

PER-INSTANCE SELECTION OF MACHINE LEARNING CLASSIFIERS FOR
IDS AND IPS

A thesis submitted in partial fulfillment of the requirements of the University of East
London for Degree of Professional Doctorate in Data Science

By Nasser Mohdhyder J B Al-khuzaei

University of East London

September 7, 2023

i

Abstract

Generally, malicious attacks on a network or server can be detected and

counteracted using various techniques. The intrusion detection systems (IDS) and

intrusion prevention systems (IPS) are two of the most common application systems

in detecting and preventing cyber threats. Despite the ability of each of these

systems to help organizations overcome various types of threats to their networks,

additional decisions are required to ensure that they operate effectively. Even IDS

and IPS remain vulnerable to conditions that render them less efficient and incapable

of meeting the required operational targets. Consequently, it is imperative that

organizations make decisions and take actions that tend to optimize the efficiency

with which the cybersecurity applications operate.

Most organizations have IT infrastructure nowadays, and they differ in their

requirements and sizes, but there is a common problem that is managing the flood

of alerts coming from the IDS(Simone, 2009). The IDS creates a huge number of

alerts. Not all the threats detected are true, but it means that the IDS has found a

matching signature or pattern. These types of alarms are considered false positives

and a result of misclassification. They can be a real pain for organizations to

determine if these alarms are actionable or not. Because of the issues with the

current IDS, there is a need for continued research to solve the classification issues,

and for that, a per-instance multi-classifier is proposed.

ii

This research will discuss the importance of researching a new algorithm that is a

portfolio of multiple classifiers for intrusion detection systems in the cyber-security

space. There is already much research in this field, and many classifiers have been

proposed, but the fact there is no single classifier that can cover all threats with high

accuracy. The intention is to have a portfolio of classifiers. Each classifier will be

tested and trained on the dataset. The idea of having multiple classifiers that each

classifier can complement and contribute to the classification. A Master classifier will

determine the fitness of each classifier, depending on the presented instance, and

all the fit classifiers will contribute to the classification by voting. The vote will

determine if the instance is benign or an anomaly, and if it is an anomaly, it will

determine the type of attack.

Keywords:

Multiclassification, Hybrid Classifiers, Intrusion Detection System (IDS), CSE-CIC-IDS2018,

Machine Learning (ML), Deep Learning (DL), Artificial Neural Networks (ANN), Random Forest

(RF), Convolutional Neural Networks (CNN), Network Traffic Analysis, Cybersecurity, Anomaly

Detection, Model Accuracy, False Alarm Rate, Detection Rate, F1 Score, Model Optimization,

Dataset Analysis

iii

Contents

Abstract ... i

List of Tables.. x

List of Figures ... xiv

Acknowledgment .. xvii

Chapter 1 Introduction To Thesis and Cybersecurity .. 1

1.1 Chapter Introduction ... 1

1.1.1 Problem statement ... 3

1.1.2 Contribution to Knowledge ... 4

1.1.3 Aim ... 5

1.1.4 Study Hypothesis ... 6

1.1.5 Motivation ... 7

1.1.6 Scope of the research: ... 8

1.1.7 The Rational of the Study ... 9

1.1.8 Thesis Structure ... 12

1.2 Chapter Conclusion .. 14

Chapter 2 Literature Review by Systematic Search .. 16

iv

2.1 Chapter Introduction ... 16

2.2 Cybersecurity .. 17

2.2.1 IDS (Intrusion Detection System) ... 21

2.2.2 NIDS (Network Intrusion Detection System): 21

2.2.3 HIDS (Host-Based Intrusion Detection System) 22

2.2.4 IDS approaches.. 23

2.2.5 DDoS attacks (Distributed Denial-of-Service Attack): 27

2.3 Literature Review and Systematic Content-Analysis 33

2.3.1 Search (2020 to 2021) .. 33

2.3.2 Search (2020 to 2023) .. 35

2.4 Hybrid Models: .. 36

2.4.1 A Hybrid Classifier Approach for Network Intrusion Detection 36

2.4.2 Intrusion detection system using voting-based neural network 37

2.4.3 A Hybrid Anomaly Classification with Deep Learning (DL) and Binary

Algorithms (BA) as Optimizer in the Intrusion Detection System (IDS) 40

2.5 Pre-processing and feature reduction techniques: 42

2.5.1 Hybrid Intrusion Detection System Based on Deep Learning 42

2.5.2 A Novel Preprocessing Methodology for DNN-Based Intrusion

Detection ... 44

2.5.3 Feature Selection Algorithm For Intrusion Detection Using Cuckoo

Search Algorithm ... 47

v

2.6 Deep Neural Networks .. 48

2.6.1 Evaluation of Deep Neural Networks for Advanced Intrusion Detection

Systems ... 48

2.6.2 NIDS-Network Intrusion Detection System Based on Deep and Machine

Learning Frameworks with CICIDS2018 using Cloud Computing 49

2.7 Discussion .. 51

2.8 Chapter Conclusion .. 51

Chapter 3 Dataset Scoping: .. 53

3.1 Chapter Introduction ... 53

3.2 Sample of major Datasets ... 54

3.3 Dataset Problem ... 55

3.4 Limited Classes .. 56

3.5 Inconsistent accuracy for different classes ... 57

3.6 Discussion .. 59

3.7 Chapter Conclusion: ... 60

Chapter 4 Research Methodologies .. 61

4.1 Chapter Introduction ... 61

4.2 Proposed Design .. 62

4.3 Proposed Method: .. 66

4.3.1 Offline phase: ... 67

4.3.2 Encoding for the master classifier: ... 68

vi

4.3.3 Online prediction: ... 70

4.4 Discussion .. 73

4.5 Chapter Conclusion .. 73

Chapter 5 Investigation and selection of software packages 75

5.1 Chapter Introduction ... 75

5.2 Chronological order of libraries in Machine learning and Artificial intelligence

 76

5.3 Testing Software Packages .. 79

5.3.1 Local Compute ... 80

5.3.2 Cloud Compute: ... 83

5.3.3 Tools used in the research: .. 85

5.4 Discussion .. 85

5.5 Chapter Conclusion .. 86

Chapter 6 Data Exploration ... 88

6.1 Chapter Introduction ... 88

6.2 Construction of the dataset ... 89

6.3 Challenges: ... 90

6.4 List of features in the CSE-CIC-IDS2018 Dataset: 92

6.5 Dataset Exploration .. 95

6.5.1 Initial observations: ... 97

6.6 Discussion .. 106

vii

6.7 Chapter Conclusion .. 106

Chapter 7 Building Models using Sub-Sample: ... 108

7.1 Chapter Introduction ... 108

7.2 Justification for using Sub-sampling ... 109

7.3 Data Balance .. 109

7.4 Test and validation with different classification models: 112

7.4.1 Gradient Boosting Machine (GBM) ... 113

7.4.2 Generalized Linear Models (GLM) ... 118

7.4.3 Deep Learning (Neural Networks) .. 124

7.4.4 Random Forest (Ranger) ... 130

7.4.5 Distributed Random Forest (DRF) .. 135

7.4.6 Portfolio Classifier (Random Forest) .. 141

7.5 Discussion .. 147

7.6 Chapter Conclusion .. 147

Chapter 8 Building Models with a Complete Dataset .. 149

8.1 Chapter Introduction ... 149

8.2 Gradient Boosting Machine (GBM) ... 150

8.3 Generalized Linear Models (GLM) .. 152

8.4 Deep Learning (Neural network) ... 154

8.5 Random Forest (Ranger) .. 156

8.6 Distributed Random Forest (DRF) .. 158

viii

8.7 Portfolio Classifier (Random Forest) ... 161

8.8 Discussion .. 166

8.9 Chapter Conclusion .. 166

Chapter 9 Evaluation and Discussion ... 168

9.1 Chapter Introduction ... 168

9.2 Precision Benchmark: ... 170

9.3 Accuracy Benchmark .. 171

9.4 F1 Score Benchmark .. 172

9.5 Recall Benchmark ... 173

9.6 Discussion .. 174

9.7 Chapter Conclusion .. 175

Chapter 10 Conclusion .. 176

References:.. 180

Appendix : .. 191

building PCAP .. 191

Generating attacks: ... 193

Failed Attempts: .. 194

Naïve Bayes ... 194

Test on KDDCUP ... 196

First Run using Distributed Random Forest .. 198

Distributed Random Forest After reduction ... 206

ix

Test With Deep learning (DNN) on reduced features 214

Scripts ... 220

Create Models ... 220

Master Model ... 254

x

List of Tables

Table 1 Chronological evolution of DDoS attacks(İlker and Richard, 2020) 30

Table 2 Systematic Search Key Strings ... 32

Table 3 systematic search ... 33

Table 4 Systematic Search Table (2020-2023) .. 35

Table 5 Binary Results for (Intrusion Detection System using Voting-based Neural

Network)(Haghighat and Li, 2021) ... 39

Table 6 Multiclass Results for (Intrusion Detection System using Voting-based

Neural Network)(Haghighat and Li, 2021) .. 39

Table 7 False Negative/Positive Rates for (Intrusion Detection System using a

Voting-based Neural Network)(Haghighat and Li, 2021) .. 39

Table 8 Accuracy for each model(Abdul Lateef et al., 2020) 44

Table 9 Accuracy before and after reduction(Syarif et al., 2020) 47

Table 10 Benchmark table with Accuracy, precision, Recall, and F1(Kishore and

Chauhan, 2020) ... 48

Table 11 Classifiers Comparison from Urvashi .. 57

Table 12 History of Machine learning tools and software 76

Table 13 Comparison between different cloud providers 84

Table 14: attacks durations in CSE-CIC-IDS2018 from CSE-CIC website (Canadian

Institute for Cybersecurity, 2018) ... 89

Table 15 Distribution of Classes in CSE-CIC-IDS2018 .. 96

Table 16 Correlation Coefficient Table ... 99

Table 17 Reduced Correlation Table ... 102

Table 18 60% sample from each class .. 109

xi

Table 19 Down-sampling benign Class .. 110

Table 20 up sampling ... 110

Table 21 Overall Accuracy ... 111

Table 22 Ranger Training results per class ... 111

Table 23 Remaining Features .. 112

Table 24 GBM Model Parameters .. 113

Table 25 Training Confusion Matrix ... 114

Table 26 Cross-validation Matrix .. 115

Table 27 Performance and Overall Accuracy... 116

Table 28 Per-Class Performance ... 116

Table 29 Confusion Matrix for the Test Data ... 117

Table 30 Model Parameters for GLM ... 119

Table 31 Confusion Matrix for GLM ... 120

Table 32 Overall Performance for the Model ... 121

Table 33 Performance per-class for GLM .. 122

Table 34 Confusion Matrix for GLM (Test Data) .. 122

Table 35 Model Parameters for DeepLearning .. 124

Table 36 Training Confusion Matrix for Deep Learning 126

Table 37 Cross-validation Matrix for Deep Learning .. 127

Table 38 Overall Performance ... 128

Table 39 Per-Class Accuracy for Deep Learning ... 128

Table 40 Confusion Matrix for Deep Learning with Test Data 129

Table 41 Parameter Inputs for Random Forest (Ranger) 131

Table 42 Confusion Matrix for Random Forest (Ranger) - Training Data 131

xii

Table 43 Overall Performance for Random Forest (Ranger) 132

Table 44 Per-Class Performance for Random Forest (Ranger) 133

Table 45 Confusion Matrix for Test Data for Random Forest (Ranger) 134

Table 46 Model Parameters for DRF ... 135

Table 47 Training Confusion Matrix for DRF .. 136

Table 48 Validation Matrix for DRF .. 137

Table 49 Overall Accuracy for DRF with Test Data .. 138

Table 50 Per-Class Performance for DRF with Test Data 139

Table 51 Confusion Matrix (DRF) for Test Data ... 140

Table 52 Overall Results .. 144

Table 53 Per-Class Results ... 144

Table 54 Master Classifier - Confusion Matrix ... 144

Table 55 Performance for GBM ... 150

Table 56 Per-Class Performance for GBM .. 150

Table 57Confusion Matrix For GBM ... 151

Table 58 Overall Performance for GLM ... 152

Table 59 Per-Class Performance for GLM ... 152

Table 60 Confusion Matrix for GLM ... 153

Table 61 Overall Performance for Deep Learning.. 154

Table 62 Per-Class Performance for Deep Learning ... 155

Table 63 Confusion Matrix for Deep Learning.. 155

Table 64 Overall Performance for RF (Ranger) ... 156

Table 65 Per-Class Performance for RF (Ranger) ... 156

Table 66 Confusion Matrix RF(Ranger) ... 157

xiii

Table 67 Overall Performance for DRF .. 158

Table 68 Per-Class Performance for DRF ... 159

Table 69 Confusion for DRF .. 160

Table 70 Overall Performance ... 161

Table 71 Per-Class Performance ... 161

Table 72 Confusion Matrix for Portfolio Classifier .. 162

Table 73 List of original Classes and new classes ... 169

Table 74 Precision Performance Benchmark ... 171

Table 75 Accuracy Benchmark .. 172

Table 76 F1 Score Benchmark .. 173

Table 77 Recall Benchmark ... 174

xiv

List of Figures

Figure 1 Benchmark and selector .. 9

Figure 2 NIDS .. 22

Figure 3 HIDS .. 23

Figure 4 Intrusion detection system using a voting-based neural network (Haghighat

and Li, 2021) .. 38

Figure 5 overall view of the complete system(Atefi et al., 2020) 40

Figure 6 Comparative Results(Atefi et al., 2020) ... 41

Figure 7 Confusion Matrix(Atefi et al., 2020) .. 41

Figure 8 Overall view of the model process(Abdul Lateef et al., 2020) 43

Figure 9 F1, Accuracy, Precision, and Recall(Chen et al., 2020) 46

Figure 10 Accuracy for the models(Bharati and Tamane, 2020) 50

Figure 11 Training Time(Bharati and Tamane, 2020) .. 50

Figure 12 Dataset Distribution (From Hindi) ... 56

Figure 13 Covered Attacks from 2008 to 2018 .. 57

Figure 14 CRISP-DM retrieved from the official CRISP-DM website(“What is CRISP

DM? - Data Science Process Alliance,” n.d.) ... 62

Figure 15 Research Methodology .. 64

Figure 16 Offline phase in the proposed method ... 67

Figure 17 get all classifications from all models. .. 68

Figure 18 Preparing encoded dataset for the master Model. 69

Figure 19 Encoded Dataset ready for Training. ... 70

Figure 20 Classification for classifiers .. 70

xv

Figure 21 Overall Methodology .. 71

Figure 22 Overall view of the Portfolio result decodes and final result. 72

Figure 23 Chronological order of Machine Learning Tools 78

Figure 24 Distribution of attacks after removing Benign ... 97

Figure 25 Correlation Matrix for CSE-CIC-IDS2018 ... 98

Figure 26 plot for Bwd.Header.Lenm vs Subflow.Bwd.Pkts 103

Figure 27 (Bwd.Header.Lenm vs Subflow.Bwd.Pkts) for each class 103

Figure 28 (Bwd.Header.Lenm vs Subflow.Bwd.Pkts) for each class after removing

outliers ... 104

Figure 29 Sample plots .. 105

Figure 30 Per-Class precision .. 118

Figure 31 Per-Class Performance for GLM .. 123

Figure 32 Per-Class Performance for Deep Learning .. 130

Figure 33 Per-class Performance for Random Forest (Ranger)........................... 134

Figure 34 Performance for DRF ... 141

Figure 35 Build Master Model .. 142

Figure 36Classification Using Master Model .. 143

Figure 37Precision for each class (Portfolio Classifier) .. 146

Figure 38 Precision Comparison Between All Models including Portflio Classifier

 ... 146

Figure 39 Per-Class precision for GBM ... 152

Figure 40 Per-Class Precision for GLM ... 154

Figure 41 Precision for Deep Learning .. 156

Figure 42 Precision for RF ... 158

xvi

Figure 43 Percision for DRF... 161

Figure 44 Compare the Master Model with the Models in Portfolio 164

Figure 45 Benchmark (Full vs Sub-sample) ... 165

xvii

Acknowledgment

Most importantly, I give thanks to Almighty God for all his blessings and for giving me

the strength and patience to complete this work.

I want to express my sincere gratitude to Dr. Yang Lee for his continues support

during my doctorate studies. Dr Yang is a great example of professionalism and

dedication. His feedback was constructive as it had wisdom and insights, which

waived obstacles and improved the quality of my research. I am grateful to have Dr

Yang as my supervisor for his compassion and thoughtful for his students.

I also want to thank my mother, my brother (Ibrahim), and my wife for their

unconditional love, patience, and understanding. Their support and patience during

my studies helped me go through all the challenges. Finally, I want to dedicate this

work to my father, in loving memory

1

Chapter 1 Introduction To Thesis and Cybersecurity

1.1 Chapter Introduction

Due to the rapid technological evolution that has been witnessed in the world today,

most activities in sectors such as business, healthcare, education, and

entertainment are widely controlled by various forms of information technology. Such

developments have also resulted in a situation whereby almost the entire world has

become dependent on information technology. In each of the mentioned sectors,

information technology offers additional quality by enhancing accuracy, speed, and

efficiency, among other essential attributes.

Business and manufacturers are two of the sectors in which most aspects of

technology are employed. Some of the key applications include automated

production, especially in industries where large-scale production is required

(KAREHKA, 2012). This aspect of technology is common in car manufacturing

industries, chemical factories, food manufacturing and packaging, and heavy metal

industries, among other similar sectors. The automation of the manufacturing

process reduces the time taken in the production process while increasing both

efficiency and accuracy. Other areas of application within the business and industry

sectors include inventory management, supply chain management, and information

management. Certain organizations also use techniques such as RFID time

attendance or biometric systems to monitor their employees more effectively.

2

Technology has also boosted communication both locally and across borders,

especially with the introduction of digital methods of exchanging information between

different groups of audiences. Communication has been enhanced by the

introduction of media such as video conferencing, mobile technologies, and emails

(KAREHKA, 2012). Social media also promote interactions among people who are

characterized by substantial geographical isolation. In education, the learning

process has become even easier with the introduction of online libraries, simulated

learning aids, and various forms of e-learning. On the other hand, bankers benefit

from automatic teller machines, e-banking applications, and other emerging

resources like cryptocurrencies (KAREHKA, 2012). Generally, technology has

become an integral part of global society, a condition that necessitates high levels

of cybersecurity to ensure that no costly damages are encountered while using such

systems.

Th computer network has evolved from a simple communication medium between

two systems into a very complex network architecture. Computer network evolution

includes the internet, which introduced easy communication between different

geographies, and the concept of public and private networks. These networks can

carry and control critical information like power grids, stock markets, and the military.

The network became heterogeneous, and the general approach is to have IT

elements share the same resource pools (Storage, Memory, Compute, Network).

This will lead to critical mission systems sharing some resources with non-critical

systems. For example, you may have a power grid system that may share resources

with an email system. That will put the power grid system at risk of being attacked

because it shares resources with the email system and is not properly guarded. This

3

risk is very critical and can’t be overlooked. Cybersecurity is mandatory to protect

these systems. There are various cyber threats and different entities that might have

the intention to do such acts (Political agendas or activists). One of the main threats

that are very difficult to mitigate is (Distributed Denial of service/ Denial of service)

DDOS/DOS attacks because the operator can’t distinguish legitimate connections

from attack connections. Also, the volume of attempted connections will be too huge

to evaluate in time. There exist industrial solutions in the market for enterprises, but

as long as the threats are evolving, Cybersecurity solutions need to evolve.

This research will focus on the detection of Cyber Security threats using machine

learning. Looking after these two fields (Machine Learning and Cyber security), I will

do interdisciplinary research where a portion of the research will focus on Cyber

Security, and the other portion will be on machine learning.

1.1.1 Problem statement

The problem statement of the research is the following.

“Is it possible to increase the performance of IDS in precision and accuracy using

per-instance selection of classifiers from a portfolio of classifiers?”

Information technology has intruded into many fields, and there is a very high

dependency on technology for many processes these days. Connectivity is

becoming increasingly necessary with the rise of smart cities and the internet of

things. According to IDC, it is estimated that there will be 41.6 billion connected

devices, generating 79.4 Zettabytes in 2025(“The Global DataSphere & Its

Enterprise Impact | IDC Blog,” n.d.). With this amount of data trafficking, it's getting

more challenging to analyze and identify threats.

4

At the same time, with the amount of generated data, Artificial intelligence flourished.

Artificial intelligence can have real-world applications when provided with sufficient

data. AI and machine learning can be beneficial in developing more robust Intrusion

Detection systems (IDS). And indeed, many IDS depend on machine learning to

identify anomalies.

Many models have already been developed for IDS, but not all models perform well

for all types of network attacks. It's necessary to have an accurate system to act

correctly according to the alarm. It's a real pain for SOC (security operation centers)

to deal with false-positive alarms, as these alarms can come in millions. They have

to investigate the alarms to determine if it's a genuine threat or benign traffic. A single

model might not have the capability to classify some types of attacks or can

misclassify regular traffic as a threat.

1.1.2 Contribution to Knowledge

My study bridges the gap and tackles the lack of the following:

• The ability to create a (portfolio classifier) with no budget with precision and

accuracy relevant to my thesis

• per instance selection of classifier, where only selected classifiers can vote in

each instance, so there will be a different set of classifiers to vote on for every

threat.

• Modularity of the Model, where additional classifiers can be plugged in to

enhance performance.

5

1.1.3 Aim

This research aims to investigate the application of multiple algorithms on security

threat detection systems. Generally, different classifiers are characterized by both

negative and positive characteristics. The study intends to determine the benefits

that may be associated with the act of using multiple classifiers in a single system.

The rationale behind this argument is that the weaknesses of given classifiers can

be supplemented by the strengths of others. As a result of such a relationship, it is

hypothesized that combining numerous classifiers of different types helps to

establish a more effective hybrid compared to each of the individual constituents.

However, the study approaches the idea from a unique perspective, which involves

the selection of one classifier for each instance. This idea was inspired by SatZailla,

which won the SAT competition multiple times(“SATzilla: Portfolio-based algorithm

selection for SAT,” 2017). The proposed research procedure can be summarized in

the following points.

• Use a simulated dataset that reflects modern cybersecurity threats.

• Build a portfolio of multiple classifiers.

• Create a Master Classifier that will select a classifier from the created portfolio

based on the instance (connection) features.

• Classifier selection will be done for each instance.

• Test the classifier on the publicly available datasets for benchmarking with

other classifiers.

6

The objectives for each chapter:

- Chapter1: Objectives and aims

- Chapter 2: Literature review for Cybersecurity and survey for for related

research papers

- Chapter 3: Survey available datasets for research and define known problems

in these datasets

- Chapter 4: define the projected design, and which framework will be adopted.

Also, explain the proposed method.

- Chapter 5: Survey, Test and select the tools that will be used in this research

- Chapter 6: Data exploration using the standard techniques in data science to

understand the dataset.

- Chapter 7: Build Multiple models along with the master classifier on a

subsample

- Chapter 8: Build Multiple models along with the master classifier on complete

dataset

- Chapter 9: Evaluate the results by benchmarking with different research

papers that uses the same dataset and multi-classification (Not binary)

- Chapter 10: Discuss the outcomes and verify if the contribution of knowledge

is achieved.

1.1.4 Study Hypothesis

Even though the answers to the study questions will only be established after

performing the research, certain predictions can be established based on theoretical

inferences and information gathered from existing studies. However, such

predictions are limited due to a lack of adequate information and theoretical

7

frameworks on the proposed model. The proposed hypotheses for this research are

as follows:

• The instantaneous selection of classifiers substantially improves the

efficiency with which threats are detected in a server or network.

• Using the algorithmic approach to the selection of classifiers is more

appropriate as it encourages the detailed consideration of all the performance

factors of each individual classifier.

• The proposed model offers higher classifier performance outcomes than

existing models.

1.1.5 Motivation

It's common to use IDS/IPS (intrusion detection system/Introduction prevention

system). The IDS analyzes the traffic and identifies anomalies, triggering an alert.

The IDS uses a model trained in historical traffic with all possible malicious and

benign traffic scenarios. These models can report false alarms based on the quality

of the data provided and the type of the model used.

Some models perform very well with some classes, and on the other hand, they

misclassify very severely with other classes. A model can have a very high accuracy

rate in detecting anomalies, but at the same time, it provides a lot of false-positive

reports. Data traffic is not consistent, and it changes depending on the activity and

the type of malicious attack. For example, network activity increases in the early

morning when all people start their computers and check their emails. While most of

these activities disappear at night, a model might not be able to distinguish morning

8

activity from a DDOS attack. At the same time, hackers know how to hide their

activity in the network. For example, a normal port scan will be immediately detected,

but hackers can do a slow scan that might not be detected by the IDS. For this

reason, a portfolio of multiple classifiers might assist in increasing the accuracy,

wherein, for each flow, a model will determine the most suitable classifier for that

type of threat.

1.1.6 Scope of the research:

This research aims to increase the accuracy of the IDS model by using an algorithm

to select a classifier for each flow that is most suitable for classification. To achieve

this objective, we need data capture of the network, which can be achieved by having

the PCAP file (Packet capture)to be used to train and validate the model. The data

should have benign flow and anomalies to represent a more realistic network flow.

As discussed earlier, a portfolio of multiple models will be constructed. In order to

determine if a selected model can fit in the portfolio, we have to have some metrics

and criteria to calculate the fitness of these models. Each Model will be evaluated

for their accuracy and precision and then benchmarked among each other. Then,

we can validate if a model is suitable to be used for IDS in the first place. The

evaluation will undertake three steps. The first step will investigate the model

precision for each class. The second step will evaluate its ability to perform well with

multiclassification. Finally, we will test if it can handle big data with reasonable time

and compute resources. One of the essential parts of the research is developing a

technique to select the suitable model for each flow in the network traffic. To develop

this technique, we can use the evaluation of multiple models and build a model that

will interface with the others as a selector.

9

Figure 1 Benchmark and selector

1.1.7 The Rational of the Study

This study is expected to produce results that will contribute to the war against

cybercrime in various contexts in which network-based technologies are employed.

Classifiers are renowned for their role in enhancing the security capabilities of

intrusion detection systems. These benefits can be analyzed from two principal

perspectives. These perspectives are based on the fact that there are specific

assumptions regarding classifier dependencies, different classifiers have varying

outputs, and the idea that the process of selecting classifiers depends on neural

networks, special mathematical functions, or algorithms. Based on these

parameters, the benefits that come with a specially designed method of selection

can be viewed from the perspectives of either classifier selection or classifier

fusion(Ludmila I. Kuncheva et al., 2001). Thus, the rationale of this study can be

described on the basis of the benefits associated with each of these approaches.

10

The first aspect of interpretation is the classifier selection, which forms the main core

of this proposal. Under this criterion, each of the individual classifiers is assumed to

be a special kind of expert. The expertise associated with each ‘expert' is believed

to be useful in specific feature spaces. In the event that a feature vector represented

as 𝑥 ∈ Ʀp is availed for a given classification, the process of assigning the class label

to x is done in such a way that the highest credit is given to the specific classifier that

is responsible for the vicinity of x (Ludmila I. Kuncheva et al., 2001). The process

can be achieved through the nomination of either a single or multiple classifiers

depending on the purpose for which the entire process is conducted(Subbulakshmi

and Afroze, 2013). On the other hand, classifier fusion operates under the

assumption that all classifiers are trained over the entire feature space, a condition

that makes them more competitive than complementary(Saleem Malik Raja and

Jeya Kumar, 2014). In such a situation, the selection process is considered to be

more complex than in the case of a typical classifier selection process. Each of the

available alternatives is selected mainly on the basis of the benefits or performance

advantages that it introduces. Since it becomes relatively challenging to establish

the best approach to the selection and combination of various types of classifiers,

mathematical functions or algorithms are always used to accomplish this task.

The methods discussed above result in the establishment of a system consisting of

a hybrid of critically selected classifiers. Generally, multiple classifiers are

characterized by impressive outputs and performance efficiencies. It is evident that

the entire performance of an intrusion detection system depends upon the types of

classifiers that are selected in a given instance. Selecting high-efficiency classifiers

would always result in generally high efficiencies, while poor selection will be

11

characterized by undesirable outputs. This project intends to solve classifier

selection challenges by establishing a reliable algorithm for undertaking the process

with the least errors. It intends to improve the effectiveness of intrusion detection

systems by making them more reliable.

The benefits discussed above can be expressed in simple terms, which mainly

revolve around improving cybersecurity in different contexts. Cybercrime has

already been identified as one of the main challenges facing the implementation of

technology in education, banking, construction, healthcare, and several other

sectors across the globe. Research indicates that poorly developed intrusion

detection systems and intrusion prevention systems are often vulnerable to false

alarms. There are cases in which these resources fail to detect any threatening

alarms within the servers or networks in which they are installed. In such a situation,

they may report the absence of security threats even in cases where networks or

servers are subjected to serious security compromises. The effective selection of

classifiers helps to boost the overall efficiencies with which such systems work and

make them more reliable. Thus, this study focuses primarily on improving the

performance characteristics of intrusion detection systems to make them more

effective. It tries to ensure that only the best-performing components of each security

application are employed in the war against network-to-server intrusion. Overall, the

outcomes of the study are expected to be of significant resourcefulness not only to

researchers in the same field but also to the digital world at large.

This thesis has a novel approach for multi-classifier classification for Cybersecurity.

This novel approach could help to develop IDS systems and improve the

identification and classification of cybersecurity threats. There exist systems that can

12

perform the IDS tasks (classification), but the development and improvement of this

novel approach could reduce the rate of errors, which are very costly for any entity

or organization.

1.1.8 Thesis Structure

The structure of the remainder of the thesis will be as follows:

Cybersecurity:

This chapter will introduce the reader to the general concepts of cybersecurity in

order to allow him/her to grasp the meaning of IDS and its function. The chapter will

go through the history and evolution of the cyber security threats. In addition, we will

review the tools and approaches that mitigate and defend systems from

Cybersecurity threats.

Literature review and Systematic search:

In this part, we will view a systematic search for research that relates to this research.

Different approaches will be reviewed that are either hybrid, pre-processing or Deep

Neural. For each type of these approaches, we will discuss different papers that

cover them.

Dataset Survey:

In this part, we will discuss the Datasets that are used in IDS. A survey will be

reviewed on these datasets, which cover the distribution of how much each dataset

is used in research. In addition, some problems of these datasets will be discussed

that can affect the research in IDS.

13

Methodology:

This chapter will have the methodology that we will use and how we have created a

method that is inspired by a prober framework within the Data mining community. By

the end, we will have a detailed explanation of the proposed model.

Investigation and Selection of Software Packages:

In this part, we will have a small survey on the tools that are involved in Artificial

intelligence and Machine learning. We will view the tool in two aspects. These

aspects are cloud and local computing. In each aspect, we will determine if the

available tools are fit for this research.

Dataset and Data Analysis:

Data analysis is an integral part of this research. In order to build a model, we need

to understand the data and have proper insight into its variables and a summery of

it. We will present the distribution of the variables and the problems that the dataset

has. Finally, we will show how we have pre-processed that dataset.

Building models using Sub-sample:

In this part, we built different models using a sub-sample from the dataset.

Depending on the results of these models. We build a portfolio of models that will

contribute to the proposed portfolio model. At the end of the chapter, we have built

the portfolio classifier and made a comparison with the individual classifiers that have

participated in the portfolio.

Building Models using the complete Dataset:

14

In this part, we are repeating the process as in the “Building Models using Sub-

sample,” but we have built the model without sub-sampling and using the complete

dataset (except for duplication and removing NA). The dataset was only split

between training and testing without any up sampling and subsampling. At the end

of this chapter, we benchmark the results between the Full dataset results and the

sub-sampling for all the models.

Benchmarking to other tests and studies:

We have benchmarked the proposed portfolio classifier to other research and

studies. In this benchmark, we tried to make a fair comparison, but most of the

studies do a binary classification, and few do multi-classification. We have built

tables that compare Accuracy, Precision, F1 Score, and Recall.

Discussion and Conclusion:

This chapter will have the discussion and conclusion by summarizing the thesis and

showing if the research goals have been fulfilled. Also, it will show major findings,

impact on the industry, limitations, and future work.

1.2 Chapter Conclusion

In conclusion, this chapter laid the groundwork for the research by highlighting the

growing dependency on technology and the corresponding rise in cyber threats. The

background discussion included the types and roles of IDS, along with their

limitations in practical environments. The issues identified, such as high false

positive rates and inability to generalize across various traffic types, justified the

need for a more flexible and intelligent solution. The proposed idea of using a

classifier portfolio, capable of making per-instance decisions, was introduced as a

15

response to these gaps. Furthermore, the scope, aims, and hypothesis of the study

were clearly defined, aligning the technical challenges with the intended solution.

The content of this chapter ensures that the reader understands the relevance and

significance of the problem and how it will be approached throughout the rest of the

thesis. The next chapter will examine existing literature to further support the design

and novelty of the proposed model.

16

Chapter 2 Literature Review by Systematic Search

2.1 Chapter Introduction

This chapter will give an in-depth understanding of the importance of cybersecurity

and the impact of any cyber threat. There will be an explanation of the different types

of IDS, which are HIDS and NIDS. Also, it will view the different approaches for the

IDS to identify the threats with its’ advantages and disadvantages. Finally, it will view

the different DDOS attack techniques along with the major DDOS attacks that

happened in chronological order.

17

2.2 Cybersecurity

To understand Cyber Security, we need to look into its definition. According to

Merriam-webster, Cyber Security is the measure taken to protect a system against

an attack and unauthorized access(“Cybersecurity Definition & Meaning - Merriam-

Webster,” n.d.). The systems that can be targeted for cybersecurity can be any form

of information technology resource. These resources can be either Compute,

Network, or applications. Also, cybersecurity covers the integrity, availability, and

confidentiality of the data. There are enormous types of security defense tools and

techniques used by many originations, and each tool targets a different component

of the system to protect. For example, a generic firewall will protect the overall

internal IT infrastructure from any external network security threats, while WAF (web

application firewall) is application-specific and will protect applications such as Email

systems. These roles are unique and can’t be interchanged. Cybersecurity defenses

don’t always depend on physical or software modules. Some policies can protect the

system, like encryption, authentication, privileges, and segregation (logical or

physical). On the other hand, we can have modules that can be hardware or software

like firewall, IDS/IPS, security gateway…etc. As technology evolves, with systems

being updated every while and new components being introduced, it becomes more

difficult to cope with this rapid change and make sure that the system is hardened

and safe from cyberthreats. Attackers can exploit and find ways into the systems

without being noticed or detected since the people who manage these systems might

not be aware of loopholes in the new systems and updates.

18

Intrusion detection systems have been used in various networks to boost the network

security. Their roles are restricted primarily to the detection of any threats to which

a server may be subjected. By definition, intrusion detection systems (IDS) refer to

systems that are charged with the responsibility of monitoring network

traffic(Margaret, 2018). Their activities are also helpful to security management in

individual servers. These systems are always on the lookout for any suspicious

activities within the servers or network in which they are installed. Therefore, IDSs

are responsible not only for the detection of suspicious activities in networks and

servers but also for reporting such issues when discovered. Even though their main

roles are the detection and reporting of malicious activities, intrusion detection

systems may be designed with special features that enable them to take the required

courses of action in cases where suspicious activities are detected. Some of such

responses include preventative measures like the obscuration of the traffic sent from

the detected malicious IP addresses. The operations of IDSs are never completely

efficient as they may also be subjected to various forms of interference, such as false

security alerts within the networks or servers guided by them. Thus, it is imperative

that companies or network administrators perform adequate fine-tuning to their

intrusion detection systems before installing them(Margaret, 2018). Fine-tuning,

essentially, involves the proper configuration of intrusion detection systems to

familiarize them with the server's or the network's normal traffic. This way, it becomes

easy for such systems to differentiate between normal activities within the traffic and

malicious events within the networks in which they are installed(Margaret, 2018).

Therefore, the installation of intrusion detection systems is not efficient enough to

guarantee absolute security in a given server or network.

19

There are four principal categories of intrusion detection systems; they include

network intrusion detection systems (NIDS), host intrusion detection systems (HIDS)

(Khor et al., 2010), signature-based intrusion detection systems (SIDS), and

anomaly-based intrusion detection systems (Saleem Malik Raja and Jeya Kumar,

2014). NIDS are installed at specific points within a network to monitor traffic from

various sources within the network. HIDS are often deployed on all computers and

other devices in a network and usually have direct access to an enterprise's internal

networks and the internet(Tanmoy and Niva, 2017). The main advantages of HIDS

over NIDS include the ability to detect malicious actions originating from both the

organization and infected hosts (Tanmoy and Niva, 2017). Signature-based intrusion

detection systems mainly detect threats by comparing the characteristics of data

traffic within a network and comparing them to the properties of known threats. On

the other hand, anomaly-based intrusion detection systems often determine the

anomalies within the general traffic of a network by comparing them against an

established baseline. Thus, the rationale behind the operation of such systems is the

ability to report any changes in the network baseline. Such changes are

automatically associated with malicious intrusion.

The installation of intrusion detection systems in devices, servers, or networks

comes with several benefits that help to enhance cybersecurity. The first and the

most essential benefit of these systems is the ability to provide organizations and

other forms of network managers with information on the security statuses of their

networks or servers. Generally, intrusion and detection systems can be used to not

only detect the presence of malicious activities but also to analyze and categorize

such incidents. The results of such analyses are useful to organizations as they

20

dictate the types of actions to be taken by the affected organizations for optimal

security. Thus, they act as both network guards and essential factors of decision-

making processes aimed at the improvement of network security.

Opposite to the notion that network security systems are caused by data traffic from

external sources, there are cases in which such issues originate from within the

individual servers connected to a given network. Thus, it is imperative that the

system bugs that originate from within these devices are also detected. Intrusion

detection systems, especially the HIDS, are renowned for their ability to detect

malicious activities of traffic within individual servers. This property enables

organizations to identify and remedy faulty network configurations and assess such

systems for future risks. By providing organizations with adequate information on

regulatory condition, IDSs offers more unobstructed visibility across the networks of

such organizations, making it easier for them to conform to the security

regulations(DOUGLAS et al., 2015). The final benefit of such systems comes in the

form of their ability to boost organizational security response systems. Due to their

ability to detect hosts and devices within a network, intrusion detection systems are

used for data inspection within network packets and the identification of the operating

systems of the services employed. The utilization of IDS to gather such information

is considered more efficient as it operates better than manual census (FSabahi and

AMovaghar, 2008). Generally, the installation of intrusion detection systems in a

network comes with more benefits than just the detection of intrusion; it also enables

organizations to effectively control their networks and servers while conforming to

the security legislation.

21

2.2.1 IDS (Intrusion Detection System)

The Intrusion detection system is a system that analyzes and observes the network

activity to find intrusions. Intrusion is any attempt that may affect the integrity,

availability, and confidentiality of a system or network. Generally, there are two

approaches to collecting data for the intrusion detection system. The data can be

either collected from the network or the Hosts(Sazzadul Hoque, 2012).

There are different approaches that allow the IDS to detect malicious attacks, which

are (anomaly, misuse)

2.2.2 NIDS (Network Intrusion Detection System):

With the increase of intercommunications in either Local area networks or wide area

networks, the cyber security threats have increased on the network side, mainly

because there is more exposure to the internet and more visible attack points. For

this reason, NIDs were introduced to close this gap and secure the systems. NIDS

scans network traffic and analyzes any abnormality on the network level. Network

traffic can be local between hosts in the local network or communication that leaves

the local network to WAN (wide area Network) or the internet. Usually, the networks

are not unified, even in a single organization. An organization can have completely

separated networks or, logically, separated by VLAN or subnet. It might require

installing a firewall/IDS/IPS in each network or segment. Even in the same network

segment, multiple IDSs with different roles might be required as there might be

various systems and applications.

22

Figure 2 NIDS

2.2.3 HIDS (Host-Based Intrusion Detection System)

The HIDS evaluates the host activity, primarily the logs generated from the operating

system or the applications. These logs contain information related to computing

utilization, network, memory, health, etc. Usually, the monitoring happens by

installing an agent in the host, which will collect the required information and pass it

to a centralized server. In a virtual environment or cloud, it can be done on the

hypervisor level, where there is no need to install an agent, and it does not require

resources on the targeted virtual machine.

Internet

Firewall
Analyze Network flows

23

Figure 3 HIDS

2.2.4 IDS approaches

There are different approaches that allow the IDS to detect malicious attacks

(anomaly, misuse), which will be discussed as follows.

2.2.4.1 Misuse:

These types of IDS depend on signatures to identify benign flows in the network.

After observing the network activity, a knowledge base can be constructed.

Depending on this knowledge base, the IDS can trigger an alarm after observing the

signatures. Signatures are unique by nature, and the issue with this approach is that

the network is dynamic and changing. If the behavior of the system changes due to

user activity or an update, the IDS will trigger false alarms. Even on the malicious

Logs Logs Logs Logs

Internet

Firewall

Analyze Logs

24

side, if there is a small change in the malicious attack or a variation, it will have a

unique identity. The IDS might not be able to identify it and will miss a legitimate

alarm.

Advantage:

One of the main advantages of the Misuse is that the models are built on known

intrusive malicious signatures. Since these signatures are well-defined, the

administrator of the systems can easily relate to any alert that exists in the knowledge

base. Also, this approach can immediately start protecting your network since the

signatures are already installed in the IDS(“Intrusion Detection Systems > Triggering

Mechanisms | Cisco Press,” n.d.).

Disadvantages:

- Maintaining the signature database for all types of cyber threats is a very

difficult task.

- It is necessary to update the database very frequently to keep the IDS up to

date.

- Misuse might have trust issues, as these signatures are usually provided by

vendors and suppliers that offer the IDS modules. The vendors can prepare

signatures that can be intentionally bypassed without triggering any

alarm.(“Intrusion Detection Systems > Triggering Mechanisms | Cisco Press,”

n.d.)

25

2.2.4.2 Anomaly

This approach depends on having a dataset that captures network traffic. This

dataset contains variables or features that represent each flow in the network

communications. The variables and features are reflections of the network activity,

so when observed and analyzed, the IDS can distinguish the benign flow from the

malicious flows. This can be done by understanding how far these features deviate

from the benign features.

There are multiple approaches that can achieve anomaly detection, which are

supervised and unsupervised classification.

Advantages

- Since every network is unique, anomaly systems take advantage of that as it

is trained on the target network. Attackers will have difficulty imitating users

as the anomaly system keeps user-profile records, and each user in the

network is unique, and any deviation from these profiles will trigger an alarm.

- Anomaly is not based on specific traffic that represents known intrusive

activity (as in a signature-based IDS). An anomaly detection system can

detect zero-day attacks, as the system generates an alarm because it

deviates from normal activity, not from a handcrafted malicious signature

database.(“Intrusion Detection Systems > Triggering Mechanisms | Cisco

Press,” n.d.)

26

Disadvantages

- The System must be trained on the target network, and during the training

time, the network can be targeted for attacks.

- Since the training will be specific to the target network, the administrators will

face the complex task of associating events with alarms and triggers. This

task can’t be recycled as it is very specific to the target network.

- There are no guarantees that the training will actually result in a capable

system to detect malicious events. The only way to validate is to simulate

attacks and study the triggered events.

- If the attacks have a very similar pattern to the user profile, maybe the system

will not detect these attacks.

2.2.4.3 Supervised Models:

The supervised models require input and output data. The input data represents the

features and variables. The output data represents the class or type of input data.

For the supervised model to work for IDS, the data acquired needs to be labeled for

each flow. This might cause an issue for the development of this type of model

because these labels are usually handcrafted. Another issue is determining the

dimensionality of the features and how much is enough of a subset while maintaining

accuracy. The data needs to be split into two parts: one part is training, and the other

is validation. There are many types of supervised models with many variations, like

support vector machines, decision trees, random forests, and neural networks.

27

2.2.4.4 Unsupervised:

Unsupervised learning does not require labels (output). These models capture

patterns from the features. The model can be provided with a numerical target. From

these patterns, the model can make clusters or groups where we can distinguish the

benign group from the malicious groups. Examples of unsupervised algorithms are

k-nearest neighbors, k-means clustering, and hierarchical clustering.

2.2.5 DDoS attacks (Distributed Denial-of-Service Attack):

Denial of service and distributed denial of service (DoS/DDoS) remain one of the

cybersecurity issues that are persistent and keep happening throughout the years.

One of the main features of the Internet is the openness and connectivity of diverse

networks together. At the same time, the DOS/DDOS takes advantage of the internet

diversity and connectivity. The advantage is that the internet is not centralized and

distributed all around the world, with many networks that are connected together.

Since there happens to be connections from anywhere, the DDOS can orchestrate

a DDOS attack from many networks, and it will be difficult to validate all of these

connections. In this part, there will be a discussion on DDOS and how it works, along

with some history of DDOS.

In order to proceed, we need to understand the concept of DDOS. The DDOS is an

orchestrated attempt between multiple computers to initiate an attack at the same

time targeting a server or service. This attempt will consume the resources of the

service, and when the server is short of resources (compute/memory/Storage),

legitimate connections from normal users will not be granted.

28

To summarize, DDoS is a collection of multiple interconnected devices that can be

computers, smartphones, or IoT devices. These devices are infected and can be

controlled, which allows 3rd party to control these devices. Once a large number of

network devices have been in control, they can be used to orchestrate a DDoS

attack. The infected devices are usually called zombies in computer science

terminology(Kamboj et al., 2017). Cybercriminals exchange these zombies and can

offer them for rent to facilitate the attacks. Zombies can also be called bots. There

are different models to make bots, and the first method is the client-server model. All

the infected bots are connected to a central server that controls them all. The second

approach is to have a peer-to-peer model. These bots don’t connect directly to a

central server. But they connect with each other, and the control of these bots can

be done by digital signatures. The peer-to-peer model is the latest way for the

botnets because it is difficult to trace, as each bot is connected to another bot instead

of the central server. The way these bots can communicate with each other is by

initiating a connection to a random IP address until the other bots reply.

Why Multiple Machines:

A single machine can only generate a small number of requests and bandwidth, but

multiple machines can make much more. While having multiple machines, it will be

much harder to shut down connections as there will be many connections

established at the same time, and it will be stealthier. A simple filter of IP address

will not work, and if the service provider considers adding more resources to

accommodate the attack, the attacker will simply add more bots until the service fails

and the attack succeeds. The scale of the DDoS attacks has advanced in the past

years, and the volume of attacks has reached 3.47 terabytes per second in

29

2022(“Microsoft fends off record-breaking 3.47Tbps DDoS attack | Ars Technica,”

n.d.). Some examples of DDoS attacks are as follows:

Yo-Yo attack:

One of the recent types of DDoS attacks is the Yo-Yo attack. The Yo-Yo attacks take

advantage of the auto-scaling of the Virtual machines in the cloud. The process of

this type of attack is to overwork the virtual machine and invoke autoscaling. The

primary intention of the Yo-Yo attack is to cause economic damage to the

organization as the organization will allocate more unnecessary resources to keep

the virtual Machine running. At the same time, the Yo-Yo attack can also cause

performance damage because, during the resource allocation in the autoscaling

process, the Virtual Machine will face performance degradation(David and Barr,

2021).

Advanced persistent DoS:

Most DDoS attacks don’t last for a long period as the victim can mitigate and find a

solution for the attack. Meanwhile, the persistent attack can last as long as a month.

The attackers will have multiple targets and switch between these targets, so the

victim can’t mitigate and have the time to resolve these attacks, while at the same

time, they keep concentrating on the main target server.

Major Attacks in History:

The table below has the chronological order of the DDoS attack and the increased

complexity of the attacks as time passes. The table was retrieved from (İlker and

Richard, 2020)

30

Table 1 Chronological evolution of DDoS attacks(İlker and Richard, 2020)

Date Description

Pre-

1989

Non-computer DOS using sabotage and sit-ins

1989 AIDS ransomware.

1995 German government blocks access to sexual material.

1995 Strano Network DDoS protests French nuclear weapons tests.

1996 Panix ISP in New York disabled by SYN flood attack.

1997 Electronic Disturbance Theater (EDT) uses Floodnet to protest Mexican government

attacks on Mayan anarchists.

1998 US DoD DDoS attack on EDT during Ars Technica festival.

1998 LOpht testify to Congress that total Internet disruption is easy.

1999 Electro-hippies use EDT Floodnet to attack WTO.

1999_2

000

Trinoo, TFN, TFN2K and Stacheldraht available online.

2000 Mafiaboy takes down Yahoo, Amazon, Dell, ebay, CNN, etc.

2001 Code Red worm DDoS of WhiteHouse.gov.

2001 After Hainan incident, Chinese group launches DDoS on US military sites.

2001 German protesters use Floodnet to attack Lufthansa.

2003 Blaster worm SYN flood of Microsoft update servers.

2003 Blaster worm during blackout of US power grid.

2005 Gpcoder ransomware.

2007 Russian population launches Cyberwar with DDoS on Estonia.

2007 Pro-Putin botnets launch DDoS attacks.

2008 Chinese DDoS attacks on CNN.

2008 DDoS attacks on Georgia sites while Russian military attacks.

2008 Myanmar state uses DDoS to silence dissident Voice of Burma.

2008 DDoS attacks on RFE/RL Tajik, Farsi, Russian, etc. services.

31

2008 Ukraine attacked by unidentified anti-NATO sources.

2009 Hamas and Israel launch DDoS attacks on each other.

2009 USA and South Korean sites get DDoS attacks.

2009 Kyrgyzstan, Kazakhstan and Iran DDoS silences dissent.

2010 Vietnamese protest of Chinese mining gets DDoS.

2010 Anonymous titstorm attack on RIAA and MPAA.

2010 Anonymous Operation Payback DDoS on payment sites.

2010 Arab Spring leads to Internet blackouts.

2011 Telecomix anti-Internet blackout actions.

2013 Spamhaus receives massive DDoS of 300 Gbps.

2013 Cryptolocker ransomware spread by botnets.

2014 Ransomware (Cryptorbit, Locky, Petya) starts using bitcoin.

2014-

2015

Lizard Squad stresser 579 Gbps DDoS of gaming industry.

2015 DDoS for hire botnets: 25 wired, 8 mobile.

2015 Large parts of the power grid in Ukraine disabled.

2016 Black Lives Matter receives flooding and slow loris attacks.

32

This chapter will go through a systematic search. The systematic search will consist

of all research that relates to IDS that uses machine learning and Artificial

intelligence. A table of the systematic search will be reviewed with all the researched

regardless of the type of the dataset and the approach used. A detailed review of

some research will be done into three categories, which are Hybrid Models, Pre-

processing, and Deep Learning.

The search is primarily done in IEEE, Elsevier, and ACM. The search was broadened

by using the library site and Google Scholar. Search Keys that were used in the

systematic search (Multiclass, multi classifier) with the assessment terms

(classification, model, algorithm, machine learning, AI) and then industry terms (IDS,

Cybersecurity, DDoS) and other related terms (KDDCUP, CIC-IDS-2018).

We have used different search key strings that are as follows:

Table 2 Systematic Search Key Strings

step 1 step 2 step 3 step 4

Multiclass AND/OR classification AND/OR IDS AND/OR KDDCUP

multi classifier model Cybersecurity CIC-IDS-

2018

 algorithm DDoS

 machine learning

 AI

We have used different permutations and concatenation of the above table. The

search period varied based on the time point of the research, as there were some

updates during the research period. The presented research was done on points of

time; the first one focused on research done between 2020 and 2021. The second

33

search was focused on the time period (2020 to 2023). The criteria for the selected

papers are published, and it can be peer-reviewed a conference, or a survey.

2.3 Literature Review and Systematic Content-Analysis

2.3.1 Search (2020 to 2021)

Table 3 systematic search

Reference Title Year Type Author Dataset Methodology Results

(Arivardhini

et al., 2020)

A Hybrid

Classifier

Approach for

Network

Intrusion

Detection

2020 Conference Arivardhini, S

Alamelu, L M

Deepika, S

NSL

KDD

data

Support Vector Machine (SVM),

decision tree (J48), and Naive

Bayes (NB)

Use a Majority Voting scheme

No Results were shown

(Chen et al.,

2020)

A Novel

Preprocessing

Methodology for

DNN-Based

Intrusion

Detection

2020 Conference Chen, Peng

Guo, Yunfei

Zhang,

Jianpeng

Wang, Yawen

Hu,

Hongchao

KDDCu

p'99

DNN

Deep Neural Network

Pre-processing :

1- Numeralization

2- Transformation:

3- Numeralization(Mi

n-Max)

improve accuracy, recall,

and F1 score, with no

significant degradation in

precision

(Bharati and

Tamane,

2020)

NIDS-Network

Intrusion

Detection

System Based

on Deep and

Machine

Learning

Frameworks

with

CICIDS2018

using Cloud

Computing

2020 Conference Bharati, M P

Tamane, S

CIC-

IDS-

2018

Extra-Tree

GBoost Tree

Random Forest Tree

MLP

The results compare

different Models and their

results.

(Haghighat

and Li,

2021)

Intrusion

detection

system using

voting-based

neural network

2021 Journal

Article

Haghighat,

MH

Li, J

KDDCU

P'99

CTU-13

novel voting-based deep

learning framework

- Deep Neural

Network

- Recurrent Neural

Network (RNN),

The voting system has

shown better results,

where it reduces false

alarms.

34

- Convolutional

Neural Network

- Boltzmann

Machine

- Stacked Auto-

Encoder

(Syarif et al.,

2020)

Feature

Selection

Algorithm For

Intrusion

Detection Using

Cuckoo Search

Algorithm

2020 Conference Syarif, I

Afandi, R F

Astika

Saputra, F

Botnet

ISCX

2017

KDDCU

P'99

NSL-

KDDCU

P

Cuckoo Search (CS) as

feature selection and

compare with GA and PSO

using Decision Tree

The CS has reduced

most of the features, but it

only has shown better

performance in ISCX

2017, while PSO had

better accuracy in NSL

KDDcup99 and NSL-

KDDCUP.

(Atefi et al.,

2020)

A Hybrid

Anomaly

Classification

with Deep

Learning (DL)

and Binary

Algorithms (BA)

as Optimizer in

the Intrusion

Detection

System (IDS)

2020 Conference Atefi, K

Hashim, H

Khodadadi, T

"CICIDS

2017

A hybrid Anomaly

Classification of IDS with

Deep Learning (DL) and

Binary Algorithms (BA) as

The author did not

explain how the hybrid

models work, but he

compared different hybrid

couples and showed that

DNN+BGSA has

increased accuracy.

(Kishore

and

Chauhan,

2020)

Evaluation of

Deep Neural

Networks for

Advanced

Intrusion

Detection

Systems

2020 Conference Kishore, R

Chauhan, A

KDDCU

P'99'

DNN and compared it to linear

regression, Naive Bayes, K

nearest neighbor, Decision

tree, and Adaboost.

In this paper, it was

shown that SNN performs

better than other Models,

but The Author did not

show a confusion matrix

where we can compare

FP, TP, TN, and FN.

(Abdul

Lateef et al.,

2020)

Hybrid Intrusion

Detection

System Based

on Deep

Learning

2020 Conference Abdul Lateef,

A A

Faraj Al-

Janabi, S T

Al-Khateeb,

B

KDD'99 binary class IDS based on

RNNs

The Crow Swarm

Optimization (CSO) algorithm

has been used to reduce the

dataset features.

The author has made

multiple trails for feature

reduction using CSO and

trained on RNN with each

trail. It was shown that

only three features are

sufficient to make a

classification, but the

paper did not show any

35

results that identify false

alarms.

2.3.2 Search (2020 to 2023)

This Systematic search was focused on the CIC-IDS-2018 dataset and models that

used multiclassification with this dataset for IDS, and the search period was from

2020 to 2023.

Table 4 Systematic Search Table (2020-2023)

R
o

w
 L

ab
el

s

(K
ab

ir

et

al
.,

2
0

2
1

)
(S

et
h

et

al

.,

2
0

2
1

)
(H

u
a,

 2
0

2
0

)

(D
in

i
et

al

.,

2
0

2
2

)
(H

an
d

ik
a

et

al
.,

 2
0

2
2

)
(F

it
n

i
an

d

R
am

li,
 2

0
2

0
)

(A
lk

an
jr

an

d

A
ls

h
am

m
ar

i,

2
0

2
3

)

(S
h

ah
b

an
d

ay

ev
a

et

al
.,

2
0

2
2

)

(D
as

et

al

.,

2
0

2
3

)
(Y

o
o

et

al

.,

2
0

2
1

)
(S

id
d

iq
i

an
d

P
ak

, 2
0

2
2

)
(C

h
im

p
h

le
e

et

al
.,

 2
0

2
2

)
(H

ag
ar

 e
t

al
.,

2
0

2
2

)

Benign 0.99 0.92 x x x x x x x x x 0.99 1.00

Bot 1.00 1.00 x x x x x x x x x 1.00 0.83

Brute Force -Web x x x x x x x x x x x 0.00 0.75

Brute Force -XSS x x x x x x x x x x x 0.00 1.00

BruteForce 1.00 0.99 x x x x x x x x x x x

DDoS 0.99 1.00 x x x x x x x x x x x

DDOS -HOIC x x x x x x x x x x x 1.00 1.00

DDOS -LOIC-UDP x x x x x x x x x x x 0.72 1.00

DDoS attacks-LOIC-

HTTP

x x x x x x x x x x x 0.99 1.00

DoS 0.99 0.98 x x x x x x x x x x x

DoS attacks-

GoldenEye

x x x x x x x x x x x 0.99 1.00

DoS attacks-Hulk x x x x x x x x x x x 0.96 1.00

DoS attacks-

SlowHTTPTest

x x x x x x x x x x x 0.75 1.00

DoS attacks-Slowloris x x x x x x x x x x x 0.95 1.00

FTP-BruteForce x x x x x x x x x x x 0.71 0.88

Infiltration 0.96 0.97 x x x x x x x x x 0.44 1.00

Overall x x 0.98 94.3

9

96.0

0

98.8

0

1.00 0.78 99.0

0

0.89 0.98 x x

SQL Injection 0.87 x x x x x x x x x x 0.00 0.92

36

SSH-Bruteforce x x x x x x x x x x x 0.99 1.00

Web attacks x 1.00 x x x x x x x x x x x

2.4 Hybrid Models:

Many researchers used the approach of having multiple algorithms, but they have

taken different techniques to make them interact or merge the results. The following

will discuss different strategies used in multiple papers mentioned in the table above.

2.4.1 A Hybrid Classifier Approach for Network Intrusion Detection

We have the first review for the paper “A Hybrid Classifier Approach for Network

Intrusion Detection” (Arivardhini et al., 2020). The author has proposed to use

multiple classifiers. Each classifier will classify the flow to determine if the flow is

considered an anomaly or benign. We can see the model proposed per the below

algorithm.

algorithm 1 A Hybrid Classifier Approach for Network Intrusion Detection(Arivardhini et al., 2020)

Procedure model ()

Input = NSL KDD data set

Reduce 'n' features to 'm’ based on number of proposed filters.

Use Majority Voting scheme

Deploy a hybrid model consisting of J48, SVM, Naive Bayes.

Propose the model ‘M’ for every feature F n

Provide F n to J48, SVM, Naive Bayes using NSL KDD data set.

Calculate

• A1 = J48 model accuracy

• A2 = SVM model accuracy

• A3 = Naive Bayes model accuracy

37

• E = Ensemble Representing J48, SVM, Naive Bayes

Compare the accuracy of A1, A2, A3, E

Select the model which has the highest accuracy M = E

The proposed model will select the correct model based on accuracy, and the author

claims that the voting system has improved performance. Unfortunately, no results

were presented in the paper. It is a reasonable approach, but there are different

issues, which are as follows:

1- The voting system is based on the model's accuracy, but the author did not

mention different accuracy for different classes.

2- How will the model be able to produce accuracy for a single new instance?

It seems that the hybrid model will vote for a single model for the whole

Dataset.

3- There are no results to evaluate or to compare.

2.4.2 Intrusion detection system using voting-based neural network

The paper(Haghighat and Li, 2021) below has a similar approach to the previous

one. The author proposes to have multiple classifiers, and they all will be trained and

validated. Then, the author proposed to have a mechanism to choose algorithms

that are eligible to enter the voting process. The voting process goes as follows:

- All trained models will have an uncertainty factor on the output layer. This

factor can be used as a measure to let the model participate in the voting.

- All model’s uncertainty will be sorted, and a threshold will be used to eliminate

unfitted models.

38

Then, voting will be used to determine the results, as shown in the diagram below.

Figure 4 Intrusion detection system using a voting-based neural network (Haghighat and Li, 2021)

This is a summary of the paper, and there are more details in the algorithm. But in

general, the same procedure was used in two datasets, which are NSL-KDD and

CTU-13.

The results presented in the paper were in two forms (binary and multiple classes).

In general, the results in the binary were much better than the multiple classes, and

it was expected. As per (Personnaz et al., 1990), using binary states instead of

multilayer networks is much more powerful, and using binary states can have better

results and less training time. The result is presented in the paper for NSL-KDD.

39

Binary Results:

Table 5 Binary Results for (Intrusion Detection System using Voting-based Neural Network)(Haghighat and Li,
2021)

Multiclass:

Table 6 Multiclass Results for (Intrusion Detection System using Voting-based Neural Network)(Haghighat and
Li, 2021)

False Negative/Positive Rates:

Table 7 False Negative/Positive Rates for (Intrusion Detection System using a Voting-based Neural
Network)(Haghighat and Li, 2021)

 FPR FNR Accuracy Precision Recall F Score

Binary 0.0011 0.0016 0.9986 0.9993 0.9984 0.9989

Multiclass 0.0982 0.0021 0.9563 0.9302 0.9979 0.9628

40

2.4.3 A Hybrid Anomaly Classification with Deep Learning (DL) and Binary

Algorithms (BA) as Optimizer in the Intrusion Detection System (IDS)

This paper(Atefi et al., 2020) below proposes to use DNN with Binary algorithms for

IDS using the CICIDS 2017 dataset. This proposal uses DNN as the primary

classifier and then uses the Binary Bat algorithm (BBA), Binary Genetic Algorithm

(BGA), and Binary Gravitational Search Algorithm as optimizers. The author has

tested DNN with every mentioned Binary algorithm independently. DNN was coupled

either with BBA, BGA, or BGSA. The way each test for each couple was conducted

as illustrated below:

Figure 5 overall view of the complete system(Atefi et al., 2020)

As seen in the diagram above. There are two models presented. One of them is

DDN, and the other is one of the Binary algorithms. Both will process the data and

classification, and based on the accuracy, Time, and Confusion matrix, the result will

be computed from the output of both models.

41

Figure 6 Comparative Results(Atefi et al., 2020)

It is clearly visible from the graph that the Model DNN+BGSA has performed

significantly better than the rest of the models in accuracy, recall, and precision.

Figure 7 Confusion Matrix(Atefi et al., 2020)

From the confusion matrix, again, we can see that DNN+BGSA performed better

than the rest of the models in all categories (TP, FP, TN, and FN)

The results look promising, but the author did not show how exactly the results of

the DDN and binary algorithms will be joined for the final results. There is no

discussion of whether the results will be based on the voting system or explicitly use

42

the accuracy and confusion matrix to get the results for classification. Also, this

seems to work on offline data, where you can generate and model and select the

binary model with a confusion matrix and accuracy. How will this work on a live

system where the IDS receives network flows almost every second?

2.5 Pre-processing and feature reduction techniques:

This part will focus on papers that have an emphasis on pre-processing and feature

reduction. This part is mandatory for research as most of the Dataset related to IDS

has a very high dimensionality. For example, the KDDCUP has 42 features, while

the CICIDS2018 has 80 features. Computing that many features in any model may

cause a lot of issues. Most of the IDS datasets are considered big data, and the

computing power required to create a model is massive. Some algorithms refuse to

take Dataset with very high dimensionality, such as the default random forest

package in RStudio. In a much worse scenario, the algorithm will start, and after a

very long time of waiting, it will fail because of limited resources. This will definitely

cause issues with many algorithms and compute resources. Finally, the imbalance

of the Dataset. The datasets will definitely be imbalanced, and some pre-processing

is required in order for the algorithms to output reasonable results.

2.5.1 Hybrid Intrusion Detection System Based on Deep Learning

The paper(Abdul Lateef et al., 2020) below proposed a model that utilizes an

algorithm called CSO (CROW SWARM OPTIMIZATION ALGORITHM), which will

act to reduce the number of features in the Dataset. Then, RNN will be used to

calculate the accuracy to either accept these features or not. In this research, the

author has opted to use the popular Dataset for IDS, which is KDDCUP. The model

proposed can be well presented in the diagram below.

43

Figure 8 Overall view of the model process(Abdul Lateef et al., 2020)

As we can see, the model will have the following steps based on the diagram above.

1- New Dataset as input

2- Mapping and pre-processing

3- RNN will compute the Dataset and generate mode features accuracy as

output

4- CSO will output the current features and halt, or it will propose a new feature

set that will loop back to step 1 (new Dataset input)

The author has tested this method with 20 trials, and the optimal number of features

selected was 3 with a CSO accuracy of 96.2720% and (RNN-selected features

accuracy) of 98.34%. Luckily, the author shared a comparison table using a similar

approach for feature reduction with different algorithms.

44

Table 8 Accuracy for each model(Abdul Lateef et al., 2020)

Method Name Number
of

Features

Accuracy

PSO + AUC 12 94.49
SSO + RS 6 93.60
CFA+ DT 10 92.05
ACO 8 98.90
ACO + SVM 14 98.00
PSO + RF 6 98.00
ABC + KNN 7 98.90
IBWOA 5 97.89
Firefly + BN

10 99.95

FGLCC + CFA + DT 10 95.03

CSO +RNN (this
paper)

3 98.34

It is true that the author was able to reduce the number of features to as low as three

features, but the aim is to reduce the features while maintaining accuracy. Also, the

author has only shown the general accuracy of the model. In reality, the datasets will

have mostly benign flows, and if the model predicts all the benign flows correctly, it

will definitely have a high accuracy. But that does suffice the aim of IDS, where it

has detected flows with anomalies, and naturally, they have a small percentage of

the overall Dataset. A confusion matrix will be more suitable for evaluating and

finding the rate of error for each class of anomaly.

2.5.2 A Novel Preprocessing Methodology for DNN-Based Intrusion Detection

In the paper(Chen et al., 2020) below, the author proposes some pre-processing

techniques that can enhance the performance of DNN models on the KDDCup

dataset. The author claims that these techniques increase the F1, accuracy, and

recall in his/her experiments.

45

The pre-processing methods used in this paper are as follows:

- Enumeration:

There are some features in the KDDCUP dataset that are factors or symbolic.

These features, such as (service, protocol, and type) may cause issues in

DNN models and need to be modified. The author suggests having these

features mapped to numerical values.

- Transformation:

There are some features when compared to each other; we can see that there

is a significant gap between them. For example, comparing duration [0,

58329] and src_bytes [0, 1379963888], we can notice the gap between these

two features. The solution is to manipulate the values mathematically using

y = lg(x + 1)

- Normalization:

Finally, the Min-Max method is used to normalize the Dataset.

The author did the experiment on multiple algorithms, and he/she has benchmarked

the performance between raw Dataset and pre-processed Dataset for KDDCUP

46

Figure 9 F1, Accuracy, Precision, and Recall(Chen et al., 2020)

As we can see from the graph, the preprocessing has increased the performance in

recall, F1, and accuracy. The issue is that the author has calculated the general

accuracy of the model but did not show the accuracy for each class, and then we

can decide if it has made any enhancements in FP or FN.

Also, the enumeration of factor or symbolic data might cause issues . Some data, if

enumerated, may cause wrong assumptions. For example, if we assume TCP=1,

UDP=2, then we can make a comparison (1<2). But we can’t say that TCP<UDP. I

suppose these features might require different ways to be modified.

47

2.5.3 Feature Selection Algorithm For Intrusion Detection Using Cuckoo Search

Algorithm

In the paper(Syarif et al., 2020) below, the author aims at feature reduction to

facilitate building models with a very high dimensionality. Datasets with a very high

dimensionality might be very difficult to process and may consume a lot of time and

process power to model. The idea is to select features that have more importance

to make a decision and remove features that are irrelevant.

To achieve this task, the author suggested using a coco search algorithm and

building a decision tree model. In this paper, multiple tests were made with different

datasets and different feature selection algorithms.

Table 9 Accuracy before and after reduction(Syarif et al., 2020)

Name

of

Dataset

Number of Features

Training Time Accuracy

Full

Data

GA PSO CS Full

Data

GA PSO CS Full

Data

GA PSO CS

Botnet

ISCX

2017

79 15 21 11 138s 80s 98

s

19s 99,98% 99,85% 99,85% 99,98%

KDDCup

‘99

41 17 19 13 524 s 200s 198

s

106

s

99,96% 99,93% 99,95% 99,94%

NSL-

KDD

41 15 12 9 227 s 63s 62

s

34

s

99,78% 99,69% 99,79% 99,60%

From the table above, we can observe the CS algorithm is able to reduce more

features than GA and PSO. For that reason, building a decision with CS reduction

took much less time to train. On the other hand, the CS was only able to perform

better in Botnet ISCX Dataset in accuracy than the other algorithm, while PSO

exceeded the other in accuracy with KDDCup and NSL-KDD datasets.

48

It is true the proposed features reduction algorithm (CS) was able to outperform the

others, but the performance in accuracy did not meet expectations. The main target

of the IDS is to provide true alarms to facilitate operations in IT departments and not

to be overwhelmed with false alarms that have to be investigated.

2.6 Deep Neural Networks

This part will focus on research that only covers deep learning techniques on IDS.

There are multiple papers that have shown interest in this type of algorithm.

2.6.1 Evaluation of Deep Neural Networks for Advanced Intrusion Detection

Systems

In the paper(Kishore and Chauhan, 2020) below, the author tried to test DNN with

KDDCUP for IDS. Multiple DNN models were produced, and they were compared

with other models, which are:

1- Linear Regression

2- Naïve Bayes

3- KNN

4- Decision Trees

5- AdaBoost

6- Random Forest

7- SVM-Rbf

8- SVM-Linear

A benchmark comparison between these models so we can compare.

Table 10 Benchmark table with Accuracy, precision, Recall, and F1(Kishore and Chauhan, 2020)

49

Algorithms Accuracy Precision Recall F1-
Score

Lin-
Regression

0.849 0.988 0.822 0.896
Naive Bayes 0.928 0.987 0.924 0.953

KNN 0.928 0.997 0.914 0.953
Decision Tree 0.927 0.998 0.911 0.952

Adaboost 0.926 0.996 0.912 0.950
Random
Forest

0.927 0.998 0.911 0.951
SVM-Rbf 0.811 0.922 0.772 0.868

SVM-Linear 0.813 0.993 0.771 0.867
*DNN-1 0.928 0.997 0.914 0.953
DNN-2 0.929 0.996 0.913 0.955
DNN-3 0.930 0.996 0.916 0.956
DNN-4 0.928 0.998 0.914 0.953
DNN-5 0.927 0.999 0.912 0.954

As we can observe, there are five tests on DNN (1-5), and we can see that DNN-3

achieved the best accuracy. DNN-5 gets the best precision, Naïve Bayes the best

recall, and DNN-2 the best F1. From a personal perspective, these results do not

show any real advantage of DNN compared to the other algorithms because the

increased performance is scattered between different models in DNN. Also, the

comparison is not sufficient and not deep enough to clearly state that DNN models

perform better than the others.

2.6.2 NIDS-Network Intrusion Detection System Based on Deep and Machine

Learning Frameworks with CICIDS2018 using Cloud Computing

The paper(Bharati and Tamane, 2020) below compares different algorithms using

the CICIDS2018 Dataset. The author’s focus is that the Dataset is modern compared

to the KDDCUP dataset, and it contains the latest and cutting-edge threats. For this

purpose, the author made multiple tests with different algorithms, which are:

• Extra-Tree

• GBoost Tree

50

• Random Forest Tree

• MLP

For these tests with different algorithms coupled with the CICIDS2018 Dataset,

a comparison table is produced below:

Figure 10 Accuracy for the models(Bharati and Tamane, 2020)

Figure 11 Training Time(Bharati and Tamane, 2020)

From the results above, we can see the models have a very comparable

accuracy while only the MLP has slightly less accuracy. On the other hand, the

random forest was the slowest to train, and it took much more time. There are

many factors to consider in the training time for each model, such as optimization

for big data, parallelism (multi-threading, clustering), and time and space

complexity. There are different implementations in different environments, which

will definitely affect the training time.

51

2.7 Discussion

This chapter provided a comprehensive review of the key studies and techniques

used in the design and implementation of intrusion detection systems using machine

learning. Throughout the review, it became evident that while many approaches

have reported good results in specific use cases, most models failed to perform

consistently across different traffic types and datasets. A significant observation was

the dominance of binary classification methods in past research, where the focus is

often limited to distinguishing between benign and malicious traffic without further

granularity. This approach lacks the depth needed to deal with real-world scenarios,

which require detection at the level of specific attack types. The review also noted

that hybrid and ensemble techniques often achieved higher performance, but these

were rarely modular or adaptive. These insights further support the idea of adopting

a per-instance model selection strategy, where each instance is dynamically

evaluated to determine the most effective classifier based on its specific

characteristics.

2.8 Chapter Conclusion

After surveying multiple recent papers, we can see some trends or popular

techniques that can be found in most of them. Even though the KDDCUP is

considered old and does not represent current cybersecurity threats, it is still used

in recent research for IDS and test models. The reason could be that many

researchers were already using the Dataset, and new studies needed to compare

and benchmark with older research. Another reason is that the Dataset is already

converted to flows and ready for machine learning algorithms. Another trend that we

can see is the use of deep learning algorithms, especially DNN. Many researchers

52

introduced DNN for IDS with different flavors. Many of these papers have shown

increased performance in accuracy and precision. Dealing with a very high

dimensionality dataset could be an obstacle to performing the tests and proceeding

with research. For that reason, some researchers suggested dimensionality

reduction with different approaches and algorithms that can ease and facilitate

machine learning. Finally, we have the hybrid models, where multiple models will

work together to classify a flow as a benign or a threat. In this research, the adopted

technique would be a “hybrid classifier”. It is inspired by “A Hybrid Classifier

Approach for Network Intrusion Detection” (Arivardhini et al., 2020) The voting

system will be used after the selection of the classifiers that will be determined by

the Master classifier. In addition, the voting criteria may be amended and not

necessarily follows the same condition.

53

Chapter 3 Dataset Scoping:

3.1 Chapter Introduction

This chapter will have a survey about the datasets that are being used in the

research field. It will show how that many of the datasets are derived from the

KDDCUP dataset. Even though it’s widely used, the chapter will show the

shortcomings of the dataset and why it should not be used for IDS. The chapter will

have some studies that show the inconsistencies and the other issues with the

dataset. In the end, the chapter will have the reasoning for choosing CSE-CIC-

IDS2018. More details about CSE-CIC-IDS2018 are discussed in Chapter 6. The

further details cover the features, type of attacks, and statistical analysis of the

dataset.

54

3.2 Sample of major Datasets

Identifying Cybersecurity threats in the network traffic has become more and more

complex as the cyber attacks have become more advanced. Data has become a tool

that facilitates cyber threats, and the number of attacks has increased in recent

years. Many organizations have an Intrusion Detection System(IDS), but the data

that powers the IDS are outdated and can’t keep up with the rapid change in cyber

attacks. In this section, we will discuss the current datasets that are used in research

and the problems that may occur with these datasets. Then, we will view the

limitations of the classes that are present in these datasets. The nature of these

datasets is that it has a huge gap in classes (attack types) and imbalance, which

may cause a problem in machine learning classification and detection.

In 1999, the KDDCUP99(“KDD Cup 1999 Data,” n.d.) was introduced, and since that

time, it has been considered the de facto IDS machine learning dataset, and it was

mainly used for anomaly detection. The data is based on the DARPA98

dataset(Lippmann et al., 2000), and it was prepared by Stolfo(Stolfo et al., 2000). The

data represents seven weeks of network traffic with 5 million records. The dataset

contains 41 features for each record, and every record is labeled either benign or part

of the following groups:

1) Denial of Service Attack (DoS)

2) User to Root Attack (U2R)

3) Remote to Local Attack (R2L)

4) Probing Attack

KDDCUP has some problems, and these problems are the following(Tavallaee et al.,

2015):

55

- The data was synthesized to preserve privacy

- Traffic collectors were overloaded, and there were packet drops

- No exact definition of the attacks

The CSE-CIC-IDS2018 Dataset was chosen because the data is recent, and there

are many different cybersecurity attacks that are considered modern and have a true

representation of modern networks. The CSE-CIC-IDS2018 data is a result of

simulated attacks that took several days and are captured as PCAPs. Then, the data

is converted to CSV format with labels. In addition, the CIC-IDS-2018 has a wider

range of attacks than the KDDcup, which is limited. These attacks cover various

forms, such as denial of service, distributed denial of service, Brute force, Botnet,

Web attack, XSS, Infiltration, and SQL injection(Thakkar and Lohiya, 2020). These

attacks are captured from real network traffic with 80 features.

3.3 Dataset Problem

The problem with the current research is that most of them are dependent on the

kddcup dataset. According to many critiques, the dataset is outdated and has many

inconsistencies and redundancies that can skew the results. Sabhnani suggests that

the dataset has deficiencies and limitations and should not be used in machine

learning (Sabhnani and Serpen, 2004). Hindi, who conducted a survey on many

types of research done on IDS from 2008 to 2018, found that most of the research

depended on the KDD CUP dataset or forked versions(Hindy et al., 2018).

56

Figure 12 Dataset Distribution (From Hindi)

 A similar survey was conducted by myself for 2019-2020, and I found out that the

same dataset is heavily used (table systematic search).

3.4 Limited Classes

As a result of using the same dataset by many researchers, most of the

classifications are done on the same group of threats (Dos, R2L, U2R, Probe). These

groups of threats do not reflect current network cybersecurity threats. For illustration,

see the pie chart below provided by (Hindy et al., 2018).

57

Figure 13 Covered Attacks from 2008 to 2018

3.5 Inconsistent accuracy for different classes

Another reason to establish this research is that most of the researchers use similar

schema, and most of them fail to present the accuracy of the classifier for each type

of attack (Dos, R2L, U2R, Probe). Some of the researchers have shown the results

for each class of intrusion, but the results show the contrast of accuracies of each

class. A survey was done by Urvashi where the researcher made a comparison

between 20 classifiers based on True-positive and false-positive(Urvashi and Jain,

2015). As seen in the table below, most of the classifiers fail to achieve consistent

results for all categories.

Table 11 Classifiers Comparison from Urvashi

Seq. Classifier Metric DoS Probe U2R R2L Training Set
Size

1 K-Means (Qiang
W.V.,2004) TP 87.6 97.3 29.8 6.4 2,776

 FP 2.6 0.4 0.4 0.1

2
NEA
(Maheshkumar S.,
2002)

TP 96.7 72.4 22.3 7.8 1,074,991

 FP 0.8 0.2 0.1 0.6

58

Seq. Classifier Metric DoS Probe U2R R2L Training Set
Size

3 FCC (Qiang
W.V.,2004) TP 91.6 77.8 12.7 27.8 2,776

 FP 0.03 0.023 0.13 0

4 ID3 (Amanpreet C.,
2011) TP 74.4 57.14 20 6.25 145,586

 FP 1.71 2.5 3.1 1.1

5 J48 (Huy A.N.,
2008) TP 96.8 75.2 12.2 0.1 49,596

 FP 1 0.2 0.1 0.5

6 PART (Mohammed
M.M., 2009) TP 97.0 80.8 1.8 4.6 444,458

 FP 0.7 0.3 0.5 0.01

7 NBTree (Huy A.N.,
2008) TP 97.4 73.3 1.2 0.1 49,596

 FP 1.2 1.1 0.1 0.5

8 SVM (Huy A.N.,
2008) TP 96.8 70.1 15.7 2.2 49,596

 FP 1.11 0.5 0.01 0

9
Fuzzy logic
(Shanmugaradtru
R,
2011)

TP 94.8 98.4 69.6 92.1 54,226

 FP 5.5 1.8 6.7 10.7

10 naïve Bayes (Huy
A.N.,2008) TP 79.2 94.8 12.2 0.1 49,596

 FP 1.7 13.3 0.9 0.3

11 BayesNet (Huy
A.N., 2008) TP 94.6 83.8 30.3 5.2 49,596

 FP 0.2 0.13 0.3 0.6

12 Decision Table
(Yeung d.Y., 2002) TP 97.0 57.6 32.8 0.3 15,919

 FP 10.7 0.4 0.3 0.1

13
Random Forest
classifier (Yeung
D.Y., 2002)

TP 99.2 98.2 86.2 54.0 15,919

 FP 0.05 0.01 0.02 0.09

14 Jrip (Huy A.N.,
2008) TP 97.4 83.8 12.8 0.1 49,596

 FP 0.3 0.1 0.1 0.4

15 OneR (Huy
A.N.,2008) TP 94.2 12.9 10.7 10.7 49,596

 FP 6.8 0.1 2 0.1

16 MLP (Huy
A.N.,2008) TP 96.9 74.3 20.1 0.3 49,596

 FP 1.4 0.1 0.1 0.5

17 SOM (Huy
A.N.,2008) TP 96.4 74.3 13.3 0.1 49,596

 FP 0.8 0.3 0.1 0.4

18
GAU
(Maheshkumar S.,
2002)

TP 82.4 90.2 22.8 9.6 1,074,991

 FP 0.9 11.3 0.05 0.1

19 MARS (Sriniras
M.,2002) TP 94.7 92.32 99.7 99.5 11,982

59

Seq. Classifier Metric DoS Probe U2R R2L Training Set
Size

 FP 8.9 12.2 22.4 17.9

20 Apriori (Mohammed
M.M.,2009) TP 87.9 76.23 12.3 30.6 444,458

 FP 0.67 1.7 8.9 23.8

As seen in the table above, most of the classifiers fail to predict U2R and R2L

accurately. Even if some of them have high accuracy in all classes, they produce

very high False-Positive rates. As an example, for that scenario, the MARS classifier

has 99.7 for U2R, but the false positive is 22.4. Not being able to predict all classes

accurately or having high false positives can lead to unreliable results.

For these reasons, research and investigation should be conducted. A dataset needs

to be created that represents a modern network with modern cybersecurity threats

because of the time restrictions and the tools that regenerate the flows that are the

same as the datasets presented. We had to move this target as part of the future

work. There was some work already conducted for this part of the research, but it

was not complete. Reference to the work can be found in the appendix, titled

(Building PCAP)

3.6 Discussion

This chapter reviewed several commonly used datasets in intrusion detection system

(IDS) research, ultimately focusing on CIC-IDS2018 due to its richness and

alignment with modern network threats. Despite being a popular choice in recent

studies, the dataset presents several challenges that could affect model

performance if left unaddressed. These include class imbalance, especially with

underrepresented attack types, redundant or noisy features, and inconsistent

distribution of labels. Such issues can cause biased learning and misleading

evaluation results, especially in multiclass scenarios. The discussion in this chapter

60

emphasized the importance of understanding these structural limitations early in the

process so they can be accounted for during preprocessing and model design. The

choice to use CIC-IDS2018 was not without compromise, but the availability of

multiclass labels and updated attack simulations made it the most suitable option for

the goals of this research. The insights gained here guide the technical decisions

applied in later chapters.

3.7 Chapter Conclusion:

This chapter presented a detailed analysis of datasets relevant to IDS research,

emphasizing the importance of choosing one that aligns with the objectives of

multiclass classification and model flexibility. After assessing the features and

limitations of multiple sources, CIC-IDS2018 was selected due to its broad

representation of attack types and traffic diversity. However, several issues, such as

the presence of class imbalance, redundant fields, and inconsistency in some labels,

were identified. These factors are expected to influence training effectiveness and

classifier accuracy, particularly in identifying minority class attacks. Acknowledging

these limitations early allows the research to proactively apply targeted

preprocessing techniques such as feature selection, normalization, and sampling

strategies. Ultimately, the dataset chosen provides a strong yet realistic foundation

on which to evaluate the proposed classifier portfolio model. The next chapter

introduces the methodological framework that builds on this dataset and supports

the core structure of the research design.

61

Chapter 4 Research Methodologies

4.1 Chapter Introduction

will cover two main aspects of the research design. The first aspect is the general

design, where the project is inspired by the CRISP-DM framework. In this part, the

main focus is to have a structured approach to build and deploy a model. It covers

Data understanding, preparation, modeling, Evaluation, and deployment. Then, we

propose an adaptation of the framework that will be used to develop the AI models.

The second part of the chapter will describe the proposed classifier. This part will go

into detail on how to construct the portfolio of classifiers along with the master

classifier and then how the classification will work. A complete step-by-step process

is presented to clarify how it would work.

62

4.2 Proposed Design

In this chapter, we will discuss the research methodologies and approaches. The

research approach is mainly inspired by the CRISP-DM approach. CRISP-DM,

which stands for (Cross Industry Standard Process for Data Mining) is considered

the de facto for data science standardization. Most of the steps taken in this research

are based on this approach to achieve the aims and targets of the research.

Figure 14 CRISP-DM retrieved from the official CRISP-DM website(“What is CRISP DM? - Data Science Process
Alliance,” n.d.)

The research will adopt the steps shown in the diagram above that are part of the

CRSIP-DM. As it is clearly visible in the diagram, there are multiple steps in circular

motion that can ensure continuous improvements. The steps start with

understanding the business, Data Understanding, Data Preparation, Modeling, and

Evaluation, and finally it ends with Deployment.(“What is CRISP DM? - Data Science

Process Alliance,” n.d.)

The research will go through multiple stages. The first stage is to evaluate different

multiclass classification algorithms. The evaluation will go through the performance

63

and accuracy of the classifiers and determine if the classifier is fit to be included in

the research. As most of the classifiers are already established and can perform well

in the domain of IT security, we might have to make further inspections since the

nature of the data requires further input and validation. The overview of the data will

have a very high percentage and occurrences of benign connections. As a result of

that huge imbalance, any classifier will be able to have a very high general accuracy

in binary classification. In this case, we will investigate the accuracy of each type of

attack as the classification in minority data is more important because the minority

is the attack class. In addition, another metric that will be considered is the

TF/FT/TT/FF matrix so we can have a better understanding of each classification

type.

The second step is to evaluate different methods to have different classifiers work

together for classification. Based on the survey done in the previous chapter, there

are some researchers that have made this approach either by voting or merging. In

this research, the result of each classifier will be encoded, and the dataset will be

rebuilt for classification and to find the best classifier for each connection.

We will follow the below logical flow chart that’s inspired by the “Cross Industry

Standard Process for Data Mining.”

64

Figure 15 Research Methodology

The first phase of the approach is to get the Data. The usual data format for this

type of problem is PCAP. SolarWinds defined the PCAP as “Packet capture is a

networking practice involving the interception of data packets traveling over a

network. Once the packets are captured, they can be stored by IT teams for

further analysis. The inspection of these packets allows IT teams to identify

issues and solve network problems affecting daily operations.”(“What Is Packet

Capture (PCAP)? - IT Glossary | SolarWinds,” n.d.). PCAPs are all the

communication in the network, either from the end device, servers, or network

devices. The PCAP can easily be converted to CSV (comma-separated vectors).

While it’s easy to get the PCAP, it’s difficult to get a PCAP that has genuine

connections that are threats. Another issue with this type of data is that it needs

to be labeled. Labeling millions of records is a very difficult task, and even if the

process is automated, the automation is prone to errors and can mislabel the

records. The reasonable approach is to find readymade data for cybersecurity

with labels. A survey about the datasets is already done in the Dataset chapter.

Import Data

Clean Data

Identify Data Types

Remove Columns

(constant,

Explore Data

Modeling

Visualize

Benchmark

65

Importing the data in the prober system is a challenge because of the size of the

data and the high dimensionality (number of features or rows). We will go through

different methods like sampling and testing tools that can handle this size of data.

Since sampling theoreticality could work to import a sub-sample that can

represent the complete dataset, but in reality, the data is very sensitive, and all

records must be imported. For this reason, in this research, we have tested

different tools to check if they can handle the data with different tools.

After importing the data to the desired tool, it will be explored and checked to see

if the data is clean. Cleaning the data will include deleting rows that have any

missing information or labels. In addition, the process will check if there are any

unnecessary columns to be removed for different reasons. For example, some

columns could be removed because they have constant values, or the data

presented is irrelevant to the classification and might affect the model building.

Another step in cleaning the data is the redundancy of the rows. Repeated

records should be removed from the dataset to reduce the size and proper build

for models. Once the data is cleaned up, it will be ready to be used to construct

a model for classification. Different models will be built and evaluated. Finally,

after classification and prediction, we will visualize the result for benchmarking

and validation. The process will be repeated until satisfactory results are

acquired.

The idea is to have multiple classifiers work together to determine the best classier

in order to have the highest accuracy possible. As discussed in the literature review,

there are some approaches that use a voting system, while others use fusion. Some

papers propose a generic approach that will determine the classifier that will work

66

with all the data; on the other hand, some researchers use cluster and group data to

determine the classifier that fits each group. In our case, a master classifier will select

a classifier for each instance or flow. For this part, we propose a novel approach to

build up a master model with the following process.

First, we determine some classifiers that can work with this type of dataset. The

classifier should be capable of handling big data, high dimensionality, and multiclass

classification. In addition to these conditions, the duration to process these data and

build a model should be in a reasonable time. To build these models, we depend on

software and packages that are specialized in Machine learning and Artificial

intelligence. In the selection of software packages chapter, we will show the

experience with multiple tools and libraries that are potentially suitable for this

purpose, and we have determined that h2o in Rstudio would be the suitable tool to

process the data and build models. Within h2o, there are multiple models that can

be used, but we have restricted the use of Distributed Random Forest, Naïve bays,

Deep Learning, GLM, and GBM; the reason for this restriction is that only these

models can support multiclass classification.

4.3 Proposed Method:

The idea of the proposed method is to have a portfolio of multiple classifiers to detect

or classify threats in IT networks. Different classifiers behave differently, and no

single classifier can have 100% accuracy. For this reason, will have multiple

classifiers that will be trained. These classifiers will be evaluated to determine if they

can be part of the portfolio and benchmarked. Then, we will use a Master classifier

to classify which classifier is more suitable for each instance or connection flow. The

67

whole process is done in three phases, which are the offline phase, the classification

of a classifier, and finally, the classification.

4.3.1 Offline phase:

Figure 16 Offline phase in the proposed method

In the offline phase, once the dataset is ready and cleaned from any missing data

and the columns have an insignificant effect on the prediction removed, the process

will start to build and train multiple classification models. After that, each model will

be evaluated and benchmarked based on the general accuracy. If the model has an

accuracy that is within the threshold, then it will be part of the portfolio of classifiers.

On the contrary, if the model is below the threshold, it will be discarded and will not

join the portfolio. During the benchmarking process, the top classifier will be

determined as a backup classifier.

Portfolio of

Training

Set

Calculate

Features

Classifiers

Classifiers

Classifiers

Classifiers

Performanc

e Score

Classifiers

Classifiers

Classifiers

Classifiers

Classifier with

best Score

68

4.3.2 Encoding for the master classifier:

Figure 17 get all classifications from all models.

Encoding for the master classifier will be done as described in the above diagram.

First, the dataset will be prepared, where we will get the prediction and classification

from all classifiers in the portfolio. Each classifier might have a different prediction or

matching prediction to other classifiers. This process is still offline, and it’s part of the

training, so the classification doesn’t have to be in parallel. The process will be

sequential, where the classification will start from the first classifier and finish the

whole process, then it will proceed to the next classifier. Doing this step in a

sequential manner can save computing power and memory resources, as each

model can consume all the resources that we have in the research. Once all the

classifications from all classifiers are done, the results will be aggregated, as shown

in the diagram above.

69

Figure 18 Preparing encoded dataset for the master Model.

The next step will start with adding the truth value from the original dataset to the

aggregated data. Then, the encoding process will start with every Classifier

prediction being compared to the truth value, and if the prediction matches the truth

value, then the prediction will be changed to 1. If the prediction does not match, then

the value will be changed to 0. The binary values will be concatenated and merged

into a single binary value, as shown in the table in the diagram above. Finally, all the

columns that represent the features in the original data will be added back. The

dataset will be ready for the master classifier for training, as shown in the diagram

below.

70

Figure 19 Encoded Dataset ready for Training.

4.3.3 Online prediction:

After the training is done, the master model is ready for prediction. The original

dataset will be used as an input for the master classifier. The master classifier will

output a binary code, as seen in the diagram below. Each digit in the binary code

represents a classifier in the portfolio, and if the digit is 1, we can use the classifier

represented in that digit. If all digits have zero value, then we will depend on the

backup classifier.

Figure 20 Classification for classifiers

71

Figure 21 Overall Methodology

In order to understand the flow of the process, the following will explain every step

as enumerated in the graph.

1- The data will be split into three parts.

a. Training 60%

b. First stage-Validation 20%

c. Second Stage-Validation 20%

2- Five models are built using the training data and first-stage validation data,

which are distributed Random forest, Deep learning, Naïve Bayese, Random

Forest, GLM, and GBM.

3- The validation predictions will be aggregated along with features it will look

as below.

…Features… Class(Original) DRF DL RF GLM GBM

… Benign Infiltration Benign Benign Brute Force -Web Benign

72

4- The labels will converted into binary values in two steps

Step 1
…Features… Class(Original) DRF DL RF GLM GBM

… Benign 0 1 1 0 1

Step 2
…Features… Class

… 01101

5- In this step, a Random Forest Model, which is considered the master

classifier, is built based on the binary class generated.

6- The model will predict the phase 2 validation data using the same set of

features, except the class is changed to the binary code. Example below:

…Features… Class

… 10011

7- The selection phase will be done as below:

Figure 22 Overall view of the Portfolio result decodes and final result.

73

4.4 Discussion

This chapter detailed the methodological framework used throughout the research,

with a specific emphasis on how machine learning models are developed and

evaluated in the context of intrusion detection. The use of the CRISP-DM model

structure provided a logical and systematic path from problem definition to

evaluation. The design of a per-instance model selection approach addresses one

of the key limitations identified in earlier chapters, namely, that a single classifier

often fails to generalize across different traffic patterns. The dynamic portfolio

strategy allows the system to apply the most suitable classifier based on the nature

of each instance, improving classification accuracy and adaptability. The discussion

also highlighted some of the practical constraints in methodology, such as the need

for computational efficiency, cross-validation strategies, and maintaining a balanced

evaluation approach for multiclass problems. These factors were carefully

accounted for to ensure that the chosen methods align with both academic rigor and

real-world practicality.

4.5 Chapter Conclusion

In conclusion, this chapter established the methodological backbone of the study,

clearly outlining how the research was designed, executed, and validated. By

adopting a structured and iterative approach to data mining and model evaluation,

the methodology ensures that the research remains replicable and logically sound.

The chapter explained how CRISP-DM principles were adapted to suit the needs of

the intrusion detection use case, while also introducing the concept of per-instance

classifier selection. This framework is intended to offer both flexibility and precision,

reflecting the core research aim of developing a responsive and effective detection

74

system. The processes described in this chapter, from dataset preparation to

portfolio design, provide the foundation upon which the classifier models are built

and tested in the following chapters. The next step in the research is to describe the

technical environment and toolset used to support this methodology.

75

Chapter 5 Investigation and selection of software packages

5.1 Chapter Introduction

In Chapter 5, we survey different tools that serve AI and machine learning. In order

to have the right tools, we need to make the survey and understand the tools. Having

the right software and services would facilitate the progress of the research. In

addition to the software and services, we will compare local compute and cloud

services. The selection criteria for the tools would take into consideration the

capability of the tool, ability to handle the dataset, ease of use, and finally, cost.

In this chapter, we will discuss different tools and software that could be used in

machine learning which are related to this research. First, we will see the evolution

of these tools and how they have evolved over the years with many introductions of

machine learning tools. As we will see, the machine learning tool took advantage of

different architectures. The first architecture in this chapter is the traditional local

compute, and then the GPU compute that can speed up the computation process.

Finally, we have the cloud, which provides virtually unlimited resources that can

accommodate any need for any machine learning project. Overly, the chapter will go

as follows: chronological order of machine learning software and testing software

packages (local and cloud), and finally, the selected list of tools and software.

76

5.2 Chronological order of libraries in Machine learning and Artificial

intelligence

In this part, we will go over the libraries in chronological order from the past 30 years.

Table 12 History of Machine learning tools and software

Machine learning Tool Brief description

R language R was developed in 1993, and the framework for R is still under active
development. Since R language is an open-source project, there are
many packages and integrations that are developed by different entities
that keep this language and its development tools alive and active. R
language was initially targeting statistical computing and analysis, but
now R language covers wider domains such as data mining,
bioinformatics, and machine learning. The R framework has its official
package manager called CRAN, and it can use external sources using R
tools, which allows R language to have the latest algorithms and
functions available for the user(“R: The R Project for Statistical
Computing,” n.d.).

MLC++ From the name of the library, we can know the library was developed in

C++. MLC++ was developed at Sanford University in 1994 and then

maintained by Silicon Graphics IC (Silicon Graphics was bought by

Hewlett Packard). This library mainly focuses on pattern recognition, data

mining, and statistical analysis. The development of these libraries

seems to be halted since there is no reference for the library on the

Hewlett Packard website(“MLC++, A Machine Learning Library in C++,”

n.d.).

OpenCV OpenCV was released in 2000. This library was developed by Intel, and

its focus is Real-time computer vision. This library allows image

recognition, tracking, and object identification. The library has interfaces

with many languages and is widely used(“OpenCV - Open Computer

Vision Library,” n.d.).

scikit-learn The introduction of scikit-learn was a major milestone. The library is

open-source, and it is a product of Google Code Summer Camp. The

77

library was written in Python using existing library’s like NumPy, and

matplotlib. scikit-learn is in continuous development and has a great

number of functions in machine learning(“scikit-learn: machine learning

in Python — scikit-learn 1.3.0 documentation,” n.d.).

Weka Weka was developed in 1993 at the University of Waikato, New Zealand.

Initially, the library was built in C++, but then it was rebuilt in Java. The

tool can do pre-processing, clustering, classification, and regression. In

addition, deep learning was later introduced. The tool is intuitive and has

a graphical user interface for ease of use(“Weka 3 - Data Mining with

Open Source Machine Learning Software in Java,” n.d.).

RapidMiner RapidMiner was known as Yale and was released in 2001. The

application can provide a wide spectrum of machine learning and data

analysis applications. The tool does provide a graphical user interface for

ease of use and processing(“RapidMiner | Amplify the Impact of

Your People, Expertise & Data,” n.d.).

Spark MLlib Spark MLlib is part of the spark project from Apache, which was

introduced in 2015. The project depends on the Spark core, and some of

the main advantages are its ability to operate in distributed systems, and

it is memory-based rather than disk-based. These two features can make

this library operate much faster than any other library because it can be

installed on many commodity hardware to achieve great performance

that is parallel to enterprise hardware(“MLlib | Apache Spark,” n.d.).

Torch Torch is a machine-learning language that provides a scientific
computing framework. The language is open-source, and it is based on
Lua. The language provided functions that are written in C language and
can be invoked by LuaJIT. In recent years, the development has moved
to Python, and now it is called Pytorch (“PyTorch,” n.d.).

Caffe Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep

learning framework originally developed at the University of California,

78

Berkeley, in 2017. It is open source, under a BSD license. It is written in

C++ with a Python interface. Caffe is being used in academic research

projects, startup prototypes, and even large-scale industrial applications

in vision, speech, and multimedia(“Caffe | Deep Learning Framework,”

n.d.).

TensorFlow TensorFlow is an open-source project that was introduced in 2015. The

tool has great support from the open-source community, which gives it

flexibility in its ecosystem. TensorFlow allowed scientists and

researchers to develop state-of-the-art Machine learning models and

build applications that are supported by Artificial Intelligence. The

framework has the latest functions and algorithms in Machine Learning,

and it does support the latest technologies like GPU processing. Finally,

TensorFlow is compatible with Python, C++, and many other

languages.(“TensorFlow,” n.d.)

H2O H2O is an open-source project that was introduced in 2011. One of the

main features of this library is that it has linear scalability, and it does

operate in memory rather than on disk. These two features make it robust

and much faster than other tools. The library supports most of the

Machine learning algorithms, and it keeps updates coming very

frequently.(“H2O.ai | The fastest, most accurate AI Cloud Platform,” n.d.)

Figure 23 Chronological order of Machine Learning Tools

2018

• Torch

2017

• caffe

2015

• TensorFlow

2015

• Spark MLlib11

2011

• H2O

2007

• scikit-learn

2000

• opeccv

1994

• MLC++

1993

• R

• weka

79

5.3 Testing Software Packages

The initial preferred approach is to use local resources (compute) for machine

learning and building multiple models. The benefit of having the models built

locally is that it will eliminate the requirement to transmit the data from local

to cloud and vis versa. The second benefit is that the cloud solutions for

machine learning will require the reconstruction of the script and the study of

new tools with a steep learning curve. Studying will be required to adapt to

any public cloud solution for machine learning. On the other hand, the

problem with local resources is the limitation of the resources. The size of the

datasets is huge and doesn’t fit into memory. Also, the compute time is long,

which will slow the flow and speed of the development of the models. Any

minor modification in the model will require multiple hours to rebuild.

In contrast, we have cloud solutions that are elastic and have the capability

to virtually accommodate any workload required. The initial impression of

cloud computing was that it would be cost-effective to build the models, but

after investigating the pricing for cloud computing, it was clear that the cloud

is much more expensive than local resources. Using Microsoft Azure

Calculator (“Pricing Calculator | Microsoft Azure,” n.d.) the average monthly

cost for the resource (D64d v5) with the following specifications (64 vCPUs,

256 GB RAM) is US$3,106.88 monthly. This cost will come to around

37,282.56 USD annually. These values are way beyond the budget, and even

if we consider that these resources will be shut down periodically, the value

will remain high. Another factor that needs to be considered in cloud adoption

is the cost of the bandwidth. The bandwidth cost will be high since the dataset

80

size is huge and will require a lot of bandwidth for transit between local and

cloud. The cloud solution is convenient as a solution, but financially, it does

not fit all scenarios and requirements. It is difficult to make a direct comparison

in pricing between cloud and on-premise solutions, but even the intention to

acquire these specifications on-premise will be difficult as these requirements

are enterprise and can’t be acquired by an average consumer.

5.3.1 Local Compute

The initial preferred approach is to use local resources (compute) for machine

learning and building multiple models. Below are some of the tested packages

and tools.

o TensorFlow

▪ TensorFlow is dependent on other libraries (Cuda) and specific

drivers in order to function. Multiple attempts were made in

order to get the TensorFlow to work in the local system. The

problem with this library is that it requires a specific version of

Cuda and NVidia drivers in order to function. Also, the

documentation for these libraries is weak and not centralized. It

does not work out of the box and requires a lot of work to have

a functioning system. Any minor update will cause the system

to crash. Another issue is that the library uses GPU to process

the data, and if the loaded data exceeds the memory in the

GPU, the performance will degrade drastically. Finally, for the

81

reasons mentioned above, we have opted not to use

TensorFlow.

o Python with Scikit-learn

▪ Using Scikit-learn would require using Python. In order to load

the data, Pandas libraries need to be called to load the data

frame. The Data frame does not fit into memory, and Panda

does handle large data very well. As a workaround, chunks

were used to resolve the issue, but the performance was very

slow to build models with this method.

o Standard RStudio packages

▪ RStudio with Standard libraries was used in the initial tests of

the project. The data was loaded without any issues. RStudio

was capable of managing memory and utilizing storage paging

and did all of the management without any intervention.

However, the issue relies on standard packages that have a lot

of limitations. For example, Neuralnet did not utilize all CPU

resources and was prohibitively slow. Another example is the

standard random forest from CRAN. The Standard Random

Forest has a limit on the number of levels of the factors. And the

data types have some factors that exceed these levels. At the

same time, the library is also not exhausting the CPU resources,

and the process time is very slow.

o RapidMiner

82

▪ RapidMiner was tested on loading the dataset. The Dataset was

loaded, but after importing the data, the application was barely

usable and not responsive. Also, the application crashes

randomly and unpredictably. Another issue is that the user does

not have the freedom to manipulate the data within the

application. For example, converting the data from Decimal to

binary. For these reasons, RapidMiner was excluded from the

project.

o Weka

▪ Weka had very similar issues to RapidMiner. The application

becomes unresponsive and crashes unpredictably. If the data

loads, Weka will take unreasonable time to process the data

and build models.

o H2O package in RStudio

▪ H2O.ai was used in the project in RStudio. It has good

integration with RStudio, and the data can be moved between

H2o Data and RStudio easily without any dependency on any

additional libraries. The data was easily loaded and processed

without error and crashing. H2O is able to fully utilize the CPU,

and the memory is fully optimized, where it does not fully occupy

the memory when the data is loaded and the models are built.

The h2O can use the CUDA libraries to utilize the GPU, but it

was not used as the official website lacks documentation for the

83

integration, and a previous attempt with TensorFlow showed

that if the data does not fit in the GPU memory, the performance

will get dramatically worse. In addition, h2o can run as a service

where the h2o can run on its own, and the data can be viewed

in the web browser, build models, and generate plots and

graphs. Once a model is built, it’s easy to move this model

regardless of the h2o version and system that is being used

since the h2o can export the models in POJO format, which

facilitates moving the models between different systems and

versions.

5.3.2 Cloud Compute:

o There are multiple public cloud services, and they offer machine

learning models as a service. Most of these services are dependent on

the compute resource, and the service comes prebuilt with the required

machine learning libraries. It will be fair to compare the computing price

only, as the libraries and tools can be installed by the user. For

comparison, the following specifications were targeted.

▪ 64 compute cores. (Regardless of generation)

▪ 256 Gigabytes of Memory

▪ Ubuntu operating system

▪ The Server can be either dedicated or shared

▪ The resource will be on demand, and the selection will not

consider reservation discount as the reservation will require at

84

least 1-year reservation commitment. For that reason, we will

only consider the pay-as-you-use model.

o Azure

▪ Using Microsoft Azure Calculator (Pricing Calculator | Microsoft

Azure), the average monthly for the resource (E64a v4) with the

following specs (64 vCPUs, 256 GB RAM) is 3,270.40 monthly.

Annually, 39,244.8 USD West US

o Amazon

▪ Amazon was checked for the computing price. For a compute

instance that matches the specifications that we have

determined, we have chosen m6g.16xlarge. This instance will

cost 2354.69 USD monthly and 28,256.26 USD annually. East

US Ohio

o Huawei

▪ 1,710.28 USD and annually 20,523.36USD instance

m6.16xlarge.8 CN-southwest Guiyang1

Table 13 Comparison between different cloud providers

Specifications Cloud

Provider

Amazon Azure Huawei

vCPU 64 Location East US Ohio West US CN-southwest

Guiyang1

 Instance type m6g.16xlarge E64a v4 m6.16xlarge.8

85

Memory 562 Monthly 2354.69 USD 3,270.40

USD

1,710.28 USD

 Yearly 28,256.26 USD 39,244.8

USD

20,523.36

USD

5.3.3 Tools used in the research:

After reviewing and investigating many tools for the research, it was determined to

use the following tools:

- Local Compute:

o Rstudio

o H2o.AI

- Cloud

o Huawei Cloud

o Regular Virtual Machine, with specifications mentioned before.

o Use Rstudio

o H2o.AI

The reason to use Regular virtual machines instead of readymade Machine learning

tools is to preserve the code that was developed in local computing and avoid

redeveloping the same script. At the same time, any saved data frame and datatypes

can be preserved and transitioned between local and cloud.

5.4 Discussion

This chapter reviewed the software tools and platforms used throughout the

research, with a focus on selecting components that support both model

86

development and performance evaluation. The investigation covered a range of

environments, including both local machines and cloud-based platforms, to

determine the most suitable setup for training and testing complex models. Several

trade-offs were noted during this process. For instance, while local tools provided

more direct control and simplicity for debugging, cloud platforms offered better

scalability and compute capacity for training deep learning models. The selection of

tools like RStudio, Python, and specific machine learning libraries was made based

on their compatibility with the chosen methodology and dataset. This discussion also

emphasized the importance of a modular and reproducible environment, one that

could support different classifiers under a unified framework. The software

architecture was structured in a way that enables consistent preprocessing, training,

validation, and result interpretation across all model types.

5.5 Chapter Conclusion

In conclusion, this chapter outlined the process of evaluating and selecting the

software tools required to implement the proposed methodology. The research

demanded a flexible environment capable of supporting both traditional machine

learning models and more complex ensemble approaches. By assessing different

platforms, IDEs, and library options, the final selection was made with an emphasis

on computational efficiency, ease of integration, and reproducibility. Both local and

cloud-based setups were utilized at different phases of experimentation, each

playing a role in balancing control with processing power. The tools chosen allow for

seamless model deployment, testing, and visualization, all of which are critical in

executing the methodology described in the previous chapter. With the software

environment established, the thesis now moves forward to data exploration, where

87

the structure and behavior of the selected dataset are analyzed in preparation for

model building.

88

Chapter 6 Data Exploration

6.1 Chapter Introduction

In this research, we have determined to use the CSE-CIC-IDS2018 data. As

discussed in the Dataset chapter, the KDDCUP dataset and all of its derivatives will

be excluded as the data is old, and there are many recommendations in the data

science community not to use the KDDcup dataset as it has a lot of inconsistency,

and it’s not a true representation of the modern network in the industry, and the type

of threats included in the dataset are old and not modern.

The CSE-CIC-IDS2018 Dataset was chosen because the data is recent, and there

are many different cybersecurity attacks that are considered modern and have a true

representation of modern networks.

In this chapter, we will explore the CSE-CIC-IDS2018 dataset. first, we will view how

the dataset is generated and labeled. A discussion was presented about some

issues related to the dataset, such as size and consistency. Finally, after reviewing

the feature, a statistical exploration is done that will show distribution trends that

show patterns for selected attacks.

89

6.2 Construction of the dataset

The CSE-CIC-IDS2018 data is a result of simulated attacks that took several days

and are captured as PCAPs. Then, the data is converted to CSV format with labels.

The advantage of using the CSE-CIC-IDS2018 data is that the data is reproducible

with the same features. The author of the data demonstrated how the data is

generated and captured. In addition, the author made the tools available to convert

the PCAP to flows with all the features. Simply, any person can regenerate the data

with the same format easily with the tool available with any new attack. The only

problem that can be faced to reproduce the data is labeling the flows with the right

information. Even if we consider the timestamps of the attacks, we might mislabel

the benign flows with the attacks. Below is the summary of the attacks done on the

data, along with the duration from the author's website.

Table 14: attacks durations in CSE-CIC-IDS2018 from CSE-CIC website (Canadian Institute for Cybersecurity,
2018)

Attack Tools Duration Attacker Victim

Bruteforce
attack

FTP – Patator

SSH – Patator

One day Kali linux Ubuntu 16.4
(Web Server)

DoS attack Hulk, GoldenEye,

Slowloris, Slowhttptest

One day Kali linux Ubuntu 16.4
(Apache)

DoS attack Heartleech One day Kali linux Ubuntu 12.04
(Open SSL)

Web attack • Damn Vulnerable
Web App
(DVWA)

• In-house
selenium
framework (XSS
and Brute-force)

Two
days

Kali linux Ubuntu 16.4
(Web Server)

90

Infiltration attack • First level:
Dropbox
download in a
windows machine

• Second Level:
Nmap and
portscan

Two
days

Kali linux Windows
Vista and
Macintosh

Botnet attack • Ares (developed
by Python):
remote shell, file
upload/download,
capturing

• screenshots and
key logging

One day Kali linux Windows
Vista, 7, 8.1,
10 (32-bit)
and 10 (64-
bit)

DDoS+PortScan Low Orbit Ion Canon
(LOIC) for UDP, TCP, or
HTTP requests

Two
days

Kali linux Windows
Vista, 7, 8.1,
10 (32-bit)
and 10 (64-
bit)

6.3 Challenges:

There were different challenges in the acquired data from CSE-CIC-IDS2018. The

challenges start from getting the data from the Amazon servers, and there are issues

with the consistency of the data. There are millions of data records, and it’s difficult

to scan through the data manually and find the errors in each record. In this research,

we have faced two major challenges with the CSE-CIC-IDS2018 data, which are the

size and the consistency.

91

1- Data Size:

One of the main challenges in acquiring the data was size. The author made the

data available through Amazon bucket storage. Downloading the data was by parts

for each day, and the downloaded data included CSV files. The CSV files were

already labeled and ready for machine learning. In addition to that, the Data included

the TCP dumps, which were huge and very slow to download. The process has faced

many interruptions and disconnections. Even after downloading the data, we have

faced data corruption that needs to be mitigated by redownloading the same files

again.

2- Data Consistency:

The CSE-CIC-IDS2018 data has a lot of issues related to format and consistency.

Finding these errors was a pure trial and error process. The CSE-CIC-IDS2018 data

comes in multiple files, and each file represents one day of data collection. The data

needs to be merged for exploration and machine learning. Upon merging these files,

many issues occurred, which related to mismatching the number of columns and

repetitive headers.

a. Mismatching number of columns:

As mentioned, each file represents a day of collected data. When we

attempted to merge all files together, we received an error that there was a

mismatching number of columns. We had to view different files randomly to

find out that some files had extra columns that consisted of (TimeStamp, src

IP, src port, and dest IP). We had to drop these extra columns from the files

that had it so all the files were uniform and consistent.

92

b. Repeated header:

This error was discovered when some columns were supposed to have

a datatype that is number/integer, but the RStudio identified it as text/string.

We had to run a script that would go through each line of the CSV file to check

if it was a number or not. Then we found the first line that is not a number was

actually a repeated header of the column names. After inspecting the files,

we found that some files have the header repeated randomly in different parts

of the file.

6.4 List of features in the CSE-CIC-IDS2018 Dataset:

The below list is the extracted features from the PCAP files. The extracted features

were captured using the CICflowmeter tool that was developed by the author of the

dataset. These features represent some characteristics of the network flows. Each

group of flows can be viewed either as benign or attacks, and the way to distinguish

any of them is by the list of features presented. We can see that some features

represent time, and some of them represent size and number while others flag.

Some features can be derived from others, and some of them are tightly related.

This can be explained since some features represent the size of packets (max, min,

average, and std) for the forward direction, and we can see that these features have

a tight relationship. It's difficult to review every feature in the dataset, as the main

focus of this research is the classification rather than network study. For further

information, a person can review these features from the author's site(“IDS 2018 |

Datasets | Research | Canadian Institute for Cybersecurity | UNB,” n.d.). The list of

features provided below is presented exactly as written by the author.

93

fl_dur : Flow duration

tot_fw_pk : Total packets in the forward direction

tot_bw_pk : Total packets in the backward direction

tot_l_fw_pkt : Total size of packet in forward

direction

fw_pkt_l_max : Maximum size of packet in forward

direction

fw_pkt_l_min : Minimum size of packet in forward

direction

fw_pkt_l_avg : Average size of packet in forward

direction

fw_pkt_l_std : Standard deviation size of packet in

forward direction

Bw_pkt_l_max : Maximum size of packet in

backward direction

Bw_pkt_l_min : Minimum size of packet in

backward direction

Bw_pkt_l_avg : Mean size of packet in backward

direction

Bw_pkt_l_std : Standard deviation size of packet in

backward direction

fl_byt_s : flow byte rate that is number of packets

transferred per second

fl_pkt_s : flow packets rate that is number of

packets transferred per second

fl_iat_avg : Average time between two flows

fl_iat_std : Standard deviation time two flows

fl_iat_max : Maximum time between two flows

fl_iat_min : Minimum time between two flows

fw_iat_tot : Total time between two packets sent in

the forward direction

fw_iat_avg : Mean time between two packets sent

in the forward direction

fw_iat_std : Standard deviation time between two

packets sent in the forward direction

fw_iat_max : Maximum time between two packets

sent in the forward direction

fw_iat_min : Minimum time between two packets

sent in the forward direction

bw_iat_tot : Total time between two packets sent in

the backward direction

bw_iat_avg : Mean time between two packets sent

in the backward direction

bw_iat_std : Standard deviation time between two

packets sent in the backward direction

bw_iat_max : Maximum time between two packets

sent in the backward direction

bw_iat_min : Minimum time between two packets

sent in the backward direction

94

fw_psh_flag : Number of times the PSH flag was set

in packets travelling in the forward direction (0 for

UDP)

bw_psh_flag : Number of times the PSH flag was

set in packets travelling in the backward direction (0

for UDP)

fw_urg_flag : Number of times the URG flag was set

in packets travelling in the forward direction (0 for

UDP)

bw_urg_flag : Number of times the URG flag was

set in packets travelling in the backward direction (0

for UDP)

fw_hdr_len : Total bytes used for headers in the

forward direction

bw_hdr_len : Total bytes used for headers in the

forward direction

fw_pkt_s : Number of forward packets per second

bw_pkt_s : Number of backward packets per

second

pkt_len_min : Minimum length of a flow

pkt_len_max : Maximum length of a flow

pkt_len_avg : Mean length of a flow

pkt_len_std : Standard deviation length of a flow

pkt_len_va : Minimum inter-arrival time of packet

fin_cnt : Number of packets with FIN

syn_cnt : Number of packets with SYN

rst_cnt : Number of packets with RST

pst_cnt : Number of packets with PUSH

ack_cnt : Number of packets with ACK

urg_cnt : Number of packets with URG

cwe_cnt : Number of packets with CWE

ece_cnt : Number of packets with ECE

down_up_ratio : Download and upload ratio

pkt_size_avg : Average size of packet

fw_seg_avg : Average size observed in the forward

direction

bw_seg_avg : Average size observed in the

backward direction

fw_byt_blk_avg : Average number of bytes bulk rate

in the forward direction

fw_pkt_blk_avg : Average number of packets bulk

rate in the forward direction

fw_blk_rate_avg : Average number of bulk rate in

the forward direction

bw_byt_blk_avg : Average number of bytes bulk

rate in the backward direction

bw_pkt_blk_avg : Average number of packets bulk

rate in the backward direction

bw_blk_rate_avg : Average number of bulk rate in

the backward direction

subfl_fw_pk : The average number of packets in a

sub flow in the forward direction

95

subfl_fw_byt : The average number of bytes in a

sub flow in the forward direction

subfl_bw_pkt : The average number of packets in a

sub flow in the backward direction

subfl_bw_byt : The average number of bytes in a

sub flow in the backward direction

fw_win_byt : Number of bytes sent in initial window

in the forward direction

bw_win_byt : # of bytes sent in initial window in the

backward direction

Fw_act_pkt : # of packets with at least 1 byte of TCP

data payload in the forward direction

fw_seg_min : Minimum segment size observed in

the forward direction

atv_avg : Mean time a flow was active before

becoming idle

atv_std : Standard deviation time a flow was active

before becoming idle

atv_max : Maximum time a flow was active before

becoming idle

atv_min : Minimum time a flow was active before

becoming idle

idl_avg : Mean time a flow was idle before

becoming active

idl_std : Standard deviation time a flow was idle

before becoming active

idl_max : Maximum time a flow was idle before

becoming active

idl_min : Minimum time a flow was idle before

becoming active

6.5 Dataset Exploration

The original dataset contains around 16 million records with very high dimensionality,

so it will be hard to manipulate and process as it is. We seek to remove duplicate

records from the dataset to facilitate the process, as it requires more time, memory,

and computing power. After deduplicating the data and removing consistent

columns, the dataset summary is as follows in the table below. We can notice that

most of the data consists of benign records and data flows that make up

approximately 88% of the dataset. The rest of the data consists of all the other data

which are the target for classification. Some of the attacks have a higher percentage

of records, and that’s understandable because of their nature. For example, we have

96

the sum of all DDoS attack types that have a high percentage in the dataset, which

is around ~6.7%. This is normal as the DDoS attacks will require a large number of

connections that are initiated from many different sources to a targeted server.

These huge numbers of connections will exhaust the server and will start dropping

legitimate connections and will not be able to provide service.

Table 15 Distribution of Classes in CSE-CIC-IDS2018

names Count Percentage

Benign 10210250 88.30831

Bot 144535 1.25008

Brute Force -Web 553 0.00478

Brute Force -XSS 228 0.00197

DDOS attack-HOIC 198861 1.71995

DDOS attack-LOIC-UDP 1730 0.01496

DDoS attacks-LOIC-HTTP 575364 4.97632

DoS attacks-GoldenEye 41406 0.35812

DoS attacks-Hulk 145199 1.25582

DoS attacks-SlowHTTPTest 55 0.00048

DoS attacks-Slowloris 9908 0.08569

FTP-BruteForce 53 0.00046

Infilteration 139775 1.20891

SQL Injection 84 0.00073

SSH-Bruteforce 94048 0.81342

Total 11562049 100.00000

97

Figure 24 Distribution of attacks after removing Benign

benign was removed from the chart so the attack distribution could be more visible.

As we have seen in the summary table above, the benign records are around ~88%,

so we will have difficulty viewing the attacks in the graph. As discussed before, we

can visibly see that most of the remaining data is DDOS attacks, which is around

~6.7%, and then the rest of the attacks would be around ~4.9%.

6.5.1 Initial observations:

- The dataset size and the number of features (80 features) are huge for any

manual process and highly intensive for computation.

- Not all features are worth analyzing to find any pattern to assist in any

classification and making the decision.

- The distribution of classes is not balanced and might cause a high rate of

False-Positive or False-Negative results.

98

Figure 25 Correlation Matrix for CSE-CIC-IDS2018

If we have a look at the correlation matrix of the features in the chart and the table

below, We can see many relations between the features, and it is expected, as some

features are just derived from other features like (Min-Max-std-Mean). The case can

be seen in Idle (Idl.min, Idle.max, Idle.std, and Idle.Mean). These types of features

99

will have a correlation. All features are either linked to the duration, time, size, or

length of different elements within a flow.

In the table below, we only show variables that have a correlation that is more than

0.9 and below -0.90. As we can observe from the table, many of the variables have

a correlation with some of their derivatives (Maximum, Minimum, Standard deviation,

or Mean).

Table 16 Correlation Coefficient Table

Row Column Correlation Coefficient

Tot.Bwd.Pkts TotLen.Bwd.Pkts 0.993591

Fwd.Pkt.Len.Max Fwd.Pkt.Len.Mean 0.879368

Fwd.Pkt.Len.Max Fwd.Pkt.Len.Std 0.954824

Fwd.Pkt.Len.Mean Fwd.Pkt.Len.Std 0.890569

Bwd.Header.Len Subflow.Bwd.Pkts 0.997801

Bwd.Pkt.Len.Max Bwd.Pkt.Len.Std 0.96619

Flow.IAT.Std Flow.IAT.Max 0.895744

Flow.Duration Flow.IAT.Min 0.814468

Flow.IAT.Std Flow.IAT.Min -0.95762

Bwd.Header.Len Subflow.Bwd.Byts 0.996151

Flow.IAT.Min Fwd.IAT.Tot 0.814475

Flow.IAT.Mean Fwd.IAT.Mean 0.999964

Flow.IAT.Std Fwd.IAT.Std 0.999981

Flow.IAT.Max Fwd.IAT.Std 0.895752

Flow.IAT.Min Fwd.IAT.Std -0.95761

Flow.IAT.Std Fwd.IAT.Max 0.895737

Flow.IAT.Max Fwd.IAT.Max 0.999994

Fwd.IAT.Std Fwd.IAT.Max 0.895755

Bwd.Pkt.Len.Mean Pkt.Size.Avg 0.938971

Flow.IAT.Std Fwd.IAT.Min -0.95761

Flow.IAT.Min Fwd.IAT.Min 0.999996

Fwd.IAT.Tot Fwd.IAT.Min 0.814487

Fwd.IAT.Std Fwd.IAT.Min -0.9576

100

Bwd.IAT.Std Bwd.IAT.Max 0.875919

Bwd.IAT.Mean Bwd.IAT.Min 0.89453

Bwd.Pkt.Len.Mean Bwd.Seg.Size.Avg 1

Flow.Duration Fwd.IAT.Tot 0.999986

Flow.Duration Fwd.IAT.Min 0.81448

Flow.Pkts.s Fwd.Pkts.s 0.994678

Fwd.Pkt.Len.Min Pkt.Len.Min 0.896394

Bwd.Pkt.Len.Max Pkt.Len.Max 0.949866

Bwd.Pkt.Len.Std Pkt.Len.Max 0.944087

Bwd.Pkt.Len.Mean Pkt.Len.Mean 0.943686

Bwd.Pkt.Len.Max Pkt.Len.Std 0.899934

Bwd.Pkt.Len.Mean Pkt.Len.Std 0.849163

Bwd.Pkt.Len.Std Pkt.Len.Std 0.937577

Pkt.Len.Max Pkt.Len.Std 0.958434

Pkt.Len.Mean Pkt.Len.Std 0.861471

Flow.IAT.Max Idle.Mean 0.930967

Flow.IAT.Max Idle.Std 0.940928

RST.Flag.Cnt ECE.Flag.Cnt 0.999987

Flow.IAT.Max Idle.Max 0.948219

Flow.IAT.Min Idle.Mean -0.93713

Flow.IAT.Min Idle.Std -0.92362

Flow.IAT.Min Idle.Max -0.92779

Flow.IAT.Std Idle.Mean 0.974618

Flow.IAT.Std Idle.Std 0.956771

Flow.IAT.Std Idle.Max 0.956541

Fwd.Header.Len Subflow.Fwd.Pkts 0.995575

Fwd.Header.Len Fwd.Act.Data.Pkts 0.991472

Pkt.Size.Avg Bwd.Seg.Size.Avg 0.938971

Tot.Fwd.Pkts Subflow.Fwd.Pkts 1

Fwd.IAT.Max Idle.Mean 0.930953

Fwd.IAT.Max Idle.Std 0.940928

Tot.Bwd.Pkts Subflow.Bwd.Pkts 1

TotLen.Bwd.Pkts Subflow.Bwd.Pkts 0.993591

Fwd.IAT.Max Idle.Max 0.948214

Tot.Bwd.Pkts Subflow.Bwd.Byts 0.993591

101

Fwd.IAT.Min Idle.Mean -0.93711

Fwd.IAT.Min Idle.Std -0.92362

Subflow.Bwd.Pkts Subflow.Bwd.Byts 0.993591

Fwd.IAT.Min Idle.Max -0.92778

Fwd.IAT.Std Idle.Mean 0.974652

Fwd.IAT.Std Idle.Std 0.956757

Active.Mean Active.Max 0.947795

Active.Mean Active.Min 0.907754

Fwd.IAT.Std Idle.Max 0.956546

Fwd.Pkt.Len.Max Fwd.Seg.Size.Avg 0.879368

Fwd.Pkt.Len.Mean Fwd.Seg.Size.Avg 1

Fwd.Pkt.Len.Std Fwd.Seg.Size.Avg 0.890569

Fwd.PSH.Flags SYN.Flag.Cnt 1

Fwd.URG.Flags CWE.Flag.Count 1

Pkt.Len.Mean Pkt.Size.Avg 0.995625

Pkt.Len.Mean Bwd.Seg.Size.Avg 0.943686

Pkt.Len.Std Pkt.Size.Avg 0.853663

Pkt.Len.Std Bwd.Seg.Size.Avg 0.849163

Protocol Bwd.Pkt.Len.Min 0.851049

Subflow.Fwd.Pkts Fwd.Act.Data.Pkts 0.999189

Idle.Mean Idle.Std 0.980718

Tot.Bwd.Pkts Bwd.Header.Len 0.997801

Tot.Fwd.Pkts Fwd.Header.Len 0.995575

Tot.Fwd.Pkts Fwd.Act.Data.Pkts 0.999189

TotLen.Bwd.Pkts Bwd.Header.Len 0.996149

TotLen.Bwd.Pkts Subflow.Bwd.Byts 1

TotLen.Fwd.Pkts Subflow.Fwd.Byts 1

Idle.Mean Idle.Max 0.981832

Idle.Std Idle.Max 0.992293

In order to reduce the list and have fewer parameters to investigate, we removed

rows that have variable name similarity of more than 70%. The below table shows

the output result.

102

Table 17 Reduced Correlation Table

Row Column Correlation Coefficient
Bwd.Header.Len Subflow.Bwd.Pkts 0.997801
Bwd.Header.Len Subflow.Bwd.Byts 0.996151

Bwd.Pkt.Len.Mean Pkt.Size.Avg 0.938971
Bwd.Pkt.Len.Mean Bwd.Seg.Size.Avg 1

Flow.Duration Fwd.IAT.Tot 0.999986
Flow.Duration Fwd.IAT.Min 0.81448
Flow.IAT.Max Idle.Mean 0.930967
Flow.IAT.Max Idle.Std 0.940928
Flow.IAT.Max Idle.Max 0.948219
Flow.IAT.Min Idle.Mean -0.93713
Flow.IAT.Min Idle.Std -0.92362
Flow.IAT.Min Idle.Max -0.92779
Flow.IAT.Std Idle.Mean 0.974618
Flow.IAT.Std Idle.Std 0.956771
Flow.IAT.Std Idle.Max 0.956541

Fwd.Header.Len Subflow.Fwd.Pkts 0.995575
Fwd.Header.Len Fwd.Act.Data.Pkts 0.991472

Fwd.IAT.Max Idle.Mean 0.930953
Fwd.IAT.Max Idle.Std 0.940928
Fwd.IAT.Max Idle.Max 0.948214
Fwd.IAT.Min Idle.Mean -0.93711
Fwd.IAT.Min Idle.Std -0.92362
Fwd.IAT.Min Idle.Max -0.92778
Fwd.IAT.Std Idle.Mean 0.974652
Fwd.IAT.Std Idle.Std 0.956757
Fwd.IAT.Std Idle.Max 0.956546

Fwd.Pkt.Len.Max Fwd.Seg.Size.Avg 0.879368
Fwd.Pkt.Len.Mean Fwd.Seg.Size.Avg 1
Fwd.Pkt.Len.Std Fwd.Seg.Size.Avg 0.890569
Fwd.PSH.Flags SYN.Flag.Cnt 1
Fwd.URG.Flags CWE.Flag.Count 1
Pkt.Len.Mean Pkt.Size.Avg 0.995625
Pkt.Len.Mean Bwd.Seg.Size.Avg 0.943686
Pkt.Len.Std Pkt.Size.Avg 0.853663
Pkt.Len.Std Bwd.Seg.Size.Avg 0.849163

Protocol Bwd.Pkt.Len.Min 0.851049
Subflow.Fwd.Pkts Fwd.Act.Data.Pkts 0.999189

Tot.Bwd.Pkts Bwd.Header.Len 0.997801
Tot.Fwd.Pkts Fwd.Header.Len 0.995575
Tot.Fwd.Pkts Fwd.Act.Data.Pkts 0.999189

TotLen.Bwd.Pkts Bwd.Header.Len 0.996149
TotLen.Bwd.Pkts Subflow.Bwd.Byts 1
TotLen.Fwd.Pkts Subflow.Fwd.Byts 1

From the table above, we will inspect and plot some of the related columns from the

dataset. As we can see, the correlations had been coupled into groups so we could

have a better understanding of the relations. At first, we inspect (Bwd.Header.Lenm

and Subflow.Bwd.Pkts).

103

Figure 26 plot for Bwd.Header.Lenm vs Subflow.Bwd.Pkts

Figure 27 (Bwd.Header.Lenm vs Subflow.Bwd.Pkts) for each class

104

From the plot above, we can’t have a lot of information or observation since most of

the data density is on a very small spot on the plot. In order to have a better view of

the plot, we removed the outliers so we can see if there is any trend or pattern.

Figure 28 (Bwd.Header.Lenm vs Subflow.Bwd.Pkts) for each class after removing outliers

From the above plot, we can have a lot of observations for these two features. We

can summarize them with the following: FTP- Bruteforce, SQL injection, SSH-

Bruteforce, DoS attacks slowHTTPtest, Bruteforce -Web, BruteForce -XSS, and

DDoS attack-LOIC-UDP are all restricted in four points, and if any data are in these

points is suspected to be part of one of these attacks. The same is true for the other

attacks; we can see some patterns and concentration of points in the plots that can

help as indicators of attacks.

105

We have created other samples of relations that can be viewed for observation.

Figure 29 Sample plots

106

6.6 Discussion

The data exploration process was an essential phase in understanding the structure

and behavior of the CIC-IDS2018 dataset. One of the most prominent issues

identified was the significant class imbalance, where certain types of attacks, such

as “Infiltration” and “Heartbleed,” were represented by only a few instances

compared to much larger classes like “BENIGN” or “DoS Hulk.” This imbalance can

lead to biased model training, where the classifier becomes more accurate at

detecting frequent attack types but fails to properly recognize rare or emerging

threats. On the other hand, the correlation matrix revealed that some features

exhibited strong linear relationships, indicating potential redundancy. These

relationships suggest that not all features are equally valuable for model training,

and that dimensionality reduction techniques, such as feature selection or PCA,

could improve overall performance and reduce overfitting. Additionally, the feature

value distributions varied significantly across attributes, which supports the decision

to normalize the dataset to bring features to a similar scale. Another key observation

was that certain classes shared similar patterns in feature space, which could

increase the risk of misclassification. These overlaps suggest the need for more

flexible and instance-aware classifiers. Overall, the insights gained from this

exploration directly informed the preprocessing strategies and helped shape the

model-building steps in the upcoming chapters.

6.7 Chapter Conclusion

In conclusion, the data exploration process helped uncover essential characteristics

of the CIC-IDS2018 dataset that directly influence how the classification models

should be developed and evaluated. The analysis revealed several key issues, most

107

notably, the imbalance in class representation, where some attack types were

underrepresented to the point that a default classifier might easily overlook them.

This highlights the need for sampling or balancing techniques during preprocessing

to avoid model bias. Additionally, the correlation analysis showed that many features

are highly related, which means that some attributes could be removed without

compromising the integrity of the dataset. This opens the door for dimensionality

reduction techniques to simplify the model and improve training speed. Feature

distribution plots also indicated the need for normalization to ensure that classifiers

treat all attributes fairly. Beyond the technical findings, the exploration helped shape

the direction of the modeling strategy by pointing out which features and issues to

prioritize. It confirmed that CIC-IDS2018, while not perfect, is still highly suitable for

building a robust multiclass intrusion detection system. The insights gathered here

serve as a bridge into the model development phase, where a sub-sampled version

of the dataset will be used to begin training and evaluating classification models.

108

Chapter 7 Building Models using Sub-Sample:

7.1 Chapter Introduction

In this chapter, we will go through building and testing different models. This process

will have the model being built with the training and validation data. An additional

test will be conducted using the test data portion of the dataset. Overall, this chapter

will go through the following: fixing the data balance in the Dataset (CSE-CIC-

IDS2018) by getting subsamples and upsampling. Then, we will build models and

get their performance per class (Gradient Boosting Machine, Generalized Linear

Models, Deep Learning Model, Random Forest, Distributed Random Forest). Finally,

we will review some failed attempts and review the result.

109

7.2 Justification for using Sub-sampling

Due to the limitation of the local compute, memory, and fast storage, the logical

approach is to use sub-sample of the dataset. In order to read the dataset and build

multiple models on a standard workstation would not be feasible as the models

would also require a large amount of memory. In addition the dataset has a very high

dimensionality and the models that need to be built require a very high compute

power. In the end, it was decided to test and start with sub-sample.ts.

7.3 Data Balance

During the investigation and exploration of the dataset. The presented data has

major issues. The first issue is the imbalance of the classes, and the second issue

is the size of the data. We needed to make sure that Data manipulation does not

affect the accuracy of the actual test. So, the manipulations were done only on the

training subset. The process was done with the following steps:

1- 60% was taken from the data. Because there is a huge gap between each

class, we wanted to guarantee that each class is presented in the training, so

we took 60% from each class instead of a random sample.

Table 18 60% sample from each class

 Benign Bot Brute Force -Web

 6126150 86721 331

 Brute Force -XSS DDOS attack-HOIC DDOS attack-LOIC-UDP

 136 119316 1038

 DDoS attacks-LOIC-HTTP DoS attacks-GoldenEye DoS attacks-Hulk

 345218 24843 87119

DoS attacks-SlowHTTPTest DoS attacks-Slowloris FTP-BruteForce

 33 5944 31

 Infilteration SQL Injection SSH-Bruteforce

 83865 50 56428

110

2- There is a big gap between Benign and the rest of the classes, so we had to

down-sample it.

Table 19 Down-sampling benign Class

 Benign Bot Brute Force -Web

 126150 86721 331

 Brute Force -XSS DDOS attack-HOIC DDOS attack-LOIC-UDP

 136 119316 1038

 DDoS attacks-LOIC-HTTP DoS attacks-GoldenEye DoS attacks-Hulk

 345218 24843 87119

DoS attacks-SlowHTTPTest DoS attacks-Slowloris FTP-BruteForce

 33 5944 31

 Infilteration SQL Injection SSH-Bruteforce

 83865 50 56428

3- For the rest of the classes, we had to up-sample it. And then, we took a subset

for each (10%)

Table 20 up sampling

 Benign Bot Brute Force -Web Brute Force -XSS

 34521 34521 34521 34521

 DDOS attack-HOIC DDOS attack-LOIC-UDP DDoS attacks-LOIC-HTTP DoS attacks-GoldenEye

 34521 34521 34521 34521

 DoS attacks-Hulk DoS attacks-SlowHTTPTest DoS attacks-Slowloris FTP-BruteForce

 34521 34521 34521 34521

 Infilteration SQL Injection SSH-Bruteforce

 34521 34521 34521

Using the balanced data, we have tested it by building a model, which is a Random

forest from Ranger. This package is part of the CRAN Package manager from

RStudio. The results are as follows.

111

Table 21 Overall Accuracy

 Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue

 0.94167415 0.93750802 0.94103238 0.94231097 0.06666667 0.00000000 NaN

Table 22 Ranger Training results per class

Class precision recall f1

Benign 0.97023 0.941253 0.955522

Bot 0.99971 0.999942 0.999826

Brute Force -Web 0.996511 0.97642 0.986364

Brute Force -XSS 0.999768 1 0.999884

DDOS attack-HOIC 0.999768 0.999942 0.999855

DDOS attack-LOIC-UDP 0.999103 1 0.999551

DDoS attacks-LOIC-HTTP 0.99942 0.999073 0.999247

DoS attacks-GoldenEye 1 1 1

DoS attacks-Hulk 1 1 1

DoS attacks-SlowHTTPTest 0.585971 0.8184 0.682952

DoS attacks-Slowloris 1 1 1

FTP-BruteForce 0.699069 0.421859 0.526186

Infilteration 0.944691 0.96828 0.95634

SQL Injection 0.976742 1 0.988234

SSH-Bruteforce 1 0.999942 0.999971

From the multiclass results and overall results, we can see that the trained model

outputs have great results where each class has a precision of either one or

approaching one. We can proceed using the data for testing/validation.

The model reports the important variables. We have kept the important variables

and removed the least important ones. The remaining used variables are the

following.

112

Table 23 Remaining Features

Dst.Port Flow.Duration Tot.Fwd.Pkts TotLen.Fwd.Pkts Fwd.Pkt.Len.Max Fwd.Pkt.Len.Mean

Fwd.Pkt.Len.Std Flow.Byts.s Flow.Pkts.s Flow.IAT.Mean Flow.IAT.Std Flow.IAT.Max

Flow.IAT.Min Fwd.IAT.Mean Fwd.IAT.Std Bwd.IAT.Min Fwd.Header.Len Fwd.Pkts.s

Bwd.Pkts.s Fwd.Seg.Size.Avg Subflow.Fwd.Pkts Subflow.Fwd.Byts Init.Fwd.Win.Byts Fwd.Act.Data.Pkts

Fwd.Seg.Size.Min

7.4 Test and validation with different classification models:

There were multiple models that we built in order to create a portfolio of models. The

aim is to have a model that supports multiclassification. Some models may support

multiclassification but in different frameworks or scripting languages. This research

target is to validate the proposed methodology and algorithm using multiple

classifiers for multi-classification. We opted to use tools that have support for multi-

classification out of the box, where there is the least modification and alteration

needed to build the model. Our search has resulted in the following Models that

support both RStudio and H2O:

- Random Forest H2O

- Distributed Random forest from Ranger

- Deep Learning

- GLM

- GBM

- Naïve Bays (Failed attempt presented in the appendix)

- Support Vector Machine ((Failed attempt presented in the appendix)

- KNN (Failed attempt presented in the appendix)

113

7.4.1 Gradient Boosting Machine (GBM)

A gradient gradient-boosting machine is used for Classification. The function uses a

forward learning ensemble method. Prediction quality increases through refined

approximations. H2O’s GBM will build regression trees with all features in a

distributed manner. These regression trees would be built in parallel.

Model Parameters:
Table 24 GBM Model Parameters

Parameter Value Description

model_id
GBMModel

Destination id for this model; auto-generated if not

specified.

nfolds
5

Number of folds for K-fold cross-validation (0 to

disable or >= 2).

keep_cross_validation_predictions
true

Whether to keep the predictions of the cross-

validation models.

fold_assignment
Random

Cross-validation fold assignment scheme, if

fold_column is not specified. The 'Stratified' option

will stratify the folds based on the response variable,

for classification problems.

response_column
Class Response variable column.

ignored_columns
 Names of columns to ignore for training.

r2_stopping
1.7976931348623157e+308

r2_stopping is no longer supported and will be

ignored if set - please use stopping_rounds,

stopping_metric and stopping_tolerance instead.

Previous version of H2O would stop making trees

when the R^2 metric equals or exceeds this

stopping_metric

Metric to use for early stopping (AUTO: logloss for

classification, deviance for regression and

anonomaly_score for Isolation Forest). Note that

custom and custom_increasing can only be used in

GBM and DRF with the Python client.

seed
1111

Seed for pseudo random number generator (if

applicable)

distribution
multinomial Distribution function

114

histogram_type
UniformAdaptive

What type of histogram to use for finding optimal split

points

max_abs_leafnode_pred
1.7976931348623157e+308 Maximum absolute value of a leaf node prediction

categorical_encoding
Enum Encoding scheme for categorical features

Building the GBM Matrix requires a Training set and validation set, and the

framework will output a confusion matrix for each. We will examine both below.

Training Confusion Matrix:

Table 25 Training Confusion Matrix

 B
e
n
i
g
n

B
o
t

B
r
u
t
e

F
o
r
c
e

-
W
e
b

B
r
u
t
e

F
o
r
c
e

-
X
S
S

D
D
O
S

a
t
t
a
c
k
-
H
O
I
C

D
D
O
S

a
t
t
a
c
k
-
L
O
I
C
-

U
D
P

D
D
o
S

a
t
t
a
c
k
s
-
L
O
I
C
-

H
T
T
P

D
o
S

a
t
t
a
c
k
s
-

G
o
l
d
e
n
E
y
e

D
o
S

a
t
t
a
c
k
s
-
H
u
l
k

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
H
T
T
P
T
e
s
t

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
l
o
r
i
s

F
T
P
-
B
r
u
t
e
F
o
r
c
e

I
n
f
i
l
t
e
r
a
t
i
o
n

S
Q
L

I
n
j
e
c
t
i
o
n

S
S
H
-
B
r
u
t
e
f
o
r
c
e

E
r
r
o
r

R
a
t
e

P
r
e
c
i
s
i
o
n

Benign
2556

4
0 428 49 1 0 27 1 0 1 4 0 8417 29 0

0.259

5

8,957 /

34,521

0.7

2

Bot 1
3451

9
0 0 0 0 0 0 0 0 0 0 1 0 0

0.000

1
2 / 34,521 1

Brute Force

-Web
0 0

3361

1
101 0 0 0 0 0 0 0 0 0 809 0

0.026

4

910 /

34,521

0.9

5

Brute Force

-XSS
0 0 1043

3323

1
0 0 0 0 0 0 0 0 0 247 0

0.037

4

1,290 /

34,521

0.9

9

DDOS attack-

HOIC
0 0 0 0

3452

1
0 0 0 0 0 0 0 0 0 0 0

0 /

34,521Rat

e: DDOS

attack-

HOIC

1

DDOS attack-

LOIC-UDP
0 0 0 0 0

3452

1
0 0 0 0 0 0 0 0 0 0 0 / 34,521 1

DDoS

attacks-

LOIC-HTTP

0 0 44 2 0 43
3442

9
0 0 0 0 0 0 3 0

0.002

7

92 /

34,521
1

DoS attacks-

GoldenEye
2 0 0 0 0 0 1

3451

0
0 0 8 0 0 0 0

0.000

3

11 /

34,521
1

DoS attacks-

Hulk
0 0 0 0 0 0 0 21

3450

0
0 0 0 0 0 0

0.000

6

21 /

34,521
1

DoS attacks-
SlowHTTPTes

t

0 0 0 0 0 0 0 0 0
1782

6
0

1669

5
0 0 0

0.483

6

16,695 /

34,521
1

DoS attacks-

Slowloris
0 0 6 0 0 0 3 9 0 0

3450

3
0 0 0 0

0.000

5

18 /

34,521
1

FTP-

BruteForce
0 0 0 0 0 0 0 0 0 0 0

3452

1
0 0 0 0 0 / 34,521

0.6

7

Infilterati

on
9725 2 101 67 0 0 7 2 0 2 3 4

2456

8
40 0

0.288

3

9,953 /

34,521

0.7

4

SQL

Injection
0 0 0 0 0 0 0 0 0 0 0 0 0

3452

1
0 0 0 / 34,521

0.9

7

SSH-

Bruteforce
0 0 0 0 0 0 0 0 0 0 1 3 0 0

3451

7

0.000

1
4 / 34,521 1

Total
3529

2

3452

1

3523

3

3345

0

3452

2

3456

4

3446

7

3454

3

3450

0

1782

9

3451

9

5122

3

3298

6

3564

9

3451

7

0.073

3

37,953 /

517,815

Recall 0.74 1 0.97 0.96 1 1 1 1 1 0.52 1 1 0.71 1 1

115

Cross-validation Matrix

Table 26 Cross-validation Matrix

 B
e
n
i
g
n

B
o
t

B
r
u
t
e

F
o
r
c
e

-
W
e
b

B
r
u
t
e

F
o
r
c
e

-
X
S
S

D
D
O
S

a
t
t
a
c
k
-
H
O
I
C

D
D
O
S

a
t
t
a
c
k
-
L
O
I
C
-

U
D
P

D
D
o
S

a
t
t
a
c
k
s
-
L
O
I
C
-

H
T
T
P

D
o
S

a
t
t
a
c
k
s
-

G
o
l
d
e
n
E
y
e

D
o
S

a
t
t
a
c
k
s
-
H
u
l
k

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
H
T
T
P
T
e
s
t

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
l
o
r
i
s

F
T
P
-
B
r
u
t
e
F
o
r
c
e

I
n
f
i
l
t
e
r
a
t
i
o
n

S
Q
L

I
n
j
e
c
t
i
o
n

S
S
H
-
B
r
u
t
e
f
o
r
c
e

E
r
r
o
r

R
a
t
e

P
r
e
c
i
s
i
o
n

Benign
2542

5
0 418 33 7 0 23 2 0 2 6 1 8571 33 0

0.263

5

9,096 /

34,521

0.7

1

Bot 3
3451

6
0 0 0 0 0 0 0 0 0 0 2 0 0

0.000

1
5 / 34,521 1

Brute Force

-Web
97 0

3363

5
125 0 0 0 0 0 0 0 0 0 664 0

0.025

7

886 /

34,521

0.9

7

Brute Force

-XSS
0 0 403

3387

1
0 0 0 0 0 0 0 0 0 247 0

0.018

8

650 /

34,521

0.9

9

DDOS attack-

HOIC
0 0 0 0

3452

1
0 0 0 0 0 0 0 0 0 0 0 0 / 34,521 1

DDOS attack-

LOIC-UDP
0 0 0 0 0

3451

2
9 0 0 0 0 0 0 0 0

0.000

3
9 / 34,521 1

DDoS

attacks-

LOIC-HTTP

3 0 36 1 0 44
3442

4
0 0 0 0 0 0 13 0

0.002

8

97 /

34,521
1

DoS attacks-

GoldenEye
0 0 1 0 0 0 1

3450

0
7 0 12 0 0 0 0

0.000

6

21 /

34,521
1

DoS attacks-

Hulk
1 0 0 0 0 0 0 26

3449

4
0 0 0 0 0 0

0.000

8

27 /

34,521
1

DoS attacks-

SlowHTTPTes

t

0 0 0 0 0 0 0 0 0
1904

2
0

1547

9
0 0 0

0.448

4

15,479 /

34,521

0.9

3

DoS attacks-

Slowloris
0 0 6 0 0 0 1 11 0 0

3450

0
0 0 3 0

0.000

6

21 /

34,521
1

FTP-

BruteForce
0 0 0 0 0 0 0 0 0 1326 0

3319

5
0 0 0

0.038

4

1,326 /

34,521

0.6

8

Infilterati

on

1009

1
4 126 39 1 0 14 4 0 9 6 4

2417

9
44 0

0.299

6

10,342 /

34,521

0.7

4

SQL

Injection
0 0 0 0 0 0 0 0 0 0 0 0 0

3452

1
0 0 0 / 34,521

0.9

7

SSH-

Bruteforce
0 0 0 0 0 0 0 0 0 0 1 3 2 0

3451

5

0.000

2

6 /
34,521Rat

e: SSH-

Bruteforc

e

1

Total
3562

0

3452

0

3462

5

3406

9

3452

9

3455

6

3447

2

3454

3

3450

1

2037

9

3452

5

4868

2

3275

4

3552

5

3451

5

0.073

3

37,965 /

517,815

Recall 0.74 1 0.97 0.98 1 1 1 1 1 0.55 1 0.96 0.7 1 1
Based on the precision of both confusion matrices (Training and Validation), we can

see that they are almost identical, and there is no change in precision between the

training and validation. We can notice that the precision for the benign class is

around 0.7, which is considered very low since the dataset has a high constitution of

the benign class. It is expected that the model will not perform well, even if the other

classes have a high precision. The rate of misclassification on the benign side will

be high.

116

Performance table with test Data:

Table 27 Performance and Overall Accuracy

 Accuracy Kappa AccuracyLower AccuracyUpper

AccuracyNull

 0.7568898 0.4244448 0.7564380 0.7573412

0.8830848

AccuracyPValue McnemarPValue

 1.0000000 NaN

As expected, we discussed in the training and validation confusion matrices that the

benign has around 0.7 precision, which will impact the overall performance of the

model. We can see the impact in the above matrix, as the accuracy has a value

around ~0.756

Performance Per-Class

Their performance per class has differences in the test data compared to training.

The model failed to classify BruteForce -Web, BruteForce -XSS, DoS attacks-

SlowHTTPtes, FTP-BruteForce, infiltration, and SQL-Injection.

Table 28 Per-Class Performance

Class Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.7289

64

0.9699

09

0.994565 0.32147 0.994

565

0.728

964

0.841

299

0.8830

85

0.643737 0.647255 0.849436139

Class: Bot 0.9996

54

0.9999

02

0.992308 0.999996 0.992

308

0.999

654

0.995

967

0.0125

01

0.012496 0.012593 0.999777982

Class: Brute Force -Web 0.9939

39

0.9892

03

0.00436 1 0.004

36

0.993

939

0.008

682

4.76E-

05

4.73E-05 0.010844 0.991571021

Class: Brute Force -XSS 0.9705

88

0.9986

06

0.013464 0.999999 0.013

464

0.970

588

0.026

559

1.96E-

05

1.90E-05 0.001413 0.984596994

117

Class: DDOS attack-

HOIC

1 0.9999

13

0.995046 1 0.995

046

1 0.997

517

0.0171

99

0.017199 0.017285 0.999956438

Class: DDOS attack-

LOIC-UDP

1 0.9999

37

0.7023 1 0.702

3

1 0.825

119

0.0001

5

0.00015 0.000213 0.999968282

Class: DDoS attacks-

LOIC-HTTP

0.9969

99

0.9991

48

0.983945 0.999843 0.983

945

0.996

999

0.990

429

0.0497

63

0.049614 0.050423 0.998073528

Class: DoS attacks-

GoldenEye

0.9995

97

0.9999

18

0.977638 0.999999 0.977

638

0.999

597

0.988

496

0.0035

81

0.00358 0.003661 0.999757642

Class: DoS attacks-Hulk 0.9992

42

0.9999

6

0.99684 0.99999 0.996

84

0.999

242

0.998

04

0.0125

58

0.012549 0.012588 0.999601058

Class: DoS attacks-

SlowHTTPTest

0.1875 0.9999

92

0.096774 0.999996 0.096

774

0.187

5

0.127

66

4.61E-

06

8.65E-07 8.94E-06 0.593745964

Class: DoS attacks-

Slowloris

0.9989

91

0.9998

15

0.822438 0.999999 0.822

438

0.998

991

0.902

157

0.0008

57

0.000856 0.001041 0.99940281

Class: FTP-BruteForce 0.8666

67

0.9999

78

0.147727 0.999999 0.147

727

0.866

667

0.252

427

4.32E-

06

3.75E-06 2.54E-05 0.933322522

Class: Infilteration 0.7031

62

0.7721

55

0.036391 0.995318 0.036

391

0.703

162

0.069

2

0.0120

89

0.008501 0.233591 0.73765863

Class: SQL Injection 0.92 0.9990

86

0.007206 0.999999 0.007

206

0.92 0.014

299

7.21E-

06

6.63E-06 0.00092 0.959543185

Class: SSH-Bruteforce 0.9997

16

0.9999

95

0.999362 0.999998 0.999

362

0.999

716

0.999

539

0.0081

34

0.008132 0.008137 0.99985561

Table 29 Confusion Matrix for the Test Data

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 223287

0

8 0 0 0 0 22 0 1 0 0 0 1217

2

0 0

Bot 332 4334

5

0 0 0 0 0 0 0 0 0 0 4 0 0

Brute Force -Web 37063 0 164 0 0 0 267 0 0 0 0 0 120 0 0

Brute Force -XSS 4749 0 0 66 0 0 6 0 0 0 0 0 80 1 0

DDOS attack-HOIC 295 0 0 0 5965

8

0 0 0 0 0 0 0 2 0 0

DDOS attack-LOIC-UDP 0 0 0 0 0 519 220 0 0 0 0 0 0 0 0

DDoS attacks-LOIC-

HTTP

2789 0 0 0 0 0 17209

1

0 0 0 0 0 19 0 0

DoS attacks-GoldenEye 243 0 0 0 0 0 0 1241

6

32 0 3 0 6 0 0

DoS attacks-Hulk 136 0 0 0 0 0 0 0 4352

6

0 0 0 2 0 0

118

DoS attacks-

SlowHTTPTest

24 0 0 0 0 0 0 0 0 3 0 2 2 0 0

DoS attacks-Slowloris 632 0 0 0 0 0 0 4 0 0 2969 0 3 1 1

FTP-BruteForce 58 0 0 0 0 0 0 0 0 13 0 13 3 0 1

Infilteration 780738 7 0 0 0 0 0 0 0 0 0 0 2948

5

0 6

SQL Injection 3129 0 1 2 0 0 3 0 0 0 0 0 34 23 0

SSH-Bruteforce 17 0 0 0 0 0 0 1 0 0 0 0 0 0 2820

6

Figure 30 Per-Class precision

Depending on the performance metrics presented, we can note that the GBM

Performs well in most of the classes, but there are still some classes that are either

unpredicted or have a very low precision, which affects the overall performance of

the Model.

7.4.2 Generalized Linear Models (GLM)

The Generalized Linear Model (GLM) from H2o is a regression model that targets

exponential, Gaussian, binomial, and gamma distributions. The function can behave

differently based on the requirements and type of prediction or classification.

0

0.2

0.4

0.6

0.8

1

1.2

GBM

Precision

119

Table 30 Model Parameters for GLM

Parameter Value Description

model_id
GLMModel Destination id for this model; auto-generated if not specified.

seed
-8071143158777241479 Seed for pseudo random number generator (if applicable)

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not

specified. The 'Stratified' option will stratify the folds based on the

response variable, for classification problems.

response_column
Class Response variable column.

ignored_columns
 Names of columns to ignore for training.

family
multinomial

Family. Use binomial for classification with logistic regression,

others are for regression problems.

solver
IRLSM

AUTO will set the solver based on given data and the other

parameters. IRLSM is fast on on problems with small number of

predictors and for lambda-search with L1 penalty, L_BFGS scales

better for datasets with many columns.

alpha
0.5

Distribution of regularization between the L1 (Lasso) and L2

(Ridge) penalties. A value of 1 for alpha represents Lasso

regression, a value of 0 produces Ridge regression, and anything

in between specifies the amount of mixing between the two.

Default value of alpha is 0 when SOLVER = 'L-BFGS'; 0.5

otherwise.

lambda
0 Regularization strength

max_iterations
50 Maximum number of iterations

objective_epsilon
0.000001

Converge if objective value changes less than this. Default

indicates: If lambda_search is set to True the value of

objective_epsilon is set to .0001. If the lambda_search is set to

False and lambda is equal to zero, the value of objective_epsilon

is set to .000001, for any other value of lambda the default value

of objective_epsilon is set to .0001.

gradient_epsilon
0.000001

Converge if objective changes less (using L-infinity norm) than

this, ONLY applies to L-BFGS solver. Default indicates: If

lambda_search is set to False and lambda is equal to zero, the

default value of gradient_epsilon is equal to .000001, otherwise

the default value is .0001. If lambda_search is set to True, the

conditional values above are 1E-8 and 1E-6 respectively.

120

link
multinomial Link function.

lambda_min_ratio
0.0001

Minimum lambda used in lambda search, specified as a ratio of

lambda_max (the smallest lambda that drives all coefficients to

zero). Default indicates: if the number of observations is greater

than the number of variables, then lambda_min_ratio is set to

0.0001; if the number of observations is less than the number of

variables, then lambda_min_ratio is set to 0.01.

max_active_predictors
5000

Maximum number of active predictors during computation. Use

as a stopping criterion to prevent expensive model building with

many predictors. Default indicates: If the IRLSM solver is used,

the value of max_active_predictors is set to 5000 otherwise it is

set to 100000000.

obj_reg
0.000001931191641802574

Likelihood divider in objective value computation, default is

1/nobs

Training Confusion Matrix

Table 31 Confusion Matrix for GLM

 B
e
n
i
g
n

B
o
t

B
r
u
t
e
 F
o
r
c
e
 -

W
e
b

B
r
u
t
e
 F
o
r
c
e
 -

X
S
S

D
D
O
S

a
t
t
a
c
k
-

H
O
I
C

D
D
O
S

a
t
t
a
c
k
-

L
O
I
C
-
U
D
P

D
D
o
S

a
t
t
a
c
k
s
-

L
O
I
C
-
H
T
T
P

D
o
S

a
t
t
a
c
k
s
-

G
o
l
d
e
n
E
y
e

D
o
S

a
t
t
a
c
k
s
-

H
u
l
k

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
H
T
T
P
T
e
s
t

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
l
o
r
i
s

F
T
P
-

B
r
u
t
e
F
o
r
c
e

I
n
f
i
l
t
e
r
a
t
i
o

n

S
Q
L

I
n
j
e
c
t
i
o
n

S
S
H
-

B
r
u
t
e
f
o
r
c
e

E
r
r
o
r

R
a
t
e

P
r
e
c
i
s
i
o
n

Benign
147

87
503

117

8
784 189 0

262

9
39 219 2 109 1

135

85
485 11

0.5

717

19,7

34 /

34,5

21

0.

59

Bot
104

3

329

54
3 0 0 0 0 0 8 0 0 0 513 0 0

0.0

454

1,56

7 /

34,5

21

0.

97

Brute

Force -

Web

115

0
0

150

50

577

8
0 0

148

6
0 0 0 0 0 620

104

37
0

0.5

64

19,4

71 /

34,5
21

0.

79

Brute

Force -
XSS

0 0
130

8

293

02
0 0

169

1
0 0 0 0 0 237

198

3
0

0.1

512

5,21

9 /

34,5

21

0.

67

DDOS
attack-

HOIC

0 0 0 0
345

14
0 0 0 0 0 0 0 4 3 0

0.0

002

7 /
34,5

21

0.

99

DDOS
attack-

LOIC-UDP

0 0 0 0 0
341

98
0 0 0 0 0 0 323 0 0

0.0

094

323

/

34,5

21

1

DDoS
attacks-

LOIC-

HTTP

0 0 0 2 0 44
344

72
0 0 0 0 0 3 0 0

0.0

014

49 /

34,5

21

0.

82

DoS

attacks-

GoldenEy

e

4 0 0 1 0 0 0
342

34
197 0 85 0 0 0 0

0.0

083

287

/

34,5

21

0.

98

121

DoS

attacks-
Hulk

0 0 28 1 0 0 0 112
341

04
0 0 0 0 276 0

0.0

121

417

/

34,5

21

0.

97

DoS

attacks-
SlowHTTP

Test

0 0 0 0 0 0 0 0 0
282
31

0
629
0

0 0 0
0.1
822

6,29

0 /
34,5

21

0.
5

DoS

attacks-

Slowlori

s

0 0 0 46 0 0 0 342 256 28
336

85
4 24 136 0

0.0

242

836

/

34,5

21

0.

99

FTP-

BruteFor

ce

0 0 0 0 0 0 0 0 0
278

48
0

667

3
0 0 0

0.8

067

27,8
48 /

34,5

21

0.

51

Infilter

ation

795

4
493 639

302

8
163 0 889 320 361 19 160 2

200

30
440 23

0.4

198

14,4

91 /

34,5
21

0.

56

SQL

Injectio
n

0 0 749
489

2
0 0 685 0 0 0 0 0 710

274

85
0

0.2

038

7,03

6 /

34,5

21

0.

67

SSH-

Brutefor
ce

0 0 0 0 0 0 0 0 60 1 0 3 0 9
344

48

0.0

021

73 /

34,5
21

1

Total
249
38

339
50

189
55

438
34

348
66

342
42

418
52

350
47

352
05

561
29

340
39

129
73

360
49

412
54

344
82

0.2
002

103,

648

/

517,

815

Recall
0.4
3

0.9
5

0.4
4

0.8
5

1
0.9

9
1

0.9
9

0.9
9

0.8
2

0.9
8

0.1
9

0.5
8

0.8 1

In the training confusion matrix, we can see that benign has a very low precision.

This is considered a bad indicator, as it happened in GBM. The high percentage of

the benign in the dataset will have an effect on the overall accuracy and precision.

The other classes have good overall precision, except for FTP-BruteForce and SQL

injection.

Overall Performance

Table 32 Overall Performance for the Model

 Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

 0.4874235 0.2155967 0.4868973 0.4879497 0.8830848

AccuracyPValue McnemarPValue

 1.0000000 NaN

As expected from the training confusion matrix, the test classification accuracy has

an overall accuracy of ~0.48. General overview of the results and inspecting the

122

precision of each class. We can conclude that the model is not performing very well.

In the majority of the classes, the model fails in classification.

Performance Per-Class

Table 33 Performance per-class for GLM

Sensit

ivity

Specif

icity

Pos Pred

Value

Neg Pred

Value

Preci

sion

Recal

l

F1 Preval

ence

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.426

43

0.972

663

0.991584 0.18335 0.991

584

0.426

43

0.596

385

0.8830

85

0.376574 0.37977 0.699546

Class: Bot 0.952

975

0.987

287

0.486897 0.999397 0.486

897

0.952

975

0.644

503

0.0125

01

0.011913 0.024467 0.970131

Class: Brute Force -

Web

0.442

424

0.970

766

0.000719 0.999973 0.000

719

0.442

424

0.001

437

4.76E-

05

2.10E-05 0.029253 0.706595

Class: Brute Force -

XSS

0.955

882

0.978

725

0.00088 0.999999 0.000

88

0.955

882

0.001

759

1.96E-

05

1.87E-05 0.021293 0.967304

Class: DDOS attack-

HOIC

0.999

883

0.994

925

0.775172 0.999998 0.775

172

0.999

883

0.873

304

0.0171

99

0.017197 0.022185 0.997404

Class: DDOS attack-

LOIC-UDP

0.994

22

0.999

936

0.698241 0.999999 0.698

241

0.994

22

0.820

35

0.0001

5

0.000149 0.000213 0.997078

Class: DDoS attacks-

LOIC-HTTP

0.998

499

0.928

342

0.421873 0.999915 0.421

873

0.998

499

0.593

14

0.0497

63

0.049689 0.117781 0.963421

Class: DoS attacks-

GoldenEye

0.992

11

0.998

738

0.738656 0.999972 0.738

656

0.992

11

0.846

825

0.0035

81

0.003553 0.00481 0.995424

Class: DoS attacks-

Hulk

0.988

292

0.993

791

0.669346 0.99985 0.669

346

0.988

292

0.798

135

0.0125

58

0.012411 0.018542 0.991041

Class: DoS attacks-

SlowHTTPTest

0.75 0.999

842

0.021429 0.999999 0.021

429

0.75 0.041

667

4.61E-

06

3.46E-06 0.000161 0.874921

Class: DoS attacks-

Slowloris

0.972

746

0.996

831

0.208405 0.999977 0.208

405

0.972

746

0.343

268

0.0008

57

0.000833 0.003999 0.984789

Class: FTP-

BruteForce

0.4 0.999

981

0.082192 0.999997 0.082

192

0.4 0.136

364

4.32E-

06

1.73E-06 2.10E-05 0.69999

Class: Infilteration 0.574

215

0.647

137

0.019524 0.992013 0.019

524

0.574

215

0.037

765

0.0120

89

0.006942 0.355539 0.610676

Class: SQL Injection 0.8 0.986

482

0.000426 0.999999 0.000

426

0.8 0.000

852

7.21E-

06

5.77E-06 0.013524 0.893241

Class: SSH-

Bruteforce

0.997

377

0.999

669

0.961098 0.999978 0.961

098

0.997

377

0.978

902

0.0081

34

0.008113 0.008441 0.998523

Table 34 Confusion Matrix for GLM (Test Data)

123

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 130618

6

4297

9

10055

3

6996

6

1712

9

2 23506

4

3833 2065

0

520 1076

3

61 120839

9

4586

3

1107

Bot 1301 4132

1

0 0 0 0 0 0 14 0 0 0 724 0 0

Brute Force -Web 5 0 73 32 0 0 4 0 0 0 0 0 1 50 0

Brute Force -XSS 0 0 0 65 0 0 1 0 0 0 0 0 1 1 0

DDOS attack-HOIC 0 0 0 0 5965

1

0 0 0 0 0 0 0 5 2 0

DDOS attack-LOIC-

UDP

0 0 0 0 0 516 0 0 0 0 0 0 3 0 0

DDoS attacks-LOIC-

HTTP

0 0 0 25 0 220 17235

0

0 0 0 0 0 11 3 0

DoS attacks-

GoldenEye

1 0 0 0 0 0 0 1232

3

66 0 31 0 0 0 0

DoS attacks-Hulk 0 0 31 2 0 0 0 116 4304

9

0 0 0 0 361 0

DoS attacks-

SlowHTTPTest

0 0 0 0 0 0 0 0 0 12 0 4 0 0 0

DoS attacks-Slowloris 0 0 0 3 0 0 0 36 25 2 2891 0 2 13 0

FTP-BruteForce 0 0 0 0 0 0 0 0 0 9 0 6 0 0 0

Infilteration 9779 566 810 3762 172 1 1116 375 456 16 187 2 24078 580 32

SQL Injection 0 0 1 3 0 0 0 0 0 0 0 0 1 20 0

SSH-Bruteforce 0 0 0 0 0 0 0 0 55 1 0 0 1 17 2814

0

Figure 31 Per-Class Performance for GLM

0

0.2

0.4

0.6

0.8

1

1.2

GLM

Precision

124

We can observe that GLM has failed in multiple classes, which are very similar to

the GBM model, but with additional classes that have very low precision, which is

DoS attacks-Sloworis.

7.4.3 Deep Learning (Neural Networks)

The package used for the Deep neural network is from h2o in Rstudio. This package

uses the feedforward method artificial network. The network is capable of having a

huge number of hidden layers that have neurons, rectifiers, and activation functions.

This function has a lot of features that assist the training of models in deep learning.

Some of them are adaptive learning and grid search, which can increase and

facilitate a high accuracy with the model predictions and classifications. Finally, the

function is highly optimized as it uses multithreading (async), which allows utilization

of the system resources. Similar to GBM, in order to build the model, we have to

provide Training and validation Data. In building the model, we used the below

inputs.

Table 35 Model Parameters for DeepLearning

Parameter Value Description

model_id
NNModel Destination id for this model; auto-generated if not specified.

nfolds
15 Number of folds for K-fold cross-validation (0 to disable or >= 2).

fold_assignment
Random

Cross-validation fold assignment scheme, if fold_column is not

specified. The 'Stratified' option will stratify the folds based on the

response variable, for classification problems.

response_column
Class Response variable column.

ignored_columns
 Names of columns to ignore for training.

score_each_iteration
true Whether to score during each iteration of model training.

overwrite_with_best_model
false

If enabled, override the final model with the best model found during

training.

125

activation
RectifierWithDropout Activation function.

hidden
200, 200 Hidden layer sizes (e.g. [100, 100]).

epochs
3.540479626199161

How many times the dataset should be iterated (streamed), can be

fractional.

seed
42

Seed for random numbers (affects sampling) - Note: only

reproducible when running single threaded.

distribution
multinomial Distribution function

stopping_rounds
0

Early stopping based on convergence of stopping_metric. Stop if

simple moving average of length k of the stopping_metric does not

improve for k:=stopping_rounds scoring events (0 to disable)

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification,

deviance for regression and anonomaly_score for Isolation Forest).

Note that custom and custom_increasing can only be used in GBM

and DRF with the Python client.

export_weights_and_biases
true

Whether to export Neural Network weights and biases to H2O

Frames.

categorical_encoding
OneHotInternal Encoding scheme for categorical features

126

Training Confusion Matrix:

Table 36 Training Confusion Matrix for Deep Learning

B
e
n
i
g
n

B
o
t

B
r
u
t
e
 F
o
r
c
e
 -

W
e
b

B
r
u
t
e
 F
o
r
c
e
 -

X
S
S

D
D
O
S

a
t
t
a
c
k
-

H
O
I
C

D
D
O
S

a
t
t
a
c
k
-

L
O
I
C
-
U
D
P

D
D
o
S

a
t
t
a
c
k
s
-

L
O
I
C
-
H
T
T
P

D
o
S

a
t
t
a
c
k
s
-

G
o
l
d
e
n
E
y
e

D
o
S

a
t
t
a
c
k
s
-

H
u
l
k

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
H
T
T
P
T
e
s
t

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
l
o
r
i
s

F
T
P
-

B
r
u
t
e
F
o
r
c
e

I
n
f
i
l
t
e
r
a
t
i
o

n

S
Q
L

I
n
j
e
c
t
i
o
n

S
S
H
-

B
r
u
t
e
f
o
r
c
e

E
r
r
o
r

R
a
t
e

P
r
e
c
i
s
i
o
n

Benign 560 27 14 39 7 4 49 2 0 0 0 0 0 0 0
0.202

3

142

/
702

0.5

4

Bot 2
64

7
0 0 0 0 0 0 0 0 0 0 0 0 0

0.003

1

2 /

649

0.8

9

Brute Force

-Web
0 0

44

1
186 0 0 0 0 0 0 0 0 0 0 0

0.296

7

186

/

627

0.5

2

Brute Force
-XSS

0 0 14 664 0 0 0 0 0 0 0 0 0 0 0
0.020

6
14 /
678

0.5
2

DDOS

attack-HOIC
0 0 0 0

66

7
0 0 0 0 0 0 0 0 0 0 0

0 /

667

0.9

8

DDOS

attack-

LOIC-UDP

1 0 0 0 0
63

1
0 0 0 0 0 0 0 0 0

0.001

6

1 /

632

0.9

8

DDoS

attacks-

LOIC-HTTP

0 0 0 4 0 2 664 0 0 0 0 0 0 0 0 0.009
6 /

670

0.9

2

DoS

attacks-

GoldenEye

0 0 0 0 0 0 0
65

3
0 0 1 0 0 0 0

0.001

5

1 /

654

0.9

6

DoS
attacks-

Hulk

0 0 1 0 0 0 0 3 652 0 0 0 0 0 0
0.006

1

4 /

656

0.9

8

DoS

attacks-

SlowHTTPTes

t

0 0 0 0 0 0 0 0 0 655 0 0 0 0 0 0
0 /

655
0.5

DoS
attacks-

Slowloris

8 0 2 4 0 0 0 13 4 0 628 0 0 0 0 0.047
31 /

659
1

FTP-

BruteForce
0 0 0 0 0 0 0 0 0 658 0 0 0 0 0 1

658

/

658

NaN

Infilterati

on
475 50 4 83 7 8 7 9 7 0 0 0 0 0 1 1

651
/

651

NaN

SQL
Injection

0 0
36
5

301 0 0 0 0 0 0 0 0 0 0 0 1

666

/

666

NaN

SSH-

Bruteforce
0 0 0 0 0 0 0 0 3 0 0 0 0 0

68

1

0.004

4

3 /

684
1

Total
104

6

72

4

84

1

128

1

68

1

64

5
720

68

0
666

131

3
629 0 0 0

68

2

0.238

7

2,36

5 /

9,90

8

Recall 0.8 1
0.

7

0.9

8
1 1

0.9

9
1

0.9

9
1

0.9

5
0 0 0 1

127

Cross-validation Matrix

Table 37 Cross-validation Matrix for Deep Learning

B
en

ig
n

B
ot

B
ru

te

Fo
rc

e
-

W
eb

B
ru

te

Fo
rc

e
-

XS
S

D
D

O
S

at
ta

ck
-

H
O

IC

D
D

O
S

at
ta

ck
-

LO
IC

-U
D

P

D
D

oS

at
ta

ck
s-

LO
IC

-H
TT

P

D
oS

at

ta
ck

s-
G

ol
de

nE
ye

D
oS

at

ta
ck

s-
H

ul
k

D
oS

at

ta
ck

s-
Sl

ow
H

TT
PT

es
t

D
oS

at

ta
ck

s-
Sl

ow
lo

ris

FT
P-

B
ru

te
Fo

rc
e

In
fil

te
ra

tio
n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Er
ro

r

R
at

e

Pr
ec

is
io

n

Benign 8256
46

348
70

161
12

541
41

111
56

343
0

6816
7

587
7 611 3

2 763 0 2
0 0 200 0.19

14

195,379
/
1,021,0
25

0.9
9

Bot 25 144
24 0 0 0 4 0 0 0 0 0 0 0 0 0 0.00

2
29 /
14,453

0.2
9

Brute
Force -
Web

0 0 43 12 0 0 0 0 0 0 0 0 0 0 0 0.21
82 Dec-55 0

Brute
Force -XSS 0 0 1 21 0 0 0 0 0 0 0 0 0 0 0 0.04

55 22-Jan 0
DDOS
attack-
HOIC

0 0 0 0 198
86 0 0 0 0 0 0 0 0 0 0 0 0 /

19,886
0.6

4
DDOS
attack-
LOIC-UDP

1 0 0 0 0 172 0 0 0 0 0 0 0 0 0 0.00
58 1 / 173 0.0

4
DDoS
attacks-
LOIC-
HTTP

6 0 0 336 5 79 5711
0 0 0 0 0 0 0 0 0 0.00

74
426 /
57,536

0.4
5

DoS
attacks-
GoldenEye

1 0 0 0 0 0 0 413
6 0 0 3 0 0 0 0 0.00

1 4 / 4,140 0.4

DoS
attacks-
Hulk

0 0 2 1 0 0 0 54 144
57 0 5 0 0 0 0 0.00

43
62 /
14,519

0.9
5

DoS
attacks-
SlowHTTP
Test

0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 / 5 0.1

DoS
attacks-
Slowloris

15 0 0 4 1 2 0 15 8 0 945 0 0 0 0 0.04
55 45 / 990 0.5

5
FTP-
BruteForc
e

0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 1 5-May Na
N

Infilteratio
n 9979 128

8 145 170
2 76 222 275 179 83 8 11 0 2 0 7 0.99

99
13,975 /
13,977

0.0
9

SQL
Injection 0 0 7 1 0 0 0 0 0 0 0 0 0 0 0 1 8-Aug Na

N

SSH-
Bruteforce 0 0 0 0 0 2 0 0 13 1 0 0 0 0 938

8
0.00

17

16 /
9,404Ra
te: SSH-
Brutefo
rce

0.9
8

Total 8356
73

505
82

163
10

562
18

311
24

391
1

1255
52

102
61

151
72

5
1

172
7 0 2

2 0 959
5

0.18
16

209,963
/
1,156,1
98

Recall 0.81 1 0.78 0.95 1 0.9
9 0.99 1 1 1 0.9

5 0 0 0 1

The Training and Validation Matrices have different values in precision for each

class. Some classes had a very low precision, especially Benign, which has a

precision of 0.5, but staringly, it got ~0.9 in the validation matrix. Some classes were

not detected at all in both Matrices. Anyway, we will have the model test on the test

Data.

128

Performance table with test Data:

Table 38 Overall Performance

 Accuracy Kappa AccuracyLower AccuracyUpper

AccuracyNull

 0.8178779 0.4877315 0.8174714 0.8182840

0.8830848

AccuracyPValue McnemarPValue

 1.0000000 NaN

The overall accuracy of the model is performing well in comparison to the Training

metrics. Even though the model has failed in many classes, as we can see in the

table below. However, the high accuracy value may be attributed to the high

precision of the benign class.

Table 39 Per-Class Accuracy for Deep Learning

Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.8080

39

0.9259

05

0.988005 0.389719 0.9880

05

0.8080

39

0.8890

06

0.8830

85

0.713567 0.722229 0.866972

Class: Bot 0.9977

63

0.9681

86

0.284188 0.999971 0.2841

88

0.9977

63

0.4423

76

0.0125

01

0.012473 0.043889 0.982974

Class: Brute Force -Web 0.7515

15

0.9860

6

0.002558 0.999988 0.0025

58

0.7515

15

0.0050

99

4.76E-

05

3.57E-05 0.013975 0.868788

Class: Brute Force -XSS 0.9852

94

0.9509

31

0.000394 1 0.0003

94

0.9852

94

0.0007

87

1.96E-

05

1.93E-05 0.049088 0.968112

Class: DDOS attack-

HOIC

0.9999

33

0.9900

87

0.638373 0.999999 0.6383

73

0.9999

33

0.7792

56

0.0171

99

0.017198 0.026941 0.99501

Class: DDOS attack-

LOIC-UDP

0.9961

46

0.9967

09

0.043329 0.999999 0.0433

29

0.9961

46

0.0830

46

0.0001

5

0.000149 0.00344 0.996427

129

Class: DDoS attacks-

LOIC-HTTP

0.9927

76

0.9375

87

0.454451 0.999597 0.4544

51

0.9927

76

0.6234

93

0.0497

63

0.049404 0.108711 0.965181

Class: DoS attacks-

GoldenEye

0.9987

12

0.9948

1

0.408826 0.999995 0.4088

26

0.9987

12

0.5801

61

0.0035

81

0.003576 0.008748 0.996761

Class: DoS attacks-Hulk 0.9966

02

0.9993

53

0.951411 0.999957 0.9514

11

0.9966

02

0.9734

83

0.0125

58

0.012515 0.013155 0.997978

Class: DoS attacks-

SlowHTTPTest

1 0.9999

58

0.1 1 0.1 1 0.1818

18

4.61E-

06

4.61E-06 4.61E-05 0.999979

Class: DoS attacks-

Slowloris

0.9552

49

0.9993

55

0.559519 0.999962 0.5595

19

0.9552

49

0.7056

92

0.0008

57

0.000818 0.001463 0.977302

Class: FTP-BruteForce 0 1 NA 0.999996 NA 0 NA 4.32E-

06

0 0 0.5

Class: Infilteration 0.0004

05

0.9999

86

0.261538 0.987916 0.2615

38

0.0004

05

0.0008

1

0.0120

89

4.90E-06 1.87E-05 0.500196

Class: SQL Injection 0 1 NA 0.999993 NA 0 NA 7.21E-

06

0 0 0.5

Class: SSH-Bruteforce 0.9973

77

0.9998

14

0.977796 0.999978 0.9777

96

0.9973

77

0.9874

9

0.0081

34

0.008113 0.008297 0.998596

Table 40 Confusion Matrix for Deep Learning with Test Data

B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 247508

3

10495

1

4791

7

16417

0

3353

5

1051

2

20487

7

1717

7

1886 122 2180 0 46 0 619

Bot 81 43263 0 0 0 15 0 1 0 0 0 0 0 0 0

Brute Force -Web 0 0 124 41 0 0 0 0 0 0 0 0 0 0 0

Brute Force -XSS 0 0 1 67 0 0 0 0 0 0 0 0 0 0 0

DDOS attack-HOIC 0 0 2 0 5965

4

2 0 0 0 0 0 0 0 0 0

DDOS attack-LOIC-UDP 2 0 0 0 0 517 0 0 0 0 0 0 0 0 0

DDoS attacks-LOIC-

HTTP

33 0 0 979 14 221 17136

2

0 0 0 0 0 0 0 0

DoS attacks-GoldenEye 1 0 0 0 0 0 0 1240

5

3 0 12 0 0 0 0

DoS attacks-Hulk 2 0 6 13 0 0 0 117 4341

1

0 10 0 0 0 0

DoS attacks-

SlowHTTPTest

0 0 0 0 0 0 0 0 0 16 0 0 0 0 0

DoS attacks-Slowloris 40 0 6 10 5 0 0 53 17 0 2839 0 2 0 0

FTP-BruteForce 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0

Infilteration 29889 4020 407 4972 239 658 836 590 245 6 33 0 17 0 20

130

SQL Injection 0 0 11 14 0 0 0 0 0 0 0 0 0 0 0

SSH-Bruteforce 0 0 0 0 0 7 0 0 66 1 0 0 0 0 2814

0

Figure 32 Per-Class Performance for Deep Learning

As seen in the figure above, the deep learning model has failed many classes and

could not classify them with 0 precision. Even though the model's overall accuracy

is over ~0.8, which means that the model can perform on the majority of the data, it

will misclassify minor classes.

7.4.4 Random Forest (Ranger)

Ranger is one of the fastest implementations for RStudio that exists in standard

CRAN packages. The Ranger function is extremely fast, and it can handle large data

with high dimensionality even in commodity hardware, as the algorithm is highly

optimized. The algorithm can have different functions based on the scenario as it

supports classification, regression, and prediction.

0

0.2

0.4

0.6

0.8

1

1.2

Deep Learning (Neural Network)

131

The model has followed the same procedure as the previous models, and we have

used the parameters below to build the model.

Table 41 Parameter Inputs for Random Forest (Ranger)

Type: Classification

Number of trees: 500

Sample size: 517815

Number of independent variables: 70

Mtry: 8

Target node size: 1

Variable importance mode: impurity

Splitrule: gini

OOB prediction error: 7.37 %

Table 42 Confusion Matrix for Random Forest (Ranger) - Training Data

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

P
re

ci
si

o
n

Benign 3335

5

0 0 0 0 0 4 0 0 0 0 0 390 0 0 0.99

Bot 0 3452

1

0 0 0 0 0 0 0 0 0 0 0 0 0 1.00

Brute Force -Web 12 0 3401

2

0 0 0 0 0 0 0 0 0 1 0 0 1.00

Brute Force -XSS 0 0 0 3427

4

0 0 0 0 0 0 0 0 0 0 0 1.00

DDOS attack-HOIC 0 0 0 0 3452

1

0 0 0 0 0 0 0 0 0 0 1.00

DDOS attack-LOIC-

UDP

0 0 0 0 0 3452

1

0 0 0 0 0 0 0 0 0 1.00

132

DDoS attacks-LOIC-

HTTP

2 0 0 0 0 0 3451

7

0 0 0 0 0 0 0 0 1.00

DoS attacks-

GoldenEye

0 0 0 0 0 0 0 3452

1

0 0 0 0 0 0 0 1.00

DoS attacks-Hulk 0 0 0 0 0 0 0 0 3452

1

0 0 0 0 0 0 1.00

DoS attacks-

SlowHTTPTest

0 0 0 0 0 0 0 0 0 1469

2

0 0 1 0 0 1.00

DoS attacks-Slowloris 0 0 0 0 0 0 0 0 0 0 3452

1

0 1 0 0 1.00

FTP-BruteForce 0 0 0 0 0 0 0 0 0 1982

9

0 3452

1

0 0 3 0.64

Infilteration 1151 0 0 0 0 0 0 0 0 0 0 0 3412

8

0 0 0.97

SQL Injection 1 0 509 247 0 0 0 0 0 0 0 0 0 3452

1

0 0.98

SSH-Bruteforce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3451

8

1.00

On the training set, we can see that the model is very promising, and the per-class

precision is around ~1 for almost all the classes except for the FTP-brute force. We

need to validate these metrics with actual test data because we might have an

overfitting issue with results mostly approaching 1.

 Performance table with test Data:

Table 43 Overall Performance for Random Forest (Ranger)

 Accuracy Kappa AccuracyLower AccuracyUpper
AccuracyNull

 0.7893861 0.4687281 0.7889566 0.7898151
0.8830848

AccuracyPValue McnemarPValue

 1.0000000 NaN
With the test data, we have some changes that we can immediately notice. First, the

accuracy is around ~0.79., and the majority of the classes have a precision

approaching 1, but now we have more classes that have less precision, which are

BruteForce-Web, BruteForce-XSS, FTP-BruteForce, and Infiltration. It's important to

133

note that the results of the training phase should not be used as an indicator, and

testing must always be conducted.

Table 44 Per-Class Performance for Random Forest (Ranger)

Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.7640

46

0.9813

73

0.996783 0.355109 0.996

783

0.764

046

0.865

034

0.8830

85

0.674718 0.676895 0.872709

Class: Bot 0.9998

62

0.9999

41

0.995362 0.999998 0.995

362

0.999

862

0.997

607

0.0125

01

0.012499 0.012557 0.999901

Class: Brute Force -Web 0.9818

18

0.9994

16

0.074074 0.999999 0.074

074

0.981

818

0.137

755

4.76E-

05

4.67E-05 0.000631 0.990617

Class: Brute Force -XSS 0.9264

71

0.9998

93

0.144828 0.999999 0.144

828

0.926

471

0.250

497

1.96E-

05

1.82E-05 0.000125 0.963182

Class: DDOS attack-

HOIC

1 0.9998

07

0.989107 1 0.989

107

1 0.994

524

0.0171

99

0.017199 0.017389 0.999904

Class: DDOS attack-

LOIC-UDP

1 0.9999

45

0.732017 1 0.732

017

1 0.845

277

0.0001

5

0.00015 0.000204 0.999973

Class: DDoS attacks-

LOIC-HTTP

0.9984

94

0.9994

8

0.990159 0.999921 0.990

159

0.998

494

0.994

309

0.0497

63

0.049688 0.050182 0.998987

Class: DoS attacks-

GoldenEye

1 0.9999

64

0.990037 1 0.990

037

1 0.994

993

0.0035

81

0.003581 0.003617 0.999982

Class: DoS attacks-Hulk 0.9999

08

0.9999

85

0.998808 0.999999 0.998

808

0.999

908

0.999

358

0.0125

58

0.012557 0.012572 0.999946

Class: DoS attacks-

SlowHTTPTest

0.125 0.9999

98

0.25 0.999996 0.25 0.125 0.166

667

4.61E-

06

5.77E-07 2.31E-06 0.562499

Class: DoS attacks-

Slowloris

1 0.9999

31

0.925857 1 0.925

857

1 0.961

501

0.0008

57

0.000857 0.000925 0.999966

Class: FTP-BruteForce 0.8666

67

0.9999

92

0.325 0.999999 0.325 0.866

667

0.472

727

4.32E-

06

3.75E-06 1.15E-05 0.933329

Class: Infilteration 0.8212

34

0.7907

26

0.04582 0.997241 0.045

82

0.821

234

0.086

797

0.0120

89

0.009928 0.216672 0.80598

Class: SQL Injection 0.92 0.9999

37

0.095436 0.999999 0.095

436

0.92 0.172

932

7.21E-

06

6.63E-06 6.95E-05 0.959969

Class: SSH-Bruteforce 0.9999

65

0.9999

87

0.998408 1 0.998

408

0.999

965

0.999

185

0.0081

34

0.008134 0.008147 0.999976

134

Table 45 Confusion Matrix for Test Data for Random Forest (Ranger)

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 234033

1

202 2013 372 653 5 1713 119 51 3 236 10 71711

0

212 45

Bot 6 4335

4

0 0 0 0 0 0 0 0 0 0 0 0 0

Brute Force -Web 1 0 162 0 0 0 0 0 0 0 0 0 0 2 0

Brute Force -XSS 1 0 3 63 0 0 0 0 0 0 0 0 0 1 0

DDOS attack-HOIC 0 0 0 0 5965

8

0 0 0 0 0 0 0 0 0 0

DDOS attack-LOIC-UDP 0 0 0 0 0 519 0 0 0 0 0 0 0 0 0

DDoS attacks-LOIC-

HTTP

71 0 1 0 0 185 17234

9

0 0 0 0 0 3 0 0

DoS attacks-GoldenEye 0 0 0 0 0 0 0 1242

1

0 0 0 0 0 0 0

DoS attacks-Hulk 0 0 0 0 0 0 0 4 4355

5

0 0 0 0 0 0

DoS attacks-

SlowHTTPTest

0 0 0 0 0 0 0 0 0 2 0 14 0 0 0

DoS attacks-Slowloris 0 0 0 0 0 0 0 0 0 0 2972 0 0 0 0

FTP-BruteForce 0 0 0 0 0 0 0 0 0 2 0 13 0 0 0

Infilteration 7475 0 6 0 4 0 0 2 1 1 2 2 34436 3 0

SQL Injection 0 0 2 0 0 0 0 0 0 0 0 0 0 23 0

SSH-Bruteforce 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2821

3

Figure 33 Per-class Performance for Random Forest (Ranger)

0

0.2

0.4

0.6

0.8

1

1.2

Random Forest - Ranger

Precision

135

As discussed earlier, the Random Forest Model performed very well in most of the

classes, but in some classes, the model failed with a very low precision.

7.4.5 Distributed Random Forest (DRF)

One of the powerful classification Models is the distributed Random Forest (DRF).

When the function is invoked, the DRF will generate a forest and its primary tasks

classification or regression. The more trees that the function generates, the less

variance will be present in the results.

Model Parameters:
Table 46 Model Parameters for DRF

Parameter Value Description

model_id
RFModel Destination id for this model; auto-generated if not specified.

fold_assignment

Cross-validation fold assignment scheme, if fold_column is not

specified. The 'Stratified' option will stratify the folds based on

the response variable, for classification problems.

response_column
Class Response variable column.

ignored_columns
 Names of columns to ignore for training.

ntrees
100 Number of trees.

max_depth
500 Maximum tree depth (0 for unlimited).

min_rows
10 Fewest allowed (weighted) observations in a leaf.

r2_stopping
1.7976931348623157e+308

r2_stopping is no longer supported and will be ignored if set -

please use stopping_rounds, stopping_metric and

stopping_tolerance instead. Previous version of H2O would

stop making trees when the R^2 metric equals or exceeds this

stopping_metric

Metric to use for early stopping (AUTO: logloss for classification,

deviance for regression and anonomaly_score for Isolation

Forest). Note that custom and custom_increasing can only be

used in GBM and DRF with the Python client.

seed
-5640707449536764199 Seed for pseudo random number generator (if applicable)

binomial_double_trees
true

For binary classification: Build 2x as many trees (one per class)

- can lead to higher accuracy.

histogram_type
UniformAdaptive What type of histogram to use for finding optimal split points

136

categorical_encoding
Enum Encoding scheme for categorical features

calibration_frame
ValidateSampel_sid_903c_23 Calibration frame for Platt Scaling

distribution
multinomial Distribution function

Training Confusion Matrix:

Table 47 Training Confusion Matrix for DRF

 B
e
n
i
g
n

B
o
t

B
r
u
t
e
 F
o
r
c
e
 -

W
e
b

B
r
u
t
e
 F
o
r
c
e
 -

X
S
S

D
D
O
S

a
t
t
a
c
k
-

H
O
I
C

D
D
O
S

a
t
t
a
c
k
-

L
O
I
C
-
U
D
P

D
D
o
S

a
t
t
a
c
k
s
-

L
O
I
C
-
H
T
T
P

D
o
S

a
t
t
a
c
k
s
-

G
o
l
d
e
n
E
y
e

D
o
S

a
t
t
a
c
k
s
-

H
u
l
k

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
H
T
T
P
T
e
s
t

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
l
o
r
i
s

F
T
P
-

B
r
u
t
e
F
o
r
c
e

I
n
f
i
l
t
e
r
a
t
i
o

n

S
Q
L

I
n
j
e
c
t
i
o
n

S
S
H
-

B
r
u
t
e
f
o
r
c
e

E
r
r
o
r

R
a
t
e

P
r
e
c
i
s
i
o
n

Benign
257

45
2 466 10 9 0 27 0 4 0 9 0

822

7
22 0

0.2

542

8,77

6 /

34,5

21

0.

77

Bot 7
345

12
0 0 0 0 0 0 0 0 0 0 2 0 0

0.0

003

9 /

34,5
21

1

Brute

Force -
Web

0 0
335

42
195 0 0 0 0 0 0 0 0 0 784 0

0.0

284

979

/

34,5

21

0.

95

Brute

Force -

XSS

0 0
104
3

332
31

0 0 0 0 0 0 0 0 0 247 0
0.0
374

1,29

0 /
34,5

21

0.
99

DDOS

attack-

HOIC

0 0 0 0
345
21

0 0 0 0 0 0 0 0 0 0 0

0 /

34,5

21

1

DDOS
attack-

LOIC-UDP

0 0 0 0 0
345

21
0 0 0 0 0 0 0 0 0 0

0 /
34,5

21

1

DDoS

attacks-

LOIC-

HTTP

15 0 28 1 0 46
344

25
0 0 0 0 0 1 5 0

0.0

028

96 /
34,5

21

1

DoS
attacks-

GoldenEy

e

0 0 0 1 0 0 0
345

00
13 0 7 0 0 0 0

0.0

006

21 /

34,5

21

1

DoS

attacks-

Hulk

0 0 0 0 0 0 0 22
344

99
0 0 0 0 0 0

0.0

006

22 /

34,5

21

1

DoS
attacks-

SlowHTTP

Test

0 0 0 0 0 0 0 0 0
187

43
0

157

78
0 0 0

0.4

571

15,7
78 /

34,5

21

0.

95

DoS

attacks-

Slowlori
s

0 0 1 0 0 0 0 3 0 0
345

10
0 6 1 0

0.0

003

11 /

34,5

21

1

FTP-

BruteFor
ce

0 0 0 0 0 0 0 0 0 946 0
335

75
0 0 0

0.0

274

946

/

34,5

21

0.

68

Infilter
ation

758
3

1 218 13 2 4 15 4 0 3 0 0
266
63

15 0
0.2
276

7,85

8 /
34,5

21

0.
76

SQL

Injectio

n

0 0 0 0 0 0 0 0 0 0 0 0 0
345
21

0 0

0 /

34,5

21

0.
97

SSH-

Brutefor
ce

0 0 0 0 0 0 0 0 4 0 0 3 0 0
345

14

0.0

002

7 /

34,5
21

1

Total
333

50

345

15

352

98

334

51

345

32

345

71

344

67

345

29

345

20

196

92

345

26

493

56

348

99

355

95

345

14

0.0

691

35,7

93 /

517,

815

Recall
0.7
5

1
0.9
7

0.9
6

1 1 1 1 1
0.5

4
1

0.9
7

0.7
7

1 1

137

Validation Matrix:

Table 48 Validation Matrix for DRF

 B
e
n
i
g
n

B
o
t

B
r
u
t
e
 F
o
r
c
e
 -

W
e
b

B
r
u
t
e
 F
o
r
c
e
 -

X
S
S

D
D
O
S

a
t
t
a
c
k
-

H
O
I
C

D
D
O
S

a
t
t
a
c
k
-

L
O
I
C
-
U
D
P

D
D
o
S

a
t
t
a
c
k
s
-

L
O
I
C
-
H
T
T
P

D
o
S

a
t
t
a
c
k
s
-

G
o
l
d
e
n
E
y
e

D
o
S

a
t
t
a
c
k
s
-

H
u
l
k

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
H
T
T
P
T
e
s
t

D
o
S

a
t
t
a
c
k
s
-

S
l
o
w
l
o
r
i
s

F
T
P
-

B
r
u
t
e
F
o
r
c
e

I
n
f
i
l
t
e
r
a
t
i
o

n

S
Q
L

I
n
j
e
c
t
i
o
n

S
S
H
-

B
r
u
t
e
f
o
r
c
e

E
r
r
o
r

R
a
t
e

P
r
e
c
i
s
i
o
n

Benign
7532
69

78
129
96

22
2

209 8
102

4
80 128 0

47
7

1
2518

93
63
8

2
0.26
22

267,75

6 /
1,021,

025

1

Bot 4
144

48
0 0 0 0 0 0 0 0 0 0 1 0 0

0.00

03

5 /

14,453

0.

99

Brute

Force -

Web

0 0 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 55 0

Brute

Force -

XSS

0 0 1 20 0 0 0 0 0 0 0 0 0 1 0
0.09

09
22-Feb

0.

08

DDOS

attack-

HOIC

0 0 0 0
198

86
0 0 0 0 0 0 0 0 0 0 0

0 /

19,886

0.

99

DDOS

attack-

LOIC-UDP

0 0 0 0 0
17

3
0 0 0 0 0 0 0 0 0 0

0 /

173

0.

65

DDoS

attacks-

LOIC-

HTTP

39 0 46 0 0 85
573

62
0 0 0 0 0 3 1 0

0.00

3

174 /

57,536

0.

98

DoS

attacks-

GoldenEy

e

0 0 0 0 0 0 0
41

39
0 0 1 0 0 0 0

0.00

02

1 /

4,140

0.

98

DoS

attacks-

Hulk

0 0 0 0 0 0 0 7
145

12
0 0 0 0 0 0

0.00

05

7 /

14,519

0.

99

DoS

attacks-

SlowHTTP

Test

0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0.4 5-Feb
0.

5

DoS

attacks-
Slowlori

s

0 0 0 0 0 0 0 0 0 0
98
9

0 1 0 0
0.00

1
1 /
990

0.
67

FTP-

BruteFor

ce

0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0.4 5-Feb
0.
33

Infilter

ation
3228 1 114 2 3 0 10 5 0 1 1 2

1060

6
4 0

0.24

12

3,371

/
13,977

0.

04

SQL

Injectio

n

0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 / 8
0.

01

SSH-

Brutefor

ce

0 0 0 0 0 0 0 0 1 0 0 1 0 0
94

02

0.00

02

2 /

9,404
1

Total
7565

40

145

27

132

12

24

4

200

98

26

6

583

96

42

31

146

41
6

14

68
9

2625

04

65

2

94

04

0.23

47

271,32

3 /

1,156,

198

Recall 0.74 1 1
0.

91
1 1 1 1 1

0.

6
1

0.

6
0.76 1 1

After observing the Training and the validation confusion matrices, we see a lot of

contradictions. The first one is that the training matrix has almost all the classes have

a precision of almost 1, except for the benign, where the precision is around ~0.77.

138

In contrast, the validation matrix has benign precision with a value of 1, and the rest

of the classes also approach 1, except for DoS attacks-SlowHTTPTest, DoS attacks-

Slowloris, FTP-BruteForce, Infiltration, and SQL Injection. The precision of these

classes is very low or almost 0.

Overall Performance with Test Data:

After Inspecting the overall accuracy of the mode and looking at the precision for

each class, we say that the model is performing well in most of the classes, but in

some classes, it failed to predict, and that impacts the overall accuracy, which is

~0.76. If we observe the precision for each class, we can see that the model has the

majority of the classes with precision approaching 1, except for Brute Force -Web,

Brute Force -XSS, DoS attacks-SlowHTTPTest, DoS attacks-Slowloris, FTP-

BruteForce, Infiltration, and SQL Injection. The precision for these classes is low or

approaching zero.

Table 49 Overall Accuracy for DRF with Test Data

 Accuracy Kappa AccuracyLower AccuracyUpper

AccuracyNull

 0.7656437 0.4366761 0.7651976 0.7660894

0.8830848

AccuracyPValue McnemarPValue

 1.0000000 NaN

139

Table 50 Per-Class Performance for DRF with Test Data

Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.7380

44

0.9761

15

0.995734 0.330358 0.995

734

0.738

044

0.847

739

0.8830

85

0.651756 0.654548 0.85708

Class: Bot 0.9994

93

0.9999

22

0.9939 0.999994 0.993

9

0.999

493

0.996

688

0.0125

01

0.012494 0.012571 0.999707

Class: Brute Force -Web 0.9818

18

0.9886

82

0.00411 0.999999 0.004

11

0.981

818

0.008

186

4.76E-

05

4.67E-05 0.011364 0.98525

Class: Brute Force -XSS 0.9264

71

0.9997

85

0.077874 0.999999 0.077

874

0.926

471

0.143

672

1.96E-

05

1.82E-05 0.000233 0.963128

Class: DDOS attack-

HOIC

1 0.9998

1

0.989271 1 0.989

271

1 0.994

607

0.0171

99

0.017199 0.017386 0.999905

Class: DDOS attack-

LOIC-UDP

1 0.9999

2

0.65283 1 0.652

83

1 0.789

954

0.0001

5

0.00015 0.000229 0.99996

Class: DDoS attacks-

LOIC-HTTP

0.9970

51

0.9990

08

0.981359 0.999845 0.981

359

0.997

051

0.989

143

0.0497

63

0.049616 0.050559 0.99803

Class: DoS attacks-

GoldenEye

0.9997

58

0.9999

35

0.982204 0.999999 0.982

204

0.999

758

0.990

903

0.0035

81

0.00358 0.003645 0.999847

Class: DoS attacks-Hulk 0.9996

56

0.9998

79

0.990582 0.999996 0.990

582

0.999

656

0.995

098

0.0125

58

0.012554 0.012673 0.999767

Class: DoS attacks-

SlowHTTPTest

0.1875 0.9999

97

0.230769 0.999996 0.230

769

0.187

5

0.206

897

4.61E-

06

8.65E-07 3.75E-06 0.593749

Class: DoS attacks-

Slowloris

1 0.9996

31

0.69913 1 0.699

13

1 0.822

927

0.0008

57

0.000857 0.001226 0.999815

Class: FTP-BruteForce 0.8666

67

0.9999

92

0.317073 0.999999 0.317

073

0.866

667

0.464

286

4.32E-

06

3.75E-06 1.18E-05 0.933329

Class: Infilteration 0.7635

7

0.7797

26

0.040693 0.996303 0.040

693

0.763

57

0.077

268

0.0120

89

0.009231 0.226841 0.771648

Class: SQL Injection 0.92 0.9994

33

0.011569 0.999999 0.011

569

0.92 0.022

851

7.21E-

06

6.63E-06 0.000573 0.959717

Class: SSH-Bruteforce 0.9995

75

0.9999

95

0.999362 0.999997 0.999

362

0.999

575

0.999

468

0.0081

34

0.008131 0.008136 0.999785

140

Table 51 Confusion Matrix (DRF) for Test Data

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 226068

5

21 0 0 0 0 89 0 0 0 0 0 9576 0 0

Bot 263 4333

8

0 0 0 0 0 0 0 0 0 0 3 0 0

Brute Force -Web 38812 0 162 3 0 0 158 0 0 0 0 0 281 1 0

Brute Force -XSS 740 0 1 63 0 0 0 0 0 0 0 0 4 1 0

DDOS attack-HOIC 644 0 0 0 5965

8

0 0 0 0 0 0 0 3 0 0

DDOS attack-LOIC-UDP 28 0 0 0 0 519 246 0 0 0 0 0 2 0 0

DDoS attacks-LOIC-

HTTP

3250 0 0 0 0 0 17210

0

0 0 0 0 0 19 0 0

DoS attacks-GoldenEye 204 0 0 0 0 0 0 1241

8

15 0 0 0 6 0 0

DoS attacks-Hulk 398 0 0 0 0 0 0 3 4354

4

0 0 0 2 0 11

DoS attacks-

SlowHTTPTest

6 0 0 0 0 0 0 0 0 3 0 2 2 0 0

DoS attacks-Slowloris 1279 0 0 0 0 0 0 0 0 0 2972 0 0 0 0

FTP-BruteForce 12 0 0 0 0 0 0 0 0 13 0 13 2 0 1

Infilteration 754799 1 0 0 0 0 6 0 0 0 0 0 3201

8

0 0

SQL Injection 1937 0 2 2 0 0 10 0 0 0 0 0 14 23 0

SSH-Bruteforce 18 0 0 0 0 0 0 0 0 0 0 0 0 0 2820

2

141

Figure 34 Performance for DRF

As discussed earlier, we can see on the graph above that the Model is performing

well except for some classes that were totally misclassified or have a very low

precision.

7.4.6 Portfolio Classifier (Random Forest)

As discussed earlier and explained, the portfolio classifier is built using multiple

classifiers; we will follow the pseudo-code below for the model build.

7.4.6.1 Build mode:

We will follow the pseudo-code that is below to build the portfolio classifier. For more

details, please refer to the source code in the appendix.

0

0.2

0.4

0.6

0.8

1

1.2

Distributed Random Forest

142

Figure 35 Build Master Model

7.4.6.2 Classify using the portfolio Model.

The same goes for prediction. We will use the following step to retrieve the prediction

from the model.

Load Models (GBM,GLM,DeepLearning,RF,DRF)

Load Training Data ->TD

For each Model:

 Model.predict(TD)->Predictions

Convert Predictions to binary:

 For each prediction:

 If prediction is True:

 Add Model Digit as 1

 Else

 Add Model Digit as 0

Add Binary Codes to the TD

Build Model to predict the binary codes->Portfolio Classifier

143

Figure 36Classification Using Master Model

Please note that these pseudo codes are abstract, and a detailed code can be found

in the appendix, along with an explanation of the methodology.

7.4.6.3 Performance

Inspecting the overall accuracy of the portfolio multi-classifier, we can see that there

is a slight increase, but the increase is insignificant.

Load Models (GBM,GLM,DeepLearning,RF,DRF)

Load Portfolio Classifier

Load test Data->TD

Portfolio Classifier.predict (TD)->Binary Prediction

For each in binary prediction:

 Identify the model for each digit

 If the digit is 1:

 Model.predict(TD)

 Else :

 Ignore Model

Get vote for successful models that can participate in the

vote.

144

Table 52 Overall Results

 Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

 0.7977272 0.4796524 0.7973041 0.7981499 0.8830833

AccuracyPValue McnemarPValue

 1.0000000 NaN

Table 53 Per-Class Results

Table 54 Master Classifier - Confusion Matrix

Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.7737

89

0.9792

49

0.996462 0.364325 0.996

462

0.773

789

0.871

121

0.8830

83

0.68332 0.685746 0.876519

Class: Bot 0.9998

15

0.9999

43

0.995522 0.999998 0.995

522

0.999

815

0.997

664

0.0125

01

0.012499 0.012555 0.999879

Class: Brute Force -Web 0.9818

18

0.9992

69

0.060089 0.999999 0.060

089

0.981

818

0.113

247

4.76E-

05

4.67E-05 0.000777 0.990544

Class: Brute Force -XSS 0.9264

71

0.9998

55

0.111504 0.999999 0.111

504

0.926

471

0.199

052

1.96E-

05

1.82E-05 0.000163 0.963163

Class: DDOS attack-

HOIC

1 0.9997

25

0.98452 1 0.984

52

1 0.992

2

0.0172 0.0172 0.01747 0.999862

Class: DDOS attack-

LOIC-UDP

1 0.9999

41

0.715862 1 0.715

862

1 0.834

405

0.0001

5

0.00015 0.000209 0.99997

Class: DDoS attacks-

LOIC-HTTP

0.9983

08

0.9994

41

0.989418 0.999911 0.989

418

0.998

308

0.993

843

0.0497

64

0.04968 0.050211 0.998875

Class: DoS attacks-

GoldenEye

1 0.9999

48

0.985872 1 0.985

872

1 0.992

886

0.0035

81

0.003581 0.003632 0.999974

Class: DoS attacks-Hulk 0.9998

39

0.9999

85

0.998807 0.999998 0.998

807

0.999

839

0.999

323

0.0125

58

0.012556 0.012571 0.999912

Class: DoS attacks-

SlowHTTPTest

0.1875 0.9999

94

0.130435 0.999996 0.130

435

0.187

5

0.153

846

4.61E-

06

8.65E-07 6.63E-06 0.593747

Class: DoS attacks-

Slowloris

1 0.9999

43

0.937539 1 0.937

539

1 0.967

763

0.0008

57

0.000857 0.000914 0.999971

Class: FTP-BruteForce 0.8666

67

0.9999

91

0.288889 0.999999 0.288

889

0.866

667

0.433

333

4.32E-

06

3.75E-06 1.30E-05 0.933329

Class: Infilteration 0.8005

2

0.7997

49

0.046634 0.996957 0.046

634

0.800

52

0.088

135

0.0120

88

0.009677 0.207507 0.800134

Class: SQL Injection 0.88 0.9999

22

0.075601 0.999999 0.075

601

0.88 0.139

241

7.21E-

06

6.34E-06 8.39E-05 0.939961

Class: SSH-Bruteforce 0.9997

16

0.9999

92

0.999044 0.999998 0.999

044

0.999

716

0.999

38

0.0081

34

0.008132 0.00814 0.999854

145

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 237012

3

7 1 1 0 0 76 0 0 0 0 0 8330 0 0

Bot 195 4335

2

0 0 0 0 0 0 0 0 0 0 0 0 0

Brute Force -Web 2500 0 162 3 0 0 17 0 0 0 0 0 12 2 0

Brute Force -XSS 499 0 0 63 0 0 0 0 0 0 0 0 2 1 0

DDOS attack-HOIC 933 0 0 0 5965

8

0 0 0 0 0 0 0 5 0 0

DDOS attack-LOIC-UDP 6 0 0 0 0 519 199 0 0 0 0 0 1 0 0

DDoS attacks-LOIC-

HTTP

1842 0 0 0 0 0 17231

7

0 0 0 0 0 1 0 0

DoS attacks-GoldenEye 169 0 0 0 0 0 0 1242

1

7 0 0 0 2 0 0

DoS attacks-Hulk 46 0 0 0 0 0 0 0 4355

2

0 0 0 2 0 4

DoS attacks-

SlowHTTPTest

17 0 0 0 0 0 0 0 0 3 0 2 1 0 0

DoS attacks-Slowloris 198 0 0 0 0 0 0 0 0 0 2972 0 0 0 0

FTP-BruteForce 15 0 0 0 0 0 0 0 0 13 0 13 3 0 1

Infilteration 686178 1 0 0 0 0 0 0 0 0 0 0 3356

5

0 3

SQL Injection 261 0 2 1 0 0 0 0 0 0 0 0 5 22 0

SSH-Bruteforce 27 0 0 0 0 0 0 0 0 0 0 0 0 0 2820

6

If we view the precision for each class, we can see that the portfolio classifier has

most of the classes approaching 1. However, the model still follows the same trend,

as there are some classes that have been misclassified, and they match the models

in the portfolio.

146

Figure 37Precision for each class (Portfolio Classifier)

Figure 38 Precision Comparison Between All Models including Portflio Classifier

 Comparing the Portfolio classier to the other models that we have built. We note the

portfolio classifier outperforms, and in almost every class, the portfolio classifier is

either ranked one or very close to 1. There are a few exceptions that we can see in

the graph where the portfolio classifier is underperforming.

0

0.2

0.4

0.6

0.8

1

1.2

Portfolio Classifer

Precision

0

0.2

0.4

0.6

0.8

1

1.2

Portfolio Classifer vs Models in the portfolio

Ranger RF-H2o NN GLM GBM Master

147

7.5 Discussion

This chapter introduced the first experimental phase of the research, focusing on

training and evaluating models using a sub-sample of the CIC-IDS2018 dataset. The

goal was to test the core classifiers independently and assess how well they perform

on a controlled, smaller dataset before scaling up. The results demonstrated a clear

difference in performance between models, with algorithms such as Random Forest

and Deep Learning achieving stronger accuracy and F1 scores, especially in

handling multiclass predictions. Meanwhile, models like Generalized Linear Models

(GLM) and Gradient Boosting Machine (GBM) showed relatively weaker

performance on minority attack types. These results reinforce the idea that no single

classifier performs best across all scenarios. Additionally, the per-instance voting

mechanism, where multiple models are consulted for classification, showed early

signs of improving precision and recall by leveraging each model's strengths. This

discussion also highlighted how the sub-sample allowed for fast iteration and early

testing of the hybrid model design without requiring full-scale computational

resources. The performance variations across attack classes further support the

proposed per-instance selection strategy, as it offers flexibility and adaptability when

dealing with diverse traffic patterns in real-world networks.

7.6 Chapter Conclusion

In summary, this chapter evaluated the performance of several individual classifiers

on a sub-sampled version of the CIC-IDS2018 dataset. The experiments confirmed

that different models excel in different areas, with some providing better overall

accuracy, while others performed better on underrepresented classes. These results

validated one of the key premises of the research: that no single model is sufficient

148

for optimal detection in a multiclass intrusion environment. The findings also

emphasized the importance of model diversity and the value of a dynamic selection

strategy, where classifiers can be chosen based on the characteristics of each

instance. The sub-sampling approach proved useful for early-stage model

comparison, allowing for efficient testing of design assumptions and baseline

performance without the overhead of full dataset training. The next chapter will

extend this work by applying the same modeling techniques to the complete dataset,

offering a more robust evaluation of classifier performance under realistic data

conditions.

149

Chapter 8 Building Models with a Complete Dataset

8.1 Chapter Introduction

After attempting to use a reduced subset of the dataset for training, it was noticed

that the results could be unreliable, and many of the models were not able to produce

reasonable predictions. The justification for using a subset of the dataset for training

was the lack of computing and memory resources to build the required models. In

order to eliminate the lack of computing resources, we opted to use cloud services

from Huawei. There are AI services available in Amazon, Microsoft Azure.. etc., but

we chose to provision a Virtual Machine in the cloud with the same tools that were

used in the local computer for the first tests. The reason that we used a virtual

machine was to use the same script that was already done on the local machine. In

this part, we have done the same process but using the complete dataset for training

and testing without getting smaller subsets for training that will affect the

performance of the produced models. At first, we have built all models that will

participate in the portfolio.

150

8.2 Gradient Boosting Machine (GBM)

We have built a model using the GBM package from h2o in Rstudio, as done in the

previous attempt with the full dataset, and these are the parameters that were used

to build this model.

Table 55 Performance for GBM

 Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
AccuracyPValue

 0.9878105 0.9411469 0.9876833 0.9879367 0.8829398 0.0000000

 McnemarPValue

 NaN

Table 56 Per-Class Performance for GBM

Sensit

ivity

Specif

icity

Pos Pred

Value

Neg Pred

Value

Preci

sion

Recal

l

F1 Preval

ence

Detectio

n Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.999

608

0.899

2

0.98680

7

0.996724 0.986

807

0.999

608

0.993

166

0.882

94

0.88259

4

0.894393 0.949404

Class: Bot 0.998

4

1 0.99997

2

0.99998 0.999

972

0.998

4

0.999

186

0.012

544

0.01252

4

0.012524 0.9992

Class: Brute Force -

Web

0.405

594

1 0.98305

1

0.999971 0.983

051

0.405

594

0.574

257

4.95E-

05

2.01E-05 2.04E-05 0.702797

Class: Brute Force -

XSS

0.893

617

0.999

999

0.93333

3

0.999998 0.933

333

0.893

617

0.913

043

1.63E-

05

1.45E-05 1.56E-05 0.946808

Class: DDOS attack-

HOIC

1 1 1 1 1 1 1 0.017

081

0.01708

1

0.017081 1

Class: DDOS attack-

LOIC-UDP

0.953

437

0.999

975

0.85828

3

0.999993 0.858

283

0.953

437

0.903

361

0.000

156

0.00014

9

0.000173 0.976706

Class: DDoS attacks-

LOIC-HTTP

0.998

49

0.999

985

0.99970

9

0.999921 0.999

709

0.998

49

0.999

099

0.049

942

0.04986

6

0.049881 0.999237

Class: DoS attacks-

GoldenEye

0.999

418

0.999

998

0.99932

2

0.999998 0.999

322

0.999

418

0.999

37

0.003

569

0.00356

7

0.003569 0.999708

Class: DoS attacks-

Hulk

0.999

972

0.999

995

0.99964

2

1 0.999

642

0.999

972

0.999

807

0.012

547

0.01254

7

0.012551 0.999984

151

Class: DoS attacks-

SlowHTTPTest

0.578

947

0.999

997

0.52381 0.999997 0.523

81

0.578

947

0.55 6.57E-

06

3.81E-06 7.27E-06 0.789472

Class: DoS attacks-

Slowloris

0.994

045

0.999

999

0.99920

2

0.999995 0.999

202

0.994

045

0.996

617

0.000

871

0.00086

6

0.000867 0.997022

Class: FTP-

BruteForce

0.312

5

0.999

997

0.38461

5

0.999996 0.384

615

0.312

5

0.344

828

5.54E-

06

1.73E-06 4.50E-06 0.656249

Class: Infilteration 0.035

185

0.999

662

0.56102 0.988304 0.561

02

0.035

185

0.066

217

0.012

114

0.00042

6

0.00076 0.517424

Class: SQL Injection 0.419

355

1 0.92857

1

0.999994 0.928

571

0.419

355

0.577

778

1.07E-

05

4.50E-06 4.84E-06 0.709677

Class: SSH-

Bruteforce

0.999

788

0.999

999

0.99983 0.999998 0.999

83

0.999

788

0.999

809

0.008

147

0.00814

5

0.008147 0.999893

Confusion Matrix

Table 57Confusion Matrix For GBM

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 255114

9

58 80 3 0 1 147 4 0 0 15 0 3378

3

14 2

Bot 1 3620

1

0 0 0 0 0 0 0 0 0 0 0 0 0

Brute Force -Web 1 0 58 0 0 0 0 0 0 0 0 0 0 0 0

Brute Force -XSS 0 0 0 42 0 0 0 0 0 0 0 0 0 3 0

DDOS attack-HOIC 0 0 0 0 4937

4

0 0 0 0 0 0 0 0 0 0

DDOS attack-LOIC-UDP 0 0 0 0 0 430 71 0 0 0 0 0 0 0 0

DDoS attacks-LOIC-

HTTP

15 0 4 2 0 20 14413

9

0 0 0 0 0 0 1 0

DoS attacks-GoldenEye 5 0 0 0 0 0 0 1031

0

1 0 0 0 0 0 1

DoS attacks-Hulk 9 0 0 0 0 0 0 2 3626

7

0 0 0 0 0 2

DoS attacks-

SlowHTTPTest

0 0 0 0 0 0 0 0 0 11 0 10 0 0 0

DoS attacks-Slowloris 2 0 0 0 0 0 0 0 0 0 2504 0 0 0 0

152

FTP-BruteForce 0 0 0 0 0 0 0 0 0 8 0 5 0 0 0

Infilteration 964 0 0 0 0 0 0 0 0 0 0 0 1232 0 0

SQL Injection 0 0 1 0 0 0 0 0 0 0 0 0 0 13 0

SSH-Bruteforce 3 0 0 0 0 0 0 0 0 0 0 1 0 0 2354

4

Figure 39 Per-Class precision for GBM

8.3 Generalized Linear Models (GLM)

Overall

Table 58 Overall Performance for GLM

 Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

AccuracyPValue

 0.9777974 0.8908473 0.9776269 0.9779669 0.8829398 0.0000000

 McnemarPValue

 NaN

Table 59 Per-Class Performance for GLM

0
0.2
0.4
0.6
0.8

1
1.2

GBM

Precision

153

Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.9970

68

0.8427

43

0.979518 0.974426 0.979

518

0.997

068

0.988

215

0.8829

4

0.880351 0.898759 0.919905

Class: Bot 0.9848

04

0.9998

88

0.991091 0.999807 0.991

091

0.984

804

0.987

937

0.0125

44

0.012354 0.012465 0.992346

Class: Brute Force -Web 0 0.9999

97

0 0.999951 0 0 NA 4.95E-

05

0 3.11E-06 0.499998

Class: Brute Force -XSS 0.4680

85

1 1 0.999991 1 0.468

085

0.637

681

1.63E-

05

7.61E-06 7.61E-06 0.734043

Class: DDOS attack-

HOIC

0.8244

02

0.9982

84

0.893062 0.996952 0.893

062

0.824

402

0.857

36

0.0170

81

0.014082 0.015768 0.911343

Class: DDOS attack-

LOIC-UDP

0.9756

1

0.9999

38

0.710824 0.999996 0.710

824

0.975

61

0.822

43

0.0001

56

0.000152 0.000214 0.987774

Class: DDoS attacks-

LOIC-HTTP

0.9401

62

0.9996

16

0.992287 0.996863 0.992

287

0.940

162

0.965

521

0.0499

42

0.046953 0.047318 0.969889

Class: DoS attacks-

GoldenEye

0.7144

24

0.9999

26

0.971911 0.998978 0.971

911

0.714

424

0.823

51

0.0035

69

0.00255 0.002623 0.857175

Class: DoS attacks-Hulk 0.9971

32

0.9988

37

0.915915 0.999964 0.915

915

0.997

132

0.954

8

0.0125

47

0.012511 0.01366 0.997985

Class: DoS attacks-

SlowHTTPTest

0 1 NA 0.999993 NA 0 NA 6.57E-

06

0 0 0.5

Class: DoS attacks-

Slowloris

0.7030

57

0.9999

84

0.974684 0.999741 0.974

684

0.703

057

0.816

882

0.0008

71

0.000613 0.000629 0.85152

Class: FTP-BruteForce 0 1 NA 0.999994 NA 0 NA 5.54E-

06

0 0 0.5

Class: Infilteration 0.0081

11

0.9998

46

0.391724 0.987981 0.391

724

0.008

111

0.015

893

0.0121

14

9.83E-05 0.000251 0.503978

Class: SQL Injection 0 1 NA 0.999989 NA 0 NA 1.07E-

05

0 0 0.5

Class: SSH-Bruteforce 0.9974

52

0.9998

22

0.97879 0.999979 0.978

79

0.997

452

0.988

033

0.0081

47

0.008126 0.008302 0.998637

Confusion Matrix

Table 60 Confusion Matrix for GLM

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 254466

5

551 142 25 8670 4 8459 17 0 19 729 15 3454

0

21 18

Bot 314 3570

8

0 0 0 0 0 0 0 0 0 0 7 0 0

Brute Force -Web 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

154

Brute Force -XSS 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0

DDOS attack-HOIC 4782 0 0 0 4070

4

0 0 0 0 0 0 0 82 10 0

DDOS attack-LOIC-UDP 0 0 0 0 0 440 179 0 0 0 0 0 0 0 0

DDoS attacks-LOIC-

HTTP

1046 0 0 0 0 5 13571

9

0 0 0 0 0 4 0 0

DoS attacks-GoldenEye 102 0 0 0 0 0 0 7370 104 0 4 0 3 0 0

DoS attacks-Hulk 271 0 0 0 0 0 0 2914 3616

4

0 15 0 78 0 42

DoS attacks-

SlowHTTPTest

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DoS attacks-Slowloris 30 0 0 0 0 0 0 15 0 0 1771 0 1 0 0

FTP-BruteForce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Infilteration 439 0 0 0 0 2 0 0 0 0 0 0 284 0 0

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SSH-Bruteforce 491 0 1 0 0 0 0 0 0 0 0 1 16 0 2348

9

Figure 40 Per-Class Precision for GLM

8.4 Deep Learning (Neural network)

Table 61 Overall Performance for Deep Learning

0

0.2

0.4

0.6

0.8

1

1.2

GLM

Precision

 Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
AccuracyPValue

 0.9813317 0.9081043 0.9811750 0.9814874 0.8829398 0.0000000

 McnemarPValue

 NaN

155

Table 62 Per-Class Performance for Deep Learning

Table 63 Confusion Matrix for Deep Learning

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 255123

0

605 143 47 15 367 8739 542 622 19 1351 16 3492

3

31 64

Bot 2 3562

9

0 0 0 0 0 0 0 0 0 0 0 0 0

Brute Force -Web 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Brute Force -XSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.9996

4

0.8596

66

0.981728 0.996851 0.981

728

0.999

64

0.990

603

0.8829

4

0.882622 0.899049 0.929653

Class: Bot 0.9826

25

0.9999

99

0.999944 0.999779 0.999

944

0.982

625

0.991

209

0.0125

44

0.012326 0.012327 0.991312

Class: Brute Force -Web 0 1 NA 0.999951 NA 0 NA 4.95E-

05

0 0 0.5

Class: Brute Force -XSS 0 1 NA 0.999984 NA 0 NA 1.63E-

05

0 0 0.5

Class: DDOS attack-

HOIC

0.9996

96

0.9999

87

0.999251 0.999995 0.999

251

0.999

696

0.999

474

0.0170

81

0.017076 0.017089 0.999842

Class: DDOS attack-

LOIC-UDP

0 1 NA 0.999844 NA 0 NA 0.0001

56

0 0 0.5

Class: DDoS attacks-

LOIC-HTTP

0.9387

56

0.9998

78

0.997534 0.996791 0.997

534

0.938

756

0.967

253

0.0499

42

0.046883 0.046999 0.969317

Class: DoS attacks-

GoldenEye

0.4397

05

0.9999

96

0.997581 0.997997 0.997

581

0.439

705

0.610

375

0.0035

69

0.001569 0.001573 0.719851

Class: DoS attacks-Hulk 0.9828

5

0.9980

6

0.86553 0.999782 0.865

53

0.982

85

0.920

467

0.0125

47

0.012332 0.014248 0.990455

Class: DoS attacks-

SlowHTTPTest

0 1 NA 0.999993 NA 0 NA 6.57E-

06

0 0 0.5

Class: DoS attacks-

Slowloris

0.4577

21

0.9999

95

0.988003 0.999527 0.988

003

0.457

721

0.625

61

0.0008

71

0.000399 0.000404 0.728858

Class: FTP-BruteForce 0 1 NA 0.999994 NA 0 NA 5.54E-

06

0 0 0.5

Class: Infilteration 0 0.9998

67

0 0.987885 0 0 NA 0.0121

14

0 0.000131 0.499933

Class: SQL Injection 0 1 NA 0.999989 NA 0 NA 1.07E-

05

0 0 0.5

Class: SSH-Bruteforce 0.9971

97

0.9999

44

0.993233 0.999977 0.993

233

0.997

197

0.995

211

0.0081

47

0.008124 0.00818 0.998571

156

DDOS attack-HOIC 36 0 0 0 4935

9

0 0 0 0 0 0 0 1 0 0

DDOS attack-LOIC-UDP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DDoS attacks-LOIC-

HTTP

279 0 0 0 0 0 13551

6

55 0 0 0 0 1 0 0

DoS attacks-GoldenEye 9 0 0 0 0 0 0 4536 0 0 0 0 2 0 0

DoS attacks-Hulk 267 0 0 0 0 0 0 5169 3564

6

0 15 0 85 0 2

DoS attacks-

SlowHTTPTest

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DoS attacks-Slowloris 0 0 0 0 0 0 0 14 0 0 1153 0 0 0 0

FTP-BruteForce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Infilteration 169 25 0 0 0 84 102 0 0 0 0 0 0 0 0

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SSH-Bruteforce 157 0 0 0 0 0 0 0 0 0 0 0 3 0 2348

3

Figure 41 Precision for Deep Learning

8.5 Random Forest (Ranger)

Table 64 Overall Performance for RF (Ranger)

 Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull
AccuracyPValue

 0.9898437 0.9514503 0.9897274 0.9899589 0.8829398 0.0000000

 McnemarPValue

 NaN
Results

Table 65 Per-Class Performance for RF (Ranger)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

NN

Precision

157

Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.9994

02

0.9180

26

0.989242 0.995115 0.989

242

0.999

402

0.994

296

0.8829

4

0.882412 0.892008 0.958714

Class: Bot 0.9932

98

1 1 0.999915 1 0.993

298

0.996

638

0.0125

44

0.01246 0.01246 0.996649

Class: Brute Force -Web 0.4965

03

1 1 0.999975 1 0.496

503

0.663

551

4.95E-

05

2.46E-05 2.46E-05 0.748252

Class: Brute Force -XSS 0.7234

04

1 1 0.999996 1 0.723

404

0.839

506

1.63E-

05

1.18E-05 1.18E-05 0.861702

Class: DDOS attack-

HOIC

0.9964

76

0.9999

58

0.997567 0.999939 0.997

567

0.996

476

0.997

021

0.0170

81

0.017021 0.017063 0.998217

Class: DDOS attack-

LOIC-UDP

0.9733

92

0.9999

76

0.862475 0.999996 0.862

475

0.973

392

0.914

583

0.0001

56

0.000152 0.000176 0.986684

Class: DDoS attacks-

LOIC-HTTP

0.9987

6

0.9999

75

0.999515 0.999935 0.999

515

0.998

76

0.999

137

0.0499

42

0.04988 0.049904 0.999367

Class: DoS attacks-

GoldenEye

0.9999

03

1 1 1 1 0.999

903

0.999

952

0.0035

69

0.003569 0.003569 0.999952

Class: DoS attacks-Hulk 1 0.9999

99

0.999945 1 0.999

945

1 0.999

972

0.0125

47

0.012547 0.012548 1

Class: DoS attacks-

SlowHTTPTest

0.4736

84

0.9999

97

0.5 0.999997 0.5 0.473

684

0.486

486

6.57E-

06

3.11E-06 6.23E-06 0.736841

Class: DoS attacks-

Slowloris

1 0.9999

98

0.998019 1 0.998

019

1 0.999

009

0.0008

71

0.000871 0.000873 0.999999

Class: FTP-BruteForce 0.125 1 0.666667 0.999995 0.666

667

0.125 0.210

526

5.54E-

06

6.92E-07 1.04E-06 0.5625

Class: Infilteration 0.2259

32

0.9995

3

0.854874 0.990593 0.854

874

0.225

932

0.357

406

0.0121

14

0.002737 0.003202 0.612731

Class: SQL Injection 0.7096

77

1 1 0.999997 1 0.709

677

0.830

189

1.07E-

05

7.61E-06 7.61E-06 0.854839

Class: SSH-Bruteforce 0.9999

58

1 1 1 1 0.999

958

0.999

979

0.0081

47

0.008147 0.008147 0.999979

Confusion Matrix

Table 66 Confusion Matrix RF(Ranger)

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 255062

4

243 72 13 174 0 109 0 0 9 0 5 2710

3

9 0

Bot 0 3601

6

0 0 0 0 0 0 0 0 0 0 0 0 0

Brute Force -Web 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0

158

Brute Force -XSS 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0

DDOS attack-HOIC 119 0 0 0 4920

0

0 0 0 0 0 0 0 1 0 0

DDOS attack-LOIC-UDP 0 0 0 0 0 439 70 0 0 0 0 0 0 0 0

DDoS attacks-LOIC-

HTTP

58 0 0 0 0 12 14417

8

0 0 0 0 0 0 0 0

DoS attacks-GoldenEye 0 0 0 0 0 0 0 1031

5

0 0 0 0 0 0 0

DoS attacks-Hulk 0 0 0 0 0 0 0 1 3626

8

0 0 0 0 0 1

DoS attacks-

SlowHTTPTest

0 0 0 0 0 0 0 0 0 9 0 9 0 0 0

DoS attacks-Slowloris 5 0 0 0 0 0 0 0 0 0 2519 0 0 0 0

FTP-BruteForce 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0

Infilteration 1343 0 0 0 0 0 0 0 0 0 0 0 7911 0 0

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0

SSH-Bruteforce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2354

8

Figure 42 Precision for RF

8.6 Distributed Random Forest (DRF)

Table 67 Overall Performance for DRF

 Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

AccuracyPValue

 0.9875572 0.9397946 0.9874288 0.9876847 0.8829398 0.0000000

0

0.2

0.4

0.6

0.8

1

1.2

Ranger

Precision

159

 McnemarPValue

 NaN

Results

Table 68 Per-Class Performance for DRF

Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.9997

61

0.8960

41

0.986401 0.997992 0.986

401

0.999

761

0.993

036

0.8829

4

0.882729 0.894898 0.947901

Class: Bot 0.9890

79

1 1 0.999861 1 0.989

079

0.994

509

0.0125

44

0.012407 0.012407 0.994539

Class: Brute Force -Web 0.4265

73

1 1 0.999972 1 0.426

573

0.598

039

4.95E-

05

2.11E-05 2.11E-05 0.713287

Class: Brute Force -XSS 0.5106

38

1 1 0.999992 1 0.510

638

0.676

056

1.63E-

05

8.30E-06 8.30E-06 0.755319

Class: DDOS attack-

HOIC

0.9999

39

1 1 0.999999 1 0.999

939

0.999

97

0.0170

81

0.01708 0.01708 0.99997

Class: DDOS attack-

LOIC-UDP

0.9778

27

0.9999

43

0.726524 0.999997 0.726

524

0.977

827

0.833

648

0.0001

56

0.000153 0.00021 0.988885

Class: DDoS attacks-

LOIC-HTTP

0.9982

61

0.9997

98

0.99617 0.999909 0.996

17

0.998

261

0.997

215

0.0499

42

0.049855 0.050046 0.99903

Class: DoS attacks-

GoldenEye

0.9998

06

1 0.999903 0.999999 0.999

903

0.999

806

0.999

855

0.0035

69

0.003568 0.003569 0.999903

Class: DoS attacks-Hulk 1 0.9999

96

0.999724 1 0.999

724

1 0.999

862

0.0125

47

0.012547 0.012551 0.999998

Class: DoS attacks-

SlowHTTPTest

0 1 NA 0.999993 NA 0 NA 6.57E-

06

0 0 0.5

Class: DoS attacks-

Slowloris

0.9920

6

1 1 0.999993 1 0.992

06

0.996

014

0.0008

71

0.000865 0.000865 0.99603

Class: FTP-BruteForce 0 1 NA 0.999994 NA 0 NA 5.54E-

06

0 0 0.5

Class: Infilteration 0.0153

36

0.9999

79

0.901007 0.98807 0.901

007

0.015

336

0.030

159

0.0121

14

0.000186 0.000206 0.507658

Class: SQL Injection 0 1 NA 0.999989 NA 0 NA 1.07E-

05

0 0 0.5

Class: SSH-Bruteforce 0.9989

38

1 1 0.999991 1 0.998

938

0.999

469

0.0081

47

0.008138 0.008138 0.999469

160

Confusion Matrix

Table 69 Confusion for DRF

 B
en

ig
n

B
o

t

B
ru

te
 F

o
rc

e
-W

eb

B
ru

te
 F

o
rc

e
-X

SS

D
D

O
S

at
ta

ck
-H

O
IC

D
D

O
S

at
ta

ck
-L

O
IC

-

U
D

P

D
D

o
S

at
ta

ck
s-

LO
IC

-H
TT

P

D
o

S
at

ta
ck

s-

G
o

ld
en

Ey
e

D
o

S
at

ta
ck

s-
H

u
lk

D
o

S
at

ta
ck

s-

Sl
o

w
H

TT
P

Te
st

D
o

S
at

ta
ck

s-

Sl
o

w
lo

ri
s

FT
P

-B
ru

te
Fo

rc
e

In
fi

lt
er

at
io

n

SQ
L

In
je

ct
io

n

SS
H

-B
ru

te
fo

rc
e

Benign 255153

9

396 80 23 3 2 85 0 0 19 20 16 3447

8

31 23

Bot 0 3586

3

0 0 0 0 0 0 0 0 0 0 0 0 0

Brute Force -Web 0 0 61 0 0 0 0 0 0 0 0 0 0 0 0

Brute Force -XSS 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0

DDOS attack-HOIC 0 0 0 0 4937

1

0 0 0 0 0 0 0 0 0 0

DDOS attack-LOIC-UDP 0 0 0 0 0 441 166 0 0 0 0 0 0 0 0

DDoS attacks-LOIC-

HTTP

544 0 2 0 0 8 14410

6

0 0 0 0 0 0 0 0

DoS attacks-GoldenEye 1 0 0 0 0 0 0 1031

4

0 0 0 0 0 0 0

DoS attacks-Hulk 6 0 0 0 0 0 0 2 3626

8

0 0 0 0 0 2

DoS attacks-

SlowHTTPTest

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DoS attacks-Slowloris 0 0 0 0 0 0 0 0 0 0 2499 0 0 0 0

FTP-BruteForce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Infilteration 59 0 0 0 0 0 0 0 0 0 0 0 537 0 0

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SSH-Bruteforce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2352

4

161

Figure 43 Percision for DRF

8.7 Portfolio Classifier (Random Forest)

Table 70 Overall Performance

 Accuracy Kappa AccuracyLower AccuracyUpper AccuracyNull

AccuracyPValue

 0.9899385 0.9519115 0.9898228 0.9900532 0.8829630 0.0000000

 McnemarPValue

 NaN

Results

Table 71 Per-Class Performance

Sensiti

vity

Specifi

city

Pos Pred

Value

Neg Pred

Value

Precisi

on

Recall F1 Prevale

nce

Detection

Rate

Detection

Prevalence

Balanced

Accuracy

Class: Benign 0.9994

09

0.9187

91

0.989344 0.995168 0.989

344

0.999

409

0.994

351

0.8829

63

0.882441 0.891945 0.9591

Class: Bot 0.9948

15

1 1 0.999934 1 0.994

815

0.997

401

0.0125

45

0.01248 0.01248 0.997408

Class: Brute Force -Web 0.4965

03

1 1 0.999975 1 0.496

503

0.663

551

4.95E-

05

2.46E-05 2.46E-05 0.748252

Class: Brute Force -XSS 0.7234

04

1 1 0.999996 1 0.723

404

0.839

506

1.63E-

05

1.18E-05 1.18E-05 0.861702

Class: DDOS attack-

HOIC

0.9997

57

1 1 0.999996 1 0.999

757

0.999

878

0.0170

82

0.017078 0.017078 0.999878

0
0.2
0.4
0.6
0.8

1
1.2

DRF

Precision

162

Class: DDOS attack-

LOIC-UDP

0.9733

92

0.9999

73

0.84749 0.999996 0.847

49

0.973

392

0.906

089

0.0001

56

0.000152 0.000179 0.986683

Class: DDoS attacks-

LOIC-HTTP

0.9984

9

0.9999

87

0.999743 0.999921 0.999

743

0.998

49

0.999

116

0.0499

43

0.049868 0.049881 0.999238

Class: DoS attacks-

GoldenEye

0.9999

03

1 1 1 1 0.999

903

0.999

952

0.0035

69

0.003569 0.003569 0.999952

Class: DoS attacks-Hulk 1 0.9999

98

0.999862 1 0.999

862

1 0.999

931

0.0125

48

0.012548 0.012549 0.999999

Class: DoS attacks-

SlowHTTPTest

0.2631

58

0.9999

97

0.384615 0.999995 0.384

615

0.263

158

0.312

5

6.57E-

06

1.73E-06 4.50E-06 0.631578

Class: DoS attacks-

Slowloris

0.9992

06

1 1 0.999999 1 0.999

206

0.999

603

0.0008

71

0.000871 0.000871 0.999603

Class: FTP-BruteForce 0.0625 1 1 0.999995 1 0.062

5

0.117

647

5.54E-

06

3.46E-07 3.46E-07 0.53125

Class: Infilteration 0.2267

51

0.9994

81

0.842497 0.990623 0.842

497

0.226

751

0.357

33

0.0120

87

0.002741 0.003253 0.613116

Class: SQL Injection 0.7096

77

1 1 0.999997 1 0.709

677

0.830

189

1.07E-

05

7.61E-06 7.61E-06 0.854839

Class: SSH-Bruteforce 0.9999

15

1 1 0.999999 1 0.999

915

0.999

958

0.0081

47

0.008147 0.008147 0.999958

Confusion Matrix

Table 72 Confusion Matrix for Portfolio Classifier

Be

nig

n

B

ot

Brute

Force -

Web

Brute

Force

-XSS

DDOS

attack-

HOIC

DDOS

attack-

LOIC-

UDP

DDoS

attacks-

LOIC-

HTTP

DoS

attacks-

GoldenE

ye

DoS

attack

s-Hulk

DoS

attacks-

SlowHTTP

Test

DoS

attacks-

Slowlori

s

FTP-

Brute

Force

Infil

tera

tion

SQL

Injec

tion

SSH-

Brute

force

Benign 25

50

62

4

1

8

8

71 13 12 1 139 0 0 14 2 7 270

15

9 1

Bot 0 3

6

0

7

1

0 0 0 0 0 0 0 0 0 0 0 0 0

Brute

Force -

Web

0 0 71 0 0 0 0 0 0 0 0 0 0 0 0

Brute

Force -

XSS

0 0 0 34 0 0 0 0 0 0 0 0 0 0 0

163

DDOS

attack-

HOIC

0 0 0 0 49362 0 0 0 0 0 0 0 0 0 0

DDOS

attack-

LOIC-UDP

0 0 0 0 0 439 79 0 0 0 0 0 0 0 0

DDoS

attacks-

LOIC-

HTTP

25 0 1 0 0 11 144139 0 0 0 0 0 0 0 0

DoS

attacks-

GoldenEy

e

0 0 0 0 0 0 0 10315 0 0 0 0 0 0 0

DoS

attacks-

Hulk

3 0 0 0 0 0 0 1 36268 0 0 0 0 0 1

DoS

attacks-

SlowHTTP

Test

0 0 0 0 0 0 0 0 0 5 0 8 0 0 0

DoS

attacks-

Slowloris

0 0 0 0 0 0 0 0 0 0 2517 0 0 0 0

FTP-

BruteForc

e

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Infilterati

on

14

81

0 0 0 0 0 0 0 0 0 0 0 792

2

0 0

SQL

Injection

0 0 0 0 0 0 0 0 0 0 0 0 0 22 0

SSH-

Bruteforc

e

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2354

7

164

Figure 44 Compare the Master Model with the Models in Portfolio

In the figure above, we can see clearly that the master model outperforms the other

models in the portfolio. In almost every case, the master model has better precision.

The assumption is that the multi-classifier portfolio works as expected. It seems the

Ranger model has more influence on the master model than the others. Between

both, Ranger has similar results, but there is a big gap in the FTP-Brute Force Class.

It seems that the master model has taken advantage of the multiple classifiers.

Further details can be seen in the next graphs.

In the next graphs (Figure 47 Benchmark (Full vs Sub-sample)), we have compared

the performance between the models using the complete sample and the

subsample. We can see a clear improvement in the performance precision between

the two sets of models. Especially in the master model, we can see that the master

model using subsample has failed in many classes as many class has precision

0

0.2

0.4

0.6

0.8

1

1.2

Compare Master Model with Model in Portfolio

NN Master GLM GBM RF Ranger

165

close to zero, while the model built with the full dataset is almost 1 in all classes with

few exceptions, as seen in the figures.

Figure 45 Benchmark (Full vs Sub-sample)

0

0.5

1
Class: Benign

Class: Bot

Class: Brute Force -Web

Class: Brute Force -XSS

Class: DDOS attack-HOIC

Class: DDOS attack-LOIC-UDP

Class: DDoS attacks-LOIC-…

Class: DoS attacks-GoldenEyeClass: DoS attacks-Hulk

Class: DoS attacks-…

Class: DoS attacks-Slowloris

Class: FTP-BruteForce

Class: Infilteration

Class: SQL Injection

Class: SSH-Bruteforce

RF

RF-H2o-First RF

0

0.5

1
Class: Benign

Class: Bot

Class: Brute Force -Web

Class: Brute Force -XSS

Class: DDOS attack-HOIC

Class: DDOS attack-LOIC-
UDP

Class: DDoS attacks-LOIC-
HTTP

Class: DoS attacks-
GoldenEye

Class: DoS attacks-Hulk

Class: DoS attacks-
SlowHTTPTest

Class: DoS attacks-Slowloris

Class: FTP-BruteForce

Class: Infilteration

Class: SQL Injection

Class: SSH-Bruteforce

GLM

GLM-First GLM

0

0.5

1
Class: Benign

Class: Bot

Class: Brute Force -Web

Class: Brute Force -XSS

Class: DDOS attack-HOIC

Class: DDOS attack-LOIC-UDP

Class: DDoS attacks-LOIC-
HTTP

Class: DoS attacks-GoldenEyeClass: DoS attacks-Hulk

Class: DoS attacks-
SlowHTTPTest

Class: DoS attacks-Slowloris

Class: FTP-BruteForce

Class: Infilteration

Class: SQL Injection

Class: SSH-Bruteforce

NN

NN-First NN

0

0.5

1
Class

Class: Benign

Class: Bot

Class: Brute Force -Web

Class: Brute Force -XSS

Class: DDOS attack-HOIC

Class: DDOS attack-LOIC-
UDP

Class: DDoS attacks-LOIC-
HTTP

Class: DoS attacks-
GoldenEye

Class: DoS attacks-Hulk

Class: DoS attacks-
SlowHTTPTest

Class: DoS attacks-Slowloris

Class: FTP-BruteForce

Class: Infilteration

Class: SQL Injection

Ranger

Ranger-First Ranger

0

0.5

1
Class: Benign

Class: Bot

Class: Brute Force -Web

Class: Brute Force -XSS

Class: DDOS attack-HOIC

Class: DDOS attack-LOIC-UDP

Class: DDoS attacks-LOIC-
HTTP

Class: DoS attacks-GoldenEyeClass: DoS attacks-Hulk

Class: DoS attacks-
SlowHTTPTest

Class: DoS attacks-Slowloris

Class: FTP-BruteForce

Class: Infilteration

Class: SQL Injection

Class: SSH-Bruteforce

GBM

GBM-First GBM

0
0.2
0.4
0.6
0.8

1
Class: Benign

Class: Bot

Class: Brute Force -Web

Class: Brute Force -XSS

Class: DDOS attack-HOIC

Class: DDOS attack-LOIC-
UDP

Class: DDoS attacks-LOIC-
HTTP

Class: DoS attacks-
GoldenEye

Class: DoS attacks-Hulk

Class: DoS attacks-
SlowHTTPTest

Class: DoS attacks-Slowloris

Class: FTP-BruteForce

Class: Infilteration

Class: SQL Injection

Class: SSH-Bruteforce

Master

Master Master-New

166

8.8 Discussion

In this chapter, the models introduced earlier were trained and evaluated using the

full CIC-IDS2018 dataset to understand how each classifier performs under more

realistic and demanding conditions. Compared to the sub-sampled experiments in

the previous chapter, the complete dataset introduced new challenges in terms of

processing time, class imbalance, and detection complexity. The performance

results revealed that while some models maintained their effectiveness, others

experienced a drop in accuracy and precision, particularly when dealing with minority

attack classes. Random Forest and Deep Learning models continued to perform

strongly, particularly in handling the more frequent classes. However, their ability to

generalize across rare or less distinguishable attacks remained limited without

additional balancing techniques. The per-instance voting classifier again showed

improvement over individual models, especially in reducing false negatives and

achieving better consistency across all classes. This reinforces the argument that

combining models based on instance-specific behavior offers more robust and

flexible detection. The discussion also considered the scalability of the approach, as

training on the full dataset placed higher demands on computational resources and

memory, particularly for deep learning-based architectures.

8.9 Chapter Conclusion

This chapter completed the second stage of experimentation by scaling the classifier

models to the full CIC-IDS2018 dataset. The purpose of this step was to observe

model behavior under real-world data conditions and validate the earlier results

obtained from the sub-sampled dataset. The findings confirmed that while some

classifiers performed well in both setups, others struggled with the full dataset’s

167

complexity, highlighting the value of using a diverse set of models rather than relying

on a single one. The performance of the per-instance classifier portfolio remained

strong and consistent, offering better generalization across both major and minor

classes, and handling imbalanced data more effectively than standalone classifiers.

These results support the feasibility of deploying a model selection strategy in a

practical environment where traffic types vary significantly. With the full dataset

results established, the next chapter shifts focus toward comparative benchmarking

with existing solutions and further analyzing the evaluation metrics that define the

effectiveness of the proposed approach.

168

Chapter 9 Evaluation and Discussion

9.1 Chapter Introduction

In this Chapter, we will benchmark the results of the proposed Portfolio classifier with

other research that was done between 2020 and 2023 on the same dataset, which

is CSE-CIC-IDS2018. We will view the benchmark multiple performance metrics,

which are precision, F1 Score, and Accuracy. Making the benchmark has some

challenges, and the primary challenge is the type of classification. Many researchers

do binary classification, and that means the classification will only identify if the

presented instance is benign or a threat. Without knowing the type of the threat, it's

difficult to mitigate and plan for action for the threat. In contrast, binary classification

has shown that they have a very high accuracy and precision. In this part, we have

ignored the sample size and any manipulation of the dataset. We only focused on

the end results, and the reason is that we can’t replicate each research in order to

be able to do a direct comparison and benchmarking. It's also worth noting that some

researchers have done multiclassification, but they have coupled and merged

multiple classes into one. For example, some research papers used the DDoS class,

which covers all other DDoS classes such as DDoS attack-HOIC DDoS attack and

LOIC-UDP. Doing such a thing will increase classifier performance, but at the same

time, the user will lose information to identify which type of DDoS attack he/she is

facing.

Through all the benchmarks that are listed below, we can observe that the proposed

model performance is either better or similar to the other research. We will see in

detail the benchmarks that cover different metrics, which are F1 Score, accuracy,

precision, and recall.

169

We can see below the list of classes that are original in the dataset and the ones

that are recreated and coupled.

Label map:

Table 73 List of original Classes and new classes

Class Original Class

Benign TRUE

Bot TRUE

Brute Force -Web TRUE

Brute Force -XSS TRUE

DDOS attack-HOIC TRUE

DDOS attack-LOIC-UDP TRUE

DDoS attacks-LOIC-HTTP TRUE

DoS attacks-GoldenEye TRUE

DoS attacks-Hulk TRUE

DoS attacks-SlowHTTPTest TRUE

DoS attacks-Slowloris TRUE

FTP-BruteForce TRUE

Infilteration TRUE

SQL Injection TRUE

SSH-Bruteforce TRUE

DDOS False

DOS False

BruteForce False

170

9.2 Precision Benchmark:

In this part, we will do the benchmark on a precision metric with 13 research papers,

as seen in the table below. The first part, which is the most important, is the precision

of the benign class. We can see that in this class, most of the proposed models

achieved a precision of 0.99, which is similar to the other research. The same

scenario for Bot, but Hagar's research got a little lower performance, which is around

~0.83. For the rest of the classes that are original, we note Brute Force-Web, Brute

Force-XSS, and SQL injection. They have 0 precision in Chimphlee Research, but

the proposed model along with Heger has similar results with small differences. In

the proposed model, DoS attacks-SlowHTTPTest had the lowest precision

compared to the other research, and it was around ~0.38. There are nine researches

included in the benchmark that have an overall precision, and the precision overly

ranges between ~0.9 to 1, but some searches were as low as 0.78. It is expected to

have an overall precision higher as this approach is dependent on binary

classification, and it reduces the amount of information needed to understand the

advantages and disadvantages of the model. Finally, the researchers that have

done classification on classes that are not original have achieved very precision on

classes that they have introduced.

171

Table 74 Precision Performance Benchmark

P
re

ci
si

o
n

P
re

ci
si

o
n

(P
ro

p
o

se
d

 M
o

d
el

)

(K
ab

ir
 e

t
al

.,
20

2
1)

(S
et

h
 e

t
al

.,
2

02
1

)

(H
u

a,
 2

02
0)

(D
in

i e
t

al
.,

20
2

2)

(H
an

d
ik

a
et

al

.,

20
22

)

(F
it

n
i

an
d

R

am
li,

20
20

)

(A
lk

an
jr

an

d

A
ls

h
am

m
ar

i,

20
23

)
(S

h
ah

b
an

d
ay

ev
a

et
 a

l.,
 2

0
22

)

(D
as

 e
t

al
.,

20
23

)

(Y
o

o
 e

t
al

.,
20

2
1)

(S
id

d
iq

i
an

d

P
ak

,

20
22

)

(C
h

im
p

h
le

e
 e

t
al

.,

20
22

)

(H
ag

ar

et

al
.,

20
22

)

Benign 0.99 0.99 0.92 x x x x x x x x x 0.99 1.00

Bot 1.00 1.00 1.00 x x x x x x x x x 1.00 0.83

Brute Force -Web 1.00 x x x x x x x x x x x 0.00 0.75

Brute Force -XSS 1.00 x x x x x x x x x x x 0.00 1.00

BruteForce x 1.00 0.99 x x x x x x x x x x x

DDoS x 0.99 1.00 x x x x x x x x x x x

DDOS attack-HOIC 1.00 x x x x x x x x x x x 1.00 1.00

DDOS attack-LOIC-UDP 0.85 x x x x x x x x x x x 0.72 1.00

DDoS attacks-LOIC-HTTP 1.00 x x x x x x x x x x x 0.99 1.00

DoS x 0.99 0.98 x x x x x x x x x x x

DoS attacks-GoldenEye 1.00 x x x x x x x x x x x 0.99 1.00

DoS attacks-Hulk 1.00 x x x x x x x x x x x 0.96 1.00

DoS attacks-SlowHTTPTest 0.38 x x x x x x x x x x x 0.75 1.00

DoS attacks-Slowloris 1.00 x x x x x x x x x x x 0.95 1.00

FTP-BruteForce 1.00 x x x x x x x x x x x 0.71 0.88

Infilteration 0.84 0.96 0.97 x x x x x x x x x 0.44 1.00

Overall x x x 0.98 94.39 96.00 98.80 1.00 0.78 99.00 0.89 0.98 x x

SQL Injection 1.00 0.87 x x x x x x x x x x 0.00 0.92

SSH-Bruteforce 1.00 x x x x x x x x x x x 0.99 1.00

Web attacks x x 1.00 x x x x x x x x x x x

9.3 Accuracy Benchmark

In this part, there are seven researchers that provided the accuracy and were

included in this benchmark. As discussed earlier, each research is done differently,

and the comparison could have some difficulties as the metric is not exactly the

same. We can directly compare the proposed model with Jiyeon's research as the

research provides accuracy for each class. Comparing the accuracies for both

models, we can observe that both perform well in each class, but we will view the

extreme differences between both. In the FTP-Brute Force and DoS attack

HTTPtest, the proposed model accuracies were around 0.53 and 0.63, respectively,

172

while Jiyeon achieved 0.98 and 1 in the same order. On the other hand, infiltration

and SQL injection, the proposed model achieved 0.61 and 0.85 compared to 0.35

and 0.08 in Jiyeon. The overall accuracy in the proposed model is 98.9, and when

compared to the other research, we can see that it ranges between 0.83 and 1.

Overall, the accuracy in the proposed model has acceptable results when compared

to the other research, either in the multi-Classifiaction or the general accuracy.

Table 75 Accuracy Benchmark

A
cc

u
ra

cy

P
ro

p
o

se
d

 M
o

d
el

(T
o

n
n

i
an

d

M
az

u
m

d
er

, 2
02

3
)

(H
u

a,
 2

02
0)

(S
h

o
ru

b
ig

a
an

d

Sh
ya

m
, 2

0
23

)

(D
in

i e
t

al
.,

2
02

2)

(F
it

n
i

an
d

R

am
li,

20
20

)

(A
lk

an
jr

an

d

A
ls

h
am

m
ar

i,

20
23

)
(S

h
ah

b
an

d
ay

ev
a

et
 a

l.,
 2

0
22

)

(D
as

 e
t

al
.,

20
23

)

(Y
o

o
 e

t
al

.,
20

2
1)

(S
id

d
iq

i
an

d

P
ak

,

20
22

)

(J
iy

eo
n

et

al

.,

20
21

)

Benign 0.96 x x x x x x x x x x 1

Bot 1 1 x x x x x x x x x 1

Brute Force -Web 0.75 x x x x x x x x x x 0.3

Brute Force -XSS 0.86 x x x x x x x x x x 0.65

BruteForce x 1 x x x x x x x x x x

DDoS x x x x x x x x x x x x

DDOS attack-HOIC 1 x x x x x x x x x x 1

DDOS attack-LOIC-UDP 0.99 x x x x x x x x x x 1

DDoS attacks-LOIC-HTTP 1 x x x x x x x x x x 1

DoS x 1 x x x x x x x x x x

DoS attacks-GoldenEye 1 x x x x x x x x x x 0.47

DoS attacks-Hulk 1 x x x x x x x x x x 1

DoS attacks-SlowHTTPTest 0.63 x x x x x x x x x x 1

DoS attacks-Slowloris 1 x x x x x x x x x x 0.66

FTP-BruteForce 0.53 x x x x x x x x x x 0.98

Infilteration 0.61 0.86 x x x x x x x x x 0.35

SQL Injection 0.85 1 x x x x x x x x x 0.08

SSH-Bruteforce 1 x x x x x x x x x x 0.96

Web attacks x x x x x x x x x x x X

Overall 98.9 x 0.98 99.97 94.5 98.8 1 0.83 98 0.89 0.98 x

9.4 F1 Score Benchmark

There are 11 pieces of research included in the F1 score benchmark. In the General

view we can observe that the proposed model has acceptable results in all classes

173

compared to the other models, which have an F1 score per class, except for the

BruteForce-Web, FTP-BruteForce, and infiltration, where the results are 0.66, 0.12,

and 0.36 respectively compared to results that are around 0.9 for both Brute force-

Web and FTP-Brute Force in Di and Handika, except for infiltration where the results

were not presented or 0 like chimphlee research.

Table 76 F1 Score Benchmark

F1
 S

co
re

P
ro

p
o

se
d

 M
o

d
el

(T
o

n
n

i
an

d

M
az

u
m

d
er

, 2
02

3
)

(H
u

a,
 2

02
0)

(D
i e

t
al

.,
20

22
)

(H
an

d
ik

a
et

al

.,

20
22

)

(H
an

d
ik

a
et

al

.,

20
22

)

(F
it

n
i

an
d

R

am
li,

20
20

)

(A
lk

an
jr

an

d

A
ls

h
am

m
ar

i,

20
23

)
(S

h
ah

b
an

d
ay

ev
a

et
 a

l.,
 2

0
22

)

(Y
o

o
 e

t
al

.,
20

2
1)

(S
id

d
iq

i
an

d

P
ak

,

20
22

)

(C
h

im
p

h
le

e
 e

t
al

.,

20
22

)

Benign 0.99 x x x 0.99 x x x x x x 0.99

Bot 1.00 1.00 x 95.13 1.00 x x x x x x 1.00

Brute Force -Web 0.66 x x 89.10 0.80 x x x x x x 0.00

Brute Force -XSS 0.84 x x 90.11 0.66 x x x x x x 0.00

BruteForce x 1.00 x x x x x x x x x x

DDoS x x x x x x x x x x x x

DDOS attack-HOIC 1.00 x x 90.08 1.00 x x x x x x 1.00

DDOS attack-LOIC-UDP 0.91 x x 96.99 1.00 x x x x x x 0.84

DDoS attacks-LOIC-HTTP 1.00 x x 89.32 1.00 x x x x x x 0.98

DoS x 1.00 x x x x x x x x x x

DoS attacks-GoldenEye 1.00 x x 94.11 1.00 x x x x x x 0.71

DoS attacks-Hulk 1.00 x x 91.91 1.00 x x x x x x 0.98

DoS attacks-SlowHTTPTest 0.31 x x 95.54 x x x x x x x 0.61

DoS attacks-Slowloris 1.00 x x 90.35 1.00 x x x x x x 0.94

FTP-BruteForce 0.12 x x 92.41 1.00 x x x x x x 0.79

Infilteration 0.36 0.93 x x x x x x x x x 0.02

Overall x x 0.98 x x 93.00 97.90 1.00 0.78 0.85 0.98 x

SQL Injection 0.83 1.00 x x 0.71 x x x x x x 0.00

SSH-Bruteforce 1.00 x x 93.00 1.00 x x x x x x 1.00

Web attacks x x x x x x x x x x x x

9.5 Recall Benchmark

The Recall Benchmark had 11 research that have presented the recall metric. Only

three researchers have included per-class recall values, which are Seth, Chimphlee,

and Hagar. When comparing the proposed mode to these three searches, we can

174

note that Hagar has the best results, which is almost around 1 in all classes, except

FTP-Brute Force (~0.7).

Table 77 Recall Benchmark
R

ec
al

l

P
ro

p
o

se
d

 M
o

d
el

(S
et

h
 e

t
al

.,
2

02
1

)

(H
u

a,
 2

02
0)

(H
an

d
ik

a
et

al

.,

20
22

)

(F
it

n
i

an
d

R

am
li,

20
20

)

(A
lk

an
jr

an

d

A
ls

h
am

m
ar

i,

20
23

)
(S

h
ah

b
an

d
ay

ev
a

et
 a

l.,
 2

0
22

)

(D
as

 e
t

al
.,

20
23

)

(Y
o

o
 e

t
al

.,
20

2
1)

(S
id

d
iq

i
an

d

P
ak

,

20
22

)

(C
h

im
p

h
le

e
 e

t
al

.,

20
22

)

(H
ag

ar

et

al
.,

20
22

)

Benign 1.00 1.00 x x x x x x x x 1.00 0.95

Bot 0.99 1.00 x x x x x x x x 1.00 0.90

Brute Force -Web 0.50 x x x x x x x x x 0.00 0.99

Brute Force -XSS 0.72 x x x x x x x x x 0.00 1.00

BruteForce x 0.96 x x x x x x x x x x

DDoS x 1.00 x x x x x x x x x x

DDOS attack-HOIC 1.00 x x x x x x x x x 1.00 1.00

DDOS attack-LOIC-UDP 0.97 x x x x x x x x x 0.99 1.00

DDoS attacks-LOIC-HTTP 1.00 x x x x x x x x x 0.97 1.00

DoS x 0.99 x x x x x x x x x x

DoS attacks-GoldenEye 1.00 x x x x x x x x x 0.55 1.00

DoS attacks-Hulk 1.00 x x x x x x x x x 1.00 1.00

DoS attacks-SlowHTTPTest 0.26 x x x x x x x x x 0.51 1.00

DoS attacks-Slowloris 1.00 x x x x x x x x x 0.94 1.00

FTP-BruteForce 0.06 x x x x x x x x x 0.88 0.76

Infilteration 0.23 0.62 x x x x x x x x 0.01 1.00

Overall x x 0.98 91.00 97.10 1.00 0.83 99.00 0.89 0.98 x x

SQL Injection 0.71 x x x x x x x x x 0.00 0.99

SSH-Bruteforce 1.00 x x x x x x x x x 1.00 1.00

Web attacks x 1.00 x x x x x x x x x x

9.6 Discussion

This chapter provided a detailed evaluation of the proposed hybrid model using

performance metrics that reflect real-world IDS expectations. The comparison

between individual classifiers and the per-instance voting approach demonstrated

consistent advantages in precision, recall, and overall classification stability. One of

the key findings was the improved handling of minority classes, where most

standalone models typically showed poor sensitivity. The master classifier, acting as

175

a rule-based guide, was effective in filtering out less-relevant models and contributed

to the overall efficiency of the portfolio. Furthermore, the combination of the master

model and portfolio strategy resulted in fewer false positives compared to baseline

models, which is a critical factor in operational environments. These results highlight

the benefit of dynamically selecting classifiers based on instance-level behavior,

especially when traffic is highly diverse. The discussion also touched on benchmark

comparisons with related studies, showing that the proposed method is not only

competitive but also introduces a flexible architecture that can adapt to different

detection requirements. This adaptability positions the model as a practical

candidate for deployment in layered security systems.

9.7 Chapter Conclusion

In conclusion, this chapter validated the performance of the proposed intrusion

detection system by comparing it against traditional models and existing solutions in

the literature. The per-instance classifier portfolio consistently demonstrated better

balance between detection rates and false alarms across all tested scenarios. Its

effectiveness in detecting minority class attacks and reducing false positives

supports the original research hypothesis and confirms the value of integrating

model diversity. Additionally, the evaluation confirmed that combining a rule-based

master classifier with dynamic portfolio voting results in a more adaptable and

accurate detection process. The benchmark comparisons further established that

this research offers improvements over many standard classification strategies used

in IDS today. These conclusions mark the completion of the experimental phase of

the thesis. The final chapter will summarize the research contributions, discuss the

implications of the findings, and outline potential directions for future work.

176

Chapter 10 Conclusion

This chapter will have the discussion and conclusion by summarizing the thesis and

showing if the research goals have been fulfilled. Also, it will show major findings,

impact on the Industry, limitations, and future work.

In the introduction, we have 3 points that we consider contributions to knowledge.

We will review each and validate each one of them as follows.

• The ability to create a (portfolio classifier) with no budget with precision and

accuracy relevant to my thesis

o The Portfolio Classifier (hybrid Classifier) is created in this research,

and as shown in the benchmark, the performance and accuracy are

comparable to other researches that use the same dataset and do

multiclassification.

• per instance selection of classifier, where only selected classifiers can vote in

each instance, so there will be a different set of classifiers to vote on for every

threat.

o We have trained multiple models on a dataset that was captured from

network traffic. The models were used to be used in the portfolio. A

master classifier was built based on the classifiers that are part of the

portfolio. The master classifier is able to select the classifiers that can

participate in the voting to classify the instance.

• Modularity of the Model, where additional classifiers can be plugged in to

enhance performance

177

o As we have progressed in the research. We were able to add and

remove models from the portfolio. Adding more classifiers is feasible

and potentially can increase the performance and accuracy..

In this thesis, we have covered the general concepts of cybersecurity in order to

allow the reader to comprehend the meaning of IDS and its function. We have

covered the history and evolution of cyber security threats. In addition, we reviewed

the tools and approaches that mitigate and defend systems from Cybersecurity

threats. We have made data exploration and analysis of the dataset. Via this

process, we have faced some challenges, but through the summaries and observing

the plots and distribution of the classes, we were able to understand some

characteristics of the Dataset CIC-IDS-2018.

Our proposed model is a portfolio of classifiers, where a classifier will be chosen for

each network flow to assist in the classification of either a benign or a threat. For this

reason, we have built multiple models that support multiclassification to construct the

portfolio. We have made different attempts in this thesis. The first attempt involved

using a subsample of the data. The results of this attempt were not satisfying when

compared to published research papers. Then, we made a second attempt where

we used the complete dataset, except for duplicates and NAs. In the second attempt,

the results were much better than the first attempt, and a benchmark between the

first and second attempts to compare both results. When both results were

compared, we noticed a significant increase in performance for the second attempt.

178

We have made a similar comparison to other papers that have used the same

dataset and used multiclassification. The benchmark showed that the proposed

model either has a similar or exceeds the other research results (in most cases). The

benchmarks used to compare other research results were precision, accuracy, F1

score, and recall. Not all research presented the complete data or used the same

criteria, as some of the research clubbed some classes into categories, so the

comparison and benchmarking would not have a complete picture. Overall, we could

see potential in the proposed model when compared to others, and there is room for

a lot of improvements and enhancements.

Using multiple classifiers can increase the performance as some classifiers work

better with different types of classes in the same dataset. There are algorithms that

use this approach that are either dependent on voting or fusion. In the proposed

model, we classify the classifiers that will participate in the vote. Not all classifiers fit

for each instance or flow in the dataset. In the proposed model, for each flow, we

can have a different set of classifiers that can participate in the vote. This approach

has increased the performance of the overall model when compared to each

individual model in the portfolio. This approach can assist in cybersecurity as it can

be easily expanded and enhanced by simply adding more models to the portfolio,

which will increase performance and accuracy. With increased accuracy,

organizations and industries will have fewer false alarms and a higher detection rate

for anomalies, which will help Security operation centers (SOC) operators handle

fewer floods of false alarms and focus on real threats.

The proposed model is modular in its nature. There are a lot of ways to enhance and

have better performance. The simple way to enhance the model is by adding more

179

models to the portfolio; this way, the master classifier will have a wider selection of

models that can participate in the voting. The second approach is to use multiple

datasets for training or develop a tool that can capture the data for training. Another

enhancement that can be done is by using multi-step classification. We can use a

binary classifier that will determine if the flow is benign or an anomaly. If the flow

anomaly, then we used the proposed model.

180

References:

Abdul Lateef, A.A., Faraj Al-Janabi, S.T., Al-Khateeb, B., 2020. Hybrid Intrusion

Detection System Based on Deep Learning, in: 2020 International Conference

on Data Analytics for Business and Industry: Way Towards a Sustainable

Economy (ICDABI). pp. 1–5.

https://doi.org/10.1109/ICDABI51230.2020.9325669

Alkanjr, B., Alshammari, T., 2023. IoBT Intrusion Detection System using Machine

Learning. 2023 IEEE 13th Annual Computing and Communication Workshop

and Conference, CCWC 2023 886–892.

https://doi.org/10.1109/CCWC57344.2023.10099340

Arivardhini, S., Alamelu, L.M., Deepika, S., 2020. A Hybrid Classifier Approach for

Network Intrusion Detection, in: 2020 6th International Conference on Advanced

Computing and Communication Systems (ICACCS). pp. 824–827.

https://doi.org/10.1109/ICACCS48705.2020.9074216

Atefi, K., Hashim, H., Khodadadi, T., 2020. A Hybrid Anomaly Classification with

Deep Learning (DL) and Binary Algorithms (BA) as Optimizer in the Intrusion

Detection System (IDS), in: 2020 16th IEEE International Colloquium on Signal

Processing Its Applications (CSPA). pp. 29–34.

https://doi.org/10.1109/CSPA48992.2020.9068725

Bharati, M.P., Tamane, S., 2020. NIDS-Network Intrusion Detection System Based

on Deep and Machine Learning Frameworks with CICIDS2018 using Cloud

Computing, in: 2020 International Conference on Smart Innovations in Design,

181

Environment, Management, Planning and Computing (ICSIDEMPC). pp. 27–

30. https://doi.org/10.1109/ICSIDEMPC49020.2020.9299584

Caffe | Deep Learning Framework [WWW Document], n.d. URL

https://caffe.berkeleyvision.org/ (accessed 8.16.23).

Canadian Institute for Cybersecurity, 2018. CSE-CIC-IDS2018 on AWS [WWW

Document]. URL https://www.unb.ca/cic/datasets/ids-2018.html (accessed

9.28.19).

Chen, P., Guo, Y., Zhang, J., Wang, Y., Hu, H., 2020. A Novel Preprocessing

Methodology for DNN-Based Intrusion Detection, in: 2020 IEEE 6th

International Conference on Computer and Communications, ICCC 2020. pp.

2059–2064. https://doi.org/10.1109/ICCC51575.2020.9345300

Chimphlee, W., Chimphlee, S., Professor of Data Science, A., 2022. Network

Intrusion Detector using Multilayer Perceptron (MLP) Approach. Turkish Journal

of Computer and Mathematics Education 13, 488–499.

Cybersecurity Definition & Meaning - Merriam-Webster [WWW Document], n.d. URL

https://www.merriam-webster.com/dictionary/cybersecurity (accessed 8.14.23).

Das, P., Illa, M., Pokhariyal, R., Latoria, A., Hemlata, Saini, D.K.J.B., 2023. Role of

Neural Network, Fuzzy, and IoT in Integrating Artificial Intelligence as a Cyber

Security System. Proceedings of the 2023 2nd International Conference on

Electronics and Renewable Systems, ICEARS 2023 652–658.

https://doi.org/10.1109/ICEARS56392.2023.10084988

182

David, R. Ben, Barr, A.B., 2021. Kubernetes Autoscaling: YoYo Attack Vulnerability

and Mitigation. International Conference on Cloud Computing and Services

Science, CLOSER - Proceedings 2021-April, 34–44.

https://doi.org/10.5220/0010397900340044

Di, T., Wu, Y., Li, W., 2022. Deep Security Analysis Model for Smart Grid. 2022 IEEE

10th International Conference on Information, Communication and Networks,

ICICN 2022 276–280. https://doi.org/10.1109/ICICN56848.2022.10006496

Dini, P., Begni, A., Ciavarella, S., De Paoli, E., Fiorelli, G., Silvestro, C., Saponara,

S., 2022. Design and Testing Novel One-Class Classifier Based on Polynomial

Interpolation with Application to Networking Security. IEEE Access 10, 67910–

67924. https://doi.org/10.1109/ACCESS.2022.3186026

DOUGLAS, B., BILL, S., TIANQIU, W., 2015. A Survey of Intrusion Detection

Systems. nternational Journal of Computer Applications.

Fitni, Q.R.S., Ramli, K., 2020. Implementation of ensemble learning and feature

selection for performance improvements in anomaly-based intrusion detection

systems. Proceedings - 2020 IEEE International Conference on Industry 4.0,

Artificial Intelligence, and Communications Technology, IAICT 2020 118–124.

https://doi.org/10.1109/IAICT50021.2020.9172014

FSabahi, AMovaghar, 2008. Intrusion detection: A survey. Proc. - The 3rd Int. Conf.

Systems and Networks Communications, ICSNC 2008 - Includes I-CENTRIC

2008: Int. Conf. Advances in Human-Oriented and Personalized Mechanisms,

Technologies, and Services 23–26. https://doi.org/10.1109/ICSNC.2008.44

183

H2O.ai | The fastest, most accurate AI Cloud Platform [WWW Document], n.d. URL

https://h2o.ai/ (accessed 8.16.23).

Hagar, A., Gawali, B.W., Sciences, C., Technology, I., 2022. Deep Learning for

Improving Attack Detection System Using CSE-CICIDS2018 20, 3064–3074.

https://doi.org/10.14704/nq.2022.20.7.NQ33385

Haghighat, M.H., Li, J., 2021. Intrusion detection system using voting-based neural

network. Tsinghua Sci Technol 26, 484–495.

https://doi.org/10.26599/TST.2020.9010022

Handika, V., Istiyanto, J.E., Ashari, A., Purnama, S.R., Rochman, S., Dharmawan,

A., 2022. Feature Representation for Network Intrusion Detection System

Trough Embedding Neural Network. Proceeding of the International Conference

on Computer Engineering, Network and Intelligent Multimedia, CENIM 2022

349–352. https://doi.org/10.1109/CENIM56801.2022.10037425

Hindy, H., Brosset, D., Bayne, E., Seeam, A., Tachtatzis, C., Atkinson, R., Bellekens,

X., 2018. A Taxonomy and Survey of Intrusion Detection System Design

Techniques, Network Threats and Datasets 1.

Hua, Y., 2020. An Efficient Traffic Classification Scheme Using Embedded Feature

Selection and LightGBM. 2020 Information Communication Technologies

Conference, ICTC 2020 125–130.

https://doi.org/10.1109/ICTC49638.2020.9123302

IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity | UNB [WWW

Document], n.d. URL https://www.unb.ca/cic/datasets/ids-2018.html (accessed

8.16.23).

184

İlker, Ö., Richard, B., 2020. Distributed Denial of Service Attacks Real-world

Detection and Mitigation. CRC, Oxon.

Intrusion Detection Systems > Triggering Mechanisms | Cisco Press [WWW

Document], n.d. URL https://www.ciscopress.com/articles/article.asp?p=25334

(accessed 8.14.23).

Jiyeon, K., Yulim, S., Choi, E., 2021. An Intrusion Detection Model based on a

Convolutional Neural Network. IEEE Advanced Information Technology,

Electronic and Automation Control Conference (IAEAC) 6, 634–637.

https://doi.org/10.1109/IAEAC50856.2021.9390930

Kabir, S., Sakib, S., Hossain, M.A., Islam, S., Hossain, M.I., 2021. A Convolutional

Neural Network based Model with Improved Activation Function and Optimizer

for Effective Intrusion Detection and Classification. 2021 International

Conference on Advance Computing and Innovative Technologies in

Engineering, ICACITE 2021 7, 373–378.

https://doi.org/10.1109/ICACITE51222.2021.9404584

Kamboj, P., Trivedi, M.C., Yadav, V.K., Singh, V.K., 2017. Detection techniques of

DDoS attacks: A survey. 2017 4th IEEE Uttar Pradesh Section International

Conference on Electrical, Computer and Electronics, UPCON 2017 2018-

Janua, 675–679. https://doi.org/10.1109/UPCON.2017.8251130

KAREHKA, R., 2012. 10 Uses of Technology in Our Daily Life - Useoftechnology

[WWW Document]. URL https://useoftechnology.com/technology-today-

tomorrow/ (accessed 8.20.23).

185

KDD Cup 1999 Data [WWW Document], n.d. URL

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed 2.18.20).

Khor, K.C., Ting, C.Y., Phon-amnuaisuk, S., 2010. Comparing Single and Multiple

Bayesian Classifiers Approaches for Network Intrusion Detection. 2010 Second

International Conference on Computer Engineering and Applications 2, 325–

329. https://doi.org/10.1109/ICCEA.2010.214

Kishore, R., Chauhan, A., 2020. Evaluation of Deep Neural Networks for Advanced

Intrusion Detection Systems, in: 2020 4th International Conference on

Electronics, Communication and Aerospace Technology (ICECA). pp. 1–8.

https://doi.org/10.1109/ICECA49313.2020.9297515

Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D.,

Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman, M.A.,

2000. Evaluating intrusion detection systems: The 1998 DARPA off-line

intrusion detection evaluation. Proceedings - DARPA Information Survivability

Conference and Exposition, DISCEX 2000 2, 12–26.

https://doi.org/10.1109/DISCEX.2000.821506

Ludmila I. Kuncheva, James C. Bezdek, Robert P.W. Duin, 2001. Decision

Templates for Multiple Classifier Fusion: An Experimental Comparison 34, 299–

314.

Margaret, R., 2018. intrusion detection system (IDS) [WWW Document]. URL

https://searchsecurity.techtarget.com/definition/intrusion-detection-system

(accessed 9.23.19).

186

Microsoft fends off record-breaking 3.47Tbps DDoS attack | Ars Technica [WWW

Document], n.d. URL https://arstechnica.com/information-

technology/2022/01/microsoft-fends-off-record-breaking-3-47-tbps-ddos-

attack/ (accessed 8.14.23).

MLC++, A Machine Learning Library in C++ [WWW Document], n.d. URL

http://robotics.stanford.edu/users/ronnyk/mlc.html (accessed 8.16.23).

MLlib | Apache Spark [WWW Document], n.d. URL https://spark.apache.org/mllib/

(accessed 8.16.23).

OpenCV - Open Computer Vision Library [WWW Document], n.d. URL

https://opencv.org/ (accessed 8.16.23).

Personnaz, L., Knerr, S., Gérard Dreyfus, 1990. Single-layer learning revisited: A

stepwise procedure for building and training a neural network. Neurocomputing.

https://doi.org/10.1007/978-3-642-76153-9

Pricing Calculator | Microsoft Azure [WWW Document], n.d. URL

https://azure.microsoft.com/en-us/pricing/calculator/ (accessed 8.15.23).

PyTorch [WWW Document], n.d. URL https://pytorch.org/ (accessed 8.16.23).

R: The R Project for Statistical Computing [WWW Document], n.d. URL

https://www.r-project.org/ (accessed 8.16.23).

RapidMiner | Amplify the Impact of Your People, Expertise & Data [WWW

Document], n.d. URL https://rapidminer.com/ (accessed 8.16.23).

187

Sabhnani, M., Serpen, G., 2004. Why machine learning algorithms fail in misuse

detection on KDD intrusion detection data set. Intelligent Data Analysis 8, 403–

415. https://doi.org/10.3233/ida-2004-8406

Saleem Malik Raja, K., Jeya Kumar, K., 2014. Diversified intrusion detection using

Various Detection methodologies with sensor fusion 442–448.

https://doi.org/10.1109/iccpeic.2014.6915405

SATzilla: Portfolio-based algorithm selection for SAT [WWW Document], 2017. URL

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/ (accessed 9.28.19).

Sazzadul Hoque, M., 2012. An Implementation of Intrusion Detection System Using

Genetic Algorithm. International Journal of Network Security & Its Applications

4, 109–120. https://doi.org/10.5121/ijnsa.2012.4208

scikit-learn: machine learning in Python — scikit-learn 1.3.0 documentation [WWW

Document], n.d. URL https://scikit-learn.org/stable/ (accessed 8.16.23).

Seth, S., Chahal, K.K., Singh, G., 2021. A Novel Ensemble Framework for an

Intelligent Intrusion Detection System. IEEE Access 9, 138451–138467.

https://doi.org/10.1109/ACCESS.2021.3116219

Shahbandayeva, L., Mammadzada, U., Manafova, I., Jafarli, S., Adamov, A.Z., 2022.

Network Intrusion Detection using Supervised and Unsupervised Machine

Learning. 16th IEEE International Conference on Application of Information and

Communication Technologies, AICT 2022 - Proceedings 1–7.

https://doi.org/10.1109/AICT55583.2022.10013594

188

Shorubiga, P., Shyam, R., 2023. CNN-Based Model for the HTTP Flood Attack

Detection. 2023 International Conference for Advancement in Technology,

ICONAT 2023 1–6. https://doi.org/10.1109/ICONAT57137.2023.10080698

Siddiqi, M.A., Pak, W., 2022. Tier-Based Optimization for Synthesized Network

Intrusion Detection System. IEEE Access 10, 108530–108544.

https://doi.org/10.1109/ACCESS.2022.3213937

Simone, M.P., 2009. Challenges of Managing an Intrusion Detection System (IDS)

in the Enterprise. Sans Institute 27.

Stolfo, S.J., Fan, W., Lee, W., Prodromidis, A., Chan, P.K., 2000. Cost-based

modeling for fraud and intrusion detection: Results from the JAM project.

Proceedings - DARPA Information Survivability Conference and Exposition,

DISCEX 2000 2, 130–144. https://doi.org/10.1109/DISCEX.2000.821515

Subbulakshmi, T., Afroze, A.F., 2013. Multiple learning based classifiers using

layered approach and Feature Selection for attack detection. 2013 IEEE

International Conference on Emerging Trends in Computing, Communication

and Nanotechnology, ICE-CCN 2013 308–314. https://doi.org/10.1109/ICE-

CCN.2013.6528514

Syarif, I., Afandi, R.F., Astika Saputra, F., 2020. Feature selection algorithm for

intrusion detection using cuckoo search algorithm. IES 2020 - International

Electronics Symposium: The Role of Autonomous and Intelligent Systems for

Human Life and Comfort 430–435.

https://doi.org/10.1109/IES50839.2020.9231840

189

Tanmoy, S., Niva, D., 2017. Survey on Host and Network Based Intrusion Detection

System. Int. J. Advanced Networking and Applications 6.

Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A., 2015. Proceedings of the 2014

7th IEEE Symposium on Computational Intelligence for Security and Defense

Applications, CISDA 2014. Proceedings of the 2014 7th IEEE Symposium on

Computational Intelligence for Security and Defense Applications, CISDA 2014

164p.

TensorFlow [WWW Document], n.d. URL https://www.tensorflow.org/ (accessed

8.16.23).

Thakkar, A., Lohiya, R., 2020. A Review of the Advancement in Intrusion Detection

Datasets. Procedia Comput Sci 167, 636–645.

https://doi.org/10.1016/j.procs.2020.03.330

The Global DataSphere & Its Enterprise Impact | IDC Blog [WWW Document], n.d.

URL https://blogs.idc.com/2019/11/04/how-you-contribute-to-todays-growing-

datasphere-and-its-enterprise-impact/ (accessed 8.14.23).

Tonni, Z.A., Mazumder, R., 2023. A Novel Feature Selection Technique for Intrusion

Detection System Using RF-RFE and Bio-inspired Optimization. 2023 57th

Annual Conference on Information Sciences and Systems, CISS 2023 1–6.

https://doi.org/10.1109/CISS56502.2023.10089745

Urvashi, M., Jain, M.A., 2015. A survey of IDS classification using KDD CUP 99

dataset in WEKA. Int J Sci Eng Res 6, 947–954.

190

Weka 3 - Data Mining with Open Source Machine Learning Software in Java [WWW

Document], n.d. URL https://www.cs.waikato.ac.nz/ml/weka/ (accessed

8.16.23).

What is CRISP DM? - Data Science Process Alliance [WWW Document], n.d. URL

https://www.datascience-pm.com/crisp-dm-2/ (accessed 8.15.23).

What Is Packet Capture (PCAP)? - IT Glossary | SolarWinds, n.d.

Yoo, J., Min, B., Kim, S., Shin, Dongil, Shin, Dongkyoo, 2021. Study on Network

Intrusion Detection Method Using Discrete Pre-Processing Method and

Convolution Neural Network. IEEE Access 9, 142348–142361.

https://doi.org/10.1109/ACCESS.2021.3120839

191

Appendix :

building PCAP

In order to test models with real traffic data a network infrastructure was built on

some servers. The infrastructure built as follows:

1- Host is the physical hypervisor that will host all the virtual machines

2- Virtual Firewall is PFSense which has three interfaces for routing

a. Private LAN network for Kali

b. Private LAN network for the victims

c. WAN Network with the host to allow internet traffic

3- Virtual Ubuntu 20 for recent attacks(old attacks will not work)

a. SSH open

b. FTP open

192

c. Open SS enable

d. Apache enabled

e. Firewall disabled

4- Virtual Windows 10 for recent attacks (old attacks will not work)

a. IIS installed

5- Virtual windows 7 (exploitable for many attacks)

a. Old adobe acrobat 9.0 is installed

6- Virtual Ubuntu 16 (exploitable for many attacks)

a. SSH open

b. FTP open

c. Open SS enable

d. Apache enabled

e. Firewall disabled

The firewall was placed in the middle to force all traffic to pass through, so the data

collection will be easier. The PFsense was connected to wireshark in the host via

SSH to generate the PCAP on the fly.

Each virtual node in the victim side has a python script that will access a random

website to simulate benign traffic

import time

import webbrowser

import random

import os

193

f = open("websites.csv", "r")

lines=f.readlines()

t_end = time.time() + 60 * 20

while time.time() < t_end:

 webbrowser.open(random.choice(lines),new=0)

 time.sleep(15)

 os.system("taskkill /im firefox.exe /f")

 os.system("taskkill /im msedge.exe /f")

 os.system("taskkill /im iexplore.exe /f")

Generating attacks:

Kali Linux was prepared with script to initiate attacks following attacks

- patator ssh_login

- patator ftp_login

- hulk-master

- GoldenEye

- Slowloris

- slowhttptest

- msfconsole

each attack is timed and a time stamp is recorded with timestamp, Source IP and

destination IP. Once the attacks are done and the data is extracted from wireshark,

the pcap fille is processed in CICFlow to extract features and generate flows ready

194

for machine learning. From the matching timestamsp and destination IP we can label

the flows with the corresponding attack in the scipt.

Failed Attempts:

1- SVM

SVM is binary classifier by in its core. In order, to test with Multiclass, the

library (e1071) was used to build SVM model. Unfortunately, this library

consumed a lot of resources and time without getting an out.

2- KNN

This model was built, but the results were not optimistic to be included.

Naïve Bayes

Naïve Bayes was used in RStudio using the H2o Package. This function or algorithm

depends on the assumption that each predictor is independent and a Gaussian

distribution with numeric predictors that has mean, and STD computed in the training

set. The same goes as we did the past models, we have provided the function with

Training Data to build it.

Parameter Value Description

model_id NBModel Destination id for this model; auto-generated if not specified.

nfolds 5 Number of folds for K-fold cross-validation (0 to disable or >= 2).

seed 1234 Seed for pseudo random number generator (only used for cross-validation and fold_assignment="Random" or "AUTO")

fold_assignment Random Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify the folds based
on the response variable, for classification problems.

response_column Class Response variable column.

ignored_columns

Names of columns to ignore for training.

195

 Accuracy Kappa
 0.26684434 0.21447607
 AccuracyLower
AccuracyUpper
 0.26563995 0.26805133
 AccuracyNull
AccuracyPValue
 0.06666667 0.00000000
 McnemarPValue
 NaN

196

Test on KDDCUP

the KDDcup dataset was preprocessed by removing the duplicates and empty rows.

The following represent the dataset classes without the normal class.

names count Percentage

back 968 0.090

buffer_overflow 30 0.003

ftp_write 8 0.001

guess_passwd 53 0.005

imap 12 0.001

ipsweep 3723 0.346

land 19 0.002

loadmodule 9 0.001

multihop 7 0.001

neptune 242149 22.526

nmap 1554 0.145

0

0.2

0.4

0.6

0.8

1

1.2

NB

Precision

197

normal 812814 75.611

perl 3 0.000

phf 4 0.000

pod 206 0.019

portsweep 3564 0.332

rootkit 10 0.001

satan 5019 0.467

smurf 3007 0.280

spy 2 0.000

teardrop 918 0.085

warezclient 893 0.083

warezmaster 20 0.002

Total 1074992 100.000

In the above graph, we can see the distribution of threat types, and we clearly find

that the Neptune attacks are has a huge count compared to the rest. This is maybe

a result of removing duplicates and missing values.

198

Correlation heatmap:

We can see that most of the correlated features are the features related to the error

rate and count. And these relations are expected since they are mostly derived from

the error count.

First Run using Distributed Random Forest

At this stage, a distributed random forest model is created with the complete set of

features. This step will help to determine or select features, so we can reduce the

Dataset with the same accuracy. Also, it will assist in having a benchmark to

compare with the reduced model.

Distributed Random Forest Training:

199

200

Training matrix :

This is the training matrix of the distributed random forest with a training size equal

to 0.75 of the Dataset.

model drf-62b6f06b-971b-4e1b-837c-27a467942b9b

 model_checksum $ (272,627,320,440,848,000.00)

 frame frame_0.750

 frame_checksum $ 7,848,675,700,881,100,000.00

 description Metrics reported on Out-Of-Bag training samples

 model_category Multinomial

 scoring_time $ 1,617,119,055,988.00

 predictions ·

 MSE $ 0.00

 RMSE $ 0.01

 nobs $ 3,673,643.00

 custom_metric_name ·

 custom_metric_value $ -

 r2 $ 1.00

 logloss $ 0.00

 mean_per_class_error $ 0.38

 AUC NaN

 pr_auc NaN

 multinomial_auc_table ·

multinomial_aucpr_table ·

201

Training Confusion matrix

 b
ac

k

b
u

ff
er

_
o

ve
rf

lo
w

ft
p

_w
ri

te

gu
es

s_
p

as
s

w
d

im
ap

ip
sw

ee
p

la
n

d

lo
ad

m
o

d
u

l
e m

u
lt

ih
o

p

n
ep

tu
n

e

n
m

ap

n
o

rm
al

p
er

l

p
h

f

p
o

d

p
o

rt
sw

ee
p

ro
o

tk
it

sa
ta

n

sm
u

rf

sp
y

te
ar

d
ro

p

w
ar

ez
cl

ie
n

t

w
ar

ez
m

as
t

er

Er
ro

r

R
at

e

P
re

ci
si

o
n

back
164

2 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0.003
5 /

1,647 1

buffer_overf
low 0 13 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 2 0 0.48 44555 0.87

ftp_write 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 44353 NaN

guess_passw
d 0 0 0 41 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0.046
5 15738 1

imap 0 0 0 0 2 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0
0.714

3 44323 1

ipsweep 0 0 0 0 0 9358 0 0 0 0 1 35 0 0 0 0 0 0 0 0 0 0 0
0.003

8
36 /

9,394 1

land 0 0 0 0 0 0 15 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0
0.166

7 44273 0.75

loadmodule 0 1 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 1 0 1 44416 0

multihop 0 1 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 44321 NaN

neptune 0 0 0 0 0 0 0 0 0
80399

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 /

803,993 1

nmap 0 0 0 0 0 17 0 0 0 0 1676 24 0 0 0 0 0 0 0 0 0 0 0
0.023

9
41 /

1,717 1

normal 0 0 0 0 0 5 5 0 0 0 0 729167 0 0 0 1 0 3 1 0 0 13 0 0
28 /

729,195 1

perl 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN

phf 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 44258 NaN

pod 0 0 0 0 0 0 0 0 0 0 0 3 0 0 196 0 0 0 0 0 0 0 0
0.015

1 3 / 199 1

portsweep 0 0 0 0 0 0 0 0 0 1 0 12 0 0 0 7805 0 2 0 0 0 0 0
0.001

9
15 /

7,820 1

rootkit 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 44479 NaN

satan 0 0 0 0 0 1 0 0 0 0 0 74 0 0 0 0 0
1180

3 0 0 0 0 0
0.006

3
75 /

11,878 1

smurf 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
21061

28 0 0 0 0 0

3 /
2,106,1

31 1

spy 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN

teardrop 0 738 0 0 0 0 / 738 1

warezclient 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 743 0
0.059

5
47 /
790 0.98

warezmaster 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 9
0.307

7 44299 1

Total
164

2 15 0 41 2 9381 20 1 0
80399

5 1679 729422 0 0 196 7806 0
1180

8
21061

29 0 738 759 9
0.000

1

315 /
3,673,6

43

Recall 1 0.52 0 0.95 0.29 1 0.83 0 0 1 0.98 1 0 0 0.98 1 0 0.99 1 0 1 0.94 0.69

202

Validation Matrix:

0.25 of the Dataset was used for validation.

model drf-62b6f06b-971b-4e1b-837c-27a467942b9b

model_checksum -2.72627E+17

frame frame_0.250

frame_checksum 3.28803E+18

description ·

model_category Multinomial

scoring_time 1.61712E+12

predictions ·

MSE 0.000123

RMSE 0.011074

nobs 1224788

custom_metric_name ·

custom_metric_value 0

r2 0.999993

logloss 0.001162

mean_per_class_error 0.276288

AUC NaN

pr_auc NaN

multinomial_auc_table ·

multinomial_aucpr_table ·

203

Confusion matrix :
 b

ac
k

b
u

ff
er

_o

ve
rf

lo
w

ft
p

_w
ri

t
e gu

es
s_

p
as

sw
d

im
ap

ip
sw

ee
p

la
n

d

lo
ad

m
o

d
u

le

m
u

lt
ih

o
p

n
ep

tu
n

e

n
m

ap

n
o

rm
al

p
er

l

p
h

f

p
o

d

p
o

rt
sw

e

ep

ro
o

tk
it

sa
ta

n

sm
u

rf

sp
y

te
ar

d
ro

p

w
ar

ez
cl

i
en

t

w
ar

ez
m

as
te

r

Er
ro

r

R
at

e

P
re

ci
si

o

n

back 554 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0.0036 2 / 556 1

buffer_overflow 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0.4 44232 1

ftp_write 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN

guess_passwd 0 0 0 9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.1 44206 1

imap 0 0 0 0 3 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0.4 44232 1

ipsweep 0 0 0 0 0 3073 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0.0045 14 / 3,087 1

land 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 3 0.6

loadmodule 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN

multihop 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN

neptune 0 0 0 0 0 0 0 0 0 268024 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 /
268,024 1

nmap 0 0 0 0 0 12 0 0 0 0 573 14 0 0 0 0 0 0 0 0 0 0 0 0.0434 26 / 599 1

normal 0 0 0 0 0 2 2 0 0 0 0 243579 0 0 0 0 0 0 0 0 0 3 0 0
7 /
243,586 1

perl 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN

phf 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN

pod 0 0 0 0 0 0 0 0 0 0 0 2 0 0 63 0 0 0 0 0 0 0 0 0.0308 23774 1

portsweep 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 2584 0 1 0 0 0 0 0 0.0035 9 / 2,593 1

rootkit 0 0 / 0 NaN

satan 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 3993 0 0 0 0 0 0.0052 21 / 4,014 1

smurf 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 701754 0 0 0 0 0
1 /
701,755 1

spy 0
0 / 0Rate:
spy NaN

teardrop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 239 0 0 0.0083 2 / 241 1

warezclient 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 214 0 0.0696 16 / 230 0.99

warezmaster 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 5 0.2857 44234 1

Total 554 3 0 9 3 3087 5 0 0 268025 573 243671 0 0 63 2584 0 3996 701754 0 239 217 5 0.0001
115 /
1,224,788

Recall 1 0.6 0 0.9 0.6 1 1 0 0 1 0.96 1 0 0 0.97 1 NaN 0.99 1 NaN 0.99 0.93 0.71

204

Variable Importance

At this stage, we can determine which factors we can use for the second test with random

forest. Based on the scaled_importance, we have selected factors that have a value

greater than 0.3.

205

Variable Importance Table

variable relative_importance scaled_importance percentage

count 11859210 1 0.1263

same_srv_rate 11688206 0.9856 0.1245

protocol_type 11003613 0.9279 0.1172

srv_count 10597117 0.8936 0.1128

dst_host_same_srv_rate 7336097 0.6186 0.0781

dst_host_same_src_port_rate 5948306 0.5016 0.0633

dst_host_diff_srv_rate 5567899.5 0.4695 0.0593

logged_in 4536479.5 0.3825 0.0483

diff_srv_rate 3725651.75 0.3142 0.0397

flag 3521670 0.297 0.0375

dst_host_count 2578363.75 0.2174 0.0275

service 2501159.5 0.2109 0.0266

dst_host_srv_count 2326045.25 0.1961 0.0248

srv_serror_rate 2136325.75 0.1801 0.0227

serror_rate 2085115.375 0.1758 0.0222

dst_host_srv_diff_host_rate 1722246.375 0.1452 0.0183

dst_host_srv_serror_rate 1406472.5 0.1186 0.015

dst_host_serror_rate 1380117.125 0.1164 0.0147

srv_diff_host_rate 653914.875 0.0551 0.007

dst_host_rerror_rate 458241.8125 0.0386 0.0049

dst_host_srv_rerror_rate 254065.2188 0.0214 0.0027

rerror_rate 198456.9219 0.0167 0.0021

srv_rerror_rate 175007.0625 0.0148 0.0019

duration 115320.625 0.0097 0.0012

src_bytes 45980.3047 0.0039 0.0005

206

hot 34724.5781 0.0029 0.0004

wrong_fragment 32910.9648 0.0028 0.0004

num_compromised 13082.9023 0.0011 0.0001

dst_bytes 5480.2305 0.0005 0.0001

is_guest_login 1813.0879 0.0002 0

num_failed_logins 932.4665 0.0001 0

land 364.8605 0 0

num_root 332.1861 0 0

root_shell 278.7813 0 0

num_file_creations 221.6001 0 0

num_access_files 182.6476 0 0

num_shells 68.4239 0 0

su_attempted 54.1832 0 0

urgent 28.6472 0 0

is_host_login 0 0 0

Distributed Random Forest After reduction

At this stage, we have reduced the Dataset based on the most important classes or

factors. A distributed random forest is built with this reduction.

Scoring of the Distributed Random forest after feature reduction

207

Correlation After Reduction

208

Model Training Matrix

model drf-e1fea77c-d26d-42cb-b329-aad94a5cc57a

model_checksum -7.30695E+17

frame frame_0.750

frame_checksum 7.84868E+18

description
Metrics reported on Out-Of-Bag training
samples

model_category Multinomial

scoring_time 1.61712E+12

predictions ·

MSE 0.001356

RMSE 0.03683

nobs 3673643

custom_metric_name ·

custom_metric_value 0

r2 0.999917

logloss 0.005877

mean_per_class_error 0.6047

AUC NaN

pr_auc NaN

multinomial_auc_table ·

multinomial_aucpr_table ·

209

210

Confusion Matrix for Training

 b
ac

k

b
u

ff
er

_o
ve

rf
lo

w

ft
p

_w
ri

te

gu
es

s_
p

as
s

w
d

im
ap

ip
sw

ee
p

la
n

d

lo
ad

m
o

du
l

e m
u

lt
ih

o
p

n
ep

tu
n

e

n
m

ap

n
o

rm
al

p
er

l

p
h

f

p
o

d

p
o

rt
sw

ee
p

ro
o

tk
it

sa
ta

n

sm
u

rf

sp
y

te
ar

d
ro

p

w
ar

ez
cl

ie
n

t

w
ar

ez
m

as
t

e
r

Er
ro

r

R
at

e

P
re

ci
si

o
n

back 73 0 0 0 0 0 0 0 0 0 0 1573 0 0 0 0 0 0 0 0 0 1 0 0.9557 1,574 / 1,647 0.89

buffer_overflow 0 0 0 0 0 0 0 0 0 1 0 23 0 0 0 0 0 0 0 0 0 1 0 1 25 / 25 NaN

ftp_write 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 44353 NaN

guess_passwd 0 0 0 36 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0.1628 15888 0.95

imap 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0.8571 44354 1

ipsweep 0 0 0 0 0 6739 0 0 0 0 1 2648 0 0 1 0 0 0 5 0 0 0 0 0.2826 2,655 / 9,394 0.9

land 0 0 0 0 0 0 0 0 0 2 0 16 0 0 0 0 0 0 0 0 0 0 0 1 18 / 18 NaN

loadmodule 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 1 44416 0

multihop 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 1 44321 NaN

neptune 0 0 0 0 0 0 0 0 0 803979 0 13 0 0 0 0 0 1 0 0 0 0 0 0 14 / 803,993 1

nmap 0 0 0 0 0 733 0 0 0 0 906 74 0 0 3 0 0 0 1 0 0 0 0 0.4723 811 / 1,717 0.97

normal 7 0 0 2 0 3 0 1 0 10 24 729043 0 0 10 6 0 17 6 0 1 65 0 0.0002 152 / 729,195 0.99

perl 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN

phf 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 44258 NaN

pod 1 0 0 0 0 48 0 0 0 0 0 26 0 0 108 0 0 1 15 0 0 0 0 0.4573 91 / 199 0.77

portsweep 0 0 0 0 0 0 0 0 0 2 0 15 0 0 0 7802 0 1 0 0 0 0 0 0.0023 18 / 7,820 1

rootkit 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 44479 NaN

satan 0 0 0 0 0 0 0 0 0 2 0 93 0 0 3 3 0 11775 2 0 0 0 0 0.0087 103 / 11,878 1

smurf 0 0 0 0 0 0 0 0 0 0 0 21 0 0 15 0 0 1 2106094 0 0 0 0 0 37 / 2,106,131 1

spy 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 2 / 2Rate: spy NaN

teardrop 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 722 0 0 0.0217 16 / 738 1

warezclient 1 0 0 0 0 0 0 0 0 0 0 542 0 0 0 0 0 0 0 0 0 247 0 0.6873 543 / 790 0.79

warezmaster 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 1 13 / 13 NaN

Total 82 0 0 38 1 7523 0 1 0 803996 932 734163 0 0 140 7811 0 11796 2106123 0 723 314 0 0.0017 6,118 / 3,673,643

Recall 0.04 0 0 0.84 0.14 0.72 0 0 0 1 0.53 1 0 0 0.54 1 0 0.99 1 0 0.98 0.31 0

211

Validation Metric

model
drf-e1fea77c-d26d-42cb-b329-
aad94a5cc57a

model_checksum -7.30695E+17

frame frame_0.250

frame_checksum 3.28803E+18

description ·

model_category Multinomial

scoring_time 1.61712E+12

predictions ·

MSE 0.001375

RMSE 0.037088

nobs 1224788

custom_metric_name ·

custom_metric_value 0

r2 0.999916

logloss 0.005852

mean_per_class_error 0.511234

AUC NaN

pr_auc NaN

multinomial_auc_table ·

multinomial_aucpr_table ·

212

Confusion Matrix for Validation

b
ac

k

b
u

ff
er

_
o

ve
rf

lo
w

ft
p

_w
ri

te

gu
es

s_
p

as
s

w
d

im
ap

ip
sw

ee
p

la
n

d

lo
ad

m
o

d
u

l

e m
u

lt
ih

o
p

n
ep

tu
n

e

n
m

ap

n
o

rm
al

p
er

l

p
h

f

p
o

d

p
o

rt
sw

ee
p

ro
o

tk
it

sa
ta

n

sm
u

rf

sp
y

te
ar

d
ro

p

w
ar

ez
cl

ie
n

t

w
ar

ez
m

as
t

er

Er
ro

r

R
at

e

P
re

ci
si

o
n

back 18 0 0 0 0 0 0 0 0 0 0 537 0 0 0 0 0 0 0 0 0 1 0 0.9676 538 / 556 0.9

buffer_overflow 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1 0 1 44321 NaN

ftp_write 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN

guess_passwd 0 0 0 8 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0.2 44237 0.8

imap 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0.6 44260 1

ipsweep 0 0 0 0 0 2225 0 0 0 0 0 862 0 0 0 0 0 0 0 0 0 0 0 0.2792 862 / 3,087 0.89

land 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 44258 NaN

loadmodule 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN

multihop 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN

neptune 0 0 0 0 0 0 0 0 0 268018 0 6 0 0 0 0 0 0 0 0 0 0 0 0 6 / 268,024 1

nmap 0 0 0 0 0 262 0 0 0 0 293 40 0 0 4 0 0 0 0 0 0 0 0 0.5109 306 / 599 0.95

normal 2 0 0 2 0 1 0 0 0 3 16 243537 0 0 2 1 0 7 1 0 0 14 0 0.0002 49 / 243,586 0.99

perl 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN

phf 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN

pod 0 0 0 0 0 18 0 0 0 0 0 7 0 0 38 0 0 1 1 0 0 0 0 0.4154 27 / 65 0.81

portsweep 0 0 0 0 0 0 0 0 0 1 0 11 0 0 0 2580 0 1 0 0 0 0 0 0.005 13 / 2,593 1

rootkit 0 0 / 0 NaN

satan 0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 3983 0 0 0 0 0 0.0077 31 / 4,014 1

smurf 0 0 0 0 0 0 0 0 0 0 0 4 0 0 3 0 0 0 701748 0 0 0 0 0 7 / 701,755 1

spy 0 0 / 0 NaN

teardrop 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 233 0 0 0.0332 8 / 241 1

warezclient 0 0 0 0 0 0 0 0 0 0 0 170 0 0 0 0 0 0 0 0 0 60 0 0.7391 170 / 230 0.79

warezmaster 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 1 44384 NaN

Total 20 0 0 10 2 2506 0 0 0 268022 309 245240 0 0 47 2581 0 3992 701750 0 233 76 0 0.0017
2,045 / 1,224,788Total:
Rate

213

Variable Importance

Variable Importance Table

variable relative_importance scaled_importance percentage

count 20127888 1 0.2026

srv_count 14606322 0.7257 0.147

protocol_type 14226244 0.7068 0.1432

same_srv_rate 10842952 0.5387 0.1092

dst_host_same_src_port_rate 8352236 0.415 0.0841

diff_srv_rate 8204572 0.4076 0.0826

flag 7946105 0.3948 0.08

logged_in 5893682 0.2928 0.0593

dst_host_diff_srv_rate 4986479 0.2477 0.0502

dst_host_same_srv_rate 4146581 0.206 0.0417

214

Test With Deep learning (DNN) on reduced features

Training matrix

model deeplearning-0594f7fe-b0b5-457a-abc8-78fb91d7c0b6

model_checksum -1.8E+18

frame ·

frame_checksum 0

description Metrics reported on temporary training frame with 9976
samples

model_category Multinomial

scoring_time 1.62E+12

predictions ·

MSE 0.004302

RMSE 0.065587

nobs 9976

custom_metric_name ·

custom_metric_value 0

r2 0.997001

logloss 0.02805

215

mean_per_class_error 0.235354

AUC NaN

pr_auc NaN

multinomial_auc_table ·

multinomial_aucpr_table ·

216

Confusion Matrix

b
a
c
k

b
u
f
f
e
r
_
o
v
e
r

f
l
o
w

f
t
p
_
w
r
i
t
e

g
u
e
s
s
_
p
a
s
s
w

d

i
m
a
p

i
p
s
w
e
e
p

l
a
n
d

l
o
a
d
m
o
d
u
l
e

m
u
l
t
i
h
o
p

n
e
p
t
u
n
e

n
m
a
p

n
o
r
m
a
l

p
e
r
l

p
h
f

p
o
d

p
o
r
t
s
w
e
e
p

r
o
o
t
k
i
t

s
a
t
a
n

s
m
u
r
f

s
p
y

t
e
a
r
d
r
o
p

w
a
r
e
z
c
l
i
e
n
t

w
a
r
e
z
m
a
s
t
e
r

E
r
r
o
r

R
a
t
e

P
r
e
c
i
s
i
o
n

back 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 1 44384 NaN

buffer_overflow 0 0 / 0 NaN

ftp_write 0 0 / 0 NaN

guess_passwd 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN

imap 0 0 / 0 NaN

ipsweep 0 0 0 0 0 25 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0.2424 12267 0.78

land 0 0 / 0 NaN

loadmodule 0 0 / 0 NaN

multihop 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN

neptune 0 0 0 0 0 0 0 0 0 2222 0 0 0 0 0 0 0 2 0 0 0 0 0 0.0009 2 / 2,224 1

nmap 0 0 0 0 0 5 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0.7 44387 1

normal 0 0 0 0 0 0 0 0 0 1 0 7569 0 0 0 0 0 8 0 0 0 0 0 0.0012 9 / 7,578 1

perl 0 0 / 0 NaN

phf 0 0 / 0 NaN

pod 0 0 / 0 NaN

portsweep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 1 0 0 0 0 0 0.0313 11689 1

rootkit 0 0 / 0 NaN

satan 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 38 0 0 0 0 0 0.05 14642 0.75

smurf 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0.0541 13547 1

spy 0 0 / 0 NaN

teardrop 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 6 0 0 0.3333 44264 1

warezclient 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1
4 / 4Rate:
warezclient

NaN

warezmaster 0 0 / 0 NaN

Total 0 0 0 0 0 32 0 0 0 2223 3 7595 0 0 0 31 0 51 35 0 6 0 0 0.0047 47 / 9,976

Recall 0 NaN NaN 0 NaN 0.76 NaN NaN 0 1 0.3 1 NaN NaN NaN 0.97 NaN 0.95 0.95 NaN 0.67 0 NaN

217

Validation Metric

model deeplearning-0594f7fe-b0b5-457a-abc8-78fb91d7c0b6

model_checksum -1.8E+18

frame frame_0.250

frame_checksum 1.02E+18

description Metrics reported on full validation frame

model_category Multinomial

scoring_time 1.62E+12

predictions ·

MSE 0.005857

RMSE 0.076533

nobs 268677

custom_metric_name ·

custom_metric_value 0

r2 0.996096

logloss 0.035909

mean_per_class_error 0.544477

AUC NaN

pr_auc NaN

multinomial_auc_table ·

multinomial_aucpr_table ·

218

Validation Confusion Matrix

b
a
c
k

b
u
f
f
e
r
_
o
v

e
r
f
l
o
w

f
t
p
_
w
r
i
t
e

g
u
e
s
s
_
p
a
s

s
w
d

i
m
a
p

i
p
s
w
e
e
p

l
a
n
d

l
o
a
d
m
o
d
u
l

e

m
u
l
t
i
h
o
p

n
e
p
t
u
n
e

n
m
a
p

n
o
r
m
a
l

p
e
r
l

p
h
f

p
o
d

p
o
r
t
s
w
e
e
p

r
o
o
t
k
i
t

s
a
t
a
n

s
m
u
r
f

s
p
y

t
e
a
r
d
r
o
p

w
a
r
e
z
c
l
i
e

n
t

w
a
r
e
z
m
a
s
t

e
r

E
r
r
o
r

R
a
t
e

P
r
e
c
i
s
i
o
n

back 0 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0 0 1
250 / 250

NaN

buffer_overflow 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1
44258

NaN

ftp_write 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 1
44321

NaN

guess_passwd 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 1
44384

NaN

imap 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
44197

NaN

ipsweep 0 0 0 0 0 731 0 0 0 0 0 221 0 0 0 0 0 1 0 0 0 0 0 0.2329
222 / 953

0.73

land 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1
44290

NaN

loadmodule 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1
44290

NaN

multihop 0
0 / 0

NaN

neptune 0 0 0 0 0 8 0 0 0 60371 0 15 0 0 0 1 0 193 0 0 0 0 0 0.0036 217 /
60,588

1

nmap 0 0 0 0 0 233 0 0 0 0 64 83 0 0 0 0 0 0 0 0 0 0 0 0.8316
316 / 380

0.9

normal 0 0 0 0 0 4 0 0 0 19 7 202804 0 0 0 17 0 184 2 0 20 0 0 0.0012 253 /
203,057

1

perl 0
0 / 0

NaN

phf 0
0 / 0

NaN

pod 0 0 0 0 0 9 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 1
44 / 44

NaN

portsweep 0 0 0 0 0 0 0 0 0 1 0 13 0 0 0 871 0 15 0 0 0 0 0 0.0322
29 / 900

0.98

rootkit 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
44197

NaN

satan 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 1220 0 0 7 0 0 0.0409
52 / 1,272

0.74

smurf 0 0 0 0 0 19 0 0 0 0 0 11 0 0 0 0 0 0 720 0 0 0 0 0.04
30 / 750

1

spy 0
0 / 0

NaN

teardrop 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 45 0 0 153 0 0 0.3405
79 / 232

0.85

warezclient 0 0 0 0 0 0 0 0 0 0 0 219 0 0 0 0 0 0 0 0 0 0 0 1 219 /
219Rate:
warezclient

NaN

warezmaster 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 1
44384

NaN

Total 0 0 0 0 0 1004 0 0 0 60391 71 203762 0 0 0 889 0 1658 722 0 180 0 0 0.0065 1,743 /
268,677

Recall 0 0 0 0 0 0.77 0 0 NaN 1 0.17 1 NaN NaN 0 0.97 0 0.96 0.96 NaN 0.66 0 0

219

Variable Importance

Variable Importance Table

variable relative_importance scaled_importance percentage

srv_count 1 1 0.1691

count 0.6503 0.6503 0.11

logged_in 0.6356 0.6356 0.1075

flag 0.6181 0.6181 0.1045

dst_host_same_srv_rate 0.5969 0.5969 0.1009

protocol_type 0.5512 0.5512 0.0932

dst_host_diff_srv_rate 0.5004 0.5004 0.0846

same_srv_rate 0.4642 0.4642 0.0785

dst_host_same_src_port_rat
e

0.4621 0.4621 0.0782

diff_srv_rate 0.4344 0.4344 0.0735

220

Scripts

Create Models

#Libaraies

kddcup_data_corrected<-NULL

prediction<-NULL

Sample<-NULL

TrainSample<-NULL

ValidateSampel<-NULL

predictSample<-NULL

library(readr)

library(dbplyr)

library(tidyverse)

library(ranger)

library(caret)

library(mlbench)

library(dplyr)

221

library(magrittr)

library(nnet)

library(caret)

number2binary = function(number, noBits) {

 binary_vector = rev(as.numeric(intToBits(number)))

 if(missing(noBits)) {

 return(binary_vector)

 } else {

 binary_vector[-(1:(length(binary_vector) - noBits))]

 }

}

upsampleData = function(SSample,percentage){

 set.seed(234)

 sampledData <- upSample(x = SSample[,-ncol(SSample)],

 y = SSample$Class)

 sampledData$Class<-as.factor(sampledData$Class)

222

 Sample <- sampledData %>% group_by(Class) %>%

sample_n(if_else(n()*percentage<1,1,n()*percentage))

 Sample$Class<-as.factor(Sample$Class)

 levels(Sample$Class)

 summary(Sample$Class)

 return (Sample)

}

loadCleanData<-function(){

 CIC<-read_csv(file ="CICLatest.CSV")

 names(CIC)[names(CIC) == "Label"] <- "Class"

 #importVAR<-read.csv("D:\\CIC

PHD\\DataSource\\ImportVarForReductiom.csv",header = TRUE)

 #CIC<-CIC[,importVAR$importantVal]

223

 return (CIC)

}

getSample<-function(percentage){

 kddcup_data_corrected$Class<-as.factor(kddcup_data_corrected$Class)

 Sample <- kddcup_data_corrected %>% group_by(Class) %>%

sample_n(if_else(n()*percentage<1,1,n()*percentage))

 Sample$Class<-as.factor(Sample$Class)

 levels(Sample$Class)

 summary(Sample$Class)

 return (Sample)

}

RFF<-function(){

224

 TrainSample$Class<-as.factor(TrainSample$Class)

 # rg.iris <- ranger(Class ~ ., data = TrainSample, importance =

"impurity",local.importance = TRUE)

 # rg.iris

 # library(data.table)

 # importantVAR<-as.data.table(rg.iris$variable.importance.local)[,Class :=

TrainSample$Class][,lapply(.SD,mean),by=Class]

 #

write.csv(importantVAR,"D://Porcessing//Canadian//newResults//importnatntVAR.csv")

 # ranger::importance(rg.iris)

 rg.iris <- ranger(Class ~ ., data = TrainSample, importance = "impurity")

 rg.iris

 saveRDS(rg.iris, "Models//RFModelToLoad.rds")

 sink("Results//RFModelResult.txt")

 print(rg.iris)

 sink()

 pr<-NULL

225

 pr$Validate<-predict(rg.iris,subset(ValidateSampel,,-c(Class)))

 pr$predict<-predict(rg.iris,subset(TrainSample,,-c(Class)))

 return(pr)

}

LoadModels<-function(){

 library(h2o)

 h2o.init()

 Deepmodel<-

h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\Deeplearning")

 Allh2oData<-as.h2o(select(TrainSample,-Class))

 Data15H20<-as.h2o(ValidateSampel)

 FinalS<-as.h2o(select(FinalStageSample,-Class))

 pred <- h2o.predict(Deepmodel, Allh2oData)

 pred15<-h2o.predict(Deepmodel, Data15H20)

 FinalSS<-h2o.predict(Deepmodel,FinalS)

 pr<-NULL

 pr$NNpr15<-as.data.frame(pred15)

 pr$NNpr05<-as.data.frame(pred)

226

 pr$NNFinal<-as.data.frame(FinalSS)

 ###################DRF############

 RF <-h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\DRF")

 pred <- h2o.predict(RF, Allh2oData)

 pred15<-h2o.predict(RF, Data15H20)

 FinalSS<-h2o.predict(RF,FinalS)

 pr$RFpr15<-as.data.frame(pred15)

 pr$RFpr05<-as.data.frame(pred)

 pr$RFFinal<-as.data.frame(FinalSS)

 ########################GLM <- ##############

 GLM <- h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\GLM")

 pred <- h2o.predict(GLM, Allh2oData)

 pred15<-h2o.predict(GLM, Data15H20)

 FinalSS<-h2o.predict(GLM,FinalS)

 pr$GLMpr15<-as.data.frame(pred15)

 pr$GLMpr05<-as.data.frame(pred)

227

 pr$GLMFinal<-as.data.frame(FinalSS)

 #####################GBM <- ###############

 GBM <- h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\GBM")

 pred <- h2o.predict(GBM, Allh2oData)

 pred15<-h2o.predict(GBM, Data15H20)

 FinalSS<-h2o.predict(GBM,FinalS)

 pr$GBMpr15<-as.data.frame(pred15)

 pr$GBMpr05<-as.data.frame(pred)

 pr$GBMFinal<-as.data.frame(FinalSS)

 ######################KMEANS#########

 NB<-h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\NB")

 pred <- h2o.predict(NB, Allh2oData)

 pred15<-h2o.predict(NB, Data15H20)

 FinalSS<-h2o.predict(NB,FinalS)

 pr$NBpr15<-as.data.frame(pred15)

 pr$NBpr05<-as.data.frame(pred)

 pr$NBFinal<-as.data.frame(FinalSS)

 return(pr)

228

}

MultipleClassificaitionH2o<-function(){

 library(h2o)

 h2o.init(max_mem_size = "500g")

 TrainSample$Class<-as.factor(TrainSample$Class)

 ValidateSampel$Class<-as.factor(ValidateSampel$Class)

 train<-as.h2o(TrainSample)

 valid<-as.h2o(ValidateSampel)

 #splits <- h2o.splitFrame(SampleH2o, c(0.90,0.08), seed=1234)

 #train <- h2o.assign(splits[[1]], "train.hex") # 60%

 #valid <- h2o.assign(splits[[2]], "valid.hex") # 20%

 response <- "Class"

 predictors <- setdiff(names(train), response)

 predictors

 print("deeplearning Strated")

 m3 <- h2o.deeplearning(

 model_id="NNModel",

 training_frame=train,

229

 validation_frame=valid,

 x=predictors,

 y=response,

 nfolds = 15, # 10x cross validation

 #keep_cross_validation_fold_assignment = TRUE,

 #fold_assignment = "Stratified",

 activation = "RectifierWithDropout",

 score_each_iteration = TRUE,

 hidden = c(200, 200), # 5 hidden layers, each of 200 neurons

 epochs = 15,

 variable_importances = TRUE,

 export_weights_and_biases = TRUE,

 seed = 42

)

 # hyper_params <- list(balance_classes = c(TRUE, FALSE))

 # grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame

= valid,

230

 # algorithm = "deeplearning", grid_id = "NNGrid", hyper_params =

hyper_params,

 # search_criteria = list(strategy = "Cartesian"), seed = 1234)

 #

 # # Sort the grid models by logloss

 # sorted_grid <- h2o.getGrid("NNGrid", sort_by = "logloss", decreasing = FALSE)

 # sorted_grid

 print("model built")

 h2o.performance(m3, train=T) ## sampled training data (from model building)

 h2o.performance(m3, valid=T) ## sampled validation data (from model building)

 h2o.performance(m3, newdata=train) ## full training data

 h2o.performance(m3, newdata=valid) ## full validation data

 Allh2oData<-as.h2o(subset(TrainSample,,-c(Class)))

 Data15H20<-as.h2o(ValidateSampel)

 pred <- h2o.predict(m3, Allh2oData)

 pred15<-h2o.predict(m3, Data15H20)

231

 # predG <- h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Allh2oData)

 # pred15G<-h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Data15H20)

 pr<-NULL

 pr$NNpr15<-as.data.frame(pred15)

 pr$NNpr05<-as.data.frame(pred)

 # pr$NNpr15G<-as.data.frame(pred15G)

 # pr$NNpr05G<-as.data.frame(predG)

 h2o::h2o.saveModel(m3,"Models//",force = TRUE)

 # h2o::h2o.saveModel(h2o.getModel(sorted_grid@model_ids[[1]]),"Models//",force =

TRUE)

 print("deeplearning results finished")

 ################RandomForest

 print("random forest started")

 RF <- h2o.randomForest(

 model_id="RFModel",

 x = predictors,

 y = response,

 ntrees = 100,

 max_depth = 500,

232

 min_rows = 10,

 calibrate_model = FALSE,

 calibration_frame = valid,

 binomial_double_trees = TRUE,

 training_frame = train,

 validation_frame = valid)

 # hyper_params <- list(balance_classes = c(TRUE, FALSE))

 # grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame

= valid,

 # algorithm = "randomForest", grid_id = "RFGrid", hyper_params =

hyper_params,

 # search_criteria = list(strategy = "Cartesian"), seed = 1234)

 #

 # # Sort the grid models by logloss

 # sorted_grid <- h2o.getGrid("RFGrid", sort_by = "logloss", decreasing = FALSE)

 # sorted_grid

 print("random forest finished")

 h2o.performance(RF, train=T) ## sampled training data (from model building)

233

 h2o.performance(RF, valid=T) ## sampled validation data (from model building)

 h2o.performance(RF, newdata=train) ## full training data

 h2o.performance(RF, newdata=valid) ## full validation data

 pred <- h2o.predict(RF, Allh2oData)

 pred15<-h2o.predict(RF, Data15H20)

 # predG <- h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Allh2oData)

 # pred15G<-h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Data15H20)

 pr$RFpr15<-as.data.frame(pred15)

 pr$RFpr05<-as.data.frame(pred)

 # pr$RFpr15G<-as.data.frame(pred15G)

 # pr$RFpr05G<-as.data.frame(predG)

 h2o::h2o.saveModel(RF,"Models//",force = TRUE)

 # h2o::h2o.saveModel(h2o.getModel(sorted_grid@model_ids[[1]]),"Models//",force =

TRUE)

 print("random forest results finished")

 ##################################

 ##########################GLM##############

 print("GLM started")

234

 GLM <- h2o.glm(

 model_id="GLMModel",

 family = "multinomial",

 x = predictors,

 y = response,

 training_frame = train,

 lambda = 0)

 h2o.coef_norm(GLM)

 h2o.performance(GLM, train=T) ## sampled training data (from model building)

 h2o.performance(GLM, valid=T) ## sampled validation data (from model building)

 h2o.performance(GLM, newdata=train) ## full training data

 h2o.performance(GLM, newdata=valid) ## full validation data

 pred <- h2o.predict(GLM, Allh2oData)

 pred15<-h2o.predict(GLM, Data15H20)

235

 pr$GLMpr15<-as.data.frame(pred15)

 pr$GLMpr05<-as.data.frame(pred)

 h2o::h2o.saveModel(GLM,"Models//",force = TRUE)

 print("GLM finished")

 #

 #####################################GBM#######

 print("GBM started")

 GBM <- h2o.gbm(

 model_id="GBMModel",

 x = predictors,

 y = response,

 nfolds = 5,

 seed = 1111,

 keep_cross_validation_predictions = TRUE,

 training_frame = train)

 # hyper_params <- list(balance_classes = c(TRUE, FALSE))

236

 # grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame

= valid,

 # algorithm = "gbm", grid_id = "GBMGrid", hyper_params = hyper_params,

 # search_criteria = list(strategy = "Cartesian"), seed = 1234)

 #

 # # Sort the grid models by logloss

 # sorted_grid <- h2o.getGrid("GBMGrid", sort_by = "logloss", decreasing = FALSE)

 # sorted_grid

 h2o.performance(GBM, train=T) ## sampled training data (from model building)

 h2o.performance(GBM, valid=T) ## sampled validation data (from model building)

 h2o.performance(GBM, newdata=train) ## full training data

 h2o.performance(GBM, newdata=valid) ## full validation data

 pred <- h2o.predict(GBM, Allh2oData)

 pred15<-h2o.predict(GBM, Data15H20)

 # predG <- h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Allh2oData)

 # pred15G<-h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Data15H20)

 pr$GBMpr15<-as.data.frame(pred15)

 pr$GBMpr05<-as.data.frame(pred)

237

 # pr$GBMpr15G<-as.data.frame(pred15G)

 # pr$GBMpr05G<-as.data.frame(predG)

 h2o::h2o.saveModel(GBM,"Models//",force = TRUE)

 # h2o::h2o.saveModel(h2o.getModel(sorted_grid@model_ids[[1]]),"Models//",force =

TRUE)

 print("GBM finished")

 # #########################KM###########################

 # print("k-means started")

 # KM <- h2o.kmeans(

 # model_id="KMModel",

 # x = predictors,

 # training_frame = train,

 # k = 10,

 # estimate_k = TRUE,

 # standardize = FALSE,

 # seed = 1234)

 #

 # h2o.performance(KM, train=T) ## sampled training data (from model building)

238

 # h2o.performance(KM, valid=T) ## sampled validation data (from model building)

 # h2o.performance(KM, newdata=train) ## full training data

 # h2o.performance(KM, newdata=valid) ## full validation data

 # pred <- h2o.predict(KM, Allh2oData)

 # pred15<-h2o.predict(KM, Data15H20)

 # FinalSS<-h2o.predict(KM,FinalS)

 # pr$NBpr15<-as.data.frame(pred15)

 # pr$NBpr05<-as.data.frame(pred)

 # pr$NBFinal<-as.data.frame(FinalSS)

 # h2o::h2o.saveModel(NB,"D://Porcessing//Canadian//newResults//",force = TRUE)

 #

 #

 ##

 return(pr)

}

getSummary<-function(predictions,Truth,name){

 Truth$Class<-as.factor(Truth$Class)

 predictions<-factor(predictions,levels = levels(Truth$Class))

239

 levels(Truth$Class)

 levels(predictions)

 summary(predictions)

 cm<-as.matrix(table(Truth$Class, predictions))

 write.csv(cm,paste("Results//",name,"-ConfusionMatrix.csv"))

 src<-levels(predictions)

 ppr<-levels(Truth$Class)

 diff

 print(cm)

 n = sum(cm)

 nc = nrow(cm)

 diag = diag(cm)

 print(sum(diag==0))

 rowsums = apply(cm, 1, sum)

 colsums = apply(cm, 2, sum)

 p = rowsums / n

 q = colsums / n

 accuracy = sum(diag) / n

240

 accuracy

 precision = diag / colsums

 recall = diag / rowsums

 f1 = 2 * precision * recall / (precision + recall)

 write.csv(data.frame(precision, recall, f1),paste("Results//",name,"-Accurecy.csv"))

 Truth$Class<-as.factor(Truth$Class)

 MCM<-confusionMatrix(predictions,Truth$Class)

 sink(paste("Results//",name,"-ConfusionMatrix2OverAll.csv"))

 print(MCM$overall)

 sink()

 write.csv(MCM$byClass,paste("Results//",name,"-ConfusionMatrix2ByClass.csv"))

 write.csv(MCM$table,paste("Results//",name,"-ConfusionMatrix2table.csv"))

 ###Done

241

}

getAllSummery <- function (){

 ##Training

 getSummary(RFPr$Validate$predictions,ValidateSampel,"RangerLatest")

 getSummary(h2opredictions$NNpr15$predict,ValidateSampel,"NN")

 #getSummary(h2opredictions$NNpr15G$predict,ValidateSampel,"NNGrid")

 getSummary(h2opredictions$RFpr15$predict,ValidateSampel,"DRF")

 #getSummary(h2opredictions$RFpr15G$predict,ValidateSampel,"DRFGrid")

 getSummary(h2opredictions$GLMpr15$predict,ValidateSampel,"GLM")

 getSummary(h2opredictions$GBMpr15$predict,ValidateSampel,"GBM")

 #getSummary(h2opredictions$GBMpr15G$predict,ValidateSampel,"GBMGrid")

}

242

###########Test raw##############

smp_size <- floor(0.75 * nrow(kddcup_data_corrected))

set the seed to make your partition reproducible

set.seed(123)

train_ind <- sample(seq_len(nrow(kddcup_data_corrected)), size = smp_size)

TrainSample <- kddcup_data_corrected[train_ind,]

ValidateSampel <- kddcup_data_corrected[-train_ind,]

######################################

kddcup_data_corrected<-loadCleanData()

kddcup_data_corrected<-kddcup_data_corrected[Reduce(`&`,

lapply(kddcup_data_corrected, function(x) !is.na(x) & is.finite(x))),]

#TrainSample<-readRDS("D:\\CIC PHD\\DataSource\\TrainSample.rds")

#ValidateSampel<-readRDS("D:\\CIC PHD\\DataSource\\ValidateSample.rds")

243

#FinalStageSample<-readRDS("D:\\CIC PHD\\DataSource\\FinalStageSample.rds")

library(caret)

library(data.table)

#k#ddcup_data_corrected2<-

downSample(kddcup_data_corrected,kddcup_data_corrected$Class)

kddcup_data_corrected$Class<-as.factor(kddcup_data_corrected$Class)

summary(kddcup_data_corrected$Class)

TrainSample<-getSample(0.7)

ValidateSampel<-setdiff(kddcup_data_corrected, TrainSample)

summary(TrainSample$Class)

summary(ValidateSampel$Class)

saveRDS(TrainSample,"\\Data\\TrainSample.rds")

saveRDS(ValidateSampel,"\\Data\\ValidateSample.rds")

kddcup_data_corrected<-NULL

kddcup_data_corrected2<-NULL

DT<-NULL

predictSample$Class<-as.factor(predictSample$Class)

244

library(psych)

#corPlot(subset(TrainSample,,-c(Class)))

#########################

#cor(subset(TrainSample,,-c(Class)), use = "complete.obs")

prediction<-as.data.frame(RFPr$predict$predictions)

RFPr<-RFF()

h2opredictions<-MultipleClassificaitionH2o()

saveRDS(h2opredictions,"Data\\h2opredictions.rds")

saveRDS(RFPr,"Data\\RFPr.rds")

getAllSummery()

245

newTester<-TrainSample

newTester$Class<-as.character(newTester$Class)

newTester$RFPred<-RFPr$predict$predictions

#levels(h2opredictions$NNpr15$predict)<-levels(kddcup_data_corrected$Class)

newTester$NNet<-(h2opredictions$NNpr05$predict)

newTester$RF<-(h2opredictions$RFpr05$predict)

newTester$GML<-(h2opredictions$GLMpr05$predict)

newTester$GBM<-(h2opredictions$GBMpr05$predict)

#newTester$NB<-(h2opredictions$NBpr05$predict)

newTester$BooleanRFPred<-if_else(newTester$RFPred==newTester$Class,1,0)

newTester$BooleanNNet<-if_else(newTester$NNet==newTester$Class,1,0)

newTester$BooleanRF<-if_else(newTester$RF==newTester$Class,1,0)

newTester$BooleanGML<-if_else(newTester$GML==newTester$Class,1,0)

newTester$BooleanGBM<-if_else(newTester$GBM==newTester$Class,1,0)

#newTester$BooleanNB<-if_else(newTester$NB==newTester$Class,1,0)

246

newTester<-newTester %>%

 mutate(Classifers = paste(as.character(BooleanRFPred),

 as.character(BooleanNNet),

 as.character(BooleanRF),

 as.character(BooleanGML),

 as.character(BooleanGBM),

 #as.character(BooleanNB),

 sep = ""))

newTester<-newTester %>%

 mutate(numericalClass=strtoi(Classifers, base = 2))

newTester$BooleanRFPred<-NULL

newTester$Classifers<-NULL

newTester$BooleanRF<-NULL

newTester$BooleanNNet<-NULL

newTester$BooleanGML<-NULL

247

newTester$BooleanGBM<-NULL

newTester$BooleanNB<-NULL

newTester$RFPred<-NULL

newTester$RF<-NULL

newTester$NNet<-NULL

newTester$GML<-NULL

newTester$GBM<-NULL

newTester$NB<-NULL

newTester$Class<-NULL

newTester$numericalClass<-as.factor(newTester$numericalClass)

NUMCLASS <- ranger(numericalClass ~ ., data = newTester, importance = "impurity")

saveRDS(NUMCLASS, "D://CIC PHD//Model//FinalModel.rds")

NumericalPred<-predict(NUMCLASS,subset(FinalStageSample,,-c(Class)))

NUMCLASS$prediction.error

NumericalPred$predictions<-as.factor(NumericalPred$predictions)

#kddcup_data_corrected$numPred<-NumericalPred$predictions

248

summary(NumericalPred$predictions)

summary(newTester$numericalClass)

which(NumericalPred$predictions == 0)[[1]]

match(0 , NumericalPred$predictions)

length(which(NumericalPred$predictions == 0))

final[78700][1]

PPPP<-NULL

PPPP$myPred<-NumericalPred$predictions

library(binaryLogic)

PPPP$KKK<-PPPP$myPred

PPPP$KKK<-as.integer(as.character(PPPP$KKK))

PPPP$KKK<-rbind(as.binary(PPPP$KKK,n=5))

myBinaryDataframe<-do.call(rbind.data.frame, PPPP$KKK)

FinalResultWithAll<-NULL

colnames(myBinaryDataframe) <- c("BooleanRFPre",

 "BooleanNNet",

 "BooleanRF",

249

 "BooleanGML",

 "BooleanGBM"

)

"BooleanGML",

"BooleanGBM",

"BooleanNB")

FinalResultWithAll$BooleanRFPre<-(myBinaryDataframe$BooleanRFPre)

FinalResultWithAll$BooleanNNet<-(myBinaryDataframe$BooleanNNet)

FinalResultWithAll$BooleanRF<-myBinaryDataframe$BooleanRF

FinalResultWithAll$BooleanGML<-myBinaryDataframe$BooleanGML

FinalResultWithAll$BooleanGBM<-myBinaryDataframe$BooleanGBM

FinalResultWithAll$BooleanNB<-myBinaryDataframe$BooleanNB

FinalResultWithAll$RFPred<-(RFPr$FinalPR$predictions)

FinalResultWithAll$NNet<-(h2opredictions$NNFinal$predict)

FinalResultWithAll$RF<-(h2opredictions$RFFinal$predict)

FinalResultWithAll$GML<-(h2opredictions$GLMFinal$predict)

FinalResultWithAll$GBM<-(h2opredictions$GBMFinal$predict)

250

#FinalResultWithAll$NB<-(h2opredictions$NBFinal$predict)

#FinalResultWithAll$NNet<-unlist(FinalResultWithAll$NNet)

#library(dplyr)

asDataFrameResult<-bind_cols(FinalResultWithAll)

asDataFrameResult$RFPred[asDataFrameResult$BooleanRFPre==FALSE]<-NA

asDataFrameResult$NNet[asDataFrameResult$BooleanNNet==FALSE]<-NA

asDataFrameResult$RF[asDataFrameResult$BooleanRF==FALSE]<-NA

asDataFrameResult$GML[asDataFrameResult$BooleanGML==FALSE]<-NA

asDataFrameResult$GBM[asDataFrameResult$BooleanGBM==FALSE]<-NA

#asDataFrameResult$NB[asDataFrameResult$BooleanNB==FALSE]<-NA

filter(asDataFrameResult,BooleanNNet==FALSE &

 BooleanRF==FALSE &

 BooleanGML==FALSE &

 BooleanGBM==FALSE &

 BooleanRFPre==FALSE)

cleanResults<-asDataFrameResult

cleanResults$BooleanRFPre<-NULL

cleanResults$BooleanNNet<-NULL

251

cleanResults$BooleanRF<-NULL

cleanResults$BooleanGML<-NULL

cleanResults$BooleanGBM<-NULL

####Add later "RFPred",

#final<-apply(asDataFrameResult[,c("RFPred","NNet","RF")], 1, function(x)

names(table(x))[which.max(table(x))])

final<-vector("list", nrow(asDataFrameResult))

ResTable<-setDT(cleanResults)

final<-apply(ResTable,1,function(x) names(which.max(table(x))))

final<-as.data.frame(final)

cleanResults$NNet<-NULL

for (i in 1:nrow(asDataFrameResult)) {

 if (

 (asDataFrameResult$BooleanRFPre[i]==TRUE)&

 (asDataFrameResult$BooleanNNet[i] ==TRUE)&

252

 (asDataFrameResult$BooleanRF[i]==TRUE)

){

 tt <- (asDataFrameResult[i,c("RFPred","NNet","RF")])

 if(tt$RFPred==tt$RF & tt$RFPred==tt$NNet){

 final[[i]]<-toString(tt$RFPred)

 print("all equal")

 }

 else{

 final[[i]]<-toString(apply(tt, 1, function(x) names(table(x))[which.max(table(x))]))

 }

 }

 else if(asDataFrameResult$BooleanRFPre[i]==FALSE &

 asDataFrameResult$BooleanNNet[i]==FALSE &

 asDataFrameResult$BooleanRF[i]==FALSE){

 final[[i]]<-toString(asDataFrameResult[i,c("RFPred")][[1]])

253

 print("all false")

 }

 else if(asDataFrameResult$BooleanRFPre[i]==TRUE &

 asDataFrameResult$BooleanNNet[i]==TRUE &

 asDataFrameResult$BooleanRF[i]==FALSE){

 final[[i]]<-toString(asDataFrameResult[i,c("RFPred")][[1]])

 print("TTF")

 }

 else if(asDataFrameResult$BooleanRFPre[i]==TRUE &

 asDataFrameResult$BooleanNNet[i]==FALSE &

 asDataFrameResult$BooleanRF[i]==TRUE){

 final[[i]]<-toString(asDataFrameResult[i,c("RFPred")][[1]])

 }

 else{

 final[[i]] <- toString(apply(asDataFrameResult[i,c("RFPred","NNet","RF")], 1,

function(x) names(table(x))[which.max(table(x))]))

 print("entered")

 }

254

}

#finalResAsDataframe<-bind_cols(final)

#finalResAsDataframe<-transpose(finalResAsDataframe)

getSummary(final,FinalStageSample,"Tommorow_without_NNA")

getSummary(RFPr$FinalPR$predictions,FinalStageSample,"FinalRandomForesrt")

getSummary(h2opredictions$NNFinal$predict,FinalStageSample,"FinalNN")

getSummary(h2opredictions$RFFinal$predict,FinalStageSample,"FinalRFH2o")

getSummary(h2opredictions$GLMFinal$predict,FinalStageSample,"FinalGLM")

getSummary(h2opredictions$GBMFinal$predict,FinalStageSample,"FinalGBM")

getSummary(h2opredictions$NBFinal$predict,FinalStageSample,"FinalNB")

levels(nfinal$results)<-levels(kddcup_data_corrected$Class)

Master Model

#Libaraies

kddcup_data_corrected<-NULL

prediction<-NULL

255

Sample<-NULL

#library(readr)

library(dbplyr)

library(tidyverse)

library(ranger)

library(caret)

#library(keras)

library(dplyr)

library(magrittr)

library(nnet)

library(caret)

library(Rcpp)

getSummary<-function(predictions,Truth,name){

 Truth$Class<-as.factor(Truth$Class)

 predictions<-factor(predictions,levels = levels(Truth$Class))

 levels(Truth$Class)

 levels(predictions)

256

 summary(predictions)

 cm<-as.matrix(table(Truth$Class, predictions))

 write.csv(cm,paste("Results//",name,"-ConfusionMatrix.csv"))

 src<-levels(predictions)

 ppr<-levels(Truth$Class)

 diff

 print(cm)

 n = sum(cm)

 nc = nrow(cm)

 diag = diag(cm)

 print(sum(diag==0))

 rowsums = apply(cm, 1, sum)

 colsums = apply(cm, 2, sum)

 p = rowsums / n

 q = colsums / n

 accuracy = sum(diag) / n

 accuracy

257

 precision = diag / colsums

 recall = diag / rowsums

 f1 = 2 * precision * recall / (precision + recall)

 write.csv(data.frame(precision, recall, f1),paste("Results//",name,"-Accurecy.csv"))

 Truth$Class<-as.factor(Truth$Class)

 MCM<-confusionMatrix(predictions,Truth$Class)

 sink(paste("Results//",name,"-ConfusionMatrix2OverAll.csv"))

 print(MCM$overall)

 sink()

 write.csv(MCM$byClass,paste("Results//",name,"-ConfusionMatrix2ByClass.csv"))

 write.csv(MCM$table,paste("Results//",name,"-ConfusionMatrix2table.csv"))

 ###Done

}

258

LoadModels<-function(){ #fix later

 library(h2o)

 h2o.init(max_mem_size = "32g")

 print("deepModel Started")

 Deepmodel<-h2o::h2o.loadModel("Models/")

 h2o.save_mojo(Deepmodel, path = "Models/",force = TRUE)

 h2o.performance(Deepmodel,Deepmodel@p)

 print("load data")

 TrainSample$Class<-as.factor(TrainSample$Class)

 ValidateSampel$Class<-as.factor(ValidateSampel$Class)

 Allh2oData<-as.h2o(subset(TrainSample,,-c(Class)))

 Data15H20<-as.h2o(ValidateSampel)

 FinalS<-as.h2o(subset(FinalStageSample,,c(-Class)))

 print("finished load data")

 response <- "Class"

 predictors <- setdiff(names(train), response)

 pred <- h2o.predict(Deepmodel, Allh2oData)

259

 pred15<-h2o.predict(Deepmodel, Data15H20)

 FinalSS<-h2o.predict(Deepmodel,FinalS)

 pr<-NULL

 pr$NNpr15<-as.data.frame(pred15)

 pr$NNpr05<-as.data.frame(pred)

 pr$NNFinal<-as.data.frame(FinalSS)

 print("deep Model finsished")

 ###################DRF############

 print("rdf started")

 RF <-h2o::h2o.loadModel("D:\\CIC PHD\\Model\\RFGrid_model_1")

 RF2 <-h2o::h2o.loadModel("D:\\CIC PHD\\Model\\RFGrid_model_2")

 pred <- h2o.predict(RF, Allh2oData)

 pred15<-h2o.predict(RF, Data15H20)

 FinalSS<-h2o.predict(RF,FinalS)

 pr$RFpr15<-as.data.frame(pred15)

 pr$RFpr05<-as.data.frame(pred)

 pr$RFFinal<-as.data.frame(FinalSS)

260

 print("rdf finished")

 ########################GLM <- ##############

 GLM <- h2o::h2o.loadModel("D:\\Porcessing\\Canadian\\Models\\GLMModel")

 print("GLM started")

 pred <- h2o.predict(GLM, Allh2oData)

 pred15<-h2o.predict(GLM, Data15H20)

 FinalSS<-h2o.predict(GLM,FinalS)

 pr$GLMpr15<-as.data.frame(pred15)

 pr$GLMpr05<-as.data.frame(pred)

 pr$GLMFinal<-as.data.frame(FinalSS)

 print("GLM finished")

 #####################GBM <- ###############

 GBM <- h2o::h2o.loadModel("D:\\CIC PHD\\Model\\GBMModel")

 print("GBM started")

 pred <- h2o.predict(GBM, Allh2oData)

 pred15<-h2o.predict(GBM, Data15H20)

261

 FinalSS<-h2o.predict(GBM,FinalS)

 pr$GBMpr15<-as.data.frame(pred15)

 pr$GBMpr05<-as.data.frame(pred)

 pr$GBMFinal<-as.data.frame(FinalSS)

 print("GBM finished")

 print("ranger started")

 rg.iris<-readRDS("D:\\CIC PHD\\Model\\RFModelToLoad.rds")

 pr$Validate<-predict(rg.iris,subset(ValidateSampel,,-c(Class)))

 pr$predict<-predict(rg.iris,subset(TrainSample,,-c(Class)))

 pr$FinalPR<-predict(rg.iris,subset(FinalStageSample,,-c(Class)))

 print("ranger Finished")

 return(pr)

}

TrainSample<-read_rds("D://Porcessing//Canadian//splitRDS//TrainSample.rds")

ValidateSampel<-read_rds("D://Porcessing//Canadian//splitRDS//ValidateSampel.rds")

FinalStageSample<-

read_rds("D://Porcessing//Canadian//splitRDS//FinalStageSample.rds")

h2opredictions<-LoadModels()

RFpred<-readRDS("Data\RFPr.rds")

262

h2opredictions<-readRDS("Data\\h2opredictions.rds")

############add prediction lables to the training dataset

newTester<-TrainSample

newTester$Class<-as.character(newTester$Class)

newTester$RFPred<-RFPr$predict$predictions

newTester$NNet<-(h2opredictions$NNpr05$predict)

newTester$RF<-(h2opredictions$RFpr05$predict)

newTester$GML<-(h2opredictions$GLMpr05$predict)

newTester$GBM<-(h2opredictions$GBMpr05$predict)

############compare and make the lables binary when campred to the true Value

newTester$BooleanRFPred<-if_else(newTester$RFPred==newTester$Class,1,0)

newTester$BooleanNNet<-if_else(newTester$NNet==newTester$Class,1,0)

newTester$BooleanRF<-if_else(newTester$RF==newTester$Class,1,0)

newTester$BooleanGML<-if_else(newTester$GML==newTester$Class,1,0)

newTester$BooleanGBM<-if_else(newTester$GBM==newTester$Class,1,0)

263

############ merge the binary for each model ############

newTester<-newTester %>%

 mutate(Classifers = paste(as.character(BooleanRFPred),

 as.character(BooleanNNet),

 as.character(BooleanRF),

 as.character(BooleanGML),

 as.character(BooleanGBM),

 sep = ""))

#####################Remove unneccesry Values from the

DF###########################

newTester$BooleanRF<-NULL

newTester$BooleanNNet<-NULL

newTester$BooleanGML<-NULL

newTester$BooleanGBM<-NULL

newTester$RFPred<-NULL

newTester$RF<-NULL

newTester$NNet<-NULL

264

newTester$GML<-NULL

newTester$GBM<-NULL

newTester$NB<-NULL

newTester$Class<-NULL

newTester$BooleanRFPred<-NULL

#############################

newTester$Classifers<-as.factor(newTester$Classifers)

NUMCLASS <- ranger(Classifers ~ ., data = newTester, importance = "impurity")

saveRDS(NUMCLASS, "Models\\MasterModel.rds")

NumericalPred<-predict(NUMCLASS,subset(ValidateSampel,,-c(Class)))

saveRDS(NumericalPred,"Data\\ValidatePredFinal.rds")

NumericalPred<-read_rds("D://Porcessing//Canadian//processed - Model

Data//FinalPred.rds")

NUMCLASS$prediction.error

NumericalPred$predictions<-as.factor(NumericalPred$predictions)

summary(NumericalPred$predictions)

NumericalPred$predictions[NumericalPred$predictions=="0000"]<-"1000"

##################3

DataPredF<-NULL

265

DataPredF$predictions<-NumericalPred$predictions

DataPredF<-as.data.frame(DataPredF)

DataPredF$predictions<-lapply(DataPredF$predictions, as.character)

myBinaryDataframe<- NULL

emptyColoumsn <- c("BooleanRFPre",

 "BooleanNNet",

 "BooleanRF",

 "BooleanGML",

 "BooleanGBM"

)

myBinaryDataframe$BooleanRFPre<-as.integer(substr(DataPredF$predictions,1,1))

myBinaryDataframe$BooleanNNet<-as.integer(substr(DataPredF$predictions,2,2))

myBinaryDataframe$BooleanRF<-as.integer(substr(DataPredF$predictions,3,3))

myBinaryDataframe$BooleanGML<-as.integer(substr(DataPredF$predictions,4,4))

myBinaryDataframe$BooleanGBM<-as.integer(substr(DataPredF$predictions,5,5))

myBinaryDataframe$RFPred<-(RFPr$Validate$predictions)

myBinaryDataframe$NNet<-(h2opredictions$NNpr15$predict)

266

myBinaryDataframe$RF<-(h2opredictions$RFpr15$predict)

myBinaryDataframe$GML<-(h2opredictions$GLMpr15$predict)

myBinaryDataframe$GBM<-(h2opredictions$GBMpr15$predict)

myBinaryDataframe$RFPred[myBinaryDataframe$BooleanRFPre==0]<-NA

myBinaryDataframe$NNet[myBinaryDataframe$BooleanNNet==0]<-NA

myBinaryDataframe$RF[myBinaryDataframe$BooleanRF==0]<-NA

myBinaryDataframe$GML[myBinaryDataframe$BooleanGML==0]<-NA

myBinaryDataframe$GBM[myBinaryDataframe$BooleanGBM==0]<-NA

myBinaryDataframe$BooleanRFPre<-NULL

myBinaryDataframe$BooleanNNet<-NULL

myBinaryDataframe$BooleanRF<-NULL

myBinaryDataframe$BooleanGML<-NULL

myBinaryDataframe$BooleanGBM<-NULL

library(data.table)

ResTable<-setDT(myBinaryDataframe)

final<-apply(myBinaryDataframe,1,function(x) names(which.max(table(x))))

267

getSummary(final,ValidateSampel,"MasterResults")

