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and deep learning for hand gesture 
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dataglove
Md. Ahasan Atick Faisal 1,3, Farhan Fuad Abir 1,3, Mosabber Uddin Ahmed 1* & 
Md Atiqur Rahman Ahad 2*

Hand gesture recognition is one of the most widely explored areas under the human–computer 
interaction domain. Although various modalities of hand gesture recognition have been explored 
in the last three decades, in recent years, due to the availability of hardware and deep learning 
algorithms, hand gesture recognition research has attained renewed momentum. In this paper, 
we evaluate the effectiveness of a low‑cost dataglove for classifying hand gestures in the light of 
deep learning. We have developed a cost‑effective dataglove using five flex sensors, an inertial 
measurement unit, and a powerful microcontroller for onboard processing and wireless connectivity. 
We have collected data from 25 subjects for 24 static and 16 dynamic American sign language gestures 
for validating our system. Moreover, we proposed a novel Spatial Projection Image‑based technique 
for dynamic hand gesture recognition. We also explored a parallel‑path neural network architecture 
for handling multimodal data more effectively. Our method produced an F1‑score of 82.19% for static 
gestures and 97.35% for dynamic gestures from a leave‑one‑out‑cross‑validation approach. Overall, 
this study demonstrates the promising performance of a generalized hand gesture recognition 
technique in hand gesture recognition. The dataset used in this work has been made publicly available.

From the dawn of human civilization, communication between humans has been the single most important 
trait for our survival. At the same time, it created the social attributes among us which had been modified over 
the centuries and transformed us into civilized beings. However, the first mode of communication was not a 
structured vocal language but involved gestures, often using hands. Later, with the progress of civilization, people 
adopted structured languages and used hand gesture-based communication in special cases. Recent researchers 
have found around 6700 spoken  languages1 and several hundred sign  languages2, although a good number of 
them are not currently in use. Despite having structured vocal languages in every country, sign languages are still 
used primarily for communication with the deaf and hard-of-hearing community. However, since non-signers 
are not generally familiar with these sign languages, deaf and hard-of-hearing people face communication bar-
riers. On the other hand, with the technological development in sensor technologies, embedded systems, camera 
technologies, and efficient learning systems, hand gesture recognition research has found efficient and pragmatic 
solutions to the communication problem.

Hand gestures and their use vary greatly depending on the field of application. Apart from sign-language 
communication, several other tasks, namely military coordination, interaction with digital devices, and virtual 
gaming consoles involve hand gestures. Based on hand motion, hand gestures can be divided into two types—
static hand gestures and dynamic ones. Moreover, based on the application, one or both hands can be involved 
to complete a sign. Over the year, researchers have been trying to develop several technologies to use human 
hand gestures to communicate with the cyber world. Hence, the task of hand gesture recognition has been one 
of the most widely explored areas in the research domain of Human–Computer Interaction (HCI). The detec-
tion systems can be classified into two categories—contactless detection systems where the detecting device is 
kept at a distance from the hand and are not in any sort of contact, and wearable detection systems that are often 
implemented with several sensors at close contact with the  hand3.
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The researchers have explored contactless hand gesture recognition systems using several modalities, namely 
Radio Frequency (RF), ultrasound, and Computer Vision (CV). Google’s Project Soli is a 60 GHz millimeter-
wave radar on-chip that can detect fine-grained hand gestures along with micro-finger  movement4. Wang et al. 
used this chip and employed a deep learning algorithm to detect 11 dynamic hand gestures from 10  subjects5. 
However, this chip is not usable for detecting gestures at a meter-long distance. In this regard, WiFi has been used 
as a ubiquitous modality for detecting hand gestures from a greater distance than the Soli  chip6–8; however, it 
fails in the precision of  detection3. On the other hand, several studies have discovered the potential of ultrasound 
for detecting hand gestures with a clear line of  sight9–11. Although in recent years, these RF-based and sound-
based modalities have been improved in performance and reliability in particular applications, they are still not 
dependable in a regular use case where the environmental parameters vary  frequently3.

Owing to the tremendous development in Artificial Intelligence (AI) and camera technology, computer 
vision-based gesture detection systems are the most widely explored field of research in recent years. Although 
fundamentally employing computer vision modality, hand tracking and gesture recognition can be achieved in 
a variety of techniques namely, skin color  detection12–14, appearance  detection15–18, motion-based  detection19,20, 
skeleton-based  detection21,22, and depth  detection23–26. Apart from the conventional RGB camera, IR-based leap 
motion  controller27,28 and Microsoft Kinect depth  camera26,29–31 are two of the most widely used hardware for 
depth and skeletal information detection. However, the primary shortcomings of these methods are the environ-
mental dynamics, namely lighting conditions, line of sight, and detector proximity. Although depth-based and 
skeleton-based approaches have become more robust over the year, such as the MediaPipe by  Google32, they still 
have not overcome those shortcomings completely. Moreover, due to the cost of the high-quality depth sensor, 
the usability of such systems is rather still limited.

On the other hand, sensor-based wearable datagloves are one of the most widely used contact-based hand 
gesture recognition systems that have overcome most of the shortcomings of contactless detection methods. 
VPL Inc. first introduced a commercial sensor-based dataglove back in  198733. The researcher of this dataglove 
invented optical flex sensors which enabled them to track finger flexion. Despite inventing the technology at such 
an early age of HCI, these datagloves were not widely adoptable due to the high cost and lack of feasibility in regu-
lar use. In the last decade, owing to the development of low-cost high-performance sensors, processing devices, 
connectivity, and algorithms, researchers have explored new avenues of sensor-based hand gesture recognition.

Over the year, a wide range of both commercially available and custom-made sensors are used on datagloves 
for accurately capturing hand gesture dynamics. Several studies have explored surface electromyography (sEMG) 
sensors to capture the electrical activity inside the hand muscles during gesture  performance34–40. Moreover, 
Wang et al.41, Abreu et al.42, and Su et al.43 used variants of the Myo band which are commercial sEMG armbands 
and are specifically designed to track hand gestures. Although sEMG shows reliable performance in a wide range 
of gestures including sign languages, the detection algorithms were subjected to the sensor placement and the 
signers. Moreover, several studies have used resistive flex sensors and their variants for actively tracking finger 
 flexions44–46 and an Inertial Measurement Unit (IMU) to detect the hand  movements40,44,45,47,48. Wen et al. devel-
oped a smart glove with 15 triboelectric nanogenerator (TENG)-based sensors for tracking 50 American Sign 
Language (ASL) words and 20  sentences49. Furthermore, using a fusion of multiple sensors has shown greater 
performance in several studies than a single sensor  method40,41,43,45,46,50.

In our previous study, we presented a dataglove with five flex sensors and one IMU and evaluated its perfor-
mance in a limited number of gestures and  subjects44. In this work, we adopted the same sensor fusion configu-
ration and developed and combined it with state-of-the-art deep learning techniques. We proposed a Spatial 
Projection Image based deep learning technique for dynamic hand gesture recognition and parallel-path neural 
network architecture for multimodal sensor data analysis. The system successfully recognizes 40 words from 
the ASL dictionary, including 24 static and 16 dynamic signs collected from 25 subjects. In a nutshell, the key 
contributions of this work are as follows:

• We constructed a low-cost wireless capable dataglove combining flex sensors and IMU and explored state-
of-the-art deep learning techniques on it.

• We provided a large dataset of 40 ASL letters and words collected from 25 subjects using the proposed data-
glove.

• We introduced Spatial Projection to convert the 1D time-series signals into 2D images for dynamic gesture 
recognition which outperformed 1D CNN and classical machine learning-based approaches.

• The proposed parallel-path neural network architecture showed superior feature extraction capability from 
multimodal data over conventional architectures.

Methods and materials
Hardware configuration. The primary hardware is a dataglove consisting of three units, namely sensing, 
processing, and onboard power regulation unit. The sensing unit is comprised of five 2.2" flex sensors (SEN-
10264) and an IMU (MPU-6050) which has a triaxial accelerometer and a triaxial gyroscope. The overall hard-
ware configuration is illustrated in Fig. 1.

Sensing unit. The flex sensors are, in fact, variable resistors with flat resistance of 25 K� (± 30%) , which are 
placed above the five fingers of the dataglove using fabric pockets to sense the fingers’ flex. A voltage divider was 
created with each flex sensor and a 0.25 W 100 KΩ ( ± 5%) resistor was used to convert the resistance difference 
during the finger flexion to the voltage difference across the sensor using the processing  unit51.

The accelerometer and gyroscope of the IMU are configured to track the linear acceleration within 
± 19.6 ms−2 and angular velocity within ± 4.36 rad s−1 , respectively, which is well within the range of any 
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human hand motion. Moreover, the IMU contains a Digital Motion Processor (DMP) which can derive the 
quaternions in-chip from the accelerometers and gyroscope data and thus, provides the hand orientation data 
along with the motion  information52.

Processing unit. The processing unit is a WiFi-enabled development module called DOIT ESP32 Devkit V1 
that has a Tensilica Xtensa LX microprocessor with a maximum clock frequency of 240 MHz . The 12–bit analog 
to digital converter (ADC) with 200-kilo samples per second maximum sampling rate is capable of sampling 
the flex sensors’ analog data with sufficient resolution. Moreover, the module is capable of communicating with 
external computers via USB which enables wired data  communication53.

Onboard power regulation. The ESP32 module and the IMU have an operating voltage of 3.3 V52,53. On the 
other hand, the flex sensors do not have a strict operating  voltage51. Hence, we used an LM1117 low-dropout 
(LDO) 3.3 V linear voltage regulator to regulate the supply voltage from the 3.7 V single cell LiPo battery. Moreo-
ver, we used 10 μF and 100 μF filtering capacitors to filter out the supply noise.

Dataset. Overview. We explored 40 signs from the standard ASL dictionary that including 26 letters and 14 
words. Among these signs, 24 require only a certain finger flexion and no hand motion; hence, are addressed as 
static signs or gestures. Conversely, the remaining 16 signs need hand motion alongside finger flexion to portray 
meaningful expression according to the ASL dictionary. Moreover, we collected the signs from 25 subjects (19 
Male and 6 Female) in separate data recording sessions with a consistent protocol. Overall, three channels for 
acceleration in both body and earth axis, three for angular velocity, four for quaternion, and five for flex sensors 
were recorded in the dataset.

The data was recorded by the dataglove processing unit which was connected to a laptop for data storage via 
USB. The sampling frequency is set to 100 Hz and each gesture was repeated 10 times to record the performance 
variabilities of each subject. However, during a few sessions denoted in the dataset supplementary information, 
the laptop charger was connected which resulted in AC-induced noise all over those specific recorded data.

Data recording protocol. Before starting the recording process, each subject signed an approval form for the 
usage of their data in this research and was briefed about the data recording steps. As the subjects were not 
familiar with the signs before the study, they were taught each sign before the data recording via online video 
 materials54. The data was recorded by the dataglove and stored on the laptop at the same time. Hence, a Python 
script was used on the laptop to make the handshake between the two devices and to store the data in separate 
folders as per the signs and the subjects.

At the beginning of each data recording session, the subjects were prompted to declare their subject id and 
the gesture name. Afterward, a five-second countdown is prompted on the laptop screen for preparation. Each 
instance of the gesture data is recorded for a 1.5 s window and the subjects can easily perform their gesture once 
within that window. In a single gesture recording session, this process is repeated 10 times. The gesture record-
ing flow for each session is shown in Fig. 2. All methods were carried out following the relevant guidelines, and 

Figure 1.  The dataglove architecture: On the left, we have the glove with all the mounted sensors and 
electronics. A flex sensor is shown in the top right corner. The components of the main controller board are 
shown in the bottom right corner. It consists of an ESP32 microcontroller, an MPU-6050 IMU, and some 
complementary electronics.
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the correctness of gestures was evaluated by visual inspection. All experimental protocols were approved by the 
University of Dhaka, Dhaka, Bangladesh. Note that informed consent was obtained from all subjects.

Data preprocessing. Gravity compensation. The triaxial accelerometer of the IMU body records accel-
eration, which is subjected to gravity. Hence, the gravity component has to be adjusted from the recorded raw 
acceleration to interpret the actual motion characteristics of the dataglove. The gravity vector can be derived 
from the orientation of the dataglove. Quaternions express the 3d orientation of an object which is a robust 
alternative to the Euler angles which are often affected by gimbal-lock55. The digital motion processor (DMP) 
of the MPU-6050 processes the raw acceleration and angular velocity internally and produces quaternion. The 
quaternions can be expressed by Eq. (1).

where Q stands for a quaternion that contains a scaler, qw and a vector, q
(

qx , qy , qz
)

 . The overall gravity compen-
sation process is described in Eqs. (2) and (3)56.
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Figure 2.  The flowchart showing the data collection protocol. The diagram shows all the different steps of the 
data collection process. This protocol was followed during the data collection for all the subjects.
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where g
(

gx , gy , gz
)

 , Q
(

qw , qx , qy , qz
)

, la
(

lax , lay , laz
)

 , and a
(

ax , ay , az
)

 denotes the gravity vector, quaternion, 
linear acceleration vector, and raw acceleration vector, respectively. The resultant linear acceleration ( la ) repre-
sents the body axis acceleration which is compensated for the gravity offset. This step was done in the processing 
unit of the dataglove.

Axis rotation. The recorded raw acceleration and the gravity-compensated linear acceleration both were in 
the body axis of the dataglove and the body axis is dependent on the initial orientation of the dataglove when 
it powers up. However, this nature of axis dependency on the initial orientation is problematic for real-world 
applications. Hence, we converted the triaxial acceleration vector from the body axis to the North-East-Down 
(NED) coordinate system which follows the directions based on the earth  itself57. At first, a rotation matrix was 
calculated using the quaternions. Afterward, the NED linear acceleration is derived using matrix multiplication 
between the rotation matrix and the body axis linear acceleration. Equations (4) and (5) show this axis transfor-
mation process using  quaternions58.

where R , Q
(

qw , qx , qy , qz
)

 , LA
(

LAx , LAy , LAz

)

 , and la
(

lax , lay , laz
)

 stands for the rotation matrix, quaternion, 
NED linear acceleration, and the body axis linear acceleration, respectively. Similar to the previous step, this 
axis transformation is also done in the processing unit of the dataglove. Figure 3 illustrates the axial diagram of 
the dataglove and the axis rotation.

Rolling filters. After closer inspection, we found a few random spikes in the IMU data. Hence, firstly, we 
removed using a rolling median filter of 10 data points to get rid of such spikes. After the spike removal, secondly, 
we used an extra step of applying moving average filters for the only specific sessions where the recordings were 
subjected to AC-induced noise which resulted in comparable waveforms for all data recordings. The implemen-
tation of the moving average filter is shown in Eq. (6)59:

where x[n] is the input signal, N  stands for the number of data points, and y[n] denotes the output signal. 
However, after applying the rolling average there were a few null values at the end of each signal frame which 
were replaced by the nearest values in that signal. According to the data recording protocol, the gestures were 
performed in the middle of each 1.5-s window. Hence, replacing the few terminal data points with the nearest 
available valid data point does not change the signal morphology. Lastly, we used another level of rolling average 
filter of 10 data points, this time for the whole dataset, to further smooth the signal and also replaced the terminal 
null values with the nearest valid data point in each frame.

(4)R =





1− 2(q2y + q2z) 2(qxqy − qwqz) 2(qxqz − qwqy)

2(qxqy + qwqz) 1− 2(q2x + q2z) 2(qyqz − qwqx)
2(qxqz + qwqy) 2(qyqz + qwqx) 1− 2(q2x + q2y)
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(6)y[n] =
1

N
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∑

k=0

x[n− k]

Figure 3.  The IMU orientation diagram: On left, we have the X, Y, and Z coordinates of the MPU-6050. Along 
these 3 axes, the accelerometer and gyroscope values are recorded. The figure on the right shows the body axis to 
earth axis conversion diagram.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21446  | https://doi.org/10.1038/s41598-022-25108-2

www.nature.com/scientificreports/

Normalization. The processed acceleration and flex sensor data are not in the same range. Hence, before 
employing the AI-based classification technique, data normalization is widely practiced for better convergence 
of the loss  function60. We used min–max scaling as the normalization technique with a range of [0, 1] . It is shown 
in Eq. (7)61:

where x is the input and xnormalized is the normalized output. xmax and xmin respectively denote the maximum 
and minimum values of the input.

Spatial projection images generation. There are several challenges associated with dynamic sign language rec-
ognition. In our case, the temporal dependency and the size of the hand were the most challenging issues. A 
signer can perform a sign at many different speeds. Moreover, the speed does not match up from signer to signer. 
To successfully recognize signs from all the subjects, first, this temporal dependency needs to be removed from 
the signals. The second challenge was the hand size of the signer which introduced variability in the gestures 
performed by different signers. In the proposed method, we tried to eliminate these two issues by utilizing the 
Spatial Projection Images of the dynamic gestures. However, the static gestures do not generate a meaningful 
pattern in the projections due to their stationary nature. Hence, this step is omitted for static signs.

When interpreting a sign, the speed of performing the sign and the signer’s hand size does not matter. The 
spatial pattern created by the motion of the signer’s hand defines the sign. As long as the pattern is correct, the 
sign will be considered valid regardless of its temporal and spatial states. To capture this pattern of sign language 
gestures we utilized the accelerometer sensor data from our device. Using Eqs. (8–9), we converted the 3D 
acceleration into 3D displacement vectors. These vectors represent the path followed by the hand in 3D space 
during the performance of the gesture.

These 3D displacement vectors were then projected onto the XY, YZ, and ZX 2D planes. If the vectors are 
projected onto these planes for the entire timeframe of the sign, the projections form a 2D path that captures the 
pattern of the sign in the 3 planes as shown in Fig. 4. No matter at which speed the gesture was performed, these 
2D projections of the gesture always provide similar patterns. Hence the temporal dependency is eliminated in 
this process.

(7)xnormalized =
x − xmin

xmax − xmin

(8)
t2
∫
t1
a(t)dt = v(t2)− v(t1)

(9)
t2
∫
t1
v(t)dt = x(t2)− x(t1)

Figure 4.  Spatial projection generation process. We start with the 3-axis acceleration and then convert 
them into 3-axis displacement vectors. These vectors are projected onto the 2D spatial planes to generate the 
projection images.
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After capturing the pattern of a particular gesture, we normalize the projections using the maximum and 
minimum values along axes. In this way, the projection from different signers results in a pattern that is similar 
regardless of their hand size.

The projections were generated using the Python  Matplotlib62 library where the components of the displace-
ment were calculated along the 3 axes and they were plotted 2 at a time for the three-axis planes (XY, YZ, and 
ZX). We used the line plot for this with the “linewidth” parameter set to 7 and the color of the line set to black. 
This resulted in 3 grayscale images for the 3 projection planes for each gesture. The images were then resized to 
224 × 224 pixels dimensions and we used these images for the input of our proposed model.

The proposed architecture. In this section, we present the network architecture of our proposed frame-
work (Fig. 5). We have used two variations of the architecture for static and dynamic signs.

Architecture for static gestures. As mentioned in the Data Preprocessing subsection, Spatial Projection Images 
are not used for static gestures. The normalized time series channels are passed to separate 1D ConvNet blocks 
to produce embeddings. These embeddings are afterward concatenated in a fully connected layer which in turn, 
makes the prediction. Figure 5a shows the stacked 1D ConvNet block architecture for static gesture detection.

Architecture for dynamic gestures. We have utilized two different types of signals for the input to our model. 
First, we have the 3 spatial projection images generated from the acceleration data. Then we also have the 1D 
time-series signals from the flex sensors. So, in total, we have 8 channels of input data with 3 image channels and 
5 time-series signal channels. Each of these channels was processed using separate ConvNet blocks to produce 
the embeddings from that particular channel. For the static gestures, the 8 time-series signals were processed 
using the parallel path ConvNet architecture shown in Fig. 5b. On the other hand, the projection images were 
processed by a 2D ConvNet architecture  (MobileNetV263) as shown in Fig. 5c. The architectural details of these 
two ConvNet blocks are discussed below.

1D ConvNet block. The 1D ConvNet blocks are composed of 4 convolution layers. Each pair of convolution 
layers is followed by a BatchNormalization layer and a MaxPooling layer. The kernel size used in the convolution 
layers was set to 3, the stride was set to 1 and the padding was set to 1. The MaxPooling kernel size was set to 
2 and the ReLU activation function was used. After the 4 convolution layers, the fully-connected layer with 50 
neurons was used to extract the embeddings.

2D ConvNet block. The 2D ConvNet blocks are constructed using the  MobileNetV264 architecture. MobileNet 
is an efficient architecture for mobile and embedded vision applications. It utilizes depthwise separable 
 convolutions65 to significantly reduce the computational burden compared to regular convolution. In depthwise 
separable convolution, each of the channels is processed with the convolution filters separately and the resultants 
are combined using a 1 × 1 pointwise convolution. This is known as factorization and it drastically reduces the 
computation and model size.

The  MobileNetV263 is the result of the improvements done to the regular MobileNet architecture. It uses an 
inverted residual  structure66 where the skip connections are between the thin bottleneck layers which improves 
the performance compared to the classical structure. The MobileNetV2 architecture starts with a regular convolu-
tion layer with 32 filters followed by 19 residual bottleneck layers. The kernel size was set to 3 × 3 and  ReLU664 
was used as the activation function.

We used the  Tensorflow67 Python library to implement the proposed network. For the loss function, we used 
the Sparse Categorical Cross-Entropy loss. The loss was minimized using the  Adam68 optimizer with a learning 
rate of 0.0001. The network was trained for a maximum of 300 epochs with an early stopping criterion set on 
the validation loss with a tolerance of 30 epochs.

Ethical approval. We took written consent from all the subjects participating in the data collection process. 
It was mentioned in the consent form that the data will only be used for research purposes. Moreover, the dataset 
does not contain any personal information of the subjects but their sex and age information.

Results
Evaluation criteria. Evaluation metrics. To evaluate our architecture for the static and dynamic gestures, 
we adopted four evaluation criteria, namely macro-averaged precision, macro-averaged recall, macro-averaged 
F1, and accuracy which are described in Eqs. (10–16).

(10)Precisioni =
TPi

TPi + FPi

(11)Precisionmacro−avg =
1

N

N
∑

i=0

Precisioni

(12)Recalli =
TPi

TPi + FNi
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where TP , FP , and FN denote true positive, false positive, and false negative, respectively. Moreover, the i indi-
cates the particular gesture or subject and N stands for the total number of that gesture or subject. For evaluating 
per-gesture performance we have used the per-class precision, recall, and F1-score, and for overall reporting, we 
adopted the macro-average method.

Validation method. There are several validation techniques used for evaluating a machine-learning (ML) 
model. Among these techniques, we have used the leave-one-out-cross-validation (LOOCV) method to deter-
mine the performance of the architecture. LOOCV is regarded as one of the most challenging validation tech-
niques because for each training and evaluation session, the model is exposed to a single unseen subject’s data. 
Hence, if that particular subject’s data contains significant variation from other subjects in the training set, the 
resultant matrices are heavily penalized. Increasing the number of subjects in the training set also increases the 
chance of having more representative data in the test set.

However, our rationales behind using the LOOCV technique are to challenge the generalization of our 
trained model and test the model’s capability on unseen subject data. Here, we have separated one subject from 
the dataset as the test set and used the rest of the subject data as the training set. Thus, we repeated the process 
for all 25 subjects and evaluated the overall results at last.

Experiments. Baseline methods. Since we have used a custom-made dataglove for this study and our data-
set has not been benchmarked before, two classical ML and one deep learning model are employed to generate 
the overall result. These two classical ML algorithms provided the top performance for our previous study with 
the same dataglove. Moreover, 1D CNN is one of the most widely used deep learning algorithms with time-series 
data. Wen et al.49 used this architecture as the AI algorithm for their study. Hence, we chose these methods for 
the baseline determination. Table 1 shows the results of these baseline methods for both static and dynamic 
gestures.

Performance evaluation of the proposed method. We have evaluated the proposed architecture for static and 
dynamic gestures separately. The confusion matrices illustrated in Fig. 6 projects the performance evaluation for 
each class. Moreover, Table 2 presents the evaluation metrics for each gesture per gesture category, and Table 3 
shows the overall metrics for static and dynamic gestures.

Discussion

Static gestsures. In the proposed architecture, we used individual 1D ConvNet blocks for each channel of 
the flex and IMU to produce embeddings. The flex sensors capture the finger movements whereas the orienta-
tion can be interpreted from the acceleration. The confusion matrix in Fig. 6a shows the majority of the detection 
at the diagonal with a few misclassifications. Among the 24 static gestures, 14 were classified with F1-scores over 
0.8, two (k, x) had F1-scores between 0.7 and 0.8, and the F1-scores dropped below 0.7 for seven static gestures 
(c, e, o, s, t, u, v).

According to Fig. 7c and o are very similar to each other in gesture shape and hand  orientation69. The only 
difference is the position of the thumb with respect to the other four fingers, which touch each other during o but 
remain separate during c. The use of a contact sensor on the tip of the thumb might improve this classification.

Moreover, u and v have similar finger flexion and orientation. The only subtle difference between these two 
gestures is that the index touches the middle finger during u but does not do so during v. A contact sensor 
between these two fingers might improve the detection ability of the model.

Based on Fig. 7, we found similarities between e and s as well. While the thumb is kept below the other fin-
gertips during e, it remains on top of the fingers like a fist during s. Although the flexion of the four fingers is a 
bit different, the subtle differences in the flex sensor data are not learned by the model.

Lastly, the performance of t is one of the most complex ones using a dataglove where the gesture is performed 
with the thumb kept in between the index and the middle fingers. The finger flexion is similar in x as well. Moreo-
ver, for some subjects, the index finger was not bent enough which resulted in a similar flexion as d. Therefore, 
the model sometimes misclassified t with x and d.

(13)Recallmacro−avg =
1

N

N
∑

i=0

Recalli

(14)F1i = 2
Precisioni ∗ Recalli

Precisioni + Recalli
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1

N

N
∑
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Among the 0.7–0.8 F1-score range, the model falsely predicted x as t and k as p in a few cases. This is also 
due to the similarities between the gestures.

Dynamic gestures. Compared to the static gestures, our model performed significantly well for the 
dynamic gestures with an F1-score ranging from perfect 1 for please, to 0.9295 for hello. Although the gesture 
hello is significantly different from sorry or yes, according to the confusion matrix there were some misclassifica-
tions between these classes (Fig. 8 demonstrates the differences among these 3 classes). However, since we used 
the LOOCV technique to generate these results, the subject-induced bias in one gesture might affect the valida-
tion for a different gesture performed by another subject.

Comparison with previous works. Based on our literature review, we showed different sensor-based 
gesture recognition works from 2016 in Table 4 for ease of comparison.

According to the comparison, several studies show better accuracy compared to this work. However, the 
number of volunteers, number of gestures, and validation method are not the same in all these studies. Moreover, 
due to the mode of our experiments and system, we are unable to compare our method with other systems. For 
example, among these works, Wen et al.49, Lee et al.45, and Abhishek et al.72 did not provide enough information 
in their manuscripts regarding the number of volunteers in their dataset. Although other works have mentioned 
the number of users, most of them, for example, Su et al.43, did not consider user-independent performance. In 
practice, AI-based models show discrepancies in their performances on new subjects, making the user-specific 
metric unreliable.

However, Wen et al.,  202149, Lee et al.45, and Saquib et al.70 customized their dataglove with sensor placements 
at some specific points to detect the touch at the fingertips. Such sensor placements have improved the detection 
capability of some specific ASL alphabets. In this work, we proposed a generalized hand gesture recognition 
system and used ASL signs only for validation. On the other hand, such ASL-specific systems in the abovemen-
tioned studies might not show similar performance in other application domains.

Table 1.  Overall evaluation of different classical machine learning and deep learning methods.

Method Gesture type Precision Recall F1 Accuracy

Logistic regression
Static 0.8128 0.8132 0.8128 0.8119

Dynamic 0.9420 0.9405 0.9406 0.9405

Random forest
Static 0.8134 0.8125 0.8106 0.8125

Dynamic 0.9417 0.9405 0.9407 0.9405

1D CNN
Static 0.8110 0.8111 0.8110 0.8102

Dynamic 0.8958 0.8927 0.8934 0.8928

Figure 6.  Confusion matrices: (a) confusion matrix for the static signs; (b) confusion matrix for the dynamic 
signs.
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Moreover, the number of gestures, number of subjects, and gesture type are three significant parameters for 
the performance comparison. For example, in our previous  work44, we used K-nearest neighbors (KNN) with the 
same dataglove which resulted in an accuracy of 99.53% for static and 98.64% for dynamic gestures. However, 
that study included only 14 static and 3 dynamic gestures collected from in total of 35 volunteers. However, the 
gestures chosen for the study were very distinct from each other compared to the ones we used in this study.

The comparison among several systems cannot be done based on only the accuracies of the systems. Based 
on the gesture type, number of gestures, number of volunteers, application, and validation method, this study 
presented a more robust and economic hand gesture recognition solution compared to the other works in recent 
years.

Limitations. Domain‑specific improvement. Each application of hand gesture recognition is different. 
Hence, some domain-dependent limitations are encountered in the model’s performance for a few classes which 
might vary for different sign language dictionaries. In this particular application, contact sensors are required at 
the tip of the thumb and between the index finger and the middle finger for performance improvement.

Limitation in everyday use. Although made using low-cost commercially available sensors and modules, the 
dataglove is not feasible for everyday outdoor use which limits the use of such systems in particular domains.

Applications. Video conference. Due to the COVID-19 pandemic, the use of video conferences has in-
creased in a steep curve. However, for the deaf and hard-of-hearing community, access to these video confer-
ences is a challenge, since some platforms might not have a real-time computer vision-based sign interpreter. In 
this case, an accessibility software using our dataglove and proposed AI-based gesture detection system might 
open new avenues for the deaf and hard-of-hearing community.

Table 2.  Separate evaluation of each static and dynamic sign using the proposed method.

Static gestures Dynamic gestures

Gesture Precision Recall F1-score Gesture Precision Recall F1-score

a 0.8429 0.88 0.8611 Bad 1 0.996 0.998

b 1 0.996 0.998 Deaf 1 0.988 0.994

c 0.638 0.564 0.5987 Fine 0.9839 0.976 0.9799

d 0.7749 0.84 0.8061 Good 0.988 0.992 0.99

e 0.5611 0.716 0.6292 Goodbye 0.996 0.992 0.994

f 0.996 1 0.998 Hello 0.9655 0.896 0.9295

g 1 1 1 Hungry 1 0.976 0.9879

h 0.9843 1 0.9921 j 0.9798 0.968 0.9738

i 0.9368 0.948 0.9423 Me 1 0.96 0.9796

k 0.8042 0.772 0.7878 No 0.9553 0.94 0.9476

l 0.9144 0.94 0.927 Please 1 1 1

m 0.9424 0.916 0.929 Sorry 0.9286 0.988 0.9574

n 0.9102 0.932 0.9209 Thankyou 0.9484 0.956 0.9522

o 0.6518 0.644 0.6479 Yes 0.9234 0.964 0.9432

p 0.8301 0.86 0.8448 You 0.9843 1 0.9921

q 0.949 0.968 0.9584

s 0.4639 0.36 0.4054

t 0.7389 0.6 0.6623

u 0.59 0.616 0.6027

v 0.6224 0.6 0.611

w 1 1 1

x 0.7724 0.828 0.7992

y 0.9035 0.936 0.9194

z 0.9318 0.984 0.9572

Table 3.  Overall metrics of the static and dynamic signs using the proposed method.

Gesture type Precision Recall F1-score Accuracy

Static 0.8223 0.8242 0.8219 0.8242

Dynamic 0.9741 0.9735 0.9735 0.9735
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Robot control. One of the primary applications of hand gesture recognition is controlling a remote cyber body, 
namely a robot using hand commands. Due to the promising performance of our dataglove and the detection 
algorithm, it can be a promising low-cost solution for a wide range of robot control applications.

Virtual reality. Nowadays, virtual reality (VR) devices are within our reach and with the announcement of 
Meta Verse, new avenues of VR technology have been opened. In this regard, the fundamental necessity of 
communicating with the cyber world is still done using wearable dataglove-based hand gestures. Our proposed 
dataglove can be used in conjunction with the VR headset as well.

Conclusion
In this paper, we developed a dataglove to detect static and dynamic hand gestures and presented a novel deep 
learning-based to make predictions. To validate the system, we constructed a dataset of 40 ASL signs, including 
24 static signs and 16 dynamic ones, from 25 subjects. For static gestures, after data filtering, we compensated 
the gravity from the acceleration and converted it from the body axis to the earth axis. In the case of dynamic 
gestures, we generated Spatial Projection Images from 1D time series acceleration data. We also introduced a 
parallel path neural network architecture to extract features from different sensor channels more efficiently. Our 
method produced better results than classical ML and CNN-based methods for both static and dynamic gestures. 
The achieved results are extremely promising for various applications.

Figure 7.  The standard ASL signs for letters and  numbers69.

Figure 8.  Differences among (a) ‘hello’, (b) ‘sorry’, and (c) ‘yes’ gestures.
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In future work, we will employ our method on several applications and create a larger dataset to explore 
further. Moreover, by employing a multimodal technique, we can include videos with the sensor data to accu-
mulate additional features.

Data availability
The datasets analyzed during the current study are available in  Figshare73 (https:// figsh are. com/ artic les/ datas et/ 
ASL- Sensor- Datag love- Datas et_ zip/ 20031 017).
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