paths, and included. The area reduction computation and thus the pro-
duction of the MSG need only be performed for the last category. The first category, declarations,
is the same regardless of κ. In the empirical study this category also includes vertices matching two
other trivial patterns: those with no incoming edges and those with no outgoing edges. Approxi-
mately 40% of the vertices in this category are edge-less and 60% are true declarations. Category
one is shown in Figure 12 using a grid pattern. Next, the light-gray section shows how an increase
in κ leads to an increase in the percentage of vertices that can be excluded because they have a
small slice. This increase is expected, but what is interesting here is how little change occurs when
κ goes from 10% to 20%. The next category, shown with diagonal lines, is the percentage excluded
because dual-paths were found in the graph. The values are largely independent of κ suggesting
that when dual paths exist, they show a small reduction or a large reduction, but rarely something in
between. The final category contains the vertices for which the MSG must be produced. As detailed
in the table, 80 to 90% of the MSGs need not be produced. Because the execution time savings is the
same regardless of the reason for excluding a vertex, the time saving attributed to the discovery of
dual-paths is the percentage of the vertices excluded because of dual paths, which is approximately
30-35% of the excluded vertices.

Taking 10% of the area under the MSG as a cutoff for a cluster being a large cluster (the middle
choice), almost 88% of the vertices are removed from consideration as linchpins. Furthermore,
increasing this cutoff to 20% provides only a modest 2 percentage point increase; thus, there is
empirically little benefit in the increase.

To provide a closer look at the exclusion, Figure 13 shows six example programs. Each triplet of
bars represents κ of 1%, 10%, and 20%. Five of the six programs show an increase in the vertices
excluded because they have a small slice. The exception, ed, is a program that includes a single very

Efficient Identification of Linchpin Vertices in Dependence Clusters

40%

60%

80%

100%

Excluded Vertex Breakdown

included

excluded dual

paths

excluded small

0%

20%

40%

κ = 1% 10% 20%

excluded small

slice

declarations

κ

partition \ κ 1% 10% 20%
included 19.6% 12.3% 10.0%
excluded dual paths 31.2% 34.1% 35.1%
excluded small slice 9.4% 13.7% 15.0%
declarations 39.9% 39.9% 39.9%
total excluded 80.4% 87.7% 90.0%

Fig. 12. Weighted average percentage of vertices in four categories for the three values of κ. The figures do not sum to
100% due to rounding errors.

large dependence cluster [Harman et al. 2009]. Because of this large cluster, ed’s slices are either
large (for those vertices in the cluster) or small; thus, there is no benefit to increasing κ within a
reasonable range. Perhaps because there are so few vertices with small slices, the search for vertices
with dual paths finds the most success in ed, which also shows the most improvement with an
increase in κ.

Finally, Figures 14 and 15 show the runtime speedup. Figure 14 shows the speedups for all pro-
grams with the averages shown on the far right. The averages are shown alone in Figure 15. The
average speedup for κ of 1%, 10%, and 20% is 8x, 14x, and 18x, respectively. This speedup directly
parallels the reduction in the number of vertices that must be considered. Most programs show a
similar pattern, where increasing the value of κ brings a clear benefit. The program pc2c (a Pascal
to C converter) is an outlier as it does not gain much speedup for larger values of κ. Looking at
the source code for this program, 70% of the code is in main and the remaining functions have few
parameters or local variables. The implication of this is that declaration vertices account of only
10% of the excluded vertices. This is dramatically less than the average of 40% and accounts for the
overall difference.

Statistically all three versions provide a significant improvement in runtime over the naı̈ve search
(p < 0.0001 for all three tests). Because the runtimes are not normally distributed, the non-
parametric Friedman’s paired test is used. A paired test is appropriate because the same population
of programs is used with each algorithm. Head to head the runtimes for κ of 10% and 20% are
significantly less than that for κ of 1% (p = 0.0003 and p < 0.0001, respectively), and finally, the

Binkley et al.

30%

40%

50%

60%

70%

80%

90%

100%

Vertex Breakdown Examples

included

excluded dual

paths

excluded small

slice

declarations

0%

10%

20%

30%

ed flex2-4-7 flex2-5-4 ftpd time-1.7 wpst

declarations

Fig. 13. Excluded vertex breakdown for six sample programs designed to show the variation of impact that κ has at the
program level. Each triplet includes the breakdown for κ of 1%, 10%, and 20%.

runtime for κ of 10% is statistically higher than κ of 20% (p = 0.0066). The weakening strength
of these p scores serves to underscore that increasing κ brings a diminishing performance improve-
ment (along with the increased risk of missing a linchpin vertex). In summary, the data and statistics
provide an affirmative answer to research question RQ2: the new algorithm significantly improves
the linchpin-vertex search.

5.3. RQ3.1: Depth Study
With an increase in search depth comes an increased potential to find a fringe. However, this is done
at the cost of searching a greater portion of the graph. Because the search for a fringe vertex stops
when an appropriate vertex is found, increasing depth can only increase the number of excluded
vertices. As this study shows, initially greater depth is beneficial, but this benefit wanes as depth
(and thus search cost) increases.

The third study considers the impact of tuning the exclusion’s search depth. To begin with, Fig-
ure 16 shows the percentage increase in excluded vertices when compared to the number excluded
at depth zero. For all three values of κ the curves show an initial rapid increase that then tapers off.
While it is not feasible to run these experiments for larger depths with all programs because the
execution times become excessive, collecting data for a subset shows that the curves continue this
taper as depth increases.

The increase in excluded vertices has a cost. For the three values of κ, Figure 17 shows the impact
of search depth on the cost of the search. From the upper chart it is clear that for smaller search
depths, MSG generation dominates the execution time and thus excluding additional vertices is
worth the additional search effort. However, as depth increases above five, the time spent conducting

Efficient Identification of Linchpin Vertices in Dependence Clusters

10

20

30

40

50

60
Speedup

improvement for κ = 20%

improvement for κ = 10%

improvement for κ =1%

0

10

fa
ss

in
te

rp
re

te
r

lo
tt

e
ry

ti
m

e
-1

.7

co
m

p
re

ss

w
h

ic
h

p
c2

c

w
d

if
f.

0
.5

te
rm

u
ti

ls

b
a

rc
o

d
e

co
p

ia b
c

in
d

e
n

t

a
cc

t

g
cc

.c
p

p

g
n

u
b

g
-0

.0

b
ya

cc

fl
e

x2
-4

-7

sp
a

ce

p
re

p
ro

o
ra

co
lo

2

ti
le

-f
o

rt
h

-2
.1

E
P

W
IC

-1

u
se

rv
-0

.9
5

.0

fl
e

x2
-5

-4

fi
n

d
u

ti
ls

g
n

u
ch

e
ss

ca
d

p

e
d

d
if

fu
ti

ls

ct
a

g
s

w
p

st

ij
p

e
g

ft
p

d

e
sp

re
ss

o

g
o

n
tp

d

cs
u

rf
-p

k
g

s

a
v
e

ra
g

e

Fig. 14. Speedup from vertex exclusion. Each stacked bar shows the speedup when κ is 1% (solid gray) and then the
increase in the speedup achieved by going to κ of 10% (gray checkerboard) and then 20% (black). For example, the average
speedup for κ of 1%, 10%, and 20% are 8, 14, and 18, respectively. The programs are sorted based on program size.

the linchpin search dominates. This was confirmed using the gprof profiler where the functions
involved in the search for the fringe dominate the execution time once depth exceeds five.

The lower chart shows a magnified view of the viable range of depths. The three curves, for the
three values of κ, show very similar trends where increases in depth initially bring improvement
that later wanes as search costs mount. For κ of 1% there is a clear spike at depth three. While less
pronounced, for κ of 10% there is a spike at depth four. For κ of 20% the rise is more gradual with
the best value occurring at depth five. Based on these results, when addressing research question
RQ3.2, the search depths are fixed at three for κ = 1%, four for κ = 10%, and five for κ = 20%.

5.4. RQ3.2: Performance Improvement
This section considers the impact of greater fringe search depth on vertex exclusion. Based on the
depth study used to answer RQ3.1, this study fixes the search depth at three for κ = 1%, four
for κ = 10%, and five for κ = 20%. For each value of κ, the average impact is broken down in
Figure 18. Over all 38 programs, the general pattern in the weighted average percentage of vertices
in each of four categories: declarations, small slice, dual paths, and included, mirrors that seen in
Figure 12.

Taking 10% of the area under the MSG as a cutoff for a cluster being a large cluster (the middle
choice), the percentage of vertices removed from consideration increases from 87.7% using depth
zero to 89.8% using depth four. Furthermore, increasing the cutoff to 20% does not notably improve
the number of vertices excluded; thus, there is minimal benefit from the increase.

Binkley et al.

10

15

20

25 Speedup

0

5

κ = 1% 10% 20%

Fig. 15. Average Speedup for the three values of κ.

4%

6%

8%

10%

12%

14%

C
h

a
n

g
e

 f
ro

m

D
e

p
th

 Z
e

ro

Vertices Excluded

κ = 1%

10%

20%

0%

2%

4%

0 1 2 3 4 5 6 7 8

C
h

a
n

g
e

fr
o

m
D

e
p

th
Z

e
ro

Search Depth

Fig. 16. Percentage change in excluded vertices for the three values of κ and depth ranging from 0 to 8.

Figure 19 shows the overall runtime speedup with the impact of greater search depth shown by
the grey portion of each bar. The average speedup for κ of 1%, 10%, and 20% is 10x, 18x, and
almost 25x, respectively. The speedups directly parallel the reduction in the number of vertices
that must be considered. In more detail, Figure 20 shows the runtime speedup for each program

Efficient Identification of Linchpin Vertices in Dependence Clusters

-400%

-300%

-200%

-100%

0%

100%

C
h

a
n

g
e

 f
ro

m
 D

e
p

th
 Z

e
ro

Average Analysis Time

κ = 1%

10%

20%

-700%

-600%

-500%

0 1 2 3 4 5 6 7 8

C
h

a
n

g
e

fr
o

m
D

e
p

th
Z

e
ro

Search Depth

20%

6%

8%

10%

12%

14%

16%

18%

C
h

a
n

g
e

 f
ro

m
 D

e
p

th
 Z

e
ro

Average Analysis Time

κ = 1%

10%

20%

0%

2%

4%

6%

0 1 2 3 4 5 6 7

C
h

a
n

g
e

fr
o

m
D

e
p

th
Z
e

ro

Search Depth

Fig. 17. The cumulative improvement in analysis time for three values of κ and depth ranging from 0 to 7. The lower chart
shows a magnified view of the range 0 to 5.

with the averages shown on the far right. While most programs follow the general trend of an
approximate 25% improvement, a few diverge from the pattern. For example, with flex2-5-4 the
cost of the fringe search for κ = 20 far exceeds the benefit gained from excluding an additional
230 potential linchpin vertices. This leads to the negative speedup seen in Figure 20. At the other
end of the spectrum, programs such as tile-forth show no improvement at depth zero when moving
from κ = 10% to κ = 20%. In contrast, with increased search depth the move from κ = 10% to

Binkley et al.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

κ = 1% 10% 20%

Excluded Vertex Breakdown

included

excluded dual

paths

excluded small

slice

declarations

κ

partition \ κ 1% 10% 20%
included 16.8% 10.2% 8.0%
excluded dual paths 34.0% 36.2% 37.2%
excluded small slice 9.4% 13.7% 15.0%
declarations 39.9% 39.9% 39.9%
total excluded 83.2% 89.8% 92.0%

Fig. 18. Weighted average percentage of vertices in four categories for the three values of κ. (The figures do not sum to
100% due to rounding errors.)

κ = 20% is accompanied by a notable speedup.
Finally, to better understand the per-program impact of exclude, Figure 21 shows the runtimes for

the naı̈ve, untuned, and tuned search for κ = 10%. It also breaks out the time taken by the two simple
checks (the declaration and small-slices tests) and the dual-path test. It is clear from this data that
the MSG generation time dominates in all three algorithms. On average exclude takes 1% (untuned)
and 2% (tuned) of the respective runtimes where the increase reflects the cost of the increased search
depth. In the untuned and tuned algorithms the average time taken by the algorithm’s declaration
and small slice tests accounts for only 0.1% of the run time.

Statistically, again using a Friedman’s paired test, all three versions provide a significant improve-
ment in runtime over the naı̈ve search (p = 0.0005 for κ of 1% and p < 0.0001 for the other two).
Head to head, the runtimes for κ of 10% and 20% continue to be significantly less than that for κ of
1% (p = 0.0005 and p < 0.0001) respectively), and the runtime for κ of 10% is statistically higher
than κ of 20% (p = 0.003). Again, the higher p value in the last test suggests that greater search
depth was of more benefit going from κ of 1% to 10% than from 10% to 20%. In summary, the
data and statistics show that on average the effect of tuning the fringe search depth is to improve the
performance of the algorithm; however, for some programs the additional search costs exceed the
savings attained by considering fewer potential linchpins.

Efficient Identification of Linchpin Vertices in Dependence Clusters

5

10

15

20

25 Speedup

fringe search

improvement

initial speedup

-5

0

5

κ = 1% 10% 20%

Fig. 19. Improvement in speedup from tuning. The grey tops shows the impact of the more aggressive search on the average
speedup for the three values of κ.

5.5. Threats to Validity
This section concludes by considering threats to the external, internal, construct, and statistical va-
lidity of the results presented. The main external threat arises from the possibility that the selected
programs are not representative of programs in general, with the implication that the findings of the
experiments do not apply to ‘typical’ programs. The programs studied perform a wide variety of dif-
ferent tasks including, applications, utilities, games, and system code. They also include procedural
C programs and object-oriented C++ programs. There is, therefore, reasonable cause for confidence
in the results obtained and the conclusions drawn from them. However, all of the programs studied
were C/C++ programs. Therefore, it would be premature to infer that the results necessarily apply to
other programming languages. Furthermore, all the programs studied are small to medium in size.
It is possible that properties of larger programs differ from those studied. This difference would
express itself through differences in the slices as the other parts of the algorithm are local to at most
few procedures and larger programs tend to differ from smaller programs primarily in the number
of procedures not the complexity of their procedures.

Internal validity is the degree to which conclusions can be drawn about the causal effect of the
independent variable on the dependent variable. The validation experiment directly tests that exclude
finds only vertices that do not hold together large clusters. Other threats, such as maturation, are not

Binkley et al.

10

20

30

40

50

60

70

80 Fringe Search Speedup
improvement for κ = 20%, depth = 5

improvement for κ = 10%, depth = 4

improvement for κ =1%, depth = 3

-10

0

fa
ss

in
te

rp
re

te
r

lo
tt

e
ry

ti
m

e
-1

.7

co
m

p
re

ss

w
h

ic
h

p
c2

c

w
d

if
f.

0
.5

te
rm

u
ti

ls

b
a

rc
o

d
e

co
p

ia b
c

in
d

e
n

t

a
cc

t

g
cc

.c
p

p

g
n

u
b

g
-0

.0

b
y
a

cc

fl
e

x
2

-4
-7

sp
a

ce

p
re

p
ro

o
ra

co
lo

2

ti
le

-f
o

rt
h

-…

E
P

W
IC

-1

u
se

rv
-0

.9
5

.0

fl
e

x
2

-5
-4

fi
n

d
u

ti
ls

g
n

u
ch

e
ss

ca
d

p

e
d

d
if

fu
ti

ls

ct
a

g
s

w
p

st

ij
p

e
g

ft
p

d

e
sp

re
ss

o

g
o

n
tp

d

cs
u

rf
-p

k
g

s

a
v
e

ra
g

e

Fig. 20. Speedup from by vertex exclusion. Each bar shows the speedup when κ is 1% and then the increase in speedup
achieved by going to κ of 10% and then to 20%. The programs are sorted based on program size.

a concern in the absence of human subjects.
Statistical conclusion validity considers the appropriateness of the statistical tests used. Fried-

man’s paired test is a well known statistical test that is an appropriate substitute for a t-test when the
latter’s normality assumption is violated.

Finally, construct validity assesses the degree to which the variables used in the study accurately
measure the concepts they purport to measure. Note that in the presence of human judgments, con-
struct validity is a more serious concern. In this study the only measurement is of slice size; thus the
primary threat comes from the potential for faults in the tools used to gather the data. A mature and
widely used slicing tool (CodeSurfer [Grammatech Inc. 2002]) was used to mitigate this concern.
In addition, the MSG generation tools have been extensively tested.

6. RELATED WORK
Section 2 described the historical development of work on the specific topic of large dependence
clusters and their causes in source code. This section briefly reviews the wider context of work on
dependence analysis and on dependence clusters at higher levels of abstraction.

Dependence analysis plays a key role in many forms of source code analysis and manipula-
tion [Binkley 2007]. For example, it has been studied as a driver of program comprehension [Balmas
2002; Deng et al. 2001]. Dependence analysis has also been used to control the kinds of mainte-
nance change that can be performed with minimal impact [Gallagher and Lyle 1991; Tonella 2003]
as well as to measure the impact of such changes [Black 2001]. Finally, a recently proposed impact
analysis framework [Acharya and Robinson 2011] reports that impact sets are often part of large

Efficient Identification of Linchpin Vertices in Dependence Clusters

(all times untuned tuned
in sec.) D and percent percent

Program naı̈ve total SS exclude exclude total exclude exclude
fass 399 50 0 1 3% 47 2 5%
interpreter 264 55 0 2 3% 48 3 6%
lottery 29 1 0 0 27% 1 0 36%
time-1.7 17 1 0 0 25% 1 0 43%
compress 22 3 0 1 19% 2 1 34%
which 58 6 0 1 9% 4 1 22%
pc2c 4,327 1,393 4 23 2% 1,379 32 2%
wdiff.0.5 251 19 0 1 5% 17 2 10%
termutils 1,099 96 1 3 4% 86 5 6%
barcode 3,636 233 2 9 4% 175 12 7%
copia 7,742 1,353 10 63 5% 1,525 117 8%
bc 15,217 2,666 8 65 2% 2,508 87 3%
indent 28,144 4,068 10 95 2% 2,551 181 7%
acct 5,164 179 1 8 5% 166 11 7%
gcc.cpp 49,786 4,510 13 90 2% 3,484 128 4%
gnubg-0.0 97,856 3,256 16 59 2% 3,055 134 4%
byacc 86,906 2,634 10 63 2% 2,449 67 3%
flex2-4-7 143,446 10,837 27 163 2% 10,999 223 2%
space 16,374 731 4 12 2% 656 22 3%
prepro 22,119 677 4 10 2% 627 18 3%
oracolo2 22,418 747 5 11 1% 681 18 3%
tile-forth 585,760 21,075 110 1,212 6% 18,104 2,285 13%
epwic 20,606 638 3 15 2% 543 21 4%
userv0 307,494 37,707 51 245 1% 32,028 461 1%
flex2-5-4 284,640 14,743 32 204 1% 12,625 316 3%
findutils 125,863 12,596 24 255 2% 9,138 777 8%
gnuchess 416,828 39,361 63 521 1% 27,931 478 2%
cadp 53,907 2,152 9 36 2% 1,917 40 2%
ed 601,486 135,616 149 1,203 1% 92,547 1,623 2%
diffutils 213,874 21,883 33 179 1% 13,771 778 6%
ctags 2,821,019 506,659 539 2,416 0% 437,066 6,250 1%
wpst 1,010,265 87,230 113 1,226 1% 80,236 1,701 2%
ijpeg 9,241,923 1,517,283 240 28,045 2% 1,219,897 55,124 5%
ftpd 1,036,271 153,065 227 1,167 1% 116,427 1,281 1%
espresso 4,265,666 394,800 464 3,365 1% 348,330 4,181 1%
go 8,711,660 681,586 1,035 7,307 1% 522,449 6,648 1%
ntpd 19,451,129 1,492,954 1,589 15,021 1% 1,303,025 21,146 2%
csurf-pkgs 29,914,749 3,055,701 2,756 21,855 1% 2,698,046 31,735 1%
average 217,094 28,537 39 256 1% 23,636 494 2%

Fig. 21. Runtimes for the naı̈ve, untuned, and tuned algorithms for κ = 10%. (“D and SS” abbreviates the algorithm’s
declaration and small slice tests, which take the same time for both the untuned and tuned variants. On average this account
for 0.1% of the runtime.)

dependence clusters.
This paper is concerned with dependence clusters at the statement level, where the clusters bring

together vertices of the program’s dependence graph. However, other work has studied dependence

Binkley et al.

and clustering of dependence at higher levels of abstraction, such as whole functions, modules, and
files [Eisenbarth et al. 2003; Praditwong et al. 2011; Mitchell and Mancoridis 2006].

The study of clustering is not restricted to dependence nor to programs. There is also work on
clustering of test cases [Yoo et al. 2009], but this work uses clustering to find commonality and
reduce test effort. In such work, clustering is a choice and it has positive benefits. In the present
paper, clustering is considered to be potentially harmful and it is not constructed through choice,
but emerges from a program’s dependence structure.

A specialized form of mutually dependent clusters, coherent dependence clusters was recently
introduced [Islam et al. 2010b]. Such clusters extend dependence clusters to include not only internal
dependence (each statements of a cluster must depend on all the other statements of the cluster)
but also external dependence. Analysis of 16 open-source programs found that 15 of them had a
coherent cluster that was over 5% of the program. Visualization of coherent clusters [Islam et al.
2010a] has also been used to locate structural problems within programs.

Looking beyond programs, dependence analysis and dependence clusters are also interesting to
researchers studying other dependence networks (as construed in the broadest sense). The search
for linchpins is akin to rarity measurements and anomaly detection used, for example, in social
networking research [Madey et al. 2003]. In graph theory terms, a social network is a directed graph
composed of vertices that most often represent people and edges that represent relationships such
as shared experience or common interests. An example is a graph of telephone calls across multiple
customers.

Eberle and Holder [Eberle and Holder 2009] describe two related approaches. In the first, Lin and
Chalupsky used rarity measurements to discover unusual links within a graph [Lin and Chlupsky
2003]. This approach assumes that a graph is built from a pattern that repeats itself over and over. It
looks for subgraphs that are different. This approach is local in nature (similar to tree-based pattern
matching code generators). In contrast, a dependence graph vertex (or edge) being a linchpin is not
a local property and thus pattern based matching is ineffective. However, some patterns might be
used to filter from consideration elements that cannot play the linchpin role. This is a topic for future
investigation.

In the second approach, Rattigan and Jensen seek to identify outliers in any data set that can be
represented as a graph using a statistical approach to anomalous link detection [Rattigan and Jensen
2005]. They observe that “Relational learning techniques seem especially suited to the anomaly
detection problem, because structured data lend themselves to a host of possible methods for finding
interesting instances in a data set.” For example, in an authorship graph where vertices represent
authors and links represent coauthored papers, it is useful to know when an interesting collaboration
exists. The technique used finds outliers based on the Katz measure. This measure is a weighted sum
of the number of paths in the graph that connect two nodes, with shorter paths being given higher
weight. A similar approach could be applied to dependence graphs with all paths being given equal
weight. However, paths capture transitive dependence and thus overstate the connectedness in a
dependence graph.

7. FUTURE WORK
Future work will consider the following: criteria that help separate refactorable clusters from un-
avoidable clusters, techniques for aiding a programmer break dependence clusters into smaller more
manageable clusters, empirical assessment of dependence cluster’s impact on programmer compre-
hension, other potential causes of dependence clusters, and more efficient detection techniques.
Some of these are considered in more detail in this section.

To begin with, whether linchpins can be removed from code without affecting behaviour remains
to be studied. Clearly some human guided intervention will be required. It may be considered more
trouble than the perceived accrued benefit in some cases. However, the knowledge of the existence
and location of linchpins may be useful information in itself. Future work will explore the extent to
which a tool can guide, support, and reduce human effort in refactoring code to remove the need for
linchpins, thereby breaking up clusters.

Efficient Identification of Linchpin Vertices in Dependence Clusters

Replace

Fig. 22. The MSG for Replace showing two clusters. The containment relationship between these two clusters is unclear
from the MSG.

Future work will also consider inter-cluster dependence relationships. For example, where the
slices of vertices of one cluster include the vertices of another. Such relationships are an example of
a feature not easily visualized using the MSG. For example, the MSG shown in Figure 22 includes
two clusters (labeled Generate Pattern and Match Pattern). From the (unlabeled) MSG, it is not
clear that the two clusters are related when in fact there is a containment relation between the
two: every slice for an vertex in the Match Pattern cluster contains all the vertices of the Generate
Pattern cluster. Better visualization and further study of such relationships will allow for ‘cluster
folding,’ where related clusters can be merged together. This may lead to the identification of larger
dependence structures, making a stronger case for identifying and removing linchpins.

Static analysis suffers from conservative dependence analysis collateral damage. This often leads
to overly conservative, large, slices which can result in large clusters. Future work will consider how
the size of dependence clusters varies with the size of static slices in programs. Intuitively, the size
of a dependence cluster is bounded by the size of the slices taken with respect to its vertices. It will
thus be interesting to see how a program’s dependence clusters are affected by the use of different
slicing techniques. For example, the use of dynamic slicing [Korel and Laski 1988] will help ignore
debugging and error handling code resulting in smaller and more precise dependence clusters.

8. SUMMARY
This paper introduced a set of related theoretical results concerning the analysis of linchpins, which
hold large dependence clusters together. The removal of a linchpin leads to the disappearance of
source code dependence clusters. Using the theory we developed an algorithm for finding linchpins
that is much faster than existing approaches. We provided empirical evidence from a large scale
study of C and C++ code to support the claim that the assumptions made in the theoretical section of
the paper are borne out in practice. Our empirical findings indicated that our algorithm can achieve
orders of magnitude reductions in the analysis time. We also empirically studied the effects of tuning
the algorithm’s search depth and the effect that tuning has on algorithm performance.

REFERENCES
ACHARYA, M. AND ROBINSON, B. 2011. Practical change impact analysis based on static program slicing for industrial

software systems. In Proceedings of the 33rd International Conference on Software Engineering, (ICSE 2011), R. N.
Taylor, H. Gall, and N. Medvidovic, Eds. ACM, Waikiki, Honolulu, HI, USA, 746–755.

Binkley et al.

ANDERSEN, L. O. 1994. Program analysis and specialization for the C programming language. Ph.D. thesis, DIKU, Uni-
versity of Copenhagen. (DIKU report 94/19).

BALMAS, F. 2002. Using dependence graphs as a support to document programs. In 2nd IEEE International Workshop on
Source Code Analysis and Manipulation (Montreal, Canada). IEEE Computer Society Press, Los Alamitos, California,
USA, 145–154.

BESZÉDES, Á., GERGELY, T., JÁSZ, J., TOTH, G., GYIMÓTHY, T., AND RAJLICH, V. 2007. Computation of static ex-
ecute after relation with applications to software maintenance. In 23rd IEEE International Conference on Software
Maintenance (ICSM 2007) (Paris, France). IEEE Computer Society Press, Los Alamitos, California, USA, 295–304.

BINKLEY, D., GOLD, N., HARMAN, M., LI, Z., MAHDAVI, K., AND WEGENER, J. 2008. Dependence anti patterns. In
4th International ERCIM Workshop on Software Evolution and Evolvability (Evol’08). L’Aquila, Italy, 25–34.

BINKLEY, D. AND HARMAN, M. 2005. Locating dependence clusters and dependence pollution. In 21st IEEE International
Conference on Software Maintenance (Budapest, Hungary, September 30th-October 1st 2005). IEEE Computer Society
Press, Los Alamitos, California, USA, 177–186.

BINKLEY, D. AND HARMAN, M. 2009. Identifying ‘linchpin vertices’ that cause large dependence clusters. In 9th In-
ternational Working Conference on Source Code Analysis and Manipulation (SCAM’09). IEEE Computer Society,
Edmonton, Canada.

BINKLEY, D., HARMAN, M., HASSOUN, Y., ISLAM, S., AND LI, Z. 2009. Assessing the impact of global variables on
program dependence and dependence clusters. Journal of Systems and Software 83, 1, 96–107.

BINKLEY, D. W. 1993. Precise executable interprocedural slices. ACM Letters on Programming Languages and Systems 3, 1-
4, 31–45.

BINKLEY, D. W. 2007. Source code analysis: A road map. In Future of Software Engineering 2007, L. Briand and A. Wolf,
Eds. IEEE Computer Society Press, Los Alamitos, California, USA, 104–119.

BLACK, S., COUNSELL, S., HALL, T., AND BOWES, D. 2009. Fault analysis in OSS based on program slicing metrics. In
EUROMICRO Conference on Software Engineering and Advanced Applications. IEEE Computer Society, 3–10.

BLACK, S., COUNSELL, S., HALL, T., AND WERNICK, P. 2006. Using program slicing to identify faults in software.
In Beyond Program Slicing, D. W. Binkley, M. Harman, and J. Krinke, Eds. Number 05451 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany,
Dagstuhl, Germany.

BLACK, S. E. 2001. Computing ripple effect for software maintenance. Journal of Software Maintenance and Evolution:
Research and Practice 13, 263–279.

DENG, Y., KOTHARI, S., AND NAMARA, Y. 2001. Program slice browser. In 9th IEEE International Workshop on Program
Comprenhesion (Toronto, Canada). IEEE Computer Society Press, Los Alamitos, California, USA, 50–59.

EBERLE, W. AND HOLDER, L. 2009. Graph-based approaches to insider threat detection. Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence Research Cyber Security and Information Intelligence Chal-
lenges and Strategies CSIIRW 09.

EISENBARTH, T., KOSCHKE, R., AND SIMON, D. 2003. Locating features in source code. IEEE Transactions on Software
Engineering 29, 3. Special issue on ICSM 2001.

FAHNDRICH, M., FOSTER, J. S., SU, Z., AND AIKEN, A. 1998. Partial online cycle elimination in inclusion constraint
graphs. In Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation
(Montréal, Canada). Association for Computer Machinery, 85–96.

GALLAGHER, K. B. AND LYLE, J. R. 1991. Using program slicing in software maintenance. IEEE Transactions on Software
Engineering 17, 8, 751–761.

GRAMMATECH INC. 2002. The codesurfer slicing system.
HAJNAL, Á. AND FORGÁCS, I. 2011. A demand-driven approach to slicing legacy COBOL systems. Journal of Soft-

ware Maintenance and Evolution: Research and Practice. Published online in Wiley Online Library (wileyonlineli-
brary.com). DOI: 10.1002/smr.533.

HARMAN, M., BINKLEY, D., GALLAGHER, K., GOLD, N., AND KRINKE, J. 2009. Dependence clusters in source code.
ACM Transactions on Programming Languages and Systems 32, 1. Article 1.

HORWITZ, S., REPS, T., AND BINKLEY, D. W. 1990. Interprocedural slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems 12, 1, 26–61.

ISLAM, S., KRINKE, J., AND BINKLEY, D. 2010a. Dependence cluster visualization. In SOFTVIS ’10: Proceedings of the
5th international symposium on Software visualization. ACM, Salt Lake City, Utah, USA.

ISLAM, S., KRINKE, J., BINKLEY, D., AND HARMAN, M. 2010b. Coherent dependence clusters. In PASTE ’10: Proceed-
ings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering. ACM,
Toronto, Canada.

KOREL, B. AND LASKI, J. 1988. Dynamic program slicing. Information Processing Letters 29, 3, 155–163.
LIN, S. AND CHLUPSKY, H. 2003. Unsupervised link discovery in multi-relational data via rarity analysis. In IEEE ICDM

Conference on Data Mining.

Efficient Identification of Linchpin Vertices in Dependence Clusters

MADEY, G., FREEH, V., TYNAN, R., AND HOFFMAN, C. 2003. An analysis of open source software development us-
ing social network theory and agent-based modeling. In Arrowhead Conference on Human Complex Systems. Lake
Arrowhead, CA, USA.

MITCHELL, B. S. AND MANCORIDIS, S. 2006. On the automatic modularization of software systems using the bunch tool.
IEEE Transactions on Software Engineering 32, 3, 193–208.

PRADITWONG, K., HARMAN, M., AND YAO, X. 2011. Software module clustering as a multi-objective search problem.
IEEE Transactions on Software Engineering 37, 2, 264–282.

RATTIGAN, M. AND JENSEN, D. 2005. The case for anomalous link discovery. ACM SIGKDD Expl. News 7, 2.
REPS, T., HORWITZ, S., AND SAGIV, M. 1995. Precise interprocedural dataflow analysis via graph reachability. In ACM

Symposium on Principles of Programming Languages. San Francisco, CA, Jan. 23-25.
REPS, T. AND ROSAY, G. 1995. Precise interprocedural chopping. In SIGSOFT’95: Proceedings of the Third ACM SIGSOFT

Symposium on the Foundations of Software Engineering, G. E. Kaiser, Ed. ACM Press, 41–52.
REPS, T. AND YANG, W. 1988. The semantics of program slicing. Tech. Rep. Technical Report 777, University of Wisconsin.
SAVERNIK, L. 2007. Entwicklung eines automatischen Verfahrens zur Auflösung statischer zyklischer Abhängigkeiten

in Softwaresystemen (in German). In Software Engineering 2007 - Beiträge zu den Workshops, Fachtagung des GI-
Fachbereichs Softwaretechnik, 27.-30.3.2007 in Hamburg, W.-G. Bleek, H. Schwentner, and H. Züllighoven, Eds. LNI
Series, vol. 106. GI, 357–360.

SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural data flow analysis. Prentice-Hall, Englewood Cliffs,
NJ.

SZEGEDI, A., GERGELY, T., BESZÉDES, Á., GYIMÓTHY, T., AND TÓTH, G. 2007. Verifying the concept of union slices
on Java programs. In 11th European Conference on Software Maintenance and Reengineering (CSMR ’07). 233 – 242.

TONELLA, P. 2003. Using a concept lattice of decomposition slices for program understanding and impact analysis. IEEE
Transactions on Software Engineering 29, 6, 495–509.

WEISER, M. 1984. Program slicing. IEEE Transactions on Software Engineering 10, 4, 352–357.
YONG, S. H., HORWITZ, S., AND REPS, T. May 1999. Pointer analysis for programs with structures and casting. In Proceed-

ings of the SIGPLAN 99 Conference on Programming Language Design and Implementation (Atlanta, GA), 91–103.
YOO, S., HARMAN, M., TONELLA, P., AND SUSI, A. 2009. Clustering test cases to achieve effective and scalable prioriti-

sation incorporating expert knowledge. In ACM International Conference on Software Testing and Analysis (ISSTA 09).
Chicago, Illinois, USA, 201–212.

