Bangladeshi Medicinal Plants: Ethnopharmacology, Phytochemistry and Anti-Staphylococcal Activity

Holly Siddique

A thesis submitted in partial fulfilment of the requirements of the University of East London for the degree of doctor of Philosophy

School of Health, Sport and Bioscience

June 2019
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOH</td>
<td>Acetic Acid</td>
</tr>
<tr>
<td>C</td>
<td>Cultivate</td>
</tr>
<tr>
<td>13C NMR</td>
<td>Carbon Nuclear Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>CDCl$_3$</td>
<td>Detoriated Chloroform</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>Chloroform</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation Spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of doublet</td>
</tr>
<tr>
<td>1D NMR</td>
<td>One dimensional Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>2D NMR</td>
<td>Two-dimensional Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DEPT 135</td>
<td>Distortionless Enhancement through Polarization Transfer-135</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>EUR</td>
<td>Euro</td>
</tr>
<tr>
<td>FIC</td>
<td>Informant consensus factor</td>
</tr>
<tr>
<td>FL</td>
<td>Fidelity level</td>
</tr>
<tr>
<td>GUAH</td>
<td>Govt. Unani and Ayurvedic Hospital</td>
</tr>
<tr>
<td>1H NMR</td>
<td>Proton Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear Multiple Bond Connectivity</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear Multiple Quantum Coherence</td>
</tr>
<tr>
<td>HRMS</td>
<td>High Resolution Mass Spectrometry</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared spectroscopy</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin Resistance Staphylococcus aureus</td>
</tr>
<tr>
<td>NBG</td>
<td>National Botanical Garden</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser Effect Spectroscopy</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>PTLC</td>
<td>Preparative Thin Layer Chromatography</td>
</tr>
<tr>
<td>q</td>
<td>Quadruplet</td>
</tr>
<tr>
<td>R_f value</td>
<td>Retardation factor</td>
</tr>
<tr>
<td>RUBG</td>
<td>University of Rajshahi Botanical garden</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid Phase Extraction</td>
</tr>
<tr>
<td>SJ</td>
<td>Sunderban Jungle</td>
</tr>
<tr>
<td>USD</td>
<td>US dollar</td>
</tr>
<tr>
<td>VLC</td>
<td>Vaccum Liquid Chromatography</td>
</tr>
<tr>
<td>VS</td>
<td>Vanillin in Sulphuric acid</td>
</tr>
<tr>
<td>W</td>
<td>Wild</td>
</tr>
<tr>
<td>ZI</td>
<td>Zone of Inhibition</td>
</tr>
</tbody>
</table>
Abstract:
Antibacterial resistance is a major concern. Due to its new resistance mechanism, it is spreading and emerging globally and thereby threatening the treatment of common infectious diseases. There is no doubt to develop new antibiotic from natural sources to tackle antimicrobial resistance. This study involves, (1) ethnopharmacological survey in Bangladesh and (2) bioassay directed phytochemical investigation to explore antibacterial compounds against MRSA. In 2016, an ethnopharmacological survey conducted in Bangladesh led to the recommendation of 71 medicinal plants by 71 Ayurvedic/Unani practitioners, 21 Ayurvedic patients and 35 local inhabitants for the treatment of infectious diseases. Based on the review of literature, data analysis and ease of availability of the plants, 18 plants were initially selected and collected from Bangladesh. After initial antibacterial screening of 18 plants, five plants (MIC 32-512 µg/ml) were chosen based on potential antibacterial activity. These are (*Zingiber montanum, Uraria picta, Diospyros malabarica, Cynometra ramiflora, Swertia chirayita*). Extensive phytochemical work using different chromatographic (VLC, Coloumn chromatography, SPE, TLC, PTLC) and spectroscopic (NMR, Mass spectromentry, IR) techniques on five Bangladeshi medicinal plants led to the isolation and identification of 25 compounds. Eight terpenes (zerumbol, zerumbone, buddledone A, germacrone, furanodienone, (-) borneol, camphor and 8(17), 12-labdadiene-15, 16-dial) were isolated from *Zingiber montanum* with the MIC (32- >128 µg/ml). Eugenol and steroids were isolated from *Uraria picta* (MIC 64- >128 µg/ml). Lupane type triterpenoids (Lupeol, botulin, betulinaldehyde, betulone and messagenin) were isolated and identified from *Diospyros malabarica* with the MIC (64- >128 µg/ml) while pentacyclic triterpene (glutinol, glutinone), simple phenolic (ethyl 4-ethoxybenzoate) and steroids were isolated from *Cynometra ramiflora* with MIC (64- >128 µg/ml). A series of xanthones (swerchirin, swertiaperenin, belidifolin and decussatin) were identified from *Swertia chirayita* with MIC (>128 µg/ml). Among these compounds, 4-ethoxybenzoate, messagenin were identified as new natural compounds. In terms of activity, 8(17), 12-labdadiene-15, 16-dial (32 µg/ml against ATCC 5941) and zerumbol (32 µg/ml against EMRSA 15) showed potential antibacterial activity.
Table of contents:

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xii</td>
</tr>
<tr>
<td>Dedication</td>
<td>xiii</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Antimicrobial resistance</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Medicinal plants in drug discovery:</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Ayurveda</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Plant derived antimicrobial compounds</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Ethnopharmacological survey in Bangladesh</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Phytochemical work</td>
<td>6</td>
</tr>
<tr>
<td>1.7 Antibacterial screening</td>
<td>6</td>
</tr>
<tr>
<td>1.8 Literature review</td>
<td>7</td>
</tr>
<tr>
<td>1.9 Aim and objectives</td>
<td>14</td>
</tr>
<tr>
<td>Chapter 2: Methods and Materials</td>
<td>15</td>
</tr>
<tr>
<td>2 Methodology</td>
<td>16</td>
</tr>
<tr>
<td>2.1 Methods and Materials: Ethnopharmacological survey</td>
<td>16</td>
</tr>
<tr>
<td>2.1.1 Study area</td>
<td>16</td>
</tr>
<tr>
<td>2.1.2 Ethical approval for the study</td>
<td>18</td>
</tr>
<tr>
<td>2.1.3 Ethnopharmacological survey</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4 Identification of plants</td>
<td>21</td>
</tr>
<tr>
<td>2.1.5 Data analysis</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Methods and Materials: Phytochemical investigation</td>
<td>23</td>
</tr>
<tr>
<td>2.2.1 Collection of plant materials</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2 Drying and grinding</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3 Preliminary extraction and bioassay</td>
<td>23</td>
</tr>
<tr>
<td>2.2.4 Large scale extraction</td>
<td>24</td>
</tr>
<tr>
<td>2.2.5 Antibacterial screening</td>
<td>25</td>
</tr>
<tr>
<td>2.2.6 Chromatographic technique for the isolation of compounds</td>
<td>26</td>
</tr>
<tr>
<td>2.2.6.1 Thin Layer Chromatography</td>
<td>26</td>
</tr>
<tr>
<td>2.2.6.1.1 Analytical TLC</td>
<td>26</td>
</tr>
<tr>
<td>2.2.6.1.2 PTLC (preparative thin later chromatography):</td>
<td>26</td>
</tr>
<tr>
<td>2.2.6.2 VLC (Vacuum liquid chromatography)</td>
<td>27</td>
</tr>
<tr>
<td>2.2.6.3 Sephadex LH-20 column</td>
<td>28</td>
</tr>
<tr>
<td>2.2.6.4 Solid phase extraction: (SPE)</td>
<td>28</td>
</tr>
<tr>
<td>2.2.7 Detection of compounds</td>
<td>29</td>
</tr>
<tr>
<td>2.2.7.1 UV light</td>
<td>29</td>
</tr>
<tr>
<td>2.2.7.2 Spray reagents</td>
<td>29</td>
</tr>
<tr>
<td>2.2.8 Spectroscopic methods</td>
<td>35</td>
</tr>
<tr>
<td>2.2.8.1 Infrared spectroscopy:</td>
<td>35</td>
</tr>
<tr>
<td>2.2.8.2 Mass spectrometry</td>
<td>35</td>
</tr>
<tr>
<td>2.2.8.3 NMR (Nuclear magnetic resonance) spectroscopy</td>
<td>35</td>
</tr>
<tr>
<td>2.2.8.3.1 1H NMR spectroscopy</td>
<td>36</td>
</tr>
<tr>
<td>2.2.8.3.2 13C NMR spectroscopy</td>
<td>36</td>
</tr>
<tr>
<td>2.2.8.3.3 Distortionless enhancement by polarisation transfer-135 (DEPT- 135)</td>
<td>37</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.2.8.3.4 1H-1H correlation spectroscopy: (1H-1H COSY)</td>
<td>37</td>
</tr>
<tr>
<td>2.2.8.3.5 NOESY (Nuclear Overhauser Effect Spectroscopy):</td>
<td>37</td>
</tr>
<tr>
<td>2.2.8.3.6 Heteronuclear correlation spectroscopy</td>
<td>37</td>
</tr>
<tr>
<td>2.2.9. Antibacterial screening</td>
<td>38</td>
</tr>
<tr>
<td>2.2.9.1 Bacterial strains subculture:</td>
<td>38</td>
</tr>
<tr>
<td>2.2.9.2 MIC (minimum inhibitory concentration) assay</td>
<td>38</td>
</tr>
<tr>
<td>2.2.9.3 Observation of results</td>
<td>39</td>
</tr>
<tr>
<td>Chapter 3: Results</td>
<td>40</td>
</tr>
<tr>
<td>3. Result</td>
<td>41</td>
</tr>
<tr>
<td>3.1 Ethnopharmacological survey</td>
<td>41</td>
</tr>
<tr>
<td>3.1.1 Demographic data analysis</td>
<td>41</td>
</tr>
<tr>
<td>3.1.2 Graphical analysis of the frequency of the use of plant families</td>
<td>43</td>
</tr>
<tr>
<td>3.1.3 Informant consensus factor (FIC) for each category of ailments:</td>
<td>43</td>
</tr>
<tr>
<td>3.1.4 Fidelity level</td>
<td>44</td>
</tr>
<tr>
<td>3.1.5 Selection of plants</td>
<td>50</td>
</tr>
<tr>
<td>3.2 Phytochemical result</td>
<td>51</td>
</tr>
<tr>
<td>3.2.1 Simple phenolic compound</td>
<td>51</td>
</tr>
<tr>
<td>3.2.1.1 Characterization of CRH 34 as ethyl 4-ethoxy benzoate (1)</td>
<td>51</td>
</tr>
<tr>
<td>3.2.1.2 Characterization of UPM 3 as Eugenol (4-allyl-2methoxyphenol; 2)</td>
<td>55</td>
</tr>
<tr>
<td>3.2.2 Xanthenes</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2.1 Characterization of SCH 10 as Swerchirin (3)</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2.2 Characterization of SCH 1 as a mixture (1:1) of Swerchirin (3) and Swertiaperenin (4)</td>
<td>62</td>
</tr>
<tr>
<td>3.2.2.3 Characterization of SCH 15 as belidifolin (1,5,8-tri-hydroxy-3-methoxyxanthone; 5)</td>
<td>66</td>
</tr>
<tr>
<td>3.2.2.4 Characterization of SCH 2 as decussatin (6) (1-hydroxy-3, 5, 6-trimethoxyxanthone)</td>
<td>68</td>
</tr>
<tr>
<td>3.2.3 Monoterpenes</td>
<td>72</td>
</tr>
<tr>
<td>3.2.3.1 Characterization of ZMH 10 as (-) borneol (7)</td>
<td>72</td>
</tr>
<tr>
<td>3.2.3.2 Characterization of ZMH 8 as Camphor (8)</td>
<td>73</td>
</tr>
<tr>
<td>3.2.4 Sesquiterpenes</td>
<td>77</td>
</tr>
<tr>
<td>3.2.4.1 Characterization of MRS 6 as (2Z, 4Z, 10E)-2,6,9,9-tetramethylcyclooctadeca-2,6,10-trien-1-ol (Zerumbol; 9)</td>
<td>77</td>
</tr>
<tr>
<td>3.2.4.2 Characterization of MRSH 3 as (2Z, 4Z, 10E)-2,6,9,9-tetramethylcyclooctadeca-2, 6, 10- trien-1-one (Zerumbone; 10)</td>
<td>81</td>
</tr>
<tr>
<td>3.2.4.3 Characterization of MRSH-2 as (6E, 10E)-2, 6, 9, 9-tetramethylcyclooctadeca-6, 10-dien-1-one (11; Buddleddone A)</td>
<td>86</td>
</tr>
<tr>
<td>3.2.4.4 Characterization of ZMH 4 as 1(10), 4, 7(11)-Germacratrien-8-one (12):</td>
<td>90</td>
</tr>
<tr>
<td>3.2.4.5 Characterization of ZMH 5 as 8, 12-Epoxy-1(10), 4, 7, 11-germacratetraen-6-one (13; Furanodienone)</td>
<td>93</td>
</tr>
<tr>
<td>3.2.5 Diterpene</td>
<td>97</td>
</tr>
<tr>
<td>3.2.5.1 Characterization of ZMH 14 as 8(17), 12-Labdadiene-15, 16-dial (14)</td>
<td>97</td>
</tr>
<tr>
<td>3.2.6 Triterpenes</td>
<td>102</td>
</tr>
<tr>
<td>3.2.6.1 Characterization of DMC 22 as Lupeol (15)</td>
<td>102</td>
</tr>
<tr>
<td>3.2.6.2 Characterization of DMH 3 as Betulin (16)</td>
<td>104</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.2.6.3 Characterization of DMH 10 as 30- norlupane- 3β, 28- diol-20-one (Messagenin; 17)</td>
<td>105</td>
</tr>
<tr>
<td>3.2.6.4 Characterization of DMH 15 as betulinaldehyde (18)</td>
<td>113</td>
</tr>
<tr>
<td>3.2.6.5 Characterization of DMH 2 as Betulone (19)</td>
<td>114</td>
</tr>
<tr>
<td>3.2.6.6 Characterization of CRH 9 as glutinol (20)</td>
<td>120</td>
</tr>
<tr>
<td>3.2.6.7 Characterization of CRC 10 as glutinone (21)</td>
<td>121</td>
</tr>
<tr>
<td>3.2.7 Steroids</td>
<td>126</td>
</tr>
<tr>
<td>3.2.7.1 Characterization of CRH 16 as a mixture 4:1 of β sitosterol (22) and stigmasterol (23)</td>
<td>126</td>
</tr>
<tr>
<td>3.2.7.2 Characterization of UPH 46a as a mixture of (3:1) β-sitosterone (24) and stigmasterone (25)</td>
<td>132</td>
</tr>
<tr>
<td>3.3 Antimicrobial screening</td>
<td>135</td>
</tr>
<tr>
<td>3.3.1 Antimicrobial screening of 18 selected plants</td>
<td>135</td>
</tr>
<tr>
<td>Chapter 4 Discussion and Conclusion</td>
<td>140</td>
</tr>
<tr>
<td>4 Discussion</td>
<td>141</td>
</tr>
<tr>
<td>4.1 Ethnopharmacological survey</td>
<td>141</td>
</tr>
<tr>
<td>4.2 Phytochemistry</td>
<td>147</td>
</tr>
<tr>
<td>4.3 Antimicrobial screening</td>
<td>150</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>153</td>
</tr>
<tr>
<td>6. Future work</td>
<td>155</td>
</tr>
<tr>
<td>Chapter 5 References</td>
<td>156</td>
</tr>
<tr>
<td>7. References</td>
<td>157</td>
</tr>
<tr>
<td>Chapter 6 Appendix</td>
<td>179</td>
</tr>
<tr>
<td>8. Appendix</td>
<td>180</td>
</tr>
</tbody>
</table>
List of tables:

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Chemical and biological review on the selected plants</td>
<td>8</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>List of the plants collected for the study</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>List of mobile phases used during TLC and PTLC</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Extraction of Zingiber montanum (242 g), Uraria picta (300 g), Cynometra ramiflora (262 g), Diospyros malabarica (250 g), Swertia chirayita (231 g)</td>
<td>30</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Isolation of compounds from hexane extract of Zingiber montanum</td>
<td>30</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Isolation of compound from chloroform extract of Zingiber montanum (The starting amount was 242 g)</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Isolation of compound from methanol extract of Uraria picta</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Isolation of compound from Hexane extract of Cynometra ramiflora</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Isolation of compound from Hexane extract of Diosphyros malabarica</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Isolation of compound from Hexane extract of Swertia chirayita</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Classification of the informants, demographic data.</td>
<td>42</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Informant consensus factor (FIC) for each category of ailments:</td>
<td>44</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Fidelity level (FL), rank order priority (ROP), number of citation, Use value (UV) and rarity score of the reported plants have been documented below</td>
<td>45</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>1H (700 MHz) and 13C NMR (175 MHz) and HMBC spectroscopic data CRH 34 in CDCl$_3$</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>1H (500 MHz) and 13C (125 MHz) and HMBC NMR spectroscopic data and 1H- 13C correlation for UPM-3 in CDCl$_3$</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>1H (700 MHz, CDCl$_3$) NMR data of SCH 10 and part of SCH 1</td>
<td>64</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>13C (175MHz, CDCl$_3$) NMR data of SCH 10 and SCH 1</td>
<td>64</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>HMBC data (700 MHz, CDCl$_3$) of SCH 10 and SCH 1</td>
<td>65</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>1H (700 MHz, CDCl$_3$) and 13C (175MHz, CDCl$_3$) data of SCH 15, SCH 2</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>HMBC data (700 MHz, CDCl$_3$) of SCH 15, and SCH 2</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.11</td>
<td>1H (500 MHz) and 13C NMR spectroscopic data of ZMH 10 and ZMH 8 in CDCl$_3$</td>
<td>74</td>
</tr>
<tr>
<td>Table 3.12</td>
<td>1H- 13C correlation for ZMH 10 and ZMH 8 in CDCl$_3$</td>
<td>74</td>
</tr>
<tr>
<td>Table 3.13</td>
<td>1H (500 MHz) and 13C NMR (125 MHz) spectroscopic data for MRSH-6, MRSH-3 and MRSH-2 in CDCl$_3$</td>
<td>88</td>
</tr>
<tr>
<td>Table 3.14</td>
<td>HMBC correlation data for MRSH-6, MRSH-3 in CDCl$_3$</td>
<td>89</td>
</tr>
<tr>
<td>Table 3.15</td>
<td>1H (500 MHz) and 13C (125 MHz) NMR spectroscopic data of ZMH 4 in CDCl$_3$</td>
<td>91</td>
</tr>
<tr>
<td>Table 3.16</td>
<td>1H- 13C correlation of ZMH 4 in CDCl$_3$</td>
<td>91</td>
</tr>
<tr>
<td>Table 3.17</td>
<td>1H (600 MHz) and 13C (150 MHz) NMR spectroscopic data of ZMH 5 in CDCl$_3$</td>
<td>94</td>
</tr>
<tr>
<td>Table 3.18</td>
<td>1H- 13C correlation for ZMH 5 in CDCl$_3$</td>
<td>95</td>
</tr>
<tr>
<td>Table 3.19</td>
<td>1H (500 MHz) and 13C (125) NMR spectroscopic data of ZMH 14 in CDCl$_3$</td>
<td>98</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Table 3.20:</td>
<td>1H- 13C correlation for ZMH 14 in CDCl$_3$</td>
<td>99</td>
</tr>
<tr>
<td>Table 3.21:</td>
<td>1H NMR data (700 MHz, CDCl$_3$) of DMC 22, DMH 3, DMH 10</td>
<td>106</td>
</tr>
<tr>
<td>Table 3.22:</td>
<td>13C NMR data (175 MHz, CDCl$_3$) of DMC 22, DMH 3, DMH 10</td>
<td>107</td>
</tr>
<tr>
<td>Table 3.23:</td>
<td>HMBC correlation (700 MHz, CDCl$_3$) of DMC 22, DMH 3 and DMH 10</td>
<td>108</td>
</tr>
<tr>
<td>Table 3.24:</td>
<td>1H NMR data (700 MHz, CDCl$_3$) and 13C NMR data (175 MHz, CDCl$_3$) of DMH 15 and DMH 2</td>
<td>115</td>
</tr>
<tr>
<td>Table 3.25:</td>
<td>HMBC correlation (700 MHz, CDCl$_3$) of DMH 15 and DMH 2</td>
<td>116</td>
</tr>
<tr>
<td>Table 3.26:</td>
<td>1H (500 MHz) and 13C (125 MHz) NMR spectroscopic data for CRH 9 and CRC 10 in CDCl$_3$</td>
<td>122</td>
</tr>
<tr>
<td>Table 3.27:</td>
<td>HMBC spectroscopic data for CRH 9 and CRC 10 in CDCl$_3$</td>
<td>123</td>
</tr>
<tr>
<td>Table 3.28:</td>
<td>1H (500 MHz) and 13C NMR (125 MHz) data for CRH 16 and UPH</td>
<td>129</td>
</tr>
<tr>
<td>Table 3.29:</td>
<td>13C NMR (175 MHz) data of Stigmasterol and stigmasterone</td>
<td>130</td>
</tr>
<tr>
<td>Table 3.30:</td>
<td>HMBC NMR spectroscopic data for CRH 16 in CDCl$_3$</td>
<td>131</td>
</tr>
<tr>
<td>Table 3.31:</td>
<td>The MIC result of 18 selected plants against MRSA clinical strains in µg/ml</td>
<td>136</td>
</tr>
<tr>
<td>Table 3.32:</td>
<td>Antibacterial activity (MIC assay in µg/ml) of pure compounds against MRSA strains</td>
<td>138</td>
</tr>
</tbody>
</table>
List of figures:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Hyperforin (Smelcerovic et al., 2006)</td>
</tr>
<tr>
<td>1.2</td>
<td>Taxifolin-7-O-α-L-rhamnopyranoside (Gabin et al., 2016)</td>
</tr>
<tr>
<td>2.1</td>
<td>Map of the study area showing Dhaka divisions of Bangladesh</td>
</tr>
<tr>
<td>3.1</td>
<td>Frequency of the use of plant families in management of bacterial infection in Dhaka city and northern part of Bangladesh</td>
</tr>
<tr>
<td>3.2</td>
<td>1H NMR (700 MHz, CDCl$_3$) spectrum of CRH 34</td>
</tr>
<tr>
<td>3.3</td>
<td>13C NMR spectrum (175 MHz, CDCl$_3$) of CRH 34</td>
</tr>
<tr>
<td>3.4</td>
<td>COSY NMR spectrum (CDCl$_3$) of CRH 34</td>
</tr>
<tr>
<td>3.5</td>
<td>NOESY NMR spectrum (CDCl$_3$) of CRH 34</td>
</tr>
<tr>
<td>3.6</td>
<td>1H NMR spectrum (500 MHz, CDCl$_3$) of UPM-3</td>
</tr>
<tr>
<td>3.7</td>
<td>13C NMR spectrum (125 MHz, CDCl$_3$) of UPM-3</td>
</tr>
<tr>
<td>3.8</td>
<td>1H NMR spectrum (700 MHz) of SCH 1 in CDCl$_3$</td>
</tr>
<tr>
<td>3.9</td>
<td>13C NMR spectrum (175 MHz) of SCH 1 in CDCl$_3$</td>
</tr>
<tr>
<td>3.10</td>
<td>HRMS data of SCH 10</td>
</tr>
<tr>
<td>3.11</td>
<td>HRMS data of SCH 15</td>
</tr>
<tr>
<td>3.12</td>
<td>HRMS data of SCH 2</td>
</tr>
<tr>
<td>3.13</td>
<td>HRMS data of SCH 6</td>
</tr>
<tr>
<td>3.14</td>
<td>HRMS data of SCH 8</td>
</tr>
<tr>
<td>3.15</td>
<td>HRMS data of MRSH 2</td>
</tr>
<tr>
<td>3.16</td>
<td>HRMS data of MRSH 3</td>
</tr>
<tr>
<td>3.17</td>
<td>HRMS data of MRSH 4</td>
</tr>
<tr>
<td>3.18</td>
<td>HRMS data of MRSH 5</td>
</tr>
<tr>
<td>3.19</td>
<td>HRMS data of MRSH 6</td>
</tr>
<tr>
<td>3.20</td>
<td>HRMS data of MRSH 7</td>
</tr>
<tr>
<td>3.21</td>
<td>HRMS data of MRSH 8</td>
</tr>
<tr>
<td>3.22</td>
<td>HRMS data of MRSH 9</td>
</tr>
<tr>
<td>3.23</td>
<td>HRMS data of MRSH 10</td>
</tr>
<tr>
<td>3.24</td>
<td>HRMS data of MRSH 11</td>
</tr>
<tr>
<td>3.25</td>
<td>HRMS data of MRSH 12</td>
</tr>
<tr>
<td>3.26</td>
<td>HRMS data of MRSH 13</td>
</tr>
<tr>
<td>3.27</td>
<td>HRMS data of MRSH 14</td>
</tr>
<tr>
<td>3.28</td>
<td>HRMS data of MRSH 15</td>
</tr>
<tr>
<td>3.29</td>
<td>HRMS data of MRSH 16</td>
</tr>
<tr>
<td>3.30</td>
<td>HRMS data of MRSH 17</td>
</tr>
<tr>
<td>3.31</td>
<td>HRMS data of MRSH 18</td>
</tr>
<tr>
<td>3.32</td>
<td>HRMS data of MRSH 19</td>
</tr>
<tr>
<td>3.33</td>
<td>HRMS data of MRSH 20</td>
</tr>
<tr>
<td>3.34</td>
<td>HRMS data of MRSH 21</td>
</tr>
<tr>
<td>3.35</td>
<td>HRMS data of MRSH 22</td>
</tr>
<tr>
<td>3.36</td>
<td>HRMS data of MRSH 23</td>
</tr>
<tr>
<td>3.37</td>
<td>HRMS data of MRSH 24</td>
</tr>
<tr>
<td>3.38</td>
<td>HRMS data of MRSH 25</td>
</tr>
<tr>
<td>3.39</td>
<td>HRMS data of MRSH 26</td>
</tr>
<tr>
<td>3.40</td>
<td>HRMS data of MRSH 27</td>
</tr>
<tr>
<td>3.41</td>
<td>HRMS data of MRSH 28</td>
</tr>
<tr>
<td>3.42</td>
<td>HRMS data of MRSH 29</td>
</tr>
<tr>
<td>3.43</td>
<td>HRMS data of MRSH 30</td>
</tr>
<tr>
<td>3.44</td>
<td>HRMS data of MRSH 31</td>
</tr>
<tr>
<td>3.45</td>
<td>HRMS data of MRSH 32</td>
</tr>
<tr>
<td>3.46</td>
<td>HRMS data of MRSH 33</td>
</tr>
<tr>
<td>3.47</td>
<td>HRMS data of MRSH 34</td>
</tr>
<tr>
<td>3.48</td>
<td>HRMS data of MRSH 35</td>
</tr>
<tr>
<td>3.49</td>
<td>HRMS data of MRSH 36</td>
</tr>
<tr>
<td>3.50</td>
<td>HRMS data of MRSH 37</td>
</tr>
<tr>
<td>3.51</td>
<td>HRMS data of MRSH 38</td>
</tr>
<tr>
<td>3.52</td>
<td>HRMS data of MRSH 39</td>
</tr>
<tr>
<td>3.53</td>
<td>HRMS data of MRSH 40</td>
</tr>
<tr>
<td>3.54</td>
<td>HRMS data of MRSH 41</td>
</tr>
<tr>
<td>3.55</td>
<td>HRMS data of MRSH 42</td>
</tr>
<tr>
<td>3.56</td>
<td>HRMS data of MRSH 43</td>
</tr>
<tr>
<td>3.57</td>
<td>HRMS data of MRSH 44</td>
</tr>
<tr>
<td>3.58</td>
<td>HRMS data of MRSH 45</td>
</tr>
<tr>
<td>3.59</td>
<td>HRMS data of MRSH 46</td>
</tr>
<tr>
<td>3.60</td>
<td>HRMS data of MRSH 47</td>
</tr>
<tr>
<td>3.61</td>
<td>HRMS data of MRSH 48</td>
</tr>
<tr>
<td>3.62</td>
<td>HRMS data of MRSH 49</td>
</tr>
<tr>
<td>3.63</td>
<td>HRMS data of MRSH 50</td>
</tr>
<tr>
<td>3.64</td>
<td>HRMS data of MRSH 51</td>
</tr>
<tr>
<td>3.65</td>
<td>HRMS data of MRSH 52</td>
</tr>
<tr>
<td>3.66</td>
<td>HRMS data of MRSH 53</td>
</tr>
<tr>
<td>3.67</td>
<td>HRMS data of MRSH 54</td>
</tr>
<tr>
<td>3.68</td>
<td>HRMS data of MRSH 55</td>
</tr>
<tr>
<td>3.69</td>
<td>HRMS data of MRSH 56</td>
</tr>
<tr>
<td>3.70</td>
<td>HRMS data of MRSH 57</td>
</tr>
<tr>
<td>3.71</td>
<td>HRMS data of MRSH 58</td>
</tr>
<tr>
<td>3.72</td>
<td>HRMS data of MRSH 59</td>
</tr>
<tr>
<td>3.73</td>
<td>HRMS data of MRSH 60</td>
</tr>
<tr>
<td>3.74</td>
<td>HRMS data of MRSH 61</td>
</tr>
<tr>
<td>3.75</td>
<td>HRMS data of MRSH 62</td>
</tr>
<tr>
<td>3.76</td>
<td>HRMS data of MRSH 63</td>
</tr>
<tr>
<td>3.77</td>
<td>HRMS data of MRSH 64</td>
</tr>
<tr>
<td>3.78</td>
<td>HRMS data of MRSH 65</td>
</tr>
<tr>
<td>3.79</td>
<td>HRMS data of MRSH 66</td>
</tr>
<tr>
<td>3.80</td>
<td>HRMS data of MRSH 67</td>
</tr>
<tr>
<td>3.81</td>
<td>HRMS data of MRSH 68</td>
</tr>
<tr>
<td>3.82</td>
<td>HRMS data of MRSH 69</td>
</tr>
<tr>
<td>3.83</td>
<td>HRMS data of MRSH 70</td>
</tr>
<tr>
<td>3.84</td>
<td>HRMS data of MRSH 71</td>
</tr>
<tr>
<td>3.85</td>
<td>HRMS data of MRSH 72</td>
</tr>
<tr>
<td>3.86</td>
<td>HRMS data of MRSH 73</td>
</tr>
<tr>
<td>3.87</td>
<td>HRMS data of MRSH 74</td>
</tr>
<tr>
<td>3.88</td>
<td>HRMS data of MRSH 75</td>
</tr>
<tr>
<td>3.89</td>
<td>HRMS data of MRSH 76</td>
</tr>
<tr>
<td>3.90</td>
<td>HRMS data of MRSH 77</td>
</tr>
<tr>
<td>3.91</td>
<td>HRMS data of MRSH 78</td>
</tr>
<tr>
<td>3.92</td>
<td>HRMS data of MRSH 79</td>
</tr>
<tr>
<td>3.93</td>
<td>HRMS data of MRSH 80</td>
</tr>
<tr>
<td>3.94</td>
<td>HRMS data of MRSH 81</td>
</tr>
<tr>
<td>3.95</td>
<td>HRMS data of MRSH 82</td>
</tr>
<tr>
<td>3.96</td>
<td>HRMS data of MRSH 83</td>
</tr>
<tr>
<td>3.97</td>
<td>HRMS data of MRSH 84</td>
</tr>
<tr>
<td>3.98</td>
<td>HRMS data of MRSH 85</td>
</tr>
<tr>
<td>3.99</td>
<td>HRMS data of MRSH 86</td>
</tr>
<tr>
<td>3.100</td>
<td>HRMS data of MRSH 87</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.44</td>
<td>HSQC NMR spectrum of ZMH 14 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.45</td>
<td>HMBC NMR spectrum of ZMH 14 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.46</td>
<td><sup>1</sup>H NMR (700 MHz) spectrum of DMC 22 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.47</td>
<td><sup>13</sup>C NMR (175 MHz) spectrum of DMC 22 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.48</td>
<td><sup>1</sup>H NMR (700 MHz) spectrum of DMH 3 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.49</td>
<td><sup>13</sup>C NMR (175 MHz) spectrum of DMH 3 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.50</td>
<td><sup>1</sup>H NMR (700 MHz) spectrum of DMH 10 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.51</td>
<td><sup>13</sup>C NMR (175 MHz) spectrum of DMH 10 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.52</td>
<td><sup>1</sup>H NMR (700 MHz) spectrum of DMH 15 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.53</td>
<td><sup>13</sup>C NMR (175 MHz) spectrum of DMH 15 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.54</td>
<td>High Resolution Mass spectrometry of DMH 2</td>
</tr>
<tr>
<td>3.55</td>
<td><sup>1</sup>H NMR (700 MHz) spectrum of DMH 2 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.56</td>
<td><sup>13</sup>C NMR (175 MHz) spectrum of DMH 2 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.57</td>
<td><sup>1</sup>H NMR (700 MHz) spectrum of CRH 9 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.58</td>
<td><sup>13</sup>C NMR (175 MHz) spectrum of CRH 9 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.59</td>
<td><sup>1</sup>H NMR (700 MHz) spectrum of CRH 10 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.60</td>
<td><sup>13</sup>C NMR (175 MHz) spectrum of CRH 10 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.61</td>
<td><sup>13</sup>C NMR (175 MHz) spectrum of CRH 16 in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.62</td>
<td><sup>13</sup>C NMR (175 MHz) spectrum of UPH 46a in CDCl<sub>3</sub></td>
</tr>
<tr>
<td>3.63</td>
<td>96 well plate for the determination of MICs of compounds</td>
</tr>
</tbody>
</table>
Acknowledgements

I wish to express my gratitude and profound thanks to Dr. Mukhlesur Rahman (Director of studies) and Dr. Barbara Pendry (Co-supervisor) for their tremendous support, suggestion, close supervision and encouragement throughout the project and also special thank to Dr. Mukhlesur Rahman for teaching me the NMR to elucidate the structure.

I am grateful to University of East London (UEL) for the award of PhD studentship.

I am thankful to Dr. Abdur Rashid for helping me in ethnopharmacological survey in Bangladesh by providing necessary information.

I continue to thank Dr. Harold Tom from Queen Mary University of London and Dr. Abil Aliev from University College London (Department of Chemistry) for performing 1D and 2D NMR.

I special thank to Dr. Simon Gibbons from University College London (School of Pharmacy) for providing me MRSA (Methicillin resistant Staphylococcus aureus) strains.

I am thankful to Professor Satyajit Sarker and Dr Sushmita Nath of Liverpool John Moores University (School of Pharmacy) for performing mass spectrometry of pure compounds.

I express special gratitude to the practitioners, and lecturers of Tibbia Habibia Unani College and Hospital and Government Unani and Ayurvedic Medical College and Hospital for allowing me to conduct the ethnopharmacological survey.

Finally, I wish my heartfelt appreciation to my husband, Mr. A. K. M. Saifullah for his patient, encouragement, advice, inspiration and my parents for good wishes and prayer for the completion of this work.
Dedication
This thesis is dedicated to the memories of my grandfather Mr Alam Siddique (1938-2011).
Chapter 1: Introduction
1. Introduction

1.1 Antimicrobial resistance

The incidence of the number of bacterial pathogens bestowing antimicrobial and multidrug resistance to antibiotics has remarkably accelerated over the past few decades. The mishandling, misuse and abuse of antimicrobial agents are the main reasons for the emergence of the resistant gene in microorganisms. Apart from manifestation of the antimicrobial agent, antimicrobial resistance may occur due to the mutation in bacterial DNA or the acquisition of bacterial resistance gene through horizontal gene transfer (WHO, 2018). Antimicrobial resistance is now a serious and complex problem for global health requiring a multi-disciplinary approach involving partners from all health sectors including public health authorities and the scientific community.

According to the WHO report (2016), resistant infection has become the third leading cause of mortality worldwide. Current statistics show that around 25,000 people die each year in Europe due to AMR (antimicrobial resistance) and it is currently costing the health care system approximately EUR 1.5 billion per year (European Commission, 2017). AMR has made cancer chemotherapy, organ transplantation, diabetes management and major surgery like caesarean sections more challenging (WHO, 2018). Unless appropriate action is taken to tackle the threat, drug resistant infections will kill an extra 10 million people annually worldwide by 2050 which is more than the predicted death of cancer and it will cost 100 trillion USD of the world's economic output (Founou et al., 2017).

In February 2017 the WHO published a list of bacteria related to diseases in humans which urgently demanded new antibiotics for hard-to-treat infections. *Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobactericeae* (carbapenem-resistant) and *Staphylococcus aureus* (methicillin-resistant) that pose a particular threat in nursing homes and hospitals which have been categorised as critical in terms of AMR. To address the challenges of AMR, in July 2014, there have been disputation in the parliament of UK and the Prime Minster announced an exclusive review of AMR to search for techniques to discover new drugs. It has also been considered in the ‘UK Five Year Antimicrobial Resistance Strategy 2013 to 2018’ (Department of Health, 2013). It is important to discover alternative therapeutics for treating infectious diseases.
1.2 Medicinal plants in drug discovery

Plant-derived medicines have contributed largely to human health since antiquity; hence plants may be a source for the development of new novel antimicrobial compounds followed by subsequent pharmacological, chemical and clinical studies (Dias et al., 2012). For example, the most prominent anti-inflammatory agent acetylsalicylic acid commercially known as the drug aspirin isolated from the bark of the willow tree *Salix alba* L. (Der Marderosian and Beutler, 2003). Quinine isolated from bark of *Cinchona succirubra* has been used traditionally to treat malaria, indigestion, fever, mouth and throat disease for centuries (Der Marderosian and Beutler, 2003). The nobel prize winner Youyou Tu discovered antimalarial compound artemisin from *Artemisia annua* and saved millions of lives over the past 40 years (Guo, 2016).

The roots of modern medicine lie in herbalism. It is estimated that plants have provided the natural product model for over 50% of drugs used in modern medicine. Every ancient civilisation has used plants for healing and in many cultures the use of herbal product has magical-religious significance with different points of view regarding the concepts of health and disease existing within the culture.

Today herbal medicine according to the WHO is still the primary form of healing employed by over 80% of the world's developing population (WHO, 2015). A report recently published in the Daily Sun (a national newspaper in Bangladesh) states that, 75% of the Bangladesh population are using plant originated medicine for fundamental health care (Jahan, 2016) because to local people they are more accessible, comparatively safer and more affordable compared to orthodox or conventional medicine. Bangladesh is enriched with vast plant diversity. About 450-500 plants with medicinal properties are indigenous to Bangladesh due to its favourable ecologic conditions such as temperate and humid weather with fertile alluvial soil (Banglapedia, 2015). Moreover, Bangladesh has hilly tracks, the largest mangrove forest (Sundorban, Khulna) and national botanical garden situated in the capital city where thousands of medicinal plants flourish. In addition, Bangladesh exports herbal and traditional products of about 30 million US dollars per annum.
1.3 Ayurveda

Ayurvedic medicine, a traditional system of medicine that originated in India over 5000 years ago, is widely practiced in Bangladesh. The term Ayurveda is derived from two Sanskrit words ‘Ayur’ (Life) and ‘Veda’ (science or knowledge) which literally means "science of life" or "practices of longevity/long life". The concept of Ayurvedic medicine in regard to health and disease is to promote the use of herbal remedies, special diet and other unique health practices. Local citizens of Bangladesh have a long history of using traditional medicine for primary healthcare. Ayurvedic and Unani practitioners (qualified practitioners) and local healers (using knowledge handed down through the generations) of Bangladesh prescribe such medicinal plants for the treatment of various diseases including different types of infections (Rahmat et al., 2012; Seikh et al., 2011). Bangladeshi medicinal plants that have been traditionally used for centuries by Ayurvedic and Unani practitioners to treat infectious diseases may contain phytochemicals with the potential for the development of new modern drugs. Ayurvedic/Unani practitioners are very popular among local inhabitants in the cities and are sought based on their skills in treating disease. In addition, local healers who are not qualified practitioners but recommend medicinal plants to village people in the rural areas of Bangladesh based on their experience and knowledge are well known in the Bengali community.

The knowledge and use of plants for medicinal purposes is an integral part of many ethnic cultures. This valuable indigenous knowledge associated with plants is now being recognised as a source of knowledge and the wisdom of using medicinal plants by traditional healers and communities which otherwise could be lost over time, needs to be conserved and documented to enable more research into the identification of the key chemical compounds and mechanism of action by which traditional medicine works (WHO, 2015).

1.4 Plant derived antimicrobial compounds:

WHO has also emphasized the use of indigenous plants for the treatment of diseases when orthodox medicines are of little or no value. Plants are likely to produce antimicrobial metabolites as part of their defence strategy to counter bacteria and fungi in the environment. For example, the key compound, hyperforin (Fig.1.1), isolated from St John’s Wort (Hypericum perforatum) is one
of the most interesting lead compounds in terms of antibacterial action (MIC values of 0.1 µg/ml against MRSA and penicillin-resistant variants). Gibbons et al. (2002) reported significant activity of 33 out of 34 species and varieties of the genus *Hypericum* against a clinical isolate of methicillin-resistant *Staphylococcus aureus* with five extracts MICs of 64 µg/ml. Ana and his colleagues (2011) isolated taxifolin-7-O-α-l-rhamnopyranoside (Figure 1.2) from *Hypericum japonicum* and reported its synergistic effect with conventional antibiotics (ampicillin, levofloxacin, ceftazidime and azithromycin) against MRSA clinical strains. The authors argued that taxifolin-7-O-α-l-rhamnopyranoside alone had moderate antibacterial activity whilst taxifolin in combination with ceftazidime showed good antibacterial activity with MIC of 2-16 µg/ml.

For example, the chemical structures of isolated compounds (mentioned above) with potential antibacterial activity.

![Figure 1.1: Hyperforin (Smelcerovic et al., 2006)](image1)

![Figure 1.2: Taxifolin-7-O-α-l-rhamnopyranoside (Gabin et al., 2016)](image2)

Moreover, Tohidpour et al (2010) investigated the antibacterial activity of the traditional essential oil of *Thymus vulgaris* and *Eucalyptus globulus* against clinical isolates of Methicillin resistant *Staphylococcus aureus* (MRSA) and other standard bacterial strains. They claimed that *Thymus vulgaris* had shown lower MIC value (18 µg/ml) compared to *Eucalyptus globulus* (MIC value 37 µg/ml) the results showed that two of the essential oils had different antibacterial activity. From the above research findings, it is clear that medicinal plants are an effective resource of secondary metabolites. Thus, the development of novel antibiotics
from medicinal plants that have traditionally been used for decades for the treatment of infectious diseases would be a step forward to tackle this vital issue of antimicrobial resistance.

1.5 Ethnopharmacological survey in Bangladesh

An ethnopharmacological survey is a strategy to select medicinal plants for scientific exploration of the biologically active agents. Several ethnopharmacological surveys have been conducted in different part of Bangladesh focussing on different aspects of health such as diabetes mellitus, diarrhoea or which have just simply catalogued the medicinal plants used by tribes of the hill tract areas (Kadir et al., 2012; Rahman, 2013; Rahman and Roy 2014; Uddin et al., 2015a; Uddin et al., 2015b; Nur et al., 2016,). These studies only featured the qualitative analysis of forest or hill tract areas of Bangladesh and lacked any data analysis using the various quantitative parameters usually associated with this type of study. Kadir et al published several studies on Bangladesh medicinal plants with data analysis however these focussed on the plants used to treat gastrointestinal disorders solely in the hill tracts of Bangladesh (Kadir et al., 2012, 2013 and 2014). According to the authors’ knowledge, to date no studies have been carried out to investigate the use of Bangladeshi medicinal plants to treat infections. Thus, an ethnopharmacological survey was conducted in Bangladesh during autumn 2016 to document indigenous knowledge in regard to the treatment of infections with the ultimate aim of identifying plants that could be selected for phytochemical investigation to identify key secondary metabolites responsible for their anti-infective properties.

1.6 Phytochemical work:

Based on the outcome of ethnopharmacological survey, the extensive phytochemical work was conducted on the selected plants to identify the specific compounds responsible for anti-infective biological activity. The phytochemical work has been discussed in the Method and the Results sections.

1.7 Antibacterial screening:

In order to explore lead anti-infective compounds, a number of sensitivity tests including agar diffusion, disc diffusion, bioautography and microdilution titre assay are commonly used. In the current study, the microdilution titre assay was
applied to antibacterial screening of extracts, fractions and pure compounds in terms of minimum inhibitory concentrations (MICs). This technique offers several advantages over other methods. This is an easy method to perform offering quicker result within short period of time. Compared to other methods, it’s less expensive.

1.8 Literature review:

Based on the outcome of the ethnopharmacological survey and availability of plants, a total of 18 plants were initially selected for this study. These plants were extensively reviewed for data related to the isolation of secondary metabolites as well as for the biological activity. The key words used for the literature review were the scientific names of the plants. The results found were filtered based on the phytochemical reports as well as antibacterial, antifungal and related biological activity. The overall findings of the literature review of the phytochemical and biological/ pharmacological investigations are presented in table 1.1.
Table 1.1 Chemical and biological review on the selected plants.

<table>
<thead>
<tr>
<th>Family</th>
<th>Scientific name</th>
<th>Local name</th>
<th>Literature review</th>
<th>Chemical</th>
<th>Biological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td>Andrographis periculata</td>
<td>Kalomegh</td>
<td>Andrographolide, Roseooside, 7,8-dimethoxy-2′-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and 5,4′-dihydroxyflavonoid-7-O-β-d-pyranylglucuronatebutylester. (Zhang et al., 2015)</td>
<td>Androdengue efficacy of andrographolide with LC50 12ppm (Edwin et al., 2016)</td>
<td></td>
</tr>
<tr>
<td>Acanthaceae</td>
<td>Justicia adhatoda</td>
<td>Bashokpata</td>
<td>Alkaloid Vasicine. (Duraipandiyan et al., 2015) 2. 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl (Dhankhar et al., 2014) 3. 2-acetyl benzylamine and vasicine acetate. (Ignacimuthu and Shanmugam, 2010) 4. Pyrroloquinazoline alkaloids- vasicinolone, vasicine acetate, vasicine, vasicinone, 2-acetyl benzyl amine (Singh and Sharma 2013)</td>
<td>Antibacterial activity of Vasicine acetate against M. luteus, E. aerogenes, S. epidermidis and P. aeruginosa (MIC125 μg/mL) (Duraipandiyan et al., 2015), against E. coli (MIC 20μg/ml), against M. tuberculosis and one multi-drug-resistant (MDR) strain and one sensitive strain (ZI 200 and 50 microg/ml, respectively) (Ignacimuthu and Shanmugam, 2010)</td>
<td>Antifungal activity against C. albicans at the dose of >55μg/ml (Singh and Sharma 2013)</td>
</tr>
<tr>
<td>Apocynaceae</td>
<td>Tylophora indica</td>
<td>Onontomul</td>
<td>No previous chemical work</td>
<td>No previous biological work</td>
<td></td>
</tr>
<tr>
<td>Combretaceae</td>
<td>Terminalia arjuna</td>
<td>Arjun</td>
<td>Arjunolic acid, Arjunic acid (Singh et al., 2002). Arjunoside I, II, Arjungenin (Honda et al., 1976), Terminoltin (Singh et al., 1995), 2α,19α-Dihydroxy-3Oxo-Olean-12-En28-Olic acid 28-O-β-d-glucopyranoside (Choubey and Srivastava, 2001)</td>
<td>Antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Eschericia coli, Salmonella typhi and Pseudomonas aeruginosa (ZI of bark extract 15.0 ± 0.7 mm, 15.5 ± 0.7 mm, 15.0 ± 1.5 mm, 15.5 ± 0.7 mm, 15.0 ± 0.7 mm)</td>
<td></td>
</tr>
</tbody>
</table>
Arjunetosie (19α-trihydroxyolean-12-en-28-oic acid 28-O-β-d-glucopyranoside, 3-O-β-d-glucopyranosyl-2α, 3β) (Upadhyay et al., 2001).

Terminic acid, β-Sitosterol, Terminic acid, Oleanolic acid (Anjaneyulu and Prasad, 1983)
Arjunin, Arjunic acid, Arjunetin (Row et al., 1970).

Kajiichigoside F1, 2α,3β,23-trihydroxyurs-12,18-dien-28-oic acid 28-O-β-glucopyranosyl ester, Qudranoside VIII, 2α,3β-dihydroxyurs-12,18-oic acid 28-O-β-d-glucopyranosyl ester, 3-O-methyl ellagic acid 4’-O-α-l-rhamnophranoside (−)-epicatechin, 2α,3β,23-trihydroxyurs-23-trihydroxyurs-12,19-dien-28-oic acid 28-O-β-d-glucopyranosyl ester (Wang et al., 2010).

Arjunolone, Arjunone (Sharma et al, 1982)

(−)-epigallocatechin, (+)-catechin, Quercetin, (+)-gallocatechin (Saha and Pawar, 2012)

22β-diol-12-en-28 β-D-glucopyranosie-oic acid, Olean-3β (Patnaik et al., 2007)
Terminarjunoside I and II (Alam et al., 2008)
Termionic acid, Terminoside A (Ahmad et al., 1983)

Arjunolitin (Tripathi et al, 1992)
Galactopyranoside (Yadava and Rathore, 2000)

Arjunasides A-E and Arjunguloside IV and V (Wang et al., 2010)
Luteolin, 14,16-dianhydrogitoxigenin 3-β-d-xylopyranosyl-(1 > 2)-O-β-d- (Pettit et al., 1996)

Combretaceae *Terminalia chebula* horitoki Methyl gallate (Acharya et al., 2015) Antibacterial activity of compounds against *Enterobacter aerogenes*
<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Active Constituents</th>
<th>Antibacterial Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentianaceae</td>
<td>Swertia chirayita</td>
<td>Secoiridoids and xanthones, i.e. mangiferin, amaroswerin, swertiamarin, amarogentin</td>
<td>Antibacterial activity against Staphylococcus aureus (ZI 19 mm (Alam et al., 2009))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Kumar et al., 2015) Swertiachiralatone A, swertiachoside A, swertiachiradiol A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and swertiachoside B. (Zhou et al., 2015) 1-hydroxy-2,3,4,7-tetramethoxyxanthone and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,5,8-trihydroxy-3-methoxy xanthone (Zhou et al., 2013) Swerchin, decussatin , 1,8-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dihydroxy-3,5,7-trimethoxyxanthone , 1-hydroxy-3,5,7,8-tetramethoxyxanthone , bellidifolin,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-hydroxy-3, 7-dimethoxyxanthone , methylswertianin , 1-hydroxy-3,5-dimethoxyxanthone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>, erythrodiol , oleanolic acid , gnetiolactone , scopoletin , sinapaldehyde, syringaldehyde ,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and β-sitosterol (You et al., 2017) Amarogentin, gentiopicroside, amaroswerin, mangiferin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and amaronitidin (Kumar et al., 2015) 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dihydroxy-6-methoxyxanthone-8-O-β-D-xlopyranosyl (Mahendran et al., 2014)</td>
<td></td>
</tr>
<tr>
<td>Legumes</td>
<td>Glycerrhiza glabra</td>
<td>Licorice (Ota et al., 2018) Glabridin, formononetin, hispaglabridin B, hemileiocarpin,</td>
<td>Antibacterial activity of glycyrrhizic acid against Pseudomonas aeruginosa (MIC 200 and 100 μg /ml) (Chakotiya et al., 2016), against S. pyogenes ATCC 19615 (MIC 39-156 μg/ml) (Siriwattanasatorn et al., 2016), against primary plaque colonizers and periodontal pathogens (mean ZI- 9.2 ± 1.09 mm and 10.6 ± 0.54 mm at 24 h (Sharma et al., 2016), against Staphylococcus aureus, Bacillus subtilis,</td>
</tr>
<tr>
<td></td>
<td>Jesthomodhu</td>
<td>isoliquiritigenin, 4′-O-methylglabridin, and paratocarpin B (Chin et al., 2007) Macedonoside C-(Hayashi et al., 2000) Gluco</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>liquiritin apioside, prenyllicoflavone A, shinlavone, shipterocarpin, 1-methoxyphaseollin (Kitagawa et al., 1994) Glycyrrhizin, ergosterol, stigmasterol, glabridin and licochalalone (Chakotiya et al., 2017) Licochalalone C (Franceschelli et al., 2011) Licoagrodione (Li et al., 1998)</td>
<td></td>
</tr>
<tr>
<td>Legumes</td>
<td>Cynometra ramiflora</td>
<td>Shingra</td>
<td>No previous chemical work</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Abroma augusta</td>
<td>Ulotkombol</td>
<td>Abromine with betain (Dasgupto and Basu, 1970)</td>
</tr>
<tr>
<td>No previous chemical work</td>
<td>No previous biological work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meliaceae</td>
<td>Tinospora cordata</td>
<td>Goloncho</td>
<td>No previous chemical work</td>
</tr>
<tr>
<td>Meliaceae</td>
<td>Azadirerchta indica</td>
<td>Neem</td>
<td>Nimbin, desacytlnimidin, desactylsalannin, azadirachtin and salanin. (Dwivedi et al., 2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Azadirachta R= (2H, 3H-cyclopet[b] furo [2',3':4,5] naphtho [2,4-d] heptalactone-[3,7] furan-6-aceticacid, 3-(acetyloxy)-8-(3-furyl)-2a, 4a, 4b, 4c,5,5a, 6, 6a, 8, 9,9a, 10a,10b-13 hydrogen-2a,5a,6a,5-tetramethyl-3-[[2E]-2-methyl-1-oxo-2-butenyl[oxyl]-methyl ester], Azadirachta A, AZ-B, AZ-D, AZ-H, AZ-I, deacetylsalannin and azadiradione (Gao et al., 2017)</td>
</tr>
<tr>
<td>Family</td>
<td>Genus</td>
<td>Species</td>
<td>Stems</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Papilionaceae</td>
<td>Uraria</td>
<td>picta</td>
<td>Sankarjata</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Aegle</td>
<td>marmelos</td>
<td>Beal</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Feronia</td>
<td>limonia</td>
<td>Kathbel</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Paedaria</td>
<td>foetida</td>
<td>Gondhobhade</td>
</tr>
<tr>
<td>Scaridae</td>
<td>Diospyros</td>
<td>malabarica</td>
<td>Gaab</td>
</tr>
<tr>
<td>Family</td>
<td>Species</td>
<td>Common Name</td>
<td>Compounds</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Zingiberaceae</td>
<td>Zingiber montanum bunoada</td>
<td></td>
<td>γ-terpinene, sabinene, (E)-1-(3',4'-dimethoxyphenyl) buta-1,3-diene (DMPBD), β-phellandrene and terpinen-4-ol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygophyllaceae</td>
<td>Tribulus terrestris Gokhur kata</td>
<td></td>
<td>Flavonoids, alkaloids, saponins, lignin, amides and glycosides (Shahid et al., 2016)</td>
</tr>
</tbody>
</table>
1.9 Aim and objectives:

The overall aim of the study was to focus on Bangladeshi medicinal plants for the isolation and identification of compounds with antibacterial activity against a number of bacteria including multi-drug resistant (MDR) and methicillin resistant *Staphylococcus aureus* (MRSA)

The objectives of the study are

- **To interview** Ayurveda practitioners and local citizens of Bangladesh who frequently recommend or use medicinal plants for treating infective disease.

- **To identify** 17-18 medicinal plants based on ethno pharmacological survey used in the treatment of bacterial infections as well as literature review.

- **To test** the antibacterial activity of the crude extracts of the selected medicinal plants against MRSA

- **To isolate and purify** the bioactive compounds from crude extracts by using a range of chromatographic techniques.

- **To identify** the anti-infective compounds by a series of spectroscopic methods such as Nuclear Magnetic Resonance (NMR) spectroscopy, Infrared Spectroscopy (IR) and High Resolution Mass Spectrometry (HRMS).
Chapter 2: Methods and Materials
2. **Methodology:**

2.1 **Material and method: Ethnopharmacological survey.**

2.1.1 **Study area**

Bangladesh is a south Asian country located at the apex of the Bay of Bengal and boarded by India and Myanmar (latitudes 20° and 27°N and longitudes 88° and 93°E) with a population of over 162 million. It is well known for its rigorous greenery and numerous waterways. An ethnopharmacological survey was conducted to explore potential medicinal plants used for treating various infectious diseases by using structured and semi structured interviews according to the guidelines provided by Professor Michael Heinrich published later in the Journal of Ethnopharmacology (Heinrich et al., 2017). The interviews included Ayurvedic and Unani practitioners at their practice places, patients at Ayurvedic hospitals, local healers and inhabitants in common areas (National Botanical Fair and herb markets). As recommended by the practitioners of two recognised Ayurvedic and Unani colleges (Government Unani and Ayurvedic Degree College and Hospital at Mirpur and Tibbia Habibia Ayurvedic College and Hospital at Bokshi Bazar) in Bangladesh, the survey was carried out in greater Dhaka (Mirpur, New market, Chalk Bazar, Sutrapur, Jamalpur, Moulobhibazar, Shahabag), Tangail (near Modhupur forest), Gazipur (Telipara), Mymensingh and a northern district named Natore. The later district is well known for recommending medicinal plants by local healers. Various medicinal plants are also cultivated in this district.
Study site: Northern part of Bangladesh

Study sites: Greater Dhaka and its surroundings

Figure 2.1: Map of the study area showing Dhaka divisions of Bangladesh.
2.1.2 Ethical approval for the study

Ethical approval for conducting the ethnopharmacological survey was obtained from UREC (University Research Ethics Committee) of University of East London (Reference number: UREC- 1516 154). Relevant approval to carry out the survey was also sought from the University of Dhaka (Bangladesh). During the interview processes, all the participants were provided with a participant information sheet to explain the process and purpose of the study. Additionally, a participant consent form both in English and Bengali were also provided for participants to agree and sign prior to interview.

2.1.3 Ethnopharmacological survey

The ethnopharmacological survey was carried out in Bangladesh during autumn 2016. Two different sets of questionnaires were compiled whereby 71 practitioners, 21 Ayurvedic hospital patients and 35 village inhabitants participated in the survey. The questionnaire for practitioners was structured to gather maximum information about medicinal plants. Some questions such as scientific name, dose and route of administration of suggested plant material or how many years they have been practicing as a practitioner were solely asked of practitioners. In addition, hospital patients and village inhabitants were asked about obvious signs and symptoms they experienced in relation to bacterial diseases, for example, a burning sensation while urinating was reported to be treated with *Kalanchoe pinnata*. Urinary tract infection, tuberculosis and malaria are common bacterial diseases in Bangladesh. The participants were asked about how long they had been taking the suggested plant(s) material to treat their symptoms, and whether they have ever been to an Ayurvedic and/or Unani practitioner. Information about medicinal plants to treat bacterial disease was collected from participants via face to face interview by using questionnaires.
written in both English and Bengali (Questionnaires are available in Appendix section; pp.182).

The inclusion criteria for the selection of participants were as follows

a. Adults above the age of 25

b. The participants should be literate enough to read and sign the consent form written in either Bengali or English

c. The Ayurvedic/ Unani practitioners interviewed should have a minimum of 5 years’ experience in clinical practice.

d. The local village people interviewed had to be familiar with the use of plants to treat themselves with herbal medicine

Information collected from experienced Ayurvedic/Unani practitioners and ayurvedic hospital patients or village inhabitants aged above 25 years were given higher priority as they tended to have more accurate knowledge on traditional medicinal plants. Two hospitals named Tibbia Habibia Unani College and Hospital and Government Unani and Ayurvedic Medical College and Hospital were visited. Ayurvedic/ Unani practitioners working in these hospitals were interviewed. A directory of Ayurvedic and Unani practitioners of Bangladesh published by Hamdard Laboratories Limited (renowned Ayurvedic manufacturing company in Indian subcontinent) also helped to communicate with some practitioners. Accordingly, most of the Ayurvedic and Unani practitioners who worked privately and were located in different areas of Dhaka city were contacted and interviewed at their practice place via appointments. With prior permission from the two mentioned hospitals, outpatients in the waiting area were also interviewed. Local inhabitants were interviewed at the National Tree Fair which was held in Agargaon, Dhaka from 1st July to 31st August, 2016 and also at a herb market located in Moulobhibazar, Dhaka. More interviews of inhabitants were
carried out in Dhaka (Mirpur, New market, Chalk bazar, Sutrapur, Jamalpur, Shahabag), Mymensingh, Gazipur (telipara), Tangail and Natore in social gathering places where people meet and greet in the evening.

Both sets of questionnaires (Appendix section; pp. 182) were comprised of two sections. The first section consisted of participants’ personal information such as name, age, gender, profession, education level, how long they have been working as a practitioner (for Ayurvedic and Unani practitioners only), how long they had been admitted to the hospital (ayurvedic hospital patients only) and how they acquired their knowledge about traditional medicine (village inhabitants only).

The second set of questionnaires was comprised of open questions in order to gather information regarding medicinal plants used to treat infectious diseases. Respondents were asked to share their experiences of plants they use to treat bacterial disease. During the interview, a full description of the medicinal plants used for a bacterial disease (or symptoms indicative of bacterial infection) was requested in regard to its local name, scientific name (if known), use, therapeutic indication, parts of the plant used and growth form, route of administration, method of preparation, site of collection, form of usage (Fresh or dried), dosage, possible side effects, signs and symptoms of the disease (patients and inhabitants only), other therapeutic actions besides antibacterial activity (if any), rarity score. The above questionnaires were compiled following the guidelines for an ethnophamacological survey as provided by Professor Michael Heinrich which was published subsequently Heinrich et al., 2017).
2.1.4 Identification of plants:

Scientific names of those medicinal plants participants failed to identify were confirmed with the help of two books (Yusuf et al., 1994; Uddin, 2006) relevant to Bangladeshi medicinal plants. Moreover, selected plant materials collected following this survey were identified by the taxonomists of Bangladesh National Herbarium where the voucher specimens of all the selected plant materials were deposited.

2.1.5 Data analysis:

The information gathered through this ethnopharmacological survey was analysed using various parameters including Use Value (UV), Informant Consensus Factor (FIC), Fidelity Level (FL) and Rank Order Priority (ROP).

The **Use Value** (UV) demonstrates the relative importance of the suggested plant species using the following formula-

\[
UV = \frac{U \times 100}{N}
\]

Where 'U' is the number of use reports cited by each participant for a given plant species and 'N' is the total number of participants (table 3.3) (Phillips et al., 1994).

The Informant Consensus Factor (FIC) was calculated to check the homogeneity of the information using the following formula (Heinrich et al., 1998). The medicinal plants that are effective in treatment of certain disease tend to have higher FIC values.

\[
FIC = \frac{Nur - Nt}{Nur - 1}
\]

Where ‘Nur’ is the number of use-reports for each disease category and ‘Nt’ is the number of plant species used. The diseases were classified into broad ailment categories in order to calculate the Fic (Informant consensus factor).
is the suggestive value of how the participants uniformly agree about the use of a particular plant species for treating a particular ailment category. The value of FIC ranges from 0 to 1. A value close to 1 indicates that few plant species were used by a large group of participants. Alternatively, a low value indicates disagreement within the participants in regard to the use of a plant species for the treatment of a specific disease in an ailment category (Table 3.2).

The relative healing potential of a plant can be established by using the Fidelity Level index (FL; Friedman et al., 1986) determined by the following formula

\[FL = \frac{Ip}{Iu} \times 100 \]

Ip is the number of participants who independently cited the use of a plant species for the same disease and Iu is the total number of participants who mentioned the plant for any major disease. A high FL value means that the plant species was used frequently to treat a specific ailment category by the participants (table 3.3) (Friedman et al., 1986).

Chi Square (\(\chi^2 \)) test has also been calculated on demographic data using Microsoft excel (table 3.1).

Rank Order Priority (ROP) was determined by using the following formula (Eddouks et al., 2017).

\[ROP = FL \times RP \]

Where ROP is Rank order priority, FL is Fidelity level, RP is Relative popularity. ROP is the combination of fidelity level and relative popularity. Relative popularity was calculated in between the number of informants who suggested a particular plant species to the number of informants who cite the most frequently cited plant species (table 3.3).
2.2 Methods and Materials: Phytochemical investigation

2.2.1. Collection of plant materials:

Plants selected through the ethnopharmacological survey were collected from various parts of Bangladesh including Bangladesh National Botanical Garden (Mirpur, Dhaka) and Medicinal Plant Garden of Govt. Unani and Ayurvedic Hospital (Mirpur, Dhaka) and Sunderban Jungle (Khulna), Rajshahi University Botanical Garden (Rajshahi). The voucher specimens of these plant materials were submitted to the Bangladesh National Herbarium, Mirpur, Dhaka where the plants were identified by a qualified taxonomist.

2.2.2 Drying and grinding:

All plant materials collected for this study were sun dried (35-40°C) for 2-3 days in Bangladesh. The plant materials included barks, stems, leaves or fruits. After bringing these plant materials to the UK, these were processed by cutting into small pieces with a plant pruner. Such plant materials were further dried in an oven at a temperature of 30-40°C for 30 minutes prior to grinding with a grinder. Subsequently, all plant materials were ground into fine powders to get them ready for extraction.

2.2.3. Preliminary extraction and bioassay:

Extraction is a technique to separate a solute by dissolving in a solvent (Tissue, 1996). There are two types of extraction: hot extraction and cold extraction. In this study the hot extraction was carried out at 35-45°C using a Soxhlet apparatus (Adnan, 2015). Approximately 10-20 g of plant material was extracted sequentially with 80-100 ml solvents of increasing polarity (hexane, chloroform, and methanol) which offer efficient extractions with preliminary distribution of compounds into different extracts depending on their polarity. These extracts were evaporated to dried off using a rotary evaporator at 40°C.
Each of the different extracts was subjected to antibacterial screening by microtiter assay using 96 well plates (Rahman et al., 2008). Based on potential antibacterial activity (Table 3.31) against MRSA clinical strains (EMRSA-15, SA1199B, ATCC5941, XU212 and MRSA340702, MRSA24821), a total of 5 plants were selected for bioassay guided isolation and identification of potential antibacterial secondary metabolites.

2.2.4. Large scale extraction:

During large scale extraction, each of the plant materials (400-500 gm) was Soxhlet extracted using the identical protocol as described above with solvents (approximately 1 L) of increasing polarity. Similarly, each of the extracts was concentrated using a rotary evaporator under reduced pressure at a maximum temperature of 40°C to afford crude extracts as semi-solid mass.
Table 2.1: List of the plants collected for the study

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Plant part(s) collected</th>
<th>Place of collection</th>
<th>Date of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paedaria foetida</td>
<td>Leaf</td>
<td>NBG</td>
<td>7th September 2016</td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>Fruit</td>
<td>NBG</td>
<td>8th September 2016</td>
</tr>
<tr>
<td>Justicia adhatoda</td>
<td>Leaf</td>
<td>NBG</td>
<td>8th September 2016</td>
</tr>
<tr>
<td>Terminalia arjuna</td>
<td>Bark</td>
<td>GUAH</td>
<td>9th September 2016</td>
</tr>
<tr>
<td>Diospyros malabarica</td>
<td>Leaf</td>
<td>NBG</td>
<td>9th September 2016</td>
</tr>
<tr>
<td>Andrographis periculata</td>
<td>Leaf</td>
<td>NBG</td>
<td>9th September 2016</td>
</tr>
<tr>
<td>Tinospora cordata</td>
<td>Leaf</td>
<td>NBG</td>
<td>10th September 2016</td>
</tr>
<tr>
<td>Zingiber montanum</td>
<td>Rhizome</td>
<td>NBG</td>
<td>10th September 2016</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>Bark and Leaf</td>
<td>NBG</td>
<td>11th September 2016</td>
</tr>
<tr>
<td>Tylophora indica</td>
<td>Leaf</td>
<td>NBG</td>
<td>11th September 2016</td>
</tr>
<tr>
<td>Tribulus terrestris</td>
<td>Thorn</td>
<td>NBG</td>
<td>12th September 2016</td>
</tr>
<tr>
<td>Uraria picta</td>
<td>Leaf</td>
<td>RUBG</td>
<td>12th September 2016</td>
</tr>
<tr>
<td>Cynometra namiflora</td>
<td>Leaf</td>
<td>SJ</td>
<td>13th September 2016</td>
</tr>
<tr>
<td>Svertia chirayita</td>
<td>Leaf and thorn</td>
<td>NBG</td>
<td>13th September 2016</td>
</tr>
<tr>
<td>Terminalia chebula</td>
<td>Fruit</td>
<td>NBG</td>
<td>13th September 2016</td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>Fruit</td>
<td>NBG</td>
<td>13th September 2016</td>
</tr>
<tr>
<td>Abroma augusta</td>
<td>Leaf with fruit</td>
<td>GUAH</td>
<td>13th September 2016</td>
</tr>
<tr>
<td>Feronia limonia</td>
<td>Bark and Leaf</td>
<td>NBG</td>
<td>13th September 2016</td>
</tr>
</tbody>
</table>

NBG = National Botanical Garden
GUAH = Govt. Unani and Ayurvedic Hospital
RUBG = Rajshahi University Botanical Garden
SJ = Sunderban Jungle
2.2.5 Antibacterial screening:

Detailed methodology of antibacterial screening has been mentioned in section 2.2.9.
2.2.6. Chromatographic technique for the isolation of compounds:

Various chromatographic techniques were used to isolate the compounds from the crude extracts which exhibited good antibacterial activity (MIC values equal to or below 256 µg/ml). Both traditional and modern chromatographic techniques have been applied during this study. The particular method was selected based on the type of compounds present in the crude extracts and/or fractions. Each of these techniques are discussed briefly.

2.2.6.1 Thin Layer Chromatography:

This is a classical plane chromatographic technique which is based on the principle of moving the mobile phase (single solvent or combination of solvents) through the thin layer of stationary phase (usually silica gel) against the gravitational force. Both analytical and preparative TLC were used in the study.

2.2.6.1.1 Analytical TLC:

The initial screening of plant extracts or fractions was carried out by analytical TLC. Using a capillary tube, a very small amount of sample was applied to the TLC plate (pre coated silica gel 60 PF254) and placed into the TLC tank containing the mobile phase (Table 2.2). The TLC plate has allowed to run until it almost reached the top of the plate. Once the plate was developed, it was visualised under shortwave UV light (254nm) and longwave UV light (366 nm) followed by spraying with a reagent to identify the presence of compounds in the extracts and/or fractions. In addition, the purity of isolated compounds was also determined by analytical TLC. The Rf value of pure compounds were calculated by measuring the distance travel by the compounds to the distance travel by solvents. During this study, various mobile phases (Table 2.2) with different ratios of solvents ranging from non-polar to polar were used.

2.2.6.1.2 PTLC (preparative thin later chromatography):

PTLC was applied for the separation and final purification of compounds from the fraction. The sample was applied uniformly as long steaks in the sample application zone (2 cm above from the bottom edge of TLC plate) on TLC
aluminium plates (pre coated silica gel 60 PF254). The TLC plates were developed up to the upper edge of the plates with suitable mobile phase. In addition, two or three development techniques were adapted for a better separation of compounds with similar polarity. After development, the plates were taken out of the TLC tank, dried off using hair dryer and observed under both short (254 nm) and long (366 nm) wavelength of UV light. If necessary, a small portion of TLC plates was sprayed by appropriate spray agent (section 2.2.7.2) in order to detect non UV active compounds. The specific compounds were recovered by scraping the sorbent layer from the region of interest with a spatula. The compounds were separated from the sorbent by eluting with chloroform or methanol depending on their solubility. Sometimes, materials recovered from the PTLC may require further purification by other chromatographic techniques. Pure compounds were analysed further for identification and structure elucidation by spectrometry (Sherma and Fried 1987).

Table 2.2: List of mobile phases used during TLC and PTLC

<table>
<thead>
<tr>
<th>Code</th>
<th>Solvents</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Hexane : EtOAc</td>
<td>80: 20</td>
</tr>
<tr>
<td>B</td>
<td>Hexane : EtOAc</td>
<td>90:10</td>
</tr>
<tr>
<td>C</td>
<td>Hexane : EtOAc</td>
<td>95:5</td>
</tr>
<tr>
<td>D</td>
<td>Hexane : EtOAc: ACOH</td>
<td>85:14.5: 0.5</td>
</tr>
<tr>
<td>E</td>
<td>Hexane : EtOAc: ACOH</td>
<td>96: 3.5: 0.5</td>
</tr>
<tr>
<td>F</td>
<td>Hexane : EtOAc: ACOH</td>
<td>95: 4.5: 0.5</td>
</tr>
<tr>
<td>G</td>
<td>Hexane : EtOAc</td>
<td>98: 2</td>
</tr>
<tr>
<td>H</td>
<td>Hexane : EtOAc: ACOH</td>
<td>70: 29.5: 0.5</td>
</tr>
<tr>
<td>I</td>
<td>Hexane : EtOAc: ACOH</td>
<td>68: 31.5: 0.5</td>
</tr>
<tr>
<td>J</td>
<td>Hexane : EtOAc: ACOH</td>
<td>64: 35.5: 0.5</td>
</tr>
</tbody>
</table>

2.2.6.2 VLC (Vacuum Liquid Chromatography):

VLC is a technique used extensively to fractionate crude extracts obtained with hexane, chloroform or methanol. This technique involves a preparative layer chromatographic separation run as a column, which activates by vacuum. The amount of extract to be fractionated was determined by the size of the column and height of the stationary phase (VLC grade silica; kieselgel 60 PF254). Firstly, the column was uniformly packed with VLC grade silica gel, then the sample material which was mixed in column grade silica gel was applied onto the
stationary phase. The column was then eluted with 200 ml of solvents of increasing polarity (Table 2.4 and 2.5). Initially, hexane and ethyl acetate with gradual increment in polarity were used followed by ethyl acetate and methanol of increasing polarity. The eluted fractions were collected in 250ml beaker monitored by TLC. Later the similar fractions were mixed together based on TLC results.

2.2.6.3 Sephadex LH-20 column:

Gel filtration chromatographic technique was applied followed by VLC fractionation of crude extracts. The glass column was packed with the slurry of sephadex LH-20 which was soaked in the selected solvent (100% hexane, 50% chloroform in hexane or 100% chloroform) half an hour prior to the packing of the column. The separation was achieved according to the molecular size of the compounds. The sample was dissolved in 50:50 hexane and chloroform solvent then applied onto the top of the adsorbent. The column was eluted with 70-100% hexane with 0-30% chloroform followed by 100% chloroform and chloroform and methanol mixture with increasing polarity (Table- 2.4). Finally, the column was washed with 100% methanol to remove all materials so that the sephadex LH20 recovered could be used further.

2.2.6.4 Solid Phase Extraction: (SPE):

SPE is a simple and rapid chromatographic technique to fractionate small amounts of extracts or VLC fractions prior to further chromatographic analysis such as PTLC. The basic principle of SPE is similar to VLC but SPE was used in smaller scale fractionation or further purification of compounds from the VLC fractions or pooled fraction from sephadex LH20 column chromatography.

The extract or fraction to be analysed by SPE was initially mixed with a small amount of silica and applied onto the top of the commercially available pre-packed column (usually silica as stationary phase). The column was eluted with solvents of increasing polarity using a mixture of hexane and ethyl acetate (Table 2.5). The similar fractions were mixed together and then concentrated with the help of a rotary evaporator.
2.2.7. Detection of compounds:

The UV light and spray agent were used to detect the compounds from TLC and PTLC plates.

2.2.7.1 UV light:

The developed and dried TLC and PTLC plates were placed under UV light in both short (254 nm) and long (366nm) wavelength to detect the compounds which absorb UV light.

2.2.7.2 Spray reagents:

In this study, 1% vanillin in sulphuric acid was used to detect non-UV active compounds.

1% Vanillin in H$_2$SO$_4$ acid:

This reagent was made by dissolving 1 g vanillin in 100ml concentrated H$_2$SO$_4$. This is a general reagent for the detection of various types of compounds. The plates were dried with the help of a dryer to develop a specific colour or range of colours which indicates the presence of the type of compounds. For example-terpene type compounds were detected as bright pink colour while flavonoids as yellow.
Table 2.3: Extraction of *Zingiber montanum* (242 g), *Uraria picta* (300 g), *Cynometra ramiflora* (262 g), *Diospyros malabarica* (250 g), *Swertia chirayita* (231 g)

<table>
<thead>
<tr>
<th>Plant material</th>
<th>Extracts</th>
<th>Amount</th>
<th>% yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zingiber montanum (242 g)</td>
<td>Hexane</td>
<td>5.5 g</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>10.2 g</td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>23.0 g</td>
<td>9.50</td>
</tr>
<tr>
<td>Uraria picta (300 g)</td>
<td>Hexane</td>
<td>6.7 g</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>7.7 g</td>
<td>2.56</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>9.87 g</td>
<td>3.29</td>
</tr>
<tr>
<td>Cynometra ramiflora</td>
<td>Hexane</td>
<td>1.33 g</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>1.10 g</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>10 g</td>
<td>3.82</td>
</tr>
<tr>
<td>Diospyros malabarica</td>
<td>Hexane</td>
<td>6.99 g</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>4 g</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>10 g</td>
<td>3.9</td>
</tr>
<tr>
<td>Swertia chirayita</td>
<td>Hexane</td>
<td>3.26 g</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>4 g</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>10 g</td>
<td>4.32</td>
</tr>
</tbody>
</table>

Table 2.4: Isolation of compounds from hexane extract of *Zingiber montanum*

<table>
<thead>
<tr>
<th>Compound code</th>
<th>Initial fractionation</th>
<th>Further fractionation</th>
<th>Further purification procedure</th>
<th>Detection</th>
<th>Amount</th>
<th>Rf value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSH-2</td>
<td>CC (over Sephadex LH20) eluted with 50 % Chloroform in hexane</td>
<td>-</td>
<td>PTLC eluted with 15% EtOAc in hexane</td>
<td>Visible under short UV</td>
<td>3 mg</td>
<td>0.51</td>
</tr>
<tr>
<td>MRSH-3</td>
<td>CC (over Sephadex LH20) eluted with 50 % Chloroform in hexane</td>
<td>-</td>
<td>PTLC eluted with 15% EtOAc in hexane</td>
<td>Bright Yellow with VS</td>
<td>10 mg</td>
<td>0.52</td>
</tr>
<tr>
<td>MRSH-6</td>
<td>100% CHCl₃</td>
<td>-</td>
<td>-</td>
<td>Bright pink with VS</td>
<td>39 mg</td>
<td>0.45</td>
</tr>
<tr>
<td>ZMH – 4</td>
<td>15% EtOAc in hexane</td>
<td>4% EtOAc in hexane</td>
<td>4% EtOAc in hexane with glacial acetic acid</td>
<td>UV active no colour with VS</td>
<td>7 mg</td>
<td>0.85</td>
</tr>
<tr>
<td>ZMH – 5</td>
<td>15% EtOAc in hexane</td>
<td>4% EtOAc in hexane</td>
<td>4% EtOAc in hexane with</td>
<td>Fade with VS</td>
<td>4 mg</td>
<td>0.61</td>
</tr>
<tr>
<td>Compound code</td>
<td>VLC fraction</td>
<td>SPE/ Sephadex</td>
<td>PTLC</td>
<td>Detection</td>
<td>Amount</td>
<td>R<sub>f</sub> value</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>ZMH – 8 15% EtOAc in hexane 10% EtOAc in hexane</td>
<td>5% EtOAc in hexane with glacial acetic acid</td>
<td>Dark pink</td>
<td>5 mg</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZMH – 10 15% EtOAc in hexane 10% EtOAc in hexane</td>
<td>5% EtOAc in hexane with glacial acetic acid</td>
<td>Dark pink</td>
<td>7 mg</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VS= 1% Vanillin in sulphuric acid

Table 2.5: Isolation of compounds from chloroform extract of Zingiber montanum (The starting amount was 242 g)

<table>
<thead>
<tr>
<th>Compound code</th>
<th>VLC fraction</th>
<th>SPE/ Sephadex</th>
<th>PTLC</th>
<th>Detection</th>
<th>Amount</th>
<th>R<sub>f</sub> value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZC 30/ZMH 14 25% EtOAc in hexane</td>
<td>10 % EtOAc in hexane</td>
<td>15 % EtOAc in hexane</td>
<td>Dark pink</td>
<td>4 mg</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>HZC 39/ZMH 4 10% EtOAc in hexane</td>
<td>4 % EtOAc in hexane (Sephadex LH-20 Column)</td>
<td>4 % EtOAc in hexane</td>
<td>Yellow spot turned blue with VS</td>
<td>6.5mg</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6: Isolation of compounds from methanol extract of *Uraria picta*

<table>
<thead>
<tr>
<th>Compound code</th>
<th>VLC fraction</th>
<th>SPE/ Sephadex</th>
<th>PTLC</th>
<th>Detection</th>
<th>Amount</th>
<th>R<sub>f</sub> value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPM 3</td>
<td>10% EtOAc in Hexane</td>
<td>4% EtOAc in Hexane</td>
<td>5% EtOAc in Hexane</td>
<td>Dark pink with VS</td>
<td>5 mg</td>
<td>0.75</td>
</tr>
<tr>
<td>UPM 46a</td>
<td>20-40% EtOAc in Hexane</td>
<td>50% chloroform in hexane</td>
<td>10% EtOAc in Hexane</td>
<td>Dark spot under short UV</td>
<td>4 mg</td>
<td>0.69</td>
</tr>
</tbody>
</table>

VS = 1% Vanillin in sulphuric acid

Table 2.7: Isolation of compounds from Hexane extract of *Cynometra ramiflora*

<table>
<thead>
<tr>
<th>Compound code</th>
<th>VLC fraction</th>
<th>SPE/ Sephadex</th>
<th>PTLC</th>
<th>Detection</th>
<th>Amount</th>
<th>R<sub>f</sub> value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRH 9/12</td>
<td>33.3% EtOAc in hexane</td>
<td>-</td>
<td>15% EtOAc in Hexane</td>
<td>Visible in short UV, light violet after spray.</td>
<td>65 mg</td>
<td>0.69</td>
</tr>
<tr>
<td>CRH 16</td>
<td>33.3% EtOAc in hexane</td>
<td>-</td>
<td>15% EtOAc in Hexane</td>
<td>Visible after spray dark pink only</td>
<td>6 mg</td>
<td>0.37</td>
</tr>
<tr>
<td>CRH 34</td>
<td>60% EtOAc in hexane</td>
<td>17.5% EtOAc in Hexane</td>
<td>20% EtOAc in Hexane with acetic acid</td>
<td>Dark spot under long UV</td>
<td>3 mg</td>
<td>0.82</td>
</tr>
<tr>
<td>CRC 10</td>
<td>-</td>
<td>25% CHCl<sub>3</sub> in hexane (Sephadex LH 20) 4% EtOAc in hexane (SPE fraction)</td>
<td>25% EtOAc in hexane</td>
<td>Visible in short UV</td>
<td>6 mg</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Table 2.8: Isolation of compounds from Hexane extract of *Diosphyros malabarica*

<table>
<thead>
<tr>
<th>Compound code</th>
<th>VLC fraction</th>
<th>Sephadex LH 20</th>
<th>PTLC Detection</th>
<th>Amount</th>
<th>R<sub>f</sub> value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMH 2</td>
<td>10% EtOAc in Hexane</td>
<td>-</td>
<td>30% EtOAc in Hexane with few drops of Acetic acid</td>
<td>Dark green, Visible in short UV, green after spray.</td>
<td>3 mg</td>
</tr>
<tr>
<td>DMH 3/5</td>
<td>10% EtOAc in Hexane</td>
<td>-</td>
<td>30% EtOAc in Hexane with few drops of Acetic acid</td>
<td>Yellow, visible in short UV, turned dark yellow after spray</td>
<td>7 mg</td>
</tr>
<tr>
<td>DMH 10</td>
<td>60% EtOAc in Hexane</td>
<td>-</td>
<td>30% EtOAc in hexane with acetic acid</td>
<td>Yellow, turned green after spray</td>
<td>2 mg</td>
</tr>
<tr>
<td>DMH 15</td>
<td>6.6% Methanol in EtOAc</td>
<td>-</td>
<td>20% EtOAc in Hexane with Acetic acid</td>
<td>Visible in short UV</td>
<td>4 mg</td>
</tr>
<tr>
<td>DMC 22</td>
<td>10-20% EtOAc in Hexane</td>
<td>-</td>
<td>20% EtOAc in Hexane with Acetic acid</td>
<td>Visible in long UV</td>
<td>6 mg</td>
</tr>
</tbody>
</table>
Table 2.9: Isolation of compounds from Hexane extract of *Swertia chirayita*

<table>
<thead>
<tr>
<th>Compound code</th>
<th>VLC fraction</th>
<th>PTLC</th>
<th>Detection</th>
<th>Amount</th>
<th>R<sub>t</sub> value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCH 1</td>
<td>70% EtOAc in hexane</td>
<td>30% EtOAc in hexane with few drops of acetic acid</td>
<td>Dark green, visible in short UV, turned green after spray</td>
<td>5 mg</td>
<td>0.75</td>
</tr>
<tr>
<td>SCH 2</td>
<td>70% EtOAc in hexane</td>
<td>30% EtOAc in hexane with few drops of acetic acid</td>
<td>Yellow colour, visible in short UV, turned green after spray</td>
<td>2 mg</td>
<td>0.50</td>
</tr>
<tr>
<td>SCH 10</td>
<td>18.88% MeOH in EtOAc</td>
<td>32% EtOAc in hexane with few drops of acetic acid</td>
<td>Light yellow, visible under short UV</td>
<td>5 mg</td>
<td>0.69</td>
</tr>
<tr>
<td>SCH 11</td>
<td>18.88% MeOH in EtOAc</td>
<td>32% EtOAc in hexane with few drops of acetic acid</td>
<td>Visible in short UV</td>
<td>2 mg</td>
<td>0.48</td>
</tr>
<tr>
<td>SCH 15</td>
<td>0-33.3% EtOAc in methanol</td>
<td>36% EtOAc in hexane with few drops of acetic acid</td>
<td>Visible in short UV</td>
<td>1 mg</td>
<td>0.48</td>
</tr>
</tbody>
</table>
2.2.8. Spectroscopic methods:

2.2.8.1 Infrared spectroscopy:

Infrared spectrum is usually recorded on high resolution fourier transform IR spectrophotometer. The IR spectra of the isolated compounds was obtained using agilent FT-IR. IR spectra helps in elucidating chemical structure by providing information on the presence of certain functional groups such as – COOH, -OH, CO, -NH₂, -CONH₂ in the compound.

2.2.8.2 Mass spectrometry:

Mass spectrometry is a useful analytical technique which reveals the mass of a molecule and its fragmentation pattern and thereby helps to generate the information about the structure of the molecule. Mass spectrometry complements the information provided by other spectroscopic method (UV, IR, and NMR). High resolution impact mass spectra allows the measuring of the molecular mass of small organic compounds within the accuracy of ≤ 5ppm. Mass spectrometry data was obtained from Liverpool John Moores University (School of Pharmacy) using 6530 Accurate-Mass Q-TOF LC/MS from Agilent technologies.

2.2.8.3 NMR (Nuclear Magnetic Resonance) spectroscopy:

NMR is a non-destructive analytic method. NMR is an analytical chemistry technique use to determine molecular structure, purity or content of the sample. Samples are normally dissolved in deuterated solvents such as CDCl₃, CD₃OD etc. and placed into NMR spectrophotometer for both 1D and 2D NMR spectrum. Once all the experiments were finished, the samples were recovered (100% recovery), dried off with nitrogen gas and used for further analysis and bioassay. Proton magnetic resonance (¹H NMR) spectra of pure compounds were obtained from Bruker AMX (500 MHz) NMR spectrometer in Queen Mary University of London. The ¹³C and 2D NMR (COSY, NOESY, HMQC and HMBC) experiments were measured on the Bruker 500 MHz at UCL School of Pharmacy and Bruker 600 MHz and 700 MHz at UCL Department of Chemistry.
In this study NMR spectra was comprehensively used to characterize the isolated compounds and thus identify the chemical structures. 1H and 13C NMR helps to determine the presence of number of hydrogens and carbons respectively as well as their environment.

The 2D NMR spectroscopy facilitated unequivocal assignment of organic compounds.

2.2.8.3.1 1H NMR spectroscopy:

The presence of hydrogen was determined by proton NMR spectroscopy which is a first and fundamental experiment in elucidating the structure of isolated compounds. The number of NMR signals equals the number of different types of proton present in the compound. The position of signal denoted as chemical shift.

Protons in different environment give different signals. NMR spectrum provides the following basic information about the hydrogen present in a compound.

- Number of signal
- Chemical shift
- Intensity of signals (how many protons in each signal)
- Spin- spin splitting of signal

The 1H NMR spectrum of MRSH-3 isolated from hexane extract of *Zingiber montanum* has shown in result section (figure 3.30). The sample was run in CDCl$_3$ and solvent peak was calibrated at 7.26 ppm. The structure provides information about the hydrogen atom in the compound thus helps in its structure elucidation.

2.2.8.3.2 13C NMR spectroscopy

The 13C NMR identifies carbon atom in a different environment within the molecule. Each peak in 13C NMR spectra represent a carbon atom present in the compound. The 13C NMR spectra is usually single line spectra. The chemical shift is 0-230 ppm giving greater spectral dispersion. Unlike 1H NMR, 13C peak areas
are not related to number of carbons having the same shift. The carbon attached to the hydrogen in methyl group (CH₃) gives the signal from 0-30 ppm. Carbon atoms are affected by electronegative atoms thus the carbon ranges from 160-180 ppm gives the indication that carbon is attached to oxygen.

2.2.8.3.3 Distortionless enhancement by polarisation transfer- 135 (DEPT-135)

DEPT spectra separate fully carbon spectra differentiate into primary, secondary and tertiary carbon. The missing signal for quaternary carbon helps to separate C and CH₂ peaks in ¹³C experiment. So it is useful NMR spectra for elucidating terpenoids in confirming CH₂ peaks.

2.2.8.3.4 ¹H-¹H correlation spectroscopy: (¹H⁻¹H COSY)

The ¹H-¹H COSY is two dimension homonuclear resonances which provides the information about protons that are coupled to each other. The COSY helps to identify the correlation in a complex structure that would be hidden in the clutter of peaks close to the diagonal (Derome, 1989).

2.2.8.3.5 NOESY (Nuclear Overhauser Effect Spectroscopy):

It is a very useful NMR spectrum for identifying dipolar interaction of spins for correlation of protons. It is similar to COSY spectrum but the cross peaks reveal interaction through space instead of scalar coupling though bonds.

2.2.8.3.6 Heteronuclear correlation spectroscopy:

HMQC: HMQC is the two dimension heteronuclear NMR spectroscopy which add some new feature in NMR to facilitate the structure elucidation of larger compounds. HMQC shows the direct correlation between hydrogen and carbon in the compound.

HMBC: The heteronuclear multiple bond coherence (HMBC) shows a correlation between
1H and 13C nuclei through 2, 3 or sometimes even 4. It confirms the structure by connecting various fragments through carbon-proton interactions through 2, 3 bonds in a molecule.

2.2.9. Antibacterial screening:

Antibacterial screening can be accomplished in two ways; agar disc diffusion method and microtiter broth dilution assay (Peter, 1999). During this study, microtiter broth dilution method was followed for antimicrobial screening as adapted by leading antimicrobial groups (Appendino et al., 2008; Garvey et al., 2011; Rahman et al., 2007; Piddock et al., 2010; Rahman and Gibbons 2015; Shiu et al., 2012) which gave minimum inhibitory concentrations (MICs) of the extracts, fractions as well as pure compounds. Briefly, this method involves three days experiments- sub-subculture (day 1), assay (day 2) and observation of result (day 3).

2.2.9.1 Bacterial strains subculture:

A subculture is simply the transfer of a loopful of microorganism onto slope/petri dish containing an appropriate medium followed by incubation at 37°C for approximately 18 hrs. Six clinical strains of MRSA (ATCC 5941, EMRSA 15, XU212, and MRSA340702, MRSA24821) were available. These bacterial strains were regularly monitored and sub cultured in order to keep the organism alive. A backup batch made up to maintain at -80°C. Moreover, MRSA culture were regularly collected from UCL School of Pharmacy to avoid any unexpected problems with the clinical strains (Appendino et al., 2008; Shiu et al., 2012).

2.2.9.2 MIC (Minimum Inhibitory Concentration) assay:

Antimicrobial screening was conducted by MIC assay. 100 µl of MHB was dispensed into 96 well micro titre plates using multi-channel pipette. Crude extracts, fractions, pure compounds and norfloxacin (a standard antibiotic) was diluted serially into every two rows of the first column. The content of the first column were mixed circumstantially by multi-channel pipette by switching 100 µl
of the contents to each column till 10th and 12th column and leaving 11th column for growth control. Afterwards, 100µl of diluted bacterial strains were pipetted to all wells of the plate upto 11th column, leaving 12th column for sterility control. The plates were incubated for 18 hours at 37\degree C.

2.2.9.3 Observation of results

The MIC records the lowest concentration at which no growth was observed. On the third day of the experiment, 20µl of a 5 mg/ml methanolic solution of 3-[4,5-dimethylthiazol-2-yl]-2,5-phenyltetrazolium bromide (MTT; Sigma) was added to each of the wells followed by incubation for 30 minutes at 37\degree C. A blue colouration indicates bacterial growth as MTT combines with bacterial mitochondria and forms a blue coloured complex whereas yellow colour (colour of MTT) was the indicator of antibacterial activity. These blue and yellow colour also observed in growth control (11th column in 96 well plate) and sterility control (last column in 96 well plate) (Shiu et al., 2012).
Chapter 3:
Results
3. Results
3.1 Ethnopharmacological survey:
3.1.1 Demographic data analysis:

The data gathered through the ethnopharmacological survey carried out in Bangladesh was analysed based on the demographic variables such as gender, age, educational background, experience of the practitioners and occupation (Table 3.1). Among a total of 127 participants interviewed, 55.91% of the major informants were male. A significant association ($p < 0.05$) was observed in some of the demographic variables such as age, sex, educational background and profession. A particularly significant association ($p < 0.01$) was recorded for the age group of male and female users compared to experience of the practitioners ($p > 0.05$). However, no clear cut trend was observed in terms of age group and plant users. Most of the participants were young and fell within the age group of 25-35 yr (33.86%, $n=127$) followed by the age range of 36-45 yr (23.62%, $n=127$) and then 66-75 yr (21.26% $n=127$). Surprisingly, participants in the age range of 56-65 yr (10.24%) were the least plant users. Most of the participants were young because the majority of the interviewees were qualified Ayurvedic practitioners (71) between the ages of 25-35 compared to local people and Ayurvedic patients. Apart from qualified practitioners, local village people and patients from two different Ayurvedic hospitals claimed to have acquired ethnobotanical knowledge from their ancestors stating that botanical remedies were part of their culture. The literacy level of the participants was higher (40.94%) with 3 practitioners having higher degree qualifications (2 practitioners with PhD degree and 1 with MPhil degree). It is interesting to note that no interactions of herbal remedies with orthodox medicine were reported by any of the participants. In terms of empirical knowledge, 29.6% of practitioners had at
least 6-10 years’ experience followed by 18.3% with 21-30 years of experience of treating patients with herbal medicine.

Table 3.1: Classification of the informants, demographic data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>% Frequency</th>
<th>Chi-square value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informant category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualified practitioners</td>
<td>71</td>
<td>55.90%</td>
<td></td>
</tr>
<tr>
<td>Ayurvedic patients</td>
<td>21</td>
<td>16.56%</td>
<td></td>
</tr>
<tr>
<td>Local village people</td>
<td>35</td>
<td>27.56%</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>56</td>
<td>44.09%</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>71</td>
<td>55.91%</td>
<td></td>
</tr>
<tr>
<td>Age-group (in years)</td>
<td></td>
<td></td>
<td>0.000231 (< 0.01)</td>
</tr>
<tr>
<td>25-35</td>
<td>43</td>
<td>33.86%</td>
<td></td>
</tr>
<tr>
<td>36-45</td>
<td>30</td>
<td>23.62%</td>
<td></td>
</tr>
<tr>
<td>46-55</td>
<td>14</td>
<td>11.02%</td>
<td></td>
</tr>
<tr>
<td>56-65</td>
<td>13</td>
<td>10.24%</td>
<td></td>
</tr>
<tr>
<td>66-75</td>
<td>27</td>
<td>21.26%</td>
<td></td>
</tr>
<tr>
<td>Educational background</td>
<td></td>
<td></td>
<td>0.043081 (< 0.05)</td>
</tr>
<tr>
<td>No education</td>
<td>22</td>
<td>17.32%</td>
<td></td>
</tr>
<tr>
<td>Completed 8 years of education</td>
<td>12</td>
<td>9.45%</td>
<td></td>
</tr>
<tr>
<td>Completed 10 years of education</td>
<td>9</td>
<td>7.09%</td>
<td></td>
</tr>
<tr>
<td>Completed 12 years of education</td>
<td>11</td>
<td>8.66%</td>
<td></td>
</tr>
<tr>
<td>Diploma</td>
<td>12</td>
<td>9.45%</td>
<td></td>
</tr>
<tr>
<td>Bachelor or honours degree</td>
<td>52</td>
<td>40.94%</td>
<td></td>
</tr>
<tr>
<td>Master’s degree</td>
<td>4</td>
<td>3.15%</td>
<td></td>
</tr>
<tr>
<td>Mphil</td>
<td>3</td>
<td>2.36%</td>
<td></td>
</tr>
<tr>
<td>PhD degree</td>
<td>2</td>
<td>1.58%</td>
<td></td>
</tr>
<tr>
<td>Years of experience as practitioner</td>
<td></td>
<td></td>
<td>0.169662 (> 0.05)</td>
</tr>
<tr>
<td>5 years</td>
<td>11</td>
<td>15.49%</td>
<td></td>
</tr>
<tr>
<td>6-10 years</td>
<td>21</td>
<td>29.58%</td>
<td></td>
</tr>
<tr>
<td>11-15 years</td>
<td>10</td>
<td>14.08%</td>
<td></td>
</tr>
<tr>
<td>16-20 years</td>
<td>10</td>
<td>14.08%</td>
<td></td>
</tr>
<tr>
<td>21-30 years</td>
<td>13</td>
<td>18.31%</td>
<td></td>
</tr>
<tr>
<td>Profession (practitioner only)</td>
<td></td>
<td></td>
<td>0.004628 (<0.05)</td>
</tr>
<tr>
<td>Hakim</td>
<td>5</td>
<td>3.94%</td>
<td></td>
</tr>
<tr>
<td>Unani</td>
<td>17</td>
<td>23.94%</td>
<td></td>
</tr>
<tr>
<td>Ayurvedic</td>
<td>26</td>
<td>20.47%</td>
<td></td>
</tr>
<tr>
<td>Medical officer of ayurvedic hospital</td>
<td>16</td>
<td>12.59%</td>
<td></td>
</tr>
<tr>
<td>Other for inhabitants and patients (housewife, farmer, teacher or work in another field)</td>
<td>54</td>
<td>42.52%</td>
<td></td>
</tr>
</tbody>
</table>
3.1.2 Graphical analysis of the frequency of the use of plant families

A total 71 medicinal plants were distributed in 54 families to manage five common infectious diseases namely chronic dysentery, urinary tract infection, and respiratory tract infection, wound healing and skin disease. Legumes, Asteraceae and Apocynaceae are the highest represented families followed by Lamiaceae, menispermaceae and Zingiberaceae in terms of families where the plants recommended belongs to.

![Graph showing frequency of use of plant families](image)

Figure 3.1: Frequency of the use of plant families in management of bacterial infection in Dhaka city and northern part of Bangladesh.

3.1.3 Informant consensus factor (FIC) for each category of ailments:

The agreement for the use of plants to treat particular ailment categories among the participants was determined by calculating the FIC value. Table 3.2 illustrates informants’ consensus factor which varied from 0-0.94. Bacterial pneumonia recorded the highest FIC value 0.94 with 19 use reports for 2 plant species. *Ocimum tenuiflorum* was the species responsible for the highest consensus factor with 18 out of 19 reported events, followed by wound healing (FIC - 0.85 ; 49 use reports, 8 species), gastrointestinal disorder (FIC - 0.83, 59 use reports, 11 species), rheumatic fever (FIC - 0.83; 47 use reports , 9 species).

A high FIC value indicated the efficiency of treating a particular ailment with medicinal plants. Bacterial pneumonia had the highest FIC value which confirmed that this ailment was common in the study area probably due to a weakened immune system caused by malnutrition. Moreover, there was good communication present among the informants for treating this ailment category.
Table 3.2: Informant consensus factor (FIC) for each category of ailments:

<table>
<thead>
<tr>
<th>Ailment category</th>
<th>Number of taxa (Nt)</th>
<th>Number of use reports (Nur)</th>
<th>Consensus factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial pneumonia infection</td>
<td>2</td>
<td>19</td>
<td>0.94</td>
</tr>
<tr>
<td>Wound healing</td>
<td>8</td>
<td>49</td>
<td>0.85</td>
</tr>
<tr>
<td>Gastrointestinal disorder</td>
<td>11</td>
<td>59</td>
<td>0.83</td>
</tr>
<tr>
<td>Rheumatic fever</td>
<td>9</td>
<td>47</td>
<td>0.83</td>
</tr>
<tr>
<td>Gonorrhoea</td>
<td>7</td>
<td>20</td>
<td>0.68</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>3</td>
<td>7</td>
<td>0.67</td>
</tr>
<tr>
<td>Liver disease</td>
<td>3</td>
<td>7</td>
<td>0.67</td>
</tr>
<tr>
<td>Dermatitis/ skin disease</td>
<td>8</td>
<td>20</td>
<td>0.63</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>13</td>
<td>31</td>
<td>0.60</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>4</td>
<td>7</td>
<td>0.50</td>
</tr>
<tr>
<td>Tonsillitis</td>
<td>3</td>
<td>5</td>
<td>0.50</td>
</tr>
<tr>
<td>Chronic dysentery</td>
<td>8</td>
<td>14</td>
<td>0.46</td>
</tr>
</tbody>
</table>

3.1.4 Fidelity level:

Fidelity level was calculated to determine the relative healing potential of a plant (section 2.1.5). Fidelity level provides the information about the percentage of informants that use the certain plant for the same particular purpose. Most of the plants in a particular disease category scored 100% but Justicia adhatoda scored the least (25%) compared to other plant species. Moreover, Rank Order Priority (ROP), number of citations, Used value (UV) and rarity score have been determined below.
Table 3.3: Fidelity level (FL), rank order priority (ROP), number of citation, Use value (UV) and rarity score of the reported plants have been documented below

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Ailment category</th>
<th>Principle use</th>
<th>I_p</th>
<th>I_u</th>
<th>FL Value (%)</th>
<th>RP</th>
<th>ROP</th>
<th>No. of citation</th>
<th>UV value</th>
<th>Rarity score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrographis periculata</td>
<td>An injury to the surface of the skin</td>
<td>Wound</td>
<td>3</td>
<td>7</td>
<td>42.9</td>
<td>0.30</td>
<td>12.87</td>
<td>7</td>
<td>0.055</td>
<td>3</td>
</tr>
<tr>
<td>Justicia adhatoda</td>
<td>Disease of common cold</td>
<td>Respiratory tract infection</td>
<td>4</td>
<td>16</td>
<td>25</td>
<td>0.69</td>
<td>17.25</td>
<td>16</td>
<td>0.126</td>
<td>3</td>
</tr>
<tr>
<td>Amaranthus spinosus</td>
<td>Disease of the urinary tract</td>
<td>Urine infection</td>
<td>2</td>
<td>2</td>
<td>100</td>
<td>0.09</td>
<td>9</td>
<td>2</td>
<td>0.015</td>
<td>2</td>
</tr>
<tr>
<td>Allium Sativum</td>
<td>Disease of the arthritis</td>
<td>Gout</td>
<td>2</td>
<td>7</td>
<td>28.6</td>
<td>0.3</td>
<td>8.58</td>
<td>7</td>
<td>0.055</td>
<td>3</td>
</tr>
<tr>
<td>Pistacia integerrima</td>
<td>Disease of the respiratory system</td>
<td>Respiratory infection</td>
<td>2</td>
<td>2</td>
<td>100.0</td>
<td>0.09</td>
<td>9</td>
<td>2</td>
<td>0.015</td>
<td>2</td>
</tr>
<tr>
<td>Tylophora indica</td>
<td>An injury to the surface of the skin</td>
<td>Wound</td>
<td>3</td>
<td>7</td>
<td>42.9</td>
<td>0.3</td>
<td>12.87</td>
<td>7</td>
<td>0.055</td>
<td>3</td>
</tr>
<tr>
<td>Holarrhena antidysenterica</td>
<td>Disease of the digestive system</td>
<td>chronic dysentery</td>
<td>2</td>
<td>2</td>
<td>100.0</td>
<td>0.09</td>
<td>9</td>
<td>2</td>
<td>0.015</td>
<td>2</td>
</tr>
<tr>
<td>Alstonia scholaris</td>
<td>Disease of viral/bacterial infection</td>
<td>Fever</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>3</td>
</tr>
<tr>
<td>Uraria picta</td>
<td>Disease of the respiratory system</td>
<td>Respiratory tract infection</td>
<td>5</td>
<td>8</td>
<td>62.5</td>
<td>0.35</td>
<td>21.88</td>
<td>8</td>
<td>0.062</td>
<td>2</td>
</tr>
<tr>
<td>Cuminum cyminum</td>
<td>Disease of the digestive system</td>
<td>Diarrhoea</td>
<td>6</td>
<td>6</td>
<td>100.0</td>
<td>0.26</td>
<td>26</td>
<td>6</td>
<td>0.047</td>
<td>3</td>
</tr>
<tr>
<td>Aloe vera</td>
<td>An injury to the surface of the skin</td>
<td>Wound</td>
<td>2</td>
<td>11</td>
<td>18.18</td>
<td>0.48</td>
<td>8.73</td>
<td>11</td>
<td>0.086</td>
<td>3</td>
</tr>
<tr>
<td>Acmella oleracea</td>
<td>Disease of the digestive system</td>
<td>Dysentery, Malaria, Plague</td>
<td>2</td>
<td>2</td>
<td>100</td>
<td>0.09</td>
<td>9</td>
<td>2</td>
<td>0.016</td>
<td>1</td>
</tr>
<tr>
<td>Tagetes erecta</td>
<td>An injury to the surface of the skin</td>
<td>Wound</td>
<td>2</td>
<td>2</td>
<td>100.0</td>
<td>0.09</td>
<td>9</td>
<td>2</td>
<td>0.0157</td>
<td>3</td>
</tr>
<tr>
<td>Eupatoraum odaretum</td>
<td>Disease of blood</td>
<td>Haemostatic,</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>3</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Disease of the System</td>
<td>Disease</td>
<td>Frequency</td>
<td>Percentage</td>
<td>P-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia absinthium</td>
<td>Disease of liver</td>
<td>Hepatitis</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaeranthus indicus</td>
<td>Diseases of the genitourinary system</td>
<td>Skin disease.</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gonorrhoea</td>
<td></td>
<td>0.04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musa acuminata</td>
<td>Disease of the digestive system</td>
<td>Diarrhoea</td>
<td>6</td>
<td>6</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiba specisa</td>
<td>Disease of the respiratory system</td>
<td>Tonsillitis,</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bombex saiba</td>
<td>Disease of the digestive system</td>
<td>Chronic dysentery</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminalia arjuna</td>
<td>An injury to the surface of the skin</td>
<td></td>
<td>3</td>
<td>9</td>
<td>33.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.39</td>
<td>12.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminalia chebula</td>
<td>Disease of the digestive system</td>
<td>Diarrhoea</td>
<td>3</td>
<td>7</td>
<td>42.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>12.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>0.055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalanchoe pinnata</td>
<td>Disease of bladder</td>
<td>Urinary tract infection</td>
<td>10</td>
<td>12</td>
<td>83.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
<td>43.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0.094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagenaria siceraria</td>
<td>Disease of digestive system</td>
<td>Cholera</td>
<td>7</td>
<td>9</td>
<td>77.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.39</td>
<td>30.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vateria indica</td>
<td>Disease of digestive system</td>
<td>Duodenal ulcer</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrozophora prostrata</td>
<td>Disease of bladder</td>
<td>Urinary tract infection</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus infectoria</td>
<td>Disease of digestive system</td>
<td>Chronic dysentery</td>
<td>2</td>
<td>3</td>
<td>66.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
<td>8.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fumaria officinalis/indica</td>
<td>Disease of bladder</td>
<td>Urinary tract infection</td>
<td>2</td>
<td>2</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swertia chirote</td>
<td>An injury to the surface of the skin</td>
<td>Wound</td>
<td>3</td>
<td>7</td>
<td>42.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>12.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>0.055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocimum tenuiflorum</td>
<td>Inflammation in the lung</td>
<td>Bacterial Pneumonia</td>
<td>8</td>
<td>18</td>
<td>44.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.78</td>
<td>34.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>0.141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menthe piperica</td>
<td>Disease of the digestive system</td>
<td>Gastroenteritis</td>
<td>2</td>
<td>4</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.0314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitex negundia</td>
<td>Disease of the respiratory system</td>
<td>Respiratory tract infection</td>
<td>2</td>
<td>3</td>
<td>66.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
<td>8.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Disease Type</td>
<td>Disease Description</td>
<td>Incidence</td>
<td>Recovery Rate</td>
<td>Recovery Rate Standard Error</td>
<td>Recovery Rate 95% Confidence Interval</td>
<td>p Value</td>
<td>e Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavandula stoechas</td>
<td>Disease of infectious sinus</td>
<td>Sinusitis</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>Disease of the digestive system</td>
<td>Gastric Ulcer</td>
<td>3</td>
<td>7</td>
<td>42.9</td>
<td>0.3</td>
<td>12.87</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassia fistula</td>
<td>Disease of liver</td>
<td>Hepatitis</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassia tora</td>
<td>Disease of skin,</td>
<td>Eczema</td>
<td>2</td>
<td>2</td>
<td>100.0</td>
<td>0.09</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassia angustifolia</td>
<td>Disease of the genitourinary system</td>
<td>Urinary tract infection, syphilis, gonorrhoea</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saraca indica</td>
<td>Disease of liver</td>
<td>Jaundice</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynometra ramiflora</td>
<td>Disease of skin</td>
<td>Skin disease</td>
<td>3</td>
<td>7</td>
<td>42.9</td>
<td>0.3</td>
<td>12.87</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawsonia intermis</td>
<td>Disease of bladder</td>
<td>Urinary tract infection,</td>
<td>1</td>
<td>3</td>
<td>33.3</td>
<td>0.13</td>
<td>4.33</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abroma augusta</td>
<td>Disease of bladder</td>
<td>Urinary tract infection,</td>
<td>5</td>
<td>8</td>
<td>62.5</td>
<td>0.35</td>
<td>21.88</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hibiscus rosa-sinensis</td>
<td>Disease of digestive system</td>
<td>Dysentery</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinospora cordata</td>
<td>Diseases of the genitourinary system</td>
<td>Gonorrhoea</td>
<td>3</td>
<td>6</td>
<td>50</td>
<td>0.26</td>
<td>13</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cissampelos pareita</td>
<td>An injury to the surface of the skin</td>
<td>Wound</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinospora cordifolia</td>
<td>Disease of digestive system</td>
<td>Chronic dysentery</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>An injury to the surface of the skin</td>
<td>Wound</td>
<td>8</td>
<td>23</td>
<td>34.8</td>
<td>1</td>
<td>34.8</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficus heterophylla</td>
<td>Disease of the skin</td>
<td>Boils</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psidium guava</td>
<td>Disease of respiratory disease</td>
<td>Tonsillitis, ear, throat, nose Infection</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
<td>0.13</td>
<td>13</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Disease Type</td>
<td>Description</td>
<td>Count</td>
<td>Total</td>
<td>Percentage</td>
<td>Frequency</td>
<td>p Value</td>
<td>R</td>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Boerhaavia diffusa</td>
<td>Disease of bladder</td>
<td>Urinary tract infection</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nymphaea nouchali</td>
<td>Disease of blood</td>
<td>Stops too much bleeding externally</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nyctanthes arbor-tristis</td>
<td>Viral or bacterial infection</td>
<td>Fever</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Phylethrus ninini</td>
<td>Disease of the cirrhosis of the liver</td>
<td>Jaundice</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Piper betle</td>
<td>Disease of the skin</td>
<td>Skin disease</td>
<td>2</td>
<td>2</td>
<td>100.0</td>
<td>9</td>
<td>2</td>
<td>0.015</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Peperomia pellucida</td>
<td>Disease of the bladder</td>
<td>Urinary tract infection, Gall bladder infection, Cystitis</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cynodon decilien</td>
<td>An injury to the surface of the skin</td>
<td>Wound</td>
<td>6</td>
<td>12</td>
<td>50</td>
<td>26</td>
<td>12</td>
<td>0.094</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Poetuleca grantifolia</td>
<td>Disease of metabolic disorder</td>
<td>Osteoporosis, Rheumatic fever</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nigella sativa</td>
<td>Bacterial infection</td>
<td>Rheumatic fever</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ziziphus jujuba</td>
<td>Disease of respiratory system</td>
<td>Respiratory tract infection</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neolamarckia cadamba</td>
<td>Viral or bacterial infection</td>
<td>Dengue fever</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>4</td>
<td>1</td>
<td>0.007</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Paederia foetida</td>
<td>Disease of digestive system</td>
<td>Chronic diarrhoea</td>
<td>3</td>
<td>6</td>
<td>50</td>
<td>13</td>
<td>6</td>
<td>0.047</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>Disease of digestive system</td>
<td>Any stomach related disease</td>
<td>4</td>
<td>8</td>
<td>50.0</td>
<td>17.5</td>
<td>8</td>
<td>0.062</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Feronia limonia</td>
<td>Disease of digestive system</td>
<td>Diarrhoea</td>
<td>2</td>
<td>9</td>
<td>22.2</td>
<td>8.66</td>
<td>9</td>
<td>0.071</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Santalum album</td>
<td>Disease of the bladder</td>
<td>Urinary tract infection</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
<td>13</td>
<td>3</td>
<td>0.023</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Disease Type</td>
<td>Disease Description</td>
<td>Cases</td>
<td>Control</td>
<td>Risk Ratio</td>
<td>OR (95% CI)</td>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
<td>-------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diospyros malabarica</td>
<td>Disease of the digestive system</td>
<td>Chronic Dysentery</td>
<td>3</td>
<td>6</td>
<td>50</td>
<td>0.26</td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solanum xanthocarpum</td>
<td>Disease of the respiratory system</td>
<td>Respiratory tract infection</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
<td>0.13</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenanium nigrum</td>
<td>Disease of bladder</td>
<td>Urinary tract infection</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.04</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centella asiatica</td>
<td>Disease of digestive system</td>
<td>Diarrhoea</td>
<td>5</td>
<td>9</td>
<td>55.5</td>
<td>0.39</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foeniculum vulgare</td>
<td>Diseases of the genitourinary system</td>
<td>Gonorrhoea, Urinary tract infection</td>
<td>1</td>
<td>2</td>
<td>50</td>
<td>0.09</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viola odorata</td>
<td>Disease of skin</td>
<td>Skin disease</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.09</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curcuma Longa</td>
<td>An injury to the surface of the skin</td>
<td>Wound</td>
<td>5</td>
<td>13</td>
<td>38.46</td>
<td>0.57</td>
<td>0.102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinziber zerumbet</td>
<td>Disease of the skin</td>
<td>Skin disease</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>0.09</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber montanum</td>
<td>Disease of digestive system</td>
<td>gastroenteritis</td>
<td>3</td>
<td>6</td>
<td>50</td>
<td>0.26</td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribulus terrestris</td>
<td>Disease of the bladder</td>
<td>Urinary tract infection</td>
<td>3</td>
<td>6</td>
<td>50</td>
<td>0.26</td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.5 Selection of plants

Initially 71 plants recommended by practitioners, patients and local inhabitants, a total of 18 plants were preliminarily selected based on data analysis (used value ≥ 0.05), literature review (underresearched) and ease of availability to conduct initial bioassay against MRSA strains. Based on the best antibacterial screening results 5 plants were chosen for conducting extensive phytochemical work.

71 practitioners, 21 patients and 35 local people interviewed

71 plants recommended for treatment of bacterial infections

All the information including family, use, source, dose of administration, rarity score, have been documented

Considering the Used values, literature review and ease of availability, 18 plants are initially selected.

5 Plants are chosen for phytochemical study based on lower MIC value (32-512 µg/ml). The plants are

- Zingiber montanum
- Uraria picta
- Diospyros malabarica
- Cynometra namiflora
- Swertia chirayita
3.2 Phytochemical results

3.2.1 Simple phenolic compounds

During this study, two simple phenolic compounds CRH 34 and UPM 3 were isolated. CRH 34 was isolated from the hexane extract of the leaf of Diospyros malabarica while UPM 3 was isolated from methanol extract of Uraria picta.

3.2.1.1 Characterization of CRH 34 as ethyl 4-ethoxy benzoate (1):

The IR spectrum of CRH 34 revealed the presence of carbonyl at 1714 cm\(^{-1}\). The high resolution mass spectroscopy showed the [M+H]\(^+\) peak at m/z 195.10213 (calculated for C\(_{11}\)H\(_{15}\)O\(_3\), at 195.10212) which confirmed the molecular formula of CRH 34 as C\(_{11}\)H\(_{14}\)O\(_3\).

The \(^1\)H NMR (700 MHz, CDCl\(_3\), Table 3.4, Figure 3.2) spectrum of CRH 34 showed two sets of aromatic protons as AA'BB' pattern resonating at \(\delta_H 7.99\) (d, \(J= 8.89\) Hz), \(\delta_H 6.90\) (d, \(J= 8.89\) Hz), two sets of oxymethylene quadruplets at \(\delta_H 4.34\) (\(J=7.14\) Hz) and 4.09 (\(J= 6.93\) Hz) and two sets of methyl protons \(\delta_H 1.37\) (t, \(J=7.12\) Hz) and \(\delta_H 1.43\) (t, \(J=6.93\) Hz). In the COSY experiment, AA'BB' system protons exhibited usual interactions among themselves whilst the methyl and oxymethylene protons showed usual interactions (\(\delta_H 1.37\) to 4.34; \(\delta_H 1.43\) to 4.09) as well.

The \(^{13}\)C NMR (175 MHz, CDCl\(_3\), Table 3.4; Figure 3.2) spectrum of CRH 34 showed the presence of three quaternary carbons (\(\delta_C 122.8, 162.8\) and 166.5), two methyl carbons (\(\delta_C 14.5\) and 14.9), two oxymethylene carbons (\(\delta_C 60.9\) and 63.7) and two sets of aromatic methine carbons (\(\delta_C 114.2\) and 131.6; each representing two carbons). Assignments of all protons and carbons of the compound were confirmed by 2D NMR experiments, predominately by HMBC experiment. In the HMBC experiment, aromatic protons at \(\delta_H 7.99\) (H-2, 6; \(\delta_C 131.6\) from HSQC) and \(\delta_H 6.90\) (H-3, 5; \(\delta_C 114.2\) from HSQC) showed common interaction with quaternary carbon at \(\delta_C 162.8\) (C-4), H-2,6 and oxymethylene protons at \(\delta_H 4.34\) (H-2' ; \(\delta_C 60.9\) showed a common \(^3\)J HMBC correlation to an esteric carbonyl group at \(\delta_C 166.5\) ppm (C-1'). H-3,5 showed \(^3\)J HMBC correlation to another quaternary carbon at \(\delta_C 122.8\) (C-1). H-2' also revealed \(^2\)J HMBC connectivity to a methyl carbon at \(\delta_C 14.5\) (C-3'; \(\delta_H 1.37\) from HSQC). The other
oxymethylene proton at δ_H 4.09 (H-1’; δ_C 63.7 from HSQC) showed HMBC connectivity to a methyl at δ_C 14.9 (C-2’; δ_H 1.43) by 2J and to a quaternary carbon at δ_C 162.8 (C-4) by 3J.

Therefore, based on these NMR and HRMS data, the compound CRH 34 was identified as ethyl 4-ethoxybenzoate (1). Although this compound was synthesized before, this is its first report as a natural product.

Table 3.4: 1H (700 MHz) and 13C NMR (175 MHz) and HMBC spectroscopic data CRH 34 in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_H</th>
<th>13C</th>
<th>HMBC</th>
<th>2J</th>
<th>3J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>122.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 6</td>
<td>7.99, d, $J= 8.89$ Hz</td>
<td>131.6</td>
<td>114.2 (CH)</td>
<td>162.8 (C), 166.5 (C=O)</td>
<td></td>
</tr>
<tr>
<td>3, 5</td>
<td>6.90, d, $J= 8.89$ Hz</td>
<td>114.2</td>
<td>162.8 (C)</td>
<td>122.8 (C)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>162.8</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1’</td>
<td>-</td>
<td>166.5</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2’</td>
<td>4.34, q, $J= 7.14$ Hz</td>
<td>60.9</td>
<td>14.5 (CH$_3$)</td>
<td>166.5 (C=O)</td>
<td></td>
</tr>
<tr>
<td>3’</td>
<td>1.37, t, $J= 7.12$ Hz</td>
<td>14.5</td>
<td>-</td>
<td>60.9 (CH$_2$-O)</td>
<td></td>
</tr>
<tr>
<td>1”</td>
<td>4.09, q, $J= 6.93$ Hz</td>
<td>63.7</td>
<td>14.9 (CH$_3$)</td>
<td>162.8 (C)</td>
<td></td>
</tr>
<tr>
<td>2”</td>
<td>1.43, t, $J= 6.93$ Hz</td>
<td>14.9</td>
<td>63.7 (CH$_2$-O)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.2: 1H NMR (700 MHz, CDCl$_3$) spectrum of CRH 34
Figure 3.3: 13C NMR spectrum (175 MHz, CDCl$_3$) of CRH 34

Figure 3.4: COSY NMR spectrum (CDCl$_3$) of CRH 34
Figure 3.5: NOESY NMR spectrum (CDCl₃) of CRH 34
3.2.1.2 Characterization of UPM 3 as Eugenol (4-allyl-2-methoxyphenol; 2):

The IR spectrum of UPM-3 revealed the presence of hydroxyl group at 3300 cm\(^{-1}\) and the presence double bond at 1677 cm\(^{-1}\). The high resolution mass spectroscopy showed the [M+H]\(^{+}\) at m/z 165.08412 (calculated for C\(_{10}\)H\(_{13}\)O\(_{2}\), at 165.083730) which confirmed the molecular formula of UPM 3 as C\(_{10}\)H\(_{12}\)O\(_{2}\).

The \(^1\)H NMR spectrum (500 MHz, CDCl\(_3\), Table 3.5, Figure 3.7) of UPM 3 showed the presence of three aromatic protons, a methoxyl group, two sets of methylenes and one olefinic methine proton. The downfield singlet at \(\delta_H 3.87\) integrated as three protons was accounted as methoxy group. The downfield protons at \(\delta_H 6.69\) (2H, dd, \(J=3.05\)) and \(\delta_H 6.85\) (1H, d, \(J=7.05\)) attributed to be ABX pattern aromatic protons which could be assigned as H-2, H-3 and H-5. The proton at \(\delta_H 5.96\) and \(\delta_H 5.07\) (\(J=1.89\) Hz) appeared to be olefinic protons which was part of side chain attached to the aromatic system. A total of 10 carbons were evident from \(^{13}\)C NMR spectrum (125 MHz, CDCl\(_3\), Table 3.5; Figure 3.8)
including an exomethylene, three quaternary carbons two of which were oxygenated. The DEPT135 identified one methoxy, 2 methylene and 4 methine carbons.

In the HMBC, the methoxy protons at δ_H 3.87 (δ_C 56.0 from HMQC) and aromatic proton at δ_H 6.85 (δ_C 111.2 from HMQC) revealed 3J interaction to an oxygenated quaternary carbon at δ_C 146.5 (C-2). The protons at δ_H 6.69 (integrated for 2 protons, δ_C 121.3 and 113.3) showed 3J connectivity to methylene carbon at δ_C 40.0 (δ_H 3.33 from HMQC) and another quaternary carbon at δ_C 143.9 (C-1). The exomethylene protons at δ_H 5.07 (δ_C 115.7 from HMQC) was to connected methylene at δ_C 40.0 (C-1') by 3J. The 3J connectivity of olefinic proton (δ_H 5.96) to quaternary carbon at δ_C 132.0 (C-4) confirmed the connection of allyl side chain to the benzene ring through C-4. Accordingly, the compound was identified as 4-allyl-2methoxyphenol (2) commonly known as eugenol which is widely used for toothache and antiseptic agent (Sung et al., 2012). It has been isolated for the first time from *Uraria picta*. The NMR spectra were in agreement to those published in literature (Heinrich et al., 2012).

Table 3.5: 1H (500 MHz) and ^{13}C (125 MHz) and HMBC NMR spectroscopic data and 1H-^{13}C correlation for UPM-3 in CDCl$_3$

Position	δ_H	^{13}C	HMBC	2J	3J
1	-	143.9		-	-
2	-	146.5		-	-
3	6.69, dd, (J=3.75, 3.05 Hz)	121.3	146.5 (C)	143.9 (C)	
4	-	132.0		-	-
5	6.69, s	111.2	132.0 (C), 114.5 (CH)	143.9 (C), 146.5 (C)	
6	6.85, d, (J= 7.05 Hz)	114.5	143.9 (C), 111.2 (CH)	132.0 (C), 121.3 (CH)	
1’	3.33, d, (J= 7.02 Hz)	40.0	121.3 (CH), 132.0 (C), 137.9 (CH)	115.7 (CH$_2$), 111.2 (CH)	
2’	5.96, m	137.9	132.0 (C)	-	
3’	5.07, d, (J=1.89 Hz)	115.7	137.9 (CH)	-	
2-OCH$_3$	3.87, s	56.0	146.5 (C)	-	
Figure 3.7: The 1H NMR (500 MHz, CDCl$_3$) spectrum of UPM-3

Figure 3.8: The 13C NMR (125 MHz, CDCl$_3$) spectrum of UPM-3
3.2.2 Xanthones:

Xanthones are known as phytonutrients and contain 3 ring cyclic compounds where two benzene rings are connected through tetrahydropyranone ring which is an important class in medicinal chemistry. Four xanthones were isolated from the hexane extract of the whole plant of *Swertia chirayita*. These were coded as SCH 1, SCH 2, SCH 10 and SCH 15

3.2.2.1 Characterization of SCH 10 as Swerchirin (3)

The IR spectrum of SCH 10 revealed the presence of carbonyl at 1742 cm\(^{-1}\) and hydroxyl group at 3013 cm\(^{-1}\). The high resolution mass spectrometry showed the \([M+H]^+\) at m/z 289.07057 (calculated for C\(_{15}\)H\(_{13}\)O\(_6\), at 289.071215) which confirmed the molecular formula of SCH 10 as C\(_{15}\)H\(_{12}\)O\(_6\).

The \(^1^H\) NMR spectrum (700 MHz, CDCl\(_3\), Table 3.6, Figure 3.9) showed the presence of two methoxyl groups as singlets resonating at \(\delta_H\) 3.89 and \(\delta_H\) 3.96, two highly deshielded proton singlets at \(\delta_H\) 11.99 and \(\delta_H\) 11.40 attributed to the presence of two hydrogen bonded hydroxyl groups, two meta coupled (\(J=2.24\) Hz) aromatic protons at \(\delta_H\) 6.55 and \(\delta_H\) 6.36 and two ortho coupled (\(J=9.59\) Hz) protons at \(\delta_H\) 7.23 and \(\delta_H\) 6.72. The \(^{13}^C\) NMR spectrum (175 MHz, CDCl\(_3\), Table 3.7, Figure 3.10) revealed the presence of a total 15 carbons including carbonyl at \(\delta_C\) 184.8, two methoxyl carbons at \(\delta_C\) 56.2 and \(\delta_C\) 57.7.

In the HMBC experiment (Table 3.8, Figure 3.12) the hydrogen bonded hydroxyl proton at \(\delta_H\) 11.99 (HO-1) showed \(^2J\) connectivity at a quaternary carbon at \(\delta_C\) 163.1 (C-1) and \(^3J\) and correlation with a quaternary carbon at \(\delta_C\) 103.1 (C-1a). Methoxy protons at \(\delta_H\) 3.89 (\(\delta_C\) 56.2 from HSQC) showed \(^3J\) correlation with quaternary carbons at \(\delta_C\) 167.7 (C-3) position which confirmed the position of methoxyl at C-3. Two aromatic protons at \(\delta_H\) 6.36 (H-2; \(\delta_C\) 98.1 from HSQC) and \(\delta_H\) 6.55 (H-4; \(\delta_C\) 93.3 from HSQC) exhibited \(^2J\) correlation with the quaternary carbon at 167.7 (C-3) and common \(^3J\) correlation with the quaternary carbon at 103.1 (C-1a). The protons at H-2 (\(\delta_H\) 6.36; \(\delta_C\) 98.1) and H-4 (\(\delta_H\) 6.55; \(\delta_C\) 93.3) showed \(^3J\) correlation to C-4 (\(\delta_C\) 93.3; \(\delta_H\) 6.55 from HSQC) and C-2 (\(\delta_C\) 98.1; \(\delta_H\) 6.36 from HSQC) respectively and thereby confirmed their *meta* position in the
aromatic ring. Another methoxyl proton at $\delta_H 3.96$ ($\delta_C 57.5$ from HSQC) showed 3J correlation with quaternary carbon at $\delta_C 140.1$ (C-5) which confirmed the methoxyl group connected through C-5. The deshielded aromatic proton at $\delta_H 7.23$ (H-6; $\delta_C 120.6$ from HSQC) exhibited 2J correlation with quaternary carbons at $\delta_C 140.1$ (C-5) and 3J correlation with $\delta_C 154.4$ (C-8) while another aromatic proton at $\delta_H 6.72$ (H-7; $\delta_C 109.6$ from HSQC) showed correlation with same quaternary carbons at $\delta_C 140.1$ by 3J and $\delta_C 154.4$ by 2J. In addition, another highly downfield proton at 11.40 (HO-8) showed 2J connection with quaternary carbon at $\delta_C 154.1$ (C-8) and 3J showed connection with aromatic methine carbon at $\delta_C 109.4$ (C-7). According to IR, Mass spectrometry and NMR spectral data, the compound SCH 10 was identified as 1.8-dihydroxy-3,5-dimethoxy-9H-xanthen-9-one commonly known as swerchirin (3; Bajpai et al., 1991; Saxena et al., 1996). The spectral data were identical to those reported previously (Jia et al., 2011).

Figure 3.9: 1H NMR (700 MHz) spectrum of SCH 10 in CDCl$_3$
Figure 3.10: 13C NMR (175MHz) spectrum of SCH 10 in CDCl$_3$

Figure 3.11: HSQC NMR spectrum of SCH 10 in CDCl$_3$
Figure 3.12: HMBC NMR spectrum of SCH 10 in CDCl$_3$

Figure 3.13: HRMS data of SCH 10
3.2.2.2 Characterization of SCH 1 as a mixture (1:1) of Swerchirin (3) and Swertiaperenin (4):

The high resolution mass spectroscopy showed the [M+H]^+ at m/z 289.07086 (calculated for C_{15}H_{13}O_{6}, at 289.071215) which confirmed the molecular formula of SCH 1 as C_{15}H_{12}O_{6} which indicates the mixture of two isomers.

The \(^1\)H NMR spectrum (700 MHz, CDCl\(_3\), Table 3.6, Figure 3.13) of SCH 1 revealed the presence of four hydrogen bonded hydroxyl groups resonated at \(\delta_H\) 11.39, 11.96, 11.98, 12.09, two sets of meta coupled aromatic protons at \(\delta_H\) 6.36 (\(J=2.24\) Hz), 6.55 (\(J=2.24\) Hz), 6.33 (\(J=2.31\)Hz), 6.39 (\(J=2.31\)Hz), two sets of ortho coupled aromatic protons resonated at \(\delta_H\) 6.72 (\(J=9.59\) Hz), 7.23 (\(J=9.59\) Hz), 6.84 (\(J=8.96\) Hz) and 7.27 (\(J=9.40\) Hz) and a total of 4 methoxyl groups at \(\delta_H\) 3.89 (x2), 3.94, 3.96.

The \(^{13}\)C NMR (175 MHz, CDCl\(_3\), Table 3.7, Figure 3.14) spectrum data also showed the presence of carbonyl at \(\delta_C\) 184.9 including oxygenated quaternary carbons at \(\delta_C\) 163.1, \(\delta_C\) 167.7, \(\delta_C\) 143.2, \(\delta_C\) 150.4, \(\delta_C\) 109.4 and \(\delta_C\) 154.4 and methoxyl carbons at \(\delta_C\) 56.1, \(\delta_C\) 56.2, \(\delta_C\) 57.7, \(\delta_C\) 57.3. The presence of 2 sets of hydroxyl protons at \(\delta_H\) 11.39, \(\delta_H\) 11.98, meta coupled protons at \(\delta_H\) 6.36 (98.1 from HSQC), \(\delta_H\) 6.55 (93.4 from HSQC), ortho coupled protons at \(\delta_H\) 7.23 (H-6; \(\delta_C\) 120.6 from HSQC), \(\delta_H\) 6.72 (H-7; \(\delta_C\) 140.1 from HSQC), methoxyl protons at \(\delta_H\) 3.89 (\(\delta_C\) 56.1), \(\delta_H\) 3.94 (\(\delta_C\) 57.3) were identical to those of SCH 10. Thus, this part of the molecule is identical to SCH 10.

In the HMBC experiment, (Table 3.8), ring A of the other compound were identical to ring A of SCH 1. In ring B, the methoxyl proton at \(\delta_H\) 3.94 (H-7; \(\delta_C\) 57.3 from HSQC) showed \(^3\)J correlation with quaternary carbon at \(\delta_C\) 143.2. In addition, the hydrogen bonded hydroxyl proton at \(\delta_H\) 12.09 (H-8) exhibited \(^2\)J correlation with quaternary carbon at \(\delta_C\) 150.4 and \(^3\)J correlation with another quaternary carbon at \(\delta_C\) 108.1 and oxygenated quaternary carbon at \(\delta_C\) 143.2. Ortho coupled aromatic proton at \(\delta_H\) 6.84 (H-5; \(\delta_C\) 105.8 from HSQC) exhibited \(^2\)J correlation with quaternary carbon at \(\delta_C\) 149.9 and \(^3\)J correlation with another quaternary carbon at \(\delta_C\) 143.2 and \(\delta_C\) 108.1. In addition, other ortho coupled
aromatic proton at δ_H 7.27 (H-6; δ_C 120.6 from HSQC) showed 2J correlation with quaternary carbon at δ_C 143.2. So these spectral data and their correlation supported the identification of the later part as swertiaperenin. Accordingly, SCH-1 was identified as the mixture of swerchirin (3) and swertiaperenin (4) in a ratio of 1:1. The spectra data were in agreement with the published literature (Jia et al., 2011).

Figure 3.14: 1H NMR (700 MHz) spectrum of SCH 1 in CDCl$_3$

Figure 3.15: 13C NMR (175 MHz) spectrum of SCH 1 in CDCl$_3$
Table 3.6: 1H (700 MHz, CDCl$_3$) NMR data of SCH 10 and part of SCH 1

<table>
<thead>
<tr>
<th>Position</th>
<th>δH of SCH 10</th>
<th>δH of part of SCH 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.36, d, $J=2.24$ Hz</td>
<td>6.33, d, $J=2.31$ Hz</td>
</tr>
<tr>
<td>4</td>
<td>6.55, d, $J=2.24$ Hz</td>
<td>6.39, d, $J=2.31$ Hz</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>6.84, d, $J=8.96$ Hz</td>
</tr>
<tr>
<td>6</td>
<td>7.23, d, $J=9.59$ Hz</td>
<td>7.27, d, $J=9.40$ Hz</td>
</tr>
<tr>
<td>7</td>
<td>6.72, d, $J=9.59$ Hz</td>
<td>-</td>
</tr>
<tr>
<td>HO-1</td>
<td>11.99, s</td>
<td>11.96, s</td>
</tr>
<tr>
<td>HO-8</td>
<td>11.40, s</td>
<td>12.09, s</td>
</tr>
<tr>
<td>MeO-3</td>
<td>3.89, s</td>
<td>3.89, s</td>
</tr>
<tr>
<td>MeO-5</td>
<td>3.96, s</td>
<td>-</td>
</tr>
<tr>
<td>MeO-7</td>
<td></td>
<td>3.94, d, $J=11.34$ Hz</td>
</tr>
</tbody>
</table>

Table 3.7: 13C (175MHz, CDCl$_3$) NMR data of SCH 10 and SCH 1

<table>
<thead>
<tr>
<th>Position</th>
<th>13C of SCH 10</th>
<th>13C of SCH 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>163.1</td>
<td>163.1</td>
</tr>
<tr>
<td>2</td>
<td>98.1</td>
<td>97.4</td>
</tr>
<tr>
<td>3</td>
<td>167.7</td>
<td>167.7</td>
</tr>
<tr>
<td>4</td>
<td>93.3</td>
<td>93.2</td>
</tr>
<tr>
<td>5</td>
<td>140.1</td>
<td>105.8</td>
</tr>
<tr>
<td>6</td>
<td>120.6</td>
<td>120.6</td>
</tr>
<tr>
<td>7</td>
<td>109.4</td>
<td>143.2</td>
</tr>
<tr>
<td>8</td>
<td>154.4</td>
<td>150.4</td>
</tr>
<tr>
<td>9</td>
<td>184.8</td>
<td>184.9</td>
</tr>
<tr>
<td>1a</td>
<td>103.1</td>
<td>102.6</td>
</tr>
<tr>
<td>4a</td>
<td>157.9</td>
<td>158.4</td>
</tr>
<tr>
<td>5a</td>
<td>145.6</td>
<td>149.9</td>
</tr>
<tr>
<td>8a</td>
<td>108.4</td>
<td>108.1</td>
</tr>
<tr>
<td>MeO-3</td>
<td>56.2</td>
<td>56.1</td>
</tr>
<tr>
<td>MeO-5</td>
<td>57.7</td>
<td></td>
</tr>
<tr>
<td>MeO-7</td>
<td>-</td>
<td>57.3</td>
</tr>
</tbody>
</table>
Table 3.8: HMBC data (700 MHz, CDCl₃) of SCH 10 and SCH 1

<table>
<thead>
<tr>
<th>Protons</th>
<th>HMBC of SCH 10</th>
<th>HMBC of SCH 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>²J</td>
<td>³J</td>
</tr>
<tr>
<td>H-2</td>
<td>167.7 (C)</td>
<td>93.3 (CH),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103.1 (C)</td>
</tr>
<tr>
<td>H-4</td>
<td>167.7 (C)</td>
<td>103.1 (C),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98.1 (CH)</td>
</tr>
<tr>
<td>H-5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H-6</td>
<td>140.1 (C)</td>
<td>145.6 (C),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>154.4 (C)</td>
</tr>
<tr>
<td>H-7</td>
<td>154.4 (C)</td>
<td>108.4 (C),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140.1 (C),</td>
</tr>
<tr>
<td>H-8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HO-1</td>
<td>163.1 (C)</td>
<td>103.1 (C)</td>
</tr>
<tr>
<td>HO-8</td>
<td>154.4 (C)</td>
<td>109.4 (CH)</td>
</tr>
<tr>
<td>MeO-3</td>
<td>-</td>
<td>167.7 (C)</td>
</tr>
<tr>
<td>MeO-5</td>
<td>-</td>
<td>140.1 (C)</td>
</tr>
<tr>
<td>Meo-7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3.2.2.3 Characterization of SCH 15 as belidifolin (1,5,8-tri-hydroxy-3-methoxyxanthone; 5)

The high resolution mass spectroscopy showed the [M+H]⁺ at m/z 275.05519 (calculated for C₁₄H₁₁O₆, at 275.055565) which confirmed the molecular formula of SCH 15 as C₁₄H₁₀O₆.

The ¹H NMR spectrum (700 MHz, CDCl₃, Table 3.9, Figure 3.15) is very similar to those in SCH 10. Like SCH 10, the ¹H NMR spectrum (700MHz, CDCl₃) of SCH 15 revealed two highly downfield protons singlets at δ_H 11.19 and δ_H 12.06 attributed to hydrogen bonded hydroxyl groups, two meta coupled (J=2.24 Hz) aromatic protons resonating at δ_H 6.37 and 6.45 and two ortho coupled J= 8.89 Hz and J= 8.40 Hz protons resonating at δ_H 6.70 and 7.27, respectively.

However, there was only one methoxyl group proton as singlet at δ_H 3.91. The ¹³C NMR spectrum (175MHz, CDCl₃, Table 3.9, Figure 3.16) showed the presence of 14 carbons including carbonyl carbon at δ_C 184.7 and methoxyl carbon at δ_C 56.2.

In the HMBC experiment (Table 3.10), the key HMBC corrections of ring A was identical to those of SCH 10. In ring B, the ortho coupled aromatic methine protons at δ_H 7.27 (H-6; δ_C 123.6 from HSQC) and δ_H 6.70 (H-7; δ_C 110.5 from HSQC) revealed correlation with oxygenated quaternary carbon at δ_C 135.8 by ²_J and ³_J respectively, therefore, 135.8 was identified as C-5 oxygenated quaternary carbon.

Considering ¹H, ¹³C NMR data and their correlations in the HSQC and HMBC, the compound SCH 15 was identified as 1, 5, 8-tri-hydroxy-3-methoxyxanthone also known as belidifollin (5). (Timsina et al., 2018). Belidifollin was previously isolated from another species of genus Swertia (Swertia multicaulis). (Timsina et al., 2018). The NMR spectral data were identical to previously reported data. (Xue-qing et al., 2017)
Figure 3.16: 1H NMR (700MHz) spectrum of SCH 15 in CDCl$_3$

Figure 3.17: 13C NMR (175MHz) spectrum of SCH 15 in CDCl$_3$
3.2.2.4 Characterization of SCH 2 as decussatin (6) (1-hydroxy-3, 7, 8-trimethoxyxanthenone):

The high resolution mass spectroscopy showed the [M+H]^+ at m/z 303.08689 (calculated for C_{16}H_{15}O_{6}, at 303.086865) which confirmed the molecular formula of SCH 2 as C_{16}H_{14}O_{6}.

The ^1H NMR spectral data (700 MHz, CDCl_3) (Table 3.9; Figure 3.17) of SCH 2 were very similar to SCH 10. Like SCH 10, ^1H NMR spectrum revealed the presence of four aromatic doublet protons resonating at δH 6.32 (J=2.24Hz), δH 6.34 (J=2.24Hz), δH 7.16 (J= 9.17 Hz), δH 7.33 (J=9.17 Hz), one eminent downfield proton singlet at δH 13.25 and three methoxyl singlets resonating at δH 3.88, 4.00 and 3.93.

The ^13C NMR spectrum (175 MHz, CDCl_3, Table 3.9, Figure 3.18) revealed the presence of a total 16 carbons including carbonyl δC 181.4, methoxyl carbons at δC 56.0, δC 62.0, δC 57.4 respectively.

The key HMBC corrections in ring A was identical to those of SCH 10. In ring B, aromatic proton at δH 7.33 (H-5, δC 120.7 from HSQC) revealed 2J correlation with quaternary carbons at C-5a (δC 151.2) and 3J connection with C-7 (δC 149.2). Another aromatic proton at δH 7.16 (H-6, δC 112.9 from HSQC) showed 3J correlation to a quaternary carbon at δC 149.5 (C-8).

On the other hand, methoxyl protons at δH 4.00 (δC 62.0 from HSQC) and δH 3.93 (δC 57.4 from HSQC) showed 3J connection with oxygenated quaternary carbons at δC 149.2 and δC 149.5 confirmed its positions at C-5 and C-6, respectively.

According to NMR spectrum, the compound of SCH 2 was identified as 1-hydroxy-3, 7, 8- trimethoxy-9H-xanthen-9-one (6; He et al., 2015; Timsina et al., 2018). It has been previously isolated from *Swertia chirayita* (You et al., 2017) as well. These spectral data complied with the data published in the literature (Alariibe et al., 2011).
Table 3.9: 1H (700 MHz, CDCl$_3$) and 13C (175MHz, CDCl$_3$) data of SCH 15, SCH 2

<table>
<thead>
<tr>
<th>Position</th>
<th>δH of SCH 15</th>
<th>13C of SCH 15</th>
<th>δH of SCH 2</th>
<th>13C of SCH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>163.6</td>
<td>-</td>
<td>164.1</td>
</tr>
<tr>
<td>2</td>
<td>6.37, d, $J=2.24$ Hz</td>
<td>97.8</td>
<td>6.32, d, $J=2.24$ Hz</td>
<td>97.0</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>167.6</td>
<td>-</td>
<td>166.6</td>
</tr>
<tr>
<td>4</td>
<td>6.45, d, $J=2.24$ Hz</td>
<td>93.5</td>
<td>6.34, d, $J=2.24$ Hz</td>
<td>92.2</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>135.8</td>
<td>7.33, d, $J=9.17$ Hz</td>
<td>120.7</td>
</tr>
<tr>
<td>6</td>
<td>7.27, $J=8.40$ Hz</td>
<td>123.6</td>
<td>7.16, d, $J=9.17$ Hz</td>
<td>112.9</td>
</tr>
<tr>
<td>7</td>
<td>6.70, d, $J=8.89$ Hz</td>
<td>110.5</td>
<td>-</td>
<td>149.2</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>154.3</td>
<td>-</td>
<td>149.5</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>184.7</td>
<td>-</td>
<td>181.4</td>
</tr>
<tr>
<td>1a</td>
<td>-</td>
<td>102.9</td>
<td>-</td>
<td>104.3</td>
</tr>
<tr>
<td>4a</td>
<td>-</td>
<td>157.3</td>
<td>-</td>
<td>157.4</td>
</tr>
<tr>
<td>5a</td>
<td>-</td>
<td>143.1</td>
<td>-</td>
<td>151.2</td>
</tr>
<tr>
<td>8a</td>
<td>-</td>
<td>107.4</td>
<td>-</td>
<td>116.0</td>
</tr>
<tr>
<td>HO-1</td>
<td>12.06, s</td>
<td>-</td>
<td>13.25, s</td>
<td>-</td>
</tr>
<tr>
<td>HO-8</td>
<td>11.19, s</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MeO-3</td>
<td>3.91, s</td>
<td>56.2</td>
<td>3.88, s</td>
<td>56.0</td>
</tr>
<tr>
<td>MeO-5</td>
<td>-</td>
<td>-</td>
<td>4.00, s</td>
<td>62.0</td>
</tr>
<tr>
<td>MeO-8</td>
<td>-</td>
<td>-</td>
<td>3.93, s</td>
<td>57.4</td>
</tr>
</tbody>
</table>

Table 3.10: HMBC data (700 MHz, CDCl$_3$) of SCH 15, and SCH 2

<table>
<thead>
<tr>
<th>Protons</th>
<th>HMBC of SCH 15</th>
<th>HMBC of SCH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2J</td>
<td>3J</td>
</tr>
<tr>
<td>H-2</td>
<td>167.6 (C), 163.6 (C)</td>
<td>93.5 (CH) 166.6 (C), 164.1 (C)</td>
</tr>
<tr>
<td>H-4</td>
<td>157.3 (C), 167.6 (C)</td>
<td>97.8 (CH) 166.6 (C), 157.4 (C)</td>
</tr>
<tr>
<td>H-5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H-6</td>
<td>135.8 (C)</td>
<td>154.3 (C)</td>
</tr>
<tr>
<td>H-7</td>
<td>154.3 (C)</td>
<td>135.8 (C)</td>
</tr>
<tr>
<td>H-8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HO-1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MeO-3</td>
<td>-</td>
<td>167.6 (C)</td>
</tr>
<tr>
<td>MeO-5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MeO-8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 3.18: 1H NMR (700 MHz) spectrum of SCH 2 in CDCl$_3$

Figure 3.19: 13C NMR (175MHz) spectrum of SCH 2 in CDCl$_3$
Figure 3.20: HRMS data of SCH 2
3.2.3 Monoterpenes:
Monoterpenes consist of 2 isoprene units. In this study, two monoterpenes were isolated from hexane extract of the rhizome of *Zingiber montanum*. These are coded as ZMH 10 and ZMH 8

3.2.3.1 Characterization of ZMH 10 as (-) borneol (7):

The IR spectrum of ZMH 10 revealed the presence of hydroxyl group at 3019 cm⁻¹. The high resolution of mass spectroscopy showed the [M+H]⁺ at m/z 155.13628 (calculated for C₁₀H₁₉O, at 155.135765) which confirmed the molecular formula of ZMH 10 as C₁₀H₁₉O.

The ¹H NMR spectrum (600MHz, CDCl₃, Table 3.11, Figure 3.19) revealed the presence of 3 methyl singlets at δH 0.82, 0.90 and 1.01, an oxymethine at δH 3.62 (dd, J= 7.50 Hz, 3.96 Hz) and a number of signals resonated between δH 0.96-1.75 due to the presence of methine and methylene protons.

The ¹³C NMR spectrum (150 MHz, CDCl₃) (Table 3.11, Figure 3.20) revealed the presence of total 10 carbons in the structure including oxymethine carbon at δC 80.1 and three methyl carbons at δC 20.6, 11.4, 20.4. The DEPT NMR spectrum confirmed the presence of 3 methyls, 3 methylenes, 2 methine and remaining 2 quaternary carbons.

In HMBC experiment (Table 3.12), the methyl protons at δH 0.82 (H-8, δC 20.6 from HSQC) and δH 1.01 (H-9, δC 20.4) showed common ³J correlation with quaternary carbon at δC 49.1 (C-1) and methine carbon at δC 45.2 (C-4). Moreover, the methyl proton at δH 0.82 (δC 20.6 from HSQC) showed ³J connection with methyl carbon at δC 20.4 (δH 1.01) and vice versa. On the other hand, methyl proton at δH 1.01 (H-9, δC 20.4 from HSQC) showed common ²J connectivity with the quaternary carbon at δC 46.6 (C-7). The methine proton at (H-4) δH 1.71 (δC 45.2 from HSQC) and methylene proton at (H-6) δH 1.50 and 1.01 (δC 27.4 from HSQC) showed correlation with oxymethine carbon at (C-2) δC 80.1 (δH 3.62, dd, J= 7.50, 3.96Hz). Based on the NMR and IR data, the structure of ZMH 10 was confirmed as (-) borneol (7). Previously, Verma and his colleagues detected (-) borneol from the essential oil of *Zingiber montanum* (Verma et al., 2018).
3.2.3.2 Characterization of ZMH 8 as Camphor (8):

The IR spectrum of ZMH 8 revealed the presence of carbonyl at 1750 cm\(^{-1}\). The high resolution of mass spectroscopy showed the [M+H]\(^+\) at m/z 153.12628 (calculated for C\(_{10}\)H\(_{17}\)O, at 153.120115) which confirmed the molecular formula of ZMH 8 as C\(_{10}\)H\(_{16}\)O. The \(^1\)H NMR and \(^{13}\)C NMR data of ZMH-8 are very similar to those of ZMH-10. The \(^1\)H NMR spectrum (600MHz, CDCl\(_3\), Table 3.11, Figure 3.21) revealed the presence of 3 methyl singlets at \(\delta_H\) 0.94, \(\delta_H\) 0.82 and \(\delta_H\) 0.89 and a number of methine and methylene protons resonated between \(\delta_H\) 1.31-2.34, however it did not show any peaks around 3.62 indicating the absence of oxymethylene proton.

The \(^{13}\)C NMR spectrum (150 MHz, CDCl\(_3\), Table 3.11) revealed the presence of similar type of carbons like ZMH 10 in the molecule including carbonyl at \(\delta_C\) 218.0 (C-2) instead of oxymethine carbon at 80.1 as evident in ZMH 10. The DEPT NMR spectrum confirmed the presence of 3 methyls, 3 methylenes, and 1 methine.

In HMBC experiment, the key \(^1\)H and \(^{13}\)C correlation of ZMH 8 is very much similar to ZMH 10. The methyl proton at 0.89 (H-10; 9.4 from HSQC) and methine proton at 2.07 (H-4; 43.1 from HSQC) revealed common \(^3\)J correlation with the carbon of carbonyl at 218.0 (C-2) which was missing at the carbon spectrum. Based on the NMR, IR, and mass spectral data, the compound ZMH 8 has been identified as camphor (8). Previously it was isolated from the essential oil of the rhizome of *Zingiber montanum* (Verma et al., 2018).
Table 3.11: 1H (600 MHz) and 13C NMR spectroscopic data of ZMH 10 and ZMH 8 in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>1H (600 MHz)</th>
<th>13C</th>
<th>1H</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>49.1</td>
<td>-</td>
<td>57.9</td>
</tr>
<tr>
<td>2</td>
<td>3.62, dd, J_1= 7.50 Hz, j_1=3.96 Hz</td>
<td>80.1</td>
<td>-</td>
<td>218.0</td>
</tr>
<tr>
<td>3</td>
<td>1.65-1.75, m</td>
<td>40.5</td>
<td>1.83, 2.34, m</td>
<td>43.3</td>
</tr>
<tr>
<td>4</td>
<td>1.71, m</td>
<td>45.2</td>
<td>2.07, m</td>
<td>43.1</td>
</tr>
<tr>
<td>5</td>
<td>1.65, m, 1.01, m</td>
<td>27.4</td>
<td>1.92, m, 1.31, m</td>
<td>27.2</td>
</tr>
<tr>
<td>6</td>
<td>1.50, m, 0.96, m</td>
<td>34.1</td>
<td>1.66, m, 1.38, m</td>
<td>30.1</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>46.6</td>
<td>-</td>
<td>47.0</td>
</tr>
<tr>
<td>8</td>
<td>0.82, s</td>
<td>20.6</td>
<td>0.94, s</td>
<td>19.2</td>
</tr>
<tr>
<td>9</td>
<td>1.01, s</td>
<td>20.4</td>
<td>0.82, s</td>
<td>19.9</td>
</tr>
<tr>
<td>10</td>
<td>0.90, s</td>
<td>11.4</td>
<td>0.89, s</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Table 3.12: 1H- 13C correlation for ZMH 10 and ZMH 8 in CDCl$_3$

<table>
<thead>
<tr>
<th>Protons</th>
<th>HMBC of ZMH 10</th>
<th>HMBC of ZMH 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2J</td>
<td>3J</td>
</tr>
<tr>
<td>H-2</td>
<td>49.1 (C)</td>
<td>-</td>
</tr>
<tr>
<td>H-3</td>
<td>45.2 (CH)</td>
<td>27.4 (CH$_2$)</td>
</tr>
<tr>
<td>H-4</td>
<td>27.4 (CH$_2$)</td>
<td>80.1 (CH-O)</td>
</tr>
<tr>
<td>H-5</td>
<td>-</td>
<td>40.5 (CH$_2$)</td>
</tr>
<tr>
<td>H-6</td>
<td>49.1 (C), 27.4 (CH$_2$)</td>
<td>80.1 (CH-O), 57.9 (C), 27.2 (CH$_3$)</td>
</tr>
<tr>
<td>H-8</td>
<td>-</td>
<td>20.4 (CH$_3$), 45.2 (CH), 49.1 (C)</td>
</tr>
<tr>
<td>H-9</td>
<td>46.6 (C)</td>
<td>20.6 (CH$_3$), 45.2 (CH), 49.1 (C)</td>
</tr>
<tr>
<td>H-10</td>
<td>49.1 (C)</td>
<td>34.1 (CH$_2$), 46.6 (C), 80.1 (CH-O)</td>
</tr>
</tbody>
</table>
Figure 3.21: 1H NMR (600 MHz, CDCl$_3$) spectrum of ZMH 10

Figure 3.22: 13C NMR (150 MHz, CDCl$_3$) spectrum of ZMH 10
Figure 3.23: 1H NMR (600 MHz, CDCl$_3$) spectrum of ZMH 8
3.2.4 Sesquiterpenes:
Sesquiterpenes are comprised of 3 isoprene units. In this study, a total of five sesquiterpenes were isolated and identified from hexane and chloroform extract of *Zingiber montanum*.

3.2.4.1 Characterization of MRSH-6 as (2\(Z\), 6\(Z\), 10E) -2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-ol (Zerumbol; 9):

MRSH 6 was isolated as colourless oil from the n-hexane extract of *Z. montanum*. The IR spectrum revealed the presence of a hydroxyl group (3300 cm\(^{-1}\)) and alkene group (1600 cm\(^{-1}\)). The high resolution of mass spectroscopy showed the [M+H]\(^{+}\) at m/z 221.18956 (calculated for C\(_{15}\)H\(_{25}\)O, at 221.19054) which confirmed the molecular formula of MRSH 6 as C\(_{15}\)H\(_{24}\)O. The \(^1\)H NMR spectrum (CDCl\(_3\), 500 MHz, Table 3.13, Figure 3.22) of MRSH 6 showed the presence of four methyl singlets resonating at \(\delta_H\) 1.04, 1.06, 1.43, 1.65, four sets of olefinic protons at 4.82 (dd, \(J=\) 10.2, 4.4 Hz), 5.20, d, \(J=\) 7.5 Hz), 5.23 (d, \(J=\) 16.2 Hz) and 5.56 (dd, \(J=\) 16.2, 7.5 Hz), an oxymethine proton at \(\delta_H\) 4.63 as doublet (\(J=\) 7.5 Hz) and also couple of methylene protons peaks between \(\delta_H\) 1.87-2.35 Hz.

The \(^{13}\)C NMR spectrum (125 MHz, CDCl\(_3\); Table 3.13; Figure 3.23) revealed the presence of a total of 15 carbons including an oxymethine carbon at \(\delta_C\) 78.8. The DEPT135 identified four methyl, three methylene, one oxymethine, four olefinic methines and the remaining three as quaternary carbons. Among the later three quaternary carbons, one at \(\delta_C\) 37.3 was aliphatic and remaining two were connected double bonds. The complete structure of this compound was established by 2D NMR spectra, predominantly by HSQC and HMBC. In the \(^1\)H-\(^1\)H COSY spectrum (Figure 3.24), the *trans* double bonded protons showed expected interaction between them. In the HMBC experiment (Table 3.14; Figure 3.25) the *trans* double bonded proton at \(\delta_H\) 5.23 (\(\delta_C\) 139.5 from HSQC) and methyl protons at 1.65 (H-12; \(\delta_C\) 12.8 from HSQC) revealed a common \(^3\)J interaction to an oxymethine carbon at 78.8 (C-1). Olefinic protons at 5.20 (H-3; \(\delta_C\) 124.8 ppm from HSQC) and \(\delta_H\) 4.82 (H-7; \(\delta_C\) 125.0 ppm from HSQC) and methyl protons at 1.43 (H-13; \(\delta_C\) 15.3 ppm from HSQC) showed \(^3\)J correlation to a methylene carbon at 39.5 (C-5; \(\delta_H\) 2.35 ppm from HSQC).
Protons at $\delta_H 2.20$ and $\delta_H 2.24$ (H-4; $\delta_C 24.4$ from HSQC) exhibited 3J correlations to quaternary carbons at 142.2 (C-2) and 133.2 (C-6). Two sets of methyl protons at 1.04 (H-14; $\delta_C 24.9$) and 1.06 (H-15; $\delta_C 29.9$) revealed common 2J correlation to a quaternary carbon at $\delta_C 37.3$ (C-9) and 3J interaction to olefinic methine carbon at 139.5 (C-10, $\delta_H 5.23$) and methylene at 42.4 (C-8, $\delta_H 1.87$, 2.32). H-10 also revealed 3J interaction to both methyl group carbons at 24.9 (C-14) and 29.9 (C-15). The COSY experiment exhibited usual interaction (H-10 to H-11; H-4 to both H-3 and H-5; H-7 to H-8). Accordingly, MRSH 6 was identified as (2Z, 6Z, 10E)-2, 6, 9, 9- tetramethylcycloundeca-2,6, 10-trien-1-ol, commonly known as Zerumbol (9). Previously it was synthesized from Zerumbone (Takashi et al., 2002). The NMR spectra of MRSH 6 are in agreement with published literature (Songsiang et al., 2010).
Figure 3.25: 13C NMR (125MHz) spectrum of MRSH 6 in CDCl$_3$

Figure 3.26: COSY NMR spectrum of MRSH 6 in CDCl$_3$
Figure 3.27: HMBC NMR spectrum of MRSH 6 in CDCl₃
3.2.4.2 Characterization of MRSH 3 as (2Z, 6Z, 10E) -2,6,9,9-tetramethylcyclooundeca-2, 6, 10- trien-1-one (Zerumbone; 10):

The IR spectrum of MRSH 3 showed the presence of carbonyl group at 1658 cm$^{-1}$ (Figure 3.6). The high resolution of mass spectrometry showed the [M+H]$^+$ at m/z 219.1746 (calculated for C$_{15}$H$_{23}$O at 219.174890) which confirmed the molecular formula of MRHS-3 as C$_{15}$H$_{22}$O.

The 1H NMR spectrum of MRSH 3 (CDCl$_3$, 500 MHz; Table 3.13; Figure 3.26) showed the presence of four methyl singlets resonating at δH 1.04, 1.07, 1.51, 1.77, four sets of olefinic protons at δH 5.22 (d, J=11.5 Hz), 5.83 (d, J=16.5 Hz), 5.94 (d, J=16 Hz) and 5.99 (d, J=11Hz), and also couple of methine and methylene protons peaks between δH 1.85-2.44 Hz. The 13C NMR spectrum (125 MHz, CDCl$_3$; Table 3.13; Figure 3.27) revealed the presence of a total of 15 carbons including a carbonyl at δC 204.4. The DEPT135 (Figure 3.28) identified four methyl, three methylene, four olefinic carbons. So the remaining three carbons were quaternary. Among the later three quaternary carbons, one at δC 37.9 was aliphatic and remaining two were connected double bonds. The complete structure of this compound was established by 2D NMR spectra, predominantly by HQMC and HMBC. In the 1H-1H COSY spectrum (Figure 3.29), the trans double bonded protons showed expected interaction between them.

In the HMBC experiment (Table 3.14; Figure 3.31), the trans double bonded proton at δH 5.83 (δC 160.8 from HMQC) and methyl protons at δH 1.77 (δC 11.9 from HMQC) revealed common 3J interaction to a carbonyl at δC 204.4 (C-1). Olefinic proton at δH 5.12 (H-7; δC 125.0 ppm from HMQC) showed 3J correlation to quaternary carbon at δC 136.5 (2J connectivity to methyl carbon at δC 15.3 (H-13; δH 1.51). The later methyl protons were also exhibited 3J correlation at carbon δC 125 (C-7) and methylene carbon at δC 39.5 (C-5; δH 2.35 from HMQC). Two methyl groups at δH 1.17 (δC 24.3) and 1.04 (δC 29.5) revealed common 3J interaction to methine carbon at δC 168.8 (C-10, δH 5.82) and methylene at δC 42.5 (C-8, δH 1.87). H-10 also revealed 3J interaction to both methyl's at δC 24.3 (C-14) and δC 29.5 (C-15). The cosy experiment exhibited usual interaction (H-
10 to H-11); H-3 to H-4; H-7 to H-6 and H-8). According to the compound spectra, it was identified as (2Z, 6Z, 10E)-2,6,9,9- tetramethylcycloundeca-2,6,10-trien-1-one (10), known as zerumbone (Riyanto, 2007), this compound was previously reported from *Zingiber zerumbet* and also known as ginger sesquiterpene. (Takashi et al., 2002)

Figure 3.28 HRMS data of MRSH 3

Figure 3.29: IR data of MRSH 3
Figure 3.30: 1H NMR spectrum (500MHz) of MRSH 3 in CDCl$_3$

Figure 3.31: 13C NMR spectrum (125MHz) of MRSH 3 in CDCl$_3$
Figure 3.32: DEPT NMR spectrum of MRSH 3 in CDCl₃

Figure 3.33: COSY NMR spectrum of MRSH 3 in CDCl₃
Figure 3.34: HSQC NMR spectrum of MRSH 3 in CDCl₃

Figure 3.35: HMBC NMR spectrum of MRSH 3 in CDCl₃
3.2.4.3 Characterization of MRSH-2 as (6E, 10E)-2, 6, 9, 9-tetramethylcycloundeca-6, 10-dien-1-one (11; Buddledone A):

The IR spectrum showed the presence of carbonyl group at 1692 cm⁻¹. The high resolution of mass spectroscopy showed the [M+H]⁺ at m/z 221.19103 (calculated for C_{15}H_{25}O at 221.19054) which confirmed the molecular formula of MRHS-2 as C_{15}H_{24}O.

The ¹H and ¹³C NMR data of MRSH 2 were very similar to those of MRSH 3. Like MRSH 3, the ¹H NMR (500 MHz, CDCl₃) (Table 3.13; Figure 3.32) spectrum of MRSH 2 showed the presence of four methyl singlets at δH 1.02, 1.15, 1.16, 1.42, trans double bonded protons at δH 6.02 (H-10) and δH 6.20 (H-11) and one methine proton as doublet at δH 5.06 (J = 8.5Hz). The only difference was that there was no olefinic proton at δH 5.99 at position H-3, however the presence of methine was observed at δH 2.52, t, J = 8 Hz at position H-2. Like MRSH 3, the ¹³C NMR spectra (125 MHz, CDCl₃) (Table 3.13; Figure 3.33) showed the presence of total 15 carbons including carbonyl. DEPT NMR spectra showed the presence of 3 methyl, 3 olefinic methine carbons remaining methylene and 2 quaternary carbons. In comparison with ¹H,¹³C NMR of MRSH 3, MRSH 2 was identified as (6E, 10E)-2, 6, 9, 9-tetramethylcycloundeca-6, 10-dien-1-one (11), also known as Buddledone A, previously reported from Chinese traditional medicinal plant *Buddleja globosa*.(Cai et al., 2012).
Figure 3.36: 1H NMR spectrum (500MHz) of MRSH 2 in CDCl$_3$

Figure 3.37: 13C NMR spectrum (125MHz) of MRSH 2 in CDCl$_3$
Table 3.13: 1H (500 MHz) and 13C NMR (125 MHz) spectroscopic data for MRSH-6, MRSH-3 and MRSH-2 in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>1H (J)</th>
<th>13C</th>
<th>1H (J)</th>
<th>13C</th>
<th>1H (J)</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.63, d, J= 7.5 Hz</td>
<td>78.8</td>
<td>-</td>
<td>204.4</td>
<td>-</td>
<td>205.2</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>142.2</td>
<td>-</td>
<td>138.0</td>
<td>2.52, t, J= 8Hz</td>
<td>122.3</td>
</tr>
<tr>
<td>3</td>
<td>5.20, d, J= 7.5</td>
<td>124.8</td>
<td>5.99, d, J=11Hz</td>
<td>148.9</td>
<td>1.85, t, J= 7.5 Hz</td>
<td>42.0</td>
</tr>
<tr>
<td>4</td>
<td>2.20, m 2.24, m</td>
<td>24.4</td>
<td>2.20, m; 2.24,m</td>
<td>24.4</td>
<td>1.65, m</td>
<td>40.5</td>
</tr>
<tr>
<td>5</td>
<td>2.35, m</td>
<td>39.5</td>
<td>2.35, m</td>
<td>39.5</td>
<td>1.26, m</td>
<td>38.6</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>136.3</td>
<td>-</td>
<td>137.4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.82, dd, J= 10Hz</td>
<td>125.0</td>
<td>5.22, dd, J= 11.5Hz</td>
<td>125.0</td>
<td>5.06, d, J= 8.5 Hz</td>
<td>123.3</td>
</tr>
<tr>
<td>8</td>
<td>1.87, m 2.32, m</td>
<td>42.4</td>
<td>1.87, m; 2.32, m</td>
<td>42.4</td>
<td>2.03, d, J=8 Hz</td>
<td>47.3</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>37.3</td>
<td>-</td>
<td>39.6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.23, d, J= 16.5 Hz</td>
<td>139.5</td>
<td>5.83, d, J=16.5Hz</td>
<td>160.8</td>
<td>6.02, d, J=16.5 Hz</td>
<td>151.9</td>
</tr>
<tr>
<td>11</td>
<td>5.56, dd, J= 16Hz</td>
<td>131.2</td>
<td>5.94, d, J=16Hz</td>
<td>127.2</td>
<td>6.20, d, J= 16 Hz</td>
<td>141.4</td>
</tr>
<tr>
<td>12</td>
<td>1.65, s</td>
<td>12.8</td>
<td>1.04, s</td>
<td>29.5</td>
<td>1.02, s</td>
<td>32.4</td>
</tr>
<tr>
<td>13</td>
<td>1.43, s</td>
<td>15.3</td>
<td>1.17, s</td>
<td>24.3</td>
<td>1.15, s</td>
<td>21.2</td>
</tr>
<tr>
<td>14</td>
<td>1.06, s</td>
<td>29.9</td>
<td>1.51, s</td>
<td>15.3</td>
<td>1.16, s</td>
<td>16.6</td>
</tr>
<tr>
<td>15</td>
<td>1.04, s</td>
<td>24.9</td>
<td>1.77, s</td>
<td>11.9</td>
<td>1.42, s</td>
<td>14.1</td>
</tr>
</tbody>
</table>
Table 3.14: HMBC correlation data for MRSH-6, MRSH-3 in CDCl₃

<table>
<thead>
<tr>
<th>Protons</th>
<th>HMBC of MRHS - 6</th>
<th>HMBC of MRSH - 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2J</td>
<td>3J</td>
</tr>
<tr>
<td>H-3</td>
<td>-</td>
<td>78.8 (CH), 12.8 (CH₃)</td>
</tr>
<tr>
<td>H-4</td>
<td>124.8 (CH)</td>
<td>133.2 (C)</td>
</tr>
<tr>
<td>H-7</td>
<td>-</td>
<td>39.5 (CH₂)</td>
</tr>
<tr>
<td>H-8</td>
<td>125.0 (CH)</td>
<td>133.2 (C)</td>
</tr>
<tr>
<td>H-10</td>
<td>-</td>
<td>78.8 (CH)</td>
</tr>
<tr>
<td>H-11</td>
<td>78.8 (CH), 139.5 (CH)</td>
<td>-</td>
</tr>
<tr>
<td>H-12</td>
<td>142.2 (C)</td>
<td>78.8 (CH), 124.8 (CH)</td>
</tr>
<tr>
<td>H-13</td>
<td>133.2 (C)</td>
<td>39.5 (CH₂)</td>
</tr>
<tr>
<td>H-14</td>
<td>37.3 (C)</td>
<td>139.5 (CH)</td>
</tr>
<tr>
<td>H-15</td>
<td>37.3 (C)</td>
<td>139.5 (CH)</td>
</tr>
</tbody>
</table>
3.2.4.4 Characterization of ZMH 4 as 1(10), 4, 7(11)-Germacratrien-8-one (12):

The IR spectrum of ZMH 4 showed the presence of carbonyl group at 1676 cm\(^{-1}\). The high resolution of mass spectrometry showed the [M+H]\(^+\) at m/z 219.17423 (calculated for C\(_{15}\)H\(_{23}\)O, at 219.17489) which confirmed the molecular formula of ZMH 4 as C\(_{15}\)H\(_{22}\)O. The \(^1\)H NMR spectrum (600MHz, CDCl\(_3\); Table 3.15; Figure 3.34) showed the presence of 4 methyl singlets resonating at \(\delta_{\text{H}}\) 1.44, 1.63, 1.72 and 1.77, two olefinic protons at \(\delta_{\text{H}}\) 4.98 and 4.70 and couple of methine and methylene peaks between 2.0-3.5 ppm. The \(^{13}\)C NMR spectrum (150 MHz, CDCl\(_3\); Table 3.15; Figure 3.35) revealed the presence of a total of 15 carbons including carbonyl at \(\delta_{\text{C}}\) 208.2. The DEPT135 spectrum confirmed the presence of 4 methylene, 4 methyl and two olefinic methine carbons and remainders as quaternary carbons.

The structure of this compound was confirmed by 2D NMR, predominantly the HMBC experiment. The two methyl groups (\(\delta_{\text{H}}\) 1.72 and 1.77) showed common \(^2\)J connection to a quaternary carbon at \(\delta_{\text{C}}\) 137.4 (C-11) and \(^3\)J correlation to another quaternary carbons at \(\delta_{\text{C}}\) 129.8 (C-7). So, this two methyl are connected to each other. The olefinic proton at 4.98 (H-1; \(\delta_{\text{C}}\) 132.9 from HMQC) was connected to methylene carbon at \(\delta_{\text{C}}\) 56.1 (C-2; \(\delta_{\text{H}}\) 3.41, 2.93 from HMQC) and a methyl carbon at \(\delta_{\text{C}}\) 16.9 (C-15; \(\delta_{\text{H}}\) 1.63 from HSQC). The other olefinic proton at \(\delta_{\text{H}}\) 4.71 (H-5) showed HMBC correlations to methyl carbon at \(\delta_{\text{C}}\) 15.8 (C-14; \(\delta_{\text{H}}\) 1.44) and methylene carbon at \(\delta_{\text{C}}\) 38.3 (C-3; \(\delta_{\text{H}}\) 2.09, 2.16, m). The methyl proton at \(\delta_{\text{H}}\) 1.63 (H-15, \(\delta_{\text{C}}\) 16.9 from HSQC) showed \(^2\)J connection with olefinic quaternary carbon at \(\delta_{\text{C}}\) 127.0 (C-10) and \(^3\)J connection with methylene carbon at \(\delta_{\text{C}}\) 56.1 (C-9; \(\delta_{\text{H}}\) 2.93, 3.41, m) and olefinic methine carbon at \(\delta_{\text{C}}\) 132.9 (C-1; \(\delta_{\text{H}}\) 4.98, d, \(J=11.3\) Hz). According to the \(^1\)H, \(^{13}\)C NMR spectra and HSQC and HMBC experiment, the compound ZMH 4 was identified as 1(10),4,7(11)-Germacratrien-8-one (12), commonly known as Germacrone (Yan et al., 2005) which was previously isolated and identified from Curcuma heyneana (one of the zingiberaceous plant) (Firman et al., 1988)
Table 3.15: 1H (600 MHz) and 13C (150 MHz) NMR spectroscopic data of ZMH 4 in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_H</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.98, d, $J=10.74$ Hz</td>
<td>132.9</td>
</tr>
<tr>
<td>2</td>
<td>2.07, m 2.37, m</td>
<td>24.3</td>
</tr>
<tr>
<td>3</td>
<td>2.16, m 2.09, m</td>
<td>38.3</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>135.3</td>
</tr>
<tr>
<td>5</td>
<td>4.71, d, $J=9.54$ Hz</td>
<td>125.6</td>
</tr>
<tr>
<td>6</td>
<td>2.85, m 2.95, m</td>
<td>29.5</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>129.8</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>208.2</td>
</tr>
<tr>
<td>9</td>
<td>2.93, m 3.41, d, $J=10.38$ Hz</td>
<td>56.1</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>127.0</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>137.4</td>
</tr>
<tr>
<td>12</td>
<td>1.77, s</td>
<td>20.1</td>
</tr>
<tr>
<td>13</td>
<td>1.72, s</td>
<td>22.6</td>
</tr>
<tr>
<td>14</td>
<td>1.44, s</td>
<td>15.8</td>
</tr>
<tr>
<td>15</td>
<td>1.63, s</td>
<td>16.9</td>
</tr>
</tbody>
</table>

Table 3.16: 1H-13C correlation of ZMH 4 in CDCl$_3$

<table>
<thead>
<tr>
<th>Protons</th>
<th>HMBC of ZMH 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2J</td>
</tr>
<tr>
<td>H-1</td>
<td>-</td>
</tr>
<tr>
<td>H-2</td>
<td>38.3 (CH$_2$)</td>
</tr>
<tr>
<td>H-3</td>
<td>24.3 (CH$_2$), 135.3 (C)</td>
</tr>
<tr>
<td>H-5</td>
<td>-</td>
</tr>
<tr>
<td>H-6</td>
<td>125.2 (CH), 129.8 (C)</td>
</tr>
<tr>
<td>H-9</td>
<td>127.0 (C)</td>
</tr>
<tr>
<td>H-12</td>
<td>137.4 (C)</td>
</tr>
<tr>
<td>H-13</td>
<td>137.4 (C)</td>
</tr>
<tr>
<td>H-14</td>
<td>135.3 (C)</td>
</tr>
<tr>
<td>H-15</td>
<td>127.0 (C)</td>
</tr>
</tbody>
</table>
Figure 3.38: 1H NMR spectrum (600MHz) of ZMH 4 in CDCl$_3$

Figure 3.39: 13C NMR spectrum (150MHz) of ZMH 4 in CDCl$_3$
3.2.4.5 Characterization of ZMH 5 as 8, 12-Epoxy-1(10), 4, 7, 11-germacratetraen-6-one (13; Furanodienone):

The IR spectrum revealed the presence of carbonyl group at 1760 cm\(^{-1}\). The high resolution mass spectrometry showed the [M+H\(^{+}\)] at m/z 231.13720 (calculated for C\(_{15}\)H\(_{19}\)O\(_2\), at 231.13851) which confirmed the molecular formula of ZMH 5 as C\(_{15}\)H\(_{18}\)O\(_2\).

\(^1\)H NMR (600 MHz, CDCl\(_3\), Table 3.17, Figure 3.36) showed the presence of three sets of methyl signals at \(\delta_H 1.30\), \(\delta_H 1.99\) and \(\delta_H 2.13\), three sets of olefinic protons at \(\delta_H 7.08\) (s), \(\delta_H 5.81\) (s), and \(\delta_H 5.18\) (dd, \(J= 11.52, 4.44\) Hz). There were also a number of methine and methylene peaks resonated at \(\delta_H 2.13\) - 3.70.

\(^{13}\)C NMR spectrum (150MHz, CDCl\(_3\); Table 3.17; Figure 3.37) revealed the presence of a total 15 carbons including carbonyl at 190.4. The DEPT 135 NMR spectra identified 3 methyl, 3 methylene, 4 methine and 6 quaternary carbons. Among the quaternary carbons, 5 were connected with double bonds and the remainder was the carbon of carbonyl at C-6 (\(\delta_C 190.4\)).

In HMBC experiment (Table 3.18), the olefinic methine at \(\delta_H 5.18\) (H-1; \(\delta_C 130.8\) from HSQC) revealed \(^2\)J connection with methylene carbon at \(\delta_C 41.9\) (C-2; 3.70 from HSQC) and \(^3\)J correlation with methyl carbon at \(\delta_C 16.2\) (C-15; 2.13 from HSQC) and methylene carbon at \(\delta_C 26.5\) (C-9). The olefinic proton at \(\delta_H 5.81\) (H-5; \(\delta_C 132.5\)) and methyl proton at \(\delta_H 1.99\) (H-14; \(\delta_C 19.3\) from HSQC) exhibit common \(^2\)J interaction with the double bonded quaternary carbon at \(\delta_C 146.0\) (C-6). However, olefinic proton at \(\delta_H 5.81\) (H-5) showed \(^2\)J connection with carbonyl carbon at \(\delta_C 190.4\) (C-6) while methyl proton at \(\delta_H 1.99\) (H-14; \(\delta_C 19.3\) from HSQC) showed \(^3\)J connection with olefinic methine carbon at \(\delta_C 132.6\) C-5; \(\delta_H 5.81\) from HSQC) and methylene carbon at \(\delta_C 40.8\) (C-3; \(\delta_H 2.46\) and 1.88 from HSQC). However, the downfield olefinic proton at \(\delta_H 7.08\) (H-12; \(\delta_C 138.3\) from HSQC) showed connection with quaternary carbon 122.4 (C-11) by \(^2\)J and oxygen bearing quaternary carbon at \(\delta_C 156.7\) (C-8) by \(^3\)J. Methyl protons at \(\delta_H 1.30\) (H-15; \(\delta_C 16.2\) from HSQC) showed \(^2\)J connection with quaternary carbon at \(\delta_C 135.2\) (C-10) and \(^3\)J interaction with the olefinic carbon at \(\delta_C 130.7\) (C-1; \(\delta_H 5.18\) from HSQC). Another the methyl proton at \(\delta_H 2.13\) (H-13; \(\delta_C 9.7\) from HSQC)
revealed 2 bond away correlation with quaternary carbon at $\delta_C 122.4$ (C-11) and 3J connection with downfield olefinic carbon resonating at $\delta_C 138.3$ ($\delta_H 7.08$). According to NMR spectrum, the compound was identified as 8, 12-epoxy-1(10), 4, 7, 11-germacratetraen-6-one (13) also known as furanodienone (Joshi, 2014). Previously it was isolated from wild ginger *Siphonochilus aethiopicus* (Igoli et al., 2012).

Table 3.17: 1H (600 MHz) and 13C (150 MHz) NMR spectroscopic data of ZMH 5 in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>1H</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.18, dd, $J= 11.52, 4.44$ Hz</td>
<td>130.7</td>
</tr>
<tr>
<td>2</td>
<td>3.70, d, $J=4.92$ Hz</td>
<td>41.9</td>
</tr>
<tr>
<td>3</td>
<td>2.46, m</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>1.88, m</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>146.1</td>
</tr>
<tr>
<td>5</td>
<td>5.81, s</td>
<td>132.6</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>190.4</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>123.9</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>156.7</td>
</tr>
<tr>
<td>9</td>
<td>2.32, m</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>2.18, m</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>135.2</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>122.4</td>
</tr>
<tr>
<td>12</td>
<td>7.08, s</td>
<td>138.3</td>
</tr>
<tr>
<td>13</td>
<td>2.13, d, $J= 1.20$ Hz</td>
<td>9.7</td>
</tr>
<tr>
<td>14</td>
<td>1.99, d, $J=2.88$ Hz</td>
<td>19.3</td>
</tr>
<tr>
<td>15</td>
<td>1.30, s</td>
<td>16.2</td>
</tr>
</tbody>
</table>
Table 3.18: 1H- 13C correlation for ZMH 5 in CDCl$_3$

<table>
<thead>
<tr>
<th>Protons</th>
<th>HMBC</th>
<th>2J</th>
<th>3J</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1</td>
<td></td>
<td>41.9 (CH$_2$)</td>
<td>16.2 (CH$_3$), 26.5 (CH$_2$)</td>
</tr>
<tr>
<td>H-2</td>
<td></td>
<td>130.7 (CH)</td>
<td>135.2 (C)</td>
</tr>
<tr>
<td>H-3</td>
<td></td>
<td>146.1 (C)</td>
<td>19.3 (CH$_3$), 130.7 (CH), 132.6 (CH)</td>
</tr>
<tr>
<td>H-5</td>
<td></td>
<td>146.1 (C), 190.4 (C=O)</td>
<td>19.3 (CH$_3$), 40.8 (CH$_2$), 130.7 (CH), 132.6 (CH)</td>
</tr>
<tr>
<td>H-9</td>
<td></td>
<td>-</td>
<td>130.7 (CH)</td>
</tr>
<tr>
<td>H-12</td>
<td></td>
<td>122.4 (C)</td>
<td>156.7 (C)</td>
</tr>
<tr>
<td>H-13</td>
<td></td>
<td>122.4 (C)</td>
<td>138.3 (CH)</td>
</tr>
<tr>
<td>H-14</td>
<td></td>
<td>146.1 (C)</td>
<td>40.8 (CH$_2$), 132.6 (CH)</td>
</tr>
<tr>
<td>H-15</td>
<td></td>
<td>135.2 (C)</td>
<td>130.7 (CH)</td>
</tr>
</tbody>
</table>

Figure 3.40: 1H NMR spectrum (600MHz) of ZMH 5 in CDCl$_3$
Figure 3.41: 13C NMR spectrum (150MHz) of ZMH 5 in CDCl$_3$
3.2.5 Diterpene:

3.2.5.1 Characterization of ZMH 14 as 8(17), 12-Labdadiene-15, 16-dial (14):

ZMH 14 was isolated as a colourless amorphous powder from the CHCl₃ extract of *Z. montanum*. The molecular formula was established as C₂₀H₃₀O₂ from the [M+H]+ at m/z 303.23122 (calculated for C₂₀H₃₁O₂, at 302.22458) in the high resolution mass spectroscopy which confirmed the molecular formula of ZMH 14 as C₂₀H₃₀O₂. The ¹H NMR (600 MHz, CDCl₃, Table 3.19, Figure 3.38) NMR spectrum showed the presence of two sets of aldehyde protons (δ_H 9.40 and 9.63), one olefinic proton resonating at δ_H 6.76 (J= 6.6Hz), exomethylene protons at 4.36 and 4.86, three sets of methyl protons and a number of peaks for methine and methylene protons.

The ¹³C NMR (150 MHz, CDCl₃; Table 3.19; Figure 3.39) spectrum showed the presence of a total of 20 carbons including two aldehyde carbons (δ_C 193.8 and 197.5), an exomethylene (108.1), an olefinic methine (160.4), two aliphatic methines, four quaternary carbons, three methyl carbons and seven methylene carbons. In HMBC (Figure 3.41), two sets of methyl protons at δ_H 0.82 (δ_C 22.1 from HSQC) and δ_H 0.89 (δ_C 33.7 from HSQC) showed a common ²J connectivity to a carbon at 33.7 (C-4) and ³J connection with methylene carbon at δ_C 42.0 (C-3; δ_H 1.41 and 1.18 from HSQC) and methine carbon at δ_C 55.8 (C-5; δ_H 1.13 from HSQC). H-5 revealed ³J HMBC correlation to methylene carbons at 42.0 (C-3), 38.1 (C-7; δ_H 2.02 and 2.44 from HSQC), methine carbon at 56.6 (C-9; δ_H 1.90 from HMQC) and methyl carbon at 14.6 (C-20; δ_H 0.72 from HSQC). H-9 exhibited HMBC interactions to C-10 (by ²J), C-11 (by ²J), C-12 (160.4 by ³J; δ_H 6.76 from HSQC), C-17 (108.4 by ³J; δ_H 4.36 and 4.86 from HSQC) and C-20 (by ³J). H-12 showed ³J HMBC connectivity to C-9, methylene carbon at 39.6 (C-14; δ_H 3.41 and 3.46 from HSQC) and aldehydic carbon at 193.8 (C-16; δ_H 9.40 from HSQC).

The other aldehydic proton at H 9.63 (H-15; C 197.5 from HSQC) showed ³J HMBC correlation to a quaternary carbon at 135.0 (C-13). Accordingly, structure of 1 was confirmed as 8(17), 12-Labdadiene-15, 16-dial (14). This compound has previously reported only from *Alpinia chinensis*. This is the first report of its
isolation from the genus, *Zingiber*. The NMR data of ZMH 14 are in agreement with published literature (Lai-King and Brown 1997).

Table 3.19: 1H (500 MHz) and 13C (125) NMR spectroscopic data of ZMH 14 in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>1H</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.68, m</td>
<td>39.4</td>
</tr>
<tr>
<td></td>
<td>1.06, m</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.50, m</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>1.57, m</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.41, m</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>1.18, m</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>33.6</td>
</tr>
<tr>
<td>5</td>
<td>1.13, m</td>
<td>55.8</td>
</tr>
<tr>
<td>6</td>
<td>1.75, m</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>1.34, m</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.02, m</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>2.41, m</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>148.4</td>
</tr>
<tr>
<td>9</td>
<td>1.90, m</td>
<td>56.6</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>39.8</td>
</tr>
<tr>
<td>11</td>
<td>2.49, m</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>2.31, m</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6.76, t, $J=6.55$ Hz</td>
<td>160.4</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>135.0</td>
</tr>
<tr>
<td>14</td>
<td>3.42, dd, $J=16.7$ Hz</td>
<td>39.6</td>
</tr>
<tr>
<td>15</td>
<td>9.63, t, $J=1.44$ Hz</td>
<td>197.5</td>
</tr>
<tr>
<td>16</td>
<td>9.40, s</td>
<td>193.8</td>
</tr>
<tr>
<td>17</td>
<td>4.86, s</td>
<td>108.1</td>
</tr>
<tr>
<td></td>
<td>4.46, s</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.88, s</td>
<td>33.7</td>
</tr>
<tr>
<td>19</td>
<td>0.82, s</td>
<td>22.1</td>
</tr>
<tr>
<td>20</td>
<td>0.72, s</td>
<td>14.6</td>
</tr>
</tbody>
</table>
Table 3.20: 1H- 13C correlation for ZMH 14 in CDCl$_3$

<table>
<thead>
<tr>
<th>Protons</th>
<th>HMBC</th>
<th>2J</th>
<th>3J</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-2</td>
<td>42.0 (CH$_2$)</td>
<td>56.6 (CH)</td>
<td></td>
</tr>
<tr>
<td>H-3</td>
<td>-</td>
<td>22.1 (CH$_3$), 33.7 (CH$_3$), 56.6 (CH)</td>
<td></td>
</tr>
<tr>
<td>H-5</td>
<td>24.4 (CH$_2$)</td>
<td>14.60 (CH$_3$), 22.1 (CH$_3$), 24.3 (CH$_2$), 38.1 (CH$_2$), 56.6 (CH)</td>
<td></td>
</tr>
<tr>
<td>H-6</td>
<td>38.3 (CH$_2$), 55.6 (CH)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H-7</td>
<td>148.4 (C)</td>
<td>55.6 (CH), 108.1 (CH$_2$=)</td>
<td></td>
</tr>
<tr>
<td>H-9</td>
<td>39.8 (C)</td>
<td>14.6 (CH$_3$), 24.8 (CH$_2$), 56.6 (CH)</td>
<td></td>
</tr>
<tr>
<td>H-11</td>
<td>-</td>
<td>56.6 (CH$_2$)</td>
<td></td>
</tr>
<tr>
<td>H-12</td>
<td>-</td>
<td>39.6 (CH$_2$), 56.6 (CH), 197.5 (CH), 55.6 (CH)</td>
<td></td>
</tr>
<tr>
<td>H-14</td>
<td>135.0 (C)</td>
<td>160.4 (CH), 24.8 (CH$_2$), 56.6 (CH)</td>
<td></td>
</tr>
<tr>
<td>H-15</td>
<td>135.0 (C)</td>
<td>39.5 (CH$_2$)</td>
<td></td>
</tr>
<tr>
<td>H-16</td>
<td>39.6 (CH$_2$)</td>
<td>135.0 (C)</td>
<td></td>
</tr>
<tr>
<td>H-17</td>
<td>38.1 (CH$_2$)</td>
<td>56.6 (CH)</td>
<td></td>
</tr>
<tr>
<td>H-18</td>
<td>-</td>
<td>22.1 (CH$_3$), 42.0 (CH$_2$), 55.6 (CH)</td>
<td></td>
</tr>
<tr>
<td>H-19</td>
<td>-</td>
<td>33.7 (CH$_3$), 42.0 (CH$_2$), 55.6 (CH)</td>
<td></td>
</tr>
<tr>
<td>H-20</td>
<td>39.8 (C)</td>
<td>55.6 (CH)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.42: 1H NMR spectrum (600 MHz) of ZMH 14 in CDCl$_3$
Figure 3.43: 13C NMR (150 MHz) spectrum of ZMH 14 in CDCl$_3$

Figure 3.44: HSQC NMR spectrum of ZMH 14 in CDCl$_3$
Figure 3.45: HMBC NMR spectrum of ZMH 14 in CDCl$_3$
3.2.6 Triterpenes

Triterpenes are the most abundant and diverse group of chemical compounds widely distributed in the plants. They contain 6 isoprene units. This study has led to the isolation of 5 triterpenes lupine series from the hexane and chloroform leaf extract of *Diosphyros malabarica* and two pentacyclic triterpenes from hexane and chloroform extract of *Cynometra ramiflora*. The triterpenes isolated from *Diosphyros malabarica* were codes as DMH 2, DMH 3, DMH 10, DMH 15 and DMC 22.

3.2.6.1 Characterization of DMC 22 as Lupeol (15):

The IR revealed the presence of exomethylene and hydroxyl group by revealing the characteristic bands at 884 cm\(^{-1}\) and 3361 cm\(^{-1}\) respectively. The high resolution mass spectrometry showed the [M+H]\(^+\) at m/z 427.39478 (calculated for C\(_{30}\)H\(_{51}\)O at 427.393990) which confirmed the molecular formula of DMC 22 as C\(_{30}\)H\(_{50}\)O. The \(^1\)H NMR spectrum (700 MHz, CDCl\(_3\), Table 3.21, Figure 3.42) showed the presence of an exomethylene protons resonating at \(\delta_H\) 4.69 (\(J=2.24\) Hz) and 4.57 (\(J=2.31\) Hz), oxymethine signal \(\delta_H\) 3.19 (dd, \(J=11.55\) Hz, 4.69 Hz), a vinylic methyl at 1.68, five methyls beween 0.76-1.03, and numerous signals between 0.92-2.38 due to the presence of methine and methylene protons.

The \(^{13}\)C NMR (175 MHz, CDCl\(_3\); Table 3.22; Figure 3.43) revealed a total of 30 carbons including an oxymethine at \(\delta_C\) 79.1, exomethylene carbon \(\delta_C\) 109.5, six methyl signals at \(\delta_C\) 14.7, 15.6, 16.2, 16.3, 18.2, 19.5, and 28.2. The DEPT 135 NMR spectrum confirmed the presence of 7 methyls, 11 methylenes, 6 methines and remaining six as quaternary carbons.

The 2D NMR spectra including HSQC and HMBC played key role in assigning the protons and carbons of the compound. In HMBC experiment (Table 3.23), two sets of methyl protons at \(\delta_H\) 0.76 (H-24; \(\delta_C\) 15.6 from HSQC) and \(\delta_H\) 0.97 (H-
23; δC 28.2 from HSQC) showed a common 2J correlation with a quaternary carbon at δC 39.1 (C-4) and 3J connectivity with an oxymethine carbon at δC 79.2 (C-3; δH 3.19) and methine carbon at 55.6 (C-5; δH 0.68 from HSQC). In addition, the oxymethine proton at δH 3.19 (H-3; δC 79.2 from HSQC) also showed 3J correlation with methyl carbons at δC 15.6 (C-24; δH 0.76) and δC 28.2 (C-23; δH 0.97). The methyl protons at δH 0.83 (H-25; δC 16.3 from HSQC) revealed 2J correlation with quaternary carbon at δC 37.3 and 3J connection with methine carbons at δC 55.6 (C-5; δH 0.68 from HSQC) and methylene carbon at δC 38.9 (C-1; δH 0.92). Another set of methyl protons at δH 1.03 (H-26; δC 16.2 from HSQC) showed connectivity with a quaternary carbon at δC 41.1 by 2J and connection with methylene carbon at δC 34.5 (C-7; δH 1.41 from HSQC) and quaternary carbon at δC 43.0 by 3J. Both methyl protons δH 0.83 (H-25; δC 16.3 from HSQC) and δH 1.03 (H-26; δC 16.2 from HSQC) showed common 3J correlation with methine carbon at δC 50.6 (C-9; δH 1.28 from HSQC). Moreover, another methyl proton at δH 0.94 (H-27; δC 14.2 from HSQC) exhibited 2J correlation with a quaternary carbon at δC 43.0 (C-14) and 3J correlation with methylene carbon at δC 27.7 (C-15; δH 1.36 and 1.67 from HSQC), methine carbon at δC 38.3 (C-13; δH 1.67) and quaternary carbon at δC 41.0. The methyl proton at δH 0.79 (H-28; δC 18.2 from HSQC) revealed connectivity with quaternary carbon at δC 43.2 (C-17) by 2J and connection with methylene carbon at δC 35.8 (C-16; δH 1.48, 1.38 from HSQC) and δC 40.2 (C-22; δH 1.19, δH 1.38 from HSQC) and methine carbon at δC 48.5 (C-18; δH 1.36 from HSQC) by 3J. On the other hand, the methyl proton at δH 1.68 (H-29; δC 19.5 from HSQC) had 2J interaction with quaternary carbon δC 151.2 at C-20 and 3J correlation with exomethylene carbon at δC 109.5 (C-30; δH 4.69, δH 4.57 from HSQC) and methine carbon at δC 48.2 (C-19; δH 2.38 from HSQC) and vice versa. Based on the spectral data and HMBC connectivities, the compound DMC 22 was identified as 20(29)-Lupen-3beta-ol commonly known as Lupeol (15). The spectral data were identical to those reported previously (Silva et al., 2017). It was isolated previously from most of the Diospyros species including Diospyros abyssinica, Diospyros canaliculata, Diospyros chevalieri (Zhong et al., 1984).
3.2.6.2 Characterization of DMH 3 as Betulin (16):

The IR revealed the presence of exomethylene and hydroxyl group by revealing the characteristic band at 883 cm\(^{-1}\) and 3365 cm\(^{-1}\) respectively.

The high resolution mass spectrometry showed the \([\text{M}+\text{Na}]^+\) at 465.37056 m/z (calculated for \(\text{C}_{30}\text{H}_{50}\text{O}_2\text{Na}\), at 465.37085) which confirmed the molecular formula of DMH 3 as \(\text{C}_{30}\text{H}_{50}\text{O}_2\).

The \(^1\text{H}\) NMR spectrum (700 MHz, CDCl\(_3\), Table 3.21, Figure 3.44) and \(^{13}\text{C}\) NMR (175 MHz, CDCl\(_3\), Table 3.22, Figure 3.45) of DMH 3 showed very similar signals compared to those of DMC 22. \(^1\text{H}\) NMR spectrum (700 MHz, CDCl\(_3\), Table 3.21, Figure 3.44) revealed the presence of five methyl peaks from \(\delta_H\) 0.78-0.98 including a vinylic proton peak at \(\delta_H\) 1.68, an exomethylene singlets at \(\delta_H\) 4.68 and \(\delta_H\) 4.58 and oxymethine peaks at \(\delta_H\) 3.18 (dd, \(J = 11.55\) Hz, \(j = 4.55\) Hz). However, the presence of extra peaks at \(\delta_H\) 3.33 (t, \(J = 9.38\)Hz) and \(\delta_H\) 3.80 (d, 10.78 Hz) were accounted due to the presence of hydroxymethyl group in the compound, instead of methyl as evident in DMC 22.

\(^{13}\text{C}\) NMR (175 MHz, CDCl\(_3\); Table 3.22; Figure 3.45) exhibited the presence of 30 carbons including the signal of oxymethine carbon at \(\delta_C\) 79.5, exomethylene carbon at \(\delta_C\) 109.9 and hydroxymethyl carbon at \(\delta_C\) 60.5. In HMBC experiment, the key HMBC correlations of DMH 3 were very much similar to DMC 22. The hydroxymethyl protons at \(\delta_H\) 3.33 and \(\delta_H\) 3.80 showed \(3^J\) correlation with methylene carbons at 34.2 (C-22; \(\delta_H\) 1.86 from HSQC) and 29.4 (C-16; \(\delta_H\) 1.21 and 1.86 from HSQC). On the other hand, methylene protons \(\delta_H\) 1.21 and 1.86 (C-16; 29.4 from HSQC) and methine proton at 1.58 (C-18; 48.8 from HSQC) revealed the \(3^J\) connection with hydroxymethyl carbon at \(\delta_C\) 60.5 (C-28; \(\delta_H\) 3.33 and \(\delta_H\) 3.80 from HSQC).
Thus, based on the IR, Mass spectrometry, 1H, 13C NMR spectral data and their HMBC connectivity the compound of DMH 3 was identified as 20(29)-Lupene-3, 28-diol; commonly known as Betulin, the spectral data were identical to those reported previously (Siddiqui et al., 1988). This compound had been previously isolated from most of the Diospyros species including Diospyros abyssinica, Diospyros canaliculata, Diospyros chevalieri of genus Diospyros (Zhong et al., 1984).

3.2.6.3 Characterization of DMH 10 as 30- norlupane- 3β, 28- diol-20-one (Messagenin; 17):

The IR of DMH 10 revealed the presence of hydroxyl group at 3019 cm$^{-1}$ and carbonyl group at 1700 cm$^{-1}$. The high resolution mass spectrometry showed the [M+H]$^+$ at m/z 445.36684 (calculated for C$_{29}$H$_{49}$O$_3$ at 445.36817) which confirmed the molecular formula of DMH 10 as C$_{29}$H$_{48}$O$_3$.

DMH 10 showed very similar signals as DMH 3 in both the 1H (700MHz, CDCl$_3$) and 13C (175MHz, CDCl$_3$) NMR spectra. The 1H NMR (700MHz, CDCl$_3$, Table 3.21, Figure 3.46) revealed the presence of 6 methyl peaks from δ_H 0.76-2.17 and hydroxymethyl signals at δ_H 3.25 (d, J= 10.71 Hz) and δ_H 3.79 (d, J=10.71 Hz) and oxymethine multiplet signal at δ_H 3.20 but missing the exomethylene protons. The chemical shift of one methyl proton was 2.17 was assumed to be due to the presence of acetyl group in the molecule.

The 13C (175MHz, CDCl$_3$; Table 3.22; Figure 3.47) NMR spectrum of DMH 10 showed total 29 carbons present in the compound including acetyl carbonyl at δ_C 212.4, oxymethine at δ_C 79.1 and hydroxymethyl at δ_C 60.8. The key HMBC correlations were very much similar to those of DMH 3. In the HMBC, the methine proton at δ_H 2.63 (C-19; δ_C 52.2 from HSQC) and methyl protons at δ_H 2.17 (δ_C 29.6 from HSQC) exhibited a common 2J correlation with the carbonyl carbon of acetyl group at δ_C 212.4 (C-20).
Therefore, based on the IR, Mass Spectrometry and NMR data and HMBC correlations, the compound DMH 10 was confirmed as 30-norlupane-3β,28-diol-20-one (17) also known as Messagenin. Messagenin was synthesized from betulinic acid previously (Macias, et al., 1994). However, this is the first reported NMR data of DMH 10.

Table 3.21: 1H NMR data (700 MHz, CDCl$_3$) of DMC 22, DMH 3, DMH 10

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_H of DMC 22</th>
<th>δ_H of DMH 3</th>
<th>δ_H of DMH 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.92, m</td>
<td>0.90, m</td>
<td>1.65, m</td>
</tr>
<tr>
<td></td>
<td>1.69, m</td>
<td>1.57, m</td>
<td>1.08, m</td>
</tr>
<tr>
<td></td>
<td>1.67, m</td>
<td>1.01, m</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.19, dd, J= 11.55, 4.69 Hz</td>
<td>3.18, dd, J= 11.55, 4.55 Hz</td>
<td>3.20, m</td>
</tr>
<tr>
<td>3</td>
<td>0.68, d, J= 9.31 Hz</td>
<td>0.68, d, J=10.01 Hz</td>
<td>0.69, d, J=10.01 Hz</td>
</tr>
<tr>
<td>4</td>
<td>1.38, m</td>
<td>1.40, m</td>
<td>1.42, m</td>
</tr>
<tr>
<td></td>
<td>1.51, m</td>
<td>1.53, m</td>
<td>1.53, m</td>
</tr>
<tr>
<td>5</td>
<td>1.41, m</td>
<td>1.39, s</td>
<td>1.40, m</td>
</tr>
<tr>
<td></td>
<td>1.04, m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.28, m</td>
<td>1.27, s</td>
<td>1.29, m</td>
</tr>
<tr>
<td>7</td>
<td>1.24, m</td>
<td>1.21, m</td>
<td>1.27, m</td>
</tr>
<tr>
<td></td>
<td>1.42, m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.07, m</td>
<td>1.05, m</td>
<td>1.55, m</td>
</tr>
<tr>
<td></td>
<td>1.67, m</td>
<td>1.63, m</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.36, m</td>
<td>1.64, m</td>
<td>1.57,m</td>
</tr>
<tr>
<td></td>
<td>1.67, m</td>
<td>1.69, m</td>
<td>1.69,m</td>
</tr>
<tr>
<td>10</td>
<td>1.38, m</td>
<td>1.04, m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.19, m</td>
<td>1.21, m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.86, m</td>
<td>1.94, m</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.36, m</td>
<td>1.58, t, J= 11.76 Hz</td>
<td>2.07,d, J= 11.83 Hz</td>
</tr>
<tr>
<td>12</td>
<td>2.38, m</td>
<td>2.39, m</td>
<td>2.09, m</td>
</tr>
<tr>
<td></td>
<td>1.92, m</td>
<td>1.41, m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.29, m</td>
<td>1.25, m</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.48, m</td>
<td>1.86, m</td>
<td>2.09, m</td>
</tr>
<tr>
<td></td>
<td>1.38, m</td>
<td>2.43, m</td>
<td>2.47, m</td>
</tr>
<tr>
<td>14</td>
<td>0.97, s</td>
<td>0.96, s</td>
<td>0.76, s</td>
</tr>
<tr>
<td>15</td>
<td>0.76, s</td>
<td>0.78, s</td>
<td>0.98, s</td>
</tr>
<tr>
<td></td>
<td>0.83, s</td>
<td>0.82, s</td>
<td>0.82, s</td>
</tr>
<tr>
<td>16</td>
<td>1.03, s</td>
<td>1.02, s</td>
<td>1.01, s</td>
</tr>
<tr>
<td></td>
<td>0.94, s</td>
<td>0.98, t, J=8.12 Hz</td>
<td>1.01, s</td>
</tr>
<tr>
<td>17</td>
<td>0.79, s</td>
<td>3.80, d, J=10.78 Hz</td>
<td>3.79,d, J= 10.71 Hz</td>
</tr>
<tr>
<td></td>
<td>3.33, t, J= 9.38 Hz</td>
<td>3.25, d, J= 10.71 Hz</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.69, d, J= 2.24 Hz</td>
<td>4.68, s</td>
<td>2.17, s</td>
</tr>
<tr>
<td></td>
<td>4.57, q, J= 2.31 Hz</td>
<td>4.58, s</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.68, s</td>
<td>1.68, s</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3.22: 13C NMR data (175 MHz, CDCl$_3$) of DMC 22, DMH 3, DMH 10

<table>
<thead>
<tr>
<th>Carbon</th>
<th>DMC 22</th>
<th>DMH 3</th>
<th>DMH 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>38.9</td>
<td>38.9</td>
<td>38.7</td>
</tr>
<tr>
<td>C-2</td>
<td>27.6</td>
<td>27.6</td>
<td>27.4</td>
</tr>
<tr>
<td>C-3</td>
<td>79.1</td>
<td>79.5</td>
<td>79.1</td>
</tr>
<tr>
<td>C-4</td>
<td>39.1</td>
<td>39.1</td>
<td>39.1</td>
</tr>
<tr>
<td>C-5</td>
<td>55.6</td>
<td>55.6</td>
<td>55.4</td>
</tr>
<tr>
<td>C-6</td>
<td>18.6</td>
<td>18.5</td>
<td>18.6</td>
</tr>
<tr>
<td>C-7</td>
<td>34.5</td>
<td>34.4</td>
<td>34.4</td>
</tr>
<tr>
<td>C-8</td>
<td>41.1</td>
<td>41.1</td>
<td>41.1</td>
</tr>
<tr>
<td>C-9</td>
<td>50.6</td>
<td>50.5</td>
<td>50.4</td>
</tr>
<tr>
<td>C-10</td>
<td>37.3</td>
<td>37.3</td>
<td>37.4</td>
</tr>
<tr>
<td>C-11</td>
<td>21.5</td>
<td>21.0</td>
<td>29.9</td>
</tr>
<tr>
<td>C-12</td>
<td>25.4</td>
<td>25.5</td>
<td>27.6</td>
</tr>
<tr>
<td>C-13</td>
<td>38.3</td>
<td>37.5</td>
<td>36.4</td>
</tr>
<tr>
<td>C-14</td>
<td>43.0</td>
<td>42.9</td>
<td>42.8</td>
</tr>
<tr>
<td>C-15</td>
<td>27.7</td>
<td>27.3</td>
<td>27.2</td>
</tr>
<tr>
<td>C-16</td>
<td>35.8</td>
<td>29.4</td>
<td>29.1</td>
</tr>
<tr>
<td>C-17</td>
<td>43.2</td>
<td>47.9</td>
<td>48.1</td>
</tr>
<tr>
<td>C-18</td>
<td>48.5</td>
<td>48.8</td>
<td>49.8</td>
</tr>
<tr>
<td>C-19</td>
<td>48.2</td>
<td>48.1</td>
<td>52.2</td>
</tr>
<tr>
<td>C-20</td>
<td>151.2</td>
<td>150.7</td>
<td>212.4</td>
</tr>
<tr>
<td>C-21</td>
<td>29.9</td>
<td>29.9</td>
<td>27.8</td>
</tr>
<tr>
<td>C-22</td>
<td>40.2</td>
<td>34.2</td>
<td>34.2</td>
</tr>
<tr>
<td>C-23</td>
<td>28.2</td>
<td>28.3</td>
<td>15.6</td>
</tr>
<tr>
<td>C-24</td>
<td>15.6</td>
<td>15.6</td>
<td>14.9</td>
</tr>
<tr>
<td>C-25</td>
<td>16.3</td>
<td>16.3</td>
<td>16.3</td>
</tr>
<tr>
<td>C-26</td>
<td>16.2</td>
<td>16.2</td>
<td>16.2</td>
</tr>
<tr>
<td>C-27</td>
<td>14.7</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>C-28</td>
<td>18.2</td>
<td>60.5</td>
<td>60.8</td>
</tr>
<tr>
<td>C-29</td>
<td>109.6</td>
<td>109.9</td>
<td>29.6</td>
</tr>
<tr>
<td>C-30</td>
<td>19.5</td>
<td>19.3</td>
<td>-</td>
</tr>
<tr>
<td>Proton</td>
<td>HMBC of DMC 22</td>
<td>HMBC of DMH 3</td>
<td>HMBC of DMH 10</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>2J</td>
<td>3J</td>
<td>2J</td>
</tr>
<tr>
<td>H-1</td>
<td>ns</td>
<td>ns</td>
<td>37.3 (C)</td>
</tr>
<tr>
<td>H-2</td>
<td>ns</td>
<td>ns</td>
<td>79.5 (CH-O)</td>
</tr>
<tr>
<td>H-3</td>
<td>-</td>
<td>15.6 (CH$_3$), 28.2 (CH$_3$)</td>
<td>-</td>
</tr>
<tr>
<td>H-5</td>
<td>-</td>
<td>28.2 (CH$_3$)</td>
<td>18.5 (CH$_2$),39.1 (C)</td>
</tr>
<tr>
<td>H-6</td>
<td>-</td>
<td>37.3 (C), 41.1 (C)</td>
<td>-</td>
</tr>
<tr>
<td>H-7</td>
<td>ns</td>
<td>ns</td>
<td>41.1 (C)</td>
</tr>
<tr>
<td>H-9</td>
<td>21.5 (CH$_2$), 37.3 (C), 41.1 (C)</td>
<td>16.3 (CH$_3$)</td>
<td>41.1 (C), 37.3 (C)</td>
</tr>
<tr>
<td>H-11</td>
<td>ns</td>
<td>ns</td>
<td>25.5 (CH$_2$)</td>
</tr>
<tr>
<td>H-12</td>
<td>ns</td>
<td>ns</td>
<td>37.5 (CH)</td>
</tr>
<tr>
<td>H-13</td>
<td>43.0 (C)</td>
<td>-</td>
<td>48.8 (CH)</td>
</tr>
<tr>
<td>H-15</td>
<td>ns</td>
<td>ns</td>
<td>42.9 (C)</td>
</tr>
<tr>
<td>H-16</td>
<td>ns</td>
<td>18.2 (CH$_3$), 16.2 (CH$_2$), 48.6 (CH)</td>
<td>27.3 (CH$_2$)</td>
</tr>
<tr>
<td>H-18</td>
<td>-</td>
<td>151.1 (C)</td>
<td>48.1 (CH), 37.5 (CH)</td>
</tr>
<tr>
<td>H-19</td>
<td>48.5 (CH), 151.2 (C)</td>
<td>19.5 (CH$_3$), 29.9 (CH$_2$), 109.5 (CH$_2$)</td>
<td>48.8 (CH), 29.9(CH$_2$), 150.7 (C)</td>
</tr>
</tbody>
</table>

Table 3.23: HMBC correlation (700 MHz, CDCl$_3$) of DMC 22, DMH 3 and DMH 10
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H-21</td>
<td>ns</td>
<td>ns</td>
<td>-</td>
<td>-</td>
<td>52.2 (CH), 34.2 (CH<sub>2</sub>)</td>
</tr>
<tr>
<td>H-22</td>
<td>ns</td>
<td>18.2 (CH<sub>3</sub>)</td>
<td>29.9 (CH<sub>2</sub>)</td>
<td>60.5 (CH<sub>2</sub>-O), 48.8 (CH)</td>
<td>49.8 (CH), 48.1 (C)</td>
</tr>
<tr>
<td>H-23</td>
<td>39.1 (C)</td>
<td>15.6 (CH<sub>3</sub>), 55.6 (CH), 79.2 (CH)</td>
<td>39.1 (C)</td>
<td>79.5(CH-O), 15.6 (CH<sub>3</sub>), 55.6 (CH)</td>
<td>39.1 (C)</td>
</tr>
<tr>
<td>H-24</td>
<td>39.1 (C)</td>
<td>28.2 (CH<sub>3</sub>), 55.6 (CH), 79.2 (CH)</td>
<td>39.1 (C)</td>
<td>79.5 (CH-O), 28.3 (CH<sub>3</sub>), 55.6 (CH)</td>
<td>39.1 (C)</td>
</tr>
<tr>
<td>H-25</td>
<td>37.3 (C)</td>
<td>38.9 (CH<sub>2</sub>), 50.6 (CH), 55.6 (CH)</td>
<td>37.3 (C)</td>
<td>38.9 (CH<sub>2</sub>), 50.5 (CH), 55.6 (CH)</td>
<td>37.4 (C)</td>
</tr>
<tr>
<td>H-26</td>
<td>41.1 (C)</td>
<td>34.5 (CH<sub>2</sub>), 43.0 (C), 50.6 (CH)</td>
<td>41.1 (C)</td>
<td>42.9 (C), 50.5 (CH), 37.4 (C)</td>
<td>42.8 (C), 50.4 (CH), 38.9 (CH<sub>2</sub>)</td>
</tr>
<tr>
<td>H-27</td>
<td>43.0 (C)</td>
<td>27.7 (CH<sub>2</sub>),38.3 (CH), 41.0 (C)</td>
<td>42.9 (C)</td>
<td>41.1 (C)</td>
<td>42.8 (C)</td>
</tr>
<tr>
<td>H-28</td>
<td>43.2 (C)</td>
<td>35.8 (CH<sub>2</sub>), 40.2 (CH<sub>2</sub>), 48.5 (CH)</td>
<td>-</td>
<td>34.2 (CH<sub>2</sub>), 29.4 (CH<sub>2</sub>)</td>
<td>48.1 (C)</td>
</tr>
<tr>
<td>H-29</td>
<td>-</td>
<td>19.5 (CH<sub>3</sub>), 48.2 (CH)</td>
<td>150 (C)</td>
<td>19.3 (CH<sub>3</sub>), 48.1 (CH)</td>
<td>212.4 (C)</td>
</tr>
<tr>
<td>H-30</td>
<td>151.2 (C)</td>
<td>109.5 (CH=), 48.2 (CH)</td>
<td>150 (C)</td>
<td>109.9 (CH=),48.1 (CH)</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 3.46: 1H NMR spectrum (700 MHz) of DMC 22 in CDCl$_3$

Figure 3.47: 13C NMR spectrum (175MHz) of DMC 22 in CDCl$_3$
Figure 3.48: 1H NMR spectrum (700MHz) of DMH 3 in CDCl$_3$

Figure 3.49: 13C NMR spectrum (175 MHz) of DMH 3 in CDCl$_3$
Figure 3.50: 1H NMR spectrum (700MHz) of DMH 10 in CDCl$_3$

Figure 3.51: 13C NMR spectrum (175MHz) of DMH 10 in CDCl$_3$
3.2.6.4 Characterization of DMH 15 as betulinaldehyde (18)

The high-resolution mass spectrometry showed the [M+H]⁺ at m/z 441.3743 (calculated for C₃₀H₄₉O₂ at 441.373255) which confirmed the molecular formula of DMH 15 as C₃₀H₄₈O₂.

The ¹H and ¹³C NMR spectrum of DMH 15 showed very similar signals to those of DMH 3. Like DMH 3, ¹H NMR spectrum (700 MHz, CDCl₃, Table 3.24, Figure 3.48) of DMH 15 showed the presence of five methyl peaks from δ_H 0.76-0.98 including a vinylic methyl singlet at δ_H 1.69, an exomethylene singlets at δ_H 4.76 and δ_H 4.63, however it also exhibited the presence of aldehyde proton singlet peak at δ_H 9.68 instead of hydroxymethyl.

The ¹³C NMR spectrum (175 MHz, CDCl₃; Table 3.24; Figure 3.49) showed the presence of 30 carbons in the molecule including an aldehyde at δ_C 206.9, oxymethine carbon at δ_C 79.2 and exomethylene carbon at δ_C 110.4.

The DEPT experiment confirmed that the carbonyl at 206.9 as an aldehyde group and also the presence of methyl, methylene and methines like DMH 3. The HMBC correlations were also very much similar to those of DMH 3. In HMBC experiment (Table 3.25), the proton of aldehyde group at δ_H 9.68 (C-28; δ_C 206.9 from HSQC) exhibited ²J connection with the quaternary carbon at δ_C 59.6 (C-17). Thus based on NMR and Mass spectrometry data, the compound DMH 15 was identified as 3-hydroxy-20(29)-Lupen-28–al (18) commonly known as betulinaldehyde. The spectral data of DMH 15 were in agreement with literature data (Haque et al., 2006). This is a common plant derived compound which was also previously reported from the same genus Diospyros but different species of the bark of Diospyros canaliculata (Zhong et al., 1984).
3.2.6.5 Characterization of DMH 2 as Betulone (19):

The IR spectrum of DMH 2 revealed the presence of exomethylene at 882 cm\(^{-1}\) and carbonyl at 1702 cm\(^{-1}\). The high resolution of mass spectroscopy showed (Figure 3.50) the [M+H]\(^+\) at m/z 441.37232 (calculated for \(\text{C}_{30}\text{H}_{49}\text{O}_{2}\), at 441.373255) which confirmed the molecular formula of DMH 2 as \(\text{C}_{30}\text{H}_{48}\text{O}_{2}\).

The \(^1\)H NMR spectrum (700 MHz, CDCl\(_3\); Table 3.24; Figure 3.51) showed the presence of exomethylene protons as singlets at \(\delta_H 4.69\) and 4.59, the hydroxymethyl signals resonating at \(\delta_H 3.80\) (d, \(J = 10.78\) Hz) and \(\delta_H 3.35\) (d, \(J = 10.78\) Hz), five methyl proton signals between \(\delta_H 0.99\) - 1.02 including a vinylic methyl at \(\delta_H 1.68\) and numerous signals between \(\delta_H 1.06\) - 2.49 due to the presence of methine and methylene protons.

The \(^{13}\)C NMR (175 MHz, CDCl\(_3\); Table 3.24; Figure 3.52) revealed a total of 30 carbons including a carbonyl at \(\delta_C 218.2\), exomethylene carbon at \(\delta_C 109.9\) and hydroxymethyl carbon at \(\delta_C 60.7\). The DEPT 135 identified 6 methyl, 11 methylene including exomethylene and hydroxymethyl, 5 methines and 8 quaternary carbons.

The Key HMBC correlations were very much similar to DMH 3. The only difference was the presence of carbonyl \(\delta_C 218.2\) at C-3 position instead of oxymethine of DMH 3. In HMBC experiment (Table 3.25), the methyl protons at \(\delta_H 1.07\) (H-23; 26.6) and \(\delta_H 1.02\) (H-24; \(\delta_C 21.3\)) showed \(^3\)J connectivity with the carbon of carbonyl \(\delta_C 218.2\) at (C-3) position. Moreover, the methylene protons at \(\delta_H 2.41, 2.49\) (H-2; \(\delta_C 34.4\) from HSQC) and \(\delta_H 1.39\) and 1.89 (H-1; \(\delta_C 39.8\) from HSQC) exhibited \(^2\)J and \(^3\)J correlation respectively, with the carbonyl at \(\delta_C 218.2\) (C-3).

Therefore, based on the NMR spectra, IR and Mass spectrometry data, and its direct comparison with published data, the compound was identified as 20 (29) -lupine-3, 28-diol (19) commonly known as Betulone (Satiraphan et al., 2012). Previously it was isolated from the bark of *Betula lenta* (Cole et al., 1991).
Table 3.24: 1H NMR data (700 MHz, CDCl$_3$) and 13C NMR data (175 MHz, CDCl$_3$) of DMH 15 and DMH 2

<table>
<thead>
<tr>
<th>Position</th>
<th>δ^1H of DMH 15</th>
<th>13C of DMH 15</th>
<th>δ^1H of DMH 2</th>
<th>13C of DMH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.66, m 0.90, m</td>
<td>38.9</td>
<td>1.39, m 1.89, m</td>
<td>39.8</td>
</tr>
<tr>
<td>2</td>
<td>2.02, m</td>
<td>27.6</td>
<td>2.41, m 2.49, m</td>
<td>34.4</td>
</tr>
<tr>
<td>3</td>
<td>3.64, t, J=6.65 Hz</td>
<td>79.2</td>
<td>-</td>
<td>218.2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>39.1</td>
<td>-</td>
<td>47.6</td>
</tr>
<tr>
<td>5</td>
<td>0.68, d, J= 10.01 Hz</td>
<td>55.5</td>
<td>1.33, m</td>
<td>55.1</td>
</tr>
<tr>
<td>6</td>
<td>1.38, m 1.51, m</td>
<td>18.5</td>
<td>1.45, m 1.55, m</td>
<td>19.8</td>
</tr>
<tr>
<td>7</td>
<td>2.34, m 2.43, m</td>
<td>34.4</td>
<td>1.45, m</td>
<td>33.7</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>41.1</td>
<td>-</td>
<td>41.0</td>
</tr>
<tr>
<td>9</td>
<td>1.25, s</td>
<td>50.7</td>
<td>1.39, m</td>
<td>49.9</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>37.3</td>
<td>-</td>
<td>37.0</td>
</tr>
<tr>
<td>11</td>
<td>0.85, m</td>
<td>20.9</td>
<td>1.42, m 1.26, m</td>
<td>21.5</td>
</tr>
<tr>
<td>12</td>
<td>1.75, m 1.05, m</td>
<td>25.8</td>
<td>1.05, m 1.66, m</td>
<td>25.4</td>
</tr>
<tr>
<td>13</td>
<td>2.02, m</td>
<td>38.9</td>
<td>1.69, m</td>
<td>37.6</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>42.9</td>
<td>-</td>
<td>42.9</td>
</tr>
<tr>
<td>15</td>
<td>1.56, m</td>
<td>27.6</td>
<td>1.08, m 1.72, m</td>
<td>27.2</td>
</tr>
<tr>
<td>16</td>
<td>1.45, m 1.25, m</td>
<td>29.5</td>
<td>1.23, m 1.95, m</td>
<td>29.3</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>59.6</td>
<td>-</td>
<td>34.3</td>
</tr>
<tr>
<td>18</td>
<td>1.71, m</td>
<td>48.3</td>
<td>2.08, m</td>
<td>48.9</td>
</tr>
<tr>
<td>19</td>
<td>2.86, m</td>
<td>47.6</td>
<td>2.40, m</td>
<td>47.9</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>149.6</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td>21</td>
<td>1.45, m 1.25, m</td>
<td>29.8</td>
<td>1.44, m 1.97, m</td>
<td>29.9</td>
</tr>
<tr>
<td>22</td>
<td>2.35, m 2.44, m</td>
<td>33.9</td>
<td>1.06, m 1.86, m</td>
<td>34.1</td>
</tr>
<tr>
<td>23</td>
<td>0.97, d, J=8.33 Hz</td>
<td>28.2</td>
<td>1.07, d, J= 7.28</td>
<td>26.8</td>
</tr>
<tr>
<td>24</td>
<td>0.76, s</td>
<td>15.6</td>
<td>1.02, s</td>
<td>21.3</td>
</tr>
<tr>
<td>25</td>
<td>0.82, s</td>
<td>16.4</td>
<td>0.93, s</td>
<td>16.2</td>
</tr>
<tr>
<td>26</td>
<td>0.91, s</td>
<td>16.2</td>
<td>1.06, s</td>
<td>16.0</td>
</tr>
<tr>
<td>27</td>
<td>0.98, d, J= 8.33 Hz</td>
<td>14.3</td>
<td>0.99, s</td>
<td>14.9</td>
</tr>
<tr>
<td>28</td>
<td>9.68, s</td>
<td>206.9</td>
<td>3.80, d, J= 10.78</td>
<td>60.7</td>
</tr>
<tr>
<td>29</td>
<td>4.76, s 4.63, s</td>
<td>110.4</td>
<td>4.69, s 4.59, s</td>
<td>109.9</td>
</tr>
<tr>
<td>30</td>
<td>1.69, s</td>
<td>19.2</td>
<td>1.68, d, J= 6.79</td>
<td>19.2</td>
</tr>
<tr>
<td>Protons</td>
<td>HMBC of DMH 15</td>
<td>2(\nu)</td>
<td>3(\nu)</td>
<td>3(\nu)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>H-1</td>
<td>-</td>
<td>55.5 (CH)</td>
<td>36.9 (C)</td>
<td>218.2 (C=O), 16.1 (CH₃)</td>
</tr>
<tr>
<td>H-2</td>
<td>-</td>
<td>39.1 (C)</td>
<td>218.2 (C=O), 39.8 (CH₂)</td>
<td>47.5 (C)</td>
</tr>
<tr>
<td>H-3</td>
<td>27.6 (CH₂)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H-5</td>
<td>18.5 (CH₂)</td>
<td>34.4 (CH₂)</td>
<td>36.9 (C), 47.5 (C)</td>
<td>16.1 (CH₃), 21.3 (CH₂)</td>
</tr>
<tr>
<td>H-6</td>
<td>55.5 (CH)</td>
<td>41.1 (C)</td>
<td>33.7 (CH₂), 55.1 (CH)</td>
<td>16.1 (CH₃)</td>
</tr>
<tr>
<td>H-7</td>
<td>-</td>
<td>-</td>
<td>19.8 (CH₃)</td>
<td>15.9 (CH₃), 55.1 (CH), 49.9 (CH)</td>
</tr>
<tr>
<td>H-9</td>
<td>37.3 (C), 41.1 (C), 29.8 (CH₂)</td>
<td>38.9 (CH)</td>
<td>41.0 (C)</td>
<td>15.9 (CH₃)</td>
</tr>
<tr>
<td>H-11</td>
<td>-</td>
<td>37.3 (C), 16.4 (CH₃), 38.9 (CH)</td>
<td>49.9 (CH)</td>
<td>41.0 (C)</td>
</tr>
<tr>
<td>H-12</td>
<td>20.9 (CH₂)</td>
<td>48.3 (CH), 59.6 (C)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H-13</td>
<td>48.3 (CH), 42.9 (C)</td>
<td>14.3 (CH₃), 29.5 (CH₂)</td>
<td>48.8 (CH), 42.7 (CH)</td>
<td>14.9 (CH₃)</td>
</tr>
<tr>
<td>H-15</td>
<td>29.5 (CH₂), 42.9 (C)</td>
<td>14.3 (CH₃)</td>
<td>42.7 (C)</td>
<td>14.9 (CH₃)</td>
</tr>
<tr>
<td>H-16</td>
<td>-</td>
<td>59.6 (C)</td>
<td>34.3 (C)</td>
<td>42.7 (C), 48.8 (CH)</td>
</tr>
<tr>
<td>H-18</td>
<td>38.9 (CH), 47.6 (CH)</td>
<td>-</td>
<td>34.3 (C)</td>
<td>29.9 (CH₂)</td>
</tr>
<tr>
<td>H-19</td>
<td>29.8 (CH₂), 149.6 (C), 48.3 (CH)</td>
<td>19.2 (CH₃), 38.9 (CH), 110.4 (CH₂=)</td>
<td>29.9 (CH₂), 48.8 (CH)</td>
<td>19.2 (CH₃)</td>
</tr>
<tr>
<td>H-21</td>
<td>47.6 (CH)</td>
<td>59.6 (C)</td>
<td>-</td>
<td>48.8 (CH), 150 (C)</td>
</tr>
<tr>
<td>H-22</td>
<td>-</td>
<td>-</td>
<td>29.9 (CH₂)</td>
<td>48.8 (CH), 60.7 (CH₂OH)</td>
</tr>
<tr>
<td>H-23</td>
<td>39.1 (C)</td>
<td>55.5 (CH), 79.2 (CH-O)</td>
<td>47.5 (C)</td>
<td>26.8 (CH₃), 55.1 (CH)</td>
</tr>
<tr>
<td>H-24</td>
<td>39.1 (C)</td>
<td>55.5 (CH), 79.2 (CH-O)</td>
<td>47.5 (C)</td>
<td>21.3 (CH₃), 218.2 (C), 55.1 (CH)</td>
</tr>
<tr>
<td>H-25</td>
<td>37.3 (C)</td>
<td>50.7 (CH), 55.5 (CH)</td>
<td>36.9 (C)</td>
<td>39.8 (CH₂), 55.1 (CH), 49.9 (CH)</td>
</tr>
<tr>
<td>H-26</td>
<td>41.1 (C)</td>
<td>34.4 (CH₂), 42.9 (C), 50.5 (CH)</td>
<td>41.0 (C)</td>
<td>33.7 (CH₂), 49.9 (CH), 42.7 (CH)</td>
</tr>
<tr>
<td>H-27</td>
<td>42.9 (C)</td>
<td>41.1 (C)</td>
<td>42.7 (C)</td>
<td>37.6 (CH), 41.0 (C), 27.2 (CH₂)</td>
</tr>
<tr>
<td>H-28</td>
<td>59.6 (C)</td>
<td>-</td>
<td>-</td>
<td>47.9 (CH), 29.3 (CH₂), 34.1(CH₂)</td>
</tr>
<tr>
<td>H-29</td>
<td>-</td>
<td>19.2 (CH₃), 47.6 (CH)</td>
<td>150.5 (C)</td>
<td>19.2 (CH₃), 47.9 (CH)</td>
</tr>
<tr>
<td>H-30</td>
<td>-</td>
<td>47.6 (CH)</td>
<td>150.5 (C)</td>
<td>109.9 (CH₂=)</td>
</tr>
</tbody>
</table>
Figure 3.52: 1H NMR spectrum (700MHz) of DMH 15 in CDCl$_3$
Figure 3.53: 13C NMR spectrum (175MHz) of DMH 15 in CDCl$_3$

Figure 3.54: High Resolution Mass spectrometry of DMH 2
Figure 3.55: 1H NMR spectrum (700MHz) of DMH 2 in CDCl$_3$

Figure 3.56: 13C NMR spectrum (175MHz) of DMH 2 in CDCl$_3$
3.2.6.6 Characterization of CRH 9 as glutinol (20)

The 1H NMR spectra (700MHz, CDCl$_3$, Table 3.26, Figure 3.53) of CRH 12 exhibited the presence of eight methyl groups resonated between δ_H 0.85-1.16, an olefinic proton at δ_H 5.63 (d, J=6.16 Hz), an oxymethine at δ_H 3.46 and a number of signals between δ_H 0.91-1.69 due to the presence of numerous methine and methylene protons in the molecule.

The 13C NMR spectrum (175 MHz, CDCl$_3$, Table 3.26, Figure 3.54) showed a total of 30 carbons including an oxymethine at δ_C 76.6, an olefinic methine at δ_C 122.3 and a quaternary carbon at δ_C 141.8. The DEPT experiment also confirmed a total of 8 methyl, 10 methylene, 5 methine and 7 quaternary carbons in the molecule.

The complete structure of this compound was established by 2D NMR spectra, predominantly by HQMC and HMBC. In HMBC experiment (Table 3.27), methylene protons at δ_H 1.69, δ_H 1.88 (H-2; δ_C 28.0 from HSQC) showed 2J correlation with oxymethine carbon at δ_C 76.6 (C-3; δ_H 3.46). Moreover, methylene protons at δ_H 1.46, δ_H 1.53 (H-1; δ_C 18.3 from HSQC) and two methyl protons at δ_H 1.14 (H-23; δ_C 25.6 from HSQC) and 1.05 (H-24; δ_C 29.2 from HSQC) exerted 3J connectivity with oxymethine carbon at δ_C 76.6 (C-3; δ_H 3.46). The downfield olefinic methine proton at δ_H 5.62 (H-6; δ_C 122.3 from HSQC) revealed 2J connection with the quaternary carbon at δ_C 141.6 (C-5) and 3J connection with quaternary carbon at δ_C 41.0 (C-4) and methine carbons at δ_C 47.6 (C-8; δ_H 1.51 from HSQC) and δ_C 49.9 (C-10; δ_H 1.99). In addition, the angular methyl proton at δ_H 0.85 (H-25; δ_C 16.4) also showed 3J connection with methine carbons at δ_C 47.6 (C-8; δ_H 1.51 from HSQC) and δ_C 49.9 (C-10; δ_H 1.99). Moreover, the methine protons at δ_H 1.51 (H-8; δ_C 47.6) also showed 3J connection with two methyl carbons at δ_C 16.4 (C-25; δ_H 0.85) and δ_C 19.8 (C-27; δ_H 1.09) and methine carbon at δ_C 49.9 (C-10; δ_H 1.99).
The methyl protons at δ_H 1.00 (H-26; δ_C 18.6), H-27 (δ_H 1.09, δ_C 19.8) and H-28 (δ_H 1.16, δ_C 32.1) were shown 2J connection with the quaternary carbon attached next to them at C-13 (δ_C 38.0), C-14 (δ_C 47.6) and C-17 (δ_C 30.3). However, methyl protons notably H-26 and H-28 showed common 3J correlation with methine carbon at δ_C 43.3 (C-18; δ_H 1.57 from HSQC). Methyl protons at H-26 (δ_H 1.00; δ_C 18.6) also exhibit 3J correlation with methylene carbon at δ_C 30.6 (C-12; δ_H 1.34 from HSQC) and quaternary carbon at 38.0 (C-14). However, methyl proton at H-27 (δ_H 1.09, δ_C 19.8) showed connection with methine carbon at 47.6 (C-8; δ_H 1.51) and quaternary carbon at 39.6 (C-13) by 3J. Another angular methyl proton at H-28 (δ_H 1.16, δ_C 32.1) showed 3J connection with methylene carbons at δ_C 36.2 (C-16; δ_H 1.38, 1.53) and 39.2 (C-22; δ_H 0.91, 1.54 from HSQC).

On the other hand, Methyl protons at δ_H 0.95 (H-29; δ_C 34.8) and δ_H 0.98 (H-30; δ_C 32.6) showed 2J connection with quaternary carbon at C-20 (δ_C 28.5) and 3J connection with methylene carbon at δ_C 33.4 (C-21; δ_H 1.46, 1.24 from HSQC).

Based on NMR, IR data, and its direct comparison with published data, the compound CRH 9 has been identified as glutinol (20; Adebayo et al., 2017).

3.2.6.7 Characterization of CRC 10 as glutinone (21)

The 1H NMR spectrum (700MHz, CDCl$_3$, Table 3.26, Figure 3.55) and ^{13}C NMR (175MHz, CDCl$_3$) of CRC 10 are almost similar to those in CRH 9. Like CRH 9, the 1H NMR of CRC 10 showed there is the presence of 8 methyl signals between δ_H 0.83-1.25, an olefinic methine proton at δ_H 5.69 and a number of signals between δ_H 0.94-2.26 representing numerous methine and methylene protons in the molecule but however, there was no signal at 3.45 confirming the absence of oxymethine peak at C-3. The ^{13}C NMR (175MHz, CDCl$_3$, Table 3.26, Figure 3.56) spectrum revealed the presence of a total of 30
carbons including carbonyl at $\delta_C 215.0$ instead of oxymethine carbon, olefinic methine carbon at $\delta_C 122.5$ and olefinic quaternary carbon at $\delta_C 142.3$.

The key HMBC correlations were almost identical to CRH 9. The only difference was the presence of carbonyl carbon 215.0 instead of oxymethine carbon at the same position. In HMBC experiment, the methylene proton at $\delta_H 2.34, 2.45$ (H-2; $\delta_C 34.4$) showed 2J correlation with the carbonyl carbon at $\delta_C 215.0$ (C-3). The methylene protons at $\delta_H 1.63, 1.88$ (H-1; $\delta_C 21.8$) and methyl proton at $\delta_H 1.24$ (H-24; $\delta_C 24.6$) showed 3J connection with the carbon of carbonyl at $\delta_C 215.0$ (C-3). The rest of the HMBC correlations were identical those in CRH 9. Therefore, based on the NMR data, the compound was identified as alnusenone (21; glutinone). However, this is the first time report NMR data of alnusenone.

Table 3.26: 1H (500 MHz) and ^{13}C (125 MHz) NMR spectroscopic data for CRH 9 and CRC 10 in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>CRH 9</th>
<th>CRC 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ_H</td>
<td>^{13}C</td>
</tr>
<tr>
<td>1</td>
<td>1.46, m</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>1.52, m</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.69, m</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>1.88, m</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.46, s</td>
<td>76.6</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>41.0</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>141.8</td>
</tr>
<tr>
<td>6</td>
<td>5.63, d, J= 6.16 Hz</td>
<td>122.3</td>
</tr>
<tr>
<td>7</td>
<td>1.97, m</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>1.84, m</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.51, m</td>
<td>47.6</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>35.1</td>
</tr>
<tr>
<td>10</td>
<td>1.99, m</td>
<td>49.9</td>
</tr>
<tr>
<td>11</td>
<td>1.52, m</td>
<td>34.8</td>
</tr>
<tr>
<td></td>
<td>1.39, m</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.34, m</td>
<td>30.6</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>39.6</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>38.0</td>
</tr>
<tr>
<td>15</td>
<td>1.46, m</td>
<td>32.2</td>
</tr>
<tr>
<td></td>
<td>1.29, m</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.53, m</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>1.38, m</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>30.3</td>
</tr>
<tr>
<td>18</td>
<td>1.57</td>
<td>43.3</td>
</tr>
<tr>
<td>19</td>
<td>1.37, m</td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td>1.25, m</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>28.5</td>
</tr>
<tr>
<td>21</td>
<td>1.46, m</td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td>1.24, m</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.54, m</td>
<td>39.2</td>
</tr>
<tr>
<td></td>
<td>0.91, m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protons</td>
<td>HMBC of CRH 9</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2(^J)</td>
</tr>
<tr>
<td>23</td>
<td>H-1</td>
<td>28.0 (CH(_2)), 49.9 (CH)</td>
</tr>
<tr>
<td>24</td>
<td>H-2</td>
<td>18.3 (CH(_2)), 76.6 (CH-O)</td>
</tr>
<tr>
<td>25</td>
<td>H-3</td>
<td>18.3 (CH(_2))</td>
</tr>
<tr>
<td>26</td>
<td>H-6</td>
<td>141.8 (C)</td>
</tr>
<tr>
<td>27</td>
<td>H-7</td>
<td>47.6 (CH)</td>
</tr>
<tr>
<td>28</td>
<td>H-8</td>
<td>35.1 (C), 23.8 (CH(_2))</td>
</tr>
<tr>
<td>29</td>
<td>H-10</td>
<td>35.1 (C)</td>
</tr>
<tr>
<td>30</td>
<td>H-11</td>
<td>35.1 (C)</td>
</tr>
<tr>
<td>31</td>
<td>H-12</td>
<td>34.8 (CH(_2))</td>
</tr>
<tr>
<td>32</td>
<td>H-15</td>
<td>39.6 (C), 36.2 (CH(_2))</td>
</tr>
<tr>
<td>33</td>
<td>H-16</td>
<td>30.3 (C)</td>
</tr>
<tr>
<td>34</td>
<td>H-18</td>
<td>30.3 (C)</td>
</tr>
<tr>
<td>35</td>
<td>H-19</td>
<td>43.3 (CH), 28.5 (C)</td>
</tr>
<tr>
<td>36</td>
<td>H-21</td>
<td>39.2 (CH(_2)), 28.5 (C)</td>
</tr>
<tr>
<td>37</td>
<td>H-22</td>
<td>33.4 (CH(_2))</td>
</tr>
<tr>
<td>38</td>
<td>H-23</td>
<td>41.0 (C)</td>
</tr>
<tr>
<td>39</td>
<td>H-24</td>
<td>41.0 (C)</td>
</tr>
<tr>
<td>40</td>
<td>H-25</td>
<td>35.1 (C)</td>
</tr>
<tr>
<td>41</td>
<td>H-26</td>
<td>39.6 (C)</td>
</tr>
<tr>
<td>42</td>
<td>H-27</td>
<td>38.0 (C)</td>
</tr>
</tbody>
</table>

Table 3.27: HMBC spectroscopic data for CRH 9 and CRC 10 in CDCl\(_3\)
<table>
<thead>
<tr>
<th>H-28</th>
<th>30.3 (C)</th>
<th>36.2 (CH<sub>2</sub>), 39.2 (CH<sub>2</sub>), 43.3 (CH)</th>
<th>30.3 (C)</th>
<th>36.2 (CH<sub>2</sub>), 43.3 (CH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-29</td>
<td>28.5 (C)</td>
<td>33.4 (CH<sub>2</sub>)</td>
<td>28.5 (C)</td>
<td>33.3 (CH<sub>2</sub>), 35.3 (CH<sub>2</sub>)</td>
</tr>
<tr>
<td>H-30</td>
<td>28.5 (C)</td>
<td>33.4 (CH<sub>2</sub>)</td>
<td>28.5 (C)</td>
<td>33.3 (CH<sub>2</sub>)</td>
</tr>
</tbody>
</table>

Figure 3.57: 1H NMR spectrum (700MHz) of CRH 9 in CDCl₃

Figure 3.58: 13C NMR spectrum (175MHz) of CRH 9 in CDCl₃
Figure 3.59: 1H NMR spectrum (700MHz) of CRC 10 in CDCl$_3$

Figure 3.60: 13C NMR spectrum (175MHz) of CRC 10 in CDCl$_3$
3.2.7 Steroids:
Steroids are the most common and abundant secondary metabolites widely distributed in the plants. In this study, the steroids with different functional groups have been isolated from the hexane extracts of the leave of Cynometra ramiflora and Uraria picta. These are CRH 16 and UPH 46a.

3.2.7.1 Characterization of CRH 16 as a mixture 4:1 of β sitosterol (22) and stigmasterol (23):
The 1H NMR and 13C NMR spectra of CRH 16 revealed signals which have been interpreted as a mixture of two compounds in a ratio of 4:1. The 1H NMR spectrum (700MHz, CDCl$_3$, Table 3.28) showed the presence of olefinic proton as doublet at $^\delta$H 5.36 ($J= 2.31$ Hz), an oxymethine signal at $^\delta$H 3.52, signals between $^\delta$H 0.68-1.01 indicating the presence of six sets of methyl protons and numerous multiplets between $^\delta$H 1.05-3.55 for methine and methylene protons. Besides the above signal in the 1H NMR, the minor compound also revealed the presence of two olefinic protons at $^\delta$H 5.15 (dd, $J=15.12$ Hz, 8.75 Hz) and $^\delta$H 5.02 (dd, $J=15.61$Hz, 8.65 Hz) which appeared to be trans double bonded to each other.

The 13C NMR spectrum (175 MHz, CDCl$_3$; Table 3.28; Figure 3.57) exhibited a total of 29 carbons including an oxygenated methine ($^\delta$C 72.0; typical C-3 of steroid/ terpene), an olefinic methine at $^\delta$C 121.9 and a quaternary carbon at $^\delta$C 140.9. The minor
compound revealed the presence of two olefinic methines at δC 138.6 and δC 129.5 which replaced two methylene carbons in the major compound.

In HMBC (Table 3.30), oxygenated methine at δH 3.52 (H-3; δC 72.0) and methyl protons at δH 1.02 (H-19; δC 19.6 from HSQC) showed 3J correlation to a quaternary carbon at δC 140.9 (C-4). The olefinic proton at δH 5.36 (H-6; δC 121.9 from HSQC) showed 2J correlation with C-4 at δC 140.9 and 3J connectivity to a quaternary carbon at δC 37.1 (C-10) and a methylene carbon at δC 42.4 (C-4; δH 2.24; 2.29 from HSQC) and a methine carbon at δC 32.2 (C-8; δH 1.46 from HSQC). Both methyl groups at δH 0.68 (H-18; δC 12.0 from HSQC) and δH 0.92 (H-21; δC 18.9) were connected to a methine carbon at δC 56.7 (C-17; δH 1.10).

Three sets of methyl protons at δH 0.81 (H-26; δC 19.2 from HSQC), δH 0.84 (H-27; δC 20.0 from HSQC) and δH 0.85 (H-29; δH 12.1 from HSQC) showed a common 3J correlation to a methine carbon at δC 46.1 (C-24; δH 0.93 from HSQC). Methyl protons H-26 and H-27 were connected to C-25 (δC 29.3; δH 1.66) by 2J whereas H-29 was connected to C-28 (δC 23.2) by 2J. In the major compound, H-24 (δH 0.93; δC 46.1) was connected to a methylene carbon at δC 34.4 (C-22; δH 1.02, 1.32) by 3J. Because of the presence of another double bond between C-22 and C-23, the protons and carbons chemical shift from C-17 to C-24 were changed which were confirmed from HMBC. In HMBC, the proton at δH 5.16 (H-22; δC 138.9 from HSQC) showed HMBC correlation to carbons at δC 129.5 (C-23), δC 40.8 (C-20), δC 21.4 (C-21), δC 51.1 (C-24) and δC 56.4 (C-17). Similarly, another olefinic proton at δH 5.03 (H-23; δC 129.5 from HSQC) showed HMBC correlation with the carbons at δC 138.6 (C-22), δC 40.8 (C-20), δC 51.1 (C-24).

Accordingly, CRH 16 was characterized as a mixture (4:1) of β-sitosterol (22) and stigmasterol (23), two common phytosterols. The spectral data comply with those reported before. (Rahman, 2002)
Figure 3.61: 13C NMR spectrum (175MHz) of CRH 16 in CDCl$_3$
Table 3.28: 1H (500 MHz) and 13C NMR (125 MHz) data for CRH 16 and UPH

<table>
<thead>
<tr>
<th>Position</th>
<th>δ^1H</th>
<th>δ^{13}C</th>
<th>δ^1H</th>
<th>δ^{13}C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.85, m</td>
<td>37.5</td>
<td>1.69, m</td>
<td>35.9</td>
</tr>
<tr>
<td></td>
<td>1.09, m</td>
<td>2.02, m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.83, m</td>
<td>31.8</td>
<td>2.34, m</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>1.51, m</td>
<td>2.43, m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.53, m</td>
<td>72.0</td>
<td>-</td>
<td>199.9</td>
</tr>
<tr>
<td>4</td>
<td>2.29, m</td>
<td>42.4</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>2.24, m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>140.9</td>
<td>-</td>
<td>171.9</td>
</tr>
<tr>
<td>6</td>
<td>5.36, d, J= 2.31 Hz</td>
<td>121.9</td>
<td>5.73, s</td>
<td>123.9</td>
</tr>
<tr>
<td>7</td>
<td>1.53, m</td>
<td>31.8</td>
<td>1.10, m</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>1.97, m</td>
<td>1.60, m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.46, m</td>
<td>32.2</td>
<td>ns</td>
<td>32.1</td>
</tr>
<tr>
<td>9</td>
<td>0.95, m</td>
<td>50.4</td>
<td>1.02, q, J=11.62 Hz</td>
<td>56.2</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>37.1</td>
<td>-</td>
<td>38.8</td>
</tr>
<tr>
<td>11</td>
<td>1.50, m</td>
<td>21.3</td>
<td>1.42, m</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td>1.47, m</td>
<td>1.51, m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.01, m</td>
<td>39.9</td>
<td>1.16, m</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>1.16, m</td>
<td>2.03, m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>42.5</td>
<td>-</td>
<td>42.6</td>
</tr>
<tr>
<td>14</td>
<td>1.00, m</td>
<td>56.9</td>
<td>0.92, m</td>
<td>54.0</td>
</tr>
<tr>
<td>15</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>16</td>
<td>1.27, m</td>
<td>28.6</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>17</td>
<td>1.11, m</td>
<td>56.3</td>
<td>1.11, m</td>
<td>56.1</td>
</tr>
<tr>
<td>18</td>
<td>0.68, s</td>
<td>12.1</td>
<td>0.70, d, J=12.88 Hz</td>
<td>12.1</td>
</tr>
<tr>
<td>19</td>
<td>1.02, s</td>
<td>19.6</td>
<td>0.81, q, J=10.25 Hz</td>
<td>19.2</td>
</tr>
<tr>
<td>20</td>
<td>1.36, m</td>
<td>36.3</td>
<td>1.36, m</td>
<td>36.3</td>
</tr>
<tr>
<td>21</td>
<td>0.92, d, J= 6.58 Hz</td>
<td>18.9</td>
<td>0.91, d, J= 6.65 Hz</td>
<td>18.9</td>
</tr>
<tr>
<td>22</td>
<td>1.32, m</td>
<td>34.4</td>
<td>1.02, m</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>1.02, m</td>
<td>1.32, m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.17, m</td>
<td>26.3</td>
<td>1.16, m</td>
<td>26.3</td>
</tr>
<tr>
<td>24</td>
<td>0.93, m</td>
<td>46.1</td>
<td>0.93, m</td>
<td>46.0</td>
</tr>
<tr>
<td>25</td>
<td>1.67, m</td>
<td>29.3</td>
<td>1.66, m</td>
<td>29.4</td>
</tr>
<tr>
<td>26</td>
<td>0.82, d, J=6.86 Hz</td>
<td>19.3</td>
<td>0.80, q, J=10.5 Hz</td>
<td>12.4</td>
</tr>
<tr>
<td>27</td>
<td>0.84, m</td>
<td>20.2</td>
<td>0.81, q, J=10.25 Hz</td>
<td>19.2</td>
</tr>
<tr>
<td>28</td>
<td>1.23, m</td>
<td>23.2</td>
<td>0.93, m</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>1.28, m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.85, t, J=6.86 Hz</td>
<td>12.2</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>
Table 3.29: 13C NMR (175 MHz) data of Stigmasterol and stigmasterone

<table>
<thead>
<tr>
<th>Position</th>
<th>Stigmasterol (CRH 16)</th>
<th>Stigmasterone (UPH 46a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>37.5</td>
<td>35.9</td>
</tr>
<tr>
<td>C-2</td>
<td>31.8</td>
<td>34.2</td>
</tr>
<tr>
<td>C-3</td>
<td>72.0</td>
<td>199.9</td>
</tr>
<tr>
<td>C-4</td>
<td>42.4</td>
<td>ns</td>
</tr>
<tr>
<td>C-5</td>
<td>140.9</td>
<td>171.9</td>
</tr>
<tr>
<td>C-6</td>
<td>121.9</td>
<td>123.9</td>
</tr>
<tr>
<td>C-7</td>
<td>31.8</td>
<td>24.4</td>
</tr>
<tr>
<td>C-8</td>
<td>32.2</td>
<td>32.1</td>
</tr>
<tr>
<td>C-9</td>
<td>50.4</td>
<td>56.2</td>
</tr>
<tr>
<td>C-10</td>
<td>37.1</td>
<td>38.8</td>
</tr>
<tr>
<td>C-11</td>
<td>21.3</td>
<td>21.2</td>
</tr>
<tr>
<td>C-12</td>
<td>39.9</td>
<td>39.8</td>
</tr>
<tr>
<td>C-13</td>
<td>42.5</td>
<td>42.6</td>
</tr>
<tr>
<td>C-14</td>
<td>56.9</td>
<td>54.0</td>
</tr>
<tr>
<td>C-15</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>C-16</td>
<td>28.6</td>
<td>ns</td>
</tr>
<tr>
<td>C-17</td>
<td>56.4</td>
<td>56.1</td>
</tr>
<tr>
<td>C-18</td>
<td>12.1</td>
<td>12.1</td>
</tr>
<tr>
<td>C-19</td>
<td>19.6</td>
<td>19.2</td>
</tr>
<tr>
<td>C-20</td>
<td>40.8</td>
<td>40.6</td>
</tr>
<tr>
<td>C-21</td>
<td>21.4</td>
<td>21.3</td>
</tr>
<tr>
<td>C-22</td>
<td>138.6</td>
<td>138.3</td>
</tr>
<tr>
<td>C-23</td>
<td>129.5</td>
<td>129.6</td>
</tr>
<tr>
<td>C-24</td>
<td>51.5</td>
<td>51.3</td>
</tr>
<tr>
<td>C-25</td>
<td>29.3</td>
<td>29.4</td>
</tr>
<tr>
<td>C-26</td>
<td>19.3</td>
<td>12.4</td>
</tr>
<tr>
<td>C-27</td>
<td>20.2</td>
<td>19.2</td>
</tr>
<tr>
<td>C-28</td>
<td>23.2</td>
<td>23.3</td>
</tr>
<tr>
<td>C-29</td>
<td>12.2</td>
<td>ns</td>
</tr>
<tr>
<td>Protons</td>
<td>HMBC (^2J)</td>
<td>HMBC (^3J)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>H-1</td>
<td>72.0 (CH-O)</td>
<td>19.6 (CH(_3)), 50.3</td>
</tr>
<tr>
<td>H-2</td>
<td>37.5 (CH(_2))</td>
<td>140.9 (C)</td>
</tr>
<tr>
<td>H-3</td>
<td>31.9 (CH(_2))</td>
<td>140.9 (C), 37.5 (CH(_2))</td>
</tr>
<tr>
<td>H-4</td>
<td>72.0 (CH)</td>
<td>31.8 (CH(_2)), 37.1 (C)</td>
</tr>
<tr>
<td>H-6</td>
<td>140.9 (C)</td>
<td>42.5 (CH(_2)), 37.1 (C), 32.2 (CH)</td>
</tr>
<tr>
<td>H-7</td>
<td>121.9 (CH)</td>
<td>140.9 (C)</td>
</tr>
<tr>
<td>H-8</td>
<td>50.3 (CH)</td>
<td>37.1 (C)</td>
</tr>
<tr>
<td>H-9</td>
<td>32.3 (CH(_2))</td>
<td>-</td>
</tr>
<tr>
<td>H-11</td>
<td>50.4 (CH), 39.9 (CH(_2))</td>
<td>-</td>
</tr>
<tr>
<td>H-12</td>
<td>21.3 (CH(_2)), 42.6 (C)</td>
<td>-</td>
</tr>
<tr>
<td>H-14</td>
<td>42.7 (C), 32.2 (CH)</td>
<td>-</td>
</tr>
<tr>
<td>H-15</td>
<td>-</td>
<td>56.9 (CH), 39.9 (CH(_2))</td>
</tr>
<tr>
<td>H-16</td>
<td>-</td>
<td>46.0 (CH), 42.6 (C)</td>
</tr>
<tr>
<td>H-17</td>
<td>42.6 (C)</td>
<td>39.9 (CH(_2)), 12.2 (CH(_3))</td>
</tr>
<tr>
<td>H-18</td>
<td>42.6 (C)</td>
<td>56.3 (CH), 39.9 (CH(_2))</td>
</tr>
<tr>
<td>H-19</td>
<td>-</td>
<td>37.2 (CH(_2)), 50.4 (CH), 140.9 (C)</td>
</tr>
<tr>
<td>H-20</td>
<td>18.9 (CH(_3))</td>
<td>-</td>
</tr>
<tr>
<td>H-21</td>
<td>36.3 (CH)</td>
<td>34.4 (CH(_2))</td>
</tr>
<tr>
<td>H-22</td>
<td>36.3 (CH)</td>
<td>12.2 (CH(_3))</td>
</tr>
<tr>
<td>H-23</td>
<td>46.1 (CH)</td>
<td>29.3 (CH)</td>
</tr>
<tr>
<td>H-24</td>
<td>29.3 (CH), 26.3 (CH(_2)), 23.2 (CH(_2))</td>
<td>34.4 (CH(_2)), 19.2 (CH(_3))</td>
</tr>
<tr>
<td>H-25</td>
<td>46.1 (CH)</td>
<td>23.2 (CH(_2))</td>
</tr>
<tr>
<td>H-26</td>
<td>29.3 (CH)</td>
<td>46.1 (CH)</td>
</tr>
<tr>
<td>H-27</td>
<td>29.3 (CH)</td>
<td>46.1 (CH)</td>
</tr>
<tr>
<td>H-28</td>
<td>12.1 (CH(_3)), 46.1 (CH)</td>
<td>29.3 (CH)</td>
</tr>
<tr>
<td>H-29</td>
<td>23.2 (CH(_2))</td>
<td>46.1 (CH)</td>
</tr>
</tbody>
</table>
3.2.7.2 Characterization of UPH 46a as a mixture of (3:1) β-sitosterone (24) and stigmasterone (25)

Both 1H NMR and 13C NMR spectra of UPH 46a showed presence of signals for two compounds with intensity ratio of 3:1.

The 1H NMR and 13C NMR spectra of UPH 46a were very similar to CRH 16. Like CRH 16, the 1H NMR spectrum (700 MHz, CDCl$_3$) and 13C NMR (175 MHz, CDCl$_3$) spectra revealed signals as a mixture of two compounds in a ratio of 3:1. The 1H NMR spectrum showed the presence of olefinic methine at δ_{H} 5.73, six methyls resonating between δ_{H} 0.70-0.93 and numerous multiplet signals between δ_{H} 1.02-2.38 resonating for methine and methylene protons. However, no oxymethine peak was evident in the spectrum. Besides the above signal in the 1H NMR, the minor compound also revealed the presence of two olefinic protons at δ_{H} 5.14 ($J=15.12$ Hz) and δ_{H} 5.02 ($J=14.98$ Hz) which appeared as trans double bonded to each other.
The 13C NMR spectrum (175 MHz, CDCl$_3$) revealed the presence of 29 carbons including a carbonyl at δC 199.9, a downfied quaternary at δC 171.9 and an olefinic methine at δC 123.9 in addition with two other olefinic methine carbons at δC 138.3 and δC 129.7 (indicates the mixture compound). The key HMBC correlation showed almost similar with the CRH 16. The only difference was the presence of carbonyl δC 199.9 (C-3) in the molecule instead of oxygen-bearing methine. The methylene protons at δH 2.34, 2.43 (δC 34.2 from HSQC) and δH 1.69, 2.02 (δC 35.9 from HSQC) showed 2J and 3J connectivity with the carbon of carbonyl at δC 199.9 (C-3). In the minor compound, the chemical shift from C-17-C-24 were changed due to the presence of double bond between C-22 and C-23 similarly like the minor compound of CRH 16. In HMBC, the proton at δH 5.15 (H-22; δC 138.3 from HSQC) showed HMBC correlation to carbons at δC 21.3 (C-21), δC 40.6 (C-20) and δC 51.2 (C-24). Another olefinic proton at δH 5.02 (H-23; δC 129.6 from HSQC) showed HMBC correlation to the carbons at δC 40.6 (C-20) and δC 51.2 (C-24).

Thus, based on the spectral data and correlations in the HMBC, the compound UPH 46a was identified as a mixture (3:1) of β-sitosterone (24) and stigmasterone (25) (Rahman, 2002).
Figure 3.62: 13C NMR spectrum (175MHz) of UPH 46a in CDCl$_3$
3.3 Antibacterial screening

3.3.1 Antibacterial screening of 18 selected plants: Based on the results of data analysis of ethnopharmacological survey and review of literature 18 out of 71 plants were initially selected and collected from Bangladesh in September 2016. These 18 plants were initially extracted sequentially with hexane, chloroform and methanol in small scale, these extracts were then screened for antibacterial activity against clinical strains of MRSA by MIC assay. The MRSA strains were EMRSA 15, SA1199B and XU212. ATCC 25941 is a standard bacterial strain only. The starting concentration was 512 µg/ml (4 times more diluted than stock concentration). Mostly the plant extracts with the MIC concentration ≤256 µg/ml were chosen for further phytochemical investigation.
Table 3.31: The MIC result of 18 selected plants against MRSA clinical strains in $\mu g/ml$

<table>
<thead>
<tr>
<th>Plant extract/standard</th>
<th>MRSA strains in $\mu g/ml$</th>
<th>EMRSA 15</th>
<th>ATCC 25941</th>
<th>SA1199B</th>
<th>XU212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paedaria foetida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Justicia adhatoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>128</td>
<td>512</td>
<td>128</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>128</td>
<td>512</td>
<td>128</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>128</td>
<td>64</td>
<td>128</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>128</td>
<td>64</td>
<td>128</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Abroma augusta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Terminalia arjuna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Diospyros malabarica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>64</td>
<td>128</td>
<td>>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>64</td>
<td>128</td>
<td>>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Andrographis periculata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Tinospora cordata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Azadirerecta indica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Tylophora indica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>512</td>
<td>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>512</td>
<td>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Tribulus terrestris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>64</td>
<td>>512</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>64</td>
<td>>512</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>>512</td>
<td>>512</td>
<td>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Hexane</td>
<td>Chloroform</td>
<td>Methanol</td>
<td>Methanol</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Uuria picta</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cynometra namiflora</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Swertia chirayita</td>
<td>256</td>
<td>>512</td>
<td>512</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Terminalia chebula</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>512</td>
<td>512</td>
<td>128</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Feronia limonia</td>
<td>512</td>
<td>>512</td>
<td>>512</td>
<td>>512</td>
<td></td>
</tr>
<tr>
<td>Zingiber montanum</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.32: Antibacterial activity (MIC assay in µg/ml) of pure compounds against MRSA strains

<table>
<thead>
<tr>
<th>Compounds</th>
<th>MRSA strains (MIC values in µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XU212</td>
</tr>
<tr>
<td>Zingiber montanum</td>
<td></td>
</tr>
<tr>
<td>ZMH 4</td>
<td>>128</td>
</tr>
<tr>
<td>MRSH 3</td>
<td>>128</td>
</tr>
<tr>
<td>ZMH 14</td>
<td>64</td>
</tr>
<tr>
<td>MRSH 6</td>
<td>128</td>
</tr>
<tr>
<td>ZMH 8</td>
<td>128</td>
</tr>
<tr>
<td>ZMH 5</td>
<td>>128</td>
</tr>
<tr>
<td>MRSH 2</td>
<td>128</td>
</tr>
<tr>
<td>ZMH 10</td>
<td>>128</td>
</tr>
<tr>
<td>Cynometra ramiflora</td>
<td></td>
</tr>
<tr>
<td>CRH 34</td>
<td>>128</td>
</tr>
<tr>
<td>CRH 9</td>
<td>128</td>
</tr>
<tr>
<td>CRC 10</td>
<td>>128</td>
</tr>
<tr>
<td>Diospyros malabarica</td>
<td></td>
</tr>
<tr>
<td>DMC 22</td>
<td>64</td>
</tr>
<tr>
<td>DMH 2</td>
<td>>128</td>
</tr>
<tr>
<td>DMH 10</td>
<td>64</td>
</tr>
<tr>
<td>DMH 5</td>
<td>>128</td>
</tr>
<tr>
<td>DMH 15</td>
<td>>128</td>
</tr>
<tr>
<td>Swertia chirayita</td>
<td></td>
</tr>
<tr>
<td>SCH 1</td>
<td>>128</td>
</tr>
<tr>
<td>SCH 10</td>
<td>>128</td>
</tr>
<tr>
<td>SCH 15</td>
<td>>128</td>
</tr>
<tr>
<td>SCH 2</td>
<td>>128</td>
</tr>
<tr>
<td>Urania picta</td>
<td></td>
</tr>
<tr>
<td>UPM 5</td>
<td>64</td>
</tr>
<tr>
<td>Control (Norfloxacin)</td>
<td>64</td>
</tr>
</tbody>
</table>
Figure 3.63: 96 well plate for the determination of MICs of compounds

The plate represented MICs of 1= MRSH 6, 2= ZMH 14, 3= MRSH 2, Nor= Norfloxacin (Control) against A: ATCC 5941, B: SA1199B, C: EMRSA 15, D: MRSA274821, E: MRSA340702, F: XU212

This figure represents the MIC assay of pure samples against MRSA clinical strains. The starting concentration of the pure samples in well plates were 128 µg/ml. Here 11th column represents growth control meaning no samples were added on that column whilst the 12th column as sterility control because no MRSA strains were added on that column. Column 1 and 2 of A and B showed yellow colour identical to the sterility control which indicated that the pure sample inhibited the bacterial growth in column 1 and 2. The samples were duplicated so three samples were added in each well plates followed by norfloxacine (positive control) at the end of the plate. Blue colour in the plates indicated the growth of the bacteria as identical to growth control (column 11). In presence of bacterial strain, its mitochondria reacta with MTT reagent forming a blue colour complex.
Chapter 4
Discussion and Conclusion
4 Discussion:

4.1 Ethnopharmacological survey:

An ethnopharmacological survey was carried out in 10 different locations of the capital city Dhaka and its surrounding areas and also in a northern district, Natore. Dhaka is one of the world's largest cities and the 4th most densely populated city in the world with the population of 18.89 million (Population and housing census, 2011). Despite the improved economic system in Bangladesh, the country is still experiencing remarkable public health issues (Shahabuddin et al., 2015; Edmunds et al., 2015; Asadullah et al., 2011). There is a strong inclination to improve complementary medicine system in Dhaka city due to limited medical sources. 62.0% of medical doctors in Dhaka treat patients with alternative or Ayurvedic medicine and 39.7% recommended Ayurvedic medicine to be a part of the orthodox medicine (Yoshida et al., 2017). At Natore district of Bangladesh, around 200 farmers shifted their livelihood from conventional crops and vegetables to medicinal plants among which Aloe vera was the main medicinal plant to be cultivated since 2000. The market in Bangladesh for herbal medicine is huge both locally and internationally. The market size for importing herbal medicine is more than 100 millions dollar annually. An ethnopharmacological survey was conducted in Bangladesh to accurately document information in regard to the herbal remedies used traditionally for the management of infective diseases such as syphilis, gonorrhoea, chronic dysentery and bacterial pneumonia in order to identify the anti-infective lead compounds from selected plant materials and to preserve valuable ethno medical information.

55.91% males and 44.09% females participated in the survey. The majority of the participants were Ayurvedic or Unani doctors (71 practitioners out of 127 participants). Yoshida and her colleagues (2015) interviewed 86 male medical doctors and 73 female doctors to determine the attitude and perception of the doctors to Ayurvedic medicine. A significant gender difference was observed in terms of education because it is a common practice not to educate daughters in rural households of Bangladesh as it is believed that females are only born to manage the households (Amin and Nuzhat, 2016)

Some inhabitants were interviewed at the national tree fair in 2016. The national tree fair, held in Dhaka comprises foliages and plants. Around 100 stalls
displayed thousands of varieties of saplings including flowers, fruit trees and medicinal plants. Local inhabitants get the opportunity to buy the saplings for their garden. Most of the selected plants were collected from the National Botanical Garden of Bangladesh with prior permission from the authority. The National Botanical Garden of Bangladesh is a well-known recreation place and the largest plant preservation centre (210 acres) as it is the accumulation of 56,125 trees, shrubs, herbs and aquatic plants (Botanic Gardens Conservation International, 2018). It is known as a knowledge centre for botanists and nature lovers because exotic and rare medicinal plant species are well adapted. The samples of all selected plants were deposited in Bangladesh National Herbarium. Bangladesh National Herbarium (established in 1970) is a scientific centre where the collected dried plant specimens were recorded and preserved for reference purposes (Banglapedia, 2015).

The patients of two Ayurvedic and Unani hospitals "Tibbia Habibia Unani College and Hospital" and "Government Unani and Ayurvedic Medical College" were interviewed. Two hospitals were non profit medical colleges and hospitals where people get the opportunity to get the bachelor degree in Unani or Ayurvedic medicine and also patients get treatment based on herbal medicine. The suggestion of plants from practitioners was different from local inhabitants and patients. Inhabitants and patients suggested commonly used medicinal plants mostly for cough and cold such as aloe vera, turmeric or tulsi basil however, the practitioners suggested plants used for herbal formulations which were either manufactured by an herbal company or practitioners themselves prepared the formula with proper instructions and then handed this over to the patients the next day.

Out of 71 reported plants (distributed over 54 families), legumes, asteraceae and apocynaceae were the highest represented families with the highest number of species closely followed by lamiaceae, menispermaceae and zingiberaceae. The remaining 48 families were represented by only one species each. The possible reason for the use of plants from specific families is that the flora of these families has a tendency to dominate the pharmacopoeia due to the monsoon climate of Bangladesh (Sharma et al., 2012). Gurib-karim, (2006) reported that asteraceae, rutaceae and laminaceae were shown to be important families to contribute to drug discovery and development. Legumes were
reported to be the highest family used. One factor that may explain the extensive use of this taxonomic family is that legumes are the third largest family with 20,000 species. Moreover, Legumes are an economically important family due to its agricultural relevance. Most of the plants of the legume family provide edible oils, food for both human and animals, fibres and edible seeds that contain high protein and essential amino acids. (Gepts et al., 2005)

Results from the survey indicated that various plant parts (stem, bark, leaf, root, flower, and rhizome) were used for the herbal formulations. Among these plant parts, leaves (26%) were reported to be used most frequently for making herbal formulations. A similar result was found from the previous ethnopharmacological surveys conducted in different tropical regions (Khulna, Rangamati and Chittagong hill tracts) of Bangladesh for identifying the important species used in traditional medicine (Kadir et al., 2012, 2014; Dulla and Jahan, 2017). The predominance of using the leaves is their easy availability to collect and use compared to other plant parts. In addition, there is generally a higher concentration of active compounds present in the leaves due to the presence of photosynthates (Ghorbani, 2005). This can be explained by the fact that the leaves act as reservoirs for photosynthesis or exudates that are thought to contain toxins for plant protection and survival which consequently find medical values in treating diseases. (Wambugu et al., 2011, Vitalini et al 2009 and Namsaa et al., 2009). The second most frequently used plant parts reported were fruit (16%) and bark (15%) whereas the root was not commonly used because scraping away the soil to reach the plant’s root may lead to cessation of the plant. Previously Alzweiri et al., 2011 suggested that the selection of the correct plant parts was important to achieve a therapeutic response to an herbal formulation as different plant parts contain different chemical constituents. The current study showed that village people of Bangladesh used plant parts based on cultural heritage not on scientific grounds. Most of the plant parts mentioned in the present study were collected by the informants from the wild and the method of preparation was mostly powder form followed by mash and decoction. The possible reason behind this was most of the participants were Ayurvedic practitioners (71 out of 127) who prescribed their formulations as a powder form. Moreover, local people also tend to pick medicinal plants and dry them to store as a powder form for future use. Therefore, fresh plant parts were collected and
sun dried during the spring season prior to making into powder (Alzweiri et al., 2011).

The current study found that informants commonly mixed the herbal powder remedy with water followed by honey and sugar to improve the compliance when taken orally. Previously Chintamunnea and Mahomodally, (2012) reported that there was a direct association between the taste of a preparation and the need to use additives to improve compliance.

In this study, three main ethnopharmacological quantitative indexes were calculated to figure out the main medicinal plants used by the participants. The first parameter used was UV (use value) which was applied to identify relative importance of each plant species mentioned by the participants; the FIC (Informants consensus factor) was calculated to determine the main categories of anti-bacterial diseases for which plants were used. Finally, FL (fidelity level) was applied to determine the most important plant species from the selected disease category.

According to the high UV value (Table 3.3), *Azadirachta indica* (23 citations) and *Ocimum tenuiflorum* (18 citations) followed by *Justicia adhatoda* (16 citations) and *Curcuma longa* (13 citations) were the most cited plants by the informants. The current study showed that the fresh leaf of *Azadirachta indica* is used for wound healing. This property has been endorsed by several studies (Shrivastav et al., 2018; Babu et al., 2016). For example, Narendhirakannan and his colleagues (2012) also conducted an in vitro study on *A. indica* and other traditional medicinal plants originating from the neighbouring country India and claimed that the presence of flavonoids (polyphenols), terpenes, alkaloids, saponins in *A.indica* were responsible for exhibiting strong antibacterial and antioxidant activity which contributing to significantly quicker wound healing (83%) compared to a commercial ointment (76%). Notably, *A. indica* has been widely mentioned in the literature in regard to its medicinal value. In Swahili, this plant is referred to as “Muarubaini” (meaning treat 40 different diseases and frequently used as an insecticide, antimicrobial, antimalarial and antiviral (Baritkar et al., 2014; Mahfuzul et al., 2007; Thakurta et al., 2007).

Ocimum tenuiflorum is widely known as tulsi or holy basil. In Ayurveda, tulsi is recognised as “Mother Medicine of Nature” and “the Queen of Herbs”. The fresh

The leaf of *Justicia adhatoda* was used fresh or as a powder for treating respiratory tract infection by the participants. A double-blind randomized placebo-controlled study confirmed that the leaf of *Justicia adhatoda* relieved common cough and cold in combination with the root of *Echinacea purpurea* and *Eleutherococcus senticosus* (Barth et al., 2015). Several investigators reported antibacterial activity of the isolated compounds from *Justicia adhatoda*. For instance, Duraipandiyan and his colleagues (2015) reported that *Justicia adhatoda* contained vasicine acetate which possessed antibacterial activity against *M. luteus* (125 μg/mL), *E. aerogenes* (125 μg/mL), *S. epidermidis* (125 μg/mL), and *P. aeruginosa* (125 μg/mL). 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl isolated from *Justicia adhatoda* showed promising antioxidant activity (Dhankhar et al., 2014). Plants with a low UV value (Table 3.3) are not necessarily less important but this may be an indication that the traditional knowledge on these plants has been lost or may be attributed to scarcity of the plant species (Sharma et al., 2012).

For the calculation of FIC value (Table 3.2), the reported diseases were grouped into 12 different ailment categories. Diseases mentioned such as tuberculosis, cholera, scalp infection, dengue fever, syphilis and gall bladder infection, cystitis and jaundice were not included in this category because only one plant was suggested for this ailment category. Bacterial pneumonia was recorded to have the highest FIC value 0.94 which was generally treated with the second highest cited plant *Ocimum tenuiflorum* followed by wound healing (0.85), Gastrointestinal infection (0.83) and rheumatic fever (0.83). The high FIC values of these ailments indicated that the information in regard to the plants are homogenous and used by a large number of people. Several authors have
reported that medicinal plants that scored a high FIC value were assumed to be efficient in treating a certain ailment category and that information was passed between informants. (Boulogne et al., 2011), (Uddin and Hassan, 2014). Therefore, it can be concluded that most of the plants mentioned in the current study may be effective in treating infective diseases.

The fidelity level value (Table 3.3) was calculated to identify the most important plant in each disease category. Most of the plant species showed 100% FL value which indicated that most of the plant species might have potential for good healing to treat a particular disease (Ayyanar and Ignacimuthu, 2011). In respiratory tract infection, Justicia adhatoda scored the lowest FL value i.e. (25%) which indicated that culturally it was probably a less important plant for treating that particular disease.

Rank order priority (ROP) (Table 3.3) index were calculated to determine the knowledge of the species with regard to the abundance of the resources mentioned in the studied use catagory (Eddouks et al., 2017). Kalanchoe pinnata (43.32%), Azadirachta indica (34.80%), Ocimum tenuiflorum (34.63%) had the highest ROP value, which indicated that these species were the most familier to informants. while few plants such as Alstonia scholaris (0.04), Paederia foetida (0.04) showed a lower priority among the reported medicinal plants by the informants.

However, the mode of action of the 71 suggested plants was beyond the aim of this study. Some of the listed plants in our investigation were used to treat other diseases besides infectious disease. For example, Alzweiri et al., 2011 and Chintamunnea and Mahomodally, (2012) reported that the bulb of Allium sativum L. was used for snake bites, muscle relaxation, blood circulation problem, asthma, gastrointestinal disorder or hypertension but in the current study participants suggested A. sativum solely for treating metabolic disorder such as gout. Similarly Chintamunnea and Mahomodally, (2012) mentioned A. indica was used in the tropical region of Mauritius as an antidiabetic agent while in Bangladesh most of the people used it for treating common cold and cough.
4.2 Phytochemistry:

Based on the results of the data analysis of the ethnopharmacological survey and subsequent literature review of all the suggested plants and ease of availability, 18 plants out of 71 plants were initially selected and collected from Bangladesh in September 2016. These plants were initially screened for antibacterial activity against clinical strains of MRSA. The number of plants were narrowed down to five (Zingiber montanum, Uraria picta, Cynometra namiflora, Diospyros malabarica and Swertia chirayita) based on their potential antibacterial activity.

Bioassay directed phytochemical investigations on the 5 selected plants led to the isolation of a total of 25 compounds including simple phenolics, xanthones, mono, di, sesqui, triterpenes and steroids. Structure elucidation of the compounds was achieved by spectroscopic techniques (1D, 2D NMR, mass spectrometry, IR).

Z. montanum (Fam. Zingiberaceae) is an herbaceous plant that produces a clump of leaves from large rhizomes. It is indigenous to Bangladesh where it is widely used in the northern part of Bangladesh. The ethnopharmacological survey showed that Z. montanum was being used by traditional practitioners and local village people for the treatment of gastrointestinal infection.

A total of eight terpenes were isolated from both hexane and chloroform extracts of Zingiber montanum. These compounds were characterized as zerumbone, zerumbol, buddledone A, camphor, borneol, furanodienone, germacrone, 8(17), 12-labdadiene-15, 16-dial by spectral data, mostly 1D and 2D NMR spectroscopy and mass spectrometry. Verma and his colleagues (2018) reported the essential oils from Zingiber montanum originating from India. The authors found major constituents of the oil were \(\gamma\)-terpinene (1.1–4.8%), sabinene (13.5–38.0%), terpinen-4-ol (9.0–31.3%), (E)-1-(3’, 4’-dimethoxyphenyl) buta-1, 3-diene (DMPBD) (20.6–35.3%) and \(\beta\)-phellandrene (1.0–4.4%) including minor components camphor and borneol. As Zingiber montanum is native to India, Malaysia, Thailand, Indonesia, Bangladesh and Sri Lanka, previous studies of the essential oil of leaf and rhizome exhibited tangible variation in the chemical constituents. For example, the rhizome oil from Zingiber montanum of Thailand were dominated by sabinene, (E)-1-(3’,4’-Dimethoxyphenyl) buta-1,3-diene (DMPBD) and terpinen-4-ol (Bua-in and
Paisooksantivatana, 2009) (Sukatta et al., 2009). However, the rhizome oil from Malaysian *Zingiber montanum* possessed higher amounts of sesquiterpenes (Kamazeri et al., 2012). Previous studies on Bangladeshi *Zingiber montanum* showed that rhizome oil characterized by triquinacene-1,4-bis (methoxy), (Z)-ocimene and terpinen-4-ol (Bhuiyan et al., 2008). Moreover, the leaf oil of north-east Indian *Zingiber montanum* was characterized by furanodien-6-one, curzerenone and β-sesquiphellandrene (Bordoloi et al., 1999). Similarly furanodien-6-one was also isolated from the rhizome of *Zingiber montanum* in the current study.

The presence of camphor and borneol in the rhizomes essential oil was in agreement with the study conducted by Verma and his colleagues (2018) on Indian *Zingiber montanum* but the presence of zerumbone, zerumbol, buddledone A, furanodiene, germacrone, and labdadiene in the rhizome of *Zingiber montanum* from Bangladesh were reported for the first time. Zerumbone is a sesquiterpene isolated previously from another species of wild ginger (*Zingiber zerumbet*) (Takashi et al., 2002). Takashi and his colleagues (2002) synthesised optically active zebumbol from zerumbone as the starting material for conversion to useful chiral product such as paclitaxel. However, this compound has not been isolated naturally before from any plant species. Therefore, zerumbol appeared to be a new natural product. Buddledone A was previously isolated from the Chinese traditional medicinal plant, *Buddleja globosa*. (Cai et al., 2012). Germacrone was previously isolated from *Geranium macrorrhizum*, *Curcuma wenyujin* and *Rhododendron adamsii* (Yan et al., 2005) while 8(17),12-Labdadiene-15,16-dial was previously isolated and identified from the perennial herb from Hong Kong *Alpinia chinensis* that belongs to the Zingiberaceae family (Lai-King and Brown 1997).

Rahman and co-workers (2007) reported the isolation of two new isoflavones, along with triterpenes and steroids from *Uraria picta*. During this study, eugenol and a mixture of (3:1) β sitosterone and stigmasterone were isolated from *Uraria picta*. Eugenol, the major compound present in *Syzygium aromaticum* has been reported from other plants however this was the first time it was reported from *Uraria picta*.

Cynometra ramiflora is a medicinal plant indigenous to India and Bangladesh predominantly in the mangrove forest sundarban, Sri Lanka and tropical areas of Africa and Australia. This plant has been investigated for anti-
ulcer activity (Paguigan et al., 2014; Uddin et al., 2011). However, according to the literature review, no chemical constituents have been isolated or previously identified. Therefore, β sitosterol, glutinol, glutinone and ethyl 4-ethoxy benzoate have been isolated for the first time from Cynometra ramiflora. Among these compounds, ethyl 4-ethoxybenzoate appeared to be a new natural product. Glutinol and glutinone are triterpenoids isolated from hexane and ethyl acetate extracts of the root barks of Uvaria narum Wall and Uvaria hookeri King and tested for antibacterial, antifungal and anthelmintic activities (Padmaja et al., 1993). Glutinol that coats the outer layer of leaf, works as a natural defense compound against pathogens and herbivores. Glutinol and glutinone have been isolated and identified for the first time from the hexane extract of Cynometra ramiflora leaf in this study.

Diospyros malabarica, a 30 m long tree indigenous to India, Pakistan and Bangladesh, produces edible seasonal fruit. Two bioactive flavonoid glycoside, namely luteoline-4’-methyl-ether-7-O-glucoside and quercetin-3-O-(glucosyl)-glucoside were isolated from the aqueous extract of D. malabarica fruit with potent antioxidant activity (Sahu et al., 2012). Apart from the isolation of bioactive flavonoid glycosides, no other phytochemical work was reported from this species. However, the genus Diospyros was widely researched in terms of phytochemistry. The genus Diospyros is dominated by the production of lupane series triterpenoids and naphthoquinones. (Zhong et al., 1984). In this current study, the lupane series triterpenoids- lupeol, betulone, betulin, betulinaldehyde and messagenin were isolated and reported for the first time from the hexane leaf extract of Diospyros malabarica species. The lupane series are common natural compounds mostly abundant in fruit and vegetables like green pepper, mangoes, grapes, white cabbage and in medicinal plants such as Celastrus paniculatus, Tamarindus indica, Himatanthus sucuuba, Zanthoxylum riedelianum, Leptadenia hastata, Allanblackia monticola, Crataeva nurvala, Sebastiania adenophora and Bombax ceiba (Wal et al., 2015). In 1984, Zhong and his colleagues revealed the presence of triterpenoids of the lupane series such lupeol, betulin and betulinaldehyde from the genus Diospyros, which is in agreement with the current findings of the Diospyros malabarica species. Messagenin had been synthesised before (Marcias et al; 1994) but there is no literature found on isolating this
compound from natural sources. Therefore, the natural compound messagenine was reported for the first time in this study.

Swertia chirayita, the popular ethnomedicinal herb indigenous to the Himalayas has been well-documented in Ayurveda, Unani, Siddha, and other conventional medical systems for its wide spectrum of pharmacological properties. The chemical review revealed a considerable amount of research that explored the different chemical constituents of *Swertia chirayita* (Kumar et al., 2015, Zhou et al., 2015, Zhou et al., 2013, You et al., 2017). A series of xanthones had previously been isolated from other species of the genus *Swertia* (*S. kouitchensis, S. corymbosa, S. mussotii* Franch and *S. bimaculata*) (Phoboo et al., 2012). 1-hydroxy-3, 5, 6-trimethoxyxanthone (commonly known as decussatin) was identified from the ethyl acetate fraction of the whole plant of *Swertia kouitchensis*. (He et al., 2015)

The current study has led to the isolation of xanthones including swerchirin, swertiaperenin, decussatin and bellidifolin from the hexane extract of *Swertia chirayita*. Swerchirin (isolated from hexane extract of whole plant) is known to be hypoglycemic, antimalarial (Bajpai et al., 1991; Saxena et al., 1996). However, this series of xanthones had already been identified previously from the whole plant of hexane extract of *Swertia chirayita* (You et al., 2017).

4.3 Antibacterial screening:

Antibacterial screening was expressed in terms of minimum inhibitory concentration (MIC) value in µg/ml. The antibacterial activities of the pure compounds were evaluated against a panel of clinical strains of methicillin resistance *Staphylococcus aureus* (MRSA), including XU212, EMRSA15, SA1199B, MRSA 340702 and MRSA 24821 along with MRSA standard strain ATCC 5941. These efflux strains are resistant to common antibiotics such as SA1199B that is resistant to fluoroquinolones and XU212 resistant to tetracycline. The antimicrobial activities of the active compounds were compared to the standard antibiotics norfloxacin. The MIC of norfloxacin was found to be in the range of 16-128 µg/ml.

ZMH 14 (8(17), 12-Labdadiene-15, 16-dial) (table 3.32) exhibited the most potent antibacterial activity with the MIC value 32-128 µg/ml. ZMH 14 (MIC value 64 µg/ml) showed the same activity as the control (Norfloxacin, MIC 128 µg/ml)
against XU212 and MRSA 340702 bacterial strains. ZMH 14 is a labdadiene diterpene with exomethylene, olefin and two aldehyde groups. The presence of these groups and unsaturations could account for the significant antibacterial activity against MRSA strains.

Moreover, sesquiterpene MRSH-6 (Zerumbol) showed moderate antibacterial activity with an MIC result of 32-128 µg/ml. Although MRSH 6 and MRSH 3 are structurally very similar, they differ in activity. The author suggests that the presence of a hydroxyl group in MRSH 6 instead of carbonyl group might make MRSH 6 more active than MRSH 3 (Thosar et al., 2013). The antibacterial activity of MRSH-6 against SA1199B was the same as the crude hexane extract of Z. montanum however it showed 3 fold potent antibacterial activity against XU212 and 2 fold potent antibacterial activity against ATCC clinical strain of MRSA compared to the crude extract.

It is evident from table 3.32 (result section) that the MIC of MRSH-3 (Zerumbone) was 64-128 µg/ml. The presence of a carbonyl group instead of hydroxyl group of MRSH 6 showed a 1 fold reduction in MIC activity. It’s reduced antibacterial activity compared to crude extract indicated that the possible synergistic effect of the crude extract was better than the isolated compound. This finding is in agreement with the previous finding by Kamazeri and his colleagues (2012) who isolated 2, 6, 9, 9- tetramethyl- 2,6,10- cycloundecatrien-1-one and β caryophyllene from the essential oil of Z. montanum but found very low antibacterial activity against both gram positive and gram negative bacteria. Other isolated compounds ZMH 4 and ZMH-5, ZMH 8 and ZMH 10 exhibited moderate activity against MRSA clinical strains. This needs to be investigated further.

The lupane series was isolated from Diospyros malabarica were tested against MRSA strains. DMH 2 were inactive against all the MRSA stains while lupeol (DMC 22) exerted moderate antimicrobial activity against XU212 (64 µg/ml) and ATCC 5941 (128 µg/ml). Lupeol is a triterpene with an exomethylene and hydroxyl group which confer better antimicrobial activity compared to DMH 2. Other compound such as DMH 10 displayed activity against XU212 and EMRSA 15 with MIC 64 µg/ml, DMH 15 exerted activity against ATCC 5941 and SA1199B with the MIC of 64-128 µg/ml while DMH 5 exerted activity against ATCC 5941 (64 µg/ml) only.
Swertia chirayita contains a number of xanthone derivatives which are documented as exhibiting antimicrobial activity, however, Swertia and its xanthone derivatives did not exert good antibacterial activity.

In 2007, Rahman and co-workers isolated two new isoflavones, along with triterpenes and steroids from *Uraria picta*. The MIC results of two isoflavones 5,7-dihydroxy-2'-methoxy-3',4'-methylenedioxyisoflavanone and 4',5-dihydroxy-2',3'-dimethoxy-7-(5- hydroxyoxochromen-7yl)-isoflavanone were found to be in the range of 12.5-200 µg/ml against both gram positive and gram negative bacteria including *Proteus vulgaris, Bacillus subtilis, Aspergillus niger Staphylococcus aureus* and *Candida albicans*. However, these were not tested against clinical isolates of MRSA. During this study, eugenol was isolated from the methanol extract of whole plant of *Uraria picta*. UPM 5 (eugneol) exerted moderate antimicrobial activity with an MIC of 64-128 µg/ml against XU212, ATCC 5941, EMRSA 15 and MRSA 340702. Eugenol is a common natural compound mostly found in the essential oil of several plants. It is a potent bioactive compound with broad spectrum antimicrobial activity against food or human pathogen (Marchese et al., 2017).
5 Conclusion

The traditional knowledge on medicinal plants still provides the foundation for pharmacological research in many aspects. This study involved conducting an ethnopharmacological survey on Bangladeshi medicinal plants by interviewing qualified Ayurvedic/Unani practitioners, ayurvedic hospital patients and local village people. This survey founded the selection of medicinal plants for the isolation and identification of compounds with possible antibacterial activity against MRSA clinical strains. There had been a handful of previous research conducted on Bangladeshi medicinal plants with the purpose of focusing on searching for plants with antidiabetic, antidiarrhoeal or antidysentery activity. Some authors just simply catalogued the medicinal plants used by tribes of the hill tract areas (Kadir et al., 2012; Rahman, 2013; Rahman and Roy 2014; Uddin et al., 2015a; Uddin et al., 2015b; Nur et al., 2016,). However, there was a lack of scientific data regarding the use of medicinal plants for the management of infective diseases in Bangladesh. To date, this work can be described as the first comprehensive study to establish the existence of accurate knowledge from qualified/ experienced Ayurvedic/ Unani practitioners as well as local village people on medicinal plants in the treatment of infectious diseases. In addition, the ethnopharmacological knowledge on Bangladeshi medicinal plants and demonstration of its antinfective activity can assist the preservation of medicinal plants in decline. This survey contributed to the selection of medicinal plants for extensive phytochemical research. Plants contain numerous compounds whilst their individual metabolites can be shown to have antibacterial activity. For instance, the root of *P. reptans* exhibited potent antibacterial activity against *E. coli* (MIC 3.9 µg/ml) compared to the broad-spectrum antibiotic control chloramphenicol (Rahman et al., 2008) which gives a clear indication of the pharmaceutical interest in isolated compounds.

In this study, the combination of traditional knowledge and extensive scientific work using a wide range of chromatographic and spectroscopic techniques led to the identification of a total of 25 compounds including terpenes and simple phenolic compounds with potential antibacterial activity against clinical isolates of a panel of methicillin resistant *Staphylococcus aureus* (MRSA). One of the key elements of this project was to select medicinal plants from Bangladesh to conduct phytochemical research. Based on the used value and
other scientific analysis, 30 plants were initially selected for phytochemical study. Following a literature review the number of plants was narrowed down to 18. Five of the 18 plants were finally selected for phytochemical research based on the antibacterial screening report. A total of 8 terpenes were isolated and identified from *Zingiber montanum* of which 8(17), 12-labdadiene-15, 16-dial (32 µg/ml against ATCC 5941) and zerumbol (32 µg/ml against EMRSA 15) isolated first time from the rhizome of *Zingiber montanum* and that showed potential antibacterial activity. *D. malabarica* and *C. ramiflora* medicinal plants were under researched in terms of identifying chemical constituents and their antibacterial activity. The, lupane series, triterpenes and simple phenolic compounds were reported for the first time from the current study from *D. malabarica* and *C. ramiflora* respectively. Among the lupane series phenolic compounds, messagenin isolated from *D. malabarica* and ethyl 4-ethoxybenzoate isolated from *C. ramiflora* were identified as new natural compounds.

Such approach used in this study for the identification of new antibacterial compounds showed benefit to the inhabitants of neighbouring countries who are using ayurvedic medicine for primary health care; also the inhabitants of other countries who prefer herbal medicine as an alternative therapy. Qualified/experienced Ayurvedic/ Unani practitioners around the world will be encouraged to enhance their knowledge with scientific investigation of the chemical constituents of selected medicinal plants reported for their possible antibacterial activity. Such novel drug discovery approach might contribute in tackling the problem of AMR in near future.

This ethnopharmacological research survey identified medicinal plants that have been used in traditional medicine for the treatment of infectious diseases. Among the plants recommended by the qualified practitioners, patients and local village people, a total of five plants were investigated phytochemically for the isolation and identification of compounds with antibacterial activity. This such research has reaseonably justified the traditional use of medicinal plants for the treatment of infections including urinary tract, respiratory, gastrointestinal infection. The project has led to the isolation and identification of 25 compounds. Among the compounds terpenes such as 8(17), 12-labdadiene-15, 16-dial (32 µg/ml against ATCC 5941), zerumbol (32 µg/ml against EMRSA 15), germacrone (64 µg/ml against ATCC 5941), zerumbone (64 µg/ml against EMRSA 15),
triterpenes such as lupeol (64 µg/ml against XU212), messagenin (64 µg/ml against XU212 and EMRSA 15) and glutinone (64 µg/ml against ATCC 5941) and simple phenolic compound ethyl 4-ethoxybenzoate (64 µg/ml against ATCC 5941 and SA1199B) showed moderate activity against MRSA strains. These types of terpenes are known in the literature to produce antibacterial activity against bacteria but not clinical isolates of MRSA. Such moderate activity is not enough to take into the development stage. However, the findings from the ethnopharmacological survey could be the basis for further extensive phytochemical research to explore anti infective compounds from other plants recommended through the survey.

6 Future Work

Compounds with potential antibacterial activity against the clinical isolates of MRSA strains, and are available in sufficient quantities will be tested for anti-mycobacterial activity against multi-drug resistant Mycobacterium tuberculosis and also for cytotoxicity against HeLA and other cell-lines. Methanol extracts could be investigated further using preparative HPLC to explore the presence of bioactive compounds. Literature review will be continued in order to keep track of the current studies regarding these selected plants. Other plants can be selected from 71 suggested plants and test antibacterial, antifungal activity for isolating secondary active compounds.
Chapter 5

References
7. References

Mahendran, G., Manoj, M., Murugesh, E., Sathish, Kumar, R., Shanmughavel, P., Rajendra Prasad, K.J., Narmatha Bai, V. (2014). In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy
xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-β-D-xylopyranosyl isolated from Swertia corymbosa. J. Phytomedicine., 21(11), pp. 1237-48.

169

Wang, L., Jiang, L., Han, T. Zheng, C. and Qin, L. (2014). A Phytochemical, Pharmacological and Clinical Profile of Paederia foetida and P-scandens. · Natural Product Communications, 9(6), pp. 879-86

Chapter 6
Appendix
8. Appendix

Publications

2. Siddique, H., Pendry, B. and Rahman, M.M. Medicinal plants used to treat infectious diseases in central part of Bangladesh and in a northern district, Natore- an ethnopharmacological perception (Manuscript in preparation)

3. Siddique, H., Pendry, B. and Rahman, M.M. Anti-infective medicinal plants- an ethnopharmacological survey in Bangladesh. An abstract was published and oral and poster were presented at APSGB conferences 2017. The poster was awarded 2nd prize in poster competition.

4. Siddique, H., Pendry, B. and Rahman, M.M. Antibacterial mono- and sesqui-terpenes from *Zingiber montanum*. An abstract was published and a poster was presented at the International Symposium of the Phytochemical Society of Europe (PSE) in Liverpool, John Moores University, 2018. The travel grant of £250 was awarded.
5 August 2016

Dear Holly,

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Identification of anti-infective lead compounds from Bangladeshi medicinal plants to tackle antimicrobial resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator:</td>
<td>Dr Mukhlesur Rahman</td>
</tr>
<tr>
<td>Researcher:</td>
<td>Holly Siddique</td>
</tr>
<tr>
<td>Reference Number:</td>
<td>UREC 1516 154</td>
</tr>
</tbody>
</table>

I am writing to confirm the outcome of your application to the University Research Ethics Committee (UREC), which was considered by UREC on Wednesday 20 July 2016.

The decision made by members of the Committee is Approved. The Committee’s response is based on the protocol described in the application form and supporting documentation. Your study has received ethical approval from the date of this letter.

Should you wish to make any changes in connection with your research project, this must be reported immediately to UREC. A Notification of Amendment form should be submitted for approval, accompanied by any additional or amended documents: http://www.uel.ac.uk/wwwmedia/schools/graduate/documents/Notification-of-Amendment-to-Approved-Ethics-App-159115.doc

Any adverse events that occur in connection with this research project must be reported immediately to UREC.

Approved Research Site

I am pleased to confirm that the approval of the proposed research applies to the following research site.

<table>
<thead>
<tr>
<th>Research Site</th>
<th>Principal Investigator / Local Collaborator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>Dr Mukhlesur Rahman</td>
</tr>
</tbody>
</table>
Approved Documents

The final list of documents reviewed and approved by the Committee is as follows:

<table>
<thead>
<tr>
<th>Document</th>
<th>Version</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>UREC application form</td>
<td>2.0</td>
<td>4 August 2016</td>
</tr>
<tr>
<td>Participant Information Sheet</td>
<td>2.0</td>
<td>4 August 2016</td>
</tr>
<tr>
<td>Consent Form</td>
<td>1.0</td>
<td>5 July 2016</td>
</tr>
<tr>
<td>Questionnaires for Ethnopharmacological survey of Ayurvedic medicinal plants of Bangladesh</td>
<td>1.0</td>
<td>5 July 2016</td>
</tr>
<tr>
<td>Bengali translated Participant Information Sheet</td>
<td>1.0</td>
<td>4 August 2016</td>
</tr>
<tr>
<td>Bengali translated Consent Form</td>
<td>1.0</td>
<td>4 August 2016</td>
</tr>
<tr>
<td>Bengali translated Questionnaire</td>
<td>1.0</td>
<td>4 August 2016</td>
</tr>
<tr>
<td>Letter from Professor Abdur Rashid confirming consent to collaborate on Holly Siddique’s research</td>
<td>1.0</td>
<td>5 July 2016</td>
</tr>
<tr>
<td>Letter from Professor Saiful Islam confirming that Professor Abdur Rashid is collaborating on Holly Siddique’s research study and gatekeeper permission is not required.</td>
<td>1.0</td>
<td>4 August 2016</td>
</tr>
</tbody>
</table>

Approval is given on the understanding that the UEL Code of Practice in Research is adhered to.

The University will periodically audit a random sample of applications for ethical approval, to ensure that the research study is conducted in compliance with the consent given by the ethics Committee and to the highest standards of rigour and integrity.

Please note, it is your responsibility to retain this letter for your records.

With the Committee’s best wishes for the success of this project.
Yours sincerely,

Catherine Fieulleteau
Research Integrity and Ethics Manager
University Research Ethics Committee (UREC)
Email: researchethics@uel.ac.uk
A copy of consent form, and questionnaire which was used during the survey provided below

Annexe 2

UNIVERSITY OF EAST LONDON

Consent to Participate in a Programme Involving the Use of Human Participants.

Project Title
IDENTIFICATION OF ANTI-INFECTIVE LEAD COMPOUNDS FROM BANGLADESHI MEDICINAL PLANTS TO TACKLE ANTIMICROBIAL RESISTANCE

Student Researcher: Holly Siddique

Supervisors:
Dr. Maktlesur Rahman
Dr. Barbara Pendry
Dr. Joanne Tocher

Please tick as appropriate:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have the read the information leaflet relating to the above programme of research in which I have been asked to participate and have been given a copy to keep. The nature and purposes of the research have been explained to me, and I have had the opportunity to discuss the details and ask questions about this information. I understand what is being proposed and the procedures in which I will be involved have been explained to me.</td>
<td></td>
</tr>
<tr>
<td>I understand that my involvement in this study, and particular data from this research, will remain strictly confidential as far as possible. Only the researchers involved in the study will have access to the data. It has been explained to me what will happen once the programme has been completed</td>
<td></td>
</tr>
<tr>
<td>I understand that my participation in this study is entirely voluntary, and I am free to withdraw at any time during the research without disadvantage to myself and without being obliged to give any reason. I understand that my data can be withdrawn up to the point of data analysis and that after this point it may not be possible.</td>
<td></td>
</tr>
<tr>
<td>I hereby freely and fully consent to participate in the study which has been fully explained to me and for the information obtained to be used in relevant research publications.</td>
<td></td>
</tr>
</tbody>
</table>

Participant’s Name (BLOCK CAPITALS) ...
Participant’s Signature ...
Investigator’s Name (BLOCK CAPITALS) ... HOLLY SIDDIQUE ...
Investigator’s Signature ...
Questionnaires for practitioners

Ethnopharmacological survey of Ayurvedic medicinal plants of Bangladesh

a. Informants' details:

<table>
<thead>
<tr>
<th>Name of the interviewer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the interviewee</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of interview</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
</tr>
<tr>
<td>Education (for example: apprenticeship, diploma or university degree)?</td>
<td></td>
</tr>
<tr>
<td>Number of years you have been practising as an Ayurvedic/Unani practitioner? (If applicable)</td>
<td></td>
</tr>
</tbody>
</table>

| Location/Residence | |

b. Questions for Ayurvedic/Unani practitioners:

- Information about plants:
<table>
<thead>
<tr>
<th>Name of the disease</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants used (Local name)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific name of plant(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Which plant part do you use? (stem, bark or root)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is the habit of the plant? (tree, shrub, herb or climber)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is the perfect time of plant collection?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In what condition do the plants used? (Fresh or dried form of plant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>How the plants are prepared? Do you prepare it by yourself or you give instruction to patients to prepare it by themselves?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did the patients experience any side effect if the plant extract taken with allopathic medicine?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route of administration, i.e. how is the plant taken? (oral/ ointment/etc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is the dosage of prescribe plant?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do these plants have other uses besides antimicrobial activity? (If any)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
c. Indigenous information about plants:

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where does the plant grow? Does it grow in wild or cultivated as food?</td>
<td></td>
</tr>
<tr>
<td>Is the plant common, less common or rare?</td>
<td></td>
</tr>
<tr>
<td>What is the location of collecting the plant?</td>
<td></td>
</tr>
<tr>
<td>Farm land, home garden, wild habitat or roadside?</td>
<td></td>
</tr>
<tr>
<td>What are the conservation needs?</td>
<td></td>
</tr>
<tr>
<td>Conservation efforts made by Government and local residence</td>
<td></td>
</tr>
</tbody>
</table>

Plants identified with ranking: ...(Scientific name)

Researcher signature: ..

Date: ..