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Abstract— The classification of bone fractures from 

radiographs is an important yet challenging task in clinical 

diagnosis. Diagnosing fractures through X-rays remains 

difficult for orthopedic specialists due to image quality issues, 

which can result in errors, misalignments, and potential harm 

to patients. However, recent advancements in artificial 

intelligence (AI) and deep learning have revolutionized medical 

imaging, with state-of-the-art methods now capable of handling 

2D and 3D images. This study focuses on deep-learning 

approaches for the classification and detection of bone fractures 

in radiograph images and aims to analyze and compare various 

deep-learning algorithms and techniques used in fracture 

detection. It also highlights current cutting-edge approaches in 

this field, providing insights and guidance for future research 

and practical applications. In this paper, the application of Fine-

tuned DenseNet169 for the automated classification of bone 

fractures in X-ray images is explored. By using deep learning 

approaches, our method seeks to enhance the accuracy and 

efficiency of fracture detection. We trained and evaluated the 

DenseNet169 model on the MURA Stanford dataset and 

achieved 83% accuracy in distinguishing fractured and non-

fractured elbow bones. The model's performance highlights the 

potential of DenseNet169 to assist radiologists in clinical 

settings, promoting better patient outcomes through prompt 

and reliable fracture diagnosis. 

Keywords—Convolutional neural network (CNN), Deep 

Learning, Bone Fracture 

I. INTRODUCTION  

The human skeleton, consisting of 206 bones, serves as the 
framework of the body and supports its movements and 
functions while also protecting internal organs. Historically, 
the treatment of bone fractures involved the use of a wooden 
frame machine and Steinmann pin, which was simple and less 
risky compared to surgery. However, there was no effective 
way to detect fractures until the discovery of X-rays by 
William Rontgen in 1895. X-rays are a type of photography 
that uses a cathode ray tube and were initially captured using 

heavy and expensive glass plates. The study focuses on the 
advancements in deep learning algorithms and approaches 
used to detect bone fractures in X-ray images and their 
strengths and limitations. It also highlights the current 
approaches within this scope, providing Perspectives for 
upcoming research and applications. One of the main 
limitations of using X-rays is the quality of the image which 
is poor, and the radiation exposure is high. To enhance X-ray 
technology, new artificial intelligence (AI) based approaches 
were introduced for X-ray diagnosis. A study [3] suggests that 
over 1.7 billion individuals could be affected by 
musculoskeletal disorders, which may lead to significant, 
chronic pain and fractures. It can take a long time to recover 
from bone fractures, which are common injuries that often 
result from accidents.  With the rapid development of medical 
technology, the approaches and procedures for treating 
accident patients have changed. In addition to diagnosis, 
hospitals often use X-rays to diagnose fractures. However, 
clinical hospitals can face challenges due to lacking 
radiologists or orthopedists. X-ray is the most common and 
important type of conventional radiography for diagnosing 
bone fractures. Still, computed tomography (CT) [5], [6] and 
magnetic resonance imaging (MRI) [7] are also significant 
and widely used in the treatment of traumatic brain injuries 
and other fractures. CT scans create 3D images but have the 
disadvantage of a high radiation dose and high cost, while 
MRI creates 3D images with low sensitivity and high-dose 
radiation. However, radiograph images contain low-dose 
radiations[8]. The authors [12] developed an ensemble model 

developed for detecting fractures in X-ray images. This 
model integrates several distinct models to enhance 
prediction accuracy and compared [13] models VGG16 

and Densenet169. 
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Our main contribution for bone fracture detection using 

deep learning: 

(i) We used a modified DenseNet169 model to 
achieve high accuracy of bone fracture 
classification. This result emphasizes the 
model's strong ability to learn and generalize 
between different data sets, demonstrating its 
robustness and adaptability to handle different 
medical image data.  

(ii) The MURA dataset was imbalance and it was 
very complex and challenging dataset.  

(iii) This study employs various regularization 
techniques, including L1 and L2 regularization, 
dropout, early stopping, and data augmentation, 
to mitigate overfitting and enhance model 
performance. These methods contribute to 
developing a robust and reliable model for bone 
fracture classification. 

(iv) Our contribution will help out the radiologists 
to overcome the problem of detection and 
classification of bone fracture and non-fracture. 
 The Performance of DenseNet169 shows the 
great improvement Xray bone dataset.  

Rajpurkar et al. [11] evaluated a DenseNet-169 model using 
the Stanford MURA dataset. The study found that the model 
outperformed radiologists, particularly in a detecting 
abnormality in finger and hand images. However, a notable 
decline in performance was observed when the model was 
applied to examinations of the elbow, forearm, humerus, and 
shoulder. This disparity across various anatomical regions 
within the upper extremity underscores the potential 
challenges and complexities associated with specific types of 
musculoskeletal abnormalities. In this research, we have 
trained DenseNet 169 on MURA focused on the local 
features of bone X-ray images. However, the model and 
achieved 83% accuracy on elbow (fracture and non-fracture) 
MURA datasets.  It shows the cutting-edge performance as 
compared to [11] because Rajpurkar et al. worked on MURA 
datasets and the accuracy of the denseNet 169 models was 
71%. 
The proposed paper is organized into four sections, as 
outlined below: 
Section II presents the proposed work along with a detailed 
research methodology regarding the datasets. In this section, 
we provide an overview of the MURA bone fracture datasets. 
Section III outlines the results obtained from the dataset. 
Finally, Section IV describe the conclusion in detail and 
potential future directions for the proposed structure. 
 

II. PROPOSED WORK 

The author [4] reviewed the DNN model for the classification 
of fracture and non-fracture bones. They used data 
augmentation to solve the radiograph problem of addition on 
small data and used these cutting-edge to increase the dataset 
size. Artificial intelligence approaches are now extensively 
used for bone fractures and non fractures. This kind of deep 
learning model can help to find the damage [6]. The authors 
[5] focused on small hand fractures and proposed the Yolo4 
model with data augmentation methods, which achieved 
81.91%. Most of the studies conducted compared the 
performance of artificial intelligence with the results of 
radiologists. A deep learning model was designed in this 
project study to classify fracture and non-fracture bones. The 
deep learning model is overlaid on small datasets. The model 

overfitting is a problem that occur when model learns from 
the training data and cannot generalize to new, unseen data. 
This occurs when the model is overly complex for the training 
data, and the validation data lacks sufficient diversity or 
coverage. The model can easily overfit small datasets because 
it has too much information to learn from limited data. To 
mitigate this, several techniques can be employed, such as 
optimization, early stopping, and data augmentation. During 
the classification, it happens when the model is too close to 
the training data and cannot be identified due to its poor 
performance on new data. This is especially pertinent for 
intricate models that possess numerous parameters. 
Adjustment techniques that incorporate a penalty in the loss 
function of the model can significantly limit parameter values 
and enhance generalization to unfamiliar data. Numerous 
normalization techniques exist, including L1 normalization 
(Lasso), L2 normalization (Ridge), and regression. These 
techniques apply penalties in various manners, and the choice 
of method is influenced by the problem and the attributes of 
the data. In deep learning, sorting has been explored and 
implemented to enhance model performance and reliability. 
Researchers have examined different combinations of 
preprocessing techniques and their impacts on performance. 
Furthermore, innovative deep-learning strategies like 
weighting, early stopping, and data augmentation have been 
introduced. Data augmentation has gained substantial 
popularity in computer vision as it enlarges dataset size 
during the training phase and aids in reducing the burden by 
discouraging the model from memorizing the training 
examples. The literature indicates that data augmentation can 
greatly enhance the performance and reliability of deep 
learning models through alterations to the original data such 
as flipping, rotating, scaling, and introducing noise. Data 
augmentation additionally aids in addressing class imbalance 
by producing extra samples for underrepresented classes, 
leading to a more balanced and resilient model. Besides data 
augmentation, L1 and L2 regularization, dropout, and early 
stopping are employed to manage the magnitude of the loads 
and avoid overfitting. In general, it is crucial for researchers 
creating deep learning applications to comprehend the 
different processing techniques and their effects on model 
performance. A thoughtful assessment of the trade-offs 
between model complexity and performance, and 
experimentation with different methods, can lead to better 
solutions for specific tasks. However, needed to explore new 
and innovative optimization strategies for deep learning. The 
study [14] explores bone fracture detection in X-ray images 
using Deep Learning, specifically DenseNet and VGG19 
CNN architectures. The models were trained and optimized 
using a varied X-ray dataset to enhance the accuracy of 
fracture detection. Assessment through performance metrics 
(accuracy, precision, and recall) indicated that the CNN 
models surpassed conventional methods, providing high 
sensitivity and specificity. The research also highlights the 
clinical potential of these models, implying they could assist 
radiologists in delivering quicker, more precise diagnoses, 
thereby enhancing patient care and alleviating healthcare 
workloads. In summary, the study aids in the progress of 
medical image analysis and computer-assisted diagnosis in 

radiology. 
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Research Architecture  

1. Convolutional Neural Network (CNN) based 
Densely Connected Convolutional Networks 

(DenseNet) 

 

Figure. 1 Fine Densenet 169proposed Architecture based 

on CNN 

a) Pre-processing: 

Preprocessing is an important part of the process that uses 
advanced methods beyond conventional methods to 
improve the quality of input data. These novel pre-
processing techniques are aimed at improving the model's 

capability to extract meaningful features from the images. 

b) Data Transformation and Augmentation 

The first stage is Preprocessing, where the data is loaded into 
the model to ensure consistency and enhance performance. 
Images were resized to a fixed size of 224x224 for the 
DenseNet169 model. The denseNet model has various 
variants that require a specific input size for processing 
images.  However, we have taken the standard input size that 
has compatibility and best performance with the pre-trained 
model with data augmentation approaches, like rotation and 
horizontal flipping, which are incorporated using the Keras 

Image_DataGenerator. The data augmentation increases 
the model's ability to generalize by generating variations of 

the original images. 

Furthermore, we have fine-tuned DeneseNet169 and 
compared the metric. The Researcher Stanford ML group 

used the DenseNet169 model on the MURA dataset. 

 

Figure No.  2 Architecture of Densenet with 5 Layers 

Dense blocks [10] 

However, we did introduce nuanced modifications in our 
approach, particularly concerning the loss functions. Due 
to the significant class imbalance in the MURA dataset, 
training the model with the standard cross-entropy function 
risked biasing the model towards the majority class, 
potentially neglecting the minority class. To mitigate this, 
we employed a composite loss function that synergistically 

combined cross-entropy with focal loss. In addition to the 
loss function, we incorporated training-time augmentations 
such as flipping, zooming, and random cropping. These 
augmentations enhanced the model's ability to generalize 
across varied X-ray presentations. Furthermore, at the 
network's head, we made refinements to the fully 
connected (FC) layer and introduced regularization 
techniques, namely L1 and L2, to prevent overfitting and 
stabilize training. 
Convolution and Pooling Layers: Initial 7x7 convolution 
with 64 filters, followed by batch normalization and ReLU, 
then a 3x3 max pooling layer. 
Dense Block 1: This layer contains 6 bottleneck layers, 
each with 1x1 and 3x3 convolutions, ensuring dense 
connectivity with previous layers. 
Dense Block 2: This layer consists of 12 bottleneck layers, 
where outputs of all preceding layers are concatenated for 
maximum feature reuse. 
Dense Block 3: This block contains the 32 bottleneck 
layers with dense connections for feature propagation.  
Dense Block 4: Contains another 32 bottleneck layers, 
providing further dense connectivity for deep feature 
extraction. 
Transition Layers: This layer consists a 1x1 convolution 
layer is trailed by 2x2 average pooling between dense 
blocks, effectively managing dimensionality and 

controlling network growth. 

RESULTS AND DISCUSSION 

In this work, we used efficient data processing and 
reinforcement, which are important for optimizing the 
performance of machine learning models, especially in the 
Keras implementation. At the initial step, the MURA 
dataset is loaded using the create_images_metadata_csv 
function, which generates CSV files containing image 

paths and associated tags. Table.1 shows the results  

Data Distribution for Training and Validation in Elbow 

Classification

 

Figure No. 3. Data Distribution for Training and Validation in 

Elbow Classification 

The figure no.3 shows that the dataset used in this study 
comprised a total of 5000 data points, with 465 allocated 
specifically for validation purposes and the remaining 4931 
designated for training. The training data predominantly 
consists of 4000 images across various categories, providing 
a robust foundation for model learning. The validation data 
includes 1000 images, strategically chosen to evaluate the 
model’s accuracy and prevent over fitting. This meticulous 

data distribution aids in achieving reliable outcomes. 
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Table 1: MURA Elbow Classification Report 

Class Precision recall F1 

score 

support 

0 0.76 0.97 0.85 235 

1 0.95 0.70 0.80 239 

accuracy  0.83 465 

Macro 
avg 

0.86 0.83 0.83 465 

Weighted 
avg  

0.86 0.83 0.83 465 

 

The Table no.1 describes bone fracture classification 
performance of the model is given in Table 1. For class 0, the 
precision was 0.76, with a recall of 0.97, resulting in an F1-
score of 0.85 based on 235 samples. For class 1, the precision 
reached 0.95, but with a lower recall of 0.70, yielding an F1-
score of 0.80 across 239 samples. The overall accuracy of the 
model was 0.83, calculated over 465 total samples. The 
macro-average for precision, recall, and F1-score was 
consistent at 0.86, 0.83, and 0.83, respectively, indicating 
balanced performance across classes.  

Training Accuracy vs Validation Accuracy 

 

Figure No. 4 Training Accuracy vs Validation Accuracy 

The figure no.4 shows that the model's performance was 
evaluated in terms of accuracy across training and validation 
phases over multiple epochs. The training accuracy started at 
0.55 and gradually increased, reaching 0.80 by the final 
epoch. Similarly, validation accuracy exhibited steady 
improvement, beginning at 0.50 and peaking at 0.75. This 
upward trend that shows the model's capability to learn 
effectively over time, reducing the gap between training and 
validation accuracy and indicating robust generalization The 
performance consistency across epochs emphasizes the effec

tiveness of the training procedure in attaining steady and de

pendable results. 

 

 

  Data Training Loss vs. Validation Loss 

 

Figure No.5 Data Training Loss vs. Validation Loss 

The figure no. 5 illustrates that the model's loss metrics were 
tracked throughout training and validation stages to assess 
optimization and convergence. At the beginning, the training 
loss was elevated, commencing at 2. 50, but it consistently 
dropped as the epochs advanced, attaining a minimum of 0. 
50 by the concluding epoch. Likewise, the validation loss 
exhibited a downward trend, starting at 2. 25 and decreasing 

to around 0. 75. 

Confusion Metric: 

 

Figure No.6 Confusion Metric 

The figure no.6 shows the data distribution reveals 
varying counts across different categories, highlighting 
imbalances that may influence model performance. Class 0 
contains 200 samples, with specific subsets showing counts 
of 217, 56, and 150. Similarly, class 1 consists of subsets with 
counts of 175, 125, 100, 75, and 174. These variations 
suggest the need for preprocessing techniques, like 
resampling or weighting, to ensure equitable representation 
of all categories during training. Addressing this imbalance is 
crucial for achieving consistent and unbiased model 

predictions. 
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Receiver operating characteristic (ROC) Curve 

 

Figure No.7 Receiver operating characteristic (ROC) Curve 

The figure no. 7 shows that model’s performance was further 
evaluated using the Receiver Operating Characteristic (ROC) 
curve, which illustrates the trade-off between the TPR and the 
FPR across different classification thresholds. The curve 
demonstrated a strong AUC value of 0.886, indicating high 
discriminative ability. The TPR approached 1.0 at lower FPR 
values, reflecting the model's capability to correctly classify 
positive samples while minimizing false positives. This 
robust ROC performance signifies the model's effectiveness 

in distinguishing between classes with reliable accuracy. 

Prediction in saved model  

 

Figure No. 8 Prediction in saved model 

In the evaluation of the DenseNet model implemented using 
Keras-TensorFlow, the following performance metrics were 
observed. The performance metrics associated with the elbow 
category achieved a Precision of 0.86, indicating that 86% of 
instances classified as Elbow were correctly identified. The 

Recall of 0.83 suggests that the model captured 83% of all 
actual Elbow instances. The F1 score, a harmonic mean of 
Precision and Recall, stands at 0.83, indicating a balanced 
performance. With an ROC value of 0.88, the model exhibits 
a high discriminative ability in distinguishing between 
positive and negative instances within the Elbow category. 
Cohen's Kappa coefficient, calculated at 0.66, indicates 
substantial agreement between observed and expected 
classifications 

IV. CONCLUSION  

In this paper, the implementation of DenseNet169 provides a 
comprehensive approach to managing the MURA dataset 
using the DenseNet169 architecture. The combination of 
efficient data loading, robust processing methods, and a well-
defined model architecture contribute to the model's 
performance observed that it may perform well in the 
challenging binary classification task. In addition, early 
detection and performance monitoring ensure that the sample 
remains wide and avoids overlap, making it suitable for 

medical applications for fracture detection.  

V. FUTURE WORK 

During this study, we have analyzed that CNN-based models 
only focus the local features, However, to capture `both 
features (Local and global features) from X-ray images, we 
have to use the ViT models or design the Hybrid approach 
with CNN to address-es the challenges related to the 
accuracy, feature breakup at multi-scale, overlapping 

associated with traditional approaches to deep learning. 
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