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Abstract

More than half of the activities of daily living rely on upper limb functions
(Ingram et al., 2008). Humans perform upper limb movements with great ease
and flexibility but even simple tasks require complex computations in the brain
and can be affected following stroke leaving survivors with debilitating
movement impairments. Hemispheric asymmetries related to motor
dominance, imbalances between contralateral and ipsilateral primary motor
cortices (M1) activity and the ability to adapt movements to novel
environments play a key role in upper limb motor control and can affect
recovery. Motor learning and control are critical in neurorehabilitation, however
to effectively integrate these concepts into upper limb recovery treatments, a
deeper understanding of the basic mechanisms of unimanual control is

needed.

This thesis aimed to investigate hemispheric asymmetries related to motor
dominance, to evaluate the relative contribution of the contralateral and
ipsilateral M1 during unilateral reaching preparation and finally to identify the
neural correlates underlying the formation of a predictive internal model

enabling to adapt movements to new environments.

To this end electroencephalography (EEG), transcranial magnetic stimulation
(TMS), simultaneous TMS-EEG were employed during a simple motor and a

highly standardised robot-mediated task.

The first study used TMS-EEG to examine differences in cortical excitability
related to motor dominance by applying TMS over the dominant and non-
dominant M1 at rest and during contraction. No hemispheric asymmetries
related to hand dominance were found.

The second study assessed the temporal dynamics of bi-hemispheric motor
cortical excitability during right arm reaching preparation. TMS was applied
either to the ipsilateral or contralateral M1 during different times of movement
preparation. Significant bilateral M1 activation during unilateral reaching
preparation was observed, with no significant differences between the

contralateral and ipsilateral M1. Unimanual reaching preparation was



associated with significant interactions of excitatory and inhibitory processes

in both motor cortices.

The third study investigated the neural correlates of motor adaptation. EEG
was recorded during a robot-mediated adaptation task involving right arm
reaching movements and cortical excitability was assessed by applying TMS
over the contralateral M1 and simultaneously recording TMS responses with
EEG before and after motor adaptation. It was found that an error-related
negativity (ERN) over fronto-central regions correlated with performance
improvements during adaptation, suggesting that this neural activity reflects
the formation of a predictive internal model. Motor adaptation underlay
significant modulations in cortical excitability (i.e. neuroplasticity) in
sensorimotor regions. Finally, it was shown that native cortical excitability was
linked to motor learning improvements during motor adaptation and explained

the variability in motor learning across individuals.

These experiments demonstrated that even unimanual motor control relies on
interactions between excitatory and inhibitory mechanisms not only in the
contralateral M1 but in a wider range of brain regions, shown by a bi-
hemispheric activity during movement preparation, the formation of a
predictive model in fronto-central regions during motor adaptation and
neuroplastic changes in sensorimotor regions underlying motor adaptation

during unimanual reaching.
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“The brain is imprisoned inside the skull, a silent, dark, and motionless place;
how can it learn what it’s like outside? The surface of the brain itself has not
the slightest senses of touch, it has no skin with which to feel, it is only
connected to skin. Nor can a brain see, for it has no eyes, it only is
connected to eyes. The only paths from the world to the brain are bundles of
nerves like those that come in from the eyes, ears, and skin. How do the
signals that come through those nerves give rise to tour sense of “being in”
the outside world? The answer is that this sense is a complicated illusion.
We never actually make any direct contact with the outside world.
Instead, we work with models of the world that we build inside our brains.”

A quote from Marvin Minsky in from his book: The society of Mind (Minsky,
1988).
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Chapter 1 - Introduction

1.1. Overview
1.1.1. The human brain and movement control

The human brain is to me the most fascinating organ of our bodies. It is not
only the single organ which named itself but is also the organ with which we
communicate with the external world. In a famous TED talk Professor Daniel
Wolpert even goes as far as to say that the real and only reason we have a
brain is “to produce adaptable and complex movements” (Wolpert, 2011). He
says: “Movement is the only way you have of affecting the world around you.
Now that's not quite true. There's one other way, and that's through sweating.
But apart from that, everything else goes through contractions of muscles. So,
think about communication - speech, gestures, writing, sign language - they're
all mediated through contractions of your muscles. So, it's really important to
remember that sensory, memory and cognitive processes are all important,
but they're only important to either drive or suppress future movements. There
can be no evolutionary advantage to laying down memories of childhood or
perceiving the colour of a rose if it doesn't affect the way you're going to move
later in life.” (Wolpert, 2011). Regardless if we agree with this statement or not,
without doubt, movement control is a key factor in our daily activities. Even if
we take it for granted that we can intentionally move with ease and great
flexibility without thinking about it, complex control mechanisms engaging the

central nervous system take place.

Voluntary movement is a result of signals transmitted through communication
channels linking the internal world in our brains to the physical world around
us. In brief, the signals from the brain travel through the nervous system to
converge on muscles that eventually generate displacements and forces on
the external world (Schwartz, 2016). It is easy to forget the actual complexity
of what is going on in our brain when we perform simple tasks in everyday life
until something goes wrong, such as after a brain i