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In this paper, we describe an uncertainty-aware estimation framework for gait relative attributes. We
specifically design a two-stream network model that takes a pair of gait videos as input. It then outputs
a corresponding pair of Gaussian distributions of gait absolute attribute scores and annotator-dependent
gait relative attribute label distributions. Moreover, we propose a differentiable annotator-independent
uncertainty layer to estimate the gait relative attribute score distribution from the absolute distributions
then map it to a relative attribute label distribution using the computation of cumulative distribution
functions. Furthermore, we propose another annotator-dependent uncertainty layer to estimate the un-
certainty on the gait relative attribute labels in terms of a set of trainable transition matrices. Finally, we
design a joint loss function on the relative attribute label distribution to learn the model parameters. Ex-
periments on two gait relative attribute datasets demonstrated the effectiveness of the proposed method
against baselines in quantitative and qualitative evaluations.
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1. Introduction

Relative attributes were introduced to serve as a high-level se-
mantic representation of pattern features, which benefits various
recognition [1-3] and classification tasks [4-7]. Additionally, one
of the core merits of the relative attribute is that it can cap-
ture general semantic relationships and enable the relative anno-
tation of instances instead of categorical labels. Therefore, it makes
the pattern classification task more beneficial in many applications
[8-11]. Despite the ease of annotating in a relative manner, differ-
ent annotators may assign different scores to the same attribute.
This is because of the level of confusion and perception (e.g., indi-
vidual sense or preference) in the annotation task. Therefore, this
may significantly affect the performance of machine learning al-
gorithms (i.e., principally supervised) that build on limited yet im-
perfect labeled data. Principally, a substantial degree of uncertainty
among annotators makes the classification task more challenging.
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tute, Cairo 12622, Egypt.
E-mail addresses: allam@am.sanken.osaka-u.ac.jp, allam@eri.sci.eg (A. Shehata).

hitps://doi.org/ 10.1016/j.patcog.2022.109197

This has led to much interest in developing methods to address the
underlying skill levels of human annotators (i.e., uncertainty) asso-
ciated with labeled data. Recently, treating annotator-uncertainty
in the relative attribute estimation task has attracted the pattern
recognition and vision community [2,5-7,10]. Understanding vari-
ous relative attributes (e.g., in the domain of image/video classi-
fication, quality assessment, and recognition) while having human
annotators and the corresponding uncertainty is a challenging task.
This domain has been much less explored to date, especially by
the human gait community. Therefore, in this work, we address the
handling of annotator uncertainty in the domain of human gait rel-
ative attributes estimation. Generally, recognizing people by their
gaits (i.e., walking styles) has increased in popularity recently. Gait
is an unobtrusive biometric that can be captured remotely, even
from a low-resolution video [12]. Moreover, gait contains not only
identity but also various information such as, age [13-15], gender
[16-19], emotion [20], ethnicity [21], and human perception-based
gait attributes (e.g., goodness and gracefulness) [7,10,22].
Remarkably, human perception-based gait attributes have
become more prominent in delineating the human gait [10]. For
instance, some people pay attention to their walking style because
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Fig. 1. Two possible learning frameworks for gait relative attributes using the noisy labels of multiple annotators.

of healthcare or fashion. Therefore, we could develop a smart
walking assessment system to advise people about their gait style,
and thereby, possible approaches/exercises to improve. Moreover,
we could investigate criminals from any video surveillance scene
based on their gait attributes (e.g., imposing, nervous walking,
large arm swing, wide step length, or curved spine). Therefore,
defining the required set of gait attributes is essential to judge a
person’s walking style, which should be human-understandable
and easy to detect. Because of that, in recent studies, researchers
have started to address this task by constructing gait attribute
datasets and proposing methods for automatic gait attribute
estimation [7,10,22-24]. Additionally, it is not necessarily easy to
annotate gait attributes (e.g., annotators may not have absolute
confidence when annotating the goodness of gait), unlike other
explicit labels such as identity and age. A possible solution is to
obtain the gait attribute annotation in a relative (or comparative)
manner [1]. Annotators may find it easy to assess and relate the
gait attribute of a person if the input data come in pairs (e.g.,
the first gait attribute is better than the second gait attribute in
the pair). It is more beneficial to have a system that reports the
relative scores for a specific gait relative attribute while preserving
the underlying uncertainty of the annotation labels instead of
reporting only an absolute score (Fig. 1). The existing methods
that handled annotators uncertainty (e.g, on image or action
quality assessment [25-27], or age estimation [15,24]) considered
the estimation of the underlying uncertainty of absolute labels -
not their relative labels. When it comes to gait, the uncertainty-
aware approach was introduced in the estimation of gait relative
attributes in Makihara et al. [7], in which the label distribution
learning (LDL) framework, as shown in Fig. 1(b) was adopted. The
authors designed a model that outputs absolute score distributions
for the input pair and then estimates the relative score distribution
from the pair of the absolute distributions using a trade-off opti-
mal transportation model. Although the method in Makihara et al.
[7] can estimate annotator-independent uncertainty, it is difficult
to disentangle annotator-independent uncertainty and annotator-
dependent uncertainty (e.g., annotator A is more uncertain than
annotator B) which is beneficial to understand the performance of
the proposed model. Moreover, the method considers estimating
the discrete score distribution (absolute or relative) composed
of seven bins in a non-parametric manner, which requires more
parameters to be estimated and also cannot consider ordinary
information explicitly, unlike a continuous parametric distribution,
such as the Gaussian distribution. Because of the above-mentioned
drawbacks, the method may be unsuitable, particularly in the
case in which a relatively small number of annotators (e.g., only
10 annotators) are available. To alleviate the above-mentioned
challenges, we propose an annotator-dependent uncertainty-aware
model to estimate gait relative attributes. The model can out-

put both annotator-independent and annotator-dependent label
distributions of the gait relative attribute by training an annotator-
dependent uncertainty model in an end-to-end manner. The
contributions of this study are summarized as follows:

1. An annotator-dependent uncertainty-aware estimation of
gait relative attributes: Unlike the existing uncertainty-aware
gait relative attribute estimation framework [7], which does
not consider annotator-dependent uncertainty, in this study, we
consider both annotator-independent and annotator-dependent
uncertainty in a unified framework. Specifically, we adapt the
crowd layer used in Rodrigues and Pereira [28] for multi-label
image classification to our gait relative attribute estimation
problem, and use it to train each annotator's uncertainty (or
preference) in an end-to-end manner.

2. A differentiable conversion module from a continuous score
distribution to a discrete label distribution: A discrete label
distribution of gait absolute attributes was used in a previous
study [7]; however, we use parametric continuous score dis-
tributions of gait absolutefrelative attributes, which are suit-
able for a small number of annotators. Because the annota-
tion is provided in the form of the discrete label of gait rela-
tive attributes, our framework should be compatible with it in
the training stage. Therefore, we propose a module that con-
verts parametric continuous score distributions into discrete la-
bel distribution using a differentiable cumulative distribution
function of Gaussian distributions and trainable parameters of
interval boundaries for the integral.

2. Related work

Relative attributes An earlier approach to the relative attribute
framework was introduced in Parikh and Grauman [1]. The au-
thors introduced the relative attribute notion by defining a set of
high-level semantic properties in the input instead of absolute la-
bels. In this framework, a pair of training samples are shown to
annotators, and they provide relative scores (e.g., the first sample
is better or similar, or the second sample is better) based on hu-
man perception. Moreover, the authors learned a ranking function
for each attribute and then used these learned ranking functions
to predict the relative strength of each semantic property in the
test input. In [4], the authors extended the concept of relative at-
tributes for ranking and image retrieval based on multi-attribute
queries. Compared with existing retrieval approaches that train
separate classifiers for each word and ignore inter-dependencies
among query terms, this model provides a principled approach for
multi-attribute retrieval. It can explicitly model the correlations
between attributes. An extension was proposed in Xiao and Jae Lee
[2] to discover the relative attributes’ spatial extent in the input
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image pair. Here, a novel formulation was introduced to combine
a detector with local smoothness to discover chains of visually
coherent patches, generate additional candidate chains, and rank
each chain according to its relevance to the attribute.

Inspired by the success of convolutional neural networks, sev-
eral papers have proposed methods that follow the concept of rel-
ative attributes. Papers [6,29] introduced 2-deep relative attribute
(DRA) frameworks to learn visual properties from the input images,
and use practical nonlinear ranking functions to describe the rela-
tive attributes among the image pairs. The authors also formulated
different relative loss functions to constrain the predicted relative
attributes’ strengths for the ordered pairs (i.e., one is better than
the other) and unordered image pairs (i.e., similar). Both of these
studies were earlier attempts to combine relative attribute estima-
tion with deep learning models in one end-to-end task.

Gait absolute/relative attribute The concept of the visual attribute
was used recently in gait analysis to improve performance. In [30],
attribute-based classification was applied for gait recognition en-
hancement by reducing the classifier models required for recog-
nizing each probe gait. This process significantly reduced the com-
putational complexity in the testing phase, in addition to improv-
ing the recognition accuracy. The authors of Yan et al. [31] used a
deep learning model combined with a multi-task learning model to
identify human gait, and predict the gait attributes, simultaneously.
A novel method of human description was proposed in Reid et al.
[32] based on a set of human soft attributes. An attribute discov-
ery model was proposed in Chen et al. [33] for multi-gait recog-
nition. Stable and discriminative attributes are developed using a
latent conditional random field (L-CRF) model that uses the ex-
tracted gait energy image to automatically discover the unchanged
features from the training images. In the recognition process, the
attribute set of each person is detected by inferring on the trained
L-CRF model.

Although it has become easier to use gait attributes (e.g., age
and gender) to train models and use them to identify people based
on their gait, it is still difficult for such models to recognize the
gait who have never been seen before, or relate them to observed
people based on their gait attributes [10,22]. Inspired by the rel-
ative attributes, a super-fine attribute concept was introduced in
Martinho-Corbishley et al. [34] to discover more relevant and pre-
cise human descriptions used for person re-identification.

Recently, the concept of the relative attribute was introduced
comprehensively in the gait community in Shehata et al. [10].
The authors proposed a motion-based representation using dense
trajectories to express walking dynamics. To estimate the rela-
tive gait attributes, they trained a set of ranking functions using
a Rank Support Vector Machine (Rank-SVM) classifier. Generally,
Rank-SVM is used to solve certain ranking problems via learn-
ing to rank criteria. These ranking functions estimated a score
that indicated each attribute’s strength for each walking subject.
As an extension, a deep learning-based model was introduced in
Hayashi et al. [22] to estimate the gait relative attribute for in-
put gait pairs. The authors also proposed a suitable signed con-
trastive loss function to train network parameters with the relative
annotation. This proposed model achieved better or comparable
accuracy for relative attribute prediction compared with the base-
line methods. It is worth noting that both of the above-mentioned
gait relative attribute methods [10,22] follow the score-based ap-
proach shown in Fig. 3 a. In such models, the annotators’ uncer-
tainties are completely discarded (i.e., for multi-label datasets, be-
cause they consider the majority voting label for model training).
Consequently, this makes these approaches less effective in real-
world cases. In the proposed approach, we attempt to overcome
this by building a relative estimation model that can learn directly
from the noisy labels of annotators to obtain the relative label dis-
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tribution and individual annotator uncertainty in one end-to-end
task.

Label distribution leaming (LDL) A label distribution learning
(LDL) framework is introduced to describe a pattern by a distribu-
tion rather than the original multiple labels [35]. However, crowd-
sourcing annotation is being explored as an efficient and cost-
effective solution for labeling vast datasets. In fact, the aggregated
labels may be assigned by annotators with different levels of ex-
pertise or perceptions. This may lead to models with limited pre-
dictive performance if they treat these noisy labels as ground-truth
labels. Furthermore, in many classification problems, multiple an-
notation labels may be incorporated into a single visual entity.
Compared with single-label learning, this may widen the gap be-
tween the model prediction and ground-truth during the training
stage. This would result in an inconsistency between the training
and test stages [36]. A substantial degree of uncertainty among
annotators makes the classification task more challenging [27]. To
handle this inconsistency, LDL was exploited in Geng [35] as a gen-
eralization learning paradigm of multi-label learning.

Recently, LDL has demonstrated its effectiveness for various
computer vision tasks, including age estimation [35,37], pose es-
timation [38-40], and several other cases [25,41-43]. The authors
of Tang et al. [25] proposed an uncertainty-aware score distribu-
tion learning method for sports action quality assessment, where
the scores were assigned by multiple judges. Moreover, the authors
proposed an approach to disentangle the components of the pre-
dicted scores using a multi-path uncertainty-aware score distribu-
tion learning method. The authors of Mnih and Hinton [44] pro-
posed a method to use noisy labels to model the annotator’s un-
certainty in terms of a transition matrix and incorporated it into a
deep learning model for single/multi-class aerial image classifica-
tion. Following the same concept, a deep learning framework using
noisy labels was proposed in Rodrigues and Pereira [28], where the
notion crowd layer was introduced to encode the annotator's con-
fusion. The crowd layer demonstrated the ability to directly train
deep neural networks from the noisy labels of multiple annotators
through only the back-propagation process. As a result, the opti-
mized weight matrices of the crowd layer were introduced to en-
code the uncertainty of the individual annotators.We inspired from
this approach to utilize the annotator uncertainty estimation to
serve in the relative attribute task for the first time. Tanno et al.
[27] introduced an extension to estimate the annotator uncertainty
from noisy label learning. Considering that no actual labels were
available, the authors simultaneously learned the annotator confu-
sion and actual underlying distribution. This approach is relevant
to our proposed approach in terms of the estimation of annota-
tor confusion (i.e., uncertainty). Although the method proposed in
Tanno et al. [27] was used in several applications, such as image
classification and medical image assessment, the authors did not
propose their method for use in the relative attributes task.

Recently, the gait community started to use the label dis-
tribution approach. In [37], the authors proposed an LDL-based
framework for age estimation using the gait feature. The pro-
posed framework can model the outputs of discrete label dis-
tributions in the absolute age domain. This age label distribu-
tion implicitly encodes uncertainty about the estimated age. De-
spite this, the framework cannot handle relative age distribution
estimation, which is common in the age group estimation task
(ie., report if a person is younger, a similar age, or older). How-
ever, such system considered only age attribute and did not con-
sider it in a relative manner. A recent trade-off optimal trans-
port model was proposed in Makihara et al. [7] for estimating the
gait relative attribute distribution from absolute distributions. Us-
ing this model, annotator-independent uncertainty can be treated
effectively, whereas annotator-dependent uncertainty is almost dis-
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Fig. 3. Definition of the lower and upper bounds defined in Eq.
viewed in color.

carded. Compared to this trade-off model, the proposed model can
output both annotator-independent and annotator-dependent un-
certainties of the gait relative attribute in an end-to-end manner.

3. Uncertainty-aware gait relative attribute estimation

3.1. Overview

We first provide an overview of the proposed method, which is
composed of the annotator-independent uncertainty layer (AIUL)
and annotator-dependent uncertainty layer (ADUL), as shown in
Fig. 2. In the AIUL, given a pair of gait silhouette sequences,
a Siamese network with parameter sharing outputs a pair of
parameftric continuous absolute score distributions of the gait at-
tribute. We compose our backbone network for a pretrained Gait-
Set model [45] and a set of fully connected layers following the
GaitSet. Then we convert the pair of absolute score distributions
into a parametric continuous relative score distribution and then
convert it into a discrete relative label distribution with the train-
able parameters of the integral intervals' boundaries. In the ADUL,
we convert the annotator-independent relative label distribution
to annotator-dependent relative label distributions via annotator-
specific trainable transition matrices. We describe the proposed
model in more detail in the following subsections.

3.2. Problem formulation

First, we provide a brief description of relative labels and the
existing relative score learning framework. Then we describe the
formulation of the proposed relative LDL framework in detail in
the subsequent subsections.
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(b) Seven-grade scale.

(3) for the relative score distributions of the three-grade scale (left) and seven-grade scale (right). Best

3.2.1. Relative labels

In the relative attribute framework, instead of annotating ab-
solute attribute scores (or categorical labels) for each training
sample, an annotator is given a pair of training samples and
assigns a relative attribute score (or categorical labels) for the
pair. Specifically, the annotator may assign a positive value when
the first sample is better than the second sample in the pair,
and vice versa. Consequently, a zero value naturally means that
both samples are similar. It is worth noting that the absolute
value assigned by the annotator indicates the degree of “good-
ness” of the desired attribute. For instance, an annotator may as-
sign +3 when the first sample is more beautiful than the sec-
ond sample, whereas the annotator may assign +1 when the first
sample is slightly better than the second. Generally, we define
the relative label set Y ={-M,...,-1,0,1,...,M}, where M de-
pends on the dataset annotation. For example, M =1 for the 3-
grade scale annotation proposed in Shehata et al. [10], whereas
M =3 for the 7-grade scale annotation introduced in Makihara
et al. [7].

3.2.2. Relative score estimation

Given a gait silhouette sequence x, we aim at estimating an ab-
solute score s of a certain gait attribute as s = f(x), where f(.) is a
mapping function from the gait silhouette sequence to the gait ab-
solute attribute score. We generally implement the mapping func-
tion f using a deep neural network, similar to Yang et al. [6],
Hayashi et al. [22], Souri et al. [29]. Once we collect N pairs of
gait silhouette sequences and their corresponding relative labels as
{x1i. %25 ¥i}(i=1,...,N), we train the mapping function f so that
the estimated relative score s, ; (i.e., difference between the abso-
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lute scores) is

Sri =81 — S2,i = f(X1.i) — f(x2). (1)

This relative score is consistent with the relative label (e.g., if a
relative label y is positive, we expect the estimated relative score
to be positive, and hence, f(x1) — f(x2) > 0).

When multiple relative labels are assigned by multiple annota-
tors for the same pair, we may consider the majority voting label
of relative noisy annotations as the ground-truth label to train the
mapping functions. However, the main drawback of the majority
voting label is that it cannot consider annotator-dependent uncer-
tainty derived from, for example, different skills and preferences.

3.2.3. Relative label distribution estimation

Unlike the above-mentioned relative score estimation, which
does not consider uncertainty, we aim at estimating a relative label
distribution, which considers uncertainty. We also use a parametric
continuous absolute score distribution that requires fewer parame-
ters than the existing method [7]. Specifically, we select the Gaus-
sian distribution, which is defined by only two parameters, that
is, mean and variance, and regard the variance as the degree of
uncertainty. Let a distribution of an absolute score s; for the first
input gait x; be N(s1; 1, o), where pq and o are the predicted
mean j4q and variance 012, respectively. Similarly, we introduce a
distribution for the second input gait x5 as N (s3; i3, 022). We then
define a distribution of a relative score s, (=57 —s;) as a Gaus-
sian distribution A (sr; ir, 0?) with mean g, and variance o?,
which are computed based on the i.i.d assumption pr = i1 — p2
and 6 = 012 + 022. Consequently, the specific form of the probabil-
ity distribution function for the relative score s; is

apl_w}_ )

2072

1
p(sr) = mﬁr

Because the annotation is assigned in the form of a discrete rel-
ative label, we need to convert the continuous score distribution
p(sr) into the discrete label distribution P(y), where y € Y is a rel-
ative label.

To achieve this, we define an interval of the relative score,
which the relative label y occupies, and then compute the corre-
sponding probability by integral. Specifically, we define the sym-
metric boundary parameters {mj,}(ly| = 1....,M) of the intervals,
as shown in Fig. 3, and then define the lower bound I(y) and up-
per bound u(y) of the interval for the relative label y as

—o0 y=—-M) -my (¥ <0)
) ={-my1 ¥=<0) ,u@)=1m. ¢=0 (3
my y=>0) oo y=M)

We then compute the probability of the relative label y:

u(y)
P@y) = f p(sy)ds;. (4)
Iy)

Note that if we use a three-grade relative label, as in Shehata
et al. [10], the number of boundary parameters is one (ie., my),
whereas it is three (i.e., my, my, m3) for a seven-grade relative la-
bel, as in Makihara et al. [7]. Additionally, note that the bound-
ary parameters are trainable to be more consistent with the anno-
tated relative labels; that is, they are not hyperparameters. More-
over, note that we use a fixed value m; =1 in the case of a single
boundary (i.e., three-grade case with M = 1) because it is equiva-
lent to moving boundary m; while changing the scale of the score,
and we change the scale of the score by changing the backbone
network parameters (i.e., it is redundant to use both). Finally, we
compute the probabilities for all the relative labels y € J and then
define a probability vector whose entities are the probability as
p=[P(-M),...,P(M)] e R1*@M+1) Note that the probability vec-
tor p describes annotator-independent (i.e., global) uncertainty.
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3.2.4. Annotator-dependent uncertainty-aware estimation

In this subsection, we describe a method to convert the
annotator-independent relative label distribution to the annotator-
dependent relative label distribution. Assuming that we have
A annotators, we define the relative label distribution p? =
[PI(—=M), ..., P?(M)] e RZM+1 for the ath annotator. Specifically, we
assume that the annotator-dependent label distribution p® of the
ath annotator is represented by a linear transformation of the
annotator-independent relative label distribution p:

p'=pT", (5)
where T ¢ REM+1)x(@M+1) g 3 transition matrix for the ath anno-
tator. Note that the (i, j)th component tfj of the transition ma-
trix T? for the ath annotator indicates a conditional probability
of the ath annotator’s relative label y? = j given the annotator-
independent relative label y =1, ie., = p(y? = jly =i).

We consider the transition matrix to be stochastic, where its
entries are non-negative real numbers that represent a probabil-
ity, and the summation over columns for each row is 1. To en-
force this property using the unconstrained trainable parameters
of a deep neural network, we use a softmax function. Specifically,
we introduce an unconstrained parameter :rri'}, which corresponds
to the (i, j)th component of matrix TY. So, the normalized transi-
tion probability ! i is defined as

__exp(mij)
> exp(rm;)
Then we optimize the unconstrained transition parameters {:rri“j.}

through training. Note that the optimized transition parameters are
considered to implicitly encode the individual annotator’s uncer-
tainty and well describe the annotator’s skill levels about the rela-
tive attribute annotation.

tij (6)

3.3. Loss function

We introduce two loss functions for annotator-dependent rela-
tive labels and annotator-independent relative labels. First, we de-
note the ground-truth relative label y{* given by the ath annota-
tor for the ith training sample, and a corresponding relative label
distribution p¢ = [P*(—-M), ..., P*(M)] € R?M+1 estimated using our
model. Similar to other general label-based classification tasks, we
use the cross-entropy loss and sum over the annotators and the
training samples as,

N A M
Leg = ZZ Z _ay.y‘[.“ lOng(V)‘ (7]

i=1 a=1y=M

where N is the number of training samples and § is the Kronecker
delta. Additionally, we represent the ground truth of the annotator-
dependent relative label distribution as a one-hot encoding distri-
bution. We also compute the ground-truth annotator-independent
relative label distribution p = [P*(—M),...,P*(M)] e R"*2M+1 for
the ith training sample by simply aggregating all the annotators’
relative labels as follows:

1A
K = A Zay-y?" (8)
a=1

Because the ground-truth annotator-independent relative label dis-
tribution pf is not necessarily a one-hot distribution, unlike the
ground-truth annotator-dependent relative label distribution, we
use a loss function suited for LDL. Specifically, given the ith sam-
ple, we compute the Jensen-Shannon divergence (JSD) between
the ground-truth annotator-independent relative label distribution
P} and an estimated annotator-independent relative label distribu-
tion p; = [B(—M), ..., B,(M)] € B2M+1 and sum over all the training
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samples as follows:

N
Ls=> Dis(p; || P) (9)
i=1
e _1 _
=3 { 3P 11 5 + 5D B} (10)
i=1

where p; = [P(—M),...,P(M)] e R2M+1 is the mean distribution
of the two distributions p; and p; (ie. P, = (p;+ p;)/2). and
Di (- || -) is the Kullback-Leibler (KL) divergence. For example, the
KL divergence Dy (p;} || B;) is computed as

= W)
D(pi | B) = ) B(W) log(i—), (11)
“ ,,:Z_M B()

and the KL divergence Dy (p; || p;) is computed in a similar man-
ner. Finally, the loss function is the summation of the above two
loss functions:

L=Lce+Lgs. (12)

To summarize, given a set of training data {xy;,x2;, y™ )&=,

we optimize the set of intervals’ boundaries {mk}f'zl, transition
matrices {T"}‘:zl, and the backbone network parameters by min-
imizing the loss function L.

4. Evaluation experiments
4.1. Dataset

4.11. Three-grade dataset [10]

To the best of our knowledge, the first gait relative attribute
dataset was introduced in Shehata et al. [10], Hayashi et al. [22].
This dataset was compiled from the publicly available gait recogni-
tion dataset, OULP-Age [23]. A set of 1200 subjects’ walking videos
were compiled from this dataset, then arranged into pairs of sub-
jects, and presented to several annotators for comparative annota-
tion, Additionally, eight gait attributes have been defined: {General
goodness, Stately, Cool, Relax, Arm swing, Walking speed, Step length,
Spine}. Each attribute describes a certain visual property of the
walking subject ranging from perceptual attributes (e.g., relaxed vs.
nervous, and happy vs. sad) to physical attributes (e.g., step length
and arm swing). Each attribute could receive comparative labels
from the ternary set Y = {1,0, —1}.

Because of the limited number of annotated pairs for this
dataset, we adopted cross-validation to evaluate the model perfor-
mance on different folds. Hence, we first split the 1200 walking
subjects into 200 for testing and 1000 for training. We repeated
this splitting for six folds, and on each fold, we generated different
subject pairs for training and testing. Then, for each attribute, we
used the 1000 training samples to selectively generate the train-
ing pairs and the 200 samples to generate the testing pairs. To
completely disjoint the training and testing pairs, we excluded the
pairs where a certain subject appeared in both the training and
testing pairs. Hence, we had 800 training pairs and 100 test pairs
for each attribute.

4.1.2. Seven-grade dataset [7]

For this dataset, we chose the walking videos of 1200 subjects
pairs from the largest multi-view dataset, OUMVLP [46]. The au-
thors in Makihara et al. [7] hired ten annotators and designed an
annotation tool as shown in Fig. 5. The annotators watched gait
silhouette sequences from the side and front views, and assigned
annotation labels for five gait attributes: beautiful, cheerful, impos-
ing, relax, and graceful. Each annotator was asked to select one of
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the seven grades for each attribute. The grades had values from
3 (leftmost) to —3 (rightmost): grades 3, 2, and 1 trivially indi-
cated that the first sample was much better, better, or slightly bet-
ter, respectively; grade 0 was neutral (i.e., the attributes were sim-
ilar); and grades —1, —2, and —3 indicated that the second sam-
ple was slightly better, better, or much better, respectively. Finally,
we arranged 1080 pairs for training and 120 pairs for testing. For
training the score-based baselines, we squeezed the seven grades
into three grades to meet the loss function requirements of those
baselines. However, we kept the seven-grade setting for the testing
stage.

4.13. Annotation statistics

Fig. 4 shows the diversity of uncertainty among the annota-
tors for both datasets. Specifically, we first computed the average
and standard deviation (SD) of the grades over six (three classes
dataset [10]) and 10 (seven classes dataset [7]) annotations for
each pair and each attribute. We then computed the histograms
of the average and SD over the entire set of subject pairs for each
attribute. Fig. 4 shows that the averaged grades for both datasets
were almost distributed symmetrically around zero. The SD for the
three-grade scale annotation [10] was distributed mainly between
0.15 and 1, whereas the SD for the seven-grade scale annotation
[7] was distributed between 0.5 and 2.0. Both 5D ranges indicate
inconsistency (i.e., different skill levels) among the annotators as a
result of human perceptions.

4.2. Implementation details

For the three-grade scale dataset [10] experiments, we set the
initial learning rate for the fully connected layers to 5 x 105 and
weight decay to 5 x 10~10 to train the network from scratch, For
the ADUL, we set the learning rate to 1 x 103 and set the mar-
gin parameter of the AIUL to m = 1. Additionally, we initialized
the transition matrices of the ADUL using the identity matrix. For
parameter optimization, we performed mini-batch Adam optimiza-
tion [47] on the cross-entropy loss. We trained the model to mini-
mize the cross-entropy loss (Eq. (7)), with a batch size of 64 pairs
(i.e., 128 silhouette sequences) and 100 epochs.

For the seven-grade scale annotation dataset [7] experiments,
we set the initial learning rate of the fully connected layers by
rate to 1 x 10~ and weight decay to 5 x 105 to train the network
from scratch. Additionally, the learning rates of the AIUL and ADUL
layers were 5 x 10~3 and 1 x 10~4, respectively. For parameter op-
timization, we performed mini-batch Adam optimization [47] on
the combined loss. Also, we initialized the transition matrices of
the ADUL using the identity matrix, and the trainable margins of
the AIUL {my,m3,m3} to {0.5, 1.5, 3}, respectively. We trained the
model to minimize the combined loss (Eq. (12)), with a batch size
of 64 pairs (i.e., 128 silhouette sequences) and 200 epochs.

4.3. Benchmarks

For the performance evaluation, we compared our proposed
method with existing score-based and distribution-based baselines.
For the score-based methods, the output of the model was a rela-
tive score, and we used the majority voting label for training. These
baselines do not consider uncertainty or learning transition matri-
ces from noisy annotations. Moreover, for the estimation of the an-
notator label distribution, a separate model was required for each
annotator’s annotation, which raises a concern about the storage
size and time consumption.

By contrast, the distribution-based baseline assumes that the
output of the model is a relative score distribution instead of a
single-value relative score. Hence, it is applicable for handling the
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Fig. 4. Histograms of the average and standard deviation of noisy labels over the annotators. (a),(b) Histograms of the average and standard deviation of the three-grade
scale annotation dataset [10], respectively. (c), (d) Histograms of the average and standard deviation of the seven-grade scale annotation dataset [7 ], respectively.
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Fig. 5. A screenshot of the seven-grade annotation tool for the five gait relative attributes as proposed in Makihara et al. [7].

annotator’s uncertainty and estimating the annotator label distri-
bution from noisy labels in an end-to-end task, which alleviates
the drawbacks of score-based baselines. We briefly describe the
baselines as follows:

RankNet [29]: This baseline is a deep relative attribute model
that was proposed for image classification [29]. The authors pro-
posed using the binary cross-entropy loss for model parameter op-
timization.

DRA [6]: This baseline is a deep relative attribute model that
was proposed for image classification [6]. The authors proposed

the signed linear contrastive loss for model parameter optimiza-
tion.

SQCL [22]: This baseline is a deep relative attribute model used
for gait relative attribute estimation [22]. The authors proposed the
signed quadratic contrastive loss for model parameter optimiza-
tion.

Sinkhorn + ADUL [7]: This baseline uses the trade-off optimal
transport model to estimate the relative distribution from the ab-
solute distributions [7]. We added the ADUL to estimate both the
annotator’s uncertainty and label distributions for a fair compar-
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Classification accuracy [%] t of the relative label with the three-grade dataset. Abbreviations for attributes are general
goodness (GG), stately (St), cool (Co), relax (Re), arm swing (AS), step length (SL), walking speed (WS), spine (Sp), and
average (Avg.). Bold red and italic bold blue indicate the best and second-best accuracies, respectively. This convention

is consistent throughout the paper.

(a) Annotator-dependent

Method \ Attribute GG | St |Co|Re | AS | SL | WS | Sp | Avg.
RankNet [29] 60 |58 |54 |54 |61 | 61| 52 |66 60
DRA [6] 59 |54 |53 53|56 |60 |51 |64 56
SQCL [22] 60 |58 | 54 |53 | 61 |60 | 52 |64 | 58
Sinkhorn [7] +ADUL | 60 | 59 | 54 | 55 | 60 | 63 | 46 | 66 | 58
Proposed 65 |62 |54 |58 | 66 | 64 | 57 | 66 | 62
(b) Annotator-independent
Method \ Attribute GG | St |Co|Re | AS | SL | WS | Sp | Avg.
RankNet [29] 74 |71 |65 |66 |79 |74 |74 |78 | 73
DRA [6] 75 |71 6566 |79 |73 |73 78| 73
SQCL [22] 71 |67 |65 |67 |76 |73 |70 |75 | 71
Sinkhorn [7] +ADUL | 57 |61 | 64 | 61 | 65 | 75 | 65 | 72| 65
Proposed 78 |74 | 65 |66 | 78 |76 | 70 |76 | 73

ison with the proposed method. It is possible distribution-based
baseline to compare with for gait relative attribute.

4.4. Evaluation criteria

To evaluate the accuracy of the proposed method against the
baselines, we considered the annotation of the test data, in addi-
tion to the output of the baselines and proposed method. For the
score-based baselines, the test data annotation was given in the
form of comparative labels. Therefore, we also evaluated accuracy
in a pairwise manner. Furthermore, the last output for each test
pair was given as score difference d. As a result, we classified the
data into three classes or seven classes using thresholds trained
using a greedy search algorithm [10,22]. Note that we selected the
thresholds to maximize the classification accuracy of the training
data.

The outputs of both the proposed method and Sinkhorn base-
line [7] were probability distributions with (2M + 1) bins instead
of scalar scores. To evaluate the classification accuracy, we chose
the class label with the highest probability and evaluated it against
the ground-truth label. The ground-truth label was a noisy label of
each annotator for the annotator label distribution evaluation (i.e.,
ADUL), and the majority voting label for the relative label distri-
bution evaluation (i.e., AIUL). Furthermore, we evaluated the dis-
similarity of the estimated relative label distribution. We used the
JSD (Eq. (10)) to measure the dissimilarity between the estimated
relative label distribution and the ground-truth distribution. To ob-
tain the |SD dissimilarity bounded by [0,1], we replaced the natu-
ral logarithm in Eq. (10) by the base-2 logarithm. To evaluate the
transition matrix evaluation, we used the Frobenius norm [48] to
measure the error between the estimated and ground-truth transi-
tion matrices.

4.5. Quantitative evaluation

In our quantitative evaluation, we compared the proposed ap-
proach with the possible baselines. For all baselines, we adopted
the pretrained GaitSet model [45] as the backbone network. We
reported the classification accuracy, in addition to, the transition
matrix estimation error and |SD dissimilarity.

4.5.1. Three-grade dataset

As shown in Table 1(a) and (b), we reported the classification
accuracy of the predicted annotator label distribution and relative
label distribution, respectively. We conducted this evaluation on
the three-grade scale annotation dataset [10,22]. For both tables,
the first three rows are for score-based approaches [6,22,29] and
the fourth row shows the classification accuracy of the Sinkhorn-
based baseline [7] + ADUL.

The proposed approach outperformed the Sinkhorn-based base-
line [7], with an average accuracy of 4% for the annotator la-
bel distribution and 8% for the relative label distribution estima-
tion. Additionally, its performance was better than or compara-
ble with that of the score-based methods (the first three rows).
It is worth noting that the score-based methods use the ma-
jority voting label directly for model training and do not con-
sider either learning from noisy labels or handling the annotator’s
uncertainty.

For instance, although the RankNet approach [29] is princi-
pally considered as a scored-based approach, it achieved better
or comparable performance. Specifically, the RankNet model re-
ceived the absolute scores of the input pair, computed the corre-
sponding relative score (i.e., score difference), and then mapped
it onto the probability using a logistic function to meet the bi-
nary cross-entropy loss. Therefore, RankNet could not produce
the absolute distribution of the input pair, which made it dif-
ficult to fit and handle the underlying annotation uncertainty.
We explain the marginal performance as follows: we trained the
RankNet model directly using the comparative label for annotator-
dependent attribute score estimation and the majority voting la-
bel for annotator-independent relative attribute score estimation.
By contrast, we trained the proposed approach using only the
annotator-specific noisy labels to estimate the relative label dis-
tribution (i.e., global uncertainty), annotators' uncertainties, and
annotator-specific label distribution in an end-to-end task. Further-
more, the proposed method learned the annotator label distribu-
tion and the annotator’s uncertainty using single-model training.
By contrast, the score-based methods required a separate model
for each individual annotation. Overall, the proposed model was
the best or second best compared with the state-of-the-art meth-
ods.
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Classification accuracy [%] 1 of the predicted relative label with the seven-grade scale dataset. Ab-
breviations for the attributes: mean beautifulness (Be), cheerfulness (Ch), imposingness (Im), re-
laxedness (Re), gracefulness (Gr), and average (Avg.).

(a) Annotator-dependent

Method \ Attribute Be | Ch | Im | Re | Gr | Avg.
RankNet [29] 49 | 48 | 45|49 | 52| 48
DRA [6] 37 |40 | 37 | 40 | 43 | 39
SQCL [22] 43 | 42 |40 | 44 | 48 | 43
Sinkhorn [7]+ ADUL | 46 | 49 | 44 | 48 | 54 | 48
Proposed 47 | 48 | 46 | 46 | 55 | 48
(b) Annotator-independent
Method \ Attribute Be | Ch | Im | Re | Gr | Avg.
RankNet [29] 57165 |58 60|71 | 62
DRA [6] 41 | 50 | 40 | 41 | 51| 45
SQCL [22] 56 | 58 | 54 | 53| 71| 58
Sinkhorn [7](No ADUL) | 53 | 53 | 54 | 54 | 70 | 56
Sinkhorn [7] + ADUL 53|63 52|63 |72| 61
Proposed 61 | 64 |59 |66 | 73| 65
Table 3

Effect of different settings for the transition matrix, that is, the stochastic matrix versus the
original matrix on criteria with the seven-grade dataset. We report the following criteria av-
eraged over the attributes and annotators accordingly: classification accuracy of the annotator-
independent relative label (CA-Al) [%], that of the annotator-dependent relative label (CA-AD)
[%], the transition matrix error (TME), and the Jensen-Shannon divergence (JSD). Best perfor-

mance is marked in bold.

TM \ criterion | CA-AI1 | CA-AD 1 | TME | | JSD |
Stochastic 65 48 0.180 | 0.132
Original 61 48 0.203 | 0.145

Table 4

Transition matrix error (Frobenius norm) between the estimated transition matrices (annotator’s uncertainty) and the ground-
truth matrices for 10 annotators. We considered the seven-grade scale annotation dataset for this evaluation [7]. Lower is better
(] bold). Last three columns contain the optimized margins {ms, mz, m;} used for relative label distribution conversion.

Attribute | Method/Annotator Al | A2 | A3 | A4 | AS | A6 | AT | A8 | A9 | A10 | Avg. | Trainable margins
Beautiful |_Smkhom [7]+ ADUL | 022 {020 | 0.26 | 0.27 | 0.25 [ 0.17 | 0.17 | 021 | 021 [ 024 [ 022 - - -

Proposed 0.17 | 0.13 | 0.28 | 0.23 | 0.18 | 0.17 | 0.16 | 0.20 | 0.16 | 0.17 | 0.19 | 3.005 | 1.491 | 0.510
Cheerful |Sikhorn [71+ ADUL | 0.10 [0.11] 012 [ 022 [ 0.17 [ 0.07 [ 0.16 [ 0.9 [ 0.17 [ 0.17 [ 016 | - - N

Proposed 0.12 | 0.14 | 0.26 | 0.2Z | 0.17 | 0.19 | 0.15 | 0.24 | 0.18 | 0.15 | 0.18 | 3.007 | 1.494 | 0.502
Imbosing |Sikhorn 71+ ADUL | 0.10 [ 0.08]0.20 [ 025 0.17 [ 0.18 [ 0.17[023 [ 022 [0.16 [ 0.18 | - B -
POSINE I p oposed 0.17 | 0.11 | 0.19 | 0.22 | 0.18 | 0.16 | 0.15 | 0.19 | 0.19 | 0.11 | 0.17 | 3.005 | 1.492 | 0.507
Relax Sinkhorn 7] + ADUL | 0.27 | 0.24 | 0.23 | 0.27 | 0.30 | 0.24 | 0.24 | 0.27 | 0.29 | 0.27 | 0.26 | - B -

Proposed 0.15 | 0.21 | 0.17 | 0.18 | 0.27 | 0.23 | 0.24 | 0.20 | 0.11 | 0.12 | 0.19 | 3.002 | 1.494 | 0.507
Graceful |_Sikhorn [71+ ADUL | 023 [0.20[ 026 [ 0.32[ 028 [ 022 [ 026 [ 0.18 [ 027 [023 [ 024 | - B -
TAce Proposed 0.19 |0.10 ]| 0.23 | 0.22 | 0.18 | 0.12 | 0.20 | 0.24 | 0.12 | 0.11 | 0.17 | 2.892 | 1.476 | 0.523

4.5.2. Seven-grade dataset

Table 2 (a) shows the classification accuracy of the estimated
annotator label distribution of the proposed method compared
with the baselines. The proposed method outperformed the DRA
[6] and SQCL [22] baselines, whereas its performance was compa-
rable with that of the RankNet [29] and Sinkhorn-based [7] base-
lines. Similarly, Table 2(b) shows the classification accuracy of the
predicted relative label distribution. The proposed method out-
performed the baseline methods, with an accuracy improvement
ranging from 3% for RankNet [29] model to 20% for the DRA
[6] method.

Furthermore, we evaluated the estimation of the annotator's
uncertainty. Table 4 shows the transition matrix error between

the estimated transition matrix and the ground-truth. The pro-
posed method achieved a better estimation than the Sinkhorn-
based baseline |7]. Because the score-based baselines are not appli-
cable for the estimation of an individual annotation and the tran-
sition matrix estimation, there is no transition matrix error evalu-
ation for those baselines.

To evaluate the dissimilarity of the predicted relative la-
bel distribution, we report the Jensen-Shannon dissimilarity
for both the three-grade scales and seven-grade scale annota-
tion datasets in Table 5(a) and (b), respectively. The proposed
method with AIUL performed better, which emerges the con-
tribution of the proposed layer for relative label distribution
estimation.
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Jensen-Shannon divergence between the ground-truth and estimated relative label distribution. Lower is better (] bold).

(a) Three-grade dataset

Method \ Attribute GE St Co Re AS SL WS Sp Avg.
Sinkhorn [7] + ADUL | 0.247 | 0.231 | 0.194 | 0.206 | 0.234 | 0.178 | 0.196 | 0.186 | 0.209
Proposed 0.140 | 0.160 | 0.204 | 0.197 | 0.175 | 0.163 | 0.202 | 0.148 | 0.174
(b) Seven-grade dataset
Method \ Attribute Be Ch Im Re Gr | Avg.
Sinkhorn [7] (No ADUL) | 0.306 | 0.271 | 0.320 | 0.276 | 0.242 | 0.284
Sinkhorn [7] + ADUL 0.281 | 0.241 | 0.244 | 0.270 | 0.234 | 0.254
Proposed 0.135 | 0.125 | 0.128 | 0.144 | 0.130 | 0.132
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Fig. 6. Qualitative evaluation on the seven-grade scale annotation dataset [7]. We show the estimated transition matrices of 10 annotators versus the corresponding ground-
truth for the Graceful gait attribute. First row shows the ground-truth, second row shows the prediction of the Sinkhorn baseline [7] + ADUL, and last row shows the proposed
method estimation. Transition matrix’s rows are normalized so that each row sums to one. Best viewed in color.

4.5.3. Transition matrix evaluation

Additionally, we evaluated the accuracy of the predicted transi-
tion matrices in Fig. 6 for the Graceful gait attribute. We observed
visually that the estimated transition matrices using the proposed
method (bottom row) were close to the ground-truth matrices (top
row).

4.6. Sensitivity analysis

The key trainable parameters of the proposed model were in
the transition matrix. It should be initialized carefully to achieve
fast convergence. In this experiment, we used the seven-grade
scale annotation dataset to analyze the sensitivity of the transition
matrix on the classification accuracy of the proposed method. We
reported the accuracy of the predicted distributions, in addition to
the distribution dissimilarity under two settings of the transition
matrix: the stochastic matrix versus the optimized real-valued ma-
trix. Table 3 shows that the estimation accuracy degraded when
we used the real-valued transition matrix compared with using the
stochastic matrix, which supports our proposed use of the stochas-
tic transition matrix.

4.7. Discussion

4.7.1. Statistical analysis
We conducted a further experiment to justify the performance
significance of our method against the baselines. For each in-
put sample, we estimated the relative scores for the score-based
methods and the expectation of the relative distribution for the
distribution-based methods. We then computed the absolute er-
rors between the predicted relative scores/expectation and the ex-
pectation of the ground-truth distributions for all input pairs. We
considered using the statistical test tsgre = JLT. It is a function of
5
w

10

both the mean d and variance s of the computed difference be-
tween the absolute error pairs of the proposed method and a de-
sired baseline, and N is the total number of input pairs. Essentially,
for a higher tsore value, a significant difference existed between
the proposed method and the baseline. By contrast, the smaller the
tscare. the more similarity existed and hence, no significant differ-
ence existed.

To apply the test, we defined the null hypothesis Hp as fol-
lows: the difference’s mean d > 0, and there is no significant dif-
ference between the proposed method and the baseline. By con-
trast, for the alternative hypothesis H;, d <0 and there is a sig-
nificance difference. Moreover, we report the p_,,,. probability,
which helped to determine the significance of the performance of
the proposed approach in relation to the null hypothesis. We com-
puted the p_,u . by evaluating the cumulative distribution func-
tion of the t-distribution on the estimated tscore value. It is worth
noting that the level of statistical significance is often expressed as
a p-value between 0 and 1. The smaller the p-value, the stronger
the evidence that the null hypothesis should be rejected. In our
case, the null hypothesis states that the performance of the pro-
posed method and the baselines are similar and they are not sta-
tistically significant.

The acceptance or rejection of the null hypothesis depends on
a comparison of the p_,q,. with a certain threshold, that is, the
critical value. This critical value is the value of the test statis-
tic that defines the upper and lower bounds of a confidence in-
terval. In our case, we set the critical value to 0.05. This means
that if the p-value was below this value (e.g., p_yaue < 0.05), we
rejected the null hypothesis and concluded that there was a sig-
nificant difference in performance between the proposed approach
and the baselines, and vice versa. In Table 6, we report the com-
puted p_,,. Values. Clearly, we can observe the significant perfor-
mance of the proposed approach against the baselines.
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The estimated p_,,. for interpreting the statistical significance of the proposed method against the baselines. the rejection
of the null hypothesis is decided at p_,y,. < 0.05. (Yes) means there is a significant difference and (No) means no significant

difference.
Method \, Attribute Be Ch Im Re Gr
RankNet [29] 0.396 (No) | 0.003 (Yes) | 0.0404 (Yes) | 0.0156 (No) | 0.0339 (Yes)
DRA [6] 0 (Yes) 0 (Yes 0 (Yes) 0 (Yes) 0 (Yes)
SQCL [22] 0.0839 (No) 0 (Yes) 0.0005 (Yes) | 0.0745 (No) | 0.0302 (Yes)
Sinkhorn [7] (No ADUL) | 0.0012 (Yes) | 0.003 (Yes) | 0.0002 (Yes) 0 (Yes) 0.0082 (Yes)
Sinkhorn [7] + ADUL 0.0004 (Yes) 0 (Yes) 0.0026 (Yes) 0 (Yes) 0.0339 (No)
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Fig. 7. Histograms of the ground-truth labels of test pairs (a) and the average accuracies of the corresponding hired annotators (b). The most certain annotators

{A1,A3,A4,A6, A7, A8} at specific labels {—1,0, 1} achieve best accuracy.

4.7.2. Remarks on performance and time complexity

We observed the high performance of the three-grade scale
dataset compared with the seven-grade scale dataset, while the
margins of the relative label distribution for the former dataset
were not trainable set empirically. In fact, the network parame-
ters, except for the margins of the relative label of the AIUL layer
(e.g., parameters in the backbone network that output the mean
and standard deviation of the parametric continuous absolute score
distribution), were still trainable. Additionally, model performance
may have been influenced by other model components, such as
the backbone networks, newly added fully connected layers, and
ADUL layer (i.e., transition matrix optimization). Furthermore, the
three-grade scale dataset was not initially prepared to be used for
a distribution-based estimation task. We considered only three la-
bels, which limited the degree of uncertainty and increased the
chance of more true positives and high accuracy accordingly. From
an algorithmic viewpoint, we argue that estimating the annotator-
(in)dependent uncertainties helps us to understand the overall
performance of the gait relative attribute estimation system. For
crowdsourcing noisy label aggregation, several annotators may be
biased toward a specific label, as shown in Fig. 6. In the first row,
we can clearly observe from the ground-truth transition matrices
that annotators Al, A3, A4, A6, A7, and A8 are certain by the com-
parative label 0. It means that those annotators agreed that most
of the gait pairs they saw had a similar beautifulness attribute, For
any input test pair, they attempted to assign the label 0. By con-
trast, if the input test pairs contained a frequent 0 label, we would
expect the aforementioned annotators to achieve better accuracies
for annotator-specific label distribution estimation. As shown in
Fig 7(a), the counts of the ground-truth labels of the testing pairs
were concentrated at the comparative label {—1,0, 1}. Therefore,
we would expect annotators who were certain about these labels
to achieve the best accuracy compared with other annotators, as
shown in Fig 7(b). Regarding the time complexity, in Table 7, we
report the computation time of the proposed method against the
baselines. We observed that the proposed method and the base-
lines almost had the same execution time. This is because we used

n

Table 7

The computational time for each input sample (in seconds).
Method \, Attribute Be Ch Im Re Gr
RankNet [29] 0.048  0.047 0.047 0.047 0.047
DRA [6] 0.048  0.047 0.047 0.047 0.047
SQCL [22] 0.047 0.047 0.047 0.047 0.047
Sinkhorn [7](No ADUL) 0.049 0.049 0.049 0.048 0.049
Sinkhorn [7] + ADUL 0.050 0.050 0.050 0.050  0.050
Proposed 0.050 0.050 0.050 0.050  0.050

the same backbone network and the input images were binary sil-
houettes, where no overhead was required to process the images.

5. Conclusion

In this paper, we introduced an uncertainty-aware estimation
model for gait relative attributes. This model can estimate both
the annotator-dependent and annotator-independent label distri-
butions of an attribute in one end-to-end task. These estimated
distributions well-expressed the underlying uncertainty of the an-
notation labels. To achieve this, we proposed a differentiable global
uncertainty layer module that first estimated the relative score dis-
tribution from the absolute score distributions and then mapped
it to the relative label distribution. Furthermore, we proposed an
annotator-dependent uncertainty layer to learn the underlying un-
certainty of each annotator and predict the annotator-specific label
distribution through the linear transformation of the relative label
distribution. Quantitative and qualitative experiments on two gait
relative attribute datasets demonstrated that the proposed model
effectively estimated the relative label distribution, annotators’ un-
certainties, and annotator-specific label distribution in an end-to-
end task. The proposed method achieved performance better than
and comparable with existing score-based and distribution-based
baselines. However, the proposed method may have suffered from
poor performance in the case of a low-quality silhouette because
of the utilized backbone network, that is, GaitSet. Additionally, we
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did not attempt to execute this method for RGB input because we
aggregated the proposed dataset annotations using a binary sil-
houette. For real-time applications, our system may not perform
well because it reports a relative attribute distribution, which re-
quires a pair of inputs. Instead, we can use a single stream from
the trained model to report the absolute attribute distribution or
its expectation for the multi-object tracking task. Finally, poor ini-
tialization for both the margins of the relative distribution and the
transition matrices of the ADUL layer may lead to poor training
and performance degradation accordingly. In future work, we will
consider extending the model to work on multi-view gait datasets
and include more gait relative attributes to make it robust against
various covariates, such as view and carrying status. Additionally,
we may apply the proposed method to other modalities, such as
the face or iris. Furthermore, this model can be applied in several
applications, such as walking improvement recommendation sys-
tems, gait attribute-based criminal investigations, relative age esti-
mation, medical image quality assessment to support the decision-
making of medical staff, and sports action quality assessment to
assess judges’ scores.
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