PER-INSTANCE SELECTION OF MACHINE LEARNING CLASSIFIERS FOR IDS AND IPS

A thesis submitted in partial fulfillment of the requirements of the University of East London for Degree of Professional Doctorate in Data Science

By Nasser Mohdhyder J B Al-khuzaei

University of East London

September 7, 2023

Abstract

Generally, malicious attacks on a network or server can be detected and counteracted using various techniques. The intrusion detection systems (IDS) and intrusion prevention systems (IPS) are two of the most common application systems in detecting and preventing cyber threats. Despite the ability of each of these systems to help organizations overcome various types of threats to their networks, additional decisions are required to ensure that they operate effectively. Even IDS and IPS remain vulnerable to conditions that render them less efficient and incapable of meeting the required operational targets. Consequently, it is imperative that organizations make decisions and take actions that tend to optimize the efficiency with which the cybersecurity applications operate.

Most organizations have IT infrastructure nowadays, and they differ in their requirements and sizes, but there is a common problem that is managing the flood of alerts coming from the IDS(Simone, 2009). The IDS creates a huge number of alerts. Not all the threats detected are true, but it means that the IDS has found a matching signature or pattern. These types of alarms are considered false positives and a result of misclassification. They can be a real pain for organizations to determine if these alarms are actionable or not. Because of the issues with the current IDS, there is a need for continued research to solve the classification issues, and for that, a per-instance multi-classifier is proposed.

i

This research will discuss the importance of researching a new algorithm that is a portfolio of multiple classifiers for intrusion detection systems in the cyber-security space. There is already much research in this field, and many classifiers have been proposed, but the fact there is no single classifier that can cover all threats with high accuracy. The intention is to have a portfolio of classifiers. Each classifier will be tested and trained on the dataset. The idea of having multiple classifiers that each classifier can complement and contribute to the classification. A Master classifier will determine the fitness of each classifier, depending on the presented instance, and all the fit classifiers will contribute to the classification by voting. The vote will determine if the instance is benign or an anomaly, and if it is an anomaly, it will determine the type of attack.

Keywords:

Multiclassification, Hybrid Classifiers, Intrusion Detection System (IDS), CSE-CIC-IDS2018, Machine Learning (ML), Deep Learning (DL), Artificial Neural Networks (ANN), Random Forest (RF), Convolutional Neural Networks (CNN), Network Traffic Analysis, Cybersecurity, Anomaly Detection, Model Accuracy, False Alarm Rate, Detection Rate, F1 Score, Model Optimization, Dataset Analysis

Contents

Abstract		i
List of Table	es	Х
List of Figu	res	xiv
Acknowled	gment	xvii
Chapter 1	Introduction To Thesis and Cybersecurity	1
1.1 Ch	apter Introduction	1
1.1.1	Problem statement	3
1.1.2	Contribution to Knowledge	4
1.1.3	Aim	5
1.1.4	Study Hypothesis	6
1.1.5	Motivation	7
1.1.6	Scope of the research:	8
1.1.7	The Rational of the Study	9
1.1.8	Thesis Structure	12
1.2 Ch	apter Conclusion	14
Chapter 2	Literature Review by Systematic Search	16

2.1	Ch	apter Introduction10
2.2	Су	bersecurity1
2.2	2.1	IDS (Intrusion Detection System)2
2.2	2.2	NIDS (Network Intrusion Detection System):2
2.2	2.3	HIDS (Host-Based Intrusion Detection System)22
2.2	2.4	IDS approaches2
2.2	2.5	DDoS attacks (Distributed Denial-of-Service Attack):2
2.3	Lite	erature Review and Systematic Content-Analysis
2.3	3.1	Search (2020 to 2021)
2.3	3.2	Search (2020 to 2023)
2.4	Hy	brid Models:
2.4	4.1	A Hybrid Classifier Approach for Network Intrusion Detection
2.4	1.2	Intrusion detection system using voting-based neural network3
2.4	4.3	A Hybrid Anomaly Classification with Deep Learning (DL) and Binary
Alę	gorith	nms (BA) as Optimizer in the Intrusion Detection System (IDS)40
2.5	Pre	e-processing and feature reduction techniques:42
2.5	5.1	Hybrid Intrusion Detection System Based on Deep Learning42
2.5	5.2	A Novel Preprocessing Methodology for DNN-Based Intrusion
De	etecti	on44
2.5	5.3	Feature Selection Algorithm For Intrusion Detection Using Cuckoo
Se	arch	Algorithm4

2.6	De	ep Neural Networks	.48
2.6	6.1	Evaluation of Deep Neural Networks for Advanced Intrusion Detect	ion
Sy	sterr	าร	.48
2.6	6.2	NIDS-Network Intrusion Detection System Based on Deep and Mach	ine
Lea	arnir	ng Frameworks with CICIDS2018 using Cloud Computing	.49
2.7	Dis	scussion	.51
2.8	Ch	apter Conclusion	.51
Chapte	er 3	Dataset Scoping:	.53
3.1	Ch	apter Introduction	.53
3.2	Sa	mple of major Datasets	.54
3.3	Da	taset Problem	.55
3.4	Lin	nited Classes	.56
3.5	Inc	consistent accuracy for different classes	.57
3.6	Dis	scussion	.59
3.7	Ch	apter Conclusion:	.60
Chapte	er 4	Research Methodologies	.61
4.1	Ch	apter Introduction	.61
4.2	Pro	oposed Design	.62
4.3	Pro	oposed Method:	.66
4.3	8.1	Offline phase:	.67
4.3	8.2	Encoding for the master classifier:	.68

4.3	3.3	Online prediction:	.70
4.4	Dis	cussion	.73
4.5	Ch	apter Conclusion	.73
Chapte	er 5	Investigation and selection of software packages	.75
5.1	Ch	apter Introduction	.75
5.2	Ch	ronological order of libraries in Machine learning and Artificial intelliger	າce
	76		
5.3	Tes	sting Software Packages	.79
5.3	3.1	Local Compute	.80
5.3	3.2	Cloud Compute:	.83
5.3	3.3	Tools used in the research:	.85
5.4	Dis	cussion	.85
5.5	Ch	apter Conclusion	.86
Chapte	er 6	Data Exploration	.88
6.1	Ch	apter Introduction	.88
6.2	Со	nstruction of the dataset	.89
6.3	Ch	allenges:	.90
6.4	Lis	t of features in the CSE-CIC-IDS2018 Dataset:	.92
6.5	Da	taset Exploration	.95
6.5	5.1	Initial observations:	.97
6.6	Dis	cussion1	06

6.	7	Cha	apter Conclusion	106
Cha	pte	r 7	Building Models using Sub-Sample:	108
7.	1	Cha	apter Introduction	108
7.	2	Jus	tification for using Sub-sampling	109
7.	3	Dat	a Balance	109
7.	4	Tes	t and validation with different classification models:	112
	7.4	.1	Gradient Boosting Machine (GBM)	113
	7.4	.2	Generalized Linear Models (GLM)	118
	7.4	.3	Deep Learning (Neural Networks)	124
	7.4	.4	Random Forest (Ranger)	130
	7.4	.5	Distributed Random Forest (DRF)	135
	7.4	.6	Portfolio Classifier (Random Forest)	141
7.	5	Dise	cussion	147
7.	6	Cha	apter Conclusion	147
Cha	pte	r 8	Building Models with a Complete Dataset	149
8.	1	Cha	apter Introduction	149
8.	2	Gra	dient Boosting Machine (GBM)	150
8.	3	Ger	neralized Linear Models (GLM)	152
8.	4	Dee	ep Learning (Neural network)	154
8.	5	Rar	ndom Forest (Ranger)	156
8.	6	Dist	tributed Random Forest (DRF)	158

8.7	Portfolio Classifier (Random Forest)	.161
8.8	Discussion	166
8.9	Chapter Conclusion	166
Chapte	er 9 Evaluation and Discussion	.168
9.1	Chapter Introduction	.168
9.2	Precision Benchmark:	.170
9.3	Accuracy Benchmark	.171
9.4	F1 Score Benchmark	.172
9.5	Recall Benchmark	.173
9.6	Discussion	.174
9.7	Chapter Conclusion	.175
Chapte	er 10 Conclusion	.176
Refere	nces:	.180
Append	dix :	.191
buildi	ing PCAP	.191
Ge	nerating attacks:	.193
Faile	d Attempts:	.194
Naïve	e Bayes	194
Test	on KDDCUP	.196
First	Run using Distributed Random Forest	198
Distri	ibuted Random Forest After reduction	206

Test With Deep learning (DNN) on reduced features	214
Scripts	220
Create Models	220
Master Model	254

List of Tables

Table 1 Chronological evolution of DDoS attacks(İlker and Richard, 2020)30
Table 2 Systematic Search Key Strings
Table 3 systematic search
Table 4 Systematic Search Table (2020-2023)
Table 5 Binary Results for (Intrusion Detection System using Voting-based Neural
Network)(Haghighat and Li, 2021)
Table 6 Multiclass Results for (Intrusion Detection System using Voting-based
Neural Network)(Haghighat and Li, 2021)
Table 7 False Negative/Positive Rates for (Intrusion Detection System using a
Voting-based Neural Network)(Haghighat and Li, 2021)
Table 8 Accuracy for each model(Abdul Lateef et al., 2020) 44
Table 9 Accuracy before and after reduction(Syarif et al., 2020) 47
Table 10 Benchmark table with Accuracy, precision, Recall, and F1(Kishore and
Chauhan, 2020)
Table 11 Classifiers Comparison from Urvashi 57
Table 12 History of Machine learning tools and software
Table 13 Comparison between different cloud providers 84
Table 14: attacks durations in CSE-CIC-IDS2018 from CSE-CIC website (Canadian
Institute for Cybersecurity, 2018)
Table 15 Distribution of Classes in CSE-CIC-IDS2018
Table 16 Correlation Coefficient Table
Table 17 Reduced Correlation Table 102
Table 18 60% sample from each class 109

Table 19 Down-sampling benign Class	110
Table 20 up sampling	110
Table 21 Overall Accuracy	111
Table 22 Ranger Training results per class	111
Table 23 Remaining Features	112
Table 24 GBM Model Parameters	113
Table 25 Training Confusion Matrix	114
Table 26 Cross-validation Matrix	115
Table 27 Performance and Overall Accuracy	116
Table 28 Per-Class Performance	116
Table 29 Confusion Matrix for the Test Data	117
Table 30 Model Parameters for GLM	119
Table 31 Confusion Matrix for GLM	120
Table 32 Overall Performance for the Model	121
Table 33 Performance per-class for GLM	122
Table 34 Confusion Matrix for GLM (Test Data)	122
Table 35 Model Parameters for DeepLearning	124
Table 36 Training Confusion Matrix for Deep Learning	126
Table 37 Cross-validation Matrix for Deep Learning	127
Table 38 Overall Performance	128
Table 39 Per-Class Accuracy for Deep Learning	128
Table 40 Confusion Matrix for Deep Learning with Test Data	129
Table 41 Parameter Inputs for Random Forest (Ranger)	131
Table 42 Confusion Matrix for Random Forest (Ranger) - Training Data	131

Table 43 Overall Performance for Random Forest (Ranger)	132
Table 44 Per-Class Performance for Random Forest (Ranger)	133
Table 45 Confusion Matrix for Test Data for Random Forest (Ranger)	134
Table 46 Model Parameters for DRF	135
Table 47 Training Confusion Matrix for DRF	136
Table 48 Validation Matrix for DRF	137
Table 49 Overall Accuracy for DRF with Test Data	138
Table 50 Per-Class Performance for DRF with Test Data	139
Table 51 Confusion Matrix (DRF) for Test Data	140
Table 52 Overall Results	144
Table 53 Per-Class Results	144
Table 54 Master Classifier - Confusion Matrix	144
Table 55 Performance for GBM	150
Table 56 Per-Class Performance for GBM	150
Table 57Confusion Matrix For GBM	151
Table 58 Overall Performance for GLM	152
Table 59 Per-Class Performance for GLM	152
Table 60 Confusion Matrix for GLM	153
Table 61 Overall Performance for Deep Learning	154
Table 62 Per-Class Performance for Deep Learning	155
Table 63 Confusion Matrix for Deep Learning	155
Table 64 Overall Performance for RF (Ranger)	156
Table 65 Per-Class Performance for RF (Ranger)	156
Table 66 Confusion Matrix RF(Ranger)	

Table 67 Overall Performance for DRF	158
Table 68 Per-Class Performance for DRF	159
Table 69 Confusion for DRF	160
Table 70 Overall Performance	161
Table 71 Per-Class Performance	161
Table 72 Confusion Matrix for Portfolio Classifier	162
Table 73 List of original Classes and new classes	169
Table 74 Precision Performance Benchmark	171
Table 75 Accuracy Benchmark	172
Table 76 F1 Score Benchmark	173
Table 77 Recall Benchmark	174

List of Figures

Figure 1 Benchmark and selector	9
Figure 2 NIDS	22
Figure 3 HIDS	23
Figure 4 Intrusion detection system using a voting-based neural network (Hagh	nighat
and Li, 2021)	38
Figure 5 overall view of the complete system(Atefi et al., 2020)	40
Figure 6 Comparative Results(Atefi et al., 2020)	41
Figure 7 Confusion Matrix(Atefi et al., 2020)	41
Figure 8 Overall view of the model process(Abdul Lateef et al., 2020)	43
Figure 9 F1, Accuracy, Precision, and Recall(Chen et al., 2020)	46
Figure 10 Accuracy for the models(Bharati and Tamane, 2020)	50
Figure 11 Training Time(Bharati and Tamane, 2020)	50
Figure 12 Dataset Distribution (From Hindi)	56
Figure 13 Covered Attacks from 2008 to 2018	57
Figure 14 CRISP-DM retrieved from the official CRISP-DM website("What is C	RISP
DM? - Data Science Process Alliance," n.d.)	62
Figure 15 Research Methodology	64
Figure 16 Offline phase in the proposed method	67
Figure 17 get all classifications from all models	68
Figure 18 Preparing encoded dataset for the master Model.	69
Figure 19 Encoded Dataset ready for Training.	70
Figure 20 Classification for classifiers	70

Figure 21 Overall Methodology	71
Figure 22 Overall view of the Portfolio result decodes and final result	72
Figure 23 Chronological order of Machine Learning Tools	78
Figure 24 Distribution of attacks after removing Benign	97
Figure 25 Correlation Matrix for CSE-CIC-IDS2018	98
Figure 26 plot for Bwd.Header.Lenm vs Subflow.Bwd.Pkts	103
Figure 27 (Bwd.Header.Lenm vs Subflow.Bwd.Pkts) for each class	103
Figure 28 (Bwd.Header.Lenm vs Subflow.Bwd.Pkts) for each class afte	r removing
outliers	104
Figure 29 Sample plots	105
Figure 30 Per-Class precision	118
Figure 31 Per-Class Performance for GLM	123
Figure 32 Per-Class Performance for Deep Learning	130
Figure 33 Per-class Performance for Random Forest (Ranger)	134
Figure 34 Performance for DRF	141
Figure 35 Build Master Model	142
Figure 36Classification Using Master Model	143
Figure 37Precision for each class (Portfolio Classifier)	146
Figure 38 Precision Comparison Between All Models including Portflic	Classifier
	146
Figure 39 Per-Class precision for GBM	152
Figure 40 Per-Class Precision for GLM	154
Figure 41 Precision for Deep Learning	156
Figure 42 Precision for RF	158

Figure 43 Percision for DRF	161
Figure 44 Compare the Master Model with the Models in Portfolio	164
Figure 45 Benchmark (Full vs Sub-sample)	165

Acknowledgment

Most importantly, I give thanks to Almighty God for all his blessings and for giving me the strength and patience to complete this work.

I want to express my sincere gratitude to Dr. Yang Lee for his continues support during my doctorate studies. Dr Yang is a great example of professionalism and dedication. His feedback was constructive as it had wisdom and insights, which waived obstacles and improved the quality of my research. I am grateful to have Dr Yang as my supervisor for his compassion and thoughtful for his students.

I also want to thank my mother, my brother (Ibrahim), and my wife for their unconditional love, patience, and understanding. Their support and patience during my studies helped me go through all the challenges. Finally, I want to dedicate this work to my father, in loving memory

Chapter 1 Introduction To Thesis and Cybersecurity

1.1 Chapter Introduction

Due to the rapid technological evolution that has been witnessed in the world today, most activities in sectors such as business, healthcare, education, and entertainment are widely controlled by various forms of information technology. Such developments have also resulted in a situation whereby almost the entire world has become dependent on information technology. In each of the mentioned sectors, information technology offers additional quality by enhancing accuracy, speed, and efficiency, among other essential attributes.

Business and manufacturers are two of the sectors in which most aspects of technology are employed. Some of the key applications include automated production, especially in industries where large-scale production is required (KAREHKA, 2012). This aspect of technology is common in car manufacturing industries, chemical factories, food manufacturing and packaging, and heavy metal industries, among other similar sectors. The automation of the manufacturing process reduces the time taken in the production process while increasing both efficiency and accuracy. Other areas of application within the business and industry sectors include inventory management, supply chain management, and information management. Certain organizations also use techniques such as RFID time attendance or biometric systems to monitor their employees more effectively.

Technology has also boosted communication both locally and across borders, especially with the introduction of digital methods of exchanging information between different groups of audiences. Communication has been enhanced by the introduction of media such as video conferencing, mobile technologies, and emails (KAREHKA, 2012). Social media also promote interactions among people who are characterized by substantial geographical isolation. In education, the learning process has become even easier with the introduction of online libraries, simulated learning aids, and various forms of e-learning. On the other hand, bankers benefit from automatic teller machines, e-banking applications, and other emerging resources like cryptocurrencies (KAREHKA, 2012). Generally, technology has become an integral part of global society, a condition that necessitates high levels of cybersecurity to ensure that no costly damages are encountered while using such systems.

Th computer network has evolved from a simple communication medium between two systems into a very complex network architecture. Computer network evolution includes the internet, which introduced easy communication between different geographies, and the concept of public and private networks. These networks can carry and control critical information like power grids, stock markets, and the military. The network became heterogeneous, and the general approach is to have IT elements share the same resource pools (Storage, Memory, Compute, Network). This will lead to critical mission systems sharing some resources with non-critical systems. For example, you may have a power grid system that may share resources with an email system. That will put the power grid system at risk of being attacked because it shares resources with the email system and is not properly guarded. This

risk is very critical and can't be overlooked. Cybersecurity is mandatory to protect these systems. There are various cyber threats and different entities that might have the intention to do such acts (Political agendas or activists). One of the main threats that are very difficult to mitigate is (Distributed Denial of service/ Denial of service) DDOS/DOS attacks because the operator can't distinguish legitimate connections from attack connections. Also, the volume of attempted connections will be too huge to evaluate in time. There exist industrial solutions in the market for enterprises, but as long as the threats are evolving, Cybersecurity solutions need to evolve.

This research will focus on the detection of Cyber Security threats using machine learning. Looking after these two fields (Machine Learning and Cyber security), I will do interdisciplinary research where a portion of the research will focus on Cyber Security, and the other portion will be on machine learning.

1.1.1 Problem statement

The problem statement of the research is the following.

"Is it possible to increase the performance of IDS in precision and accuracy using per-instance selection of classifiers from a portfolio of classifiers?"

Information technology has intruded into many fields, and there is a very high dependency on technology for many processes these days. Connectivity is becoming increasingly necessary with the rise of smart cities and the internet of things. According to IDC, it is estimated that there will be 41.6 billion connected devices, generating 79.4 Zettabytes in 2025("The Global DataSphere & Its Enterprise Impact | IDC Blog," n.d.). With this amount of data trafficking, it's getting more challenging to analyze and identify threats.

At the same time, with the amount of generated data, Artificial intelligence flourished. Artificial intelligence can have real-world applications when provided with sufficient data. Al and machine learning can be beneficial in developing more robust Intrusion Detection systems (IDS). And indeed, many IDS depend on machine learning to identify anomalies.

Many models have already been developed for IDS, but not all models perform well for all types of network attacks. It's necessary to have an accurate system to act correctly according to the alarm. It's a real pain for SOC (security operation centers) to deal with false-positive alarms, as these alarms can come in millions. They have to investigate the alarms to determine if it's a genuine threat or benign traffic. A single model might not have the capability to classify some types of attacks or can misclassify regular traffic as a threat.

1.1.2 Contribution to Knowledge

My study bridges the gap and tackles the lack of the following:

- The ability to create a (portfolio classifier) with no budget with precision and accuracy relevant to my thesis
- per instance selection of classifier, where only selected classifiers can vote in each instance, so there will be a different set of classifiers to vote on for every threat.
- Modularity of the Model, where additional classifiers can be plugged in to enhance performance.

1.1.3 Aim

This research aims to investigate the application of multiple algorithms on security threat detection systems. Generally, different classifiers are characterized by both negative and positive characteristics. The study intends to determine the benefits that may be associated with the act of using multiple classifiers in a single system. The rationale behind this argument is that the weaknesses of given classifiers can be supplemented by the strengths of others. As a result of such a relationship, it is hypothesized that combining numerous classifiers of different types helps to establish a more effective hybrid compared to each of the individual constituents. However, the study approaches the idea from a unique perspective, which involves the selection of one classifier for each instance. This idea was inspired by SatZailla, which won the SAT competition multiple times("SATzilla: Portfolio-based algorithm selection for SAT," 2017). The proposed research procedure can be summarized in the following points.

- Use a simulated dataset that reflects modern cybersecurity threats.
- Build a portfolio of multiple classifiers.
- Create a Master Classifier that will select a classifier from the created portfolio based on the instance (connection) features.
- Classifier selection will be done for each instance.
- Test the classifier on the publicly available datasets for benchmarking with other classifiers.

The objectives for each chapter:

- Chapter1: Objectives and aims
- Chapter 2: Literature review for Cybersecurity and survey for for related research papers
- Chapter 3: Survey available datasets for research and define known problems in these datasets
- Chapter 4: define the projected design, and which framework will be adopted.
 Also, explain the proposed method.
- Chapter 5: Survey, Test and select the tools that will be used in this research
- Chapter 6: Data exploration using the standard techniques in data science to understand the dataset.
- Chapter 7: Build Multiple models along with the master classifier on a subsample
- Chapter 8: Build Multiple models along with the master classifier on complete dataset
- Chapter 9: Evaluate the results by benchmarking with different research papers that uses the same dataset and multi-classification (Not binary)
- Chapter 10: Discuss the outcomes and verify if the contribution of knowledge is achieved.

1.1.4 Study Hypothesis

Even though the answers to the study questions will only be established after performing the research, certain predictions can be established based on theoretical inferences and information gathered from existing studies. However, such predictions are limited due to a lack of adequate information and theoretical frameworks on the proposed model. The proposed hypotheses for this research are as follows:

- The instantaneous selection of classifiers substantially improves the efficiency with which threats are detected in a server or network.
- Using the algorithmic approach to the selection of classifiers is more appropriate as it encourages the detailed consideration of all the performance factors of each individual classifier.
- The proposed model offers higher classifier performance outcomes than existing models.

1.1.5 Motivation

It's common to use IDS/IPS (intrusion detection system/Introduction prevention system). The IDS analyzes the traffic and identifies anomalies, triggering an alert. The IDS uses a model trained in historical traffic with all possible malicious and benign traffic scenarios. These models can report false alarms based on the quality of the data provided and the type of the model used.

Some models perform very well with some classes, and on the other hand, they misclassify very severely with other classes. A model can have a very high accuracy rate in detecting anomalies, but at the same time, it provides a lot of false-positive reports. Data traffic is not consistent, and it changes depending on the activity and the type of malicious attack. For example, network activity increases in the early morning when all people start their computers and check their emails. While most of these activities disappear at night, a model might not be able to distinguish morning

activity from a DDOS attack. At the same time, hackers know how to hide their activity in the network. For example, a normal port scan will be immediately detected, but hackers can do a slow scan that might not be detected by the IDS. For this reason, a portfolio of multiple classifiers might assist in increasing the accuracy, wherein, for each flow, a model will determine the most suitable classifier for that type of threat.

1.1.6 Scope of the research:

This research aims to increase the accuracy of the IDS model by using an algorithm to select a classifier for each flow that is most suitable for classification. To achieve this objective, we need data capture of the network, which can be achieved by having the PCAP file (Packet capture)to be used to train and validate the model. The data should have benign flow and anomalies to represent a more realistic network flow.

As discussed earlier, a portfolio of multiple models will be constructed. In order to determine if a selected model can fit in the portfolio, we have to have some metrics and criteria to calculate the fitness of these models. Each Model will be evaluated for their accuracy and precision and then benchmarked among each other. Then, we can validate if a model is suitable to be used for IDS in the first place. The evaluation will undertake three steps. The first step will investigate the model precision for each class. The second step will evaluate its ability to perform well with multiclassification. Finally, we will test if it can handle big data with reasonable time and compute resources. One of the essential parts of the research is developing a technique to select the suitable model for each flow in the network traffic. To develop this technique, we can use the evaluation of multiple models and build a model that will interface with the others as a selector.

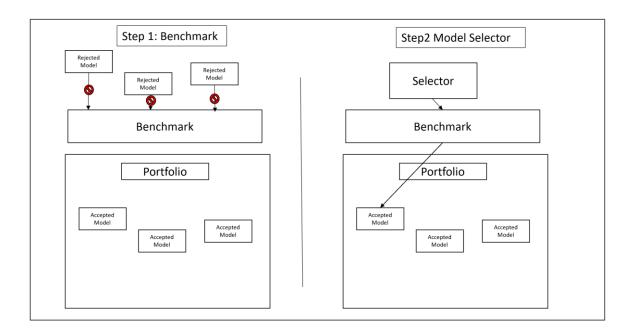


Figure 1 Benchmark and selector

1.1.7 The Rational of the Study

This study is expected to produce results that will contribute to the war against cybercrime in various contexts in which network-based technologies are employed. Classifiers are renowned for their role in enhancing the security capabilities of intrusion detection systems. These benefits can be analyzed from two principal perspectives. These perspectives are based on the fact that there are specific assumptions regarding classifier dependencies, different classifiers have varying outputs, and the idea that the process of selecting classifiers depends on neural networks, special mathematical functions, or algorithms. Based on these parameters, the benefits that come with a specially designed method of selection can be viewed from the perspectives of either classifier selection or classifier fusion(Ludmila I. Kuncheva et al., 2001). Thus, the rationale of this study can be described on the basis of the benefits associated with each of these approaches.

The first aspect of interpretation is the classifier selection, which forms the main core of this proposal. Under this criterion, each of the individual classifiers is assumed to be a special kind of expert. The expertise associated with each 'expert' is believed to be useful in specific feature spaces. In the event that a feature vector represented as $x \in \mathbb{R}^p$ is availed for a given classification, the process of assigning the class label to x is done in such a way that the highest credit is given to the specific classifier that is responsible for the vicinity of x (Ludmila I. Kuncheva et al., 2001). The process can be achieved through the nomination of either a single or multiple classifiers depending on the purpose for which the entire process is conducted(Subbulakshmi and Afroze, 2013). On the other hand, classifier fusion operates under the assumption that all classifiers are trained over the entire feature space, a condition that makes them more competitive than complementary(Saleem Malik Raja and Jeya Kumar, 2014). In such a situation, the selection process is considered to be more complex than in the case of a typical classifier selection process. Each of the available alternatives is selected mainly on the basis of the benefits or performance advantages that it introduces. Since it becomes relatively challenging to establish the best approach to the selection and combination of various types of classifiers, mathematical functions or algorithms are always used to accomplish this task.

The methods discussed above result in the establishment of a system consisting of a hybrid of critically selected classifiers. Generally, multiple classifiers are characterized by impressive outputs and performance efficiencies. It is evident that the entire performance of an intrusion detection system depends upon the types of classifiers that are selected in a given instance. Selecting high-efficiency classifiers would always result in generally high efficiencies, while poor selection will be characterized by undesirable outputs. This project intends to solve classifier selection challenges by establishing a reliable algorithm for undertaking the process with the least errors. It intends to improve the effectiveness of intrusion detection systems by making them more reliable.

The benefits discussed above can be expressed in simple terms, which mainly revolve around improving cybersecurity in different contexts. Cybercrime has already been identified as one of the main challenges facing the implementation of technology in education, banking, construction, healthcare, and several other sectors across the globe. Research indicates that poorly developed intrusion detection systems and intrusion prevention systems are often vulnerable to false alarms. There are cases in which these resources fail to detect any threatening alarms within the servers or networks in which they are installed. In such a situation, they may report the absence of security threats even in cases where networks or servers are subjected to serious security compromises. The effective selection of classifiers helps to boost the overall efficiencies with which such systems work and make them more reliable. Thus, this study focuses primarily on improving the performance characteristics of intrusion detection systems to make them more effective. It tries to ensure that only the best-performing components of each security application are employed in the war against network-to-server intrusion. Overall, the outcomes of the study are expected to be of significant resourcefulness not only to researchers in the same field but also to the digital world at large.

This thesis has a novel approach for multi-classifier classification for Cybersecurity. This novel approach could help to develop IDS systems and improve the identification and classification of cybersecurity threats. There exist systems that can

perform the IDS tasks (classification), but the development and improvement of this novel approach could reduce the rate of errors, which are very costly for any entity or organization.

1.1.8 Thesis Structure

The structure of the remainder of the thesis will be as follows:

Cybersecurity:

This chapter will introduce the reader to the general concepts of cybersecurity in order to allow him/her to grasp the meaning of IDS and its function. The chapter will go through the history and evolution of the cyber security threats. In addition, we will review the tools and approaches that mitigate and defend systems from Cybersecurity threats.

Literature review and Systematic search:

In this part, we will view a systematic search for research that relates to this research. Different approaches will be reviewed that are either hybrid, pre-processing or Deep Neural. For each type of these approaches, we will discuss different papers that cover them.

Dataset Survey:

In this part, we will discuss the Datasets that are used in IDS. A survey will be reviewed on these datasets, which cover the distribution of how much each dataset is used in research. In addition, some problems of these datasets will be discussed that can affect the research in IDS.

Methodology:

This chapter will have the methodology that we will use and how we have created a method that is inspired by a prober framework within the Data mining community. By the end, we will have a detailed explanation of the proposed model.

Investigation and Selection of Software Packages:

In this part, we will have a small survey on the tools that are involved in Artificial intelligence and Machine learning. We will view the tool in two aspects. These aspects are cloud and local computing. In each aspect, we will determine if the available tools are fit for this research.

Dataset and Data Analysis:

Data analysis is an integral part of this research. In order to build a model, we need to understand the data and have proper insight into its variables and a summery of it. We will present the distribution of the variables and the problems that the dataset has. Finally, we will show how we have pre-processed that dataset.

Building models using Sub-sample:

In this part, we built different models using a sub-sample from the dataset. Depending on the results of these models. We build a portfolio of models that will contribute to the proposed portfolio model. At the end of the chapter, we have built the portfolio classifier and made a comparison with the individual classifiers that have participated in the portfolio.

Building Models using the complete Dataset:

In this part, we are repeating the process as in the "Building Models using Subsample," but we have built the model without sub-sampling and using the complete dataset (except for duplication and removing NA). The dataset was only split between training and testing without any up sampling and subsampling. At the end of this chapter, we benchmark the results between the Full dataset results and the sub-sampling for all the models.

Benchmarking to other tests and studies:

We have benchmarked the proposed portfolio classifier to other research and studies. In this benchmark, we tried to make a fair comparison, but most of the studies do a binary classification, and few do multi-classification. We have built tables that compare Accuracy, Precision, F1 Score, and Recall.

Discussion and Conclusion:

This chapter will have the discussion and conclusion by summarizing the thesis and showing if the research goals have been fulfilled. Also, it will show major findings, impact on the industry, limitations, and future work.

1.2 Chapter Conclusion

In conclusion, this chapter laid the groundwork for the research by highlighting the growing dependency on technology and the corresponding rise in cyber threats. The background discussion included the types and roles of IDS, along with their limitations in practical environments. The issues identified, such as high false positive rates and inability to generalize across various traffic types, justified the need for a more flexible and intelligent solution. The proposed idea of using a classifier portfolio, capable of making per-instance decisions, was introduced as a

response to these gaps. Furthermore, the scope, aims, and hypothesis of the study were clearly defined, aligning the technical challenges with the intended solution. The content of this chapter ensures that the reader understands the relevance and significance of the problem and how it will be approached throughout the rest of the thesis. The next chapter will examine existing literature to further support the design and novelty of the proposed model.

Chapter 2 Literature Review by Systematic Search

2.1 Chapter Introduction

This chapter will give an in-depth understanding of the importance of cybersecurity and the impact of any cyber threat. There will be an explanation of the different types of IDS, which are HIDS and NIDS. Also, it will view the different approaches for the IDS to identify the threats with its' advantages and disadvantages. Finally, it will view the different DDOS attack techniques along with the major DDOS attacks that happened in chronological order.

2.2 Cybersecurity

To understand Cyber Security, we need to look into its definition. According to Merriam-webster, Cyber Security is the measure taken to protect a system against an attack and unauthorized access ("Cybersecurity Definition & Meaning - Merriam-Webster," n.d.). The systems that can be targeted for cybersecurity can be any form of information technology resource. These resources can be either Compute, Network, or applications. Also, cybersecurity covers the integrity, availability, and confidentiality of the data. There are enormous types of security defense tools and techniques used by many originations, and each tool targets a different component of the system to protect. For example, a generic firewall will protect the overall internal IT infrastructure from any external network security threats, while WAF (web application firewall) is application-specific and will protect applications such as Email systems. These roles are unique and can't be interchanged. Cybersecurity defenses don't always depend on physical or software modules. Some policies can protect the system, like encryption, authentication, privileges, and segregation (logical or physical). On the other hand, we can have modules that can be hardware or software like firewall, IDS/IPS, security gateway...etc. As technology evolves, with systems being updated every while and new components being introduced, it becomes more difficult to cope with this rapid change and make sure that the system is hardened and safe from cyberthreats. Attackers can exploit and find ways into the systems without being noticed or detected since the people who manage these systems might not be aware of loopholes in the new systems and updates.

Intrusion detection systems have been used in various networks to boost the network security. Their roles are restricted primarily to the detection of any threats to which a server may be subjected. By definition, intrusion detection systems (IDS) refer to systems that are charged with the responsibility of monitoring network traffic(Margaret, 2018). Their activities are also helpful to security management in individual servers. These systems are always on the lookout for any suspicious activities within the servers or network in which they are installed. Therefore, IDSs are responsible not only for the detection of suspicious activities in networks and servers but also for reporting such issues when discovered. Even though their main roles are the detection and reporting of malicious activities, intrusion detection systems may be designed with special features that enable them to take the required courses of action in cases where suspicious activities are detected. Some of such responses include preventative measures like the obscuration of the traffic sent from the detected malicious IP addresses. The operations of IDSs are never completely efficient as they may also be subjected to various forms of interference, such as false security alerts within the networks or servers guided by them. Thus, it is imperative that companies or network administrators perform adequate fine-tuning to their intrusion detection systems before installing them(Margaret, 2018). Fine-tuning, essentially, involves the proper configuration of intrusion detection systems to familiarize them with the server's or the network's normal traffic. This way, it becomes easy for such systems to differentiate between normal activities within the traffic and malicious events within the networks in which they are installed (Margaret, 2018). Therefore, the installation of intrusion detection systems is not efficient enough to guarantee absolute security in a given server or network.

There are four principal categories of intrusion detection systems; they include network intrusion detection systems (NIDS), host intrusion detection systems (HIDS) (Khor et al., 2010), signature-based intrusion detection systems (SIDS), and anomaly-based intrusion detection systems (Saleem Malik Raja and Jeya Kumar, 2014). NIDS are installed at specific points within a network to monitor traffic from various sources within the network. HIDS are often deployed on all computers and other devices in a network and usually have direct access to an enterprise's internal networks and the internet (Tanmoy and Niva, 2017). The main advantages of HIDS over NIDS include the ability to detect malicious actions originating from both the organization and infected hosts (Tanmoy and Niva, 2017). Signature-based intrusion detection systems mainly detect threats by comparing the characteristics of data traffic within a network and comparing them to the properties of known threats. On the other hand, anomaly-based intrusion detection systems often determine the anomalies within the general traffic of a network by comparing them against an established baseline. Thus, the rationale behind the operation of such systems is the ability to report any changes in the network baseline. Such changes are automatically associated with malicious intrusion.

The installation of intrusion detection systems in devices, servers, or networks comes with several benefits that help to enhance cybersecurity. The first and the most essential benefit of these systems is the ability to provide organizations and other forms of network managers with information on the security statuses of their networks or servers. Generally, intrusion and detection systems can be used to not only detect the presence of malicious activities but also to analyze and categorize such incidents. The results of such analyses are useful to organizations as they dictate the types of actions to be taken by the affected organizations for optimal security. Thus, they act as both network guards and essential factors of decision-making processes aimed at the improvement of network security.

Opposite to the notion that network security systems are caused by data traffic from external sources, there are cases in which such issues originate from within the individual servers connected to a given network. Thus, it is imperative that the system bugs that originate from within these devices are also detected. Intrusion detection systems, especially the HIDS, are renowned for their ability to detect malicious activities of traffic within individual servers. This property enables organizations to identify and remedy faulty network configurations and assess such systems for future risks. By providing organizations with adequate information on regulatory condition, IDSs offers more unobstructed visibility across the networks of such organizations, making it easier for them to conform to the security regulations(DOUGLAS et al., 2015). The final benefit of such systems comes in the form of their ability to boost organizational security response systems. Due to their ability to detect hosts and devices within a network, intrusion detection systems are used for data inspection within network packets and the identification of the operating systems of the services employed. The utilization of IDS to gather such information is considered more efficient as it operates better than manual census (FSabahi and AMovaghar, 2008). Generally, the installation of intrusion detection systems in a network comes with more benefits than just the detection of intrusion; it also enables organizations to effectively control their networks and servers while conforming to the security legislation.

2.2.1 IDS (Intrusion Detection System)

The Intrusion detection system is a system that analyzes and observes the network activity to find intrusions. Intrusion is any attempt that may affect the integrity, availability, and confidentiality of a system or network. Generally, there are two approaches to collecting data for the intrusion detection system. The data can be either collected from the network or the Hosts(Sazzadul Hoque, 2012).

There are different approaches that allow the IDS to detect malicious attacks, which are (anomaly, misuse)

2.2.2 NIDS (Network Intrusion Detection System):

With the increase of intercommunications in either Local area networks or wide area networks, the cyber security threats have increased on the network side, mainly because there is more exposure to the internet and more visible attack points. For this reason, NIDs were introduced to close this gap and secure the systems. NIDS scans network traffic and analyzes any abnormality on the network level. Network traffic can be local between hosts in the local network or communication that leaves the local network to WAN (wide area Network) or the internet. Usually, the networks are not unified, even in a single organization. An organization can have completely separated networks or, logically, separated by VLAN or subnet. It might require installing a firewall/IDS/IPS in each network or segment. Even in the same network segment, multiple IDSs with different roles might be required as there might be various systems and applications.

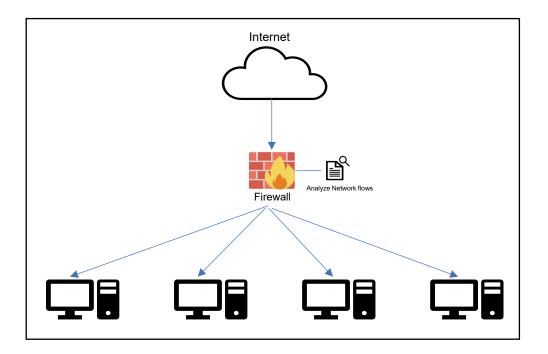


Figure 2 NIDS

2.2.3 HIDS (Host-Based Intrusion Detection System)

The HIDS evaluates the host activity, primarily the logs generated from the operating system or the applications. These logs contain information related to computing utilization, network, memory, health, etc. Usually, the monitoring happens by installing an agent in the host, which will collect the required information and pass it to a centralized server. In a virtual environment or cloud, it can be done on the hypervisor level, where there is no need to install an agent, and it does not require resources on the targeted virtual machine.

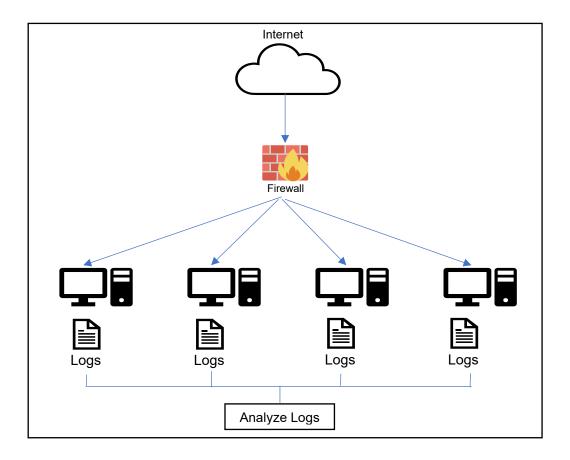


Figure 3 HIDS

2.2.4 IDS approaches

There are different approaches that allow the IDS to detect malicious attacks (anomaly, misuse), which will be discussed as follows.

2.2.4.1 Misuse:

These types of IDS depend on signatures to identify benign flows in the network. After observing the network activity, a knowledge base can be constructed. Depending on this knowledge base, the IDS can trigger an alarm after observing the signatures. Signatures are unique by nature, and the issue with this approach is that the network is dynamic and changing. If the behavior of the system changes due to user activity or an update, the IDS will trigger false alarms. Even on the malicious side, if there is a small change in the malicious attack or a variation, it will have a unique identity. The IDS might not be able to identify it and will miss a legitimate alarm.

Advantage:

One of the main advantages of the Misuse is that the models are built on known intrusive malicious signatures. Since these signatures are well-defined, the administrator of the systems can easily relate to any alert that exists in the knowledge base. Also, this approach can immediately start protecting your network since the signatures are already installed in the IDS("Intrusion Detection Systems > Triggering Mechanisms | Cisco Press," n.d.).

Disadvantages:

- Maintaining the signature database for all types of cyber threats is a very difficult task.
- It is necessary to update the database very frequently to keep the IDS up to date.
- Misuse might have trust issues, as these signatures are usually provided by vendors and suppliers that offer the IDS modules. The vendors can prepare signatures that can be intentionally bypassed without triggering any alarm.("Intrusion Detection Systems > Triggering Mechanisms | Cisco Press," n.d.)

2.2.4.2 Anomaly

This approach depends on having a dataset that captures network traffic. This dataset contains variables or features that represent each flow in the network communications. The variables and features are reflections of the network activity, so when observed and analyzed, the IDS can distinguish the benign flow from the malicious flows. This can be done by understanding how far these features deviate from the benign features.

There are multiple approaches that can achieve anomaly detection, which are supervised and unsupervised classification.

Advantages

- Since every network is unique, anomaly systems take advantage of that as it is trained on the target network. Attackers will have difficulty imitating users as the anomaly system keeps user-profile records, and each user in the network is unique, and any deviation from these profiles will trigger an alarm.
- Anomaly is not based on specific traffic that represents known intrusive activity (as in a signature-based IDS). An anomaly detection system can detect zero-day attacks, as the system generates an alarm because it deviates from normal activity, not from a handcrafted malicious signature database.("Intrusion Detection Systems > Triggering Mechanisms | Cisco Press," n.d.)

Disadvantages

- The System must be trained on the target network, and during the training time, the network can be targeted for attacks.
- Since the training will be specific to the target network, the administrators will face the complex task of associating events with alarms and triggers. This task can't be recycled as it is very specific to the target network.
- There are no guarantees that the training will actually result in a capable system to detect malicious events. The only way to validate is to simulate attacks and study the triggered events.
- If the attacks have a very similar pattern to the user profile, maybe the system will not detect these attacks.

2.2.4.3 Supervised Models:

The supervised models require input and output data. The input data represents the features and variables. The output data represents the class or type of input data. For the supervised model to work for IDS, the data acquired needs to be labeled for each flow. This might cause an issue for the development of this type of model because these labels are usually handcrafted. Another issue is determining the dimensionality of the features and how much is enough of a subset while maintaining accuracy. The data needs to be split into two parts: one part is training, and the other is validation. There are many types of supervised models with many variations, like support vector machines, decision trees, random forests, and neural networks.

2.2.4.4 Unsupervised:

Unsupervised learning does not require labels (output). These models capture patterns from the features. The model can be provided with a numerical target. From these patterns, the model can make clusters or groups where we can distinguish the benign group from the malicious groups. Examples of unsupervised algorithms are k-nearest neighbors, k-means clustering, and hierarchical clustering.

2.2.5 DDoS attacks (Distributed Denial-of-Service Attack):

Denial of service and distributed denial of service (DoS/DDoS) remain one of the cybersecurity issues that are persistent and keep happening throughout the years. One of the main features of the Internet is the openness and connectivity of diverse networks together. At the same time, the DOS/DDOS takes advantage of the internet diversity and connectivity. The advantage is that the internet is not centralized and distributed all around the world, with many networks that are connected together. Since there happens to be connections from anywhere, the DDOS can orchestrate a DDOS attack from many networks, and it will be difficult to validate all of these connections. In this part, there will be a discussion on DDOS and how it works, along with some history of DDOS.

In order to proceed, we need to understand the concept of DDOS. The DDOS is an orchestrated attempt between multiple computers to initiate an attack at the same time targeting a server or service. This attempt will consume the resources of the service, and when the server is short of resources (compute/memory/Storage), legitimate connections from normal users will not be granted.

To summarize, DDoS is a collection of multiple interconnected devices that can be computers, smartphones, or IoT devices. These devices are infected and can be controlled, which allows 3rd party to control these devices. Once a large number of network devices have been in control, they can be used to orchestrate a DDoS attack. The infected devices are usually called zombies in computer science terminology(Kamboj et al., 2017). Cybercriminals exchange these zombies and can offer them for rent to facilitate the attacks. Zombies can also be called bots. There are different models to make bots, and the first method is the client-server model. All the infected bots are connected to a central server that controls them all. The second approach is to have a peer-to-peer model. These bots don't connect directly to a central server. But they connect with each other, and the control of these bots can be done by digital signatures. The peer-to-peer model is the latest way for the botnets because it is difficult to trace, as each bot is connected to another bot instead of the central server. The way these bots can communicate with each other is by initiating a connection to a random IP address until the other bots reply.

Why Multiple Machines:

A single machine can only generate a small number of requests and bandwidth, but multiple machines can make much more. While having multiple machines, it will be much harder to shut down connections as there will be many connections established at the same time, and it will be stealthier. A simple filter of IP address will not work, and if the service provider considers adding more resources to accommodate the attack, the attacker will simply add more bots until the service fails and the attack succeeds. The scale of the DDoS attacks has advanced in the past years, and the volume of attacks has reached 3.47 terabytes per second in

2022("Microsoft fends off record-breaking 3.47Tbps DDoS attack | Ars Technica," n.d.). Some examples of DDoS attacks are as follows:

Yo-Yo attack:

One of the recent types of DDoS attacks is the Yo-Yo attack. The Yo-Yo attacks take advantage of the auto-scaling of the Virtual machines in the cloud. The process of this type of attack is to overwork the virtual machine and invoke autoscaling. The primary intention of the Yo-Yo attack is to cause economic damage to the organization as the organization will allocate more unnecessary resources to keep the virtual Machine running. At the same time, the Yo-Yo attack can also cause performance damage because, during the resource allocation in the autoscaling process, the Virtual Machine will face performance degradation(David and Barr, 2021).

Advanced persistent DoS:

Most DDoS attacks don't last for a long period as the victim can mitigate and find a solution for the attack. Meanwhile, the persistent attack can last as long as a month. The attackers will have multiple targets and switch between these targets, so the victim can't mitigate and have the time to resolve these attacks, while at the same time, they keep concentrating on the main target server.

Major Attacks in History:

The table below has the chronological order of the DDoS attack and the increased complexity of the attacks as time passes. The table was retrieved from (liker and Richard, 2020)

Table 1 Chronological evolution of DDoS attacks	(İlker and Richard, 2020)
---	---------------------------

Date	Description
Pre-	Non-computer DOS using sabotage and sit-ins
1989	
1989	AIDS ransomware.
1995	German government blocks access to sexual material.
1995	Strano Network DDoS protests French nuclear weapons tests.
1996	Panix ISP in New York disabled by SYN flood attack.
1997	Electronic Disturbance Theater (EDT) uses Floodnet to protest Mexican government
	attacks on Mayan anarchists.
1998	US DoD DDoS attack on EDT during Ars Technica festival.
1998	LOpht testify to Congress that total Internet disruption is easy.
1999	Electro-hippies use EDT Floodnet to attack WTO.
1999_2	Trinoo, TFN, TFN2K and Stacheldraht available online.
000	
2000	Mafiaboy takes down Yahoo, Amazon, Dell, ebay, CNN, etc.
2001	Code Red worm DDoS of WhiteHouse.gov.
2001	After Hainan incident, Chinese group launches DDoS on US military sites.
2001	German protesters use Floodnet to attack Lufthansa.
2003	Blaster worm SYN flood of Microsoft update servers.
2003	Blaster worm during blackout of US power grid.
2005	Gpcoder ransomware.
2007	Russian population launches Cyberwar with DDoS on Estonia.
2007	Pro-Putin botnets launch DDoS attacks.
2008	Chinese DDoS attacks on CNN.
2008	DDoS attacks on Georgia sites while Russian military attacks.
2008	Myanmar state uses DDoS to silence dissident Voice of Burma.
2008	DDoS attacks on RFE/RL Tajik, Farsi, Russian, etc. services.

2008	Ukraine attacked by unidentified anti-NATO sources.
2009	Hamas and Israel launch DDoS attacks on each other.
2009	USA and South Korean sites get DDoS attacks.
2009	Kyrgyzstan, Kazakhstan and Iran DDoS silences dissent.
2010	Vietnamese protest of Chinese mining gets DDoS.
2010	Anonymous titstorm attack on RIAA and MPAA.
2010	Anonymous Operation Payback DDoS on payment sites.
2010	Arab Spring leads to Internet blackouts.
2011	Telecomix anti-Internet blackout actions.
2013	Spamhaus receives massive DDoS of 300 Gbps.
2013	Cryptolocker ransomware spread by botnets.
2014	Ransomware (Cryptorbit, Locky, Petya) starts using bitcoin.
2014-	Lizard Squad stresser 579 Gbps DDoS of gaming industry.
2015	
2015	DDoS for hire botnets: 25 wired, 8 mobile.
2015	Large parts of the power grid in Ukraine disabled.
2016	Black Lives Matter receives flooding and slow loris attacks.
L	

This chapter will go through a systematic search. The systematic search will consist of all research that relates to IDS that uses machine learning and Artificial intelligence. A table of the systematic search will be reviewed with all the researched regardless of the type of the dataset and the approach used. A detailed review of some research will be done into three categories, which are Hybrid Models, Preprocessing, and Deep Learning.

The search is primarily done in IEEE, Elsevier, and ACM. The search was broadened by using the library site and Google Scholar. Search Keys that were used in the systematic search (Multiclass, multi classifier) with the assessment terms (classification, model, algorithm, machine learning, AI) and then industry terms (IDS, Cybersecurity, DDoS) and other related terms (KDDCUP, CIC-IDS-2018).

We have used different search key strings that are as follows:

step 1		step 2		step 3		step 4
Multiclass	AND/OR	classification	AND/OR	IDS	AND/OR	KDDCUP
multi classifier		model		Cybersecurity		CIC-IDS-
						2018
	1	algorithm		DDoS		
		machine learning		L	J	
		AI				

Table	2	Systematic	Search	Kev	Strinas
	_				

We have used different permutations and concatenation of the above table. The search period varied based on the time point of the research, as there were some updates during the research period. The presented research was done on points of time; the first one focused on research done between 2020 and 2021. The second

search was focused on the time period (2020 to 2023). The criteria for the selected papers are published, and it can be peer-reviewed a conference, or a survey.

2.3 Literature Review and Systematic Content-Analysis

2.3.1 Search (2020 to 2021)

Table	3	systematic	search
rabic	0	Systematic	Scaron

Reference	Title	Year	Туре	Author	Dataset	Methodology	Results
(Arivardhini	A Hybrid	2020	Conference	Arivardhini, S	NSL	Support Vector Machine (SVM),	No Results were shown
et al., 2020)	Classifier			Alamelu, L M	KDD	decision tree (J48), and Naive	
	Approach for			Deepika, S	data	Bayes (NB)	
	Network					Use a Majority Voting scheme	
	Intrusion						
	Detection						
(Chen et al.,	A Novel	2020	Conference	Chen, Peng	KDDCu	DNN	improve accuracy, recall,
2020)	Preprocessing			Guo, Yunfei	p'99	Deep Neural Network	and F1 score, with no
	Methodology for			Zhang,		Pre-processing :	significant degradation in
	DNN-Based			Jianpeng		1- Numeralization	precision
	Intrusion			Wang, Yawen		2- Transformation:	
	Detection			Hu,		3- Numeralization(Mi	
				Hongchao		n-Max)	
(Bharati and	NIDS-Network	2020	Conference	Bharati, M P	CIC-	Extra-Tree	The results compare
Tamane,	Intrusion			Tamane, S	IDS-	GBoost Tree	different Models and their
2020)	Detection				2018	Random Forest Tree	results.
	System Based					MLP	
	on Deep and						
	Machine						
	Learning						
	Frameworks						
	with						
	CICIDS2018						
	using Cloud						
	Computing						
(Haghighat	Intrusion	2021	Journal	Haghighat,	KDDCU	novel voting-based deep	The voting system has
and Li,	detection		Article	MH	P'99	learning framework	shown better results,
2021)	system using			Li, J	CTU-13	- Deep Neural	where it reduces false
	voting-based					Network	alarms.
	neural network					- Recurrent Neural	
						Network (RNN),	

						- Convolutional	
						Neural Network	
						- Boltzmann	
						Machine	
						- Stacked Auto-	
						Encoder	
(Syarif et al.,	Feature	2020	Conference	Syarif, I	Botnet	Cuckoo Search (CS) as	The CS has reduced
2020)	Selection			Afandi, R F	ISCX	feature selection and	most of the features, but it
	Algorithm For			Astika	2017	compare with GA and PSO	only has shown better
	Intrusion			Saputra, F	KDDCU	using Decision Tree	performance in ISCX
	Detection Using				P'99		2017, while PSO had
	Cuckoo Search				NSL-		better accuracy in NSL
	Algorithm				KDDCU		KDDcup99 and NSL-
	3				Р		KDDCUP.
(Atefi et al.,	A Hybrid	2020	Conference	Atof V	' "CICIDS	Λ bybrid Δ	
	,	2020	Conference	Atefi, K		A hybrid Anomaly	
2020)	Anomaly			Hashim, H	2017	Classification of IDS with	explain how the hybrid
	Classification			Khodadadi, T		Deep Learning (DL) and	models work, but he
	with Deep					Binary Algorithms (BA) as	compared different hybrid
	Learning (DL)						couples and showed that
	and Binary						DNN+BGSA has
	Algorithms (BA)						increased accuracy.
	as Optimizer in						
	the Intrusion						
	Detection						
	System (IDS)						
(Kishore	Evaluation of	2020	Conference	Kishore, R	KDDCU	DNN and compared it to linear	In this paper, it was
and	Deep Neural	2020	Combronico	Chauhan, A	P'99'	regression, Naive Bayes, K	shown that SNN performs
				Chaunan, A	1 33		
Chauhan,	Networks for					nearest neighbor, Decision	
2020)	Advanced					tree, and Adaboost.	but The Author did not
	Intrusion						show a confusion matrix
	Detection						where we can compare
	Systems						FP, TP, TN, and FN.
(Abdul	Hybrid Intrusion	2020	Conference	Abdul Lateef,	KDD'99	binary class IDS based on	The author has made
Lateef et al.,	Detection			A A		RNNs	multiple trails for feature
2020)	System Based			Faraj Al-		The Crow Swarm	reduction using CSO and
	on Deep			Janabi, S T		Optimization (CSO) algorithm	trained on RNN with each
	Learning			Al-Khateeb,		has been used to reduce the	trail. It was shown that
				В		dataset features.	only three features are
							sufficient to make a
							classification, but the
							paper did not show any

			results that identify false
			alarms.

2.3.2 Search (2020 to 2023)

This Systematic search was focused on the CIC-IDS-2018 dataset and models that used multiclassification with this dataset for IDS, and the search period was from 2020 to 2023.

Table 4 Systematic Search Table (2020-2023)

				1				r	1		1		
Row Labels	(Kabir et al.,	(Seth et al.,	(Hua, 2020)	(Dini et al.,	(Handika et	(Fitni and	(Alkanjr and	(Shahbanday	(Das et al.,	(Yoo et al.,	(Siddiqi and	(Chimphlee et	(Hagar et al.,
Benign	0.99	0.92	x	x	x	x	x	x	x	x	x	0.99	1.00
Bot	1.00	1.00	x	x	x	x	x	x	x	x	x	1.00	0.83
Brute Force -Web	x	x	x	x	x	x	x	x	х	х	x	0.00	0.75
Brute Force -XSS	x	x	х	x	x	x	х	х	x	x	x	0.00	1.00
BruteForce	1.00	0.99	x	x	x	x	x	x	x	x	x	x	x
DDoS	0.99	1.00	x	x	х	х	х	x	x	x	x	x	x
DDOS -HOIC	х	х	х	x	х	х	х	х	х	х	x	1.00	1.00
DDOS -LOIC-UDP	x	x	x	х	x	х	х	х	x	x	х	0.72	1.00
DDoS attacks-LOIC-	х	x	х	х	x	x	x	x	x	x	х	0.99	1.00
НТТР													
DoS	0.99	0.98	x	х	х	х	x	x	х	х	х	x	x
DoS attacks-	х	x	x	х	х	х	x	x	х	х	х	0.99	1.00
GoldenEye													
DoS attacks-Hulk	х	х	х	х	х	х	х	х	х	х	х	0.96	1.00
DoS attacks-	х	х	х	х	х	х	х	х	х	х	х	0.75	1.00
SlowHTTPTest													
DoS attacks-Slowloris	х	x	х	х	х	х	х	х	х	x	х	0.95	1.00
FTP-BruteForce	х	x	х	х	х	х	х	х	х	x	х	0.71	0.88
Infiltration	0.96	0.97	х	х	х	х	х	х	х	x	х	0.44	1.00
Overall	х	х	0.98	94.3	96.0	98.8	1.00	0.78	99.0	0.89	0.98	х	х
				9	0	0			0				
SQL Injection	0.87	х	х	х	х	х	х	х	х	х	х	0.00	0.92

SSH-Bruteforce	х	х	х	х	х	х	х	х	х	х	х	0.99	1.00
Web attacks	х	1.00	х	x	х	x	x	x	х	x	x	x	x

2.4 Hybrid Models:

Many researchers used the approach of having multiple algorithms, but they have taken different techniques to make them interact or merge the results. The following will discuss different strategies used in multiple papers mentioned in the table above.

2.4.1 A Hybrid Classifier Approach for Network Intrusion Detection

We have the first review for the paper "A Hybrid Classifier Approach for Network Intrusion Detection" (Arivardhini et al., 2020). The author has proposed to use multiple classifiers. Each classifier will classify the flow to determine if the flow is considered an anomaly or benign. We can see the model proposed per the below algorithm.

algorithm 1 A Hybrid Classifier Approach for Network Intrusion Detection(Arivardhini et al., 2020)

Procedure model ()

Input = NSL KDD data set

Reduce 'n' features to 'm' based on number of proposed filters.

Use Majority Voting scheme

Deploy a hybrid model consisting of J48, SVM, Naive Bayes.

Propose the model 'M' for every feature F n

Provide F n to J48, SVM, Naive Bayes using NSL KDD data set.

Calculate

- A1 = J48 model accuracy
- A2 = SVM model accuracy
- A3 = Naive Bayes model accuracy

• E = Ensemble Representing J48, SVM, Naive Bayes

Compare the accuracy of A1, A2, A3, E

Select the model which has the highest accuracy M = E

The proposed model will select the correct model based on accuracy, and the author claims that the voting system has improved performance. Unfortunately, no results were presented in the paper. It is a reasonable approach, but there are different issues, which are as follows:

- The voting system is based on the model's accuracy, but the author did not mention different accuracy for different classes.
- 2- How will the model be able to produce accuracy for a single new instance?It seems that the hybrid model will vote for a single model for the whole Dataset.
- 3- There are no results to evaluate or to compare.

2.4.2 Intrusion detection system using voting-based neural network

The paper(Haghighat and Li, 2021) below has a similar approach to the previous one. The author proposes to have multiple classifiers, and they all will be trained and validated. Then, the author proposed to have a mechanism to choose algorithms that are eligible to enter the voting process. The voting process goes as follows:

- All trained models will have an uncertainty factor on the output layer. This factor can be used as a measure to let the model participate in the voting.
- All model's uncertainty will be sorted, and a threshold will be used to eliminate unfitted models.

Then, voting will be used to determine the results, as shown in the diagram below.

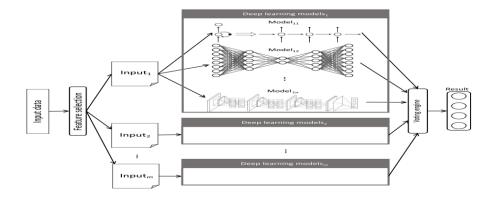


Figure 4 Intrusion detection system using a voting-based neural network (Haghighat and Li, 2021)

This is a summary of the paper, and there are more details in the algorithm. But in general, the same procedure was used in two datasets, which are NSL-KDD and CTU-13.

The results presented in the paper were in two forms (binary and multiple classes). In general, the results in the binary were much better than the multiple classes, and it was expected. As per (Personnaz et al., 1990), using binary states instead of multilayer networks is much more powerful, and using binary states can have better results and less training time. The result is presented in the paper for NSL-KDD.

Binary Results:

Table 5 Binary Results for (Intrusion Detection System using Voting-based Neural Network)(Haghighat and Li, 2021)

			Predicted	
		Normal	Malicious	Total
	Normal	301 031	203	301 234
Actual	Malicious	488	188 121	188 609
	Total	301 519	188 324	489 843

Multiclass:

Table 6 Multiclass Results for (Intrusion Detection System using Voting-based Neural Network)(Haghighat and Li, 2021)

		Predicted								
		Normal	DoS	R2L	U2R	Probing	Total			
	Normal	277 269	219	20 608	0	0	298 096			
	DoS	490	188 107	5	7	0	188 609			
Actual	R2L	0	62	3060	0	0	3122			
Actual	U2R	0	1	0	0	0	1			
	Probing	0	14	1	0	0	15			
	Total	277 759	188 403	23 674	7	0	489 843			

False Negative/Positive Rates:

Table 7 False Negative/Positive Rates for (Intrusion Detection System using a Voting-based Neural Network)(Haghighat and Li, 2021)

	FPR	FNR	Accuracy	Precision	Recall	F Score
Binary	0.0011	0.0016	0.9986	0.9993	0.9984	0.9989
Multiclass	0.0982	0.0021	0.9563	0.9302	0.9979	0.9628

2.4.3 A Hybrid Anomaly Classification with Deep Learning (DL) and Binary Algorithms (BA) as Optimizer in the Intrusion Detection System (IDS)

This paper(Atefi et al., 2020) below proposes to use DNN with Binary algorithms for IDS using the CICIDS 2017 dataset. This proposal uses DNN as the primary classifier and then uses the Binary Bat algorithm (BBA), Binary Genetic Algorithm (BGA), and Binary Gravitational Search Algorithm as optimizers. The author has tested DNN with every mentioned Binary algorithm independently. DNN was coupled either with BBA, BGA, or BGSA. The way each test for each couple was conducted as illustrated below:

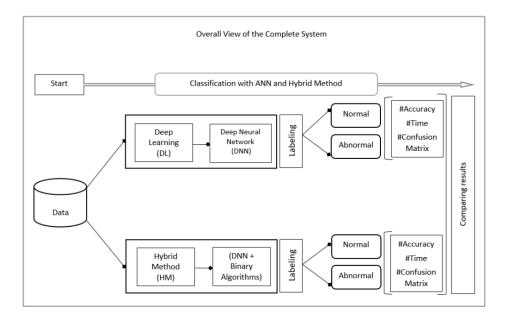


Figure 5 overall view of the complete system(Atefi et al., 2020)

As seen in the diagram above. There are two models presented. One of them is DDN, and the other is one of the Binary algorithms. Both will process the data and classification, and based on the accuracy, Time, and Confusion matrix, the result will be computed from the output of both models.

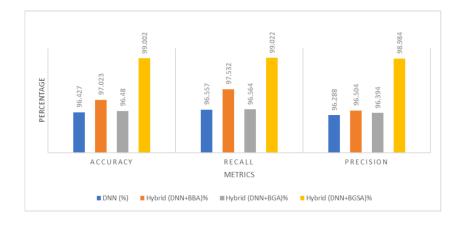
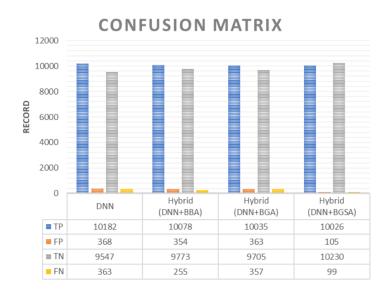


Figure 6 Comparative Results(Atefi et al., 2020)

It is clearly visible from the graph that the Model DNN+BGSA has performed significantly better than the rest of the models in accuracy, recall, and precision.



From the confusion matrix, again, we can see that DNN+BGSA performed better than the rest of the models in all categories (TP, FP, TN, and FN)

The results look promising, but the author did not show how exactly the results of the DDN and binary algorithms will be joined for the final results. There is no discussion of whether the results will be based on the voting system or explicitly use the accuracy and confusion matrix to get the results for classification. Also, this seems to work on offline data, where you can generate and model and select the binary model with a confusion matrix and accuracy. How will this work on a live system where the IDS receives network flows almost every second?

2.5 Pre-processing and feature reduction techniques:

This part will focus on papers that have an emphasis on pre-processing and feature reduction. This part is mandatory for research as most of the Dataset related to IDS has a very high dimensionality. For example, the KDDCUP has 42 features, while the CICIDS2018 has 80 features. Computing that many features in any model may cause a lot of issues. Most of the IDS datasets are considered big data, and the computing power required to create a model is massive. Some algorithms refuse to take Dataset with very high dimensionality, such as the default random forest package in RStudio. In a much worse scenario, the algorithm will start, and after a very long time of waiting, it will fail because of limited resources. This will definitely cause issues with many algorithms and compute resources. Finally, the imbalance of the Dataset. The datasets will definitely be imbalanced, and some pre-processing is required in order for the algorithms to output reasonable results.

2.5.1 Hybrid Intrusion Detection System Based on Deep Learning

The paper(Abdul Lateef et al., 2020) below proposed a model that utilizes an algorithm called CSO (CROW SWARM OPTIMIZATION ALGORITHM), which will act to reduce the number of features in the Dataset. Then, RNN will be used to calculate the accuracy to either accept these features or not. In this research, the author has opted to use the popular Dataset for IDS, which is KDDCUP. The model proposed can be well presented in the diagram below.

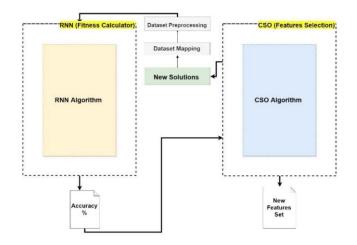


Figure 8 Overall view of the model process(Abdul Lateef et al., 2020)

As we can see, the model will have the following steps based on the diagram above.

- 1- New Dataset as input
- 2- Mapping and pre-processing
- 3- RNN will compute the Dataset and generate mode features accuracy as output
- 4- CSO will output the current features and halt, or it will propose a new feature set that will loop back to step 1 (new Dataset input)

The author has tested this method with 20 trials, and the optimal number of features selected was 3 with a CSO accuracy of 96.2720% and (RNN-selected features accuracy) of 98.34%. Luckily, the author shared a comparison table using a similar approach for feature reduction with different algorithms.

Method Name	Number of Features	Accuracy	
PSO + AUC	12	94.49	
SSO + RS	6	93.60	
CFA+ DT	10	92.05	
ACO	8	98.90	
ACO + SVM	14	98.00	
PSO + RF	6	98.00	
ABC + KNN	7	98.90	
IBWOA	5	97.89	
Firefly + BN	10	99.95	
FGLCC + CFA + DT	10	95.03	
CSO +RNN (this paper)	3	98.34	

Table 8 Accuracy for each model(Abdul Lateef et al., 2020)

It is true that the author was able to reduce the number of features to as low as three features, but the aim is to reduce the features while maintaining accuracy. Also, the author has only shown the general accuracy of the model. In reality, the datasets will have mostly benign flows, and if the model predicts all the benign flows correctly, it will definitely have a high accuracy. But that does suffice the aim of IDS, where it has detected flows with anomalies, and naturally, they have a small percentage of the overall Dataset. A confusion matrix will be more suitable for evaluating and finding the rate of error for each class of anomaly.

2.5.2 A Novel Preprocessing Methodology for DNN-Based Intrusion Detection

In the paper(Chen et al., 2020) below, the author proposes some pre-processing techniques that can enhance the performance of DNN models on the KDDCup dataset. The author claims that these techniques increase the F1, accuracy, and recall in his/her experiments.

The pre-processing methods used in this paper are as follows:

- Enumeration:

There are some features in the KDDCUP dataset that are factors or symbolic. These features, such as (service, protocol, and type) may cause issues in DNN models and need to be modified. The author suggests having these features mapped to numerical values.

- Transformation:

There are some features when compared to each other; we can see that there is a significant gap between them. For example, comparing duration [0, 58329] and src_bytes [0, 1379963888], we can notice the gap between these two features. The solution is to manipulate the values mathematically using y = lg(x + 1)

- Normalization:

Finally, the Min-Max method is used to normalize the Dataset.

The author did the experiment on multiple algorithms, and he/she has benchmarked the performance between raw Dataset and pre-processed Dataset for KDDCUP

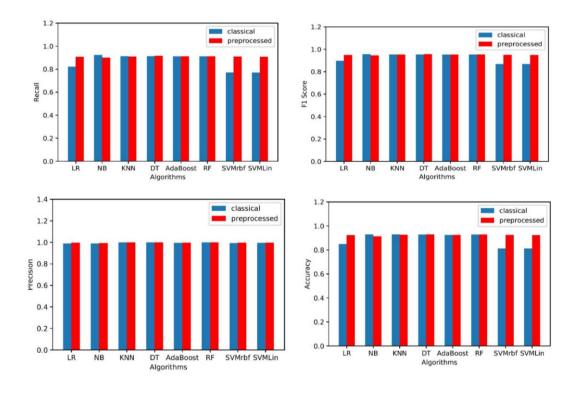


Figure 9 F1, Accuracy, Precision, and Recall(Chen et al., 2020)

As we can see from the graph, the preprocessing has increased the performance in recall, F1, and accuracy. The issue is that the author has calculated the general accuracy of the model but did not show the accuracy for each class, and then we can decide if it has made any enhancements in FP or FN.

Also, the enumeration of factor or symbolic data might cause issues . Some data, if enumerated, may cause wrong assumptions. For example, if we assume TCP=1, UDP=2, then we can make a comparison (1<2). But we can't say that TCP<UDP. I suppose these features might require different ways to be modified.

2.5.3 Feature Selection Algorithm For Intrusion Detection Using Cuckoo Search Algorithm

In the paper(Syarif et al., 2020) below, the author aims at feature reduction to facilitate building models with a very high dimensionality. Datasets with a very high dimensionality might be very difficult to process and may consume a lot of time and process power to model. The idea is to select features that have more importance to make a decision and remove features that are irrelevant.

To achieve this task, the author suggested using a coco search algorithm and building a decision tree model. In this paper, multiple tests were made with different datasets and different feature selection algorithms.

Name	Number of Features			Training Time			Accuracy					
of	Full	GA	PSO	CS	Full	GA	PSO	CS	Full	GA	PSO	CS
Dataset	Data				Data				Data			
Botnet	79	15	21	11	138s	80s	98	19s	99,98%	99,85%	99,85%	99,98%
ISCX							s					
2017												
KDDCup	41	17	19	13	524 s	200s	198	106	99,96%	99,93%	99,95%	99,94%
'99							S	S				
NSL-	41	15	12	9	227 s	63s	62	34	99,78%	99,69%	99,79%	99,60%
KDD							s	s				

Table 9 Accuracy before and after reduction(Syarif et al., 2020)

From the table above, we can observe the CS algorithm is able to reduce more features than GA and PSO. For that reason, building a decision with CS reduction took much less time to train. On the other hand, the CS was only able to perform better in Botnet ISCX Dataset in accuracy than the other algorithm, while PSO exceeded the other in accuracy with KDDCup and NSL-KDD datasets. It is true the proposed features reduction algorithm (CS) was able to outperform the others, but the performance in accuracy did not meet expectations. The main target of the IDS is to provide true alarms to facilitate operations in IT departments and not to be overwhelmed with false alarms that have to be investigated.

2.6 Deep Neural Networks

This part will focus on research that only covers deep learning techniques on IDS. There are multiple papers that have shown interest in this type of algorithm.

2.6.1 Evaluation of Deep Neural Networks for Advanced Intrusion Detection Systems

In the paper(Kishore and Chauhan, 2020) below, the author tried to test DNN with KDDCUP for IDS. Multiple DNN models were produced, and they were compared with other models, which are:

- 1- Linear Regression
- 2- Naïve Bayes
- 3- KNN
- 4- Decision Trees
- 5- AdaBoost
- 6- Random Forest
- 7- SVM-Rbf
- 8- SVM-Linear

A benchmark comparison between these models so we can compare.

Table 10 Benchmark table with Accuracy, precision, Recall, and F1(Kishore and Chauhan, 2020)

Algorithms	Accuracy	Precision	Recall	F1-	
				Score	
Lin-	0.849	0.988	0.822	0.896	
Regression					
Naive Bayes	0.928	0.987	<mark>0.924</mark>	0.953	
KNN	0.000	0.007	0.014	0.050	
KININ	0.928	0.997	0.914	0.953	
Decision Tree	0.927	0.998	0.911	0.952	
A	0.000	0.000	0.040	0.050	
Adaboost	0.926	0.996	0.912	0.950	
Random	0.927	0.998	0.911	0.951	
Forest					
SVM-Rbf	0.811	0.922	0.772	0.868	
SVM-Linear	0.813	0.993	0.771	0.867	
S vivi-Linear	0.013	0.995	0.771	0.007	
*DNN-1	0.928	0.997	0.914	0.953	
	0.000	0.000	0.040	0.055	
DNN-2	0.929	0.996	0.913	<mark>0.955</mark>	
DNN-3	<mark>0.930</mark>	0.996	0.916	0.956	
DNN-4	0.928	0.998	0.914	0.953	
DNN-5	0.927	<mark>0.999</mark>	0.912	0.954	

As we can observe, there are five tests on DNN (1-5), and we can see that DNN-3 achieved the best accuracy. DNN-5 gets the best precision, Naïve Bayes the best recall, and DNN-2 the best F1. From a personal perspective, these results do not show any real advantage of DNN compared to the other algorithms because the increased performance is scattered between different models in DNN. Also, the comparison is not sufficient and not deep enough to clearly state that DNN models perform better than the others.

2.6.2 NIDS-Network Intrusion Detection System Based on Deep and Machine

Learning Frameworks with CICIDS2018 using Cloud Computing

The paper(Bharati and Tamane, 2020) below compares different algorithms using the CICIDS2018 Dataset. The author's focus is that the Dataset is modern compared to the KDDCUP dataset, and it contains the latest and cutting-edge threats. For this purpose, the author made multiple tests with different algorithms, which are:

- Extra-Tree
- GBoost Tree

- Random Forest Tree
- MLP

For these tests with different algorithms coupled with the CICIDS2018 Dataset, a comparison table is produced below:

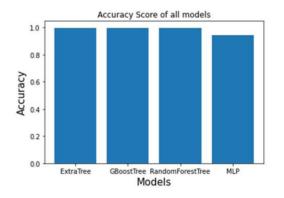


Figure 10 Accuracy for the models(Bharati and Tamane, 2020)

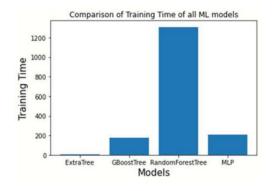


Figure 11 Training Time(Bharati and Tamane, 2020)

From the results above, we can see the models have a very comparable accuracy while only the MLP has slightly less accuracy. On the other hand, the random forest was the slowest to train, and it took much more time. There are many factors to consider in the training time for each model, such as optimization for big data, parallelism (multi-threading, clustering), and time and space complexity. There are different implementations in different environments, which will definitely affect the training time.

2.7 Discussion

This chapter provided a comprehensive review of the key studies and techniques used in the design and implementation of intrusion detection systems using machine learning. Throughout the review, it became evident that while many approaches have reported good results in specific use cases, most models failed to perform consistently across different traffic types and datasets. A significant observation was the dominance of binary classification methods in past research, where the focus is often limited to distinguishing between benign and malicious traffic without further granularity. This approach lacks the depth needed to deal with real-world scenarios, which require detection at the level of specific attack types. The review also noted that hybrid and ensemble techniques often achieved higher performance, but these were rarely modular or adaptive. These insights further support the idea of adopting a per-instance model selection strategy, where each instance is dynamically evaluated to determine the most effective classifier based on its specific characteristics.

2.8 Chapter Conclusion

After surveying multiple recent papers, we can see some trends or popular techniques that can be found in most of them. Even though the KDDCUP is considered old and does not represent current cybersecurity threats, it is still used in recent research for IDS and test models. The reason could be that many researchers were already using the Dataset, and new studies needed to compare and benchmark with older research. Another reason is that the Dataset is already converted to flows and ready for machine learning algorithms. Another trend that we can see is the use of deep learning algorithms, especially DNN. Many researchers

introduced DNN for IDS with different flavors. Many of these papers have shown increased performance in accuracy and precision. Dealing with a very high dimensionality dataset could be an obstacle to performing the tests and proceeding with research. For that reason, some researchers suggested dimensionality reduction with different approaches and algorithms that can ease and facilitate machine learning. Finally, we have the hybrid models, where multiple models will work together to classify a flow as a benign or a threat. In this research, the adopted technique would be a "hybrid classifier". It is inspired by "A Hybrid Classifier Approach for Network Intrusion Detection" (Arivardhini et al., 2020) The voting system will be used after the selection of the classifiers that will be determined by the Master classifier. In addition, the voting criteria may be amended and not necessarily follows the same condition.

Chapter 3 Dataset Scoping:

3.1 Chapter Introduction

This chapter will have a survey about the datasets that are being used in the research field. It will show how that many of the datasets are derived from the KDDCUP dataset. Even though it's widely used, the chapter will show the shortcomings of the dataset and why it should not be used for IDS. The chapter will have some studies that show the inconsistencies and the other issues with the dataset. In the end, the chapter will have the reasoning for choosing CSE-CIC-IDS2018. More details about CSE-CIC-IDS2018 are discussed in Chapter 6. The further details cover the features, type of attacks, and statistical analysis of the dataset.

3.2 Sample of major Datasets

Identifying Cybersecurity threats in the network traffic has become more and more complex as the cyber attacks have become more advanced. Data has become a tool that facilitates cyber threats, and the number of attacks has increased in recent years. Many organizations have an Intrusion Detection System(IDS), but the data that powers the IDS are outdated and can't keep up with the rapid change in cyber attacks. In this section, we will discuss the current datasets that are used in research and the problems that may occur with these datasets. Then, we will view the limitations of the classes that are present in these datasets. The nature of these datasets is that it has a huge gap in classes (attack types) and imbalance, which may cause a problem in machine learning classification and detection.

In 1999, the KDDCUP99("KDD Cup 1999 Data," n.d.) was introduced, and since that time, it has been considered the de facto IDS machine learning dataset, and it was mainly used for anomaly detection. The data is based on the DARPA98 dataset(Lippmann et al., 2000), and it was prepared by Stolfo(Stolfo et al., 2000). The data represents seven weeks of network traffic with 5 million records. The dataset contains 41 features for each record, and every record is labeled either benign or part of the following groups:

- 1) Denial of Service Attack (DoS)
- 2) User to Root Attack (U2R)
- 3) Remote to Local Attack (R2L)
- 4) Probing Attack

KDDCUP has some problems, and these problems are the following(Tavallaee et al., 2015):

- The data was synthesized to preserve privacy
- Traffic collectors were overloaded, and there were packet drops
- No exact definition of the attacks

The CSE-CIC-IDS2018 Dataset was chosen because the data is recent, and there are many different cybersecurity attacks that are considered modern and have a true representation of modern networks. The CSE-CIC-IDS2018 data is a result of simulated attacks that took several days and are captured as PCAPs. Then, the data is converted to CSV format with labels. In addition, the CIC-IDS-2018 has a wider range of attacks than the KDDcup, which is limited. These attacks cover various forms, such as denial of service, distributed denial of service, Brute force, Botnet, Web attack, XSS, Infiltration, and SQL injection(Thakkar and Lohiya, 2020). These attacks are captured from real network traffic with 80 features.

3.3 Dataset Problem

The problem with the current research is that most of them are dependent on the kddcup dataset. According to many critiques, the dataset is outdated and has many inconsistencies and redundancies that can skew the results. Sabhnani suggests that the dataset has deficiencies and limitations and should not be used in machine learning (Sabhnani and Serpen, 2004). Hindi, who conducted a survey on many types of research done on IDS from 2008 to 2018, found that most of the research depended on the KDD CUP dataset or forked versions(Hindy et al., 2018).

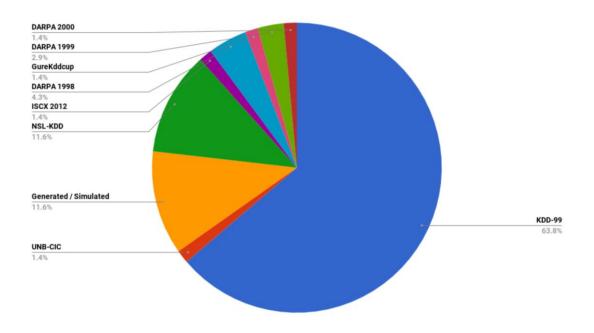


Figure 12 Dataset Distribution (From Hindi)

A similar survey was conducted by myself for 2019-2020, and I found out that the same dataset is heavily used (table systematic search).

3.4 Limited Classes

As a result of using the same dataset by many researchers, most of the classifications are done on the same group of threats (Dos, R2L, U2R, Probe). These groups of threats do not reflect current network cybersecurity threats. For illustration, see the pie chart below provided by (Hindy et al., 2018).

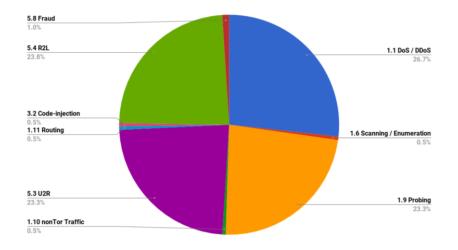


Figure 13 Covered Attacks from 2008 to 2018

3.5 Inconsistent accuracy for different classes

Another reason to establish this research is that most of the researchers use similar schema, and most of them fail to present the accuracy of the classifier for each type of attack (Dos, R2L, U2R, Probe). Some of the researchers have shown the results for each class of intrusion, but the results show the contrast of accuracies of each class. A survey was done by Urvashi where the researcher made a comparison between 20 classifiers based on True-positive and false-positive(Urvashi and Jain, 2015). As seen in the table below, most of the classifiers fail to achieve consistent results for all categories.

Seq.	Classifier	Metric	DoS	Probe	U2R	R2L	Training Set Size
1	K-Means (Qiang W.V.,2004)	TP	87.6	97.3	29.8	6.4	2,776
		FP	2.6	0.4	0.4	0.1	
2	NEA (Maheshkumar S., 2002)	TP	96.7	72.4	22.3	7.8	1,074,991
		FP	0.8	0.2	0.1	0.6	

Seq.	Classifier	Metric	DoS	Probe	U2R	R2L	Training Set Size
3	FCC (Qiang W.V.,2004)	TP	91.6	77.8	12.7	27.8	2,776
		FP	0.03	0.023	0.13	0	
4	ID3 (Amanpreet C., 2011)	TP	74.4	57.14	20	6.25	145,586
		FP	1.71	2.5	3.1	1.1	
5	J48 (Huy A.N., 2008)	TP	96.8	75.2	12.2	0.1	49,596
		FP	1	0.2	0.1	0.5	
6	PART (Mohammed M.M., 2009)	TP	97.0	80.8	1.8	4.6	444,458
		FP	0.7	0.3	0.5	0.01	
7	NBTree (Huy A.N., 2008)	TP	97.4	73.3	1.2	0.1	49,596
		FP	1.2	1.1	0.1	0.5	
8	SVM (Huy A.N., 2008)	TP	96.8	70.1	15.7	2.2	49,596
		FP	1.11	0.5	0.01	0	
9	Fuzzy logic (Shanmugaradtru R, 2011)	TP	94.8	98.4	69.6	92.1	54,226
		FP	5.5	1.8	6.7	10.7	
10	naïve Bayes (Huy A.N.,2008)	TP	79.2	94.8	12.2	0.1	49,596
		FP	1.7	13.3	0.9	0.3	
11	BayesNet (Huy A.N., 2008)	TP	94.6	83.8	30.3	5.2	49,596
		FP	0.2	0.13	0.3	0.6	
12	Decision Table (Yeung d.Y., 2002)	TP	97.0	57.6	32.8	0.3	15,919
		FP	10.7	0.4	0.3	0.1	
13	Random Forest classifier (Yeung D.Y., 2002)	TP	99.2	98.2	86.2	54.0	15,919
		FP	0.05	0.01	0.02	0.09	
14	Jrip (Huy A.N., 2008)	TP	97.4	83.8	12.8	0.1	49,596
		FP	0.3	0.1	0.1	0.4	
15	OneR (Huy A.N.,2008)	TP	94.2	12.9	10.7	10.7	49,596
		FP	6.8	0.1	2	0.1	
16	MLP (Huy A.N.,2008)	TP	96.9	74.3	20.1	0.3	49,596
		FP	1.4	0.1	0.1	0.5	
17	SOM (Huy A.N.,2008)	TP	96.4	74.3	13.3	0.1	49,596
		FP	0.8	0.3	0.1	0.4	
18	GAU (Maheshkumar S., 2002)	TP	82.4	90.2	22.8	9.6	1,074,991
		FP	0.9	11.3	0.05	0.1	
19	MARS (Sriniras M.,2002)	TP	94.7	92.32	99.7	99.5	11,982

Seq.	Classifier	Metric	DoS	Probe	U2R	R2L	Training Set Size
		FP	8.9	12.2	22.4	17.9	
20	Apriori (Mohammed M.M.,2009)	TP	87.9	76.23	12.3	30.6	444,458
		FP	0.67	1.7	8.9	23.8	

As seen in the table above, most of the classifiers fail to predict U2R and R2L accurately. Even if some of them have high accuracy in all classes, they produce very high False-Positive rates. As an example, for that scenario, the MARS classifier has 99.7 for U2R, but the false positive is 22.4. Not being able to predict all classes accurately or having high false positives can lead to unreliable results.

For these reasons, research and investigation should be conducted. A dataset needs to be created that represents a modern network with modern cybersecurity threats because of the time restrictions and the tools that regenerate the flows that are the same as the datasets presented. We had to move this target as part of the future work. There was some work already conducted for this part of the research, but it was not complete. Reference to the work can be found in the appendix, titled (Building PCAP)

3.6 Discussion

This chapter reviewed several commonly used datasets in intrusion detection system (IDS) research, ultimately focusing on CIC-IDS2018 due to its richness and alignment with modern network threats. Despite being a popular choice in recent studies, the dataset presents several challenges that could affect model performance if left unaddressed. These include class imbalance, especially with underrepresented attack types, redundant or noisy features, and inconsistent distribution of labels. Such issues can cause biased learning and misleading evaluation results, especially in multiclass scenarios. The discussion in this chapter

emphasized the importance of understanding these structural limitations early in the process so they can be accounted for during preprocessing and model design. The choice to use CIC-IDS2018 was not without compromise, but the availability of multiclass labels and updated attack simulations made it the most suitable option for the goals of this research. The insights gained here guide the technical decisions applied in later chapters.

3.7 Chapter Conclusion:

This chapter presented a detailed analysis of datasets relevant to IDS research, emphasizing the importance of choosing one that aligns with the objectives of multiclass classification and model flexibility. After assessing the features and limitations of multiple sources, CIC-IDS2018 was selected due to its broad representation of attack types and traffic diversity. However, several issues, such as the presence of class imbalance, redundant fields, and inconsistency in some labels, were identified. These factors are expected to influence training effectiveness and classifier accuracy, particularly in identifying minority class attacks. Acknowledging these limitations early allows the research to proactively apply targeted preprocessing techniques such as feature selection, normalization, and sampling strategies. Ultimately, the dataset chosen provides a strong yet realistic foundation on which to evaluate the proposed classifier portfolio model. The next chapter introduces the methodological framework that builds on this dataset and supports the core structure of the research design.

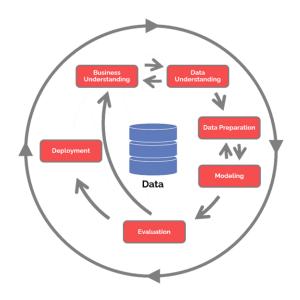
Chapter 4 Research Methodologies

4.1 Chapter Introduction

will cover two main aspects of the research design. The first aspect is the general design, where the project is inspired by the CRISP-DM framework. In this part, the main focus is to have a structured approach to build and deploy a model. It covers Data understanding, preparation, modeling, Evaluation, and deployment. Then, we propose an adaptation of the framework that will be used to develop the AI models. The second part of the chapter will describe the proposed classifier. This part will go into detail on how to construct the portfolio of classifiers along with the master classifier and then how the classification will work. A complete step-by-step process is presented to clarify how it would work.

4.2 Proposed Design

In this chapter, we will discuss the research methodologies and approaches. The research approach is mainly inspired by the CRISP-DM approach. CRISP-DM, which stands for (Cross Industry Standard Process for Data Mining) is considered the de facto for data science standardization. Most of the steps taken in this research are based on this approach to achieve the aims and targets of the research.



The research will adopt the steps shown in the diagram above that are part of the CRSIP-DM. As it is clearly visible in the diagram, there are multiple steps in circular motion that can ensure continuous improvements. The steps start with understanding the business, Data Understanding, Data Preparation, Modeling, and Evaluation, and finally it ends with Deployment.("What is CRISP DM? - Data Science Process Alliance," n.d.)

The research will go through multiple stages. The first stage is to evaluate different multiclass classification algorithms. The evaluation will go through the performance

and accuracy of the classifiers and determine if the classifier is fit to be included in the research. As most of the classifiers are already established and can perform well in the domain of IT security, we might have to make further inspections since the nature of the data requires further input and validation. The overview of the data will have a very high percentage and occurrences of benign connections. As a result of that huge imbalance, any classifier will be able to have a very high general accuracy in binary classification. In this case, we will investigate the accuracy of each type of attack as the classification in minority data is more important because the minority is the attack class. In addition, another metric that will be considered is the TF/FT/TT/FF matrix so we can have a better understanding of each classification type.

The second step is to evaluate different methods to have different classifiers work together for classification. Based on the survey done in the previous chapter, there are some researchers that have made this approach either by voting or merging. In this research, the result of each classifier will be encoded, and the dataset will be rebuilt for classification and to find the best classifier for each connection.

We will follow the below logical flow chart that's inspired by the "Cross Industry Standard Process for Data Mining."

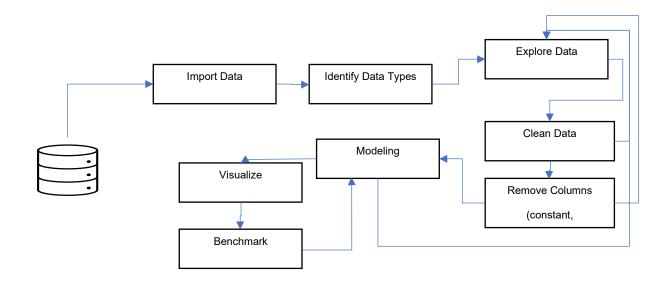


Figure 15 Research Methodology

The first phase of the approach is to get the Data. The usual data format for this type of problem is PCAP. SolarWinds defined the PCAP as "Packet capture is a networking practice involving the interception of data packets traveling over a network. Once the packets are captured, they can be stored by IT teams for further analysis. The inspection of these packets allows IT teams to identify issues and solve network problems affecting daily operations."("What Is Packet Capture (PCAP)? - IT Glossary | SolarWinds," n.d.). PCAPs are all the communication in the network, either from the end device, servers, or network devices. The PCAP can easily be converted to CSV (comma-separated vectors). While it's easy to get the PCAP, it's difficult to get a PCAP that has genuine connections that are threats. Another issue with this type of data is that it needs to be labeled. Labeling millions of records is a very difficult task, and even if the process is automated, the automation is prone to errors and can mislabel the records. The reasonable approach is to find readymade data for cybersecurity with labels. A survey about the datasets is already done in the Dataset chapter.

Importing the data in the prober system is a challenge because of the size of the data and the high dimensionality (number of features or rows). We will go through different methods like sampling and testing tools that can handle this size of data. Since sampling theoreticality could work to import a sub-sample that can represent the complete dataset, but in reality, the data is very sensitive, and all records must be imported. For this reason, in this research, we have tested different tools to check if they can handle the data with different tools.

After importing the data to the desired tool, it will be explored and checked to see if the data is clean. Cleaning the data will include deleting rows that have any missing information or labels. In addition, the process will check if there are any unnecessary columns to be removed for different reasons. For example, some columns could be removed because they have constant values, or the data presented is irrelevant to the classification and might affect the model building. Another step in cleaning the data is the redundancy of the rows. Repeated records should be removed from the dataset to reduce the size and proper build for models. Once the data is cleaned up, it will be ready to be used to construct a model for classification. Different models will be built and evaluated. Finally, after classification and prediction, we will visualize the result for benchmarking and validation. The process will be repeated until satisfactory results are acquired.

The idea is to have multiple classifiers work together to determine the best classier in order to have the highest accuracy possible. As discussed in the literature review, there are some approaches that use a voting system, while others use fusion. Some papers propose a generic approach that will determine the classifier that will work

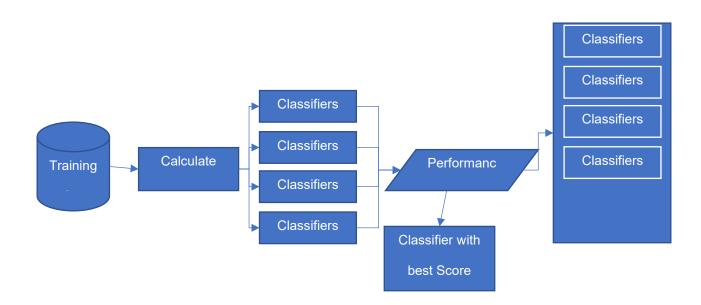
with all the data; on the other hand, some researchers use cluster and group data to determine the classifier that fits each group. In our case, a master classifier will select a classifier for each instance or flow. For this part, we propose a novel approach to build up a master model with the following process.

First, we determine some classifiers that can work with this type of dataset. The classifier should be capable of handling big data, high dimensionality, and multiclass classification. In addition to these conditions, the duration to process these data and build a model should be in a reasonable time. To build these models, we depend on software and packages that are specialized in Machine learning and Artificial intelligence. In the selection of software packages chapter, we will show the experience with multiple tools and libraries that are potentially suitable for this purpose, and we have determined that h20 in Rstudio would be the suitable tool to process the data and build models. Within h20, there are multiple models that can be used, but we have restricted the use of Distributed Random Forest, Naïve bays, Deep Learning, GLM, and GBM; the reason for this restriction is that only these models can support multiclass classification.

4.3 Proposed Method:

The idea of the proposed method is to have a portfolio of multiple classifiers to detect or classify threats in IT networks. Different classifiers behave differently, and no single classifier can have 100% accuracy. For this reason, will have multiple classifiers that will be trained. These classifiers will be evaluated to determine if they can be part of the portfolio and benchmarked. Then, we will use a Master classifier to classify which classifier is more suitable for each instance or connection flow. The

whole process is done in three phases, which are the offline phase, the classification of a classifier, and finally, the classification.



4.3.1 Offline phase:

Figure 16 Offline phase in the proposed method

In the offline phase, once the dataset is ready and cleaned from any missing data and the columns have an insignificant effect on the prediction removed, the process will start to build and train multiple classification models. After that, each model will be evaluated and benchmarked based on the general accuracy. If the model has an accuracy that is within the threshold, then it will be part of the portfolio of classifiers. On the contrary, if the model is below the threshold, it will be discarded and will not join the portfolio. During the benchmarking process, the top classifier will be determined as a backup classifier.

4.3.2 Encoding for the master classifier:

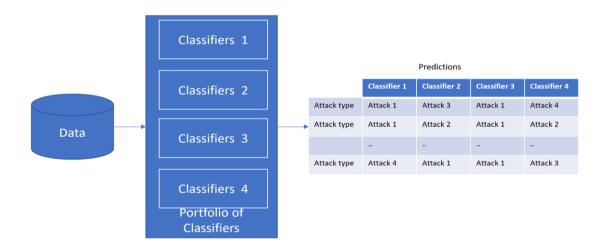


Figure 17 get all classifications from all models.

Encoding for the master classifier will be done as described in the above diagram. First, the dataset will be prepared, where we will get the prediction and classification from all classifiers in the portfolio. Each classifier might have a different prediction or matching prediction to other classifiers. This process is still offline, and it's part of the training, so the classification doesn't have to be in parallel. The process will be sequential, where the classification will start from the first classifier and finish the whole process, then it will proceed to the next classifier. Doing this step in a sequential manner can save computing power and memory resources, as each model can consume all the resources that we have in the research. Once all the classifications from all classifiers are done, the results will be aggregated, as shown in the diagram above.

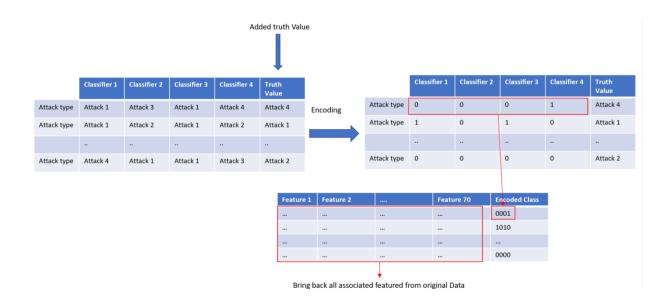


Figure 18 Preparing encoded dataset for the master Model.

The next step will start with adding the truth value from the original dataset to the aggregated data. Then, the encoding process will start with every Classifier prediction being compared to the truth value, and if the prediction matches the truth value, then the prediction will be changed to 1. If the prediction does not match, then the value will be changed to 0. The binary values will be concatenated and merged into a single binary value, as shown in the table in the diagram above. Finally, all the columns that represent the features in the original data will be added back. The dataset will be ready for the master classifier for training, as shown in the diagram below.

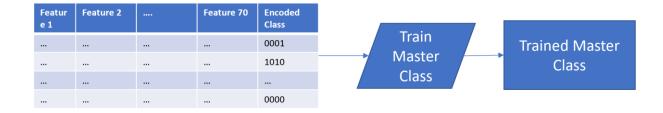


Figure 19 Encoded Dataset ready for Training.

4.3.3 Online prediction:

After the training is done, the master model is ready for prediction. The original dataset will be used as an input for the master classifier. The master classifier will output a binary code, as seen in the diagram below. Each digit in the binary code represents a classifier in the portfolio, and if the digit is 1, we can use the classifier represented in that digit. If all digits have zero value, then we will depend on the backup classifier.

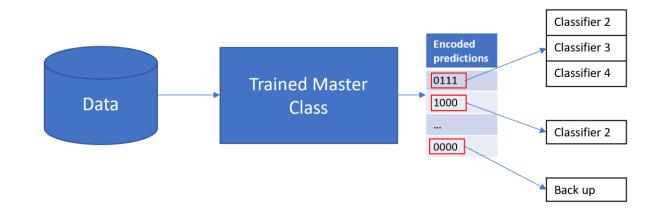
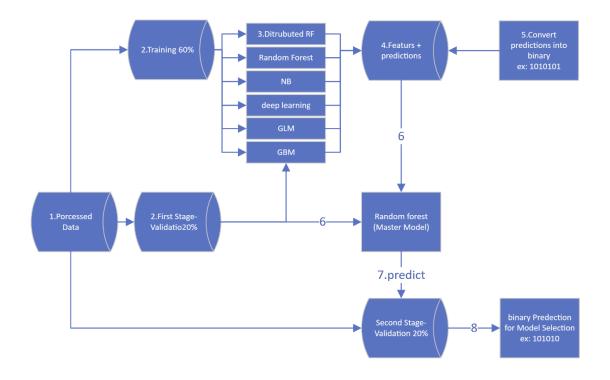


Figure 20 Classification for classifiers



In order to understand the flow of the process, the following will explain every step as enumerated in the graph.

- 1- The data will be split into three parts.
 - a. Training 60%
 - b. First stage-Validation 20%
 - c. Second Stage-Validation 20%
- 2- Five models are built using the training data and first-stage validation data, which are distributed Random forest, Deep learning, Naïve Bayese, Random Forest, GLM, and GBM.
- The validation predictions will be aggregated along with features it will look as below.

Features	Class(Original)	DRF	DL	RF	GLM	GBM
	Benign	Infiltration	Benign	Benign	Brute Force -Web	Benign

4- The labels will converted into binary values in two steps

Step 1	Features	Class(Original)	DRF	DL	RF	GLM	GBM
•		Benign	0	1	1	0	1

Step 2	Features	Class	
·		01101	

- 5- In this step, a Random Forest Model, which is considered the master classifier, is built based on the binary class generated.
- 6- The model will predict the phase 2 validation data using the same set of features, except the class is changed to the binary code. Example below:

Features	Class
	10011

7- The selection phase will be done as below:

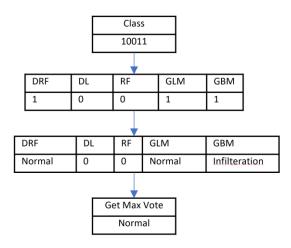


Figure 22 Overall view of the Portfolio result decodes and final result.

4.4 Discussion

This chapter detailed the methodological framework used throughout the research, with a specific emphasis on how machine learning models are developed and evaluated in the context of intrusion detection. The use of the CRISP-DM model structure provided a logical and systematic path from problem definition to evaluation. The design of a per-instance model selection approach addresses one of the key limitations identified in earlier chapters, namely, that a single classifier often fails to generalize across different traffic patterns. The dynamic portfolio strategy allows the system to apply the most suitable classifier based on the nature of each instance, improving classification accuracy and adaptability. The discussion also highlighted some of the practical constraints in methodology, such as the need for computational efficiency, cross-validation strategies, and maintaining a balanced evaluation approach for multiclass problems. These factors were carefully accounted for to ensure that the chosen methods align with both academic rigor and real-world practicality.

4.5 Chapter Conclusion

In conclusion, this chapter established the methodological backbone of the study, clearly outlining how the research was designed, executed, and validated. By adopting a structured and iterative approach to data mining and model evaluation, the methodology ensures that the research remains replicable and logically sound. The chapter explained how CRISP-DM principles were adapted to suit the needs of the intrusion detection use case, while also introducing the concept of per-instance classifier selection. This framework is intended to offer both flexibility and precision, reflecting the core research aim of developing a responsive and effective detection

system. The processes described in this chapter, from dataset preparation to portfolio design, provide the foundation upon which the classifier models are built and tested in the following chapters. The next step in the research is to describe the technical environment and toolset used to support this methodology.

Chapter 5 Investigation and selection of software packages

5.1 Chapter Introduction

In Chapter 5, we survey different tools that serve AI and machine learning. In order to have the right tools, we need to make the survey and understand the tools. Having the right software and services would facilitate the progress of the research. In addition to the software and services, we will compare local compute and cloud services. The selection criteria for the tools would take into consideration the capability of the tool, ability to handle the dataset, ease of use, and finally, cost.

In this chapter, we will discuss different tools and software that could be used in machine learning which are related to this research. First, we will see the evolution of these tools and how they have evolved over the years with many introductions of machine learning tools. As we will see, the machine learning tool took advantage of different architectures. The first architecture in this chapter is the traditional local compute, and then the GPU compute that can speed up the computation process. Finally, we have the cloud, which provides virtually unlimited resources that can accommodate any need for any machine learning project. Overly, the chapter will go as follows: chronological order of machine learning software and testing software packages (local and cloud), and finally, the selected list of tools and software.

5.2 Chronological order of libraries in Machine learning and Artificial

intelligence

In this part, we will go over the libraries in chronological order from the past 30 years.

Machine learning Tool	Brief description
R language	R was developed in 1993, and the framework for R is still under active development. Since R language is an open-source project, there are many packages and integrations that are developed by different entities that keep this language and its development tools alive and active. R language was initially targeting statistical computing and analysis, but now R language covers wider domains such as data mining, bioinformatics, and machine learning. The R framework has its official package manager called CRAN, and it can use external sources using R tools, which allows R language to have the latest algorithms and functions available for the user("R: The R Project for Statistical Computing," n.d.).
MLC++	From the name of the library, we can know the library was developed in
	C++. MLC++ was developed at Sanford University in 1994 and then
	maintained by Silicon Graphics IC (Silicon Graphics was bought by
	Hewlett Packard). This library mainly focuses on pattern recognition, data
	mining, and statistical analysis. The development of these libraries
	seems to be halted since there is no reference for the library on the
	Hewlett Packard website("MLC++, A Machine Learning Library in C++,"
	n.d.).
OpenCV	OpenCV was released in 2000. This library was developed by Intel, and
	its focus is Real-time computer vision. This library allows image
	recognition, tracking, and object identification. The library has interfaces
	with many languages and is widely used("OpenCV - Open Computer
	Vision Library," n.d.).
scikit-learn	The introduction of scikit-learn was a major milestone. The library is
	open-source, and it is a product of Google Code Summer Camp. The

Table 12 History of Machine learning tools and software

	library was written in Python using existing library's like NumPy, and
	matplotlib. scikit-learn is in continuous development and has a great
	number of functions in machine learning("scikit-learn: machine learning
	in Python — scikit-learn 1.3.0 documentation," n.d.).
Weka	Weka was developed in 1993 at the University of Waikato, New Zealand.
	Initially, the library was built in C++, but then it was rebuilt in Java. The
	tool can do pre-processing, clustering, classification, and regression. In
	addition, deep learning was later introduced. The tool is intuitive and has
	a graphical user interface for ease of use("Weka 3 - Data Mining with
	Open Source Machine Learning Software in Java," n.d.).
RapidMiner	RapidMiner was known as Yale and was released in 2001. The
	application can provide a wide spectrum of machine learning and data
	analysis applications. The tool does provide a graphical user interface for
	ease of use and processing("RapidMiner Amplify the Impact of
	Your People, Expertise & Data," n.d.).
Spark MLlib	Spark MLlib is part of the spark project from Apache, which was
	introduced in 2015. The project depends on the Spark core, and some of
	the main advantages are its ability to operate in distributed systems, and
	it is memory-based rather than disk-based. These two features can make
	this library operate much faster than any other library because it can be
	installed on many commodity hardware to achieve great performance
	that is parallel to enterprise hardware("MLlib Apache Spark," n.d.).
Torch	Torch is a machine-learning language that provides a scientific computing framework. The language is open-source, and it is based on Lua. The language provided functions that are written in C language and can be invoked by LuaJIT. In recent years, the development has moved to Python, and now it is called Pytorch ("PyTorch," n.d.).
Caffe	Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep
	learning framework originally developed at the University of California,

T
Berkeley, in 2017. It is open source, under a BSD license. It is written in
C++ with a Python interface. Caffe is being used in academic research
projects, startup prototypes, and even large-scale industrial applications
in vision, speech, and multimedia("Caffe Deep Learning Framework,"
n.d.).
TensorFlow is an open-source project that was introduced in 2015. The
tool has great support from the open-source community, which gives it
flexibility in its ecosystem. TensorFlow allowed scientists and
researchers to develop state-of-the-art Machine learning models and
build applications that are supported by Artificial Intelligence. The
framework has the latest functions and algorithms in Machine Learning,
and it does support the latest technologies like GPU processing. Finally,
TensorFlow is compatible with Python, C++, and many other
languages.("TensorFlow," n.d.)
H2O is an open-source project that was introduced in 2011. One of the
main features of this library is that it has linear scalability, and it does
operate in memory rather than on disk. These two features make it robust
and much faster than other tools. The library supports most of the
Machine learning algorithms, and it keeps updates coming very
frequently.("H2O.ai The fastest, most accurate AI Cloud Platform," n.d.)

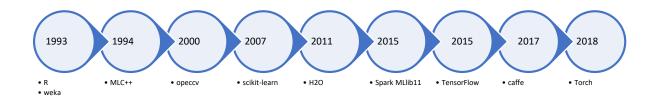


Figure 23 Chronological order of Machine Learning Tools

5.3 Testing Software Packages

The initial preferred approach is to use local resources (compute) for machine learning and building multiple models. The benefit of having the models built locally is that it will eliminate the requirement to transmit the data from local to cloud and vis versa. The second benefit is that the cloud solutions for machine learning will require the reconstruction of the script and the study of new tools with a steep learning curve. Studying will be required to adapt to any public cloud solution for machine learning. On the other hand, the problem with local resources is the limitation of the resources. The size of the datasets is huge and doesn't fit into memory. Also, the compute time is long, which will slow the flow and speed of the development of the models. Any minor modification in the model will require multiple hours to rebuild.

In contrast, we have cloud solutions that are elastic and have the capability to virtually accommodate any workload required. The initial impression of cloud computing was that it would be cost-effective to build the models, but after investigating the pricing for cloud computing, it was clear that the cloud is much more expensive than local resources. Using Microsoft Azure Calculator ("Pricing Calculator | Microsoft Azure," n.d.) the average monthly cost for the resource (D64d v5) with the following specifications (64 vCPUs, 256 GB RAM) is US\$3,106.88 monthly. This cost will come to around 37,282.56 USD annually. These values are way beyond the budget, and even if we consider that these resources will be shut down periodically, the value will remain high. Another factor that needs to be considered in cloud adoption is the cost of the bandwidth. The bandwidth cost will be high since the dataset

size is huge and will require a lot of bandwidth for transit between local and cloud. The cloud solution is convenient as a solution, but financially, it does not fit all scenarios and requirements. It is difficult to make a direct comparison in pricing between cloud and on-premise solutions, but even the intention to acquire these specifications on-premise will be difficult as these requirements are enterprise and can't be acquired by an average consumer.

5.3.1 Local Compute

The initial preferred approach is to use local resources (compute) for machine learning and building multiple models. Below are some of the tested packages and tools.

- TensorFlow
 - TensorFlow is dependent on other libraries (Cuda) and specific drivers in order to function. Multiple attempts were made in order to get the TensorFlow to work in the local system. The problem with this library is that it requires a specific version of Cuda and NVidia drivers in order to function. Also, the documentation for these libraries is weak and not centralized. It does not work out of the box and requires a lot of work to have a functioning system. Any minor update will cause the system to crash. Another issue is that the library uses GPU to process the data, and if the loaded data exceeds the memory in the GPU, the performance will degrade drastically. Finally, for the

reasons mentioned above, we have opted not to use TensorFlow.

- Python with Scikit-learn
 - Using Scikit-learn would require using Python. In order to load the data, Pandas libraries need to be called to load the data frame. The Data frame does not fit into memory, and Panda does handle large data very well. As a workaround, chunks were used to resolve the issue, but the performance was very slow to build models with this method.
- Standard RStudio packages
 - RStudio with Standard libraries was used in the initial tests of the project. The data was loaded without any issues. RStudio was capable of managing memory and utilizing storage paging and did all of the management without any intervention. However, the issue relies on standard packages that have a lot of limitations. For example, Neuralnet did not utilize all CPU resources and was prohibitively slow. Another example is the standard random forest from CRAN. The Standard Random Forest has a limit on the number of levels of the factors. And the data types have some factors that exceed these levels. At the same time, the library is also not exhausting the CPU resources, and the process time is very slow.
- RapidMiner

- RapidMiner was tested on loading the dataset. The Dataset was loaded, but after importing the data, the application was barely usable and not responsive. Also, the application crashes randomly and unpredictably. Another issue is that the user does not have the freedom to manipulate the data within the application. For example, converting the data from Decimal to binary. For these reasons, RapidMiner was excluded from the project.
- o Weka
 - Weka had very similar issues to RapidMiner. The application becomes unresponsive and crashes unpredictably. If the data loads, Weka will take unreasonable time to process the data and build models.
- H2O package in RStudio
 - H2O.ai was used in the project in RStudio. It has good integration with RStudio, and the data can be moved between H2o Data and RStudio easily without any dependency on any additional libraries. The data was easily loaded and processed without error and crashing. H2O is able to fully utilize the CPU, and the memory is fully optimized, where it does not fully occupy the memory when the data is loaded and the models are built. The h2O can use the CUDA libraries to utilize the GPU, but it was not used as the official website lacks documentation for the

integration, and a previous attempt with TensorFlow showed that if the data does not fit in the GPU memory, the performance will get dramatically worse. In addition, h2o can run as a service where the h2o can run on its own, and the data can be viewed in the web browser, build models, and generate plots and graphs. Once a model is built, it's easy to move this model regardless of the h2o version and system that is being used since the h2o can export the models in POJO format, which facilitates moving the models between different systems and versions.

5.3.2 Cloud Compute:

- There are multiple public cloud services, and they offer machine learning models as a service. Most of these services are dependent on the compute resource, and the service comes prebuilt with the required machine learning libraries. It will be fair to compare the computing price only, as the libraries and tools can be installed by the user. For comparison, the following specifications were targeted.
 - 64 compute cores. (Regardless of generation)
 - 256 Gigabytes of Memory
 - Ubuntu operating system
 - The Server can be either dedicated or shared
 - The resource will be on demand, and the selection will not consider reservation discount as the reservation will require at

least 1-year reservation commitment. For that reason, we will only consider the pay-as-you-use model.

o Azure

- Using Microsoft Azure Calculator (Pricing Calculator | Microsoft Azure), the average monthly for the resource (E64a v4) with the following specs (64 vCPUs, 256 GB RAM) is 3,270.40 monthly. Annually, 39,244.8 USD West US
- o Amazon
 - Amazon was checked for the computing price. For a compute instance that matches the specifications that we have determined, we have chosen m6g.16xlarge. This instance will cost 2354.69 USD monthly and 28,256.26 USD annually. East US Ohio
- o Huawei
 - 1,710.28 USD and annually 20,523.36USD instance m6.16xlarge.8 CN-southwest Guiyang1

Specifications	Cloud	Amazon	Azure	Huawei
	Provider			
vCPU 64	Location	East US Ohio	West US	CN-southwest
				Guiyang1
	Instance type	m6g.16xlarge	E64a v4	m6.16xlarge.8

Memory 562	Monthly	2354.69 USD	3,270.40	1,710.28 USD
			USD	
	Yearly	28,256.26 USD	39,244.8	20,523.36
			USD	USD

5.3.3 Tools used in the research:

After reviewing and investigating many tools for the research, it was determined to use the following tools:

- Local Compute:
 - o **Rstudio**
 - o H2o.Al
- Cloud
 - Huawei Cloud
 - Regular Virtual Machine, with specifications mentioned before.
 - o Use Rstudio
 - o H2o.Al

The reason to use Regular virtual machines instead of readymade Machine learning tools is to preserve the code that was developed in local computing and avoid redeveloping the same script. At the same time, any saved data frame and datatypes can be preserved and transitioned between local and cloud.

5.4 Discussion

This chapter reviewed the software tools and platforms used throughout the research, with a focus on selecting components that support both model

development and performance evaluation. The investigation covered a range of environments, including both local machines and cloud-based platforms, to determine the most suitable setup for training and testing complex models. Several trade-offs were noted during this process. For instance, while local tools provided more direct control and simplicity for debugging, cloud platforms offered better scalability and compute capacity for training deep learning models. The selection of tools like RStudio, Python, and specific machine learning libraries was made based on their compatibility with the chosen methodology and dataset. This discussion also emphasized the importance of a modular and reproducible environment, one that could support different classifiers under a unified framework. The software architecture was structured in a way that enables consistent preprocessing, training, validation, and result interpretation across all model types.

5.5 Chapter Conclusion

In conclusion, this chapter outlined the process of evaluating and selecting the software tools required to implement the proposed methodology. The research demanded a flexible environment capable of supporting both traditional machine learning models and more complex ensemble approaches. By assessing different platforms, IDEs, and library options, the final selection was made with an emphasis on computational efficiency, ease of integration, and reproducibility. Both local and cloud-based setups were utilized at different phases of experimentation, each playing a role in balancing control with processing power. The tools chosen allow for seamless model deployment, testing, and visualization, all of which are critical in executing the methodology described in the previous chapter. With the software environment established, the thesis now moves forward to data exploration, where

the structure and behavior of the selected dataset are analyzed in preparation for model building.

Chapter 6 Data Exploration

6.1 Chapter Introduction

In this research, we have determined to use the CSE-CIC-IDS2018 data. As discussed in the Dataset chapter, the KDDCUP dataset and all of its derivatives will be excluded as the data is old, and there are many recommendations in the data science community not to use the KDDcup dataset as it has a lot of inconsistency, and it's not a true representation of the modern network in the industry, and the type of threats included in the dataset are old and not modern.

The CSE-CIC-IDS2018 Dataset was chosen because the data is recent, and there are many different cybersecurity attacks that are considered modern and have a true representation of modern networks.

In this chapter, we will explore the CSE-CIC-IDS2018 dataset. first, we will view how the dataset is generated and labeled. A discussion was presented about some issues related to the dataset, such as size and consistency. Finally, after reviewing the feature, a statistical exploration is done that will show distribution trends that show patterns for selected attacks.

6.2 Construction of the dataset

The CSE-CIC-IDS2018 data is a result of simulated attacks that took several days and are captured as PCAPs. Then, the data is converted to CSV format with labels.

The advantage of using the CSE-CIC-IDS2018 data is that the data is reproducible with the same features. The author of the data demonstrated how the data is generated and captured. In addition, the author made the tools available to convert the PCAP to flows with all the features. Simply, any person can regenerate the data with the same format easily with the tool available with any new attack. The only problem that can be faced to reproduce the data is labeling the flows with the right information. Even if we consider the timestamps of the attacks, we might mislabel the benign flows with the attacks. Below is the summary of the attacks done on the data, along with the duration from the author's website.

Attack	Tools	Duration	Attacker	Victim
Bruteforce attack	FTP – Patator	One day	Kali linux	Ubuntu 16.4 (Web Server)
	SSH – Patator			· · ·
DoS attack	Hulk, GoldenEye,	One day	Kali linux	Ubuntu 16.4 (Apache)
	Slowloris, Slowhttptest			
DoS attack	Heartleech	One day	Kali linux	Ubuntu 12.04 (Open SSL)
				· · · · ·
Web attack	Damn Vulnerable	Two days	Kali linux	Ubuntu 16.4
	Web App (DVWA)			(Web Server)
	 In-house selenium 			
	framework (XSS and Brute-force)			

Table 14: attacks durations in CSE-CIC-IDS2018 from CSE-CIC website (Canadian Institute for Cybersecurity, 2018)

Infiltration attack	 First level: Dropbox download in a windows machine Second Level: Nmap and portscan 	Two days	Kali linux	Windows Vista and Macintosh
Botnet attack	 Ares (developed by Python): remote shell, file upload/download, capturing screenshots and key logging 	One day	Kali linux	Windows Vista, 7, 8.1, 10 (32-bit) and 10 (64- bit)
DDoS+PortScan	Low Orbit Ion Canon (LOIC) for UDP, TCP, or HTTP requests	Two days	Kali linux	Windows Vista, 7, 8.1, 10 (32-bit) and 10 (64- bit)

6.3 Challenges:

There were different challenges in the acquired data from CSE-CIC-IDS2018. The challenges start from getting the data from the Amazon servers, and there are issues with the consistency of the data. There are millions of data records, and it's difficult to scan through the data manually and find the errors in each record. In this research, we have faced two major challenges with the CSE-CIC-IDS2018 data, which are the size and the consistency.

1- Data Size:

One of the main challenges in acquiring the data was size. The author made the data available through Amazon bucket storage. Downloading the data was by parts for each day, and the downloaded data included CSV files. The CSV files were already labeled and ready for machine learning. In addition to that, the Data included the TCP dumps, which were huge and very slow to download. The process has faced many interruptions and disconnections. Even after downloading the data, we have faced data corruption that needs to be mitigated by redownloading the same files again.

2- Data Consistency:

The CSE-CIC-IDS2018 data has a lot of issues related to format and consistency. Finding these errors was a pure trial and error process. The CSE-CIC-IDS2018 data comes in multiple files, and each file represents one day of data collection. The data needs to be merged for exploration and machine learning. Upon merging these files, many issues occurred, which related to mismatching the number of columns and repetitive headers.

a. Mismatching number of columns:

As mentioned, each file represents a day of collected data. When we attempted to merge all files together, we received an error that there was a mismatching number of columns. We had to view different files randomly to find out that some files had extra columns that consisted of (TimeStamp, src IP, src port, and dest IP). We had to drop these extra columns from the files that had it so all the files were uniform and consistent.

b. Repeated header:

This error was discovered when some columns were supposed to have a datatype that is number/integer, but the RStudio identified it as text/string. We had to run a script that would go through each line of the CSV file to check if it was a number or not. Then we found the first line that is not a number was actually a repeated header of the column names. After inspecting the files, we found that some files have the header repeated randomly in different parts of the file.

6.4 List of features in the CSE-CIC-IDS2018 Dataset:

The below list is the extracted features from the PCAP files. The extracted features were captured using the CICflowmeter tool that was developed by the author of the dataset. These features represent some characteristics of the network flows. Each group of flows can be viewed either as benign or attacks, and the way to distinguish any of them is by the list of features presented. We can see that some features represent time, and some of them represent size and number while others flag. Some features can be derived from others, and some of them are tightly related. This can be explained since some features represent the size of packets (max, min, average, and std) for the forward direction, and we can see that these features have a tight relationship. It's difficult to review every feature in the dataset, as the main focus of this research is the classification rather than network study. For further information, a person can review these features from the author's site("IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity | UNB," n.d.). The list of features provided below is presented exactly as written by the author.

fl iat avg : Average time between two flows tot fw pk : Total packets in the forward direction fl iat std : Standard deviation time two flows tot bw pk : Total packets in the backward direction fl iat max : Maximum time between two flows tot_l_fw_pkt : Total size of packet in forward fl_iat_min : Minimum time between two flows fw iat tot : Total time between two packets sent in fw pkt I max : Maximum size of packet in forward the forward direction fw iat avg : Mean time between two packets sent fw pkt I min : Minimum size of packet in forward in the forward direction fw iat std : Standard deviation time between two fw pkt I avg : Average size of packet in forward packets sent in the forward direction fw_iat_max : Maximum time between two packets fw pkt I std : Standard deviation size of packet in sent in the forward direction fw_iat_min : Minimum time between two packets Bw pkt I max : Maximum size of packet in sent in the forward direction bw iat tot: Total time between two packets sent in Bw pkt I min : Minimum size of packet in the backward direction bw iat avg : Mean time between two packets sent Bw pkt I avg : Mean size of packet in backward in the backward direction bw iat std : Standard deviation time between two Bw pkt I std : Standard deviation size of packet in packets sent in the backward direction bw iat max : Maximum time between two packets fl byt s : flow byte rate that is number of packets sent in the backward direction transferred per second bw iat min : Minimum time between two packets fl pkt s : flow packets rate that is number of sent in the backward direction packets transferred per second

fl dur : Flow duration

direction

direction

direction

direction

forward direction

backward direction

backward direction

backward direction

direction

fw_psh_flag : Number of times the PSH flag was set in packets travelling in the forward direction (0 for UDP)

bw_psh_flag : Number of times the PSH flag was set in packets travelling in the backward direction (0 for UDP)

fw_urg_flag : Number of times the URG flag was set in packets travelling in the forward direction (0 for UDP)

bw_urg_flag : Number of times the URG flag was set in packets travelling in the backward direction (0 for UDP)

fw_hdr_len : Total bytes used for headers in the forward direction

bw_hdr_len : Total bytes used for headers in the forward direction

fw_pkt_s : Number of forward packets per second

bw_pkt_s : Number of backward packets per second

pkt_len_min : Minimum length of a flow

pkt_len_max : Maximum length of a flow

pkt_len_avg : Mean length of a flow

pkt_len_std : Standard deviation length of a flow

pkt_len_va : Minimum inter-arrival time of packet

fin_cnt : Number of packets with FIN

syn cnt : Number of packets with SYN

rst cnt : Number of packets with RST

pst_cnt : Number of packets with PUSH

ack_cnt : Number of packets with ACK

urg_cnt : Number of packets with URG

cwe_cnt : Number of packets with CWE

ece_cnt : Number of packets with ECE

down_up_ratio : Download and upload ratio

pkt_size_avg : Average size of packet

fw_seg_avg : Average size observed in the forward direction

bw_seg_avg : Average size observed in the backward direction

fw_byt_blk_avg : Average number of bytes bulk rate
in the forward direction

fw_pkt_blk_avg : Average number of packets bulk
rate in the forward direction

fw_blk_rate_avg : Average number of bulk rate in the forward direction

bw_byt_blk_avg : Average number of bytes bulk
rate in the backward direction

bw_pkt_blk_avg : Average number of packets bulk
rate in the backward direction

bw_blk_rate_avg : Average number of bulk rate in the backward direction

subfl_fw_pk : The average number of packets in a sub flow in the forward direction

subfl_fw_byt : The average number of bytes in a	atv_std : Standard deviation time a flow was active
sub flow in the forward direction	before becoming idle
subfl_bw_pkt : The average number of packets in a	atv_max : Maximum time a flow was active before
sub flow in the backward direction	becoming idle
subfl_bw_byt : The average number of bytes in a	atv_min : Minimum time a flow was active before
sub flow in the backward direction	becoming idle
fw_win_byt : Number of bytes sent in initial window	idl_avg : Mean time a flow was idle before
in the forward direction	becoming active
in the forward direction bw_win_byt : # of bytes sent in initial window in the	becoming active idl_std : Standard deviation time a flow was idle
	U U
bw_win_byt : # of bytes sent in initial window in the	idl_std : Standard deviation time a flow was idle
bw_win_byt : # of bytes sent in initial window in the backward direction	idl_std : Standard deviation time a flow was idle before becoming active
bw_win_byt : # of bytes sent in initial window in the backward direction Fw_act_pkt : # of packets with at least 1 byte of TCP	idl_std : Standard deviation time a flow was idle before becoming active idl_max : Maximum time a flow was idle before

atv_avg : Mean time a flow was active before becoming idle

6.5 Dataset Exploration

The original dataset contains around 16 million records with very high dimensionality, so it will be hard to manipulate and process as it is. We seek to remove duplicate records from the dataset to facilitate the process, as it requires more time, memory, and computing power. After deduplicating the data and removing consistent columns, the dataset summary is as follows in the table below. We can notice that most of the data consists of benign records and data flows that make up approximately 88% of the dataset. The rest of the data consists of all the other data which are the target for classification. Some of the attacks have a higher percentage of records, and that's understandable because of their nature. For example, we have

the sum of all DDoS attack types that have a high percentage in the dataset, which is around ~6.7%. This is normal as the DDoS attacks will require a large number of connections that are initiated from many different sources to a targeted server. These huge numbers of connections will exhaust the server and will start dropping legitimate connections and will not be able to provide service.

names	Count	Percentage
Benign	10210250	88.30831
Bot	144535	1.25008
Brute Force -Web	553	0.00478
Brute Force -XSS	228	0.00197
DDOS attack-HOIC	198861	1.71995
DDOS attack-LOIC-UDP	1730	0.01496
DDoS attacks-LOIC-HTTP	575364	4.97632
DoS attacks-GoldenEye	41406	0.35812
DoS attacks-Hulk	145199	1.25582
DoS attacks-SlowHTTPTest	55	0.00048
DoS attacks-Slowloris	9908	0.08569
FTP-BruteForce	53	0.00046
Infilteration	139775	1.20891
SQL Injection	84	0.00073
SSH-Bruteforce	94048	0.81342
Total	11562049	100.00000

Table 15 Distribution of Classes in CSE-CIC-IDS2018

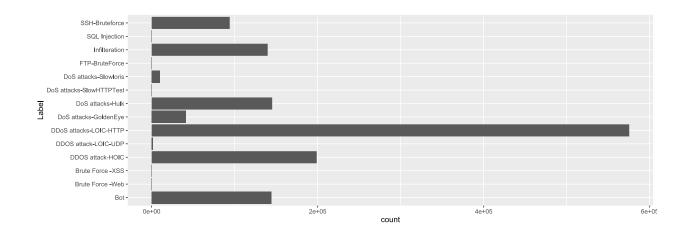


Figure 24 Distribution of attacks after removing Benign

benign was removed from the chart so the attack distribution could be more visible. As we have seen in the summary table above, the benign records are around ~88%, so we will have difficulty viewing the attacks in the graph. As discussed before, we can visibly see that most of the remaining data is DDOS attacks, which is around ~6.7%, and then the rest of the attacks would be around ~4.9%.

6.5.1 Initial observations:

- The dataset size and the number of features (80 features) are huge for any manual process and highly intensive for computation.
- Not all features are worth analyzing to find any pattern to assist in any classification and making the decision.
- The distribution of classes is not balanced and might cause a high rate of False-Positive or False-Negative results.

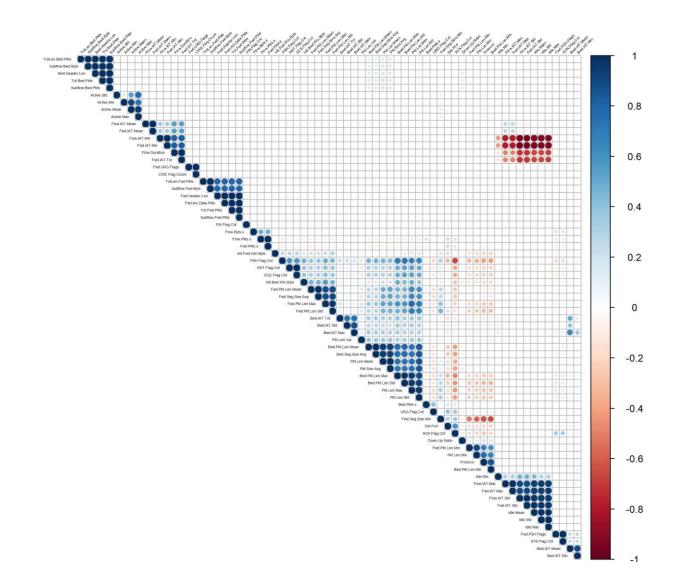


Figure 25 Correlation Matrix for CSE-CIC-IDS2018

If we have a look at the correlation matrix of the features in the chart and the table below, We can see many relations between the features, and it is expected, as some features are just derived from other features like (Min-Max-std-Mean). The case can be seen in Idle (Idl.min, Idle.max, Idle.std, and Idle.Mean). These types of features will have a correlation. All features are either linked to the duration, time, size, or length of different elements within a flow.

In the table below, we only show variables that have a correlation that is more than 0.9 and below -0.90. As we can observe from the table, many of the variables have a correlation with some of their derivatives (Maximum, Minimum, Standard deviation, or Mean).

Row	Column	Correlation Coefficient
Tot.Bwd.Pkts	TotLen.Bwd.Pkts	0.993591
Fwd.Pkt.Len.Max	Fwd.Pkt.Len.Mean	0.879368
Fwd.Pkt.Len.Max	Fwd.Pkt.Len.Std	0.954824
Fwd.Pkt.Len.Mean	Fwd.Pkt.Len.Std	0.890569
Bwd.Header.Len	Subflow.Bwd.Pkts	0.997801
Bwd.Pkt.Len.Max	Bwd.Pkt.Len.Std	0.96619
Flow.IAT.Std	Flow.IAT.Max	0.895744
Flow.Duration	Flow.IAT.Min	0.814468
Flow.IAT.Std	Flow.IAT.Min	-0.95762
Bwd.Header.Len	Subflow.Bwd.Byts	0.996151
Flow.IAT.Min	Fwd.IAT.Tot	0.814475
Flow.IAT.Mean	Fwd.IAT.Mean	0.999964
Flow.IAT.Std	Fwd.IAT.Std	0.999981
Flow.IAT.Max	Fwd.IAT.Std	0.895752
Flow.IAT.Min	Fwd.IAT.Std	-0.95761
Flow.IAT.Std	Fwd.IAT.Max	0.895737
Flow.IAT.Max	Fwd.IAT.Max	0.999994
Fwd.IAT.Std	Fwd.IAT.Max	0.895755
Bwd.Pkt.Len.Mean	Pkt.Size.Avg	0.938971
Flow.IAT.Std	Fwd.IAT.Min	-0.95761
Flow.IAT.Min	Fwd.IAT.Min	0.999996
Fwd.IAT.Tot	Fwd.IAT.Min	0.814487
Fwd.IAT.Std	Fwd.IAT.Min	-0.9576

Table 16 Correlation Coefficient Table

Bwd.IAT.Std	Bwd.IAT.Max	0.875919
Bwd.IAT.Mean	Bwd.IAT.Min	0.89453
Bwd.Pkt.Len.Mean	Bwd.Seg.Size.Avg	1
Flow.Duration	Fwd.IAT.Tot	0.999986
Flow.Duration	Fwd.IAT.Min	0.81448
Flow.Pkts.s	Fwd.Pkts.s	0.994678
Fwd.Pkt.Len.Min	Pkt.Len.Min	0.896394
Bwd.Pkt.Len.Max	Pkt.Len.Max	0.949866
Bwd.Pkt.Len.Std	Pkt.Len.Max	0.944087
Bwd.Pkt.Len.Mean	Pkt.Len.Mean	0.943686
Bwd.Pkt.Len.Max	Pkt.Len.Std	0.899934
Bwd.Pkt.Len.Mean	Pkt.Len.Std	0.849163
Bwd.Pkt.Len.Std	Pkt.Len.Std	0.937577
Pkt.Len.Max	Pkt.Len.Std	0.958434
Pkt.Len.Mean	Pkt.Len.Std	0.861471
Flow.IAT.Max	Idle.Mean	0.930967
Flow.IAT.Max	ldle.Std	0.940928
RST.Flag.Cnt	ECE.Flag.Cnt	0.999987
Flow.IAT.Max	Idle.Max	0.948219
Flow.IAT.Min	Idle.Mean	-0.93713
Flow.IAT.Min	ldle.Std	-0.92362
Flow.IAT.Min	Idle.Max	-0.92779
Flow.IAT.Std	ldle.Mean	0.974618
Flow.IAT.Std	ldle.Std	0.956771
Flow.IAT.Std	Idle.Max	0.956541
Fwd.Header.Len	Subflow.Fwd.Pkts	0.995575
Fwd.Header.Len	Fwd.Act.Data.Pkts	0.991472
Pkt.Size.Avg	Bwd.Seg.Size.Avg	0.938971
Tot.Fwd.Pkts	Subflow.Fwd.Pkts	1
Fwd.IAT.Max	Idle.Mean	0.930953
Fwd.IAT.Max	ldle.Std	0.940928
Tot.Bwd.Pkts	Subflow.Bwd.Pkts	1
TotLen.Bwd.Pkts	Subflow.Bwd.Pkts	0.993591
Fwd.IAT.Max	Idle.Max	0.948214
Tot.Bwd.Pkts	Subflow.Bwd.Byts	0.993591

Fwd.IAT.Min	Idle.Mean	-0.93711
Fwd.IAT.Min	Idle.Std	-0.92362
Subflow.Bwd.Pkts	Subflow.Bwd.Byts	0.993591
Fwd.IAT.Min	Idle.Max	-0.92778
Fwd.IAT.Std	Idle.Mean	0.974652
Fwd.IAT.Std	Idle.Std	0.956757
Active.Mean	Active.Max	0.947795
Active.Mean	Active.Min	0.907754
Fwd.IAT.Std	Idle.Max	0.956546
Fwd.Pkt.Len.Max	Fwd.Seg.Size.Avg	0.879368
Fwd.Pkt.Len.Mean	Fwd.Seg.Size.Avg	1
Fwd.Pkt.Len.Std	Fwd.Seg.Size.Avg	0.890569
Fwd.PSH.Flags	SYN.Flag.Cnt	1
Fwd.URG.Flags	CWE.Flag.Count	1
Pkt.Len.Mean	Pkt.Size.Avg	0.995625
Pkt.Len.Mean	Bwd.Seg.Size.Avg	0.943686
Pkt.Len.Std	Pkt.Size.Avg	0.853663
Pkt.Len.Std	Bwd.Seg.Size.Avg	0.849163
Protocol	Bwd.Pkt.Len.Min	0.851049
Subflow.Fwd.Pkts	Fwd.Act.Data.Pkts	0.999189
Idle.Mean	Idle.Std	0.980718
Tot.Bwd.Pkts	Bwd.Header.Len	0.997801
Tot.Fwd.Pkts	Fwd.Header.Len	0.995575
Tot.Fwd.Pkts	Fwd.Act.Data.Pkts	0.999189
TotLen.Bwd.Pkts	Bwd.Header.Len	0.996149
TotLen.Bwd.Pkts	Subflow.Bwd.Byts	1
TotLen.Fwd.Pkts	Subflow.Fwd.Byts	1
Idle.Mean	Idle.Max	0.981832
Idle.Std	Idle.Max	0.992293

In order to reduce the list and have fewer parameters to investigate, we removed rows that have variable name similarity of more than 70%. The below table shows the output result.

Table 17 Reduced Correlation Table

Row	Column	Correlation Coefficient
Bwd.Header.Len	Subflow.Bwd.Pkts	0.997801
Bwd.Header.Len	Subflow.Bwd.Byts	0.996151
Bwd.Pkt.Len.Mean	Pkt.Size.Avg	0.938971
Bwd.Pkt.Len.Mean	Bwd.Seg.Size.Avg	1
Flow.Duration	Fwd.IAT.Tot	0.999986
Flow.Duration	Fwd.IAT.Min	0.81448
Flow.IAT.Max	Idle.Mean	0.930967
Flow.IAT.Max	Idle.Std	0.940928
Flow.IAT.Max	Idle.Max	0.948219
Flow.IAT.Min	Idle.Mean	-0.93713
Flow.IAT.Min	Idle.Std	-0.92362
Flow.IAT.Min	Idle.Max	-0.92779
Flow.IAT.Std	Idle.Mean	0.974618
Flow.IAT.Std	Idle.Std	0.956771
Flow.IAT.Std	Idle.Max	0.956541
Fwd.Header.Len	Subflow.Fwd.Pkts	0.995575
Fwd.Header.Len	Fwd.Act.Data.Pkts	0.991472
Fwd.IAT.Max	Idle.Mean	0.930953
Fwd.IAT.Max	Idle.Std	0.940928
Fwd.IAT.Max	Idle.Max	0.948214
Fwd.IAT.Min	Idle.Mean	-0.93711
Fwd.IAT.Min	Idle.Std	-0.92362
Fwd.IAT.Min	Idle.Max	-0.92778
Fwd.IAT.Std	Idle.Mean	0.974652
Fwd.IAT.Std	Idle.Std	0.956757
Fwd.IAT.Std	ldle.Max	0.956546
Fwd.Pkt.Len.Max	Fwd.Seg.Size.Avg	0.879368
Fwd.Pkt.Len.Mean	Fwd.Seg.Size.Avg	1
Fwd.Pkt.Len.Std	Fwd.Seg.Size.Avg	0.890569
Fwd.PSH.Flags	SYN.Flag.Cnt	1
Fwd.URG.Flags	CWE.Flag.Count	1
Pkt.Len.Mean	Pkt.Size.Avg	0.995625
Pkt.Len.Mean	Bwd.Seg.Size.Avg	0.943686
Pkt.Len.Std	Pkt.Size.Avg	0.853663
Pkt.Len.Std	Bwd.Seg.Size.Avg	0.849163
Protocol	Bwd.Pkt.Len.Min	0.851049
Subflow.Fwd.Pkts	Fwd.Act.Data.Pkts	0.999189
Tot.Bwd.Pkts	Bwd.Header.Len	0.997801
Tot.Fwd.Pkts	Fwd.Header.Len	0.995575
Tot.Fwd.Pkts	Fwd.Act.Data.Pkts	0.999189
TotLen.Bwd.Pkts	Bwd.Header.Len	0.996149
TotLen.Bwd.Pkts	Subflow.Bwd.Byts	1
TotLen.Fwd.Pkts	Subflow.Fwd.Byts	1

From the table above, we will inspect and plot some of the related columns from the dataset. As we can see, the correlations had been coupled into groups so we could have a better understanding of the relations. At first, we inspect (Bwd.Header.Lenm and Subflow.Bwd.Pkts).

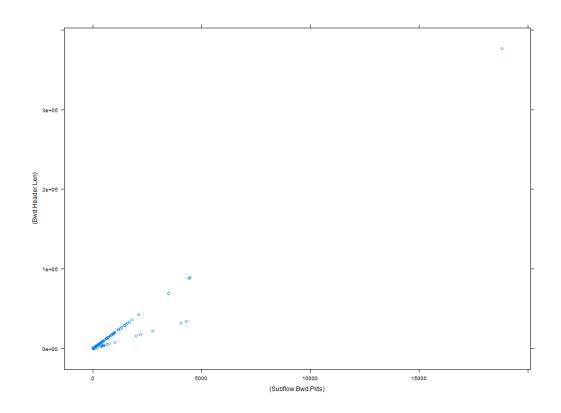


Figure 26 plot for Bwd.Header.Lenm vs Subflow.Bwd.Pkts

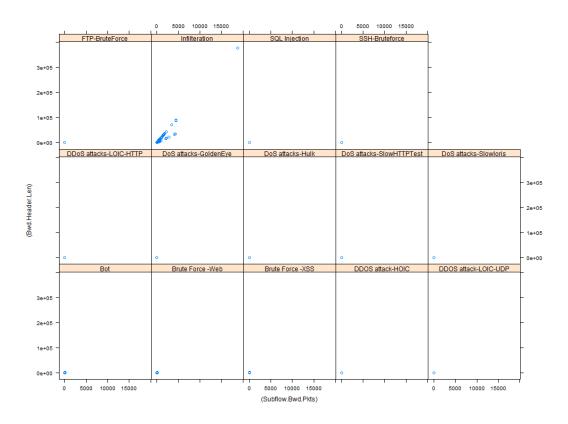


Figure 27 (Bwd.Header.Lenm vs Subflow.Bwd.Pkts) for each class

From the plot above, we can't have a lot of information or observation since most of the data density is on a very small spot on the plot. In order to have a better view of the plot, we removed the outliers so we can see if there is any trend or pattern.

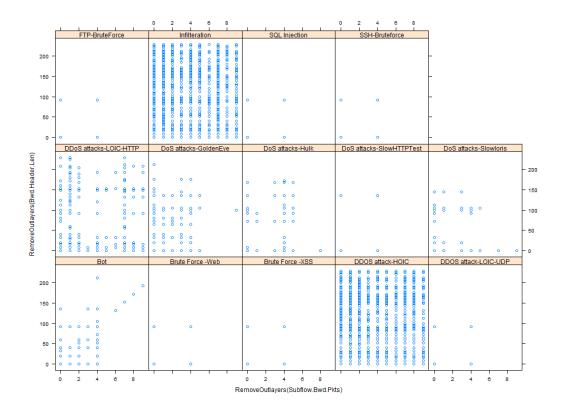
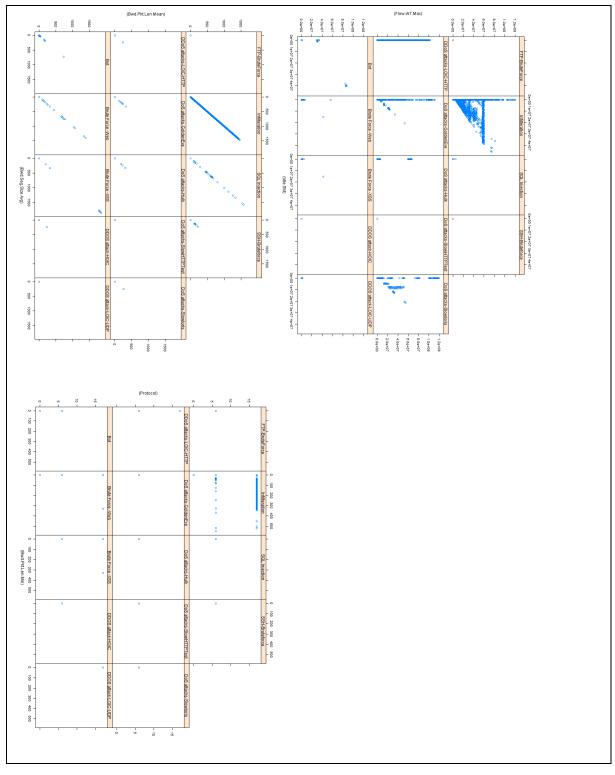


Figure 28 (Bwd.Header.Lenm vs Subflow.Bwd.Pkts) for each class after removing outliers

From the above plot, we can have a lot of observations for these two features. We can summarize them with the following: FTP- Bruteforce, SQL injection, SSH-Bruteforce, DoS attacks slowHTTPtest, Bruteforce -Web, BruteForce -XSS, and DDoS attack-LOIC-UDP are all restricted in four points, and if any data are in these points is suspected to be part of one of these attacks. The same is true for the other attacks; we can see some patterns and concentration of points in the plots that can help as indicators of attacks.



We have created other samples of relations that can be viewed for observation.

Figure 29 Sample plots

6.6 Discussion

The data exploration process was an essential phase in understanding the structure and behavior of the CIC-IDS2018 dataset. One of the most prominent issues identified was the significant class imbalance, where certain types of attacks, such as "Infiltration" and "Heartbleed," were represented by only a few instances compared to much larger classes like "BENIGN" or "DoS Hulk." This imbalance can lead to biased model training, where the classifier becomes more accurate at detecting frequent attack types but fails to properly recognize rare or emerging threats. On the other hand, the correlation matrix revealed that some features exhibited strong linear relationships, indicating potential redundancy. These relationships suggest that not all features are equally valuable for model training, and that dimensionality reduction techniques, such as feature selection or PCA, could improve overall performance and reduce overfitting. Additionally, the feature value distributions varied significantly across attributes, which supports the decision to normalize the dataset to bring features to a similar scale. Another key observation was that certain classes shared similar patterns in feature space, which could increase the risk of misclassification. These overlaps suggest the need for more flexible and instance-aware classifiers. Overall, the insights gained from this exploration directly informed the preprocessing strategies and helped shape the model-building steps in the upcoming chapters.

6.7 Chapter Conclusion

In conclusion, the data exploration process helped uncover essential characteristics of the CIC-IDS2018 dataset that directly influence how the classification models should be developed and evaluated. The analysis revealed several key issues, most

notably, the imbalance in class representation, where some attack types were underrepresented to the point that a default classifier might easily overlook them. This highlights the need for sampling or balancing techniques during preprocessing to avoid model bias. Additionally, the correlation analysis showed that many features are highly related, which means that some attributes could be removed without compromising the integrity of the dataset. This opens the door for dimensionality reduction techniques to simplify the model and improve training speed. Feature distribution plots also indicated the need for normalization to ensure that classifiers treat all attributes fairly. Beyond the technical findings, the exploration helped shape the direction of the modeling strategy by pointing out which features and issues to prioritize. It confirmed that CIC-IDS2018, while not perfect, is still highly suitable for building a robust multiclass intrusion detection system. The insights gathered here serve as a bridge into the model development phase, where a sub-sampled version of the dataset will be used to begin training and evaluating classification models.

Chapter 7 Building Models using Sub-Sample:

7.1 Chapter Introduction

In this chapter, we will go through building and testing different models. This process will have the model being built with the training and validation data. An additional test will be conducted using the test data portion of the dataset. Overall, this chapter will go through the following: fixing the data balance in the Dataset (CSE-CIC-IDS2018) by getting subsamples and upsampling. Then, we will build models and get their performance per class (Gradient Boosting Machine, Generalized Linear Models, Deep Learning Model, Random Forest, Distributed Random Forest). Finally, we will review some failed attempts and review the result.

7.2 Justification for using Sub-sampling

Due to the limitation of the local compute, memory, and fast storage, the logical approach is to use sub-sample of the dataset. In order to read the dataset and build multiple models on a standard workstation would not be feasible as the models would also require a large amount of memory. In addition the dataset has a very high dimensionality and the models that need to be built require a very high compute power. In the end, it was decided to test and start with sub-sample.ts.

7.3 Data Balance

During the investigation and exploration of the dataset. The presented data has major issues. The first issue is the imbalance of the classes, and the second issue is the size of the data. We needed to make sure that Data manipulation does not affect the accuracy of the actual test. So, the manipulations were done only on the training subset. The process was done with the following steps:

1- 60% was taken from the data. Because there is a huge gap between each class, we wanted to guarantee that each class is presented in the training, so we took 60% from each class instead of a random sample.

Brute Force -Web	Bot	Benign
331	86721	6126150
DDOS attack-LOIC-UDP	DDOS attack-HOIC	Brute Force -XSS
1038	119316	136
DoS attacks-Hulk	DoS attacks-GoldenEye	DDoS attacks-LOIC-HTTP
87119	24843	345218
FTP-BruteForce	DoS attacks-Slowloris	DoS attacks-SlowHTTPTest
31	5944	33
SSH-Bruteforce	SQL Injection	Infilteration
56428	50	83865

2- There is a big gap between Benign and the rest of the classes, so we had to down-sample it.

Table 19	Down-sampling	benign	Class
----------	---------------	--------	-------

Benign	Bot	Brute Force -Web
126150	86721	331
Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-UDP
136	119316	1038
DDoS attacks-LOIC-HTTP	DoS attacks-GoldenEye	DoS attacks-Hulk
345218	24843	87119
DoS attacks-SlowHTTPTest	DoS attacks-Slowloris	FTP-BruteForce
33	5944	31
Infilteration	SQL Injection	SSH-Bruteforce
83865	50	56428

3- For the rest of the classes, we had to up-sample it. And then, we took a subset for each (10%)

Table 20 up sampling

Brute Force -XSS	Brute Force -Web	Bot	Benign
34521	34521	34521	34521
DoS attacks-GoldenEye	DDoS attacks-LOIC-HTTP	DDOS attack-LOIC-UDP	DDOS attack-HOIC
34521	34521	34521	34521
FTP-BruteForce	DoS attacks-Slowloris	oS attacks-SlowHTTPTest	DoS attacks-Hulk I
34521	34521	34521	34521
	SSH-Bruteforce	SQL Injection	Infilteration
	34521	34521	34521

Using the balanced data, we have tested it by building a model, which is a Random forest from Ranger. This package is part of the CRAN Package manager from RStudio. The results are as follows.

Table 21 Overall Accuracy

Accuracy	Карра Асс	uracyLower Ad	ccuracyUpper	AccuracyNull A	ccuracyPValue	McnemarPValue
0.94167415	0.93750802	0.94103238	0.94231097	0.06666667	0.00000000	NaN

Table 22 Ranger Training results per class

Class	precision	recall	f1
Benign	0.97023	0.941253	0.955522
Bot	0.99971	0.999942	0.999826
Brute Force -Web	0.996511	0.97642	0.986364
Brute Force -XSS	0.999768	1	0.999884
DDOS attack-HOIC	0.999768	0.999942	0.999855
DDOS attack-LOIC-UDP	0.999103	1	0.999551
DDoS attacks-LOIC-HTTP	0.99942	0.999073	0.999247
DoS attacks-GoldenEye	1	1	1
DoS attacks-Hulk	1	1	1
DoS attacks-SlowHTTPTest	0.585971	0.8184	0.682952
DoS attacks-Slowloris	1	1	1
FTP-BruteForce	0.699069	0.421859	0.526186
Infilteration	0.944691	0.96828	0.95634
SQL Injection	0.976742	1	0.988234
SSH-Bruteforce	1	0.999942	0.999971

From the multiclass results and overall results, we can see that the trained model outputs have great results where each class has a precision of either one or approaching one. We can proceed using the data for testing/validation.

The model reports the important variables. We have kept the important variables and removed the least important ones. The remaining used variables are the following.

Table 23 Remaining Features

Dst.Port	Flow.Duration	Tot.Fwd.Pkts	TotLen.Fwd.Pkts	Fwd.Pkt.Len.Max	Fwd.Pkt.Len.Mean
Fwd.Pkt.Len.Std	Flow.Byts.s	Flow.Pkts.s	Flow.IAT.Mean	Flow.IAT.Std	Flow.IAT.Max
Flow.IAT.Min	Fwd.IAT.Mean	Fwd.IAT.Std	Bwd.IAT.Min	Fwd.Header.Len	Fwd.Pkts.s
Bwd.Pkts.s	Fwd.Seg.Size.Avg	Subflow.Fwd.Pkts	Subflow.Fwd.Byts	Init.Fwd.Win.Byts	Fwd.Act.Data.Pkts
Fwd.Seg.Size.Min					

7.4 Test and validation with different classification models:

There were multiple models that we built in order to create a portfolio of models. The aim is to have a model that supports multiclassification. Some models may support multiclassification but in different frameworks or scripting languages. This research target is to validate the proposed methodology and algorithm using multiple classifiers for multi-classification. We opted to use tools that have support for multi-classification out of the box, where there is the least modification and alteration needed to build the model. Our search has resulted in the following Models that support both RStudio and H2O:

- Random Forest H2O
- Distributed Random forest from Ranger
- Deep Learning
- GLM
- GBM
- Naïve Bays (Failed attempt presented in the appendix)
- Support Vector Machine ((Failed attempt presented in the appendix)
- KNN (Failed attempt presented in the appendix)

7.4.1 Gradient Boosting Machine (GBM)

A gradient gradient-boosting machine is used for Classification. The function uses a forward learning ensemble method. Prediction quality increases through refined approximations. H2O's GBM will build regression trees with all features in a distributed manner. These regression trees would be built in parallel.

Model Parameters:

Table 24 GBM Model Parameters

Parameter	Value	Description
model_id	GBMModel	Destination id for this model; auto-generated if not specified.
nfolds	5	Number of folds for K-fold cross-validation (0 to disable or >= 2).
keep_cross_validation_predictions	true	Whether to keep the predictions of the cross- validation models.
fold_assignment	Random	Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify the folds based on the response variable, for classification problems.
response_column	Class	Response variable column.
ignored_columns		Names of columns to ignore for training.
r2_stopping	1.7976931348623157e+308	r2_stopping is no longer supported and will be ignored if set - please use stopping_rounds, stopping_metric and stopping_tolerance instead. Previous version of H2O would stop making trees when the R^2 metric equals or exceeds this
stopping_metric		Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anonomaly_score for Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client.
seed	1111	Seed for pseudo random number generator (if applicable)
distribution	multinomial	Distribution function

histogram_type	UniformAdaptive	What type of histogram to use for finding optimal split points
max_abs_leafnode_pred	1.7976931348623157e+308	Maximum absolute value of a leaf node prediction
categorical_encoding	Enum	Encoding scheme for categorical features

Building the GBM Matrix requires a Training set and validation set, and the framework will output a confusion matrix for each. We will examine both below.

Training Confusion Matrix:

Table 25 Training Confusion Matrix

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC- UDP	DDoS attacks-LOIC- HTTP	DoS attacks- GoldenEye	DoS attacks-Hulk	DoS attacks- SlowHTTPTest	Dos attacks- Slowloris	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce	Error	Rate	Precision
Benign	2556 4	0	428	49	1	Θ	27	1	Θ	1	4	Θ	8417	29	Θ	0.259 5	8,957 / 34,521	0.7 2
Bot	1	3451 9	Θ	0	0	Θ	0	0	Θ	Θ	0	0	1	0	Θ	0.000	2 / 34,521	1
Brute Force -Web	Θ	Θ	3361 1	101	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	809	Θ	0.026 4	910 / 34,521	0.9 5
Brute Force -XSS	0	0	1043	3323 1	0	Θ	0	0	Θ	Θ	0	0	Θ	247	Θ	0.037 4	1,290 / 34,521	0.9 9
DDOS attack- HOIC	0	0	θ	0	3452 1	Θ	Θ	0	0	0	0	0	0	0	Θ	θ	0 / 34,521	1
DDOS attack- LOIC-UDP	Θ	Θ	Θ	Θ	Θ	3452 1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0	Θ	θ	0 / 34,521	1
DDoS attacks- LOIC-HTTP	0	θ	44	2	0	43	3442 9	Θ	0	0	Θ	0	0	3	Θ	0.002 7	92 / 34,521	1
DoS attacks- GoldenEye	2	Θ	Θ	Θ	Θ	Θ	1	3451 0	0	Θ	8	Θ	Θ	Θ	Θ	0.000	11 / 34,521	1
DoS attacks- Hulk	0	0	Θ	0	0	0	0	21	3450 0	0	0	0	Θ	Θ	0	0.000	21 / 34,521	1
DoS attacks- SlowHTTPTes t	0	Θ	Θ	Θ	0	Θ	0	Θ	0	1782 6	0	1669 5	Θ	Θ	Θ	0.483 6	16,695 / 34,521	1
DoS attacks- Slowloris	0	Θ	6	Θ	0	Θ	3	9	0	0	3450 3	0	Θ	Θ	Θ	0.000	18 / 34,521	1
FTP- BruteForce	0	0	Θ	0	0	Θ	0	0	Θ	Θ	0	3452 1	Θ	0	Θ	θ	0 / 34,521	0.6 7
Infilterati on	9725	2	101	67	0	0	7	2	0	2	3	4	2456 8	40	0	0.288 3	9,953 / 34,521	0.7 4
SQL Injection	Θ	Θ	Θ	Θ	Θ	Θ	0	Θ	Θ	Θ	Θ	Θ	Θ	3452 1	Θ	θ	0 / 34,521	0.9 7
SSH- Bruteforce	0	0	Θ	0	0	0	0	0	Ō	0	1	3	Θ	0	3451 7	0.000	4 / 34,521	1
Total	3529 2	3452 1	3523 3	3345 0	3452 2	3456 4	3446 7	3454 3	3450 0	1782 9	3451 9	5122 3	3298 6	3564 9	3451 7	0.073 3	37,953 / 517,815	
Recall	0.74	1	0.97	0.96	1	1	1	1	1	0.52	1	1	0.71	1	1			

Cross-validation Matrix

Table 26 Cross-validation Matrix

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC- UDP	DDoS attacks-LOIC- НТТР	DoS attacks- GoldenEye	DoS attacks-Hulk	DoS attacks- SlowHTTPTest	Dos attacks- Slowloris	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce	Error	Rate	Precision
Benign	2542 5	Θ	418	33	7	Θ	23	2	Θ	2	6	1	8571	33	Θ	0.263 5	9,096 / 34,521	0.7 1
Bot	3	3451 6	Θ	0	0	0	0	0	0	0	0	0	2	Θ	0	0.000 1	5 / 34,521	1
Brute Force -Web	97	Θ	3363 5	125	Θ	Θ	Θ	0	Θ	Θ	0	Θ	0	664	0	0.025 7	886 / 34,521	0.9 7
Brute Force -XSS	0	Θ	403	3387 1	0	0	Θ	0	Θ	Θ	0	Θ	0	247	0	0.018 8	650 / 34,521	0.9 9
DDOS attack- HOIC	0	Θ	Θ	0	3452 1	0	Θ	0	Θ	Θ	0	Θ	0	0	0	0	0 / 34,521	1
DDOS attack- LOIC-UDP	Θ	Θ	Θ	Θ	Θ	3451 2	9	Θ	Θ	Θ	Θ	Θ	0	0	Θ	0.000	9 / 34,521	1
DDoS attacks- LOIC-HTTP	3	Θ	36	1	0	44	3442 4	Θ	Θ	0	Θ	Θ	0	13	Θ	0.002	97 / 34,521	1
DoS attacks- GoldenEye	0	Θ	1	Θ	Θ	Θ	1	3450 0	7	Θ	12	Θ	0	Θ	Θ	0.000	21 / 34,521	1
DoS attacks- Hulk	1	Θ	Θ	Θ	Θ	Θ	Θ	26	3449 4	0	0	Θ	0	Θ	Θ	0.000	27 / 34,521	1
DoS attacks- SlowHTTPTes t	0	Θ	0	0	0	0	Ø	0	0	1904 2	0	1547 9	0	0	0	0.448 4	15,479 / 34,521	0.9 3
DoS attacks- Slowloris	0	Θ	6	Θ	Θ	Θ	1	11	Θ	Θ	3450 0	Θ	0	3	Θ	0.000	21 / 34,521	1
FTP- BruteForce	0	Θ	Θ	0	0	0	0	0	0	1326	0	3319 5	0	Θ	0	0.038 4	1,326 / 34,521	0.6 8
Infilterati on	1009 1	4	126	39	1	Θ	14	4	Θ	9	6	4	2417 9	44	Θ	0.299 6	10,342 / 34,521	0.7 4
SQL Injection	0	Θ	0	0	0	0	Ø	0	0	0	0	0	0	3452 1	0	0	0 / 34,521	0.9 7
SSH- Bruteforce	Θ	Θ	Θ	0	0	Θ	0	Θ	0	0	1	3	2	Θ	3451 5	0.000 2	6 / 34,521	1
Total	3562 0	3452 0	3462 5	3406 9	3452 9	3455 6	3447 2	3454 3	3450 1	2037 9	3452 5	4868 2	3275 4	3552 5	3451 5	0.073 3	37,965 / 517,815	
Recall	0.74	1	0.97	0.98	1	1	1	1	1	0.55	1	0.96	0.7	1	1			

Based on the precision of both confusion matrices (Training and Validation), we can see that they are almost identical, and there is no change in precision between the training and validation. We can notice that the precision for the benign class is around 0.7, which is considered very low since the dataset has a high constitution of the benign class. It is expected that the model will not perform well, even if the other classes have a high precision. The rate of misclassification on the benign side will be high.

Performance table with test Data:

Table 27 F	Performance	and Overall	Accuracy
------------	-------------	-------------	----------

Accuracy	Карра	AccuracyLower	AccuracyUpper
AccuracyNull			
0.7568898	0.4244448	0.7564380	0.7573412
0.8830848			
AccuracyPValue	McnemarPValu	le	
1.0000000	NaN		

As expected, we discussed in the training and validation confusion matrices that the benign has around 0.7 precision, which will impact the overall performance of the model. We can see the impact in the above matrix, as the accuracy has a value around \sim 0.756

Performance Per-Class

Their performance per class has differences in the test data compared to training. The model failed to classify BruteForce -Web, BruteForce -XSS, DoS attacks-SlowHTTPtes, FTP-BruteForce, infiltration, and SQL-Injection.

Class	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.7289	0.9699	0.994565	0.32147	0.994	0.728	0.841	0.8830	0.643737	0.647255	0.849436139
	64	09			565	964	299	85			
Class: Bot	0.9996	0.9999	0.992308	0.999996	0.992	0.999	0.995	0.0125	0.012496	0.012593	0.999777982
	54	02			308	654	967	01			
Class: Brute Force -Web	0.9939	0.9892	0.00436	1	0.004	0.993	0.008	4.76E-	4.73E-05	0.010844	0.991571021
	39	03			36	939	682	05			
Class: Brute Force -XSS	0.9705	0.9986	0.013464	0.999999	0.013	0.970	0.026	1.96E-	1.90E-05	0.001413	0.984596994
	88	06			464	588	559	05			

Table	20	Por Class	Performance
rable	∠0	Per-Class	Periornance

Class: DDOS attack-	1	0.9999	0.995046	1	0.995	1	0.997	0.0171	0.017199	0.017285	0.999956438
HOIC		13			046		517	99			
Class: DDOS attack-	1	0.9999	0.7023	1	0.702	1	0.825	0.0001	0.00015	0.000213	0.999968282
LOIC-UDP		37			3		119	5			
Class: DDoS attacks-	0.9969	0.9991	0.983945	0.999843	0.983	0.996	0.990	0.0497	0.049614	0.050423	0.998073528
LOIC-HTTP	99	48			945	999	429	63			
Class: DoS attacks-	0.9995	0.9999	0.977638	0.999999	0.977	0.999	0.988	0.0035	0.00358	0.003661	0.999757642
GoldenEye	97	18			638	597	496	81			
Class: DoS attacks-Hulk	0.9992	0.9999	0.99684	0.99999	0.996	0.999	0.998	0.0125	0.012549	0.012588	0.999601058
	42	6			84	242	04	58			
Class: DoS attacks-	0.1875	0.9999	0.096774	0.999996	0.096	0.187	0.127	4.61E-	8.65E-07	8.94E-06	0.593745964
SlowHTTPTest		92			774	5	66	06			
Class: DoS attacks-	0.9989	0.9998	0.822438	0.999999	0.822	0.998	0.902	0.0008	0.000856	0.001041	0.99940281
Slowloris	91	15			438	991	157	57			
Class: FTP-BruteForce	0.8666	0.9999	0.147727	0.999999	0.147	0.866	0.252	4.32E-	3.75E-06	2.54E-05	0.933322522
	67	78			727	667	427	06			
Class: Infilteration	0.7031	0.7721	0.036391	0.995318	0.036	0.703	0.069	0.0120	0.008501	0.233591	0.73765863
	62	55			391	162	2	89			
Class: SQL Injection	0.92	0.9990	0.007206	0.999999	0.007	0.92	0.014	7.21E-	6.63E-06	0.00092	0.959543185
		86			206		299	06			
Class: SSH-Bruteforce	0.9997	0.9999	0.999362	0.999998	0.999	0.999	0.999	0.0081	0.008132	0.008137	0.99985561
	16	95			362	716	539	34			

Table 29 Confusion Matrix for the Test Data

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	223287 0	8	0	0	0	0	22	0	1	0	0	0	1217 2	0	0
Bot	332	4334 5	0	0	0	0	0	0	0	0	0	0	4	0	0
Brute Force -Web	37063	0	164	0	0	0	267	0	0	0	0	0	120	0	0
Brute Force -XSS	4749	0	0	66	0	0	6	0	0	0	0	0	80	1	0
DDOS attack-HOIC	295	0	0	0	5965 8	0	0	0	0	0	0	0	2	0	0
DDOS attack-LOIC-UDP	0	0	0	0	0	519	220	0	0	0	0	0	0	0	0
DDoS attacks-LOIC-	2789	0	0	0	0	0	17209 1	0	0	0	0	0	19	0	0
DoS attacks-GoldenEye	243	0	0	0	0	0	0	1241 6	32	0	3	0	6	0	0
DoS attacks-Hulk	136	0	0	0	0	0	0	0	4352 6	0	0	0	2	0	0

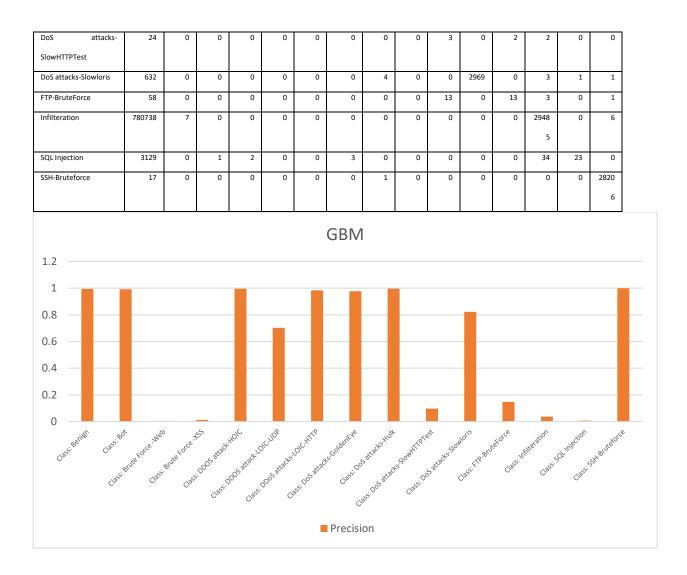


Figure 30 Per-Class precision

Depending on the performance metrics presented, we can note that the GBM Performs well in most of the classes, but there are still some classes that are either unpredicted or have a very low precision, which affects the overall performance of the Model.

7.4.2 Generalized Linear Models (GLM)

The Generalized Linear Model (GLM) from H2o is a regression model that targets exponential, Gaussian, binomial, and gamma distributions. The function can behave differently based on the requirements and type of prediction or classification.

Table 30 Model Parameters for GLM

Parameter	Value	Description									
model_id	GLMModel	Destination id for this model; auto-generated if not specified.									
seed	-8071143158777241479	Seed for pseudo random number generator (if applicable)									
		Cross-validation fold assignment scheme, if fold_column is not									
fold_assignment		specified. The 'Stratified' option will stratify the folds based on the									
loid_assignment		response variable, for classification problems.									
response_column	Class	Response variable column.									
ignored_columns		Names of columns to ignore for training.									
	multinemial	Family. Use binomial for classification with logistic regression,									
family	multinomial	others are for regression problems.									
		AUTO will set the solver based on given data and the other									
		parameters. IRLSM is fast on on problems with small number of									
solver	IRLSM	predictors and for lambda-search with L1 penalty, L_BFGS scales									
		better for datasets with many columns.									
		Distribution of regularization between the L1 (Lasso) and L2									
		(Ridge) penalties. A value of 1 for alpha represents Lasso									
		regression, a value of 0 produces Ridge regression, and any									
alpha	0.5	in between specifies the amount of mixing between the two									
		Default value of alpha is 0 when SOLVER = 'L-BFGS'; 0									
		otherwise.									
lambda	0	Regularization strength									
max_iterations	50	Maximum number of iterations									
max_noralione		Converge if objective value changes less than this. Default									
		indicates: If lambda_search is set to True the value of									
		objective_epsilon is set to .0001. If the lambda_search is set to									
objective_epsilon	0.000001	False and lambda is equal to zero, the value of objective_epsilon									
		is set to .000001, for any other value of lambda the default value									
		of objective_epsilon is set to .0001.									
		Converge if objective changes less (using L-infinity norm) than									
		this, ONLY applies to L-BFGS solver. Default indicates: If									
	0.000004	lambda_search is set to False and lambda is equal to zero, the									
gradient_epsilon	0.000001	default value of gradient_epsilon is equal to .000001, otherwise									
3 • • • - / • •		the default value is .0001. If lambda_search is set to True, the									
		conditional values above are 1E-8 and 1E-6 respectively.									
		. ,									

link	multinomial	Link function.								
		Minimum lambda used in lambda search, specified as a ratio of								
		lambda_max (the smallest lambda that drives all coefficients to								
		zero). Default indicates: if the number of observations is greater								
lambda_min_ratio	0.0001	than the number of variables, then lambda_min_ratio is set to								
		0.0001; if the number of observations is less than the number of								
		variables, then lambda_min_ratio is set to 0.01.								
		Maximum number of active predictors during computation. Use								
		as a stopping criterion to prevent expensive model building with								
	5000	many predictors. Default indicates: If the IRLSM solver is used,								
max_active_predictors		the value of max_active_predictors is set to 5000 otherwise it is								
		set to 100000000.								
		Likeliheed divider in objective value computation default is								
	0.000001931191641802574	Likelihood divider in objective value computation, default is								
obj_reg		1/nobs								

Training Confusion Matrix

Table 31 Confusion Matrix for GLM

	Benign	Bot	Brute Force - Web	Brute Force - XSS	DDOS attack- HOIC	DDOS attack- LOIC-UDP	DDoS attacks-	DoS attacks- GoldenEye	DoS attacks- Hulk	DoS attacks- SlowHTTPTest	DoS attacks- Slowloris	FTP- BruteForce	Infilteratio n	SQL Injection	SSH- Bruteforce	Error	Rate	Precision
Benign	147 87	503	117 8	784	189	0	262 9	39	219	2	109	1	135 85	485	11	0.5 717	19,7 34 / 34,5 21	0. 59
Bot	104 3	329 54	3	0	O	Θ	O	O	8	0	Θ	Θ	513	Θ	Θ	0.0 454	1,56 7 / 34,5 21	0. 97
Brute Force - Web	115 0	Θ	150 50	577 8	Θ	Θ	148 6	Θ	Θ	0	Θ	0	620	104 37	0	0.5 64	19,4 71 / 34,5 21	0. 79
Brute Force - XSS	Θ	Θ	130 8	293 02	Θ	Θ	169 1	Θ	Θ	Θ	Θ	Θ	237	198 3	Θ	0.1 512	5,21 9 / 34,5 21	0. 67
DDOS attack- HOIC	Θ	0	0	0	345 14	Θ	Θ	Θ	Θ	0	0	0	4	3	0	0.0 002	7 / 34,5 21	0. 99
DDOS attack- LOIC-UDP	Θ	Θ	0	Θ	Θ	341 98	Θ	Θ	Θ	0	Θ	Θ	323	Θ	0	0.0 094	323 / 34,5 21	1
DDoS attacks- LOIC- HTTP	Θ	Θ	0	2	Θ	44	344 72	Θ	Θ	0	Θ	Θ	3	Θ	0	0.0 014	49 / 34,5 21	0. 82
DoS attacks- GoldenEy e	4	0	0	1	Θ	0	0	342 34	197	0	85	0	0	0	0	0.0 083	287 / 34,5 21	0. 98

DoS attacks- Hulk	0	0	28	1	0	0	0	112	341 04	0	0	0	0	276	Θ	0.0 121	417 / 34,5 21	0. 97
DoS attacks- SlowHTTP Test	0	Θ	Θ	Θ	0	Θ	0	0	0	282 31	Θ	629 0	0	0	Θ	0.1 822	6,29 0 / 34,5 21	0. 5
DoS attacks- Slowlori s	0	0	0	46	Θ	Θ	0	342	256	28	336 85	4	24	136	Θ	0.0 242	836 / 34,5 21	0. 99
FTP- BruteFor ce	Θ	0	0	Θ	Θ	Θ	Θ	Θ	Θ	278 48	Θ	667 3	Θ	0	Θ	0.8 067	27,8 48 / 34,5 21	0. 51
Infilter ation	795 4	493	639	302 8	163	Θ	889	320	361	19	160	2	200 30	440	23	0.4 198	14,4 91 / 34,5 21	0. 56
SQL Injectio n	Θ	Θ	749	489 2	Θ	Θ	685	Θ	Θ	Θ	Θ	Θ	710	274 85	Θ	0.2 038	7,03 6 / 34,5 21	0. 67
SSH- Brutefor ce	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	60	1	Θ	3	Θ	9	344 48	0.0 021	73 / 34,5 21 103,	1
Total	249 38	339 50	189 55	438 34	348 66	342 42	418 52	350 47	352 05	561 29	340 39	129 73	360 49	412 54	344 82	0.2 002	648 / 517, 815	
Recall	0.4 3	0.9 5	0.4 4	0.8 5	1	0.9 9	1	0.9 9	0.9 9	0.8 2	0.9 8	0.1 9	0.5 8	0.8	1		010	

In the training confusion matrix, we can see that benign has a very low precision. This is considered a bad indicator, as it happened in GBM. The high percentage of the benign in the dataset will have an effect on the overall accuracy and precision. The other classes have good overall precision, except for FTP-BruteForce and SQL injection.

Overall Performance

Accuracy	Карра Асс	uracyLower A	AccuracyUpper	Accuracy	lull	
0.4874235	0.2155967	0.4868973	0.4879497	0.8830848	3	
AccuracyPValue	e McnemarP\	/alue				
1.0000000	NaN					

Table 32 Overall Performance for the Model

As expected from the training confusion matrix, the test classification accuracy has an overall accuracy of ~0.48. General overview of the results and inspecting the precision of each class. We can conclude that the model is not performing very well.

In the majority of the classes, the model fails in classification.

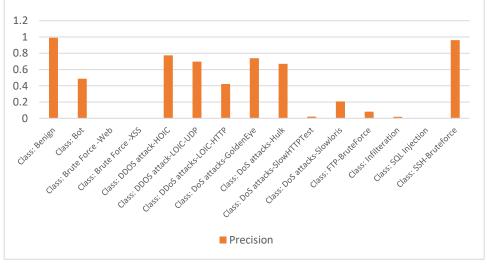
Performance Per-Class

43 663 594 43 385 85 Class: Bot 0.952 0.987 0.486897 0.999397 0.486 0.952 0.644 0.0125 0.011913 0.024467 0.970131 Class: Brute Force - 0.442 0.970 0.000719 0.999973 0.000 0.442 0.001 4.76E- 2.10E-05 0.029253 0.706595 Web 424 766 719 424 437 05 0.01197 0.99973 0.000 0.955 0.01 1.96E- 1.87E-05 0.021293 0.967304 Class: DDOS attack- 0.999 0.994 0.775172 0.999998 0.873 0.0171 0.017197 0.022185 0.997464 HOIC 883 925 775 172 883 304 99 0.000149 0.000213 0.997078 LOIC-UDP 22 936 0.421873 0.99915 0.421 2.93 5 0.00149 0.000213 0.99778 LOIC-UDP 22		Sensit	Specif	Pos Pred	Neg Pred	Preci	Recal	F1	Preval	Detection	Detection	Balanced	
43 663 584 43 385 85 Class: Bot 0.952 0.967 0.466697 0.999397 0.466 0.952 0.644 0.0123 0.011913 0.024467 0.970131 Class: Brute 975 287 0.000 0.442 0.001 4.76E 2.10E-05 0.029283 0.705895 Web 424 766 719 424 437 05 011 1.87E-05 0.021293 0.967364 Class: Brute Force 0.965 0.978 0.00088 0.999999 0.600 0.955 0.011 0.01171 0.01171 0.01171 0.011717 0.022183 0.987304 Kass: Brute Force 0.999 0.999 0.775 0.999 0.873 0.0111 0.01117 0.01117 0.01117 0.01117 0.01149 0.0022133 0.997076 Class: DDOS attack: 0.998 0.4921 0.9989 0.698 0.994 0.420 0.0001 0.000213 0.997076 LOIC-UDP <		ivity	icity	Value	Value	sion	1		ence	Rate	Prevalence	Accuracy	
Class: Bot 0.982 0.987 0.488897 0.999397 0.488 0.952 0.644 0.0125 0.011913 0.024467 0.970131 Class: Brute Force - 0.442 0.970 0.000719 0.999973 0.000 0.442 0.001 4.76E- 2.10E-05 0.024253 0.706595 Web 424 768 719 424 437 05 0.021293 0.987304 Class: Brute Force - 0.355 0.978 0.00088 0.999999 0.000 0.955 0.0011 1.96E- 1.87E-05 0.021293 0.987304 XSS 882 725 88 882 759 05 0.001149 0.00213 0.997404 HOIC 883 925 172 883 304 99 0.00213 0.997404 LOIC-UDP 22 936 0.421673 0.999915 0.421 22 35 5 0.000149 0.000213 0.997078 LOIC-UDP	Class: Benign	0.426	0.972	0.991584	0.18335	0.991	0.426	0.596	0.8830	0.376574	0.37977	0.699546	
975 287 887 975 503 01 Class: Brute Force - 0.442 0.970 0.000719 0.999973 0.000 0.442 0.001 4.76E- 2.10E-05 0.029253 0.706655 Web 424 766 719 424 437 05 0.021293 0.967304 Class: Brute Force - 0.955 0.978 0.00088 0.99999 0.000 0.965 0.001 1.96E- 1.87E-05 0.021293 0.967304 KSS 882 725 88 882 759 05 0.0011 0.0111 0.01717 0.022185 0.997404 HOIC 883 925 172 883 304 99 0.00011 0.00149 0.000213 0.997078 LOIC-UDP 22 936 0.421873 0.99915 0.421 29 35 0 0.00497 0.049689 0.117761 0.996424 Class: DoS attacks- 0.992 0.421 0.998 0.593 0.04		43	663			584	43	385	85				
Class: Brule Force - 0.442 0.900 0.000719 0.999973 0.000 0.442 0.001 4.76E- 2.10E-05 0.029253 0.706595 Class: Brule Force - 424 766 719 424 437 05 0.021293 0.967304 Class: Brule Force - 0.955 0.978 0.00088 0.99999 0.000 0.955 0.001 1.96E- 1.87E-05 0.021293 0.967304 Class: DDOS attack- 0.999 0.994 0.775172 0.999998 0.775 0.999 0.873 0.0171 0.017197 0.022185 0.99740 Class: DDOS attack- 0.994 0.999 0.6882 0.994 0.820 0.0011 0.00149 0.00213 0.99708 LOIC-UDP 22 936 0.421873 0.999975 0.421 0.998 0.593 0.0497 0.049689 0.117781 0.968424 LOIC-HTTP 499 342 656 11 825 81 <td< td=""><td>Class: Bot</td><td>0.952</td><td>0.987</td><td>0.486897</td><td>0.999397</td><td>0.486</td><td>0.952</td><td>0.644</td><td>0.0125</td><td>0.011913</td><td>0.024467</td><td>0.970131</td></td<>	Class: Bot	0.952	0.987	0.486897	0.999397	0.486	0.952	0.644	0.0125	0.011913	0.024467	0.970131	
Web 424 766 719 424 437 0.5 Class: Brute Force - XSS 0.955 0.978 0.0008 0.999999 0.000 0.955 0.001 1.96E- 1.87E-05 0.021293 0.967304 Class: DDOS attack. 0.999 0.994 0.775172 0.9999988 0.775 0.999 0.873 0.0171 0.017197 0.022185 0.99704 HOIC 883 925 172 883 304 99 0.000149 0.000213 0.997078 LOIC-UDP 22 936 0.421 0.998 0.593 0.0497 0.049689 0.117781 0.963421 LOIC-UDP 22 936 0.421 0.998 0.593 0.0497 0.049689 0.117781 0.963421 LOIC-HTTP 499 342 873 499 14 63 1 635 1 635 1 635 1 635 1 635 1 635 1 636 1		975	287			897	975	503	01				
Class: Brute Force - 0.957 0.90088 0.999999 0.000 0.955 0.001 1.96E- 1.87E-05 0.021293 0.967304 XSS 882 725 0 888 862 759 05 0 0 0.967304 Class: DDOS attack. 0.994 0.775172 0.999998 0.767 0.901 0.01711 0.017197 0.022185 0.997404 HOIC 883 925 0.698241 0.999999 0.688 0.940 0.820 0.0014 0.000213 0.99708 Class: DDOS attack. 0.994 0.9928 0.4211 2.9<35	Class: Brute Force -	0.442	0.970	0.000719	0.999973	0.000	0.442	0.001	4.76E-	2.10E-05	0.029253	0.706595	
XSS 882 725 888 882 759 05 Class: DDOS attack- HOIC 0.999 0.994 0.775172 0.999998 0.775 0.999 0.873 0.0171 0.01717 0.022185 0.997404 HOIC 683 925 172 883 304 99 0.00011 0.000149 0.000213 0.997076 LOIC-UDP 22 936 0.421873 0.999915 0.421 0.988 0.593 0.0497 0.049689 0.117781 0.963421 LOIC-HTTP 499 342 0.999972 0.738 0.992 0.846 0.0035 0.003553 0.00481 0.996424 GoldenEye 11 738 0.999972 0.738 0.992 0.846 0.0035 0.003553 0.00481 0.996424 GoldenEye 11 738 0.669 0.988 0.788 0.0125 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 <td< td=""><td>Web</td><td>424</td><td>766</td><td></td><td></td><td>719</td><td>424</td><td>437</td><td>05</td><td></td><td></td><td></td></td<>	Web	424	766			719	424	437	05				
Class: DDOS attack- 0.999 0.994 0.775172 0.999998 0.775 0.999 0.873 0.01711 0.017197 0.022185 0.997404 HOIC 883 925 172 883 304 99 0.00011 0.000149 0.000213 0.997404 Class: DDOS attack- 0.994 0.6984 0.994 0.820 0.0001 0.000149 0.000213 0.997078 LOIC-UDP 22 936 0.42173 0.99991 0.421 0.998 0.593 0.0497 0.049689 0.117781 0.963421 LOIC-HTTP 499 342 873 499 14 63 0.003553 0.003553 0.004811 0.995424 GoldenEye 11 738 0.9992 0.886 0.993 0.01255 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 58 0.012411 0.01842 0.991041 Hulk 292 791	Class: Brute Force -	0.955	0.978	0.00088	0.999999	0.000	0.955	0.001	1.96E-	1.87E-05	0.021293	0.967304	
HOIC 883 925 172 883 304 99 Class: DDOS attack- LOIC-UDP 22 936 0.698 0.994 0.820 0.0001 0.000149 0.000213 0.997078 Class: DDOS attack- LOIC-UDP 22 936 0.42173 0.999915 0.421 0.998 0.593 0.0497 0.049689 0.117781 0.963421 LOIC-HTTP 499 342 0.738656 0.999972 0.738 0.992 0.846 0.00355 0.003553 0.00481 0.995424 GoldenEye 11 738 0.99997 0.738 0.992 0.846 0.0035 0.01251 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 58 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 58 0.012411 0.018542 0.991041 SlowHTTPTest 842 0.999999 0.021 0.75 0.041	XSS	882	725			88	882	759	05				
Class: DDOS attack- 0.994 0.999 0.698241 0.999999 0.688 0.994 0.820 0.0001 0.000149 0.000213 0.997078 LOIC-UDP 22 936 0.421873 0.999915 0.421 0.22 35 5 0.0497 0.049689 0.117781 0.963421 LOIC-HTTP 499 342 873 499 14 63 0.003553 0.00481 0.998424 Class: DoS attacks- 0.992 0.988 0.738656 0.99972 0.738 0.992 0.846 0.003553 0.00481 0.995424 GoldenEye 11 738 656 11 825 81 0.0125 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 58 0.0125 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 58 0.000161 0.874921 Class: DoS attacks-<	Class: DDOS attack-	0.999	0.994	0.775172	0.999998	0.775	0.999	0.873	0.0171	0.017197	0.022185	0.997404	
LOIC-UDP 22 936 241 22 35 5 Class: DDOS attacks- 0.998 0.928 0.421873 0.999915 0.421 0.998 0.593 0.0497 0.049689 0.1117781 0.963421 LOIC-HTTP 499 342 873 499 14 63 63 0.003553 0.00481 0.996424 Class: DoS attacks- 0.992 0.998 0.738656 0.999972 0.738 0.992 0.846 0.0035 0.00481 0.995424 GoldenEye 11 738 656 11 825 81 0.0125 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 58 0.0125 0.012411 0.018542 0.991041 Hulk 292 791 0.201429 0.999999 0.021 0.75 0.041 4.61E- 3.46E-06 0.000161 0.874921 SlowHTTPTest 842 429 667 06 0.00033<	HOIC	883	925			172	883	304	99				
Class: DDoS attacks- LOIC-HTTP 0.998 0.928 0.421873 0.999915 0.421 0.998 0.593 0.0497 0.049689 0.117781 0.963421 LOIC-HTTP 499 342 873 499 14 63 0.003553 0.00481 0.995424 Class: DoS attacks- GoldenEye 0.992 0.988 0.738656 0.999972 0.738 0.992 0.846 0.0035 0.003553 0.00481 0.995424 GoldenEye 11 738 656 11 825 81 0.0125 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 58 0.00161 0.874921 SlowHTTPTest 842 0.999999 0.021 0.75 0.041 4.61E- 3.46E-06 0.000161 0.874921 SlowHTTPTest 842 0.999977 0.208 0.972 0.343 0.00083 0.003999 0.984789 Slowioris 746 831 0.999977 0.208	Class: DDOS attack-	0.994	0.999	0.698241	0.999999	0.698	0.994	0.820	0.0001	0.000149	0.000213	0.997078	
LOIC-HTTP 499 342 873 499 14 63 Class: DoS attacks- GoldenEye 0.992 0.998 0.738656 0.999972 0.738 0.992 0.846 0.00355 0.003553 0.00481 0.995424 GoldenEye 11 738 656 11 825 81 0.01251 0.012411 0.018542 0.991041 Class: DoS attacks- Hulk 292 791 346 292 135 58 0.012411 0.018542 0.991041 Class: DoS attacks- SlowHTTPTest 0.75 0.999 0.021429 0.999999 0.021 0.75 0.041 4.61E 3.46E-06 0.000161 0.874921 SlowHTTPTest 842 429 667 06 0 0.00333 0.003999 0.984789 Slowloris 746 831 405 746 268 57 1.73E-06 2.10E-05 0.69999 BruteForce 981 192 364 06 06 0.010524 0.992013	LOIC-UDP	22	936			241	22	35	5				
Class: DoS attacks- 0.992 0.998 0.738656 0.99972 0.738 0.992 0.846 0.0035 0.003553 0.00481 0.995424 GoldenEye 11 738 0.669346 0.99985 0.669 0.988 0.798 0.0125 0.012411 0.018542 0.991041 Class: DoS attacks- 0.998 0.669346 0.99985 0.669 0.988 0.798 0.0125 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 58 0.00161 0.874921 SlowHTTPTest 842 0.999999 0.021 0.75 0.041 4.61E- 3.46E-06 0.000161 0.874921 SlowHTTPTest 842 429 667 06 06 0 0.093999 0.984789 Slowloris 746 831 0.999977 0.208 0.972 0.343 0.000833 0.003999 0.984789 Slowloris 746 831 <td>Class: DDoS attacks-</td> <td>0.998</td> <td>0.928</td> <td>0.421873</td> <td>0.999915</td> <td>0.421</td> <td>0.998</td> <td>0.593</td> <td>0.0497</td> <td>0.049689</td> <td>0.117781</td> <td>0.963421</td>	Class: DDoS attacks-	0.998	0.928	0.421873	0.999915	0.421	0.998	0.593	0.0497	0.049689	0.117781	0.963421	
GoldenEye 11 738 656 11 825 81 6161 6162 616	LOIC-HTTP	499	342			873	499	14	63				
Class: DoS attacks- 0.988 0.993 0.669346 0.99985 0.6693 0.988 0.798 0.0125 0.012411 0.018542 0.991041 Hulk 292 791 346 292 135 58 0.0125 0.012411 0.018542 0.991041 Class: DoS attacks- 0.75 0.999 0.021429 0.999999 0.021 0.75 0.041 4.61E- 3.46E-06 0.000161 0.874921 SlowHTTPTest 842 0.999977 0.208 0.972 0.343 0.0008 0.000833 0.003999 0.984789 SlowIoris 746 831	Class: DoS attacks-	0.992	0.998	0.738656	0.999972	0.738	0.992	0.846	0.0035	0.003553	0.00481	0.995424	
Hulk 292 791 346 292 135 58 Class: DoS attacks- SlowHTTPTest 0.75 0.999 0.021429 0.999999 0.021 0.75 0.041 4.61E- 667 3.46E-06 0.000161 0.874921 Class: DoS attacks- SlowHTTPTest 0.972 0.996 0.208405 0.999977 0.208 0.972 0.343 0.0008 0.000833 0.003999 0.984789 Class: DoS attacks- Slowloris 746 831 405 746 268 57 7<	GoldenEye	11	738			656	11	825	81				
Class: DoS attacks- 0.75 0.999 0.021429 0.999999 0.021 0.75 0.041 4.61E- 3.46E-06 0.000161 0.874921 SlowHTTPTest 842 0 0.999997 0.208 0.972 0.343 0.0008 0.000833 0.003999 0.984789 SlowHoris 746 831 0.999977 0.208 0.972 0.343 0.0008 0.000833 0.003999 0.984789 SlowHoris 746 831 0.999977 0.208 0.972 0.343 0.0008 0.000833 0.003999 0.984789 SlowHoris 746 831 0.999977 0.208 0.972 0.343 0.0008 0.0003999 0.984789 SlowHoris 746 831 0.999977 0.208 0.4 0.136 4.32E- 1.73E-06 2.10E-05 0.69999 BruteForce 981 0.992013 0.019 0.574 0.037 0.0120 0.006942 0.355539 0.610676 Class: SQL Injection	Class: DoS attacks-	0.988	0.993	0.669346	0.99985	0.669	0.988	0.798	0.0125	0.012411	0.018542	0.991041	
SlowHTTPTest 842 429 667 06 06 0000833 0.003999 0.984789 Class: DoS attacks- Slowloris 0.972 0.996 0.208405 0.999977 0.208 0.972 0.343 0.000833 0.003999 0.984789 Slowloris 746 831 405 746 268 57 1.73E-06 2.10E-05 0.69999 BruteForce 981 0.019524 0.999977 0.019 0.574 0.037 0.0120 0.006942 0.355539 0.610766 Class: Infilteration 0.574 0.647 0.019524 0.999999 0.001 0.574 0.037 0.0120 0.006942 0.355539 0.610676 Class: Infilteration 0.574 0.637 524 215 765 89 0.013524 0.899999 0.000 0.8 0.000 7.21E- 5.77E-06 0.013524 0.893241 Class: SSH- 0.997 0.961098 0.999978 0.997 0.978 0.0081 0.008441	Hulk	292	791			346	292	135	58				
Class: DoS attacks- Slowloris 0.972 0.996 0.208405 0.999977 0.208 0.972 0.343 0.0008 0.000833 0.003999 0.984789 Slowloris 746 831 405 746 268 57 6 2.10E-05 0.69999 Class: FTP- 0.4 0.999 0.082192 0.999997 0.082 0.4 0.136 4.32E- 1.73E-06 2.10E-05 0.69999 BruteForce 981 192 364 06 6<	Class: DoS attacks-	0.75	0.999	0.021429	0.999999	0.021	0.75	0.041	4.61E-	3.46E-06	0.000161	0.874921	
Slowloris 746 831 405 746 268 57 6 6 6 6 7 6 7 6 268 57 7 6 268 57 7 6 268 57 7 6 2.10E-05 0.69999 0.69999 0.682 0.4 0.136 4.32E- 1.73E-06 2.10E-05 0.69999 0.69999 0.674 0.67 0.617 0.69999 0.674 0.61 0.61 0.69999 0.610676 Class: Infilteration 0.574 0.647 0.019524 0.992013 0.019 0.574 0.037 0.0120 0.006942 0.355539 0.610676 Class: SQL Injection 0.8 0.986 0.099999 0.000 0.8 0.000 7.21E- 5.77E-06 0.013524 0.893241 Class: SSH- 0.997 0.999978 0.961 0.997 0.978 0.0081 0.008441 0.998523	SlowHTTPTest		842			429		667	06				
Class: FTP- 0.4 0.999 0.082192 0.999997 0.082 0.4 0.136 4.32E- 1.73E-06 2.10E-05 0.69999 BruteForce 981 0.019524 0.992013 0.019 0.574 0.037 0.0120 0.006942 0.355539 0.610676 Class: 1nfilteration 0.574 0.647 0.019524 0.992013 0.019 0.574 0.037 0.0120 0.006942 0.355539 0.610676 Class: Infilteration 0.574 0.637 524 215 765 89 0.0013524 0.8999999 0.000 0.8 0.000 7.21E- 5.77E-06 0.013524 0.893241 Class: SSH- 0.997 0.9961098 0.999978 0.961 0.997 0.978 0.0081 0.008113 0.008441 0.998523	Class: DoS attacks-	0.972	0.996	0.208405	0.999977	0.208	0.972	0.343	0.0008	0.000833	0.003999	0.984789	
BruteForce 981 192 364 06 06 Class: Infilteration 0.574 0.647 0.019524 0.992013 0.019 0.574 0.037 0.0120 0.006942 0.355539 0.610676 215 137 524 215 765 89 0 0.013524 0.899999 0.000 0.8 0.000 7.21E- 5.77E-06 0.013524 0.893241 Class: SSH- 0.997 0.9961098 0.999978 0.961 0.997 0.978 0.0081 0.008113 0.008441 0.998523	Slowloris	746	831			405	746	268	57				
Class: Infilteration 0.574 0.647 0.019524 0.992013 0.019 0.574 0.037 0.0120 0.006942 0.355539 0.610676 Class: Infilteration 215 137 215 137 524 215 765 89 215 765 89 215 0.013524 0.893241 Class: SQL Injection 0.8 0.986 0.000426 0.999999 0.000 0.8 0.000 7.21E- 5.77E-06 0.013524 0.893241 Class: SSH- 0.997 0.9961098 0.999978 0.961 0.997 0.978 0.0081 0.008113 0.008441 0.998523	Class: FTP-	0.4	0.999	0.082192	0.999997	0.082	0.4	0.136	4.32E-	1.73E-06	2.10E-05	0.69999	
215 137 524 215 765 89 6000 6000 6000 6000 6000 6000 7000 <th 7000<="" <="" td=""><td>BruteForce</td><td></td><td>981</td><td></td><td></td><td>192</td><td></td><td>364</td><td>06</td><td></td><td></td><td></td></th>	<td>BruteForce</td> <td></td> <td>981</td> <td></td> <td></td> <td>192</td> <td></td> <td>364</td> <td>06</td> <td></td> <td></td> <td></td>	BruteForce		981			192		364	06			
Class: SQL Injection 0.8 0.986 0.000426 0.999999 0.000 0.8 0.000 7.21E- 5.77E-06 0.013524 0.893241 Class: SSH- 0.997 0.999 0.901 0.8 0.000 7.21E- 5.77E-06 0.013524 0.893241 Class: SSH- 0.997 0.9961098 0.999978 0.961 0.997 0.978 0.0081 0.008113 0.008441 0.998523	Class: Infilteration	0.574	0.647	0.019524	0.992013	0.019	0.574	0.037	0.0120	0.006942	0.355539	0.610676	
482 426 852 06 Class: SSH- 0.997 0.999 0.961098 0.999978 0.961 0.997 0.978 0.0081 0.008113 0.008441 0.998523		215	137			524	215	765	89				
Class: SSH- 0.997 0.999 0.961098 0.999978 0.961 0.997 0.978 0.0081 0.008113 0.008441 0.998523	Class: SQL Injection	0.8	0.986	0.000426	0.999999	0.000	0.8	0.000	7.21E-	5.77E-06	0.013524	0.893241	
			482			426		852	06				
Bruteforce 377 669 098 377 902 34	Class: SSH-	0.997	0.999	0.961098	0.999978	0.961	0.997	0.978	0.0081	0.008113	0.008441	0.998523	
	Bruteforce	377	669			098	377	902	34				

Table 33 Performance per-class for GLM

Table 34 Confusion Matrix for GLM (Test Data)

	Benign	Bot	Brute Force - Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	130618	4297	10055	6996	1712	2	23506	3833	2065	520	1076	61	120839	4586	1107
	6	9	3	6	9		4		0		3		9	3	
Bot	1301	4132 1	0	0	0	0	0	0	14	0	0	0	724	0	0
Brute Force -Web	5	0	73	32	0	0	4	0	0	0	0	0	1	50	0
Brute Force -XSS	0	0	0	65	0	0	1	0	0	0	0	0	1	1	0
DDOS attack-HOIC	0	0	0	0	5965 1	0	0	0	0	0	0	0	5	2	0
DDOS attack-LOIC-	0	0	0	0	0	516	0	0	0	0	0	0	3	0	0
DDoS attacks-LOIC-	0	0	0	25	0	220	17235 0	0	0	0	0	0	11	3	0
DoS attacks- GoldenEye	1	0	0	0	0	0	0	1232 3	66	0	31	0	0	0	0
DoS attacks-Hulk	0	0	31	2	0	0	0	116	4304 9	0	0	0	0	361	0
DoS attacks- SlowHTTPTest	0	0	0	0	0	0	0	0	0	12	0	4	0	0	0
DoS attacks-Slowloris	0	0	0	3	0	0	0	36	25	2	2891	0	2	13	0
FTP-BruteForce	0	0	0	0	0	0	0	0	0	9	0	6	0	0	0
Infilteration	9779	566	810	3762	172	1	1116	375	456	16	187	2	24078	580	32
SQL Injection	0	0	1	3	0	0	0	0	0	0	0	0	1	20	0
SSH-Bruteforce	0	0	0	0	0	0	0	0	55	1	0	0	1	17	2814 0



We can observe that GLM has failed in multiple classes, which are very similar to the GBM model, but with additional classes that have very low precision, which is DoS attacks-Sloworis.

7.4.3 Deep Learning (Neural Networks)

The package used for the Deep neural network is from h2o in Rstudio. This package uses the feedforward method artificial network. The network is capable of having a huge number of hidden layers that have neurons, rectifiers, and activation functions. This function has a lot of features that assist the training of models in deep learning. Some of them are adaptive learning and grid search, which can increase and facilitate a high accuracy with the model predictions and classifications. Finally, the function is highly optimized as it uses multithreading (async), which allows utilization of the system resources. Similar to GBM, in order to build the model, we have to provide Training and validation Data. In building the model, we used the below inputs.

Parameter	Value	Description
model_id	NNModel	Destination id for this model; auto-generated if not specified.
nfolds	15	Number of folds for K-fold cross-validation (0 to disable or >= 2).
fold_assignment	Random	Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify the folds based on the response variable, for classification problems.
response_column	Class	Response variable column.
ignored_columns		Names of columns to ignore for training.
score_each_iteration	true	Whether to score during each iteration of model training.
overwrite_with_best_model	false	If enabled, override the final model with the best model found during training.

Table 35 Model Parameters for DeepLearning

	RectifierWithDropout	Activation function.								
activation										
hidden	200, 200	Hidden layer sizes (e.g. [100, 100]).								
	3.540479626199161	How many times the dataset should be iterated (streamed), can be								
epochs	5.540479626199161	fractional.								
	10	Seed for random numbers (affects sampling) - Note: only								
seed	42	reproducible when running single threaded.								
distribution	multinomial	Distribution function								
		Early stopping based on convergence of stopping_metric. Stop if								
stopping rounds	0	simple moving average of length k of the stopping_metric does not								
		improve for k:=stopping_rounds scoring events (0 to disable)								
_		Metric to use for early stopping (AUTO: logloss for classification,								
		deviance for regression and anonomaly_score for Isolation Forest).								
stopping_metric		Note that custom and custom_increasing can only be used in GBM								
		and DRF with the Python client.								
		Whether to export Neural Network weights and biases to H2O								
export_weights_and_biases	true	Frames.								
categorical_encoding	OneHotInternal	Encoding scheme for categorical features								

Training Confusion Matrix:

Table 36 Training Confusion Matrix for Deep Learning

	Benign	Bot	Brute Force - Web	Brute Force - XSS	DDOS attack- HOIC	DDOS attack- LOIC-UDP	DDoS attacks-	DoS attacks- GoldenEye	DoS attacks- Hulk	DoS attacks- SlowHTTPTest	DoS attacks- Slowloris	FTP- BrutaEnrra	Infilteratio	SQL Tniertion	SSH- Bruteforce	Error	Rate	Precision
Benign	560	27	14	39	7	4	49	2	0	Θ	0	0	0	0	Θ	0.202 3	142 / 702	0.5 4
Bot	2	64 7	Θ	0	Θ	Θ	Θ	0	0	Θ	Θ	0	Θ	Θ	Θ	0.003 1	2 / 649	0.8 9
Brute Force -Web	Θ	0	44 1	186	Θ	Θ	0	0	0	Θ	Θ	0	Θ	0	Θ	0.296 7	186 / 627	0.5 2
Brute Force -XSS	Θ	0	14	664	0	0	Θ	0	0	Θ	Θ	0	Θ	0	0	0.020 6	14 / 678	0.5 2
DDOS attack-HOIC	Θ	0	0	0	66 7	0	0	0	0	Θ	Θ	0	Θ	0	0	Θ	0 / 667	0.9 8
DDOS attack- LOIC-UDP	1	0	0	0	0	63 1	0	Θ	Θ	0	0	0	0	0	Θ	0.001 6	1 / 632	0.9 8
DDoS attacks- LOIC-HTTP	Θ	0	0	4	0	2	664	Θ	0	0	0	0	0	0	Θ	0.009	6 / 670	0.9 2
DoS attacks- GoldenEye	Θ	0	0	0	0	0	o	65 3	0	0	1	0	Θ	0	0	0.001 5	1 / 654	0.9 6
DoS attacks- Hulk	Θ	0	1	0	0	0	0	3	652	0	0	0	Θ	0	0	0.006 1	4 / 656	0.9 8
DoS attacks- SlowHTTPTes	Θ	0	0	0	Θ	Θ	0	Θ	Θ	655	Θ	0	Θ	0	Θ	Θ	0 / 655	0.5
t DoS attacks- Slowloris	8	0	2	4	Θ	Θ	0	13	4	0	628	Θ	Θ	0	Θ	0.047	31 / 659	1
FTP- BruteForce	0	0	0	0	0	0	0	Θ	0	658	0	0	0	0	Θ	1	658 / 658	NaN
Infilterati on	475	50	4	83	7	8	7	9	7	0	0	0	Θ	Θ	1	1	651 / 651	NaN
SQL Injection	Θ	0	36 5	301	0	Θ	0	Θ	0	O	0	0	0	Θ	Θ	1	666 / 666	NaN
SSH- Bruteforce	Θ	0	Θ	0	Θ	0	0	0	3	Θ	0	0	0	0	68 1	0.004 4	3 / 684	1
Total	104 6	72 4	84 1	128 1	68 1	64 5	720	68 0	666	131 3	629	Θ	Θ	Θ	68 2	0.238 7	2,36 5 / 9,90 8	
Recall	0.8	1	0. 7	0.9 8	1	1	0.9 9	1	0.9 9	1	0.9 5	Θ	Θ	0	1		5	

Cross-validation Matrix

Table 37 Cross-validation Matrix for Deep Learning

	Benign	Bot	Brute Force - Web	Brute Force - XSS	DDOS attack- HOIC	DDOS attack- LOIC-UDP	DDoS attacks- LOIC-HTTP	DoS attacks- GoldenEye	DoS attacks- Hulk	DoS attacks-	DoS attacks- Slowloris	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce	Error	Rate	Precision
Benign	8256 46	348 70	161 12	541 41	111 56	343 0	6816 7	587 7	611	3 2	763	0	2 0	0	200	0.19 14	195,379 / 1,021,0 25	0.9 9
Bot	25	144 24	0	0	0	4	0	0	0	0	0	0	0	0	0	0.00 2	29 / 14,453	0.2 9
Brute Force -	0	0	43	12	0	0	0	0	0	0	0	0	0	0	0	0.21 82	Dec-55	0
Web Brute Force -XSS	0	0	1	21	0	0	0	0	0	0	0	0	0	0	0	0.04 55	22-Jan	0
DDOS attack-	0	0	0	0	198 86	0	0	0	0	0	0	0	0	0	0	0	0 / 19,886	0.6 4
HOIC DDOS attack- LOIC-UDP	1	0	0	0	0	172	0	0	0	0	0	0	0	0	0	0.00 58	1 / 173	0.0 4
DDoS attacks- LOIC- HTTP	6	0	0	336	5	79	5711 0	0	0	0	0	0	0	0	0	0.00 74	426 / 57,536	0.4 5
DoS attacks- GoldenEye	1	0	0	0	0	0	0	413 6	0	0	3	0	0	0	0	0.00 1	4 / 4,140	0.4
DoS attacks- Hulk DoS	0	0	2	1	0	0	0	54	144 57	0	5	0	0	0	0	0.00 43	62 / 14,519	0.9 5
attacks- SlowHTTP Test	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0/5	0.1
DoS attacks- Slowloris	15	0	0	4	1	2	0	15	8	0	945	0	0	0	0	0.04 55	45 / 990	0.5 5
FTP- BruteForc e	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	1	5-May	Na N
Infilteratio n	9979	128 8	145	170 2	76	222	275	179	83	8	11	0	2	0	7	0.99 99	13,975 / 13,977	0.0 9
SQL Injection	0	0	7	1	0	0	0	0	0	0	0	0	0	0	0	1	8-Aug	Na N
SSH- Bruteforce	0	0	0	0	0	2	0	0	13	1	0	0	0	0	938 8	0.00 17	16 / 9,404	0.9 8
Total	8356 73	505 82	163 10	562 18	311 24	391 1	1255 52	102 61	151 72	5 1	172 7	0	2 2	0	959 5	0.18 16	209,963 / 1,156,1 98	
Recall	0.81	1	0.78	0.95	1	0.9 9	0.99	1	1	1	0.9 5	0	0	0	1			

The Training and Validation Matrices have different values in precision for each class. Some classes had a very low precision, especially Benign, which has a precision of 0.5, but staringly, it got ~0.9 in the validation matrix. Some classes were not detected at all in both Matrices. Anyway, we will have the model test on the test Data.

127

Performance table with test Data:

Accuracy	Карра	AccuracyLower	AccuracyUpper
AccuracyNull			
0.8178779	0.4877315	0.8174714	0.8182840
0.8830848			
AccuracyPValue	McnemarPValu	ıe	
1.0000000	NaN		

The overall accuracy of the model is performing well in comparison to the Training metrics. Even though the model has failed in many classes, as we can see in the table below. However, the high accuracy value may be attributed to the high precision of the benign class.

	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.8080	0.9259	0.988005	0.389719	0.9880	0.8080	0.8890	0.8830	0.713567	0.722229	0.866972
	39	05			05	39	06	85			
Class: Bot	0.9977	0.9681	0.284188	0.999971	0.2841	0.9977	0.4423	0.0125	0.012473	0.043889	0.982974
	63	86			88	63	76	01			
Class: Brute Force -Web	0.7515	0.9860	0.002558	0.999988	0.0025	0.7515	0.0050	4.76E-	3.57E-05	0.013975	0.868788
	15	6			58	15	99	05			
Class: Brute Force -XSS	0.9852	0.9509	0.000394	1	0.0003	0.9852	0.0007	1.96E-	1.93E-05	0.049088	0.968112
	94	31			94	94	87	05			
Class: DDOS attack-	0.9999	0.9900	0.638373	0.999999	0.6383	0.9999	0.7792	0.0171	0.017198	0.026941	0.99501
HOIC	33	87			73	33	56	99			
Class: DDOS attack-	0.9961	0.9967	0.043329	0.999999	0.0433	0.9961	0.0830	0.0001	0.000149	0.00344	0.996427
LOIC-UDP	46	09			29	46	46	5			

Table 39 Per-Class Accuracy for Deep Learning

Class: DDoS attacks-	0.9927	0.9375	0.454451	0.999597	0.4544	0.9927	0.6234	0.0497	0.049404	0.108711	0.965181
	70	07			54	76	02	62			
LOIC-HTTP	76	87			51	76	93	63			
Class: DoS attacks-	0.9987	0.9948	0.408826	0.999995	0.4088	0.9987	0.5801	0.0035	0.003576	0.008748	0.996761
GoldenEye	12	1			26	12	61	81			
Class: DoS attacks-Hulk	0.9966	0.9993	0.951411	0.999957	0.9514	0.9966	0.9734	0.0125	0.012515	0.013155	0.997978
	02	53			11	02	83	58			
Class: DoS attacks-	1	0.9999	0.1	1	0.1	1	0.1818	4.61E-	4.61E-06	4.61E-05	0.999979
SlowHTTPTest		58					18	06			
Class: DoS attacks-	0.9552	0.9993	0.559519	0.999962	0.5595	0.9552	0.7056	0.0008	0.000818	0.001463	0.977302
Slowloris	49	55			19	49	92	57			
Class: FTP-BruteForce	0	1	NA	0.999996	NA	0	NA	4.32E-	0	0	0.5
								06			
Class: Infilteration	0.0004	0.9999	0.261538	0.987916	0.2615	0.0004	0.0008	0.0120	4.90E-06	1.87E-05	0.500196
	05	86			38	05	1	89			
Class: SQL Injection	0	1	NA	0.999993	NA	0	NA	7.21E-	0	0	0.5
								06			
Class: SSH-Bruteforce	0.9973	0.9998	0.977796	0.999978	0.9777	0.9973	0.9874	0.0081	0.008113	0.008297	0.998596
	77	14			96	77	9	34			

Table 40 Confusion Matrix for Deep Learning with Test Data

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	247508 3	10495 1	4791 7	16417 0	3353 5	1051 2	20487 7	1717 7	1886	122	2180	0	46	0	619
Bot	81	43263	0	0	0	15	0	1	0	0	0	0	0	0	0
Brute Force -Web	0	0	124	41	0	0	0	0	0	0	0	0	0	0	0
Brute Force -XSS	0	0	1	67	0	0	0	0	0	0	0	0	0	0	0
DDOS attack-HOIC	0	0	2	0	5965 4	2	0	0	0	0	0	0	0	0	0
DDOS attack-LOIC-UDP	2	0	0	0	0	517	0	0	0	0	0	0	0	0	0
DDoS attacks-LOIC-	33	0	0	979	14	221	17136 2	0	0	0	0	0	0	0	0
DoS attacks-GoldenEye	1	0	0	0	0	0	0	1240 5	3	0	12	0	0	0	0
DoS attacks-Hulk	2	0	6	13	0	0	0	117	4341 1	0	10	0	0	0	0
DoS attacks- SlowHTTPTest	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0
DoS attacks-Slowloris	40	0	6	10	5	0	0	53	17	0	2839	0	2	0	0
FTP-BruteForce	0	0	0	0	0	0	0	0	0	15	0	0	0	0	0
Infilteration	29889	4020	407	4972	239	658	836	590	245	6	33	0	17	0	20

SQL Injection	0	0	11	14	0	0	0	0	0	0	0	0	0	0	0
SSH-Bruteforce	0	0	0	0	0	7	0	0	66	1	0	0	0	0	2814 0

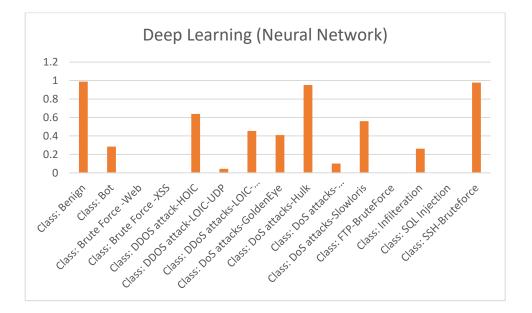


Figure 32 Per-Class Performance for Deep Learning

As seen in the figure above, the deep learning model has failed many classes and could not classify them with 0 precision. Even though the model's overall accuracy is over ~0.8, which means that the model can perform on the majority of the data, it will misclassify minor classes.

7.4.4 Random Forest (Ranger)

Ranger is one of the fastest implementations for RStudio that exists in standard CRAN packages. The Ranger function is extremely fast, and it can handle large data with high dimensionality even in commodity hardware, as the algorithm is highly optimized. The algorithm can have different functions based on the scenario as it supports classification, regression, and prediction.

The model has followed the same procedure as the previous models, and we have used the parameters below to build the model.

sification
15

Table 41 Parameter Inputs for Random Forest (Ranger)

Table 42 Confusion Matrix for Random Forest (Ranger) - Training Data

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks-	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce	Precision
Benign	3335 5	0	0	0	0	0	4	0	0	0	0	0	390	0	0	0.99
Bot	0	3452 1	0	0	0	0	0	0	0	0	0	0	0	0	0	1.00
Brute Force -Web	12	0	3401 2	0	0	0	0	0	0	0	0	0	1	0	0	1.00
Brute Force -XSS	0	0	0	3427 4	0	0	0	0	0	0	0	0	0	0	0	1.00
DDOS attack-HOIC	0	0	0	0	3452 1	0	0	0	0	0	0	0	0	0	0	1.00
DDOS attack-LOIC- UDP	0	0	0	0	0	3452 1	0	0	0	0	0	0	0	0	0	1.00

DDoS attacks-LOIC-	2	0	0	0	0	0	3451	0	0	0	0	0	0	0	0	1.00
НТТР							7									
DoS attacks-	0	0	0	0	0	0	0	3452	0	0	0	0	0	0	0	1.00
GoldenEye								1								
DoS attacks-Hulk	0	0	0	0	0	0	0	0	3452	0	0	0	0	0	0	1.00
									1							
DoS attacks-	0	0	0	0	0	0	0	0	0	1469	0	0	1	0	0	1.00
SlowHTTPTest										2						
DoS attacks-Slowloris	0	0	0	0	0	0	0	0	0	0	3452	0	1	0	0	1.00
											1					
FTP-BruteForce	0	0	0	0	0	0	0	0	0	1982	0	3452	0	0	3	0.64
										9		1				
Infilteration	1151	0	0	0	0	0	0	0	0	0	0	0	3412	0	0	0.97
													8			
SQL Injection	1	0	509	247	0	0	0	0	0	0	0	0	0	3452	0	0.98
														1		
SSH-Bruteforce	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3451	1.00
															8	

On the training set, we can see that the model is very promising, and the per-class precision is around ~1 for almost all the classes except for the FTP-brute force. We need to validate these metrics with actual test data because we might have an overfitting issue with results mostly approaching 1.

Performance table with test Data:

Accuracy	Карра	AccuracyLower	AccuracyUpper
AccuracyNull			
0.7893861	0.4687281	0.7889566	0.7898151
0.8830848			
AccuracyPValue	McnemarPValu	e	
1.0000000	NaN		

 Table 43 Overall Performance for Random Forest (Ranger)

With the test data, we have some changes that we can immediately notice. First, the accuracy is around ~0.79., and the majority of the classes have a precision approaching 1, but now we have more classes that have less precision, which are BruteForce-Web, BruteForce-XSS, FTP-BruteForce, and Infiltration. It's important to

note that the results of the training phase should not be used as an indicator, and testing must always be conducted.

	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.7640	0.9813	0.996783	0.355109	0.996	0.764	0.865	0.8830	0.674718	0.676895	0.872709
	46	73			783	046	034	85			
Class: Bot	0.9998	0.9999	0.995362	0.999998	0.995	0.999	0.997	0.0125	0.012499	0.012557	0.999901
	62	41			362	862	607	01			
Class: Brute Force -Web	0.9818	0.9994	0.074074	0.999999	0.074	0.981	0.137	4.76E-	4.67E-05	0.000631	0.990617
	18	16			074	818	755	05			
Class: Brute Force -XSS	0.9264	0.9998	0.144828	0.999999	0.144	0.926	0.250	1.96E-	1.82E-05	0.000125	0.963182
	71	93			828	471	497	05			
Class: DDOS attack-	1	0.9998	0.989107	1	0.989	1	0.994	0.0171	0.017199	0.017389	0.999904
HOIC		07			107		524	99			
Class: DDOS attack-	1	0.9999	0.732017	1	0.732	1	0.845	0.0001	0.00015	0.000204	0.999973
LOIC-UDP		45			017		277	5			
Class: DDoS attacks-	0.9984	0.9994	0.990159	0.999921	0.990	0.998	0.994	0.0497	0.049688	0.050182	0.998987
LOIC-HTTP	94	8			159	494	309	63			
Class: DoS attacks-	1	0.9999	0.990037	1	0.990	1	0.994	0.0035	0.003581	0.003617	0.999982
GoldenEye		64			037		993	81			
Class: DoS attacks-Hulk	0.9999	0.9999	0.998808	0.999999	0.998	0.999	0.999	0.0125	0.012557	0.012572	0.999946
	08	85			808	908	358	58			
Class: DoS attacks-	0.125	0.9999	0.25	0.999996	0.25	0.125	0.166	4.61E-	5.77E-07	2.31E-06	0.562499
SlowHTTPTest		98					667	06			
Class: DoS attacks-	1	0.9999	0.925857	1	0.925	1	0.961	0.0008	0.000857	0.000925	0.999966
Slowloris		31			857		501	57			
Class: FTP-BruteForce	0.8666	0.9999	0.325	0.999999	0.325	0.866	0.472	4.32E-	3.75E-06	1.15E-05	0.933329
	67	92				667	727	06			
Class: Infilteration	0.8212	0.7907	0.04582	0.997241	0.045	0.821	0.086	0.0120	0.009928	0.216672	0.80598
	34	26			82	234	797	89			
Class: SQL Injection	0.92	0.9999	0.095436	0.999999	0.095	0.92	0.172	7.21E-	6.63E-06	6.95E-05	0.959969
		37			436		932	06			
Class: SSH-Bruteforce	0.9999	0.9999	0.998408	1	0.998	0.999	0.999	0.0081	0.008134	0.008147	0.999976
	65	87			408	965	185	34			
	I	I	I					1			1

Table 44 Per-Class Performance for Random Forest (Ranger)

Table 45 Confusion Matrix for Test Data for Random Forest (Ranger)

	Benign	Bot	Brute Force - Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	234033 1	202	2013	372	653	5	1713	119	51	3	236	10	71711 0	212	45
Bot	6	4335 4	0	0	0	0	0	0	0	0	0	0	0	0	0
Brute Force -Web	1	0	162	0	0	0	0	0	0	0	0	0	0	2	0
Brute Force -XSS	1	0	3	63	0	0	0	0	0	0	0	0	0	1	0
DDOS attack-HOIC	0	0	0	0	5965 8	0	0	0	0	0	0	0	0	0	0
DDOS attack-LOIC-UDP	0	0	0	0	0	519	0	0	0	0	0	0	0	0	0
DDoS attacks-LOIC-	71	0	1	0	0	185	17234 9	0	0	0	0	0	3	0	0
DoS attacks-GoldenEye	0	0	0	0	0	0	0	1242 1	0	0	0	0	0	0	0
DoS attacks-Hulk	0	0	0	0	0	0	0	4	4355 5	0	0	0	0	0	0
DoS attacks- SlowHTTPTest	0	0	0	0	0	0	0	0	0	2	0	14	0	0	0
DoS attacks-Slowloris	0	0	0	0	0	0	0	0	0	0	2972	0	0	0	0
FTP-BruteForce	0	0	0	0	0	0	0	0	0	2	0	13	0	0	0
Infilteration	7475	0	6	0	4	0	0	2	1	1	2	2	34436	3	0
SQL Injection	0	0	2	0	0	0	0	0	0	0	0	0	0	23	0
SSH-Bruteforce	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2821 3
Random Forest - Ranger 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2															

Figure 33 Per-class Performance for Random Forest (Ranger)

Precision

As discussed earlier, the Random Forest Model performed very well in most of the classes, but in some classes, the model failed with a very low precision.

7.4.5 Distributed Random Forest (DRF)

One of the powerful classification Models is the distributed Random Forest (DRF). When the function is invoked, the DRF will generate a forest and its primary tasks classification or regression. The more trees that the function generates, the less variance will be present in the results.

Model Parameters:

Table 46 Model Parameters for DRF

Parameter	Value	Description
model_id	RFModel	Destination id for this model; auto-generated if not specified.
fold_assignment		Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify the folds based on the response variable, for classification problems.
response_column	Class	Response variable column.
ignored_columns		Names of columns to ignore for training.
ntrees	100	Number of trees.
max_depth	500	Maximum tree depth (0 for unlimited).
min_rows	10	Fewest allowed (weighted) observations in a leaf.
r2_stopping	1.7976931348623157e+308	r2_stopping is no longer supported and will be ignored if set - please use stopping_rounds, stopping_metric and stopping_tolerance instead. Previous version of H2O would stop making trees when the R^2 metric equals or exceeds this
stopping_metric		Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anonomaly_score for Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client.
seed	-5640707449536764199	Seed for pseudo random number generator (if applicable)
binomial_double_trees	true	For binary classification: Build 2x as many trees (one per class) - can lead to higher accuracy.
histogram_type	UniformAdaptive	What type of histogram to use for finding optimal split points

categorical_encoding	Enum	Encoding scheme for categorical features
calibration_frame	ValidateSampel_sid_903c_23	Calibration frame for Platt Scaling
distribution	multinomial	Distribution function

Training Confusion Matrix:

Table 47	Training	Confusion	Matrix	for DRF
----------	----------	-----------	--------	---------

	Benign	Bot	Brute Force - Web	Brute Force - XSS	DDOS attack- HOIC	DDOS attack- LOIC-UDP	DDoS attacks-	DoS attacks- GoldenEye	DoS attacks- Hulk	DoS attacks- SlowHTTPTest	DoS attacks- Slowloris	FTP- BruteForce	Infilteratio n	SQL Injection	SSH- Bruteforce	Error	Rate	Precision
Benign	257 45	2	466	10	9	Θ	27	Θ	4	Θ	9	0	822 7	22	Θ	0.2 542	8,77 6 / 34,5 21	0. 77
Bot	7	345 12	0	0	Θ	0	0	Θ	0	0	0	0	2	0	0	0.0 003	9 / 34,5 21	1
Brute Force - Web	0	0	335 42	195	Ø	0	Ø	O	Θ	Ø	0	0	0	784	Ø	0.0 284	979 / 34,5 21	0. 95
Brute Force - XSS	Θ	Θ	104 3	332 31	Ø	Θ	Θ	O	O	Ø	0	0	0	247	Ø	0.0 374	1,29 0 / 34,5 21	0. 99
DDOS attack- HOIC	0	0	0	O	345 21	0	Θ	Θ	Θ	Θ	0	Θ	0	0	0	0	0 / 34,5 21	1
DDOS attack- LOIC-UDP DDoS	0	0	0	0	Θ	345 21	O	Θ	Θ	Θ	0	Θ	0	0	Θ	0	0 / 34,5 21	1
attacks- LOIC- HTTP	15	Θ	28	1	0	46	344 25	0	0	0	0	0	1	5	0	0.0 028	96 / 34,5 21	1
DoS attacks- GoldenEy e	Θ	Θ	0	1	Ø	Ø	o	345 00	13	O	7	0	0	O	0	0.0 006	21 / 34,5 21	1
DoS attacks- Hulk	Θ	Θ	0	Θ	Θ	Θ	Θ	22	344 99	Θ	Θ	Θ	0	Θ	Θ	0.0 006	22 / 34,5 21	1
DoS attacks- SlowHTTP Test	Θ	Θ	Θ	0	Θ	Θ	Θ	Θ	Θ	187 43	0	157 78	Θ	0	Θ	0.4 571	15,7 78 / 34,5 21	0. 95
DoS attacks- Slowlori s	Θ	Θ	1	0	0	Θ	Θ	3	0	0	345 10	0	6	1	Θ	0.0 003	11 / 34,5 21	1
FTP- BruteFor ce	0	0	0	0	0	0	0	0	0	946	0	335 75	0	0	0	0.0 274	946 / 34,5 21	0. 68
Infilter ation	758 3	1	218	13	2	4	15	4	Θ	3	0	o	266 63	15	Ø	0.2 276	7,85 8 / 34,5 21	0. 76
SQL Injectio n	0	0	0	0	0	0	0	0	0	0	0	0	0	345 21	0	Θ	21 0 / 34,5 21	0. 97
SSH- Brutefor ce	0	0	0	0	Ø	Ø	Ø	O	4	Ø	0	3	0	o	345 14	0.0 002	7 / 34,5 21	1
Total	333 50	345 15	352 98	334 51	345 32	345 71	344 67	345 29	345 20	196 92	345 26	493 56	348 99	355 95	345 14	0.0 691	35,7 93 / 517, 815	
Recall	0.7 5	1	0.9 7	0.9 6	1	1	1	1	1	0.5 4	1	0.9 7	0.7 7	1	1			

Validation Matrix:

Table 48 Validation Matrix for DRF

	Benign	Bot	Brute Force - Web	Brute Force - XSS	DDOS attack- HOIC	DDOS attack- IOTC-UND	DDoS attacks-	DoS attacks- GoldenEye	DoS attacks- Hulk	DoS attacks- slowHTTDTec+	DoS attacks- Slowloris	FTP- RrutaEorra	Infilteratio n	SQL Tniertion	SSH- Bruteforce	Error	Rate	Precision
Benign	7532 69	78	129 96	22 2	209	8	102 4	80	128	0	47 7	1	2518 93	63 8	2	0.26 22	267,75 6 / 1,021, 025	1
Bot	4	144 48	0	Θ	0	0	0	0	0	Θ	Θ	Θ	1	0	Θ	0.00 03	5 / 14,453	0. 99
Brute Force - Web	Θ	0	55	0	0	0	0	Θ	0	Θ	0	Θ	Θ	Θ	0	Θ	0 / 55	0
Brute Force - XSS	Θ	Θ	1	20	0	0	0	0	0	Θ	0	Θ	Θ	1	0	0.09	22-Feb	0. 08
DDOS attack- HOIC	Θ	Θ	Θ	Θ	198 86	0	Θ	Θ	Θ	Θ	Θ	0	Θ	0	0	Θ	0 / 19,886	0. 99
DDOS attack- LOIC-UDP	Θ	Θ	0	Θ	0	17 3	0	0	0	Θ	Θ	Θ	0	0	0	Θ	0 / 173	0. 65
DDoS attacks- LOIC- HTTP	39	0	46	0	0	85	573 62	0	0	Θ	Θ	0	3	1	0	0.00 3	174 / 57,536	0. 98
DoS attacks- GoldenEy e	0	Θ	Θ	Θ	0	Θ	Θ	41 39	Θ	0	1	0	Θ	Θ	Θ	0.00 02	1 / 4,140	0. 98
e DoS attacks- Hulk	Θ	Θ	0	Θ	0	0	Θ	7	145 12	Θ	Θ	0	0	Θ	Θ	0.00 05	7 / 14,519	0. 99
DoS attacks- SlowHTTP Test	Ø	Θ	0	Θ	0	0	0	Ø	0	3	Θ	2	Θ	Θ	0	0.4	5-Feb	0. 5
DoS attacks- Slowlori s	0	Θ	0	0	0	0	0	0	0	0	98 9	0	1	0	0	0.00 1	1 / 990	0. 67
FTP- BruteFor ce	Θ	O	Θ	Θ	0	0	0	0	0	2	0	3	0	0	0	0.4	5-Feb	0. 33
Infilter ation	3228	1	114	2	3	0	10	5	0	1	1	2	1060 6	4	0	0.24 12	3,371 / 13,977	0. 04
SQL Injectio n	Θ	Θ	0	Θ	0	Θ	Θ	0	0	Θ	Θ	0	0	8	Θ	Θ	0 / 8	0. 01
SSH- Brutefor ce	Θ	O	Θ	0	0	0	0	0	1	Θ	0	1	0	0	94 02	0.00 02	2 / 9,404	1
Total	7565 40	145 27	132 12	24 4	200 98	26 6	583 96	42 31	146 41	6	14 68	9	2625 04	65 2	94 04	0.23 47	271,32 3 / 1,156, 198	
Recall	0.74	1	1	0. 91	1	1	1	1	1	0. 6	1	0. 6	0.76	1	1			

After observing the Training and the validation confusion matrices, we see a lot of contradictions. The first one is that the training matrix has almost all the classes have a precision of almost 1, except for the benign, where the precision is around ~ 0.77 .

In contrast, the validation matrix has benign precision with a value of 1, and the rest of the classes also approach 1, except for DoS attacks-SlowHTTPTest, DoS attacks-Slowloris, FTP-BruteForce, Infiltration, and SQL Injection. The precision of these classes is very low or almost 0.

Overall Performance with Test Data:

After Inspecting the overall accuracy of the mode and looking at the precision for each class, we say that the model is performing well in most of the classes, but in some classes, it failed to predict, and that impacts the overall accuracy, which is ~0.76. If we observe the precision for each class, we can see that the model has the majority of the classes with precision approaching 1, except for Brute Force -Web, Brute Force -XSS, DoS attacks-SlowHTTPTest, DoS attacks-Slowloris, FTP-BruteForce, Infiltration, and SQL Injection. The precision for these classes is low or approaching zero.

Accuracy	Карра	AccuracyLower	AccuracyUpper
AccuracyNull			
0.7656437	0.4366761	0.7651976	0.7660894
0.8830848			
AccuracyPValue	McnemarPValu	ie	
1.0000000	NaN		

	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.7380	0.9761	0.995734	0.330358	0.995	0.738	0.847	0.8830	0.651756	0.654548	0.85708
	44	15			734	044	739	85			
Class: Bot	0.9994	0.9999	0.9939	0.999994	0.993	0.999	0.996	0.0125	0.012494	0.012571	0.999707
	93	22			9	493	688	01			
Class: Brute Force -Web	0.9818	0.9886	0.00411	0.999999	0.004	0.981	0.008	4.76E-	4.67E-05	0.011364	0.98525
	18	82			11	818	186	05			
Class: Brute Force -XSS	0.9264	0.9997	0.077874	0.999999	0.077	0.926	0.143	1.96E-	1.82E-05	0.000233	0.963128
	71	85			874	471	672	05			
Class: DDOS attack-	1	0.9998	0.989271	1	0.989	1	0.994	0.0171	0.017199	0.017386	0.999905
HOIC		1			271		607	99			
Class: DDOS attack-	1	0.9999	0.65283	1	0.652	1	0.789	0.0001	0.00015	0.000229	0.99996
LOIC-UDP		2			83		954	5			
Class: DDoS attacks-	0.9970	0.9990	0.981359	0.999845	0.981	0.997	0.989	0.0497	0.049616	0.050559	0.99803
LOIC-HTTP	51	08			359	051	143	63			
Class: DoS attacks-	0.9997	0.9999	0.982204	0.999999	0.982	0.999	0.990	0.0035	0.00358	0.003645	0.999847
GoldenEye	58	35			204	758	903	81			
Class: DoS attacks-Hulk	0.9996	0.9998	0.990582	0.999996	0.990	0.999	0.995	0.0125	0.012554	0.012673	0.999767
	56	79			582	656	098	58			
Class: DoS attacks-	0.1875	0.9999	0.230769	0.999996	0.230	0.187	0.206	4.61E-	8.65E-07	3.75E-06	0.593749
SlowHTTPTest		97			769	5	897	06			
Class: DoS attacks-	1	0.9996	0.69913	1	0.699	1	0.822	0.0008	0.000857	0.001226	0.999815
Slowloris		31			13		927	57			
Class: FTP-BruteForce	0.8666	0.9999	0.317073	0.999999	0.317	0.866	0.464	4.32E-	3.75E-06	1.18E-05	0.933329
	67	92			073	667	286	06			
Class: Infilteration	0.7635	0.7797	0.040693	0.996303	0.040	0.763	0.077	0.0120	0.009231	0.226841	0.771648
	7	26			693	57	268	89			
Class: SQL Injection	0.92	0.9994	0.011569	0.999999	0.011	0.92	0.022	7.21E-	6.63E-06	0.000573	0.959717
		33			569		851	06			
Class: SSH-Bruteforce	0.9995	0.9999	0.999362	0.999997	0.999	0.999	0.999	0.0081	0.008131	0.008136	0.999785
	75	95			362	575	468	34			

Table 50 Per-Class Performance for DRF with Test Data

Table 51 Confusion Matrix (DRF) for Test Data

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	226068 5	21	0	0	0	0	89	0	0	0	0	0	9576	0	0
Bot	263	4333 8	0	0	0	0	0	0	0	0	0	0	3	0	0
Brute Force -Web	38812	0	162	3	0	0	158	0	0	0	0	0	281	1	0
Brute Force -XSS	740	0	1	63	0	0	0	0	0	0	0	0	4	1	0
DDOS attack-HOIC	644	0	0	0	5965 8	0	0	0	0	0	0	0	3	0	0
DDOS attack-LOIC-UDP	28	0	0	0	0	519	246	0	0	0	0	0	2	0	0
DDoS attacks-LOIC- HTTP	3250	0	0	0	0	0	17210 0	0	0	0	0	0	19	0	0
DoS attacks-GoldenEye	204	0	0	0	0	0	0	1241 8	15	0	0	0	6	0	0
DoS attacks-Hulk	398	0	0	0	0	0	0	3	4354 4	0	0	0	2	0	11
DoS attacks- SlowHTTPTest	6	0	0	0	0	0	0	0	0	3	0	2	2	0	0
DoS attacks-Slowloris	1279	0	0	0	0	0	0	0	0	0	2972	0	0	0	0
FTP-BruteForce	12	0	0	0	0	0	0	0	0	13	0	13	2	0	1
Infilteration	754799	1	0	0	0	0	6	0	0	0	0	0	3201 8	0	0
SQL Injection	1937	0	2	2	0	0	10	0	0	0	0	0	14	23	0
SSH-Bruteforce	18	0	0	0	0	0	0	0	0	0	0	0	0	0	2820 2

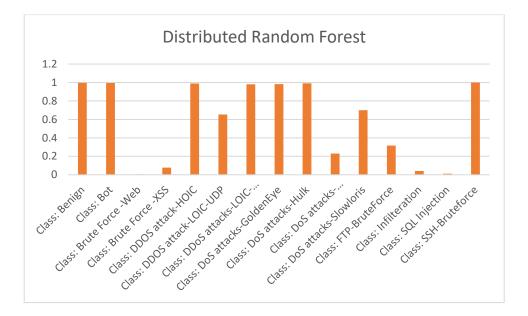


Figure 34 Performance for DRF

As discussed earlier, we can see on the graph above that the Model is performing well except for some classes that were totally misclassified or have a very low precision.

7.4.6 Portfolio Classifier (Random Forest)

As discussed earlier and explained, the portfolio classifier is built using multiple classifiers; we will follow the pseudo-code below for the model build.

7.4.6.1 Build mode:

We will follow the pseudo-code that is below to build the portfolio classifier. For more details, please refer to the source code in the appendix.

Load Models (GBM,GLM,DeepLearning,RF,DRF)

Load Training Data ->TD

For each Model:

Model.predict(TD)->Predictions

Convert Predictions to binary:

For each prediction:

If prediction is True:

Add Model Digit as 1

Else

Add Model Digit as 0

Add Binary Codes to the TD

Build Model to predict the binary codes->Portfolio Classifier

Figure 35 Build Master Model

7.4.6.2 Classify using the portfolio Model.

The same goes for prediction. We will use the following step to retrieve the prediction from the model.

Load Models (GBM,GLM,DeepLearning,RF,DRF)
Load Portfolio Classifier
Load test Data->TD
Portfolio Classifier.predict (TD)->Binary Prediction
For each in binary prediction:
Identify the model for each digit
If the digit is 1:
Model.predict(TD)
Else :
Ignore Model
Get vote for successful models that can participate in the
vote.

Figure 36Classification Using Master Model

Please note that these pseudo codes are abstract, and a detailed code can be found in the appendix, along with an explanation of the methodology.

7.4.6.3 Performance

Inspecting the overall accuracy of the portfolio multi-classifier, we can see that there

is a slight increase, but the increase is insignificant.

Table 52 Overall Results

Accuracy	Карра Асси	racyLower A	ccuracyUpper	Acc	uracy	Null
0.7977272	0.4796524	0.7973041	0.7981499	0.	88308	333
AccuracyPValue	e McnemarPV	/alue				
1.0000000	NaN					

Table 53 Per-Class Results

	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.7737	0.9792	0.996462	0.364325	0.996	0.773	0.871	0.8830	0.68332	0.685746	0.876519
	89	49			462	789	121	83			
Class: Bot	0.9998	0.9999	0.995522	0.999998	0.995	0.999	0.997	0.0125	0.012499	0.012555	0.999879
	15	43			522	815	664	01			
Class: Brute Force -Web	0.9818	0.9992	0.060089	0.999999	0.060	0.981	0.113	4.76E-	4.67E-05	0.000777	0.990544
	18	69			089	818	247	05			
Class: Brute Force -XSS	0.9264	0.9998	0.111504	0.999999	0.111	0.926	0.199	1.96E-	1.82E-05	0.000163	0.963163
	71	55			504	471	052	05			
Class: DDOS attack-	1	0.9997	0.98452	1	0.984	1	0.992	0.0172	0.0172	0.01747	0.999862
HOIC		25			52		2				
Class: DDOS attack-	1	0.9999	0.715862	1	0.715	1	0.834	0.0001	0.00015	0.000209	0.99997
LOIC-UDP		41			862		405	5			
Class: DDoS attacks-	0.9983	0.9994	0.989418	0.999911	0.989	0.998	0.993	0.0497	0.04968	0.050211	0.998875
LOIC-HTTP	08	41			418	308	843	64			
Class: DoS attacks-	1	0.9999	0.985872	1	0.985	1	0.992	0.0035	0.003581	0.003632	0.999974
GoldenEye		48			872		886	81			
Class: DoS attacks-Hulk	0.9998	0.9999	0.998807	0.999998	0.998	0.999	0.999	0.0125	0.012556	0.012571	0.999912
	39	85			807	839	323	58			
Class: DoS attacks-	0.1875	0.9999	0.130435	0.999996	0.130	0.187	0.153	4.61E-	8.65E-07	6.63E-06	0.593747
SlowHTTPTest		94			435	5	846	06			
Class: DoS attacks-	1	0.9999	0.937539	1	0.937	1	0.967	0.0008	0.000857	0.000914	0.999971
Slowloris		43			539		763	57			
Class: FTP-BruteForce	0.8666	0.9999	0.288889	0.999999	0.288	0.866	0.433	4.32E-	3.75E-06	1.30E-05	0.933329
	67	91			889	667	333	06			
Class: Infilteration	0.8005	0.7997	0.046634	0.996957	0.046	0.800	0.088	0.0120	0.009677	0.207507	0.800134
	2	49			634	52	135	88			
Class: SQL Injection	0.88	0.9999	0.075601	0.999999	0.075	0.88	0.139	7.21E-	6.34E-06	8.39E-05	0.939961
		22			601		241	06			
Class: SSH-Bruteforce	0.9997	0.9999	0.999044	0.999998	0.999	0.999	0.999	0.0081	0.008132	0.00814	0.999854
	16	92			044	716	38	34			

Table 54 Master Classifier - Confusion Matrix

	Benign	Bot	Brute Force - Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	237012 3	7	1	1	0	0	76	0	0	0	0	0	8330	0	0
Bot	195	4335 2	0	0	0	0	0	0	0	0	0	0	0	0	0
Brute Force -Web	2500	0	162	3	0	0	17	0	0	0	0	0	12	2	0
Brute Force -XSS	499	0	0	63	0	0	0	0	0	0	0	0	2	1	0
DDOS attack-HOIC	933	0	0	0	5965 8	0	0	0	0	0	0	0	5	0	0
DDOS attack-LOIC-UDP	6	0	0	0	0	519	199	0	0	0	0	0	1	0	0
DDoS attacks-LOIC-	1842	0	0	0	0	0	17231 7	0	0	0	0	0	1	0	0
DoS attacks-GoldenEye	169	0	0	0	0	0	0	1242 1	7	0	0	0	2	0	0
DoS attacks-Hulk	46	0	0	0	0	0	0	0	4355 2	0	0	0	2	0	4
DoS attacks- SlowHTTPTest	17	0	0	0	0	0	0	0	0	3	0	2	1	0	0
DoS attacks-Slowloris	198	0	0	0	0	0	0	0	0	0	2972	0	0	0	0
FTP-BruteForce	15	0	0	0	0	0	0	0	0	13	0	13	3	0	1
Infilteration	686178	1	0	0	0	0	0	0	0	0	0	0	3356 5	0	3
SQL Injection	261	0	2	1	0	0	0	0	0	0	0	0	5	22	0
SSH-Bruteforce	27	0	0	0	0	0	0	0	0	0	0	0	0	0	2820 6

If we view the precision for each class, we can see that the portfolio classifier has most of the classes approaching 1. However, the model still follows the same trend, as there are some classes that have been misclassified, and they match the models in the portfolio.

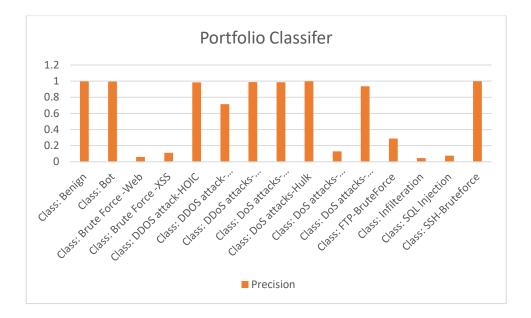


Figure 37Precision for each class (Portfolio Classifier)

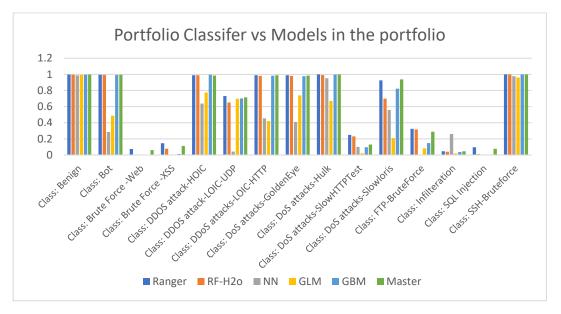


Figure 38 Precision Comparison Between All Models including Portflio Classifier

Comparing the Portfolio classier to the other models that we have built. We note the portfolio classifier outperforms, and in almost every class, the portfolio classifier is either ranked one or very close to 1. There are a few exceptions that we can see in the graph where the portfolio classifier is underperforming.

7.5 Discussion

This chapter introduced the first experimental phase of the research, focusing on training and evaluating models using a sub-sample of the CIC-IDS2018 dataset. The goal was to test the core classifiers independently and assess how well they perform on a controlled, smaller dataset before scaling up. The results demonstrated a clear difference in performance between models, with algorithms such as Random Forest and Deep Learning achieving stronger accuracy and F1 scores, especially in handling multiclass predictions. Meanwhile, models like Generalized Linear Models (GLM) and Gradient Boosting Machine (GBM) showed relatively weaker performance on minority attack types. These results reinforce the idea that no single classifier performs best across all scenarios. Additionally, the per-instance voting mechanism, where multiple models are consulted for classification, showed early signs of improving precision and recall by leveraging each model's strengths. This discussion also highlighted how the sub-sample allowed for fast iteration and early testing of the hybrid model design without requiring full-scale computational resources. The performance variations across attack classes further support the proposed per-instance selection strategy, as it offers flexibility and adaptability when dealing with diverse traffic patterns in real-world networks.

7.6 Chapter Conclusion

In summary, this chapter evaluated the performance of several individual classifiers on a sub-sampled version of the CIC-IDS2018 dataset. The experiments confirmed that different models excel in different areas, with some providing better overall accuracy, while others performed better on underrepresented classes. These results validated one of the key premises of the research: that no single model is sufficient for optimal detection in a multiclass intrusion environment. The findings also emphasized the importance of model diversity and the value of a dynamic selection strategy, where classifiers can be chosen based on the characteristics of each instance. The sub-sampling approach proved useful for early-stage model comparison, allowing for efficient testing of design assumptions and baseline performance without the overhead of full dataset training. The next chapter will extend this work by applying the same modeling techniques to the complete dataset, offering a more robust evaluation of classifier performance under realistic data conditions.

Chapter 8 Building Models with a Complete Dataset

8.1 Chapter Introduction

After attempting to use a reduced subset of the dataset for training, it was noticed that the results could be unreliable, and many of the models were not able to produce reasonable predictions. The justification for using a subset of the dataset for training was the lack of computing and memory resources to build the required models. In order to eliminate the lack of computing resources, we opted to use cloud services from Huawei. There are Al services available in Amazon, Microsoft Azure.. etc., but we chose to provision a Virtual Machine in the cloud with the same tools that were used in the local computer for the first tests. The reason that we used a virtual machine was to use the same script that was already done on the local machine. In this part, we have done the same process but using the complete dataset for training and testing without getting smaller subsets for training that will affect the performance of the produced models. At first, we have built all models that will participate in the portfolio.

8.2 Gradient Boosting Machine (GBM)

We have built a model using the GBM package from h2o in Rstudio, as done in the previous attempt with the full dataset, and these are the parameters that were used to build this model.

Table 55 Performance for GBM

Accuracy	Карра	AccuracyL	ower	Accura	icyUpper	AccuracyNull
AccuracyPValu	e					
0.9878105	0.9411469	0.9876833	0.987	79367	0.8829398	0.0000000
McnemarPVal	ue					
NaN						

Table 56 Per-Class Performance for GBM

	Sensit	Specif	Pos Pred	Neg Pred	Preci	Recal	F1	Preval	Detectio	Detection	Balanced
	ivity	icity	Value	Value	sion	I		ence	n Rate	Prevalence	Accuracy
Class: Benign	0.999	0.899	0.98680	0.996724	0.986	0.999	0.993	0.882	0.88259	0.894393	0.949404
	608	2	7		807	608	166	94	4		
Class: Bot	0.998	1	0.99997	0.99998	0.999	0.998	0.999	0.012	0.01252	0.012524	0.9992
	4		2		972	4	186	544	4		
Class: Brute Force -	0.405	1	0.98305	0.999971	0.983	0.405	0.574	4.95E-	2.01E-05	2.04E-05	0.702797
Web	594		1		051	594	257	05			
Class: Brute Force -	0.893	0.999	0.93333	0.999998	0.933	0.893	0.913	1.63E-	1.45E-05	1.56E-05	0.946808
XSS	617	999	3		333	617	043	05			
Class: DDOS attack-	1	1	1	1	1	1	1	0.017	0.01708	0.017081	1
HOIC								081	1		
Class: DDOS attack-	0.953	0.999	0.85828	0.999993	0.858	0.953	0.903	0.000	0.00014	0.000173	0.976706
LOIC-UDP	437	975	3		283	437	361	156	9		
Class: DDoS attacks-	0.998	0.999	0.99970	0.999921	0.999	0.998	0.999	0.049	0.04986	0.049881	0.999237
LOIC-HTTP	49	985	9		709	49	099	942	6		
Class: DoS attacks-	0.999	0.999	0.99932	0.999998	0.999	0.999	0.999	0.003	0.00356	0.003569	0.999708
GoldenEye	418	998	2		322	418	37	569	7		
Class: DoS attacks-	0.999	0.999	0.99964	1	0.999	0.999	0.999	0.012	0.01254	0.012551	0.999984
Hulk	972	995	2		642	972	807	547	7		

Class: DoS attacks-	0.578	0.999	0.52381	0.999997	0.523	0.578	0.55	6.57E-	3.81E-06	7.27E-06	0.789472
SlowHTTPTest	947	997			81	947		06			
Class: DoS attacks-	0.994	0.999	0.99920	0.999995	0.999	0.994	0.996	0.000	0.00086	0.000867	0.997022
Slowloris	045	999	2		202	045	617	871	6		
Class: FTP-	0.312	0.999	0.38461	0.999996	0.384	0.312	0.344	5.54E-	1.73E-06	4.50E-06	0.656249
BruteForce	5	997	5		615	5	828	06			
Class: Infilteration	0.035	0.999	0.56102	0.988304	0.561	0.035	0.066	0.012	0.00042	0.00076	0.517424
	185	662			02	185	217	114	6		
Class: SQL Injection	0.419	1	0.92857	0.999994	0.928	0.419	0.577	1.07E-	4.50E-06	4.84E-06	0.709677
	355		1		571	355	778	05			
Class: SSH-	0.999	0.999	0.99983	0.999998	0.999	0.999	0.999	0.008	0.00814	0.008147	0.999893
Bruteforce	788	999			83	788	809	147	5		

Confusion Matrix

Table 57Confusion Matrix For GBM

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	255114 9	58	80	3	0	1	147	4	0	0	15	0	3378 3	14	2
Bot	1	3620 1	0	0	0	0	0	0	0	0	0	0	0	0	0
Brute Force -Web	1	0	58	0	0	0	0	0	0	0	0	0	0	0	0
Brute Force -XSS	0	0	0	42	0	0	0	0	0	0	0	0	0	3	0
DDOS attack-HOIC	0	0	0	0	4937 4	0	0	0	0	0	0	0	0	0	0
DDOS attack-LOIC-UDP	0	0	0	0	0	430	71	0	0	0	0	0	0	0	0
DDoS attacks-LOIC- HTTP	15	0	4	2	0	20	14413 9	0	0	0	0	0	0	1	0
DoS attacks-GoldenEye	5	0	0	0	0	0	0	1031 0	1	0	0	0	0	0	1
DoS attacks-Hulk	9	0	0	0	0	0	0	2	3626 7	0	0	0	0	0	2
DoS attacks- SlowHTTPTest	0	0	0	0	0	0	0	0	0	11	0	10	0	0	0
DoS attacks-Slowloris	2	0	0	0	0	0	0	0	0	0	2504	0	0	0	0

FTP-BruteForce	0	0	0	0	0	0	0	0	0	8	0	5	0	0	0
Infilteration	964	0	0	0	0	0	0	0	0	0	0	0	1232	0	0
SQL Injection	0	0	1	0	0	0	0	0	0	0	0	0	0	13	0
SSH-Bruteforce	3	0	0	0	0	0	0	0	0	0	0	1	0	0	2354 4

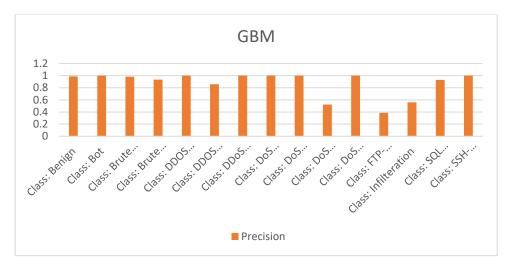


Figure 39 Per-Class precision for GBM

8.3 Generalized Linear Models (GLM)

Overall

Table 58	Overall	Performance	for	GLM

Accuracy	Карр	a AccuracyL	ower Accur	acyUpper	AccuracyNull
AccuracyPValu	e				
0.9777974	0.8908473	0.9776269	0.9779669	0.8829398	0.0000000
McnemarPVal	ue				
NaN					

Table 59 Per-Class Performance for GLM

	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.9970	0.8427	0.979518	0.974426	0.979	0.997	0.988	0.8829	0.880351	0.898759	0.919905
	68	43			518	068	215	4			
Class: Bot	0.9848	0.9998	0.991091	0.999807	0.991	0.984	0.987	0.0125	0.012354	0.012465	0.992346
	04	88			091	804	937	44			
Class: Brute Force -Web	0	0.9999	0	0.999951	0	0	NA	4.95E-	0	3.11E-06	0.499998
		97						05			
Class: Brute Force -XSS	0.4680	1	1	0.999991	1	0.468	0.637	1.63E-	7.61E-06	7.61E-06	0.734043
	85					085	681	05			
Class: DDOS attack-	0.8244	0.9982	0.893062	0.996952	0.893	0.824	0.857	0.0170	0.014082	0.015768	0.911343
ноіс	02	84			062	402	36	81			
Class: DDOS attack-	0.9756	0.9999	0.710824	0.999996	0.710	0.975	0.822	0.0001	0.000152	0.000214	0.987774
LOIC-UDP	1	38			824	61	43	56			
Class: DDoS attacks-	0.9401	0.9996	0.992287	0.996863	0.992	0.940	0.965	0.0499	0.046953	0.047318	0.969889
LOIC-HTTP	62	16			287	162	521	42			
Class: DoS attacks-	0.7144	0.9999	0.971911	0.998978	0.971	0.714	0.823	0.0035	0.00255	0.002623	0.857175
GoldenEye	24	26			911	424	51	69			
Class: DoS attacks-Hulk	0.9971	0.9988	0.915915	0.999964	0.915	0.997	0.954	0.0125	0.012511	0.01366	0.997985
	32	37			915	132	8	47			
Class: DoS attacks-	0	1	NA	0.999993	NA	0	NA	6.57E-	0	0	0.5
SlowHTTPTest								06			
Class: DoS attacks-	0.7030	0.9999	0.974684	0.999741	0.974	0.703	0.816	0.0008	0.000613	0.000629	0.85152
Slowloris	57	84			684	057	882	71			
Class: FTP-BruteForce	0	1	NA	0.999994	NA	0	NA	5.54E-	0	0	0.5
								06			
Class: Infilteration	0.0081	0.9998	0.391724	0.987981	0.391	0.008	0.015	0.0121	9.83E-05	0.000251	0.503978
	11	46			724	111	893	14			
Class: SQL Injection	0	1	NA	0.999989	NA	0	NA	1.07E-	0	0	0.5
								05			
Class: SSH-Bruteforce	0.9974	0.9998	0.97879	0.999979	0.978	0.997	0.988	0.0081	0.008126	0.008302	0.998637
	52	22			79	452	033	47			
Confusion M	- 4	ι							•		

Confusion Matrix

Table 60 Confusion Mat	rix for GLM
------------------------	-------------

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	254466 5	551	142	25	8670	4	8459	17	0	19	729	15	3454 0	21	18
Bot	314	3570 8	0	0	0	0	0	0	0	0	0	0	7	0	0
Brute Force -Web	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0

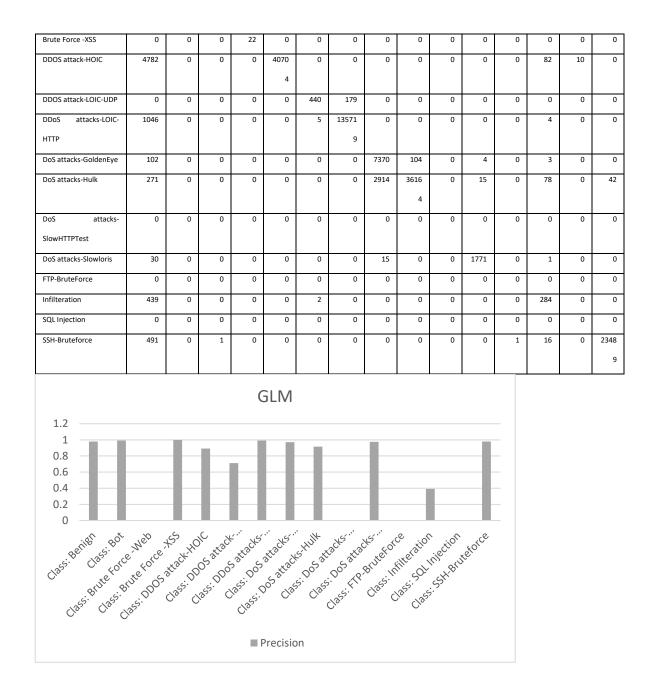


Figure 40 Per-Class Precision for GLM

8.4 Deep Learning (Neural network)

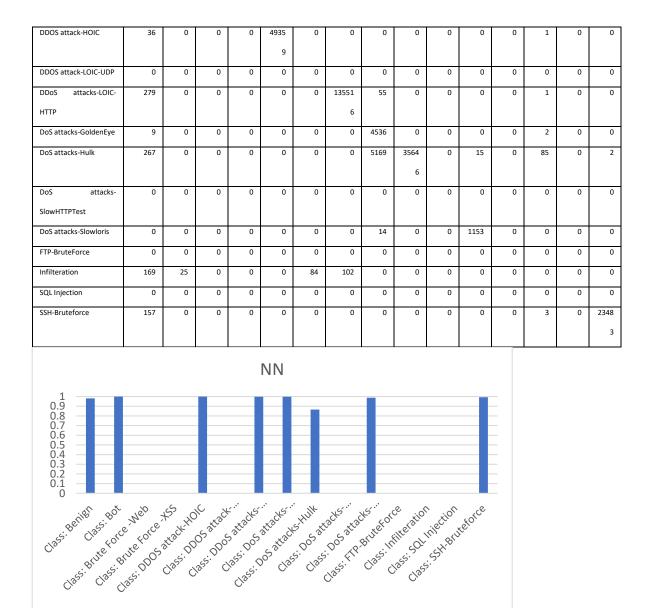
Accuracy	Кар	ора Асси	iracyLower	AccuracyU	pper	AccuracyNull
AccuracyPValue	e					
0.9813317	0.9081043	0.981175	0.9814	874 0.882	9398	0.0000000
McnemarPVal	he					
NaN						

	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.9996	0.8596	0.981728	0.996851	0.981	0.999	0.990	0.8829	0.882622	0.899049	0.929653
	4	66			728	64	603	4			
Class: Bot	0.9826	0.9999	0.999944	0.999779	0.999	0.982	0.991	0.0125	0.012326	0.012327	0.991312
	25	99			944	625	209	44			
Class: Brute Force - Web	0	1	NA	0.999951	NA	0	NA	4.95E-	0	0	0.
								05			
Class: Brute Force -XSS	0	1	NA	0.999984	NA	0	NA	1.63E-	0	0	0.
								05			
Class: DDOS attack-	0.9996	0.9999	0.999251	0.999995	0.999	0.999	0.999	0.0170	0.017076	0.017089	0.99984
HOIC	96	87			251	696	474	81			
Class: DDOS attack-	0	1	NA	0.999844	NA	0	NA	0.0001	0	0	0.
LOIC-UDP								56			
Class: DDoS attacks-	0.9387	0.9998	0.997534	0.996791	0.997	0.938	0.967	0.0499	0.046883	0.046999	0.96931
LOIC-HTTP	56	78			534	756	253	42			
Class: DoS attacks-	0.4397	0.9999	0.997581	0.997997	0.997	0.439	0.610	0.0035	0.001569	0.001573	0.71985
GoldenEye	05	96			581	705	375	69			
Class: DoS attacks-Hulk	0.9828	0.9980	0.86553	0.999782	0.865	0.982	0.920	0.0125	0.012332	0.014248	0.99045
	5	6			53	85	467	47			
Class: DoS attacks-	0	1	NA	0.999993	NA	0	NA	6.57E-	0	0	0.5
SlowHTTPTest								06			
Class: DoS attacks-	0.4577	0.9999	0.988003	0.999527	0.988	0.457	0.625	0.0008	0.000399	0.000404	0.72885
Slowloris	21	95			003	721	61	71			
Class: FTP-BruteForce	0	1	NA	0.999994	NA	0	NA	5.54E-	0	0	0.
								06			
Class: Infilteration	0	0.9998	0	0.987885	0	0	NA	0.0121	0	0.000131	0.49993
		67						14			
Class: SQL Injection	0	1	NA	0.999989	NA	0	NA	1.07E-	0	0	0.5
								05			
Class: SSH-Bruteforce	0.9971	0.9999	0.993233	0.999977	0.993	0.997	0.995	0.0081	0.008124	0.00818	0.99857
	97	44			233	197	211	47			
				· .	L	L	L	L	I	1	1

Table 62 Per-Class Performance for Deep Learning

Table 63 Confusion Matrix for Deep Learning

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	255123 0	605	143	47	15	367	8739	542	622	19	1351	16	3492 3	31	64
Bot	2	3562 9	0	0	0	0	0	0	0	0	0	0	0	0	0
Brute Force -Web	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Brute Force -XSS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0



8.5 Random Forest (Ranger)

Table 64 Overall Performance for RF (Ranger)

Accuracy	Карр	a Accuracyl	ower	Accur	acyUpper	AccuracyNull
AccuracyPValu	е					
0.9898437	0.9514503	0.9897274	0.989	99589	0.8829398	0.0000000
McnemarPVal	ue					
NaN						
Results						

Precision

	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.9994	0.9180	0.989242	0.995115	0.989	0.999	0.994	0.8829	0.882412	0.892008	0.958714
	02	26			242	402	296	4			
Class: Bot	0.9932	1	1	0.999915	1	0.993	0.996	0.0125	0.01246	0.01246	0.996649
	98					298	638	44			
Class: Brute Force -Web	0.4965	1	1	0.999975	1	0.496	0.663	4.95E-	2.46E-05	2.46E-05	0.748252
	03					503	551	05			
Class: Brute Force -XSS	0.7234	1	1	0.999996	1	0.723	0.839	1.63E-	1.18E-05	1.18E-05	0.861702
	04					404	506	05			
Class: DDOS attack-	0.9964	0.9999	0.997567	0.999939	0.997	0.996	0.997	0.0170	0.017021	0.017063	0.998217
ноіс	76	58			567	476	021	81			
Class: DDOS attack-	0.9733	0.9999	0.862475	0.999996	0.862	0.973	0.914	0.0001	0.000152	0.000176	0.986684
LOIC-UDP	92	76			475	392	583	56			
Class: DDoS attacks-	0.9987	0.9999	0.999515	0.999935	0.999	0.998	0.999	0.0499	0.04988	0.049904	0.999367
LOIC-HTTP	6	75			515	76	137	42			
Class: DoS attacks-	0.9999	1	1	1	1	0.999	0.999	0.0035	0.003569	0.003569	0.999952
GoldenEye	03					903	952	69			
Class: DoS attacks-Hulk	1	0.9999	0.999945	1	0.999	1	0.999	0.0125	0.012547	0.012548	1
		99			945		972	47			
Class: DoS attacks-	0.4736	0.9999	0.5	0.999997	0.5	0.473	0.486	6.57E-	3.11E-06	6.23E-06	0.736841
SlowHTTPTest	84	97				684	486	06			
Class: DoS attacks-	1	0.9999	0.998019	1	0.998	1	0.999	0.0008	0.000871	0.000873	0.999999
Slowloris		98			019		009	71			
Class: FTP-BruteForce	0.125	1	0.666667	0.999995	0.666	0.125	0.210	5.54E-	6.92E-07	1.04E-06	0.5625
					667		526	06			
Class: Infilteration	0.2259	0.9995	0.854874	0.990593	0.854	0.225	0.357	0.0121	0.002737	0.003202	0.612731
	32	3			874	932	406	14			
Class: SQL Injection	0.7096	1	1	0.999997	1	0.709	0.830	1.07E-	7.61E-06	7.61E-06	0.854839
	77					677	189	05			
Class: SSH-Bruteforce	0.9999	1	1	1	1	0.999	0.999	0.0081	0.008147	0.008147	0.999979
	58					958	979	47			
Confusion M	otriv	t							•		

Confusion Matrix

Table 66 Confusion Matrix RF(Ranger)

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	255062 4	243	72	13	174	0	109	0	0	9	0	5	2710 3	9	0
Bot	0	3601 6	0	0	0	0	0	0	0	0	0	0	0	0	0
Brute Force -Web	0	0	71	0	0	0	0	0	0	0	0	0	0	0	0

Brute Force -XSS	0	0	0	34	0	0	0	0	0	0	0	0	0	0	0
DDOS attack-HOIC	119	0	0	0	4920 0	0	0	0	0	0	0	0	1	0	0
DDOS attack-LOIC-UDP	0	0	0	0	0	439	70	0	0	0	0	0	0	0	0
DDoS attacks-LOIC-	58	0	0	0	0	12	14417 8	0	0	0	0	0	0	0	0
DoS attacks-GoldenEye	0	0	0	0	0	0	0	1031 5	0	0	0	0	0	0	0
DoS attacks-Hulk	0	0	0	0	0	0	0	1	3626 8	0	0	0	0	0	1
DoS attacks- SlowHTTPTest	0	0	0	0	0	0	0	0	0	9	0	9	0	0	0
DoS attacks-Slowloris	5	0	0	0	0	0	0	0	0	0	2519	0	0	0	0
FTP-BruteForce	0	0	0	0	0	0	0	0	0	1	0	2	0	0	0
Infilteration	1343	0	0	0	0	0	0	0	0	0	0	0	7911	0	0
SQL Injection	0	0	0	0	0	0	0	0	0	0	0	0	0	22	0
SSH-Bruteforce	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2354 8

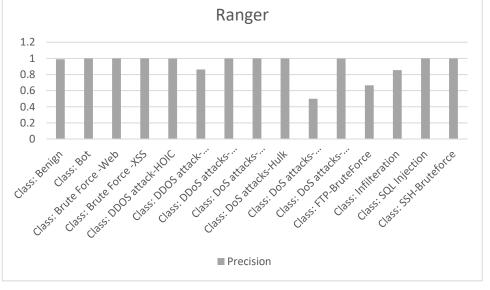


Figure 42 Precision for RF

8.6 Distributed Random Forest (DRF)

Table 67 Overall Performance for DRF

Accuracy	Карра	a Accuracyl	Lower Accui	acyUpper	AccuracyNull
AccuracyPValu	e				
0.9875572	0.9397946	0.9874288	0.9876847	0.8829398	0.0000000

McnemarPValue

NaN

Results

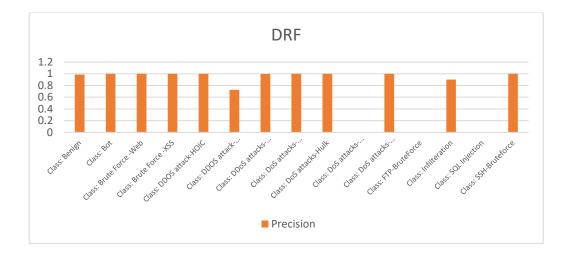
Table 68 Per-Class Performance for DRF

	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.9997	0.8960	0.986401	0.997992	0.986	0.999	0.993	0.8829	0.882729	0.894898	0.947901
	61	41			401	761	036	4			
Class: Bot	0.9890	1	1	0.999861	1	0.989	0.994	0.0125	0.012407	0.012407	0.994539
	79					079	509	44			
Class: Brute Force -Web	0.4265	1	1	0.999972	1	0.426	0.598	4.95E-	2.11E-05	2.11E-05	0.713287
	73					573	039	05			
Class: Brute Force -XSS	0.5106	1	1	0.999992	1	0.510	0.676	1.63E-	8.30E-06	8.30E-06	0.755319
	38					638	056	05			
Class: DDOS attack-	0.9999	1	1	0.999999	1	0.999	0.999	0.0170	0.01708	0.01708	0.99997
HOIC	39					939	97	81			
Class: DDOS attack-	0.9778	0.9999	0.726524	0.999997	0.726	0.977	0.833	0.0001	0.000153	0.00021	0.988885
LOIC-UDP	27	43			524	827	648	56			
Class: DDoS attacks-	0.9982	0.9997	0.99617	0.999909	0.996	0.998	0.997	0.0499	0.049855	0.050046	0.99903
LOIC-HTTP	61	98			17	261	215	42			
Class: DoS attacks-	0.9998	1	0.999903	0.999999	0.999	0.999	0.999	0.0035	0.003568	0.003569	0.999903
GoldenEye	06				903	806	855	69			
Class: DoS attacks-Hulk	1	0.9999	0.999724	1	0.999	1	0.999	0.0125	0.012547	0.012551	0.999998
		96			724		862	47			
Class: DoS attacks-	0	1	NA	0.999993	NA	0	NA	6.57E-	0	0	0.5
SlowHTTPTest								06			
Class: DoS attacks-	0.9920	1	1	0.999993	1	0.992	0.996	0.0008	0.000865	0.000865	0.99603
Slowloris	6					06	014	71			
Class: FTP-BruteForce	0	1	NA	0.999994	NA	0	NA	5.54E-	0	0	0.5
								06			
Class: Infilteration	0.0153	0.9999	0.901007	0.98807	0.901	0.015	0.030	0.0121	0.000186	0.000206	0.507658
	36	79			007	336	159	14			
Class: SQL Injection	0	1	NA	0.999989	NA	0	NA	1.07E-	0	0	0.5
								05			
Class: SSH-Bruteforce	0.9989	1	1	0.999991	1	0.998	0.999	0.0081	0.008138	0.008138	0.999469
	38					938	469	47			

Confusion Matrix

Table 69 Confusion for DRF

	Benign	Bot	Brute Force -Web	Brute Force -XSS	DDOS attack-HOIC	DDOS attack-LOIC-	DDoS attacks- LOIC-HTTP	DoS attacks-	DoS attacks-Hulk	DoS attacks-	DoS attacks-	FTP-BruteForce	Infilteration	SQL Injection	SSH-Bruteforce
Benign	255153 9	396	80	23	3	2	85	0	0	19	20	16	3447 8	31	23
Bot	0	3586 3	0	0	0	0	0	0	0	0	0	0	0	0	0
Brute Force -Web	0	0	61	0	0	0	0	0	0	0	0	0	0	0	0
Brute Force -XSS	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0
DDOS attack-HOIC	0	0	0	0	4937 1	0	0	0	0	0	0	0	0	0	0
DDOS attack-LOIC-UDP	0	0	0	0	0	441	166	0	0	0	0	0	0	0	0
DDoS attacks-LOIC- HTTP	544	0	2	0	0	8	14410 6	0	0	0	0	0	0	0	0
DoS attacks-GoldenEye	1	0	0	0	0	0	0	1031 4	0	0	0	0	0	0	0
DoS attacks-Hulk	6	0	0	0	0	0	0	2	3626 8	0	0	0	0	0	2
DoS attacks- SlowHTTPTest	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DoS attacks-Slowloris	0	0	0	0	0	0	0	0	0	0	2499	0	0	0	0
FTP-BruteForce	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Infilteration	59	0	0	0	0	0	0	0	0	0	0	0	537	0	0
SQL Injection	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SSH-Bruteforce	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2352 4



8.7 Portfolio Classifier (Random Forest)

Table	70	Overall	Performance
1 0.010		0101011	

Карра	a AccuracyL	ower Ac	curacyUpper	AccuracyNull
e				
0.9519115	0.9898228	0.99005	32 0.8829630	0.0000000
ue				
	e 0.9519115	e 0.9519115 0.9898228	e 0.9519115 0.9898228 0.99005	e 0.9519115 0.9898228 0.9900532 0.8829630

Results

Table 7	1 Per-Class	Performance
---------	-------------	-------------

	Sensiti	Specifi	Pos Pred	Neg Pred	Precisi	Recall	F1	Prevale	Detection	Detection	Balanced
	vity	city	Value	Value	on			nce	Rate	Prevalence	Accuracy
Class: Benign	0.9994	0.9187	0.989344	0.995168	0.989	0.999	0.994	0.8829	0.882441	0.891945	0.9591
	09	91			344	409	351	63			
Class: Bot	0.9948	1	1	0.999934	1	0.994	0.997	0.0125	0.01248	0.01248	0.997408
	15					815	401	45			
Class: Brute Force -Web	0.4965	1	1	0.999975	1	0.496	0.663	4.95E-	2.46E-05	2.46E-05	0.748252
	03					503	551	05			
Class: Brute Force -XSS	0.7234	1	1	0.999996	1	0.723	0.839	1.63E-	1.18E-05	1.18E-05	0.861702
	04					404	506	05			
Class: DDOS attack-	0.9997	1	1	0.999996	1	0.999	0.999	0.0170	0.017078	0.017078	0.999878
ноіс	57					757	878	82			

Class: DDOS attack-	0.9733	0.9999	0.84749	0.999996	0.847	0.973	0.906	0.0001	0.000152	0.000179	0.986683
LOIC-UDP	92	73			49	392	089	56			
Class: DDoS attacks-	0.9984	0.9999	0.999743	0.999921	0.999	0.998	0.999	0.0499	0.049868	0.049881	0.999238
LOIC-HTTP	9	87			743	49	116	43			
Class: DoS attacks-	0.9999	1	1	1	1	0.999	0.999	0.0035	0.003569	0.003569	0.999952
GoldenEye	03					903	952	69			
Class: DoS attacks-Hulk	1	0.9999	0.999862	1	0.999	1	0.999	0.0125	0.012548	0.012549	0.999999
		98			862		931	48			
Class: DoS attacks-	0.2631	0.9999	0.384615	0.999995	0.384	0.263	0.312	6.57E-	1.73E-06	4.50E-06	0.631578
SlowHTTPTest	58	97			615	158	5	06			
Class: DoS attacks-	0.9992	1	1	0.999999	1	0.999	0.999	0.0008	0.000871	0.000871	0.999603
Slowloris	06					206	603	71			
Class: FTP-BruteForce	0.0625	1	1	0.999995	1	0.062	0.117	5.54E-	3.46E-07	3.46E-07	0.53125
						5	647	06			
Class: Infilteration	0.2267	0.9994	0.842497	0.990623	0.842	0.226	0.357	0.0120	0.002741	0.003253	0.613116
	51	81			497	751	33	87			
Class: SQL Injection	0.7096	1	1	0.999997	1	0.709	0.830	1.07E-	7.61E-06	7.61E-06	0.854839
	77					677	189	05			
Class: SSH-Bruteforce	0.9999	1	1	0.999999	1	0.999	0.999	0.0081	0.008147	0.008147	0.999958
	15					915	958	47			

Confusion Matrix

	Ве	В	Brute	Brute	DDOS	DDOS	DDoS	DoS	DoS	DoS	DoS	FTP-	Infil	SQL	SSH-
	nig	ot	Force -	Force	attack-	attack-	attacks-	attacks-	attack	attacks-	attacks-	Brute	tera	Injec	Brute
	n		Web	-XSS	HOIC	LOIC-	LOIC-	GoldenE	s-Hulk	SlowHTTP	Slowlori	Force	tion	tion	force
						UDP	HTTP	ye		Test	s				
Benign	25	1	71	13	12	1	139	0	0	14	2	7	270	9	1
	50	8											15		
	62	8													
	4														
Bot	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0
		6													
		0													
		7													
		1													
Brute	0	0	71	0	0	0	0	0	0	0	0	0	0	0	0
Force -															
Web															
Brute	0	0	0	34	0	0	0	0	0	0	0	0	0	0	0
Force -															
XSS															

DDOS	0	0	0	0	49362	0	0	0	0	0	0	0	0	0	0
attack-															
HOIC															
			0		0	420	70								
DDOS	0	0	0	0	0	439	79	0	0	0	0	0	0	0	0
attack-															
LOIC-UDP															
DDoS	25	0	1	0	0	11	144139	0	0	0	0	0	0	0	0
attacks-															
LOIC-															
HTTP															
DoS	0	0	0	0	0	0	0	10315	0	0	0	0	0	0	0
attacks-															
GoldenEy															
e															
DoS	3	0	0	0	0	0	0	1	36268	0	0	0	0	0	1
attacks-															
Hulk															
DoS	0	0	0	0	0	0	0	0	0	5	0	8	0	0	0
attacks-															
SlowHTTP															
Test															
DoS	0	0	0	0	0	0	0	0	0	0	2517	0	0	0	0
attacks-															
Slowloris															
FTP-	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
BruteForc															
e															
Infilterati	14	0	0	0	0	0	0	0	0	0	0	0	792	0	0
on	81												2		
SQL	0	0	0	0	0	0	0	0	0	0	0	0	0	22	0
Injection															
SSH-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2354
Bruteforc															7
e															

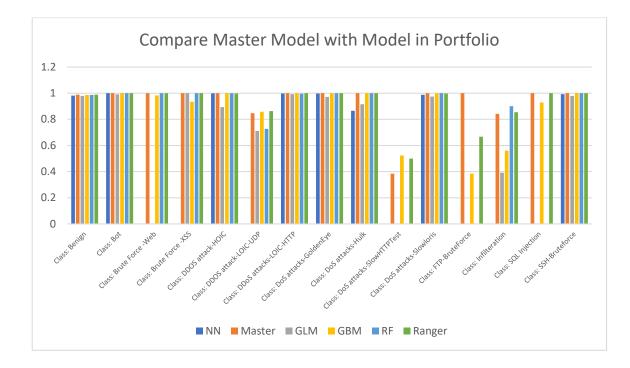


Figure 44 Compare the Master Model with the Models in Portfolio

In the figure above, we can see clearly that the master model outperforms the other models in the portfolio. In almost every case, the master model has better precision. The assumption is that the multi-classifier portfolio works as expected. It seems the Ranger model has more influence on the master model than the others. Between both, Ranger has similar results, but there is a big gap in the FTP-Brute Force Class. It seems that the master model has taken advantage of the multiple classifiers. Further details can be seen in the next graphs.

In the next graphs (Figure 47 Benchmark (Full vs Sub-sample)), we have compared the performance between the models using the complete sample and the subsample. We can see a clear improvement in the performance precision between the two sets of models. Especially in the master model, we can see that the master model using subsample has failed in many classes as many class has precision close to zero, while the model built with the full dataset is almost 1 in all classes with

few exceptions, as seen in the figures.

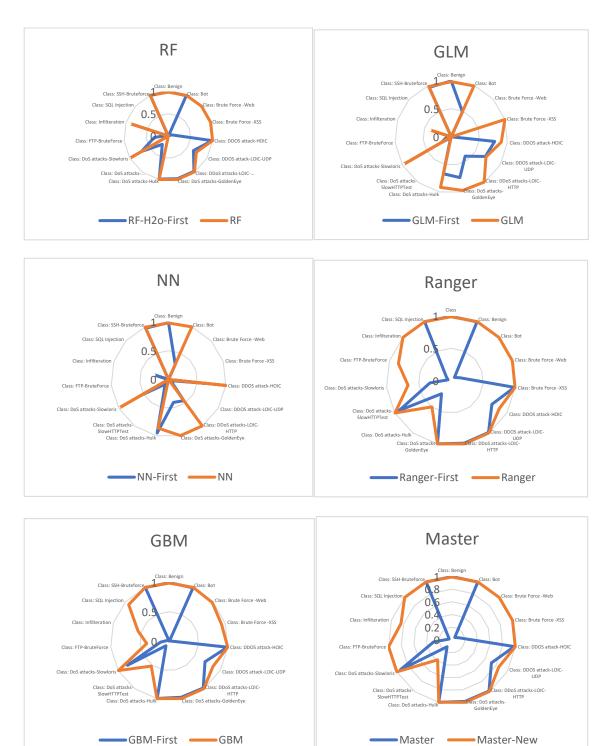


Figure 45 Benchmark (Full vs Sub-sample)

8.8 Discussion

In this chapter, the models introduced earlier were trained and evaluated using the full CIC-IDS2018 dataset to understand how each classifier performs under more realistic and demanding conditions. Compared to the sub-sampled experiments in the previous chapter, the complete dataset introduced new challenges in terms of processing time, class imbalance, and detection complexity. The performance results revealed that while some models maintained their effectiveness, others experienced a drop in accuracy and precision, particularly when dealing with minority attack classes. Random Forest and Deep Learning models continued to perform strongly, particularly in handling the more frequent classes. However, their ability to generalize across rare or less distinguishable attacks remained limited without additional balancing techniques. The per-instance voting classifier again showed improvement over individual models, especially in reducing false negatives and achieving better consistency across all classes. This reinforces the argument that combining models based on instance-specific behavior offers more robust and flexible detection. The discussion also considered the scalability of the approach, as training on the full dataset placed higher demands on computational resources and memory, particularly for deep learning-based architectures.

8.9 Chapter Conclusion

This chapter completed the second stage of experimentation by scaling the classifier models to the full CIC-IDS2018 dataset. The purpose of this step was to observe model behavior under real-world data conditions and validate the earlier results obtained from the sub-sampled dataset. The findings confirmed that while some classifiers performed well in both setups, others struggled with the full dataset's complexity, highlighting the value of using a diverse set of models rather than relying on a single one. The performance of the per-instance classifier portfolio remained strong and consistent, offering better generalization across both major and minor classes, and handling imbalanced data more effectively than standalone classifiers. These results support the feasibility of deploying a model selection strategy in a practical environment where traffic types vary significantly. With the full dataset results established, the next chapter shifts focus toward comparative benchmarking with existing solutions and further analyzing the evaluation metrics that define the effectiveness of the proposed approach.

Chapter 9 Evaluation and Discussion

9.1 Chapter Introduction

In this Chapter, we will benchmark the results of the proposed Portfolio classifier with other research that was done between 2020 and 2023 on the same dataset, which is CSE-CIC-IDS2018. We will view the benchmark multiple performance metrics, which are precision, F1 Score, and Accuracy. Making the benchmark has some challenges, and the primary challenge is the type of classification. Many researchers do binary classification, and that means the classification will only identify if the presented instance is benign or a threat. Without knowing the type of the threat, it's difficult to mitigate and plan for action for the threat. In contrast, binary classification has shown that they have a very high accuracy and precision. In this part, we have ignored the sample size and any manipulation of the dataset. We only focused on the end results, and the reason is that we can't replicate each research in order to be able to do a direct comparison and benchmarking. It's also worth noting that some researchers have done multiclassification, but they have coupled and merged multiple classes into one. For example, some research papers used the DDoS class, which covers all other DDoS classes such as DDoS attack-HOIC DDoS attack and LOIC-UDP. Doing such a thing will increase classifier performance, but at the same time, the user will lose information to identify which type of DDoS attack he/she is facing.

Through all the benchmarks that are listed below, we can observe that the proposed model performance is either better or similar to the other research. We will see in detail the benchmarks that cover different metrics, which are F1 Score, accuracy, precision, and recall.

We can see below the list of classes that are original in the dataset and the ones that are recreated and coupled.

Label map:

Class	Original Class
Benign	TRUE
Bot	TRUE
Brute Force -Web	TRUE
Brute Force -XSS	TRUE
DDOS attack-HOIC	TRUE
DDOS attack-LOIC-UDP	TRUE
DDoS attacks-LOIC-HTTP	TRUE
DoS attacks-GoldenEye	TRUE
DoS attacks-Hulk	TRUE
DoS attacks-SlowHTTPTest	TRUE
DoS attacks-Slowloris	TRUE
FTP-BruteForce	TRUE
Infilteration	TRUE
SQL Injection	TRUE
SSH-Bruteforce	TRUE
DDOS	False
DOS	False
BruteForce	False

Table 73 List of original Classes and new classes

9.2 Precision Benchmark:

In this part, we will do the benchmark on a precision metric with 13 research papers, as seen in the table below. The first part, which is the most important, is the precision of the benign class. We can see that in this class, most of the proposed models achieved a precision of 0.99, which is similar to the other research. The same scenario for Bot, but Hagar's research got a little lower performance, which is around ~ 0.83 . For the rest of the classes that are original, we note Brute Force-Web, Brute Force-XSS, and SQL injection. They have 0 precision in Chimphlee Research, but the proposed model along with Heger has similar results with small differences. In the proposed model, DoS attacks-SlowHTTPTest had the lowest precision compared to the other research, and it was around ~0.38. There are nine researches included in the benchmark that have an overall precision, and the precision overly ranges between ~ 0.9 to 1, but some searches were as low as 0.78. It is expected to have an overall precision higher as this approach is dependent on binary classification, and it reduces the amount of information needed to understand the advantages and disadvantages of the model. Finally, the researchers that have done classification on classes that are not original have achieved very precision on classes that they have introduced.

170

Table 74 Precision Performance Benchmark

Precision	Precision (Proposed Model)	(Kabir et al., 2021)	(Seth et al., 2021)	(Hua, 2020)	(Dini et al., 2022)	(Handika et al., 2000)	(Fitni and Ramli, 2020)	(Alkanjr and Alshammari.	(Shahbandayeva et al 2022)	(Das et al., 2023)	(Yoo et al., 2021)	(Siddiqi and Pak,	(Chimphlee et al., 2022)	(Hagar et al., 2022)
Benign	0.99	0.99	0.92	x	x	x	x	x	x	x	x	x	0.99	1.00
Bot	1.00	1.00	1.00	x	x	x	x	x	x	x	x	x	1.00	0.83
Brute Force -Web	1.00	x	х	х	x	x	x	x	x	x	x	x	0.00	0.75
Brute Force -XSS	1.00	x	x	x	x	x	x	x	x	x	x	x	0.00	1.00
BruteForce	x	1.00	0.99	x	x	x	x	x	x	x	x	x	x	x
DDoS	x	0.99	1.00	x	x	x	x	x	x	x	x	x	x	x
DDOS attack-HOIC	1.00	x	x	x	x	x	x	x	x	x	x	x	1.00	1.00
DDOS attack-LOIC-UDP	0.85	x	x	x	x	x	x	x	x	x	x	x	0.72	1.00
DDoS attacks-LOIC-HTTP	1.00	x	x	x	x	x	x	x	x	x	x	x	0.99	1.00
DoS	x	0.99	0.98	x	x	x	x	x	x	x	x	x	x	x
DoS attacks-GoldenEye	1.00	x	x	x	x	x	x	x	x	x	x	x	0.99	1.00
DoS attacks-Hulk	1.00	x	x	x	x	x	x	x	x	x	x	x	0.96	1.00
DoS attacks-SlowHTTPTest	0.38	x	x	x	x	x	x	x	x	x	x	x	0.75	1.00
DoS attacks-Slowloris	1.00	x	x	x	x	x	x	x	x	x	x	x	0.95	1.00
FTP-BruteForce	1.00	x	x	x	x	x	x	x	x	x	x	x	0.71	0.88
Infilteration	0.84	0.96	0.97	x	x	x	x	x	x	x	x	x	0.44	1.00
Overall	x	x	x	0.98	94.39	96.00	98.80	1.00	0.78	99.00	0.89	0.98	x	x
SQL Injection	1.00	0.87	x	x	x	x	x	x	x	x	x	x	0.00	0.92
SSH-Bruteforce	1.00	x	x	x	x	x	x	x	x	x	x	x	0.99	1.00
Web attacks	x	x	1.00	x	x	x	x	x	x	x	x	x	x	x

9.3 Accuracy Benchmark

In this part, there are seven researchers that provided the accuracy and were included in this benchmark. As discussed earlier, each research is done differently, and the comparison could have some difficulties as the metric is not exactly the same. We can directly compare the proposed model with Jiyeon's research as the research provides accuracy for each class. Comparing the accuracies for both models, we can observe that both perform well in each class, but we will view the extreme differences between both. In the FTP-Brute Force and DoS attack HTTPtest, the proposed model accuracies were around 0.53 and 0.63, respectively,

while Jiyeon achieved 0.98 and 1 in the same order. On the other hand, infiltration and SQL injection, the proposed model achieved 0.61 and 0.85 compared to 0.35 and 0.08 in Jiyeon. The overall accuracy in the proposed model is 98.9, and when compared to the other research, we can see that it ranges between 0.83 and 1.

Overall, the accuracy in the proposed model has acceptable results when compared to the other research, either in the multi-Classifiaction or the general accuracy.

Accuracy	Proposed Model	(Tonni and	(Hua, 2020)	(Shorubiga and	(Dini et al., 2022)	(Fitni and Ramli,	(Alkanjr and Alshammari	(Shahbandayeva	(Das et al., 2023)	(Yoo et al., 2021)	(Siddiqi and Pak,	(Jiyeon et al., 2021)
Benign	0.96	x	x	x	x	x	x	x	x	x	x	1
Bot	1	1	x	x	x	x	x	х	x	x	x	1
Brute Force -Web	0.75	x	x	x	x	x	x	x	x	x	x	0.3
Brute Force -XSS	0.86	x	x	x	x	x	x	x	x	x	x	0.65
BruteForce	x	1	x	x	x	x	x	x	x	x	x	x
DDoS	x	x	x	x	x	x	x	x	x	x	x	x
DDOS attack-HOIC	1	x	x	x	x	x	x	x	x	x	x	1
DDOS attack-LOIC-UDP	0.99	x	x	x	x	x	x	x	x	x	x	1
DDoS attacks-LOIC-HTTP	1	x	x	x	x	x	x	x	x	x	x	1
DoS	x	1	x	x	x	x	x	x	x	x	x	x
DoS attacks-GoldenEye	1	x	x	x	x	x	x	x	x	x	x	0.47
DoS attacks-Hulk	1	x	x	x	x	x	x	x	x	x	x	1
DoS attacks-SlowHTTPTest	0.63	x	x	x	x	x	x	x	x	x	x	1
DoS attacks-Slowloris	1	x	x	x	x	x	x	x	x	x	x	0.66
FTP-BruteForce	0.53	x	x	x	x	x	x	x	x	x	x	0.98
Infilteration	0.61	0.86	x	x	x	x	x	x	x	x	x	0.35
SQL Injection	0.85	1	x	x	x	x	x	x	x	x	x	0.08
SSH-Bruteforce	1	x	x	x	x	x	x	x	x	x	x	0.96
Web attacks	x	x	x	x	x	x	x	x	x	x	x	х
Overall	98.9	x	0.98	99.97	94.5	98.8	1	0.83	98	0.89	0.98	x

Table 75 Accuracy Benchmark

9.4 F1 Score Benchmark

There are 11 pieces of research included in the F1 score benchmark. In the General

view we can observe that the proposed model has acceptable results in all classes

compared to the other models, which have an F1 score per class, except for the BruteForce-Web, FTP-BruteForce, and infiltration, where the results are 0.66, 0.12, and 0.36 respectively compared to results that are around 0.9 for both Brute force-Web and FTP-Brute Force in Di and Handika, except for infiltration where the results were not presented or 0 like chimphlee research.

F1 Score	Proposed Model	(Tonni and Mazumder. 2023)	(Hua, 2020)	(Di et al., 2022)	(Handika et al., 2000)	(Handika et al., 2000)	(Fitni and Ramli, 2020)	(Alkanjr and Alshammari	(Shahbandayeva	(Yoo et al., 2021)	(Siddiqi and Pak,	(Chimphlee et al., 2022)
Benign	0.99	x	x	x	0.99	x	x	x	x	x	x	0.99
Bot	1.00	1.00	x	95.13	1.00	x	x	x	x	x	x	1.00
Brute Force -Web	0.66	x	x	89.10	0.80	x	x	x	x	x	x	0.00
Brute Force -XSS	0.84	x	x	90.11	0.66	x	x	x	x	x	x	0.00
BruteForce	х	1.00	x	x	x	x	x	x	x	x	x	x
DDoS	x	x	x	x	x	x	x	x	x	x	x	x
DDOS attack-HOIC	1.00	x	x	90.08	1.00	x	x	x	x	x	x	1.00
DDOS attack-LOIC-UDP	0.91	x	x	96.99	1.00	x	x	x	x	x	x	0.84
DDoS attacks-LOIC-HTTP	1.00	x	x	89.32	1.00	x	x	x	x	x	x	0.98
DoS	х	1.00	x	x	x	x	x	x	x	x	x	x
DoS attacks-GoldenEye	1.00	x	x	94.11	1.00	x	x	x	x	x	x	0.71
DoS attacks-Hulk	1.00	x	x	91.91	1.00	x	x	x	x	x	x	0.98
DoS attacks-SlowHTTPTest	0.31	x	x	95.54	x	x	x	x	x	x	x	0.61
DoS attacks-Slowloris	1.00	x	x	90.35	1.00	x	x	x	x	x	x	0.94
FTP-BruteForce	0.12	x	x	92.41	1.00	x	x	x	x	x	x	0.79
Infilteration	0.36	0.93	x	x	x	x	x	x	x	x	x	0.02
Overall	x	x	0.98	x	x	93.00	97.90	1.00	0.78	0.85	0.98	x
SQL Injection	0.83	1.00	x	x	0.71	x	x	x	x	x	x	0.00
SSH-Bruteforce	1.00	x	x	93.00	1.00	x	x	x	x	x	x	1.00
Web attacks	x	x	x	x	x	x	x	x	x	x	x	x

Table 76 F1 Score Benchmark

9.5 Recall Benchmark

The Recall Benchmark had 11 research that have presented the recall metric. Only three researchers have included per-class recall values, which are Seth, Chimphlee, and Hagar. When comparing the proposed mode to these three searches, we can

note that Hagar has the best results, which is almost around 1 in all classes, except

FTP-Brute Force (~0.7).

Table 77 Recall Benchmark

Recall	Proposed Model	(Seth et al., 2021)	(Hua, 2020)	(Handika et al., 2022)	(Fitni and Ramli, 2020)	(Alkanjr and Alshammari	(Shahbandayeva	(Das et al., 2023)	(Yoo et al., 2021)	(Siddiqi and Pak, 2022)	(Chimphlee et al., 2022)	(Hagar et al., 2022)
Benign	1.00	1.00	x	x	x	x	x	x	x	x	1.00	0.95
Bot	0.99	1.00	x	x	x	x	x	x	x	x	1.00	0.90
Brute Force -Web	0.50	x	x	x	x	x	x	x	x	x	0.00	0.99
Brute Force -XSS	0.72	x	x	x	x	x	x	x	x	x	0.00	1.00
BruteForce	x	0.96	x	x	x	x	x	x	x	x	x	x
DDoS	x	1.00	x	x	x	x	x	x	x	x	x	x
DDOS attack-HOIC	1.00	x	x	x	x	x	x	x	x	x	1.00	1.00
DDOS attack-LOIC-UDP	0.97	x	x	x	x	x	x	x	x	x	0.99	1.00
DDoS attacks-LOIC-HTTP	1.00	x	x	x	x	x	x	x	x	x	0.97	1.00
DoS	x	0.99	x	x	x	x	x	х	х	x	x	x
DoS attacks-GoldenEye	1.00	x	x	x	x	x	x	х	x	x	0.55	1.00
DoS attacks-Hulk	1.00	x	x	x	x	x	x	х	x	x	1.00	1.00
DoS attacks-SlowHTTPTest	0.26	x	x	x	x	x	x	х	x	x	0.51	1.00
DoS attacks-Slowloris	1.00	x	x	x	x	x	x	х	х	x	0.94	1.00
FTP-BruteForce	0.06	x	x	x	x	x	x	х	х	x	0.88	0.76
Infilteration	0.23	0.62	x	x	x	x	x	х	х	x	0.01	1.00
Overall	x	x	0.98	91.00	97.10	1.00	0.83	99.00	0.89	0.98	x	x
SQL Injection	0.71	x	x	x	x	x	x	х	x	x	0.00	0.99
SSH-Bruteforce	1.00	x	x	x	x	x	x	x	x	x	1.00	1.00
Web attacks	x	1.00	x	x	x	x	x	х	x	x	x	x

9.6 Discussion

This chapter provided a detailed evaluation of the proposed hybrid model using performance metrics that reflect real-world IDS expectations. The comparison between individual classifiers and the per-instance voting approach demonstrated consistent advantages in precision, recall, and overall classification stability. One of the key findings was the improved handling of minority classes, where most standalone models typically showed poor sensitivity. The master classifier, acting as

a rule-based guide, was effective in filtering out less-relevant models and contributed to the overall efficiency of the portfolio. Furthermore, the combination of the master model and portfolio strategy resulted in fewer false positives compared to baseline models, which is a critical factor in operational environments. These results highlight the benefit of dynamically selecting classifiers based on instance-level behavior, especially when traffic is highly diverse. The discussion also touched on benchmark comparisons with related studies, showing that the proposed method is not only competitive but also introduces a flexible architecture that can adapt to different detection requirements. This adaptability positions the model as a practical candidate for deployment in layered security systems.

9.7 Chapter Conclusion

In conclusion, this chapter validated the performance of the proposed intrusion detection system by comparing it against traditional models and existing solutions in the literature. The per-instance classifier portfolio consistently demonstrated better balance between detection rates and false alarms across all tested scenarios. Its effectiveness in detecting minority class attacks and reducing false positives supports the original research hypothesis and confirms the value of integrating model diversity. Additionally, the evaluation confirmed that combining a rule-based master classifier with dynamic portfolio voting results in a more adaptable and accurate detection process. The benchmark comparisons further established that this research offers improvements over many standard classification strategies used in IDS today. These conclusions mark the completion of the experimental phase of the thesis. The final chapter will summarize the research contributions, discuss the implications of the findings, and outline potential directions for future work.

175

Chapter 10 Conclusion

This chapter will have the discussion and conclusion by summarizing the thesis and showing if the research goals have been fulfilled. Also, it will show major findings, impact on the Industry, limitations, and future work.

In the introduction, we have 3 points that we consider contributions to knowledge. We will review each and validate each one of them as follows.

- The ability to create a (portfolio classifier) with no budget with precision and accuracy relevant to my thesis
 - The Portfolio Classifier (hybrid Classifier) is created in this research, and as shown in the benchmark, the performance and accuracy are comparable to other researches that use the same dataset and do multiclassification.
- per instance selection of classifier, where only selected classifiers can vote in each instance, so there will be a different set of classifiers to vote on for every threat.
 - We have trained multiple models on a dataset that was captured from network traffic. The models were used to be used in the portfolio. A master classifier was built based on the classifiers that are part of the portfolio. The master classifier is able to select the classifiers that can participate in the voting to classify the instance.
- Modularity of the Model, where additional classifiers can be plugged in to enhance performance

 As we have progressed in the research. We were able to add and remove models from the portfolio. Adding more classifiers is feasible and potentially can increase the performance and accuracy..

In this thesis, we have covered the general concepts of cybersecurity in order to allow the reader to comprehend the meaning of IDS and its function. We have covered the history and evolution of cyber security threats. In addition, we reviewed the tools and approaches that mitigate and defend systems from Cybersecurity threats. We have made data exploration and analysis of the dataset. Via this process, we have faced some challenges, but through the summaries and observing the plots and distribution of the classes, we were able to understand some characteristics of the Dataset CIC-IDS-2018.

Our proposed model is a portfolio of classifiers, where a classifier will be chosen for each network flow to assist in the classification of either a benign or a threat. For this reason, we have built multiple models that support multiclassification to construct the portfolio. We have made different attempts in this thesis. The first attempt involved using a subsample of the data. The results of this attempt were not satisfying when compared to published research papers. Then, we made a second attempt where we used the complete dataset, except for duplicates and NAs. In the second attempt, the results were much better than the first attempt, and a benchmark between the first and second attempts to compare both results. When both results were compared, we noticed a significant increase in performance for the second attempt.

177

We have made a similar comparison to other papers that have used the same dataset and used multiclassification. The benchmark showed that the proposed model either has a similar or exceeds the other research results (in most cases). The benchmarks used to compare other research results were precision, accuracy, F1 score, and recall. Not all research presented the complete data or used the same criteria, as some of the research clubbed some classes into categories, so the comparison and benchmarking would not have a complete picture. Overall, we could see potential in the proposed model when compared to others, and there is room for a lot of improvements and enhancements.

Using multiple classifiers can increase the performance as some classifiers work better with different types of classes in the same dataset. There are algorithms that use this approach that are either dependent on voting or fusion. In the proposed model, we classify the classifiers that will participate in the vote. Not all classifiers fit for each instance or flow in the dataset. In the proposed model, for each flow, we can have a different set of classifiers that can participate in the vote. This approach has increased the performance of the overall model when compared to each individual model in the portfolio. This approach can assist in cybersecurity as it can be easily expanded and enhanced by simply adding more models to the portfolio, which will increase performance and accuracy. With increased accuracy, organizations and industries will have fewer false alarms and a higher detection rate for anomalies, which will help Security operation centers (SOC) operators handle fewer floods of false alarms and focus on real threats.

The proposed model is modular in its nature. There are a lot of ways to enhance and have better performance. The simple way to enhance the model is by adding more models to the portfolio; this way, the master classifier will have a wider selection of models that can participate in the voting. The second approach is to use multiple datasets for training or develop a tool that can capture the data for training. Another enhancement that can be done is by using multi-step classification. We can use a binary classifier that will determine if the flow is benign or an anomaly. If the flow anomaly, then we used the proposed model.

References:

- Abdul Lateef, A.A., Faraj Al-Janabi, S.T., Al-Khateeb, B., 2020. Hybrid Intrusion
 Detection System Based on Deep Learning, in: 2020 International Conference
 on Data Analytics for Business and Industry: Way Towards a Sustainable
 Economy (ICDABI). pp. 1–5.
 https://doi.org/10.1109/ICDABI51230.2020.9325669
- Alkanjr, B., Alshammari, T., 2023. IoBT Intrusion Detection System using Machine Learning. 2023 IEEE 13th Annual Computing and Communication Workshop and Conference, CCWC 2023 886–892. https://doi.org/10.1109/CCWC57344.2023.10099340
- Arivardhini, S., Alamelu, L.M., Deepika, S., 2020. A Hybrid Classifier Approach for Network Intrusion Detection, in: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). pp. 824–827. https://doi.org/10.1109/ICACCS48705.2020.9074216
- Atefi, K., Hashim, H., Khodadadi, T., 2020. A Hybrid Anomaly Classification with Deep Learning (DL) and Binary Algorithms (BA) as Optimizer in the Intrusion Detection System (IDS), in: 2020 16th IEEE International Colloquium on Signal Processing Its Applications (CSPA). pp. 29–34. https://doi.org/10.1109/CSPA48992.2020.9068725
- Bharati, M.P., Tamane, S., 2020. NIDS-Network Intrusion Detection System Based on Deep and Machine Learning Frameworks with CICIDS2018 using Cloud Computing, in: 2020 International Conference on Smart Innovations in Design,

Environment, Management, Planning and Computing (ICSIDEMPC). pp. 27– 30. https://doi.org/10.1109/ICSIDEMPC49020.2020.9299584

- Caffe | Deep Learning Framework [WWW Document], n.d. URL https://caffe.berkeleyvision.org/ (accessed 8.16.23).
- Canadian Institute for Cybersecurity, 2018. CSE-CIC-IDS2018 on AWS [WWW Document]. URL https://www.unb.ca/cic/datasets/ids-2018.html (accessed 9.28.19).
- Chen, P., Guo, Y., Zhang, J., Wang, Y., Hu, H., 2020. A Novel Preprocessing Methodology for DNN-Based Intrusion Detection, in: 2020 IEEE 6th International Conference on Computer and Communications, ICCC 2020. pp. 2059–2064. https://doi.org/10.1109/ICCC51575.2020.9345300
- Chimphlee, W., Chimphlee, S., Professor of Data Science, A., 2022. Network Intrusion Detector using Multilayer Perceptron (MLP) Approach. Turkish Journal of Computer and Mathematics Education 13, 488–499.
- Cybersecurity Definition & Meaning Merriam-Webster [WWW Document], n.d. URL https://www.merriam-webster.com/dictionary/cybersecurity (accessed 8.14.23).
- Das, P., Illa, M., Pokhariyal, R., Latoria, A., Hemlata, Saini, D.K.J.B., 2023. Role of Neural Network, Fuzzy, and IoT in Integrating Artificial Intelligence as a Cyber Security System. Proceedings of the 2023 2nd International Conference on Electronics and Renewable Systems, ICEARS 2023 652–658. https://doi.org/10.1109/ICEARS56392.2023.10084988

- David, R. Ben, Barr, A.B., 2021. Kubernetes Autoscaling: YoYo Attack Vulnerability and Mitigation. International Conference on Cloud Computing and Services Science, CLOSER Proceedings 2021-April, 34–44. https://doi.org/10.5220/0010397900340044
- Di, T., Wu, Y., Li, W., 2022. Deep Security Analysis Model for Smart Grid. 2022 IEEE 10th International Conference on Information, Communication and Networks, ICICN 2022 276–280. https://doi.org/10.1109/ICICN56848.2022.10006496
- Dini, P., Begni, A., Ciavarella, S., De Paoli, E., Fiorelli, G., Silvestro, C., Saponara, S., 2022. Design and Testing Novel One-Class Classifier Based on Polynomial Interpolation with Application to Networking Security. IEEE Access 10, 67910–67924. https://doi.org/10.1109/ACCESS.2022.3186026
- DOUGLAS, B., BILL, S., TIANQIU, W., 2015. A Survey of Intrusion Detection Systems. nternational Journal of Computer Applications.
- Fitni, Q.R.S., Ramli, K., 2020. Implementation of ensemble learning and feature selection for performance improvements in anomaly-based intrusion detection systems. Proceedings - 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2020 118–124. https://doi.org/10.1109/IAICT50021.2020.9172014
- FSabahi, AMovaghar, 2008. Intrusion detection: A survey. Proc. The 3rd Int. Conf.
 Systems and Networks Communications, ICSNC 2008 Includes I-CENTRIC
 2008: Int. Conf. Advances in Human-Oriented and Personalized Mechanisms,
 Technologies, and Services 23–26. https://doi.org/10.1109/ICSNC.2008.44

- H2O.ai | The fastest, most accurate AI Cloud Platform [WWW Document], n.d. URL https://h2o.ai/ (accessed 8.16.23).
- Hagar, A., Gawali, B.W., Sciences, C., Technology, I., 2022. Deep Learning for Improving Attack Detection System Using CSE-CICIDS2018 20, 3064–3074. https://doi.org/10.14704/nq.2022.20.7.NQ33385
- Haghighat, M.H., Li, J., 2021. Intrusion detection system using voting-based neural network. Tsinghua Sci Technol 26, 484–495. https://doi.org/10.26599/TST.2020.9010022
- Handika, V., Istiyanto, J.E., Ashari, A., Purnama, S.R., Rochman, S., Dharmawan,
 A., 2022. Feature Representation for Network Intrusion Detection System
 Trough Embedding Neural Network. Proceeding of the International Conference
 on Computer Engineering, Network and Intelligent Multimedia, CENIM 2022
 349–352. https://doi.org/10.1109/CENIM56801.2022.10037425
- Hindy, H., Brosset, D., Bayne, E., Seeam, A., Tachtatzis, C., Atkinson, R., Bellekens,X., 2018. A Taxonomy and Survey of Intrusion Detection System DesignTechniques, Network Threats and Datasets 1.
- Hua, Y., 2020. An Efficient Traffic Classification Scheme Using Embedded Feature Selection and LightGBM. 2020 Information Communication Technologies Conference, ICTC 2020 125–130. https://doi.org/10.1109/ICTC49638.2020.9123302
- IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity | UNB [WWW Document], n.d. URL https://www.unb.ca/cic/datasets/ids-2018.html (accessed 8.16.23).

- Ilker, Ö., Richard, B., 2020. Distributed Denial of Service Attacks Real-world Detection and Mitigation. CRC, Oxon.
- Intrusion Detection Systems > Triggering Mechanisms | Cisco Press [WWW Document], n.d. URL https://www.ciscopress.com/articles/article.asp?p=25334 (accessed 8.14.23).
- Jiyeon, K., Yulim, S., Choi, E., 2021. An Intrusion Detection Model based on a Convolutional Neural Network. IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) 6, 634–637. https://doi.org/10.1109/IAEAC50856.2021.9390930
- Kabir, S., Sakib, S., Hossain, M.A., Islam, S., Hossain, M.I., 2021. A Convolutional Neural Network based Model with Improved Activation Function and Optimizer for Effective Intrusion Detection and Classification. 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021 7, 373–378. https://doi.org/10.1109/ICACITE51222.2021.9404584
- Kamboj, P., Trivedi, M.C., Yadav, V.K., Singh, V.K., 2017. Detection techniques of DDoS attacks: A survey. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017 2018-Janua, 675–679. https://doi.org/10.1109/UPCON.2017.8251130
- KAREHKA, R., 2012. 10 Uses of Technology in Our Daily Life Useoftechnology [WWW Document]. URL https://useoftechnology.com/technology-todaytomorrow/ (accessed 8.20.23).

- KDD Cup 1999 Data [WWW Document], n.d. URL http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed 2.18.20).
- Khor, K.C., Ting, C.Y., Phon-amnuaisuk, S., 2010. Comparing Single and Multiple Bayesian Classifiers Approaches for Network Intrusion Detection. 2010 Second International Conference on Computer Engineering and Applications 2, 325– 329. https://doi.org/10.1109/ICCEA.2010.214
- Kishore, R., Chauhan, A., 2020. Evaluation of Deep Neural Networks for Advanced Intrusion Detection Systems, in: 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). pp. 1–8. https://doi.org/10.1109/ICECA49313.2020.9297515
- Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D., Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman, M.A., 2000. Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. Proceedings - DARPA Information Survivability Conference and Exposition, DISCEX 2000 2, 12–26. https://doi.org/10.1109/DISCEX.2000.821506
- Ludmila I. Kuncheva, James C. Bezdek, Robert P.W. Duin, 2001. Decision Templates for Multiple Classifier Fusion: An Experimental Comparison 34, 299– 314.
- Margaret, R., 2018. intrusion detection system (IDS) [WWW Document]. URL https://searchsecurity.techtarget.com/definition/intrusion-detection-system (accessed 9.23.19).

- Microsoft fends off record-breaking 3.47Tbps DDoS attack | Ars Technica [WWW Document], n.d. URL https://arstechnica.com/information-technology/2022/01/microsoft-fends-off-record-breaking-3-47-tbps-ddos-attack/ (accessed 8.14.23).
- MLC++, A Machine Learning Library in C++ [WWW Document], n.d. URL http://robotics.stanford.edu/users/ronnyk/mlc.html (accessed 8.16.23).
- MLlib | Apache Spark [WWW Document], n.d. URL https://spark.apache.org/mllib/ (accessed 8.16.23).
- OpenCV Open Computer Vision Library [WWW Document], n.d. URL https://opencv.org/ (accessed 8.16.23).
- Personnaz, L., Knerr, S., Gérard Dreyfus, 1990. Single-layer learning revisited: A stepwise procedure for building and training a neural network. Neurocomputing. https://doi.org/10.1007/978-3-642-76153-9
- Pricing Calculator | Microsoft Azure [WWW Document], n.d. URL https://azure.microsoft.com/en-us/pricing/calculator/ (accessed 8.15.23).

PyTorch [WWW Document], n.d. URL https://pytorch.org/ (accessed 8.16.23).

- R: The R Project for Statistical Computing [WWW Document], n.d. URL https://www.r-project.org/ (accessed 8.16.23).
- RapidMiner | Amplify the Impact of Your People, Expertise & Data [WWW Document], n.d. URL https://rapidminer.com/ (accessed 8.16.23).

- Sabhnani, M., Serpen, G., 2004. Why machine learning algorithms fail in misuse detection on KDD intrusion detection data set. Intelligent Data Analysis 8, 403–415. https://doi.org/10.3233/ida-2004-8406
- Saleem Malik Raja, K., Jeya Kumar, K., 2014. Diversified intrusion detection using Various Detection methodologies with sensor fusion 442–448. https://doi.org/10.1109/iccpeic.2014.6915405
- SATzilla: Portfolio-based algorithm selection for SAT [WWW Document], 2017. URL http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/ (accessed 9.28.19).
- Sazzadul Hoque, M., 2012. An Implementation of Intrusion Detection System Using Genetic Algorithm. International Journal of Network Security & Its Applications 4, 109–120. https://doi.org/10.5121/ijnsa.2012.4208
- scikit-learn: machine learning in Python scikit-learn 1.3.0 documentation [WWW Document], n.d. URL https://scikit-learn.org/stable/ (accessed 8.16.23).
- Seth, S., Chahal, K.K., Singh, G., 2021. A Novel Ensemble Framework for an Intelligent Intrusion Detection System. IEEE Access 9, 138451–138467. https://doi.org/10.1109/ACCESS.2021.3116219
- Shahbandayeva, L., Mammadzada, U., Manafova, I., Jafarli, S., Adamov, A.Z., 2022.
 Network Intrusion Detection using Supervised and Unsupervised Machine
 Learning. 16th IEEE International Conference on Application of Information and
 Communication Technologies, AICT 2022 Proceedings 1–7.
 https://doi.org/10.1109/AICT55583.2022.10013594

187

- Shorubiga, P., Shyam, R., 2023. CNN-Based Model for the HTTP Flood Attack Detection. 2023 International Conference for Advancement in Technology, ICONAT 2023 1–6. https://doi.org/10.1109/ICONAT57137.2023.10080698
- Siddiqi, M.A., Pak, W., 2022. Tier-Based Optimization for Synthesized Network Intrusion Detection System. IEEE Access 10, 108530–108544. https://doi.org/10.1109/ACCESS.2022.3213937
- Simone, M.P., 2009. Challenges of Managing an Intrusion Detection System (IDS) in the Enterprise. Sans Institute 27.
- Stolfo, S.J., Fan, W., Lee, W., Prodromidis, A., Chan, P.K., 2000. Cost-based modeling for fraud and intrusion detection: Results from the JAM project. Proceedings - DARPA Information Survivability Conference and Exposition, DISCEX 2000 2, 130–144. https://doi.org/10.1109/DISCEX.2000.821515
- Subbulakshmi, T., Afroze, A.F., 2013. Multiple learning based classifiers using layered approach and Feature Selection for attack detection. 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology, ICE-CCN 2013 308–314. https://doi.org/10.1109/ICE-CCN.2013.6528514
- Syarif, I., Afandi, R.F., Astika Saputra, F., 2020. Feature selection algorithm for intrusion detection using cuckoo search algorithm. IES 2020 International Electronics Symposium: The Role of Autonomous and Intelligent Systems for Human Life and Comfort 430–435. https://doi.org/10.1109/IES50839.2020.9231840

- Tanmoy, S., Niva, D., 2017. Survey on Host and Network Based Intrusion Detection System. Int. J. Advanced Networking and Applications 6.
- Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A., 2015. Proceedings of the 2014
 7th IEEE Symposium on Computational Intelligence for Security and Defense
 Applications, CISDA 2014. Proceedings of the 2014 7th IEEE Symposium on
 Computational Intelligence for Security and Defense Applications, CISDA 2014
 164p.
- TensorFlow [WWW Document], n.d. URL https://www.tensorflow.org/ (accessed 8.16.23).
- Thakkar, A., Lohiya, R., 2020. A Review of the Advancement in Intrusion Detection
 Datasets. Procedia Comput Sci 167, 636–645.
 https://doi.org/10.1016/j.procs.2020.03.330
- The Global DataSphere & Its Enterprise Impact | IDC Blog [WWW Document], n.d. URL https://blogs.idc.com/2019/11/04/how-you-contribute-to-todays-growingdatasphere-and-its-enterprise-impact/ (accessed 8.14.23).
- Tonni, Z.A., Mazumder, R., 2023. A Novel Feature Selection Technique for Intrusion Detection System Using RF-RFE and Bio-inspired Optimization. 2023 57th Annual Conference on Information Sciences and Systems, CISS 2023 1–6. https://doi.org/10.1109/CISS56502.2023.10089745
- Urvashi, M., Jain, M.A., 2015. A survey of IDS classification using KDD CUP 99 dataset in WEKA. Int J Sci Eng Res 6, 947–954.

- Weka 3 Data Mining with Open Source Machine Learning Software in Java [WWW Document], n.d. URL https://www.cs.waikato.ac.nz/ml/weka/ (accessed 8.16.23).
- What is CRISP DM? Data Science Process Alliance [WWW Document], n.d. URL https://www.datascience-pm.com/crisp-dm-2/ (accessed 8.15.23).

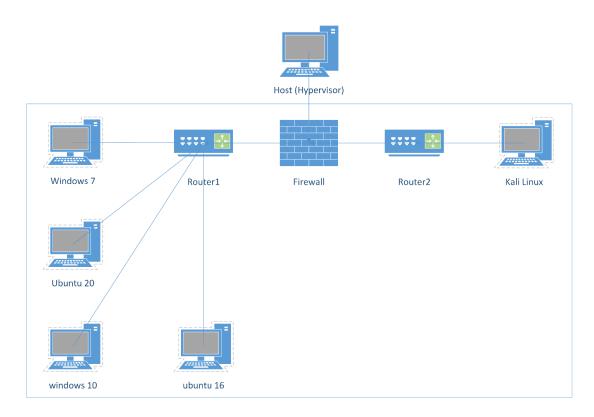
What Is Packet Capture (PCAP)? - IT Glossary | SolarWinds, n.d.

Yoo, J., Min, B., Kim, S., Shin, Dongil, Shin, Dongkyoo, 2021. Study on Network Intrusion Detection Method Using Discrete Pre-Processing Method and Convolution Neural Network. IEEE Access 9, 142348–142361. https://doi.org/10.1109/ACCESS.2021.3120839

Appendix :

building PCAP

In order to test models with real traffic data a network infrastructure was built on some servers. The infrastructure built as follows:



- 1- Host is the physical hypervisor that will host all the virtual machines
- 2- Virtual Firewall is PFSense which has three interfaces for routing
 - a. Private LAN network for Kali
 - b. Private LAN network for the victims
 - c. WAN Network with the host to allow internet traffic
- 3- Virtual Ubuntu 20 for recent attacks(old attacks will not work)
 - a. SSH open
 - b. FTP open

- c. Open SS enable
- d. Apache enabled
- e. Firewall disabled
- 4- Virtual Windows 10 for recent attacks (old attacks will not work)
 - a. IIS installed
- 5- Virtual windows 7 (exploitable for many attacks)
 - a. Old adobe acrobat 9.0 is installed
- 6- Virtual Ubuntu 16 (exploitable for many attacks)
 - a. SSH open
 - b. FTP open
 - c. Open SS enable
 - d. Apache enabled
 - e. Firewall disabled

The firewall was placed in the middle to force all traffic to pass through, so the data collection will be easier. The PFsense was connected to wireshark in the host via SSH to generate the PCAP on the fly.

Each virtual node in the victim side has a python script that will access a random website to simulate benign traffic

import time		
import webbrowser		
import random		
import os		

f = open("websites.csv", "r")
lines=f.readlines()
t_end = time.time() + 60 * 20
while time.time() < t_end:
 webbrowser.open(random.choice(lines),new=0)
 time.sleep(15)</pre>

os.system("taskkill /im firefox.exe /f")

os.system("taskkill /im msedge.exe /f")

os.system("taskkill /im iexplore.exe /f")

Generating attacks:

Kali Linux was prepared with script to initiate attacks following attacks

- patator ssh_login
- patator ftp_login
- hulk-master
- GoldenEye
- Slowloris
- slowhttptest
- msfconsole

each attack is timed and a time stamp is recorded with timestamp, Source IP and destination IP. Once the attacks are done and the data is extracted from wireshark, the pcap fille is processed in CICFlow to extract features and generate flows ready

for machine learning. From the matching timestamsp and destination IP we can label the flows with the corresponding attack in the scipt.

Failed Attempts:

1- SVM

SVM is binary classifier by in its core. In order, to test with Multiclass, the library (e1071) was used to build SVM model. Unfortunately, this library consumed a lot of resources and time without getting an out.

2- KNN

This model was built, but the results were not optimistic to be included.

Naïve Bayes

Naïve Bayes was used in RStudio using the H2o Package. This function or algorithm depends on the assumption that each predictor is independent and a Gaussian distribution with numeric predictors that has mean, and STD computed in the training set. The same goes as we did the past models, we have provided the function with Training Data to build it.

Parameter	Value	Description
model_id	NBModel	Destination id for this model; auto-generated if not specified.
nfolds	5	Number of folds for K-fold cross-validation (0 to disable or $>=$ 2).
seed	1234	Seed for pseudo random number generator (only used for cross-validation and
fold_assignment	Random	Cross-validation fold assignment scheme, if fold_column is not specified. The 'S on the response variable, for classification problems.
response_column	Class	Response variable column.
ignored_columns		Names of columns to ignore for training.

 Accuracy
 Kappa

 0.26684434
 0.21447607

 AccuracyLower

 AccuracyUpper
 0.26563995

 0.26563995
 0.26805133

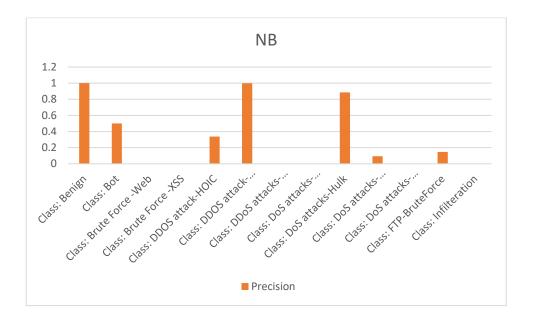
 AccuracyNull

 AccuracyPValue

 0.06666667
 0.00000000

 McnemarPValue

 NaN

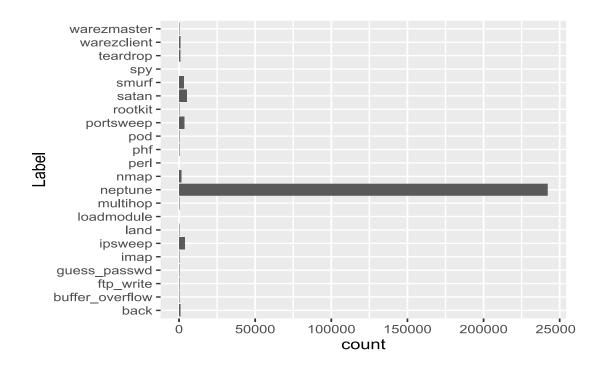


Test on KDDCUP

the KDDcup dataset was preprocessed by removing the duplicates and empty rows. The following represent the dataset classes without the normal class.

names	count	Percentage
back	968	0.090
buffer_overflow	30	0.003
ftp_write	8	0.001
guess_passwd	53	0.005
imap	12	0.001
ipsweep	3723	0.346
land	19	0.002
loadmodule	9	0.001
multihop	7	0.001
neptune	242149	22.526
nmap	1554	0.145

normal	812814	75.611		
perl	3	0.000		
phf	4	0.000		
pod	206	0.019		
portsweep	3564	0.332		
rootkit	10	0.001		
satan	5019	0.467		
smurf	3007	0.280		
spy	2	0.000		
teardrop	918	0.085		
warezclient	893	0.083		
warezmaster	20	0.002		
Total	1074992	100.000		



In the above graph, we can see the distribution of threat types, and we clearly find that the Neptune attacks are has a huge count compared to the rest. This is maybe a result of removing duplicates and missing values.

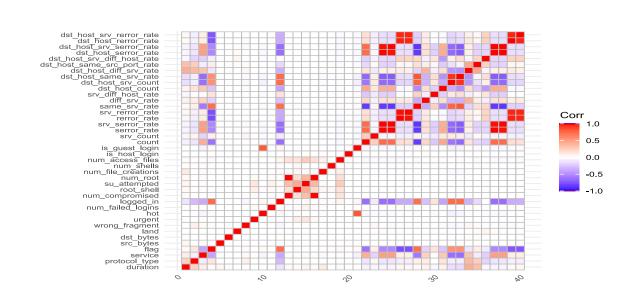
Correlation heatmap:

the

We can see that most of the correlated features are the features related to the error rate and count. And these relations are expected since they are mostly derived from

count.

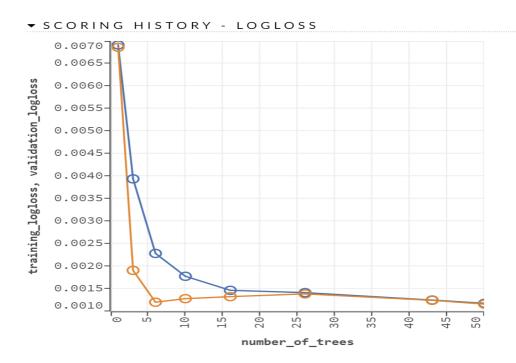
error



First Run using Distributed Random Forest

At this stage, a distributed random forest model is created with the complete set of features. This step will help to determine or select features, so we can reduce the Dataset with the same accuracy. Also, it will assist in having a benchmark to compare with the reduced model.

Distributed Random Forest Training:



Training matrix :

This is the training matrix of the distributed random forest with a training size equal to 0.75 of the Dataset.

model	drf-62b6f06b-971b-4e1b-837c-27a467942b9b
model_checksum	\$ (272,627,320,440,848,000.00)
frame	frame_0.750
frame_checksum	\$ 7,848,675,700,881,100,000.00
description	Metrics reported on Out-Of-Bag training samples
model_category	Multinomial
scoring_time	\$ 1,617,119,055,988.00
predictions	
MSE	\$ 0.00
RMSE	\$ 0.01
nobs	\$ 3,673,643.00
custom_metric_name	
custom_metric_value	\$ -
r2	\$ 1.00
logloss	\$ 0.00
mean_per_class_error	\$ 0.38
AUC	NaN
pr_auc	NaN
multinomial_auc_table	
multinomial_aucpr_table	

Training Confusion matrix

	back	buffer_ove rflow	ftp_write	guess_pass wd	imap	ipsweep	land	loadmodul e	multihop	neptune	nmap	normal	perl	phf	pod	portsweep	rootkit	satan	smurf	spy	teardrop	warezclient	warezmast er	Error	Rate	Precision
back	164 2	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0.003	5 / 1,647	1
buffer_overf low						_	_				_			-	_		_			-			_			
ftp_write	0	13 0	0	0	0	0	0	0	0	0	0	<u>10</u>	0	0	0	0	0	0	0	0	0	2	0	0.48	44555	0.87
guess_passw	0	0	0	0	U	0	0	0	0	U	0	6	0	U	0	0	0	0	0	U	U	U	U	1	44353	NaN
d	0	0	0	41	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0.046 5	15738	1
	Ŭ	0	0		0	Ŭ	0	0	0	0	Ŭ	2	0	Ű	0		0	0		Ű	0	0	Ŭ	0.714	15750	
imap	0	0	0	0	2	0	0	0	0	0	2	3	0	0	0	0	0	0	0	0	0	0	0	3 0.003	44323	1
ipsweep	0	0	0	0	0	9358	0	0	0	0	1	35	0	0	0	0	0	0	0	0	0	0	0	0.003	36 / 9,394	1
land	0	0	0	0	0	0	15	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0.166 7	44273	0.75
loadmodule																										
multihop	0	1	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	1	0	1	44416 44321	0 NaN
	0	1	0	0	0	0	0	1	0	80399	0	3	0	0	0	0	0	0	0	0	0	0	0	1	1/	Indin
neptune	0	0	0	0	0	0	0	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	803,993	1
nmap	0	0	0	0	0	17	0	0	0	0	1676	24	0	0	0	0	0	0	0	0	0	0	0	0.023 9	41 / 1,717	1
normal	0	0	0	0	0	5	5	0	0	0	0	729167	0	0	0	1	0	3	1	0	0	13	0	0	28 / 729,195	1
perl	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
phf	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	1	44258	NaN
pod	0	0	0	0	0	0	0	0	0	0	0	3	0	0	196	0	0	0	0	0	0	0	0	0.015 1	3 / 199	1
portsweep	0	0	0	0	0	0	0	0	0	1	0	12	0	0	0	7805	0	2	0	0	0	0	0	0.001 9	15 / 7,820	1
rootkit	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	1	44479	NaN
satan	0	0	0	0	0	1	0	0	0	0	0	74	0	0	0	0	0	1180 3	0	0	0	0	0	0.006	75 / 11,878	1
smurf																			21061						3 / 2,106,1	
spy	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	28	0	0	0	0	0	31 44229	1 NaN
teardrop	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	738	0	0	0	0 / 738	1
warezclient																								0.059	47 /	
	0	0	0	0	0	0	0	0	0	0	0	47	0	0	0	0	0	0	0	0	0	743	0	5 0.307	790	0.98
warezmaster	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	9	7	44299 315 /	1
Total	164 2	15	0	41	2	9381	20	1	0	80399 5	1679	729422	0	0	196	7806	0	1180 8	21061 29	0	738	759	9	0.000 1	3,673,6 43	
Recall	1	0.52	0	0.95	0.29	1	0.83	0	0	1	0.98	1	0	0	0.98	1	0	0.99	1	0	1	0.94	0.69			

Validation Matrix:

model	drf-62b6f06b-971b-4e1b-837c-27a467942b9b
model_checksum	-2.72627E+17
frame	frame_0.250
frame_checksum	3.28803E+18
description	•
model_category	Multinomial
scoring_time	1.61712E+12
predictions	•
MSE	0.000123
RMSE	0.011074
nobs	1224788
custom_metric_name	•
custom_metric_value	0
r2	0.999993
logloss	0.001162
mean_per_class_error	0.276288
AUC	NaN
pr_auc	NaN
multinomial_auc_table	•
multinomial_aucpr_table	•

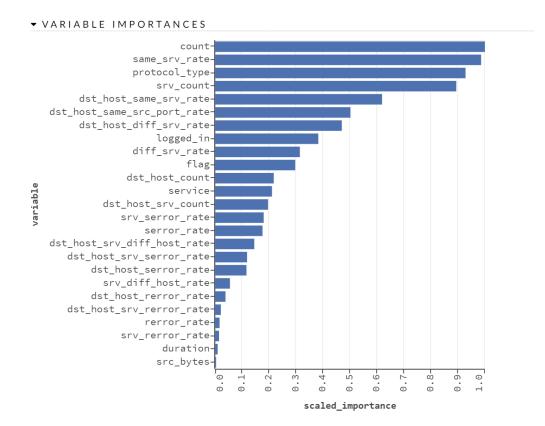
0.25 of the Dataset was used for validation.

Confusion matrix :

	back	buffer_o verflow	ftp_writ e	guess_p asswd	imap	ipsweep	land	loadmod ule	multiho D	neptune	nmap	normal	perl	phf	pod	portswe ep	rootkit	satan	smurf	Ads	teardrop	warezcli ent	warezm aster	Error	Rate	Precisio n
back	554	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0.0036	2 / 556	1
buffer_overflow	0	3	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0.4	44232	1
ftp_write	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	1	44229	NaN
guess_passwd	0	0	0	9	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0.1	44206	1
imap	0	0	0	0	3	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0.4	44232	1
ipsweep	0	0	0	0	0	3073	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0.0045	14 / 3,087	1
land	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0/3	0.6
loadmodule	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
multihop	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	1	44229	NaN
neptune	0	0	0	0	0	0	0	0	0	268024	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 / 268,024	1
nmap	0	0	0	0	0	12	0	0	0	0	573	14	0	0	0	0	0	0	0	0	0	0	0	0.0434	26 / 599	1
normal	0	0	0	0	0	2	2	0	0	0	0	243579	0	0	0	0	0	0	0	0	0	3	0	0	7 / 243,586	1
perl	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	1	44229	NaN
phf	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
pod	0	0	0	0	0	0	0	0	0	0	0	2	0	0	63	0	0	0	0	0	0	0	0	0.0308	23774	1
portsweep	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	2584	0	1	0	0	0	0	0	0.0035	9 / 2,593	1
rootkit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
satan	0	0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	0	3993	0	0	0	0	0	0.0052	21 / 4,014	1
smurf	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	701754	0	0	0	0	0	1 / 701,755	1
spy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 / ORate: spy	NaN
teardrop	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	239	0	0	0.0083	2 / 241	1
warezclient	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	214	0	0.0696	16 / 230	0.99
warezmaster	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	5	0.2857	44234	1
Total					3	-			-		-						-								115 /	
Recall	554 1	3 0.6	0	9 0.9	3 0.6	3087	5	0	0	268025	573 0.96	243671	0	0	63 0.97	2584 1	0 NaN	3996 0.99	701754	0 NaN	239 0.99	217 0.93	5 0.71	0.0001	1,224,788	<u>├</u>
needii	1	0.0	U	0.9	0.0	T	1	U	U	1 *	0.90	-	U	U	0.97	T	INGIN	0.33	-	INCIN	0.99	0.95	0.71		1	

Variable Importance

At this stage, we can determine which factors we can use for the second test with random forest. Based on the scaled_importance, we have selected factors that have a value greater than 0.3.



Variable Importance Table

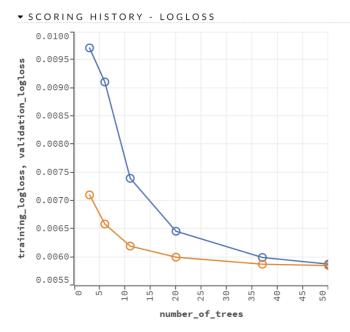
variable	relative_importance	scaled_importance	percentage	
count	11859210	1	0.1263	
same_srv_rate	11688206	0.9856	0.1245	
protocol_type	11003613	0.9279	0.1172	
srv_count	10597117	0.8936	0.1128	
dst_host_same_srv_rate	7336097	0.6186	0.0781	
dst_host_same_src_port_rate	5948306	0.5016	0.0633	
dst_host_diff_srv_rate	5567899.5	0.4695	0.0593	
logged_in	4536479.5	0.3825	0.0483	
diff_srv_rate	3725651.75	0.3142	0.0397	
flag	3521670	0.297	0.0375	
dst_host_count	2578363.75	0.2174	0.0275	
service	2501159.5	0.2109	0.0266	
dst_host_srv_count	2326045.25	0.1961	0.0248	
srv_serror_rate	2136325.75	0.1801	0.0227	
serror_rate	2085115.375	0.1758	0.0222	
dst_host_srv_diff_host_rate	1722246.375	0.1452	0.0183	
dst_host_srv_serror_rate	1406472.5	0.1186	0.015	
dst_host_serror_rate	1380117.125	0.1164	0.0147	
srv_diff_host_rate	653914.875	0.0551	0.007	
dst_host_rerror_rate	458241.8125	0.0386	0.0049	
dst_host_srv_rerror_rate	254065.2188	0.0214	0.0027	
rerror_rate	198456.9219	0.0167	0.0021	
srv_rerror_rate	175007.0625	0.0148	48 0.0019	
duration	115320.625	0.0097	0.0012	
src_bytes	45980.3047	0.0039	0.0005	

hot	34724.5781	0.0029	0.0004
wrong_fragment	32910.9648	0.0028	0.0004
num_compromised	13082.9023	0.0011	0.0001
dst_bytes	5480.2305	0.0005	0.0001
is_guest_login	1813.0879	0.0002	0
num_failed_logins	932.4665	0.0001	0
land	364.8605	0	0
num_root	332.1861	0	0
root_shell	278.7813	0	0
num_file_creations	221.6001	0	0
num_access_files	182.6476	0	0
num_shells	68.4239	0	0
su_attempted	54.1832	0	0
urgent	28.6472	0	0
is_host_login	0	0	0

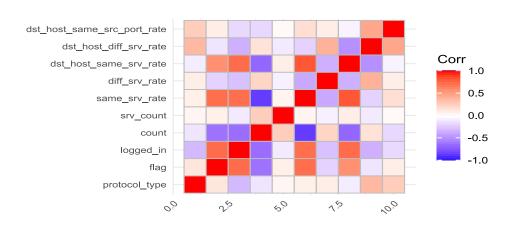
Distributed Random Forest After reduction

At this stage, we have reduced the Dataset based on the most important classes or factors. A distributed random forest is built with this reduction.

Scoring of the Distributed Random forest after feature reduction



Correlation After Reduction



Model Training Matrix

model	drf-e1fea77c-d26d-42cb-b329-aad94a5cc57a
model_checksum	-7.30695E+17
frame	frame_0.750
frame_checksum	7.84868E+18
	Metrics reported on Out-Of-Bag training
description	samples
model_category	Multinomial
scoring_time	1.61712E+12
predictions	
MSE	0.001356
RMSE	0.03683
nobs	3673643
custom_metric_name	•
custom_metric_value	0
r2	0.999917
logloss	0.005877
mean_per_class_error	0.6047
AUC	NaN
pr_auc	NaN
multinomial_auc_table	•
multinomial_aucpr_table	•

Confusion Matrix for Training

	back	buffer_ove rflow	ftp_write	guess_pass wd	imap	ipsweep	land	loadmodul e	multihop	neptune	nmap	normal	perl	phf	pod	portsweep	rootkit	satan	smurf	Аds	teardrop	warezclient	warezmast er	Error	Rate	Precision
back	73	0	0	0	0	0	0	0	0	0	0	1573	0	0	0	0	0	0	0	0	0	1	0	0.9557	1,574 / 1,647	0.89
buffer_overflow	0	0	0	0	0	0	0	0	0	1	0	23	0	0	0	0	0	0	0	0	0	1	0	1	25 / 25	NaN
ftp_write	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	1	44353	NaN
guess_passwd	0	0	0	36	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0.1628	15888	0.95
imap	0	0	0	0	1	0	0	0	0	0	1	5	0	0	0	0	0	0	0	0	0	0	0	0.8571	44354	1
ipsweep	0	0	0	0	0	6739	0	0	0	0	1	2648	0	0	1	0	0	0	5	0	0	0	0	0.2826	2,655 / 9,394	0.9
land	0	0	0	0	0	0	0	0	0	2	0	16	0	0	0	0	0	0	0	0	0	0	0	1	18/18	NaN
loadmodule	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	1	44416	0
multihop	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	1	44321	NaN
neptune	0	0	0	0	0	0	0	0	0	803979	0	13	0	0	0	0	0	1	0	0	0	0	0	0	14 / 803,993	1
nmap	0	0	0	0	0	733	0	0	0	0	906	74	0	0	3	0	0	0	1	0	0	0	0	0.4723	811 / 1,717	0.97
normal	7	0	0	2	0	3	0	1	0	10	24	729043	0	0	10	6	0	17	6	0	1	65	0	0.0002	152 / 729,195	0.99
perl	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
phf	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	1	44258	NaN
pod	1	0	0	0	0	48	0	0	0	0	0	26	0	0	108	0	0	1	15	0	0	0	0	0.4573	91 / 199	0.77
portsweep	0	0	0	0	0	0	0	0	0	2	0	15	0	0	0	7802	0	1	0	0	0	0	0	0.0023	18 / 7,820	1
rootkit	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	1	44479	NaN
satan	0	0	0	0	0	0	0	0	0	2	0	93	0	0	3	3	0	11775	2	0	0	0	0	0.0087	103 / 11,878	1
smurf	0	0	0	0	0	0	0	0	0	0	0	21	0	0	15	0	0	1	2106094	0	0	0	0	0	37 / 2,106,131	1
spy	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	1	2 / 2Rate: spy	NaN
teardrop	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	722	0	0	0.0217	16/738	1
warezclient	1	0	0	0	0	0	0	0	0	0	0	542	0	0	0	0	0	0	0	0	0	247	0	0.6873	543 / 790	0.79
warezmaster	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0	0	0	0	1	13/13	NaN
Total	82	0	0	38	1	7523	0	1	0	803996	932	734163	0	0	140	7811	0	11796	2106123	0	723	314	0	0.0017	6,118 / 3,673,643	
Recall	0.04	0	0	0.84	0.14	0.72	0	0	0	1	0.53	1	0	0	0.54	1	0	0.99	1	0	0.98	0.31	0			

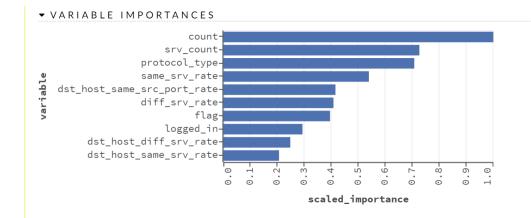
Validation Metric

drf-e1fea77c-d26d-42cb-b329- model aad94a5cc57a model_checksum -7.30695E+17 frame frame_0.250 frame_checksum 3.28803E+18 description . model_category Multinomial scoring_time 1.61712E+12 predictions . MSE 0.001375 RMSE 0.037088 nobs 1224788 custom_metric_name . custom_metric_value 0 r2 0.999916 logloss 0.005852 mean_per_class_error 0.511234 AUC NaN pr_auc NaN multinomial_auc_table .		
model_checksum -7.30695E+17 frame frame_0.250 frame_checksum 3.28803E+18 description · model_category Multinomial scoring_time 1.61712E+12 predictions · MSE 0.001375 RMSE 0.037088 nobs 1224788 custom_metric_name · r2 0.999916 logloss 0.005852 mean_per_class_error 0.511234 AUC NaN pr_auc NaN		drf-e1fea77c-d26d-42cb-b329-
frameframe_0.250frame_checksum3.28803E+18description.model_categoryMultinomialscoring_time1.61712E+12predictions.MSE0.001375RMSE0.037088nobs1224788custom_metric_name.r20.999916logloss0.005852mean_per_class_error0.511234AUCNaNpr_aucNaNmultinomial_auc_table.	model	aad94a5cc57a
frame_checksum3.28803E+18description.model_categoryMultinomialscoring_time1.61712E+12predictions.MSE0.001375RMSE0.037088nobs1224788custom_metric_name.custom_metric_value0r20.999916logloss0.005852mean_per_class_error0.511234AUCNaNpr_aucNaNmultinomial_auc_table.	model_checksum	-7.30695E+17
description.model_categoryMultinomialscoring_time1.61712E+12predictions.MSE0.001375RMSE0.037088nobs1224788custom_metric_name.custom_metric_value0r20.999916logloss0.005852mean_per_class_error0.511234AUCNaNpr_aucNaNmultinomial_auc_table.	frame	frame_0.250
model_category Multinomial scoring_time 1.61712E+12 predictions . MSE 0.001375 RMSE 0.037088 nobs 1224788 custom_metric_name . custom_metric_value 0 r2 0.999916 logloss 0.005852 mean_per_class_error 0.511234 AUC NaN pr_auc NaN multinomial_auc_table .	frame_checksum	3.28803E+18
scoring_time 1.61712E+12 predictions · MSE 0.001375 RMSE 0.037088 nobs 1224788 custom_metric_name · custom_metric_value 0 r2 0.999916 logloss 0.005852 mean_per_class_error 0.511234 AUC NaN pr_auc NaN multinomial_auc_table ·	description	
predictions · MSE 0.001375 RMSE 0.037088 nobs 1224788 custom_metric_name · custom_metric_value 0 r2 0.999916 logloss 0.005852 mean_per_class_error 0.511234 AUC NaN pr_auc NaN multinomial_auc_table ·	model_category	Multinomial
MSE 0.001375 RMSE 0.037088 nobs 1224788 custom_metric_name . custom_metric_value 0 r2 0.999916 logloss 0.005852 mean_per_class_error 0.511234 AUC NaN pr_auc NaN multinomial_auc_table .	scoring_time	1.61712E+12
RMSE0.037088nobs1224788custom_metric_name.custom_metric_value0r20.999916logloss0.005852mean_per_class_error0.511234AUCNaNpr_aucNaNmultinomial_auc_table.	predictions	
nobs1224788custom_metric_name.custom_metric_value0r20.999916logloss0.005852mean_per_class_error0.511234AUCNaNpr_aucNaNmultinomial_auc_table.	MSE	0.001375
custom_metric_name·custom_metric_value0r20.999916logloss0.005852mean_per_class_error0.511234AUCNaNpr_aucNaNmultinomial_auc_table·	RMSE	0.037088
custom_metric_value0r20.999916logloss0.005852mean_per_class_error0.511234AUCNaNpr_aucNaNmultinomial_auc_table.	nobs	1224788
r2 0.999916 logloss 0.005852 mean_per_class_error 0.511234 AUC NaN pr_auc NaN multinomial_auc_table .	custom_metric_name	
logloss0.005852mean_per_class_error0.511234AUCNaNpr_aucNaNmultinomial_auc_table.	custom_metric_value	0
mean_per_class_error0.511234AUCNaNpr_aucNaNmultinomial_auc_table.	r2	0.999916
AUC NaN pr_auc NaN multinomial_auc_table .	logloss	0.005852
pr_aucNaNmultinomial_auc_table.	mean_per_class_error	0.511234
multinomial_auc_table	AUC	NaN
	pr_auc	NaN
multinomial_aucpr_table ·	multinomial_auc_table	
	multinomial_aucpr_table	

Confusion Matrix for Validation

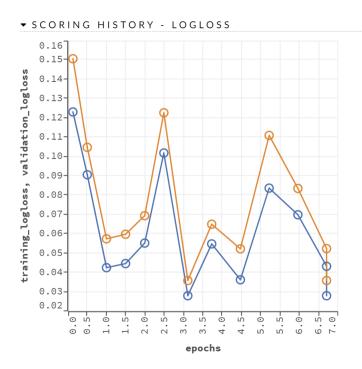
	back	buffer_ove rflow	ftp_write	guess_pass wd	imap	ipsweep	land	loadmodul	multihop	neptune	demn	normal	perl	phf	pod	portsweep	rootkit	satan	smurf	Уqг	teardrop	warezclient	warezmast er	Error	Rate	Precision
back	18	0	0	0	0	0	0	0	0	0	0	537	0	0	0	0	0	0	0	0	0	1	0	0.9676	538 / 556	0.9
buffer_overflow	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	1	0	1	44321	NaN
ftp_write	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	1	44229	NaN
guess_passwd	0	0	0	8	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0.2	44237	0.8
imap	0	0	0	0	2	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0.6	44260	1
ipsweep	0	0	0	0	0	2225	0	0	0	0	0	862	0	0	0	0	0	0	0	0	0	0	0	0.2792	862 / 3,087	0.89
land	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	1	44258	NaN
loadmodule	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
multihop	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	1	44229	NaN
neptune	0	0	0	0	0	0	0	0	0	268018	0	6	0	0	0	0	0	0	0	0	0	0	0	0	6 / 268,024	1
nmap	0	0	0	0	0	262	0	0	0	0	293	40	0	0	4	0	0	0	0	0	0	0	0	0.5109	306 / 599	0.95
normal	2	0	0	2	0	1	0	0	0	3	16	243537	0	0	2	1	0	7	1	0	0	14	0	0.0002	49 / 243,586	0.99
perl	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	1	44229	NaN
phf	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
pod	0	0	0	0	0	18	0	0	0	0	0	7	0	0	38	0	0	1	1	0	0	0	0	0.4154	27 / 65	0.81
portsweep	0	0	0	0	0	0	0	0	0	1	0	11	0	0	0	2580	0	1	0	0	0	0	0	0.005	13 / 2,593	1
rootkit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000	0/0	NaN
satan	0	0	0	0	0	0	0	0	0	0	0	31	0	0	0	0	0	3983	0	0	0	0	0	0.0077	31 / 4,014	1
smurf	0	0	0	0	0	0	0	0	0	0	0	4	0	0	3	0	0	0	701748	0	0	0	0	0.0077	7 / 701,755	1
	0		0	0	0	-		0		0	0	0	0		0	-	0	0			0			0	0/0	
spy		0				0	0		0					0		0			0	0		0	0			NaN
teardrop	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	233	0	0	0.0332	8/241	1
warezclient	0	0	0	0	0	0	0	0	0	0	0	170	0	0	0	0	0	0	0	0	0	60	0	0.7391	170 / 230	0.79
warezmaster	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	1	44384	NaN
Total	20	0	0	10	2	2506	0	0	0	268022	309	245240	0	0	47	2581	0	3992	701750	0	233	76	0	0.0017	2,045 / 1,224,788Total: Rate	

Variable Importance



Variable Importance Table

variable	relative_importance	scaled_importance	percentage
count	20127888	1	0.2026
srv_count	14606322	0.7257	0.147
protocol_type	14226244	0.7068	0.1432
same_srv_rate	10842952	0.5387	0.1092
dst_host_same_src_port_rate	8352236	0.415	0.0841
diff_srv_rate	8204572	0.4076	0.0826
flag	7946105	0.3948	0.08
logged_in	5893682	0.2928	0.0593
dst_host_diff_srv_rate	4986479	0.2477	0.0502
dst_host_same_srv_rate	4146581	0.206	0.0417



Test With Deep learning (DNN) on reduced features

Training matrix

model	deeplearning-0594f7fe-b0b5-457a-abc8-78fb91d7c0b6
model_checksum	-1.8E+18
frame	
frame_checksum	0
description	Metrics reported on temporary training frame with 9976
	samples
model_category	Multinomial
scoring_time	1.62E+12
predictions	
MSE	0.004302
RMSE	0.065587
nobs	9976
custom_metric_name	
custom_metric_value	0
r2	0.997001
logloss	0.02805

mean_per_class_error	0.235354
AUC	NaN
pr_auc	NaN
multinomial_auc_table	•
multinomial_aucpr_table	•

Confusion Matrix

	back	buffer_over flow	ftp_write	guess_passw d	imap	ipsweep	land	loadmodule	multihop	neptune	nmap	normal	perl	phf	pod	portsweep	rootkit	satan	smurf	spy	teardrop	warezclient	warezmaster	Error	Rate	Precision
back	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	1	44384	NaN
buffer_overflow	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
ftp_write	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
guess_passwd	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
imap	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
ipsweep	0	0	0	0	0	25	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0.2424	12267	0.78
land	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
loadmodule	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
multihop	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
neptune	0	0	0	0	0	0	0	0	0	2222	0	0	0	0	0	0	0	2	0	0	0	0	0	0.0009	2 / 2,224	1
nmap	0	0	0	0	0	5	0	0	0	0	3	2	0	0	0	0	0	0	0	0	0	0	0	0.7	44387	1
normal	0	0	0	0	0	0	0	0	0	1	0	7569	0	0	0	0	0	8	0	0	0	0	0	0.0012	9 / 7,578	1
perl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
phf	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
pod	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
portsweep	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	31	0	1	0	0	0	0	0	0.0313	11689	1
rootkit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
satan	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	38	0	0	0	0	0	0.05	14642	0.75
smurf	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	35	0	0	0	0	0.0541	13547	1
spy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
teardrop	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	0	0	6	0	0	0.3333	44264	1
warezclient	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	1	4 / 4	NaN
warezmaster	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
Total	0	0	0	0	0	32	0	0	0	2223	3	7595	0	0	0	31	0	51	35	0	6	0	0	0.0047	47 / 9,976	
Recall	0	NaN	NaN	0	NaN	0.76	NaN	NaN	0	1	0.3	1	NaN	NaN	NaN	0.97	NaN	0.95	0.95	NaN	0.67	0	NaN			

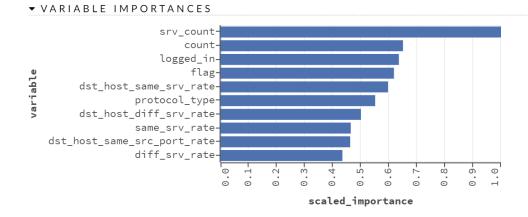
Validation Metric

deeplearning-0594f7fe-b0b5-457a-abc8-78fb91d7c0b6
-1.8E+18
frame_0.250
1.02E+18
Metrics reported on full validation frame
Multinomial
1.62E+12
0.005857
0.076533
268677
0
0.996096
0.035909
0.544477
NaN
NaN
•

Validation Confusion Matrix

	back	buffer_ov erflow	ftp_write	guess_pas swd	imap	ipsweep	land	loadmodul e	multihop	neptune	nmap	normal	perl	phf	pod	portsweep	rootkit	satan	smurf	spy	teardrop	warezclie nt	warezmast er	Error	Rate	Precision
back	0	0	0	0	0	0	0	0	0	0	0	250	0	0	0	0	0	0	0	0	0	0	0	1	250 / 250	NaN
buffer_overflow	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	1	44258	NaN
ftp_write	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	1	44321	NaN
guess_passwd	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	1	44384	NaN
imap	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
ipsweep	0	0	0	0	0	731	0	0	0	0	0	221	0	0	0	0	0	1	0	0	0	0	0	0.2329	222 / 953	0.73
land	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	1	44290	NaN
loadmodule	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	1	44290	NaN
multihop	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0 / 0	NaN
neptune	0	0	0	0	0	8	0	0	0	60371	0	15	0	0	0	1	0	193	0	0	0	0	0	0.0036	217 / 60,588	1
nmap	0	0	0	0	0	233	0	0	0	0	64	83	0	0	0	0	0	0	0	0	0	0	0	0.8316	316 / 380	0.9
normal	0	0	0	0	0	4	0	0	0	19	7	202804	0	0	0	17	0	184	2	0	20	0	0	0.0012	253 / 203,057	1
perl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
phf	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
pod	0	0	0	0	0	9	0	0	0	0	0	35	0	0	0	0	0	0	0	0	0	0	0	1	44 / 44	NaN
portsweep	0	0	0	0	0	0	0	0	0	1	0	13	0	0	0	871	0	15	0	0	0	0	0	0.0322	29 / 900	0.98
rootkit	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	44197	NaN
satan	0	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	1220	0	0	7	0	0	0.0409	52 / 1,272	0.74
smurf	0	0	0	0	0	19	0	0	0	0	0	11	0	0	0	0	0	0	720	0	0	0	0	0.04	30 / 750	1
spy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0/0	NaN
teardrop	0	0	0	0	0	0	0	0	0	0	0	34	0	0	0	0	0	45	0	0	153	0	0	0.3405	79 / 232	0.85
warezclient	0	0	0	0	0	0	0	0	0	0	0	219	0	0	0	0	0	0	0	0	0	0	0	1	219 / 219	NaN
warezmaster	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	1	44384	NaN
Total	0	0	0	0	0	1004	0	0	0	60391	71	203762	0	0	0	889	0	1658	722	0	180	0	0	0.0065	1,743 / 268,677	
Recall	0	0	0	0	0	0.77	0	0	NaN	1	0.17	1	NaN	NaN	0	0.97	0	0.96	0.96	NaN	0.66	0	0			

Variable Importance



Variable Importance Table

variable	relative_importance	scaled_importance	percentage
srv_count	1	1	0.1691
count	0.6503	0.6503	0.11
logged_in	0.6356	0.6356	0.1075
flag	0.6181	0.6181	0.1045
dst_host_same_srv_rate	0.5969	0.5969	0.1009
protocol_type	0.5512	0.5512	0.0932
dst_host_diff_srv_rate	0.5004	0.5004	0.0846
same_srv_rate	0.4642	0.4642	0.0785
dst_host_same_src_port_rat e	0.4621	0.4621	0.0782
diff_srv_rate	0.4344	0.4344	0.0735

Scripts

Create Models

#Libaraies

kddcup_data_corrected<-NULL

prediction<-NULL

Sample<-NULL

TrainSample<-NULL

ValidateSampel<-NULL

predictSample<-NULL

library(readr)

library(dbplyr)

library(tidyverse)

library(ranger)

library(caret)

library(mlbench)

library(dplyr)

library(magrittr)

library(nnet)

library(caret)

```
number2binary = function(number, noBits) {
```

```
binary_vector = rev(as.numeric(intToBits(number)))
```

if(missing(noBits)) {

return(binary_vector)

} else {

```
binary_vector[-(1:(length(binary_vector) - noBits))]
```

}

}

upsampleData = function(SSample,percentage){

set.seed(234)

sampledData <- upSample(x = SSample[,-ncol(SSample)],</pre>

y = SSample\$Class)

sampledData\$Class<-as.factor(sampledData\$Class)</pre>

Sample <- sampledData %>% group_by(Class) %>% sample_n(if_else(n()*percentage<1,1,n()*percentage))

Sample\$Class<-as.factor(Sample\$Class)

levels(Sample\$Class)

summary(Sample\$Class)

return (Sample)

}

```
loadCleanData<-function(){</pre>
```

CIC<-read_csv(file ="CICLatest.CSV")

names(CIC)[names(CIC) == "Label"] <- "Class"

#importVAR<-read.csv("D:\\CIC

PHD\\DataSource\\ImportVarForReductiom.csv",header = TRUE)

#CIC<-CIC[,importVAR\$importantVal]

return (CIC)

}

```
getSample<-function(percentage){
```

kddcup_data_corrected\$Class<-as.factor(kddcup_data_corrected\$Class)

Sample <- kddcup_data_corrected %>% group_by(Class) %>% sample_n(if_else(n()*percentage<1,1,n()*percentage))

Sample\$Class<-as.factor(Sample\$Class)

```
levels(Sample$Class)
```

```
summary(Sample$Class)
```

return (Sample)

}

RFF<-function(){

TrainSample\$Class<-as.factor(TrainSample\$Class)

rg.iris <- ranger(Class ~ ., data = TrainSample, importance =
"impurity",local.importance = TRUE)</pre>

rg.iris

```
# library(data.table)
```

importantVAR<-as.data.table(rg.iris\$variable.importance.local)[,Class := TrainSample\$Class][,lapply(.SD,mean),by=Class]

#

write.csv(importantVAR,"D://Porcessing//Canadian//newResults//importnatntVAR.csv")

```
# ranger::importance(rg.iris)
```

```
rg.iris <- ranger(Class ~ ., data = TrainSample, importance = "impurity")
```

rg.iris

```
saveRDS(rg.iris, "Models//RFModelToLoad.rds")
```

```
sink("Results//RFModelResult.txt")
```

print(rg.iris)

sink()

pr<-NULL

```
pr$Validate<-predict(rg.iris,subset(ValidateSampel,,-c(Class)))
pr$predict<-predict(rg.iris,subset(TrainSample,,-c(Class)))
return(pr)
```

}

LoadModels<-function(){

library(h2o)

h2o.init()

Deepmodel<-

h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\Deeplearning")

Allh2oData<-as.h2o(select(TrainSample,-Class))

Data15H20<-as.h2o(ValidateSampel)

FinalS<-as.h2o(select(FinalStageSample,-Class))

pred <- h2o.predict(Deepmodel, Allh2oData)</pre>

pred15<-h2o.predict(Deepmodel, Data15H20)

FinalSS<-h2o.predict(Deepmodel,FinalS)

pr<-NULL

pr\$NNpr15<-as.data.frame(pred15)

pr\$NNpr05<-as.data.frame(pred)

225

pr\$NNFinal<-as.data.frame(FinalSS)

RF <-h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\DRF")

pred <- h2o.predict(RF, Allh2oData)

pred15<-h2o.predict(RF, Data15H20)

FinalSS<-h2o.predict(RF,FinalS)

pr\$RFpr15<-as.data.frame(pred15)

pr\$RFpr05<-as.data.frame(pred)

pr\$RFFinal<-as.data.frame(FinalSS)

GLM <- h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\GLM")

pred <- h2o.predict(GLM, Allh2oData)</pre>

pred15<-h2o.predict(GLM, Data15H20)

FinalSS<-h2o.predict(GLM,FinalS)

pr\$GLMpr15<-as.data.frame(pred15)

pr\$GLMpr05<-as.data.frame(pred)

pr\$GLMFinal<-as.data.frame(FinalSS)

GBM <- h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\GBM")

pred <- h2o.predict(GBM, Allh2oData)

pred15<-h2o.predict(GBM, Data15H20)

FinalSS<-h2o.predict(GBM,FinalS)

pr\$GBMpr15<-as.data.frame(pred15)

pr\$GBMpr05<-as.data.frame(pred)

pr\$GBMFinal<-as.data.frame(FinalSS)

NB<-h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\NB")

pred <- h2o.predict(NB, Allh2oData)

pred15<-h2o.predict(NB, Data15H20)

FinalSS<-h2o.predict(NB,FinalS)

pr\$NBpr15<-as.data.frame(pred15)

pr\$NBpr05<-as.data.frame(pred)

pr\$NBFinal<-as.data.frame(FinalSS)

return(pr)

}

MultipleClassificationH2o<-function(){

library(h2o)

```
h2o.init(max_mem_size = "500g")
```

TrainSample\$Class<-as.factor(TrainSample\$Class)

ValidateSampel\$Class<-as.factor(ValidateSampel\$Class)

train<-as.h2o(TrainSample)</pre>

```
valid<-as.h2o(ValidateSampel)
```

#splits <- h2o.splitFrame(SampleH2o, c(0.90,0.08), seed=1234)</pre>

#train <- h2o.assign(splits[[1]], "train.hex") # 60%</pre>

#valid <- h2o.assign(splits[[2]], "valid.hex") # 20%</pre>

response <- "Class"

predictors <- setdiff(names(train), response)</pre>

predictors

print("deeplearning Strated")

m3 <- h2o.deeplearning(

model_id="NNModel",

training_frame=train,

validation_frame=valid,

x=predictors,

y=response,

nfolds = 15,

10x cross validation

#keep_cross_validation_fold_assignment = TRUE,

#fold_assignment = "Stratified",

activation = "RectifierWithDropout",

score_each_iteration = TRUE,

hidden = c(200, 200), # 5 hidden layers, each of 200 neurons

epochs = 15,

variable_importances = TRUE,

export_weights_and_biases = TRUE,

seed = 42

)

hyper_params <- list(balance_classes = c(TRUE, FALSE))</pre>

grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame = valid, # algorithm = "deeplearning", grid_id = "NNGrid", hyper_params = hyper_params,

search_criteria = list(strategy = "Cartesian"), seed = 1234)
#
Sort the grid models by logloss
sorted_grid <- h2o.getGrid("NNGrid", sort_by = "logloss", decreasing = FALSE)</pre>

sorted_grid

print("model built")

```
h2o.performance(m3, train=T) ## sampled training data (from model building)
h2o.performance(m3, valid=T) ## sampled validation data (from model building)
h2o.performance(m3, newdata=train) ## full training data
h2o.performance(m3, newdata=valid) ## full validation data
Allh2oData<-as.h2o(subset(TrainSample,,-c(Class)))
Data15H20<-as.h2o(ValidateSampel)
pred <- h2o.predict(m3, Allh2oData)
pred15<-h2o.predict(m3, Data15H20)
230
```

predG <- h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Allh2oData)</pre>

pred15G<-h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Data15H20)</pre>

pr<-NULL

pr\$NNpr15<-as.data.frame(pred15)

pr\$NNpr05<-as.data.frame(pred)

pr\$NNpr15G<-as.data.frame(pred15G)</pre>

pr\$NNpr05G<-as.data.frame(predG)</pre>

h2o::h2o.saveModel(m3,"Models//",force = TRUE)

h2o::h2o.saveModel(h2o.getModel(sorted_grid@model_ids[[1]]),"Models//",force =
TRUE)

print("deeplearning results finished")

###################RandomForest

print("random forest started")

RF <- h2o.randomForest(

model_id="RFModel",

x = predictors,

y = response,

ntrees = 100,

 $max_depth = 500,$

 $min_rows = 10$,

calibrate_model = FALSE,

calibration_frame = valid,

binomial_double_trees = TRUE,

training_frame = train,

validation_frame = valid)

hyper_params <- list(balance_classes = c(TRUE, FALSE))</pre>

grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame = valid,

algorithm = "randomForest", grid_id = "RFGrid", hyper_params = hyper_params,

search_criteria = list(strategy = "Cartesian"), seed = 1234)

#

Sort the grid models by logloss

sorted_grid <- h2o.getGrid("RFGrid", sort_by = "logloss", decreasing = FALSE)</pre>

sorted_grid

print("random forest finished")

h2o.performance(RF, train=T) ## sampled training data (from model building)

232

```
h2o.performance(RF, valid=T) ## sampled validation data (from model building)
```

h2o.performance(RF, newdata=train) ## full training data

h2o.performance(RF, newdata=valid) ## full validation data

pred <- h2o.predict(RF, Allh2oData)

pred15<-h2o.predict(RF, Data15H20)

predG <- h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Allh2oData)</pre>

pred15G<-h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Data15H20)</pre>

pr\$RFpr15<-as.data.frame(pred15)

pr\$RFpr05<-as.data.frame(pred)

pr\$RFpr15G<-as.data.frame(pred15G)</pre>

pr\$RFpr05G<-as.data.frame(predG)</pre>

h2o::h2o.saveModel(RF,"Models//",force = TRUE)

h2o::h2o.saveModel(h2o.getModel(sorted_grid@model_ids[[1]]),"Models//",force =
TRUE)

print("random forest results finished")

print("GLM started")

GLM <- h2o.glm(

model_id="GLMModel",

family = "multinomial",

x = predictors,

y = response,

training_frame = train,

lambda = 0)

h2o.coef_norm(GLM)

- h2o.performance(GLM, train=T) ## sampled training data (from model building)
- h2o.performance(GLM, valid=T) ## sampled validation data (from model building)
- h2o.performance(GLM, newdata=train) ## full training data
- h2o.performance(GLM, newdata=valid) ## full validation data

```
pred <- h2o.predict(GLM, Allh2oData)</pre>
```

pred15<-h2o.predict(GLM, Data15H20)

pr\$GLMpr15<-as.data.frame(pred15)

```
pr$GLMpr05<-as.data.frame(pred)
```

h2o::h2o.saveModel(GLM,"Models//",force = TRUE)

print("GLM finished")

#

print("GBM started")

GBM <- h2o.gbm(

model_id="GBMModel",

x = predictors,

y = response,

nfolds = 5,

seed = 1111,

keep_cross_validation_predictions = TRUE,

training_frame = train)

hyper_params <- list(balance_classes = c(TRUE, FALSE))</pre>

grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame = valid,

#	algorithm = "gbm", grid_id = "GBMGrid", hyper_params = hyper_params,			
#	search_criteria = list(strategy = "Cartesian"), seed = 1234)			
#				
# # Sort the grid models by logloss				
# sorted_grid <- h2o.getGrid("GBMGrid", sort_by = "logloss", decreasing = FALSE)				
# sorted_grid				

```
h2o.performance(GBM, train=T) ## sampled training data (from model building)
```

h2o.performance(GBM, valid=T) ## sampled validation data (from model building)

h2o.performance(GBM, newdata=train) ## full training data

h2o.performance(GBM, newdata=valid) ## full validation data

pred <- h2o.predict(GBM, Allh2oData)</pre>

```
pred15<-h2o.predict(GBM, Data15H20)
```

predG <- h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Allh2oData)</pre>

pred15G<-h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Data15H20)</pre>

pr\$GBMpr15<-as.data.frame(pred15)

```
pr$GBMpr05<-as.data.frame(pred)
```

pr\$GBMpr15G<-as.data.frame(pred15G)</pre>

```
# pr$GBMpr05G<-as.data.frame(predG)</pre>
```

h2o::h2o.saveModel(GBM,"Models//",force = TRUE)

h2o::h2o.saveModel(h2o.getModel(sorted_grid@model_ids[[1]]),"Models//",force =
TRUE)

print("GBM finished")

- # print("k-means started")
- # KM <- h2o.kmeans(
- # model_id="KMModel",
- # x = predictors,
- # training_frame = train,
- # k = 10,
- # estimate_k = TRUE,
- # standardize = FALSE,
- # seed = 1234)
- #

```
# h2o.performance(KM, train=T)  ## sampled training data (from model building)
```

```
# h2o.performance(KM, valid=T) ## sampled validation data (from model building)
```

h2o.performance(KM, newdata=train) ## full training data

h2o.performance(KM, newdata=valid) ## full validation data

pred <- h2o.predict(KM, Allh2oData)</pre>

pred15<-h2o.predict(KM, Data15H20)</pre>

FinalSS<-h2o.predict(KM,FinalS)</pre>

pr\$NBpr15<-as.data.frame(pred15)</pre>

pr\$NBpr05<-as.data.frame(pred)</pre>

pr\$NBFinal<-as.data.frame(FinalSS)</pre>

h2o::h2o.saveModel(NB,"D://Porcessing//Canadian//newResults//",force = TRUE)

#

#

return(pr)

}

getSummary<-function(predictions,Truth,name){

Truth\$Class<-as.factor(Truth\$Class)

predictions<-factor(predictions,levels = levels(Truth\$Class))</pre>

```
levels(Truth$Class)
```

```
levels(predictions)
```

```
summary(predictions)
```

```
cm<-as.matrix(table(Truth$Class, predictions))
```

```
write.csv(cm,paste("Results//",name,"-ConfusionMatrix.csv"))
```

```
src<-levels(predictions)</pre>
```

```
ppr<-levels(Truth$Class)
```

diff

print(cm)

n = sum(cm)

nc = nrow(cm)

```
diag = diag(cm)
```

```
print(sum(diag==0))
```

```
rowsums = apply(cm, 1, sum)
```

```
colsums = apply(cm, 2, sum)
```

```
p = rowsums / n
```

```
q = colsums / n
```

accuracy = sum(diag) / n

accuracy

precision = diag / colsums

recall = diag / rowsums

f1 = 2 * precision * recall / (precision + recall)

write.csv(data.frame(precision, recall, f1),paste("Results//",name,"-Accurecy.csv"))

Truth\$Class<-as.factor(Truth\$Class)

MCM<-confusionMatrix(predictions,Truth\$Class)

sink(paste("Results//",name,"-ConfusionMatrix2OverAll.csv"))

print(MCM\$overall)

sink()

write.csv(MCM\$byClass,paste("Results//",name,"-ConfusionMatrix2ByClass.csv"))

write.csv(MCM\$table,paste("Results//",name,"-ConfusionMatrix2table.csv"))

###Done

}

getAllSummery <- function (){

##Training

getSummary(RFPr\$Validate\$predictions,ValidateSampel,"RangerLatest") getSummary(h2opredictions\$NNpr15\$predict,ValidateSampel,"NN") #getSummary(h2opredictions\$NNpr15G\$predict,ValidateSampel,"NNGrid") getSummary(h2opredictions\$RFpr15\$predict,ValidateSampel,"DRF") #getSummary(h2opredictions\$RFpr15G\$predict,ValidateSampel,"DRFGrid") getSummary(h2opredictions\$GLMpr15\$predict,ValidateSampel,"GLM") getSummary(h2opredictions\$GBMpr15\$predict,ValidateSampel,"GBM") #getSummary(h2opredictions\$GBMpr15G\$predict,ValidateSampel,"GBM")

}

smp_size <- floor(0.75 * nrow(kddcup_data_corrected))</pre>

set the seed to make your partition reproducible

set.seed(123)

train_ind <- sample(seq_len(nrow(kddcup_data_corrected)), size = smp_size)</pre>

TrainSample <- kddcup_data_corrected[train_ind,]</pre>

ValidateSampel <- kddcup_data_corrected[-train_ind,]

kddcup_data_corrected<-loadCleanData()

kddcup_data_corrected<-kddcup_data_corrected[Reduce(`&`,

lapply(kddcup_data_corrected, function(x) !is.na(x) & is.finite(x))),]

#TrainSample<-readRDS("D:\\CIC PHD\\DataSource\\TrainSample.rds")</pre>

#ValidateSampel<-readRDS("D:\\CIC PHD\\DataSource\\ValidateSample.rds")

#FinalStageSample<-readRDS("D:\\CIC PHD\\DataSource\\FinalStageSample.rds")

library(caret)

```
library(data.table)
```

#k#ddcup_data_corrected2<-

```
downSample(kddcup_data_corrected,kddcup_data_corrected$Class)
```

kddcup_data_corrected\$Class<-as.factor(kddcup_data_corrected\$Class)

summary(kddcup_data_corrected\$Class)

TrainSample<-getSample(0.7)

ValidateSampel<-setdiff(kddcup_data_corrected, TrainSample)

```
summary(TrainSample$Class)
```

```
summary(ValidateSampel$Class)
```

saveRDS(TrainSample,"\\Data\\TrainSample.rds")

saveRDS(ValidateSampel,"\\Data\\ValidateSample.rds")

```
kddcup_data_corrected<-NULL
```

kddcup_data_corrected2<-NULL

DT<-NULL

predictSample\$Class<-as.factor(predictSample\$Class)</pre>

243

library(psych)

```
#corPlot(subset(TrainSample,,-c(Class)))
```

#cor(subset(TrainSample,,-c(Class)), use = "complete.obs")

prediction<-as.data.frame(RFPr\$predict\$predictions)</pre>

RFPr<-RFF()

```
h2opredictions<-MultipleClassificationH2o()
```

saveRDS(h2opredictions,"Data\\h2opredictions.rds")

```
saveRDS(RFPr,"Data\\RFPr.rds")
```

getAllSummery()

newTester<-TrainSample

newTester\$Class<-as.character(newTester\$Class)</pre>

newTester\$RFPred<-RFPr\$predict\$predictions

#levels(h2opredictions\$NNpr15\$predict)<-levels(kddcup_data_corrected\$Class)</pre>

newTester\$NNet<-(h2opredictions\$NNpr05\$predict)

newTester\$RF<-(h2opredictions\$RFpr05\$predict)</pre>

newTester\$GML<-(h2opredictions\$GLMpr05\$predict)

newTester\$GBM<-(h2opredictions\$GBMpr05\$predict)

#newTester\$NB<-(h2opredictions\$NBpr05\$predict)</pre>

newTester\$BooleanRFPred<-if_else(newTester\$RFPred==newTester\$Class,1,0)
newTester\$BooleanNNet<-if_else(newTester\$NNet==newTester\$Class,1,0)
newTester\$BooleanRF<-if_else(newTester\$RF==newTester\$Class,1,0)
newTester\$BooleanGML<-if_else(newTester\$GML==newTester\$Class,1,0)
newTester\$BooleanGBM<-if_else(newTester\$GBM==newTester\$Class,1,0)
#newTester\$BooleanNB<-if_else(newTester\$NB==newTester\$Class,1,0)</pre>

newTester<-newTester %>%

mutate(Classifers = paste(as.character(BooleanRFPred),

as.character(BooleanNNet),

as.character(BooleanRF),

as.character(BooleanGML),

as.character(BooleanGBM),

#as.character(BooleanNB),

sep = ""))

newTester<-newTester %>%

mutate(numericalClass=strtoi(Classifers, base = 2))

newTester\$BooleanRFPred<-NULL

newTester\$Classifers<-NULL

newTester\$BooleanRF<-NULL

newTester\$BooleanNNet<-NULL

newTester\$BooleanGML<-NULL

newTester\$BooleanGBM<-NULL

newTester\$BooleanNB<-NULL</pre>

newTester\$RFPred<-NULL

newTester\$RF<-NULL

newTester\$NNet<-NULL

newTester\$GML<-NULL

newTester\$GBM<-NULL

newTester\$NB<-NULL

newTester\$Class<-NULL

newTester\$numericalClass<-as.factor(newTester\$numericalClass)

NUMCLASS <- ranger(numericalClass ~ ., data = newTester, importance = "impurity")

saveRDS(NUMCLASS, "D://CIC PHD//Model//FinalModel.rds")

NumericalPred<-predict(NUMCLASS,subset(FinalStageSample,,-c(Class)))

NUMCLASS\$prediction.error

NumericalPred\$predictions<-as.factor(NumericalPred\$predictions)

#kddcup_data_corrected\$numPred<-NumericalPred\$predictions

```
summary(NumericalPred$predictions)
summary(newTester$numericalClass)
which(NumericalPred$predictions == 0)[[1]]
match(0 , NumericalPred$predictions)
length(which(NumericalPred$predictions == 0))
final[78700][1]
PPPP<-NULL
PPPP$myPred<-NumericalPred$predictions</pre>
```

library(binaryLogic)

```
PPPP$KKK<-PPPP$myPred
```

```
PPPP$KKK<-as.integer(as.character(PPPP$KKK))
```

```
PPPP$KKK<-rbind(as.binary(PPPP$KKK,n=5))
```

myBinaryDataframe<-do.call(rbind.data.frame, PPPP\$KKK)

FinalResultWithAll<-NULL

colnames(myBinaryDataframe) <- c("BooleanRFPre",

"BooleanNNet",

"BooleanRF",

"BooleanGML",

"BooleanGBM"

)

"BooleanGML",

"BooleanGBM",

"BooleanNB")

FinalResultWithAll\$BooleanRFPre<-(myBinaryDataframe\$BooleanRFPre) FinalResultWithAll\$BooleanNNet<-(myBinaryDataframe\$BooleanNNet) FinalResultWithAll\$BooleanRF<-myBinaryDataframe\$BooleanRF FinalResultWithAll\$BooleanGML<-myBinaryDataframe\$BooleanGML FinalResultWithAll\$BooleanGBM<-myBinaryDataframe\$BooleanGBM # FinalResultWithAll\$BooleanNB<-myBinaryDataframe\$BooleanNB FinalResultWithAll\$BooleanNB<-myBinaryDataframe\$BooleanNB FinalResultWithAll\$RFPred<-(RFPr\$FinalPR\$predictions) FinalResultWithAll\$RFPred<-(h2opredictions\$NNFinal\$predict) FinalResultWithAll\$RF<-(h2opredictions\$RFFinal\$predict) FinalResultWithAll\$GML<-(h2opredictions\$GLMFinal\$predict) FinalResultWithAll\$GML<-(h2opredictions\$GBMFinal\$predict)

```
#FinalResultWithAll$NB<-(h2opredictions$NBFinal$predict)
#FinalResultWithAll$NNet<-unlist(FinalResultWithAll$NNet)
#library(dplyr)
asDataFrameResult<-bind_cols(FinalResultWithAll)
asDataFrameResult$RFPred[asDataFrameResult$BooleanRFPre==FALSE]<-NA
asDataFrameResult$NNet[asDataFrameResult$BooleanNNet==FALSE]<-NA
asDataFrameResult$RF[asDataFrameResult$BooleanRF==FALSE]<-NA
asDataFrameResult$GML[asDataFrameResult$BooleanGML==FALSE]<-NA
asDataFrameResult$GBM[asDataFrameResult$BooleanGBM==FALSE]<-NA
filter(asDataFrameResult$NB[asDataFrameResult$BooleanNB==FALSE]<-NA</pre>
```

```
BooleanRF==FALSE &
```

BooleanGML==FALSE &

BooleanGBM==FALSE &

BooleanRFPre==FALSE)

cleanResults<-asDataFrameResult

cleanResults\$BooleanRFPre<-NULL

cleanResults\$BooleanNNet<-NULL

cleanResults\$BooleanRF<-NULL

cleanResults\$BooleanGML<-NULL

cleanResults\$BooleanGBM<-NULL

####Add later "RFPred",

#final<-apply(asDataFrameResult[,c("RFPred","NNet","RF")], 1, function(x)

names(table(x))[which.max(table(x))])

final<-vector("list", nrow(asDataFrameResult))

ResTable<-setDT(cleanResults)

final<-apply(ResTable,1,function(x) names(which.max(table(x))))

final<-as.data.frame(final)

cleanResults\$NNet<-NULL

for (i in 1:nrow(asDataFrameResult)) {

if (

(asDataFrameResult\$BooleanRFPre[i]==TRUE)&

(asDataFrameResult\$BooleanNNet[i] ==TRUE)&

(asDataFrameResult\$BooleanRF[i]==TRUE)

){

tt <- (asDataFrameResult[i,c("RFPred","NNet","RF")])

```
if(tt$RFPred==tt$RF & tt$RFPred==tt$NNet){
```

```
final[[i]]<-toString(tt$RFPred)
```

print("all equal")

}

else{

```
final[[i]]<-toString(apply(tt, 1, function(x) names(table(x))[which.max(table(x))]))
}</pre>
```

}

```
else if(asDataFrameResult$BooleanRFPre[i]==FALSE &
asDataFrameResult$BooleanNNet[i]==FALSE &
asDataFrameResult$BooleanRF[i]==FALSE){
final[[i]]<-toString(asDataFrameResult[i,c("RFPred")][[1]])
```

```
print("all false")
```

}

```
else if(asDataFrameResult$BooleanRFPre[i]==TRUE &
      asDataFrameResult$BooleanNNet[i]==TRUE &
      asDataFrameResult$BooleanRF[i]==FALSE){
  final[[i]]<-toString(asDataFrameResult[i,c("RFPred")][[1]])
  print("TTF")
 }
 else if(asDataFrameResult$BooleanRFPre[i]==TRUE &
      asDataFrameResult$BooleanNNet[i]==FALSE &
      asDataFrameResult$BooleanRF[i]==TRUE){
  final[[i]]<-toString(asDataFrameResult[i,c("RFPred")][[1]])
 }
 else{
                  toString(apply(asDataFrameResult[i,c("RFPred","NNet","RF")],
  final[[i]]
             <-
function(x) names(table(x))[which.max(table(x))]))
```

```
print("entered")
```

}

1,

}

#finalResAsDataframe<-bind_cols(final)</pre>

#finalResAsDataframe<-transpose(finalResAsDataframe)
getSummary(final,FinalStageSample,"Tommorow_without_NNA")
getSummary(RFPr\$FinalPR\$predictions,FinalStageSample,"FinalRandomForesrt")
getSummary(h2opredictions\$NNFinal\$predict,FinalStageSample,"FinalNN")
getSummary(h2opredictions\$RFFinal\$predict,FinalStageSample,"FinalRFH2o")
getSummary(h2opredictions\$GLMFinal\$predict,FinalStageSample,"FinalGLM")
getSummary(h2opredictions\$GBMFinal\$predict,FinalStageSample,"FinalGBM")
getSummary(h2opredictions\$NBFinal\$predict,FinalStageSample,"FinalGBM")
#</pre>

levels(nfinal\$results)<-levels(kddcup_data_corrected\$Class)</pre>

#

Master Model

#Libaraies

kddcup_data_corrected<-NULL

prediction<-NULL

Sample<-NULL

#library(readr)

library(dbplyr)

library(tidyverse)

library(ranger)

library(caret)

#library(keras)

library(dplyr)

library(magrittr)

library(nnet)

library(caret)

library(Rcpp)

getSummary<-function(predictions,Truth,name){

```
Truth$Class<-as.factor(Truth$Class)
```

predictions<-factor(predictions,levels = levels(Truth\$Class))</pre>

levels(Truth\$Class)

levels(predictions)

```
summary(predictions)
```

```
cm<-as.matrix(table(Truth$Class, predictions))
```

```
write.csv(cm,paste("Results//",name,"-ConfusionMatrix.csv"))
```

```
src<-levels(predictions)</pre>
```

```
ppr<-levels(Truth$Class)
```

diff

```
print(cm)
```

```
n = sum(cm)
```

nc = nrow(cm)

```
diag = diag(cm)
```

```
print(sum(diag==0))
```

```
rowsums = apply(cm, 1, sum)
```

```
colsums = apply(cm, 2, sum)
```

```
p = rowsums / n
```

```
q = colsums / n
```

```
accuracy = sum(diag) / n
```

accuracy

precision = diag / colsums

recall = diag / rowsums

f1 = 2 * precision * recall / (precision + recall)

write.csv(data.frame(precision, recall, f1),paste("Results//",name,"-Accurecy.csv"))

Truth\$Class<-as.factor(Truth\$Class)

MCM<-confusionMatrix(predictions,Truth\$Class)

sink(paste("Results//",name,"-ConfusionMatrix2OverAll.csv"))

print(MCM\$overall)

sink()

write.csv(MCM\$byClass,paste("Results//",name,"-ConfusionMatrix2ByClass.csv"))

write.csv(MCM\$table,paste("Results//",name,"-ConfusionMatrix2table.csv"))

###Done

LoadModels<-function(){ #fix later

library(h2o)

```
h2o.init(max_mem_size = "32g")
```

```
print("deepModel Started")
```

Deepmodel<-h2o::h2o.loadModel("Models/")

```
h2o.save_mojo(Deepmodel, path = "Models/",force = TRUE)
```

```
h2o.performance(Deepmodel,Deepmodel@p)
```

print("load data")

TrainSample\$Class<-as.factor(TrainSample\$Class)

```
ValidateSampel$Class<-as.factor(ValidateSampel$Class)
```

```
Allh2oData<-as.h2o(subset(TrainSample,,-c(Class)))
```

```
Data15H20<-as.h2o(ValidateSampel)
```

FinalS<-as.h2o(subset(FinalStageSample,,c(-Class)))

print("finished load data")

```
response <- "Class"
```

predictors <- setdiff(names(train), response)</pre>

pred <- h2o.predict(Deepmodel, Allh2oData)</pre>

pred15<-h2o.predict(Deepmodel, Data15H20)

FinalSS<-h2o.predict(Deepmodel,FinalS)

pr<-NULL

pr\$NNpr15<-as.data.frame(pred15)

pr\$NNpr05<-as.data.frame(pred)

pr\$NNFinal<-as.data.frame(FinalSS)

print("deep Model finsished")

print("rdf started")

RF <-h2o::h2o.loadModel("D:\\CIC PHD\\Model\\RFGrid_model_1")

RF2 <-h2o::h2o.loadModel("D:\\CIC PHD\\Model\\RFGrid_model_2")

pred <- h2o.predict(RF, Allh2oData)</pre>

pred15<-h2o.predict(RF, Data15H20)

FinalSS<-h2o.predict(RF,FinalS)

pr\$RFpr15<-as.data.frame(pred15)

pr\$RFpr05<-as.data.frame(pred)

pr\$RFFinal<-as.data.frame(FinalSS)

print("rdf finished")

GLM <- h2o::h2o.loadModel("D:\\Porcessing\\Canadian\\Models\\GLMModel")

print("GLM started")

pred <- h2o.predict(GLM, Allh2oData)</pre>

pred15<-h2o.predict(GLM, Data15H20)

FinalSS<-h2o.predict(GLM,FinalS)

pr\$GLMpr15<-as.data.frame(pred15)

pr\$GLMpr05<-as.data.frame(pred)

pr\$GLMFinal<-as.data.frame(FinalSS)

print("GLM finished")

GBM <- h2o::h2o.loadModel("D:\\CIC PHD\\Model\\GBMModel")

print("GBM started")

pred <- h2o.predict(GBM, Allh2oData)</pre>

pred15<-h2o.predict(GBM, Data15H20)

```
FinalSS<-h2o.predict(GBM,FinalS)
pr$GBMpr15<-as.data.frame(pred15)
pr$GBMpr05<-as.data.frame(pred)
pr$GBMFinal<-as.data.frame(FinalSS)
```

```
print("GBM finished")
```

print("ranger started")

```
rg.iris<-readRDS("D:\\CIC PHD\\Model\\RFModelToLoad.rds")
```

```
pr$Validate<-predict(rg.iris,subset(ValidateSampel,,-c(Class)))
```

```
pr$predict<-predict(rg.iris,subset(TrainSample,,-c(Class)))
```

```
pr$FinalPR<-predict(rg.iris,subset(FinalStageSample,,-c(Class)))
```

```
print("ranger Finished")
```

```
return(pr)
```

}

```
TrainSample<-read_rds("D://Porcessing//Canadian//splitRDS//TrainSample.rds")
ValidateSampel<-read_rds("D://Porcessing//Canadian//splitRDS//ValidateSampel.rds")
FinalStageSample<-
read_rds("D://Porcessing//Canadian//splitRDS//FinalStageSample.rds")
h2opredictions<-LoadModels()
```

RFpred<-readRDS("Data\RFPr.rds")

```
261
```

h2opredictions<-readRDS("Data\\h2opredictions.rds")

#####################compare and make the lables binary when campred to the true Value

newTester\$BooleanRFPred<-if_else(newTester\$RFPred==newTester\$Class,1,0) newTester\$BooleanNNet<-if_else(newTester\$NNet==newTester\$Class,1,0) newTester\$BooleanRF<-if_else(newTester\$RF==newTester\$Class,1,0) newTester\$BooleanGML<-if_else(newTester\$GML==newTester\$Class,1,0) newTester\$BooleanGBM<-if_else(newTester\$GBM==newTester\$Class,1,0) newTester<-newTester %>%

mutate(Classifers = paste(as.character(BooleanRFPred),

as.character(BooleanNNet),

as.character(BooleanRF),

as.character(BooleanGML),

as.character(BooleanGBM),

sep = ""))

###########################Remove	unneccesry	Values	from	the
DF####################################				
newTester\$BooleanRF<-NULL				
newTester\$BooleanNNet<-NULL				
newTester\$BooleanGML<-NULL				
newTester\$BooleanGBM<-NULL				
newTester\$RFPred<-NULL				
newTester\$RF<-NULL				
newTester\$NNet<-NULL				
	~~~			

newTester\$GML<-NULL

newTester\$GBM<-NULL

newTester\$NB<-NULL

newTester\$Class<-NULL

newTester\$BooleanRFPred<-NULL

newTester\$Classifers<-as.factor(newTester\$Classifers)

NUMCLASS <- ranger(Classifers ~ ., data = newTester, importance = "impurity")

saveRDS(NUMCLASS, "Models\\MasterModel.rds")

NumericalPred<-predict(NUMCLASS,subset(ValidateSampel,,-c(Class)))

saveRDS(NumericalPred,"Data\\ValidatePredFinal.rds")

NumericalPred<-read_rds("D://Porcessing//Canadian//processed - Model

Data//FinalPred.rds")

NUMCLASS\$prediction.error

NumericalPred\$predictions<-as.factor(NumericalPred\$predictions)

summary(NumericalPred\$predictions)

NumericalPred\$predictions[NumericalPred\$predictions=="0000"]<-"1000"

#### *############*3

DataPredF<-NULL

DataPredF\$predictions<-NumericalPred\$predictions

DataPredF<-as.data.frame(DataPredF)

DataPredF\$predictions<-lapply(DataPredF\$predictions, as.character)

myBinaryDataframe<- NULL

```
emptyColoumsn <- c("BooleanRFPre",
```

"BooleanNNet",

"BooleanRF",

"BooleanGML",

"BooleanGBM"

## )

myBinaryDataframe\$BooleanRFPre<-as.integer(substr(DataPredF\$predictions,1,1)) myBinaryDataframe\$BooleanNNet<-as.integer(substr(DataPredF\$predictions,2,2)) myBinaryDataframe\$BooleanRF<-as.integer(substr(DataPredF\$predictions,3,3)) myBinaryDataframe\$BooleanGML<-as.integer(substr(DataPredF\$predictions,4,4)) myBinaryDataframe\$BooleanGBM<-as.integer(substr(DataPredF\$predictions,5,5))

myBinaryDataframe\$RFPred<-(RFPr\$Validate\$predictions)

myBinaryDataframe\$NNet<-(h2opredictions\$NNpr15\$predict)

myBinaryDataframe\$RF<-(h2opredictions\$RFpr15\$predict) myBinaryDataframe\$GML<-(h2opredictions\$GLMpr15\$predict) myBinaryDataframe\$GBM<-(h2opredictions\$GBMpr15\$predict)

myBinaryDataframe\$RFPred[myBinaryDataframe\$BooleanRFPre==0]<-NA myBinaryDataframe\$NNet[myBinaryDataframe\$BooleanNNet==0]<-NA myBinaryDataframe\$RF[myBinaryDataframe\$BooleanRF==0]<-NA myBinaryDataframe\$GML[myBinaryDataframe\$BooleanGML==0]<-NA myBinaryDataframe\$GBM[myBinaryDataframe\$BooleanGBM==0]<-NA

myBinaryDataframe\$BooleanRFPre<-NULL

myBinaryDataframe\$BooleanNNet<-NULL

myBinaryDataframe\$BooleanRF<-NULL

myBinaryDataframe\$BooleanGML<-NULL

myBinaryDataframe\$BooleanGBM<-NULL

library(data.table)

ResTable<-setDT(myBinaryDataframe)

final<-apply(myBinaryDataframe,1,function(x) names(which.max(table(x))))

getSummary(final,ValidateSampel,"MasterResults")