
Hybrid Transfer Learning and Support Vector Machines Models for Asphalt Pavement 1 
Distress Classification 2 
 3 
Alex Apeagyei 4 
Associate Professor 5 
School of Architecture, Computing and Engineering 6 
University of East London, E16 2RD, UK 7 
Email: a.apeagyei@uel.ac.uk 8 
 9 
Toyosi Elijah Ademolake 10 
PhD Student 11 
School of Architecture, Computing and Engineering 12 
University of East London, E16 2RD, UK 13 
Email: a.apeagyei@uel.ac.uk 14 
  15 
Joseph Anochie-Boateng 16 
Associate Professor 17 
Faculty of Engineering, Built Environment and Information Technology  18 
Room 12-26, Level 12, Engineering 1 19 
University of Pretoria, Private Bag X20 20 
Hatfield 0028, South Africa 21 
 22 
Word Count: 7459 words + 0 table (250 words per table) = 7,459 words 23 
 24 
 25 
Submitted 1August 2023 26 
 27 
 28 
Asphalt pavement distress classification; Support Vector Machines; Transfer learning; Hybrid 29 
models; Pavement distress classification    30 



Apeagyei, Ademolake and Anochie-Boateng  

2 
 

ABSTRACT 1 
Pavement condition evaluation plays a crucial role in assisting with the management of the highway 2 
infrastructure. However, the current methods used for assessing pavement conditions are costly, time-3 
consuming, and subjective. There is a growing need to automate these assessment tactics and leverage 4 
low-cost technologies to enable widespread deployment. This study aims to develop robust and highly 5 
accurate models for classifying asphalt pavement distresses using transfer learning (TL) techniques based 6 
on pretrained deep learning (DL) networks. This topic has gained considerable attention in the field since 7 
2015 when DL became  the mainstream choice for various computer vision tasks. While progress has 8 
been made in TL model development, challenges persist in terms of accuracy, repeatability, and training 9 
cost. To tackle these challenges, the study proposes hybrid models that combine DL networks with 10 
support vector machines (SVMs). Three strategies were evaluated: single DL models using transfer 11 
learning (TLDL), hybrid models combining DL and SVM (DL+SVM), and hybrid models combining 12 
TLDL and SVM (TLDL+SVM). The performance of each strategy was assessed using statistical metrics 13 
based on the confusion matrix. Results consistently showed that the TLDL+SVM strategy outperformed 14 
the other approaches in terms of accuracy and F1 score, regardless of the DL network type. On average, 15 
the hybrid models achieved an accuracy of 95%, surpassing the 80% accuracy of the best single model 16 
and the 55% accuracy for DL+SVM without TL. The results clearly indicate that employing transfer-17 
learned models as feature extractors, in combination with SVM as the classifier, consistently achieves 18 
exceptional performance. 19 
Keywords: Asphalt pavement distress classification; Support Vector Machines; Transfer learning; Hybrid 20 
models; Pavement distress classification   21 
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INTRODUCTION 1 
The impact of pavement distress on the road network's maintenance, both in terms of cost and 2 

user safety, is significant. A key first step in the maintenance of roads is the pavement distress data 3 
collection and analysis. There are currently two main methods of pavement distress data collection and 4 
analysis. Current data collection is undertaken either automatically with the use of dedicated vehicles or 5 
manually with visual surveys. Numerous highway agencies emphasize a significant advantage of 6 
automating pavement distress data collection over manual methods, particularly with regard to personnel 7 
safety. According to McGhee [1] , various U.S. transportation agencies have expressed concerns about the 8 
risks associated with manual data collection on roadways, highlighting the potential hazards for 9 
individuals. In contrast, modern automated equipment enables the safe and efficient collection of data at 10 
traffic speeds. However, existing automated distress collection and identification systems require 11 
dedicated vehicles equipped with a variety of sensors, such as high-definition cameras and laser scanners. 12 
The limitation of these vehicles is their high purchase ($800,000) [2]  and operational (approx. $50 per 13 
mile) costs (McGhee 2004). Hence, many US states, for instance, own just a few or none and operate 14 
them only once a year. Method of analysis of the data collected also varies depending on the agency. 15 
Some agencies rely on multiple operators to view and analyze the digital images captured by the survey 16 
vehicle [3] , a tedious undertaking that could be fraught with subjectivity.  The reported benefits of such a 17 
system include better consistency as only selected operators are used, and comfort and safety, as ratings 18 
are done in the office. A major disadvantage, which deep convolutional neural network (DCNN) 19 
techniques such as those proposed in this study can address, is the significant amount of time involved in 20 
data analysis, thereby impeding the routine collection of continuous distress surveys. Thus, currently for 21 
some agencies, only a fraction (about 10%) of each road section is rated and surveys are limited to about 22 
once annually. With DCNN, data can be collected continuously with inexpensive vehicle mounted 23 
cameras and data analysed automatically. 24 

In this regard, automated road distress identification can play a crucial role in reducing 25 
maintenance costs by helping to detect and repair pavement distresses in a timely manner. Consequently, 26 
machine learning approaches, particularly transfer learning (TL) models based on deep learning (DL) 27 
networks such as GoogLeNet, DenseNet, and ResNet50, have been widely suggested for the automatic 28 
classification of asphalt pavement distresses. However, there are still significant hurdles to overcome, 29 
including computational complexity, model-dependent accuracy, repeatability, and training cost. Fine-30 
tuning a pre-trained DL model, the commonly used approach requires substantial computational 31 
resources. Moreover, the ability to develop highly accurate, repeatable, and robust models involving the 32 
hybridization of deep convolutional neural networks (DL) and shallow networks for pavement distress 33 
classification is an ongoing challenge. 34 

Deep learning models (DLs) such as convolutional neural networks (CNNs) are well-suited for 35 
image classification as they can capture complex patterns and features hierarchically through their layers. 36 
They excel at learning discriminative features that differentiate between different image categories. 37 
However, DL models can have limitations when it comes to handling small training datasets or scenarios 38 
with class imbalance. This is where SVMs may come into play. SVMs are a type of supervised learning 39 
algorithm that is effective at binary classification tasks. They can handle data imbalance, robustly handle 40 
outliers, and generalize well too when applied to small datasets. Hybrid models have the potential to 41 
synergistically combine the best of DLs and SVMs for classification tasks. 42 

In the hybrid models, the DL networks are used for feature extraction and learning high-level 43 
representations from the input images. In the context of image classification, a hybrid approach typically 44 
involves using a pre-trained DL model, such as the eight pretrained networks used in the current study, to 45 
extract features from the input images. These extracted features are then fed into an SVM, which 46 
performs the final classification based on the learned feature representations. The combination of DL and 47 
SVM in hybrid models aims to leverage the strengths of both approaches. DL models excel at learning 48 
complex and hierarchical representations, while SVMs provide robust classification and generalization 49 
capabilities. By integrating these two techniques, hybrid models can achieve improved accuracy, 50 
especially in scenarios with limited training data or class imbalance, such as pavement distress data. 51 
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Pavement distresses are typically caused by load-related, non-load-related or a combination of both. Thus, 1 
depending on location, distresses could be attributed to say environmental or traffic or both, thus causing 2 
distress imbalance even on the same section of a road pavement.  3 

This study focuses on investigating the performance of hybrid machine learning models 4 
compared to single DL-based TL models. Three strategies were considered: DL-based TL, DL and SVM 5 
hybrids, and DL-based TL plus SVM hybrids. The experiments involve hyperparameter optimization, 6 
feature extraction from DCNN layers, and training with SVM classifiers. The results demonstrate that the 7 
hybrid models incorporating DL-based TL plus SVM consistently improve the classification accuracy 8 
across all DL models considered. 9 

The remaining sections of the paper include an overview of related work, the methodology, the 10 
results and discussion, and the conclusions and recommendations for future work. 11 

 12 
Background and related work 13 
 14 
Image classification versus image detection 15 

In the context of convolutional neural networks (CNNs), image detection and image classification 16 
refer to two different tasks that can be performed on input images. Thus it is important to explicitly 17 
distinguish between the two to prevent confusion and facilitate appropriate evaluation. Image 18 
classification is the task of assigning a single label or category to an input image. Image detection, on the 19 
other hand, is the task of identifying the presence and location of objects of interest in an input image. 20 
The current study is limited to image classification of eight selected asphalt pavement distresses as the 21 
authors believe the process of assigning labels to an entire image is the first step important step in both 22 
image classification and object detection. Once a model(s) has been developed for the classification task, 23 
object detection can be easily performed by passing features extracted from the classification stage as 24 
inputs for the detection stage. 25 

 26 
Classification for asphalt pavement distress 27 

In most cases, road surface conditions are typically assessed visually, either manually or 28 
automatically using specially-equipped vehicles. While some data collection aspects have been 29 
automated, classifying pavement distress remains a tedious and subjective task. Existing methods are 30 
often semi-automated, requiring further analysis by experienced technicians or expensive proprietary 31 
systems. Additionally, reported costs for some automated systems are high averaging about $1.2m to 32 
acquire a unit and about $70k/year to operate (Vavrik et al. [4]), making them less accessible. 33 
Consequently, many agencies still prefer manual inspection, considering it more convenient [5]  or only 34 
surveying intermittently. Continuous monitoring for distress initiation and propagation is essential for 35 
cost-effective maintenance, which existing systems struggle to achieve. The challenge of replicating the 36 
expertise of trained technicians, reducing survey cost, and the need for continuous monitoring could be 37 
addressed by leveraging deep learning techniques, particularly hybrid transfer learning and support vector 38 
machines.  39 

.  40 
Transfer learning for asphalt pavement distresses 41 

There have been several studies that have explored the use of transfer learning (TL) for the 42 
classification of asphalt pavement distresses in the attempt to automate asphalt pavement distress 43 
inspections. The studies have generally used deep learning models such as convolutional neural networks 44 
(CNNs) and transfer learning techniques such as fine-tuning and feature extraction. Most of these 45 
previous studies have focused on the development of TL classification networks based entirely on single 46 
DL models such as Inception [6-27]. Overall, these studies demonstrate the effectiveness of transfer 47 
learning for improving the accuracy of deep learning models for asphalt distress classification. However, 48 
the accuracy of transfer learning models can depend on various factors, such as the quality and size of the 49 
labelled dataset, the choice of pre-trained model, and the specific type of asphalt distress being classified. 50 
Few studies have attempted hybrid models involving multiple machine learning techniques. A key focus 51 
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of the current study is to fill the gap related to the choice of pre-trained models for transfer learning since 1 
previous studies have shown significant differences in the performance of various pretrained DL models 2 
[9]. 3 

Apeagyei et al. [9] evaluated various state-of-the-art pretrained DCNNs for developing pavement 4 
distress classification models using TL approaches. Results indicated significant differences in the 5 
performance of selected pretrained in terms of accuracy. They identified the need for future studies to 6 
focus on image quality and quantity, exploration of hyperparameter variability, and consideration of 7 
synergistic effects from combining multiple DCNNs for improved predictive performance. 8 

 9 
Support Vector Machine (SVM) 10 

Support Vector Machine (SVM) is a supervised machine learning procedure that is frequently 11 
employed for tasks involving classification and regression. While deep learning approaches have gained 12 
significant attention in recent years, SVMs were popular for image classification tasks before the rise of 13 
deep learning architectures. There have been many studies that have utilized Support Vector Machines 14 
(SVMs) for the detection of highway distresses. For example, Lin and Liu [13] investigated the possibility 15 
of detecting potholes on roads from digital images using SVMs. The researchers extracted colour and 16 
texture features from digital road images and used an SVM classifier to distinguish between potholes and 17 
non-pothole areas. The SVM model showed promising results in accurately identifying potholes from the 18 
road images. Others include Gavilán et al. [14] who used multi-class SVM to classify 10 pavement 19 
surface types so that features could be manually selected for the subsequent road distress detection 20 
module. The authors identified the need for a more sophisticated and automated approach to feature 21 
extraction. 22 

Carvalhido et al.  [15] proposed a crack classification technique using SVM. The approach 23 
required three different pre-processing configurations to smoothen the texture and enhance potential 24 
cracks in images. The authors suggested the need for additional pre-processing techniques, such as 25 
median and morphological filters to improve the robustness of their models. The study was limited to 26 
cracks whereas a typical highway will involve multiple distresses. 27 

Prasanna et al. [16] proposed a histogram-based classification algorithm and applied it together 28 
with SVM to detect cracks on the concrete deck surface; the results on bridge data highlighted the need to 29 
improve the accuracy of practical predictions.  30 

Gavilán et al. [14] proposed an automated crack detection system to distinguish between cracked 31 
and non-cracked areas on up to ten different types of pavements using a linear SVM-based classifier 32 
ensemble. The Gray-Level Co-occurrence Matrix (GLCM), Maximally Stable Extremal Regions (MSER) 33 
and Local Binary Patterns (LBP) were used to obtain the components of the feature vector. The authors 34 
recommended future studies that involve new performance indexes to differentiate between diverse types 35 
of cracks such as longitudinal, transverse and alligator cracking. 36 

Ai et al. [17] proposed a SVM-based method to calculate the probability maps using the 37 
information of multi-scale neighborhoods to develop a fused map, which can detect cracks with accuracy 38 
higher than any of the original probability maps. The models were evaluated using performance metrics 39 
including precision, recall, F1-score, and receiver operating characteristic. The study was limited to the 40 
pixel level pavement crack detection problem at the expense of all other common pavement distresses. 41 
Furthermore, feature extraction was obtained in part using a probabilistic generative model-based method 42 
designed to calculate the probability of a crack for each pixel. 43 

Hadjidemetriou et al. [18] proposed an automated vision-based method for detecting and 44 
quantifying pavement patches, which are vital for evaluating and rating pavement surfaces. The proposed 45 
system utilizes video frames captured from either a smartphone or an external camera positioned inside or 46 
outside a moving passenger vehicle. Support Vector Machine (SVM) classification is employed on 47 
feature vectors extracted from the images, utilizing two texture descriptors and the histogram of 48 
nonoverlapped square blocks. These feature vectors enable the characterization of image blocks as either 49 
patch or non-patch areas. The output of the system provides block-based and image-based classifications. 50 
The method demonstrated a detection accuracy of 82.5% for image-based classification. 51 
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Hoang et al. [19] compared classification algorithms using machine learning and image 1 
processing techniques such as steerable filters, the projective integral of the image, and an enhanced 2 
method for image thresholding. Feature extraction was based on image processing and texture 3 
computation. The results showed that SVM had the highest level of classification accuracy (87.50%), 4 
followed by artificial neural network, ANN (84.25%), and random forest, RF (70%). 5 

Sari et al. [20] examined an automation method of classification and segmentation of asphalt 6 
pavement cracks to classify asphalt pavement cracks using the SVM algorithm and segmentation method 7 
of the OTSU algorithm. The approach involved classification of distress data into two groups – with crack 8 
and no crack. The models were evaluated using multiple performance metrics including accuracy, 9 
precision, recall, area under ROC curve (AUC), and ANOVA statistical test. The authors suggested that 10 
the SVM algorithm combined with OTSU segmentation and GLCM feature extraction could be used for 11 
the classification of asphalt pavement cracks. 12 

The review of existing studies shows that the majority of transfer-learning based studies on 13 
pavement distress classification were limited to the evaluation of one or two existing models. 14 
Additionally, some existing models do not transfer accurately when applied to new learning so the use of 15 
one or two models for training is a major limitation for the pavement distress identification area. The 16 
number and definition of distress classes varied widely from two to nine.  The studies reviewed 17 
demonstrate TL's effectiveness in improving deep learning models' accuracy for pavement distress 18 
classification. However, the need for future studies to focus on the choice of pre-trained models for TL, 19 
considering significant differences in performance among various DCNN models. Furthermore, 20 
exploration of image quality and quantity, investigation of hyperparameter variability, and consideration 21 
of synergistic effects from combining multiple distress classification models require further investigation. 22 
Reviews of multiple studies using SVM for highway distress detection show potential of the technique, 23 
however none of the studies reviewed explored the application of hybrid SVM and TL to address issues 24 
such as limitation of training, class imbalance, automated feature extraction, accuracy, and variability in 25 
performance of pre-trained DCNN model. Even though some of the selected models have been used in 26 
previous TL applications for pavement distress identification, very few, if any, have used the more robust 27 
graphical performance measures such as ROC, AUC, and t-SNE. 28 

The paper's significance lies in its development of a hybrid model that effectively addresses 29 
challenges in automating pavement distress evaluation, utilizing DL for feature extraction and SVMs for 30 
classification, thereby improving accuracy and offering a potential solution to reduce costs and enhance 31 
safety in pavement management. 32 
 33 
METHODOLOGY 34 

This section presents the main steps used to undertake the study including acquisition of asphalt 35 
pavement distress data, selection of pretrained DL models, transfer learning and development of strategies 36 
for the proposed hybrid deep and shallow convolutional neural networks for  asphalt distress image 37 
classification. 38 

As previously discussed, TL is a technique in DL image classification where a pre-trained model 39 
that has been trained on a large dataset is used as a starting point to solve a new classification task. For the 40 
current study involving asphalt pavement distresses, the approach followed included the following steps: 41 
data collection and pre-processing, pre-trained model selection, feature extraction, training a classifier, 42 
fine-tuning the pre-trained model, and validation of the trained model. The section concludes with brief 43 
descriptions of the architecture and key operational parameters of each experimental strategy. 44 
 45 
Data collection 46 

The data collection and preprocessing step consisted of assembling a data store of distress images 47 
with category labels. The eight distress labels used in this study have been assigned by taking the names 48 
of the folders that contain the image files. The images were automatically resized to the correct image size 49 
based on the pretrained model. 50 
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Around 400 pictures of asphalt pavement distresses were obtained from various publicly 1 
accessible sources, which included Google Street, a commonly used method in this field. The 400 images 2 
were manually categorized into eight class labels which are block cracking, distress free, fatigue cracking, 3 
longitudinal cracking, patching, pothole, rutting, and transverse cracking by trained technicians. To 4 
process each classified image for each network type, user-defined functions were utilized for pre-5 
processing into the required input size. The images were then randomly divided into training (85%) and 6 
validation (15%) groups. Samples of the images used and the distribution of images in each distress class 7 
are presented in Figure 1. As can be seen in Figure 1, the distribution of images is imbalanced, with the 8 
number of images per class ranging between 30 and 60. It is common to have such imbalanced or skewed 9 
class distributions with most pavement distress datasets due to climatic factors, traffic loading, and 10 
functional classification of the road. Additional distress images were obtained from an actual project 11 
located in southern Africa for verification of the most promising models in order to verify the models’ 12 
performance and assess their generalization ability. 13 

Class imbalance is a fundamental problem in DL classification problems, where some classes 14 
have significantly fewer samples than others. In such cases, a DL trained on an imbalanced dataset may 15 
be biased towards the majority class and have inferior performance on the minority class. The imbalanced 16 
class distribution can lead to overfitting of the model to the majority class, which can result in poor 17 
generalization to new and unseen data. Furthermore, the standard performance metrics, such as accuracy, 18 
precision, and recall, which are commonly used to evaluate the model's performance, may not provide an 19 
accurate representation of the model's performance in such scenarios. To overcome this problem, the 20 
technique of undersampling the majority class was found to lead to better model performance than either 21 
oversampling or generative adversarial networks (GAN)-generated synthetic images. Thus, all the models 22 
were developed by randomly undersampling the majority classes so that each class has the same number 23 
of images equal to the number of images in the minority class (i.e. 31 images). 24 
 25 

 26 
Figure 1 Sample images (left) utilized for training and validating the networks, along with their distribution 27 
into the eight distress classes (right) 28 

 29 
Pretrained Deep Learning Models 30 
Eight pre-trained DL models were selected including Alexnet, Densenet, Googlenet, Mobilenet, 31 
Resnet50, Squeezenet, VGG19, and Xception. The selected models have been pre-trained on the large-32 
scale ImageNet dataset for image classification. ImageNet is a dataset that contains millions of labelled 33 
images, and it has been widely used as a benchmark for testing and comparing the performance of deep 34 
learning models for image classification. The eight models were chosen because they all achieved state-35 
of-the-art performance on various image classification tasks. Further details of the selected DL models 36 
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including a description of model performance on asphalt pavement distress classification can be found in 1 
[9]. 2 

The feature extraction step involved using the pre-trained model to extract features from the input 3 
images. This step also involves removing the classification layers of the pre-trained model and using the 4 
remaining layers to extract features from the images. Following the feature extraction step, training of the 5 
selected pre-trained models followed. This step involved tuning model hyperparameters to optimize 6 
performance and comprised of using the Stochastic Gradient Descent with Momentum (SGDM) as the 7 
optimizer, selecting the initial learning rate, specifying mini batch size depending on model size, and 8 
setting maximum epochs of 12 to optimize training time and accuracy. It should be noted that the 9 
selection of the aforementioned parameters was based on an extensive trial and error approach as well as 10 
the authors experience in the field. 11 

The pre-trained models were fine-tuned by unfreezing some of their layers and retraining them on 12 
the new dataset. This step involves selecting the layers to be unfrozen and adjusting the learning rate to 13 
avoid overfitting. In this study, the models were fine-tuned by replacing the last three layers, which 14 
included the fully connected layer, the softmax layer, and the classification layer. The rest of the layers 15 
were kept frozen, which is a common method used by previous researchers to achieve the best predictive 16 
accuracy for their models. However, the number of layers to freeze or train can vary among different 17 
investigators. Some studies have replaced more layers than the three used in this study, but it should be 18 
noted that this does not always result in better models. The ultimate goal for all researchers is to achieve 19 
the best possible accuracy in their models. 20 

For the current study, three strategies were evaluated: the traditional single transfer learning-21 
based DL models (TLDL), hybrid DL+SVM, and hybrid TLDL+SVM. A schematic of the approach is 22 
depicted in Figure 2. A brief description of each strategy is discussed next. 23 
 24 

 25 
Figure 2. Strategies for developing and evaluating hybrid DL and SVM models for asphalt pavement distress 26 
classification 27 
 28 
Strategy 1 – Transfer Learning, Fine-tuning Pretrained Model (TLDL) 29 

A DCNN network at the basic level consists of three-layer sets: convolutional layers, pooling 30 
layers and fully connected layers. Even though each layer of a DCNN produces a response, or activation 31 
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to an input image, only a few of the layers are suitable for image feature extraction. While the layers at 1 
the beginning of the network capture basic image features, such as edges, brightness or blobs, deeper 2 
layers detect more complex features that uniquely define the object. 3 

Stochastic gradient descent method was used as the optimization routine for TL of the eight 4 
selected networks because of its accuracy and efficiency. Similar hyper-parameters were selected for use 5 
to ensure realistic comparisons among different DCNN architectures. In a DCNN, hyperparameters are 6 
used to control the learning process that determines model parameters that a network eventually learns. 7 
For this study, the model hyperparameters used included, among others, the following: 1) initial learning 8 
rate of 0.001, 2) momentum of 0.9, 3) L2 regularization of 0.0001, 4) epochs of 12, and 5) minibatch size 9 
of 5. 10 

A graphical processing unit (GPU) with an NVIDIA® T1000 based on Turing architecture, and 11 
an Intel Core i-7 CPU at 2.6 GHZ operating on a Windows 10 Pro 64-bit operating system were used. A 12 
common mini-batch size of 8 was used for all the eight pretrained DCNNs. Mini-batches are samples of 13 
the training dataset that are processed on the GPU at the same time and therefore can impact the speed of 14 
training and the accuracy of a network. The larger the mini-batch, the faster the training in terms of 15 
computational efficiency. However, larger mini-batch sizes may lead to longer training times per epoch 16 
due to the accumulated time needed to process a larger batch before updating the model. The networks 17 
were compiled using the stochastic gradient descent (SGD) optimisation technique. To fine-tune the 18 
selected models for the transfer learning process for each model, the last fully connected layer of the 19 
original network was replaced with a new fully connected layer, which classified the features into the 20 
eight pavement distress categories. 21 

Each network was retrained to identify eight categories of flexible pavement distresses. The steps 22 
used to accomplish the transfer training of each network included: 1) importing the pre-trained network, 23 
2) configuring selected layers to perform a new recognition task, 3) training the network on a pre-24 
processed pavement distress dataset and 4) using the results to predict and assess network accuracy. 25 

 26 
Strategy 2 – fixed feature extraction DL+SVM 27 

Similar to strategy 1, the fixed feature extraction approach used involved a process of replacing 28 
the last three layers including the fully connected, the softmax, and the classification layers from a 29 
pretrained network while maintaining the convolutional base consisting of a series of convolutional and 30 
pooling layers. The choice of which deep layer to choose to extract the image feature is a design choice. 31 
In this study, the layer right before the classification layer was used. For example, for Resnet50, the 32 
feature layer used was the fully connected layer ‘fac1000.’  The selected features together with training 33 
options such as minibatch size of 6 were used to train a multiclass SVM classifier with Error Correcting 34 
Output Codes (ECOC). SVM with ECOC is a technique used to extend the binary classification capability 35 
of SVM to handle multiple classes. In the context of the current study, SVM with ECOC was used to 36 
classify pavement distresses into eight different classes. A fast Stochastic Gradient Descent solver was 37 
used to train the multiclass, ECOC function with the ‘learners’ parameter set to linear and the coding 38 
parameter set to one versus all. The foregoing procedure used earlier to extract image features from a 39 
testing set of images was then passed to the classifier to measure the accuracy of the trained classifier. 40 
Predictions using the classifier were made and model performance was evaluated using the confusion 41 
matrix measures, and other performance metrics such as AUC and t-SNE. 42 
 43 
Strategy 3 – hybrid fine-tuning and fixed feature extraction 44 

This strategy involved all the steps described in strategy 1 leading to a trained DCNN capable of 45 
classifying distress images into eight class labels. From this stage, the process was similar to strategy 2 in 46 
that the layer right before the classification layer was selected as the extraction layer. Next, the selected 47 
features together with training options such as minibatch size were used to train a multiclass SVM 48 
classifier. A fast Stochastic Gradient Descent solver was used to train a multiclass, error-correcting output 49 
codes (ECOC) function with the ‘learners’ parameter set to linear, and the coding parameter set to one 50 
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versus all. The performance of the resulting hybrid models was evaluated using confusion matrix metrics 1 
as described next. 2 
 3 
Evaluation of Retrained Models 4 

The prediction performance of each retrained DCNN hybrid model was evaluated by comparing 5 
confusion matrix statistics and accuracy measures such as precision, overall accuracy, and recall, which 6 
are commonly used to assess how well TL-based DCNNs perform by most previous investigators. In 7 
addition, combined measures such as F1-score and graphical measures including ROC, AUC, t-SNE, etc., 8 
that are more robust against class imbalance and overfitting were used. 9 
 10 
Confusion matrix 11 

The predictive performance of a deep learning (DL) model can be visualized using a confusion 12 
matrix (CM), which presents the results in a tabular format. Each element of the CM represents the 13 
number of predictions made by the network and whether they were classified correctly or incorrectly. 14 
Evaluating the diagonal entries of the CM is a common method to assess the success of a DCNN 15 
classifier. To correctly interpret the CM results, it is important to consider some fundamental concepts, 16 
which are further explained by Düntsch and Gediga [21]. In a two-class classification problem, where 17 
typically a positive and a negative class are involved, four metrics are commonly used. These metrics 18 
include true positives (tp), false positives (fp), true negatives (tn), and false negatives (fn). 19 

These metrics can be utilized to estimate various key performance measures such as accuracy, 20 
F1-score, precision, recall, and specificity (Eqs. 1-5). Others include receiver operating characteristic 21 
curve (ROC), and area under the curve (AUC) for a given network. The overall accuracy is evaluated 22 
using the F1-score, which is the harmonic mean of recall and precision. The F1-score balances the trade-23 
off between precision and recall. A value of 0 for the F1-score indicates that either the precision or the 24 
recall is 0. 25 
 26 

Accuracy = tp+tn
tp+tn+fp+fn

             (1) 27 

Precision = tp
tp+fp

            (2) 28 

Recall = tp
tp+fn

              (3) 29 

Specificity = tn
tn+fp

              (4) 30 

F1 − score = 2
1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� +1 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅�

= 2𝑡𝑡𝑝𝑝
2𝑡𝑡𝑝𝑝+𝑓𝑓𝑝𝑝+𝑓𝑓𝑛𝑛

         (5) 31 

 32 
Receiver Operating Characteristic (ROC) Curves 33 

A receiver operating characteristic curve (ROC) is a true positive rate (TPR) versus a false 34 
positive rate (FPR) plot that can be used to display the performance of a network at all classification 35 
thresholds. It is considered as one of the most robust measures of the predictive performance of a DCNN 36 
classifier. The magnitude of the classification threshold controls the number of items classified as 37 
positive. Thus, a network operating at lower classification thresholds will classify more items as positive 38 
than a network operating at a higher threshold. An ROC can be used to determine other useful 39 
performance metrics including the optimal operating classification threshold (OPROCPT) and the areas 40 
under the ROC curve (AUC). Both OPROCPT and AUC have values between 0 and 1, with values closer 41 
to 1 associated with better performance. 42 
 43 
Area Under the ROC Curve (AUC) 44 
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The area under the ROC curve or AUC is a measure of the area with coordinates ranging from 1 
(0,0) to (1,1) and therefore has a magnitude of 1. A model with an AUC of 0 will be expected to make 2 
predictions that will be 100% wrong. A model with an AUC of 1.0 will be expected to be correct 100% of 3 
the time and will rank all positives higher than all negatives.  In practice, it is expected that a reliable 4 
classification model will rank a random positive example higher than a random negative example more 5 
than 50% of the time and have an AUC in the range of 0.5-1.0.  AUC is considered a more robust 6 
measure of performance than some of the previously reviewed measures such as accuracy, F1-score and 7 
recall as it is not affected by class imbalance 8 

 9 
RESULTS AND DISCUSSION 10 
Accuracy 11 

The performance of the trained networks using the three strategies was evaluated using multiple 12 
performance measures including overall accuracy and F1-score (Figure 3) obtained from confusion 13 
matrices.  The results obtained highlight the impact of the training strategy on the performance of the 14 
models. It is evident from Figure 3 that the choice of strategy significantly influenced the overall 15 
performance, with the models trained using strategy 2 demonstrating comparatively poorer results. 16 
Conversely, all models exhibited strong performance under strategy 3. A comprehensive analysis of the 17 
outcomes indicates that there exist statistically significant differences in performance between strategy 1 18 
and strategy 2 (p-value = 0.001). Furthermore, the results unequivocally indicate that strategy 3 19 
outperforms both strategy 1 and strategy 2 by a significant margin (p-value < 0.000011). Specifically, the 20 
accuracy of models trained under strategy 3 was notably superior to the accuracy achieved by the other 21 
two models. This finding aligns with our expectations, as it substantiates the superior capabilities of the 22 
models trained using the hybrid DL and SVM models. The detailed performance metrics of the models 23 
are presented in Figure 3 where the average performance for the three strategies were 0.6945±0.066,  24 
0.5486±0.069, and 0.9383±0.019, respectively for strategy 1, strategy 2 and strategy 3. 25 

 26 
FIGURE 3 Evaluation of Pretrained DCNN Models' Performance (F1) with Different Training Strategies 27 
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Figure 4 shows a comparison of the three strategies in terms of training times and model complexity 1 
(assumed to be related to the size on file of each trained model). In the presented bubble plot depicting the 2 
performance of three strategies, the y-axis spans from 0 to100%, representing the accuracy of each model. 3 
while the x-axis extends logarithmically from 0 to 1460. The bubble sizes correspond to the respective 4 
sizes of the models on disk, providing a visual representation of their complexities. Strategy 1 models are 5 
centered on the graph, showcasing a balanced trade-off between model size, training time and accuracy. 6 
Strategy 2 models are positioned near the left-middle corner of the plot, indicating a modest model size, 7 
moderate accuracy and shorter training time. In contrast, Strategy 3 models are situated near the upper 8 
right corner, signifying superior accuracy and a larger size on disk compared to the other models. The 9 
distinct locations of the three models on the plot offer a clear illustration of their trade-offs between 10 
accuracy and storage efficiency, with Strategy 3 models emerging as the top performers in terms of 11 
predictive accuracy. The training times for Strategy 2 and strategy 3 can be considered as comparable, 12 
with the difference in most cases differing by a few dozens of seconds. 13 
 14 

 15 
FIGURE 4 Comparison of the training speeds versus module complexity (size on disk) for eight pretrained SVM-16 
DCNNs hybrid asphalt pavement distress classification models. 17 
 18 
Robustness of hybrid models 19 

As previously discussed, during training, distress images were randomly sampled for both 20 
training and testing. This necessary step naturally introduces randomness into the development of the 21 
models. Thus, it was deemed necessary to assess the robustness and repeatability of the SVM hybrid 22 
models’ performance. Experiments were conducted that involved 10 separate runs of model training. For 23 
each experimental run, the F1 parameter was recorded. Figure 5 provides a summary of the results in the 24 
form of box-and-whisker plots. The comparative analysis of the experiments revealed interesting insights 25 
into their performance. It can be seen from Figure 5 that the performance of the models varied widely. For 26 
instance, considering Figure 5 (left), Xception achieved the highest median F1 score of 0.67, followed 27 
closely by Alexnet (0.63) and Squeezenet (0.61). Large variability in F1 was observed across all the 28 
modules with some models exhibiting data that can be considered as outliers. None of the literature 29 
reviewed reported this variability in training data as many authors only reported data for the best modules 30 
only. Thus, this study contributes to our understanding of this important phenomenon. A classifier with an 31 
average F1 score of about 0.51 can be considered as performing slightly better than random guessing, 32 
especially if there are eight different classes in the dataset, as is the case in this study. If a classifier's 33 
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accuracy is consistently around 0.51, it suggests that the model is not able to capture the underlying 1 
patterns or features that differentiate the classes effectively. In other words, the classifier is making 2 
incorrect predictions more often than correct ones. While it may not be accurate to describe the classifier 3 
as a random number generator, as it still shows some capability to differentiate between classes, it is clear 4 
that there is room for improvement in its performance.  Overall, the performance of strategy 2 was only 5 
slightly better than a random model as the average F1-score for all pretrained models combined was 6 
slightly more than 0.51. 7 

For Strategy 3 (see Figure 5, right), among the tested models, Xception consistently exhibited the 8 
highest median F1 score of 0.9633, closely followed by Densenet (0.9630) and Googlenet (0.9519). These 9 
models consistently demonstrated strong classification capabilities across multiple test runs, indicating 10 
their effectiveness in distinguishing different distress types in asphalt pavement. On the other hand, 11 
models such as Squeezenet (0.9056) and VGG19 (0.9023) achieved slightly lower average F1 scores, 12 
suggesting comparatively lesser performance in classifying pavement distresses. It is worth noting that 13 
while these models had relatively lower average F1 scores, they still showed acceptable performance 14 
levels. Furthermore, the standard deviations for all models were relatively low, indicating consistency in 15 
their performance across different test runs. This consistency implies that the Strategy 3 models' 16 
classification performance is reliable and robust. 17 
 18 

 19 
FIGURE 5 Quantifying model reliability and stability: F1-score distribution across 10 repeat runs 20 
 21 
Receiver Operating Characteristic (ROC) analysis 22 

Receiver Operating Characteristic (ROC) analysis was used as an evaluation metric to assess the 23 
performance of the classification models and their ability to discriminate between the different classes of 24 
pavement distresses. In image classification tasks, a model predicts the probability or confidence of an 25 
image belonging to a certain class. The output of the model can be interpreted as a continuous score or a 26 
probability. To construct an ROC curve, the model's output scores are used to calculate the true positive 27 
rate (recall) and the false positive rate (1 - specificity) at various classification thresholds. A classification 28 
threshold is applied to these scores to determine the predicted class labels. By varying the threshold, the 29 
trade-off between the true positive rate and the false positive rate can be adjusted. A lower threshold leads 30 
to more positive predictions, while a higher threshold results in fewer positive predictions. Based on the 31 
selected threshold, the model's predictions are compared with the ground truth labels of the images. The 32 
true positive rate (TPR) is the ratio of correctly predicted positive samples (e.g., images from the positive 33 
class) to the total number of positive samples. The false positive rate (FPR) is the ratio of incorrectly 34 
predicted positive samples to the total number of negative samples (e.g., images from the negative class). 35 
On an ROC, the true positive rate is plotted on the ordinate, and the false positive rate is plotted on the 36 
abscissa. By varying the threshold and calculating the TPR and FPR at each point, multiple (TPR, FPR) 37 
pairs are obtained. Connecting these points creates the ROC curve. The ROC curve provides valuable 38 
insights into the trade-off between recall and specificity in the classification task. A classifier with a 39 
higher ROC curve, closer to the top-left corner, indicates better performance in distinguishing between 40 
classes (Figure 6). The ROC curve shows a solid circle symbol at the operating point of the model for 41 
each class. The dotted line on the graph represents a random model. A perfect model is indicated by TPR 42 
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equal to 1 and FPR equal to 0. On the other hand, the worst model is represented by TPR equal to 0 and 1 
FPR equal to 1. In the legend, the class name and corresponding AUC value are provided for each curve. 2 
In Figure 6, we compare the ROC curves obtained from strategy 2 and strategy 3 when using the 3 
Mobilenet pretrained network. The ROC curves for strategy 3 (hybrid TLDL+SVM) are plotted higher 4 
and closer to the top-left corner compared to strategy 2, indicating superior performance. Moreover, 5 
Figure 6 shows that the AUC for strategy 2 ranged from 0.6843 to 0.9824, while for strategy 3 it ranged 6 
from 0.9757 to 1.0000. The ROC curve and its associated AUC demonstrate that the hybrid TLDL+SVM 7 
method possesses superior predictive capability in distinguishing distressed pavements across multiple 8 
classes. Similar findings were observed across all the other models analyzed. These results suggest that 9 
strategy 3 consistently outperforms strategy 2 when using the eight pretrained networks. 10 

The area under the curve (AUC) is calculated as the integral of the ROC curve. It represents the 11 
overall performance of the classifier across all possible threshold values. An AUC value of 1 indicates a 12 
perfect classifier, while an AUC value of 0.5 suggests a random or no-discrimination classifier. 13 

 14 

 15 

 16 
FIGURE 6 Comparison of ROC curves for hybrid SVM and DL pavement distress classification models. Top 17 
Left: Strategy 1; Top Right Strategy 2; Bottom Strategy 3  18 
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Comparing the Statistical Significance of the Performance of Hybrid TL and SVM Classifiers 1 
The results obtained from our study demonstrate that employing transfer-learned models as 2 

feature extractors, combined with SVM as the classifier, yields superior performance (F1-score greater 3 
than 0.90, AUC greater than 0.98, and ROCs that plot in the top lefthand corner) regardless of the 4 
pretrained network used. To determine if significant differences exist among the different models 5 
developed under Strategy 3, we conducted the Kruskal-Wallis test followed by the Dunn's test. The 6 
Kruskal-Wallis test is particularly valuable for analyzing data when the assumptions of parametric tests, 7 
such as normality and equality of variance, are not met or not known, especially in scenarios involving 8 
multiple groups. In Dunn's test, the mean ranks are employed to assess the statistical significance of the 9 
differences between groups. A significant difference in mean ranks indicates that the groups are 10 
statistically distinguishable from each other, without providing information about the direction or 11 
magnitude of the difference. The results of the Dunn's test conducted on the pairwise comparisons 12 
between the eight different network groups (Alexnet to Xception) showed significant differences exist 13 
between certain pairs of groups. For example, Densenet vs Resnet50, Densenet vs Squeezenet, Densenet 14 
vs VGG19, Googlenet vs Squeezenet, Googlenet vs VGG19, Googlenet vs Xception, Resnet50 vs 15 
Xception, Squeezenet vs Xception, and VGG19 vs Xception show p-values less than 0.05, suggesting 16 
statistically significant differences. The Dunn's test results reveal both significant and non-significant 17 
differences between the groups, providing valuable insights into the comparative performance of the 18 
various groups under investigation. It can be inferred from the results that even though all Strategy 3 19 
models performed very well, models based on the three pretrained networks, Densenet, Googlenet, and 20 
Xception, are outstanding as compared with previous studies [8-27]. 21 

 22 
Extracted Features 23 

To gain insight into the distribution, relationships, and separability of the extracted features 24 
across the different classes of images, the dimensionality reduction technique known as t-Distributed 25 
Stochastic Neighbor Embedding (t-SNE) was applied to the extracted features comprising eight classes 26 
and 255 columns of data. The results of the t-SNE visualization are depicted in Figure 7. When 27 
conducting a t-SNE visualization of extracted features from a DL model, if the classes plot on separate 28 
parts of the figure with no overlaps, similar to Figure 7, it suggests that the extracted features have distinct 29 
and well-separated representations for each class. This separation indicates that the DCNN has 30 
successfully learned discriminative features that can effectively differentiate between the different classes. 31 
In other words, the t-SNE visualization shows that the DL network has been able to capture meaningful 32 
patterns and structures in the data, resulting in a clear separation of the classes in the feature space. This is 33 
desirable as it implies that the DL network has learned to encode relevant information specific to each 34 
class, enabling accurate classification or recognition of the different categories. The absence of overlaps 35 
between the classes in the t-SNE plot indicates that the extracted features have high intra-class similarity 36 
and low inter-class similarity. It suggests that instances belonging to the same class are closer to each 37 
other in the feature space, while instances from different classes are farther apart. This separation can be 38 
seen as an indication of the effectiveness of the DCNN in capturing the distinctive characteristics and 39 
discriminative information associated with each class. The results justify the two-step approach proposed 40 
in this study. 41 
 42 
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 1 
FIGURE 7 Sample t-SNE visualization of extracted features from retrained Mobilenet for Strategy 3. The 2 
symbols represent the eight distress classes arranged in alphabetical order from Block cracking to Pothole 3 
 4 
Verification of models based on the most promising strategies 5 

In addition to the training and validation process previously discussed in the development of the 6 
models, it is also common to have a final testing set that remains completely separate from both the 7 
training and validation sets. This testing set is designed to provide an unbiased assessment of the model’s 8 
performance after the entire development process. It helps evaluate how well the model generalizes to 9 
completely new data and provides a more reliable estimate of its real-world performance. This step thus 10 
serves to verify the model's performance and assess its generalization ability. Therefore, as a further 11 
check on the performance and generalization ability of the models developed using the promising 12 
approach (Strategy 1 and Strategy 3), a new set of distress images which were not part of the dataset used 13 
in the training and validation of the models was acquired from a project completed in southern Africa by 14 
one of the co-authors of the current paper [27]. That project involved detailed forensic investigation to 15 
determine the causes of premature failure of asphalt concrete in Tanzania and contained a large dataset of 16 
distress images which provided an ideal opportunity for verifying the performance accuracy of the models 17 
developed in this.  18 

Figures 8-11 show the results of analysis based on strategy 3; similar results were obtained for 19 
strategy 1. Also shown in Figures 8-11 are confidence attached by the model to the classification of each 20 
image. For example, the model assigned 100% confidence to the image in Figure 11, classifying it as 21 
patching. In Figure 8, the model was conflicted assigning a label transverse cracking to the image with 22 
about 58% confidence but at the same time providing evidence that the distress could be longitudinal 23 
cracking. It should be noted that this is a common problem even with human experts and in line with 24 
previous studies [20-26].  25 
 26 
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 1 
FIGURE 8 Verification of most promising models based on Strategy 3 for transverse cracking 2 
 3 
 4 

 5 
FIGURE 9 Verification of most promising models based on Strategy 3 for rutting 6 
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 1 
FIGURE 10 Verification of most promising models based on Strategy 3 for fatigue cracking 2 
 3 
 4 

 5 
FIGURE 11 Verification of most promising models based on Strategy 3 for patching 6 
 7 
CONCLUSIONS 8 

We present a novel approach to classify distresses in asphalt pavement by utilizing a combination 9 
of deep learning and support vector machine models. The study focused on investigating the performance 10 
of hybrid machine learning models compared to single DL-based TL models. Three strategies were 11 
considered: DL-based TL, DL and SVM hybrids, and DL-based TL plus SVM hybrids. The experiments 12 
conducted involved hyperparameter optimization, feature extraction from DCNN layers, and training with 13 
SVM classifiers. The following conclusions were made based on the results presented in this paper: 14 
1. Hybrid models incorporating DL-based TL plus SVM consistently improve the classification 15 

accuracy across all DL models considered, although the computation times of SVM models were 16 
longer for some models. Specifically, at the level of pre-trained models, our hybrid approach yielded 17 
an impressive F1 score of 0.96. In contrast, the alternative strategies, regardless of the pre-trained 18 
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model or hyperparameter optimization employed, failed to surpass an F1 score of 0.80. The findings 1 
strongly support the integration of hybrid transfer learning and SVM classifiers into the automated 2 
asphalt distress classification models, as they consistently enhance their overall accuracy. 3 

2. The t-SNE visualization of extracted features from the TL models showed the different classes 4 
plotting on separate parts of the figure with no overlaps. The absence of overlaps between the classes 5 
in the t-SNE plot indicates that the DL-extracted features have high intra-class similarity and low 6 
inter-class similarity. This suggests that the extracted features have distinct and well-separated 7 
representations for each class. The robust separation of classes in the t-SNE plot demonstrates the 8 
capability of the transfer-learned pretrained models to extract discriminative features that capture the 9 
unique characteristics of distress images, allowing for accurate classification and analysis. 10 

3. The results clearly indicate that employing transfer-learned models as feature extractors, in 11 
combination with SVM as the classifier, consistently achieves exceptional performance.  12 
 13 
One limitation of the current study is that crucial details about the pavement distress dataset, 14 

including image resolution, weather conditions, and geographic locations, were unavailable to the authors. 15 
Subsequent studies should prioritize capturing these vital details as road pavement images are usually 16 
obtained under uneven weather/lighting conditions. Secondly, the current study is limited to image 17 
classification of eight selected asphalt pavement distresses, additional studies focused on object detection 18 
is warranted. Furthermore, based on our study's outcomes, future research should aim to 1) explore 19 
additional pretraining strategies, such as fine-tuning or self-supervised learning, to evaluate their impact 20 
on feature extraction and classification accuracy, 2) investigate key factors influencing the training time 21 
discrepancy between models, including network architecture, and 3) assess how the proposed 22 
methodology could estimate the severity of classified distresses. 23 
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