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Abstract 

 

Generally, malicious attacks on a network or server can be detected and 

counteracted using various techniques. The intrusion detection systems (IDS) and 

intrusion prevention systems (IPS) are two of the most common application systems 

in detecting and preventing cyber threats. Despite the ability of each of these 

systems to help organizations overcome various types of threats to their networks, 

additional decisions are required to ensure that they operate effectively. Even IDS 

and IPS remain vulnerable to conditions that render them less efficient and incapable 

of meeting the required operational targets. Consequently, it is imperative that 

organizations make decisions and take actions that tend to optimize the efficiency 

with which the cybersecurity applications operate. 

Most organizations have IT infrastructure nowadays, and they differ in their 

requirements and sizes, but there is a common problem that is managing the flood 

of alerts coming from the IDS(Simone, 2009). The IDS creates a huge number of 

alerts. Not all the threats detected are true, but it means that the IDS has found a 

matching signature or pattern. These types of alarms are considered false positives 

and a result of misclassification. They can be a real pain for organizations to 

determine if these alarms are actionable or not. Because of the issues with the 

current IDS, there is a need for continued research to solve the classification issues, 

and for that, a per-instance multi-classifier is proposed. 
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This research will discuss the importance of researching a new algorithm that is a 

portfolio of multiple classifiers for intrusion detection systems in the cyber-security 

space. There is already much research in this field, and many classifiers have been 

proposed, but the fact there is no single classifier that can cover all threats with high 

accuracy. The intention is to have a portfolio of classifiers. Each classifier will be 

tested and trained on the dataset. The idea of having multiple classifiers that each 

classifier can complement and contribute to the classification. A Master classifier will 

determine the fitness of each classifier, depending on the presented instance, and 

all the fit classifiers will contribute to the classification by voting. The vote will 

determine if the instance is benign or an anomaly, and if it is an anomaly, it will 

determine the type of attack.  
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Chapter 1 Introduction To Thesis and Cybersecurity  

 

1.1 Chapter Introduction 

 

Due to the rapid technological evolution that has been witnessed in the world today, 

most activities in sectors such as business, healthcare, education, and 

entertainment are widely controlled by various forms of information technology. Such 

developments have also resulted in a situation whereby almost the entire world has 

become dependent on information technology. In each of the mentioned sectors, 

information technology offers additional quality by enhancing accuracy, speed, and 

efficiency, among other essential attributes. 

Business and manufacturers are two of the sectors in which most aspects of 

technology are employed. Some of the key applications include automated 

production, especially in industries where large-scale production is required 

(KAREHKA, 2012). This aspect of technology is common in car manufacturing 

industries, chemical factories, food manufacturing and packaging, and heavy metal 

industries, among other similar sectors. The automation of the manufacturing 

process reduces the time taken in the production process while increasing both 

efficiency and accuracy. Other areas of application within the business and industry 

sectors include inventory management, supply chain management, and information 

management. Certain organizations also use techniques such as RFID time 

attendance or biometric systems to monitor their employees more effectively.  
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Technology has also boosted communication both locally and across borders, 

especially with the introduction of digital methods of exchanging information between 

different groups of audiences. Communication has been enhanced by the 

introduction of media such as video conferencing, mobile technologies, and emails 

(KAREHKA, 2012). Social media also promote interactions among people who are 

characterized by substantial geographical isolation. In education, the learning 

process has become even easier with the introduction of online libraries, simulated 

learning aids, and various forms of e-learning. On the other hand, bankers benefit 

from automatic teller machines, e-banking applications, and other emerging 

resources like cryptocurrencies (KAREHKA, 2012). Generally, technology has 

become an integral part of global society, a condition that necessitates high levels 

of cybersecurity to ensure that no costly damages are encountered while using such 

systems.   

Th computer network has evolved from a simple communication medium between 

two systems into a very complex network architecture. Computer network evolution 

includes the internet, which introduced easy communication between different 

geographies, and the concept of public and private networks. These networks can 

carry and control critical information like power grids, stock markets, and the military. 

The network became heterogeneous, and the general approach is to have IT 

elements share the same resource pools (Storage, Memory, Compute, Network). 

This will lead to critical mission systems sharing some resources with non-critical 

systems. For example, you may have a power grid system that may share resources 

with an email system. That will put the power grid system at risk of being attacked 

because it shares resources with the email system and is not properly guarded. This 
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risk is very critical and can’t be overlooked. Cybersecurity is mandatory to protect 

these systems. There are various cyber threats and different entities that might have 

the intention to do such acts (Political agendas or activists). One of the main threats 

that are very difficult to mitigate is (Distributed Denial of service/ Denial of service) 

DDOS/DOS attacks because the operator can’t distinguish legitimate connections 

from attack connections. Also, the volume of attempted connections will be too huge 

to evaluate in time. There exist industrial solutions in the market for enterprises, but 

as long as the threats are evolving, Cybersecurity solutions need to evolve. 

This research will focus on the detection of Cyber Security threats using machine 

learning. Looking after these two fields (Machine Learning and Cyber security), I will 

do interdisciplinary research where a portion of the research will focus on Cyber 

Security, and the other portion will be on machine learning.  

1.1.1 Problem statement  

The problem statement of the research is the following. 

“Is it possible to increase the performance of IDS in precision and accuracy using 

per-instance selection of classifiers from a portfolio of classifiers?” 

Information technology has intruded into many fields, and there is a very high 

dependency on technology for many processes these days. Connectivity is 

becoming increasingly necessary with the rise of smart cities and the internet of 

things. According to IDC, it is estimated that there will be 41.6 billion connected 

devices, generating 79.4 Zettabytes in 2025(“The Global DataSphere & Its 

Enterprise Impact | IDC Blog,” n.d.). With this amount of data trafficking, it's getting 

more challenging to analyze and identify threats.   
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At the same time, with the amount of generated data, Artificial intelligence flourished. 

Artificial intelligence can have real-world applications when provided with sufficient 

data. AI and machine learning can be beneficial in developing more robust Intrusion 

Detection systems (IDS). And indeed, many IDS depend on machine learning to 

identify anomalies. 

Many models have already been developed for IDS, but not all models perform well 

for all types of network attacks. It's necessary to have an accurate system to act 

correctly according to the alarm. It's a real pain for SOC (security operation centers) 

to deal with false-positive alarms, as these alarms can come in millions. They have 

to investigate the alarms to determine if it's a genuine threat or benign traffic. A single 

model might not have the capability to classify some types of attacks or can 

misclassify regular traffic as a threat. 

1.1.2 Contribution to Knowledge  

My study bridges the gap and tackles the lack of the following: 

• The ability to create a (portfolio classifier) with no budget with precision and 

accuracy relevant to my thesis  

• per instance selection of classifier, where only selected classifiers can vote in 

each instance, so there will be a different set of classifiers to vote on for every 

threat. 

• Modularity of the Model, where additional classifiers can be plugged in to 

enhance performance. 
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1.1.3 Aim 

This research aims to investigate the application of multiple algorithms on security 

threat detection systems. Generally, different classifiers are characterized by both 

negative and positive characteristics. The study intends to determine the benefits 

that may be associated with the act of using multiple classifiers in a single system. 

The rationale behind this argument is that the weaknesses of given classifiers can 

be supplemented by the strengths of others. As a result of such a relationship, it is 

hypothesized that combining numerous classifiers of different types helps to 

establish a more effective hybrid compared to each of the individual constituents. 

However, the study approaches the idea from a unique perspective, which involves 

the selection of one classifier for each instance. This idea was inspired by SatZailla, 

which won the SAT competition multiple times(“SATzilla: Portfolio-based algorithm 

selection for SAT,” 2017). The proposed research procedure can be summarized in 

the following points. 

• Use a simulated dataset that reflects modern cybersecurity threats.    

• Build a portfolio of multiple classifiers. 

• Create a Master Classifier that will select a classifier from the created portfolio 

based on the instance (connection) features. 

• Classifier selection will be done for each instance. 

• Test the classifier on the publicly available datasets for benchmarking with 

other classifiers. 
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The objectives for each chapter: 

- Chapter1: Objectives and aims 

- Chapter 2: Literature review for Cybersecurity and survey for for related 

research papers 

- Chapter 3: Survey available datasets for research and define known problems 

in these datasets 

- Chapter 4: define the projected design, and which framework will be adopted. 

Also, explain the proposed method. 

- Chapter 5: Survey, Test and select the tools that will be used in this research 

- Chapter 6: Data exploration using the standard techniques in data science to 

understand the dataset. 

- Chapter 7: Build Multiple models along with the master classifier on a 

subsample  

- Chapter 8: Build Multiple models along with the master classifier on complete 

dataset 

- Chapter 9: Evaluate the results by benchmarking with different research 

papers that uses the same dataset and multi-classification (Not binary) 

- Chapter 10: Discuss the outcomes and verify if the contribution of knowledge 

is achieved. 

1.1.4 Study Hypothesis 

Even though the answers to the study questions will only be established after 

performing the research, certain predictions can be established based on theoretical 

inferences and information gathered from existing studies. However, such 

predictions are limited due to a lack of adequate information and theoretical 
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frameworks on the proposed model. The proposed hypotheses for this research are 

as follows:  

• The instantaneous selection of classifiers substantially improves the 

efficiency with which threats are detected in a server or network. 

• Using the algorithmic approach to the selection of classifiers is more 

appropriate as it encourages the detailed consideration of all the performance 

factors of each individual classifier.   

• The proposed model offers higher classifier performance outcomes than 

existing models. 

 

1.1.5 Motivation  

It's common to use IDS/IPS (intrusion detection system/Introduction prevention 

system). The IDS analyzes the traffic and identifies anomalies, triggering an alert. 

The IDS uses a model trained in historical traffic with all possible malicious and 

benign traffic scenarios. These models can report false alarms based on the quality 

of the data provided and the type of the model used.  

Some models perform very well with some classes, and on the other hand, they 

misclassify very severely with other classes. A model can have a very high accuracy 

rate in detecting anomalies, but at the same time, it provides a lot of false-positive 

reports. Data traffic is not consistent, and it changes depending on the activity and 

the type of malicious attack. For example, network activity increases in the early 

morning when all people start their computers and check their emails. While most of 

these activities disappear at night, a model might not be able to distinguish morning 
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activity from a DDOS attack. At the same time, hackers know how to hide their 

activity in the network. For example, a normal port scan will be immediately detected, 

but hackers can do a slow scan that might not be detected by the IDS. For this 

reason, a portfolio of multiple classifiers might assist in increasing the accuracy, 

wherein, for each flow, a model will determine the most suitable classifier for that 

type of threat. 

1.1.6 Scope of the research: 

This research aims to increase the accuracy of the IDS model by using an algorithm 

to select a classifier for each flow that is most suitable for classification. To achieve 

this objective, we need data capture of the network, which can be achieved by having 

the PCAP file (Packet capture)to be used to train and validate the model. The data 

should have benign flow and anomalies to represent a more realistic network flow.  

As discussed earlier, a portfolio of multiple models will be constructed. In order to 

determine if a selected model can fit in the portfolio, we have to have some metrics 

and criteria to calculate the fitness of these models. Each Model will be evaluated 

for their accuracy and precision and then benchmarked among each other. Then, 

we can validate if a model is suitable to be used for IDS in the first place. The 

evaluation will undertake three steps. The first step will investigate the model 

precision for each class. The second step will evaluate its ability to perform well with 

multiclassification. Finally, we will test if it can handle big data with reasonable time 

and compute resources. One of the essential parts of the research is developing a 

technique to select the suitable model for each flow in the network traffic. To develop 

this technique, we can use the evaluation of multiple models and build a model that 

will interface with the others as a selector. 
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Figure 1 Benchmark and selector 

 

1.1.7 The Rational of the Study  

This study is expected to produce results that will contribute to the war against 

cybercrime in various contexts in which network-based technologies are employed. 

Classifiers are renowned for their role in enhancing the security capabilities of 

intrusion detection systems. These benefits can be analyzed from two principal 

perspectives. These perspectives are based on the fact that there are specific 

assumptions regarding classifier dependencies, different classifiers have varying 

outputs, and the idea that the process of selecting classifiers depends on neural 

networks, special mathematical functions, or algorithms. Based on these 

parameters, the benefits that come with a specially designed method of selection 

can be viewed from the perspectives of either classifier selection or classifier 

fusion(Ludmila I. Kuncheva et al., 2001). Thus, the rationale of this study can be 

described on the basis of the benefits associated with each of these approaches. 
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The first aspect of interpretation is the classifier selection, which forms the main core 

of this proposal. Under this criterion, each of the individual classifiers is assumed to 

be a special kind of expert. The expertise associated with each ‘expert' is believed 

to be useful in specific feature spaces. In the event that a feature vector represented 

as 𝑥 ∈ Ʀp is availed for a given classification, the process of assigning the class label 

to x is done in such a way that the highest credit is given to the specific classifier that 

is responsible for the vicinity of x (Ludmila I. Kuncheva et al., 2001). The process 

can be achieved through the nomination of either a single or multiple classifiers 

depending on the purpose for which the entire process is conducted(Subbulakshmi 

and Afroze, 2013). On the other hand, classifier fusion operates under the 

assumption that all classifiers are trained over the entire feature space, a condition 

that makes them more competitive than complementary(Saleem Malik Raja and 

Jeya Kumar, 2014). In such a situation, the selection process is considered to be 

more complex than in the case of a typical classifier selection process. Each of the 

available alternatives is selected mainly on the basis of the benefits or performance 

advantages that it introduces. Since it becomes relatively challenging to establish 

the best approach to the selection and combination of various types of classifiers, 

mathematical functions or algorithms are always used to accomplish this task.   

The methods discussed above result in the establishment of a system consisting of 

a hybrid of critically selected classifiers. Generally, multiple classifiers are 

characterized by impressive outputs and performance efficiencies. It is evident that 

the entire performance of an intrusion detection system depends upon the types of 

classifiers that are selected in a given instance. Selecting high-efficiency classifiers 

would always result in generally high efficiencies, while poor selection will be 
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characterized by undesirable outputs. This project intends to solve classifier 

selection challenges by establishing a reliable algorithm for undertaking the process 

with the least errors. It intends to improve the effectiveness of intrusion detection 

systems by making them more reliable.  

The benefits discussed above can be expressed in simple terms, which mainly 

revolve around improving cybersecurity in different contexts. Cybercrime has 

already been identified as one of the main challenges facing the implementation of 

technology in education, banking, construction, healthcare, and several other 

sectors across the globe. Research indicates that poorly developed intrusion 

detection systems and intrusion prevention systems are often vulnerable to false 

alarms. There are cases in which these resources fail to detect any threatening 

alarms within the servers or networks in which they are installed. In such a situation, 

they may report the absence of security threats even in cases where networks or 

servers are subjected to serious security compromises. The effective selection of 

classifiers helps to boost the overall efficiencies with which such systems work and 

make them more reliable. Thus, this study focuses primarily on improving the 

performance characteristics of intrusion detection systems to make them more 

effective. It tries to ensure that only the best-performing components of each security 

application are employed in the war against network-to-server intrusion. Overall, the 

outcomes of the study are expected to be of significant resourcefulness not only to 

researchers in the same field but also to the digital world at large. 

This thesis has a novel approach for multi-classifier classification for Cybersecurity. 

This novel approach could help to develop IDS systems and improve the 

identification and classification of cybersecurity threats. There exist systems that can 
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perform the IDS tasks (classification), but the development and improvement of this 

novel approach could reduce the rate of errors, which are very costly for any entity 

or organization. 

1.1.8 Thesis Structure 

The structure of the remainder of the thesis will be as follows: 

Cybersecurity: 

This chapter will introduce the reader to the general concepts of cybersecurity in 

order to allow him/her to grasp the meaning of IDS and its function. The chapter will 

go through the history and evolution of the cyber security threats. In addition, we will 

review the tools and approaches that mitigate and defend systems from 

Cybersecurity threats. 

Literature review and Systematic search: 

In this part, we will view a systematic search for research that relates to this research. 

Different approaches will be reviewed that are either hybrid, pre-processing or Deep 

Neural. For each type of these approaches, we will discuss different papers that 

cover them. 

 

Dataset Survey: 

In this part, we will discuss the Datasets that are used in IDS. A survey will be 

reviewed on these datasets, which cover the distribution of how much each dataset 

is used in research. In addition, some problems of these datasets will be discussed 

that can affect the research in IDS. 
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Methodology: 

This chapter will have the methodology that we will use and how we have created a 

method that is inspired by a prober framework within the Data mining community. By 

the end, we will have a detailed explanation of the proposed model. 

Investigation and Selection of Software Packages: 

In this part, we will have a small survey on the tools that are involved in Artificial 

intelligence and Machine learning. We will view the tool in two aspects. These 

aspects are cloud and local computing. In each aspect, we will determine if the 

available tools are fit for this research. 

Dataset and Data Analysis: 

Data analysis is an integral part of this research. In order to build a model, we need 

to understand the data and have proper insight into its variables and a summery of 

it. We will present the distribution of the variables and the problems that the dataset 

has. Finally, we will show how we have pre-processed that dataset. 

Building models using Sub-sample: 

In this part, we built different models using a sub-sample from the dataset. 

Depending on the results of these models. We build a portfolio of models that will 

contribute to the proposed portfolio model. At the end of the chapter, we have built 

the portfolio classifier and made a comparison with the individual classifiers that have 

participated in the portfolio. 

Building Models using the complete Dataset: 
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In this part, we are repeating the process as in the “Building Models using Sub-

sample,” but we have built the model without sub-sampling and using the complete 

dataset (except for duplication and removing NA). The dataset was only split 

between training and testing without any up sampling and subsampling. At the end 

of this chapter, we benchmark the results between the Full dataset results and the 

sub-sampling for all the models. 

Benchmarking to other tests and studies: 

We have benchmarked the proposed portfolio classifier to other research and 

studies. In this benchmark, we tried to make a fair comparison, but most of the 

studies do a binary classification, and few do multi-classification. We have built 

tables that compare Accuracy, Precision, F1 Score, and Recall. 

Discussion and Conclusion: 

This chapter will have the discussion and conclusion by summarizing the thesis and 

showing if the research goals have been fulfilled. Also, it will show major findings, 

impact on the industry, limitations, and future work. 

1.2 Chapter Conclusion 

In conclusion, this chapter laid the groundwork for the research by highlighting the 

growing dependency on technology and the corresponding rise in cyber threats. The 

background discussion included the types and roles of IDS, along with their 

limitations in practical environments. The issues identified, such as high false 

positive rates and inability to generalize across various traffic types, justified the 

need for a more flexible and intelligent solution. The proposed idea of using a 

classifier portfolio, capable of making per-instance decisions, was introduced as a 
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response to these gaps. Furthermore, the scope, aims, and hypothesis of the study 

were clearly defined, aligning the technical challenges with the intended solution. 

The content of this chapter ensures that the reader understands the relevance and 

significance of the problem and how it will be approached throughout the rest of the 

thesis. The next chapter will examine existing literature to further support the design 

and novelty of the proposed model. 

 

  



16 
 

 

Chapter 2 Literature Review by Systematic Search 

2.1 Chapter Introduction 

This chapter will give an in-depth understanding of the importance of cybersecurity 

and the impact of any cyber threat. There will be an explanation of the different types 

of IDS, which are HIDS and NIDS. Also, it will view the different approaches for the 

IDS to identify the threats with its’ advantages and disadvantages. Finally, it will view 

the different DDOS attack techniques along with the major DDOS attacks that 

happened in chronological order.  
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2.2 Cybersecurity  

To understand Cyber Security, we need to look into its definition. According to 

Merriam-webster, Cyber Security is the measure taken to protect a system against 

an attack and unauthorized access(“Cybersecurity Definition & Meaning - Merriam-

Webster,” n.d.). The systems that can be targeted for cybersecurity can be any form 

of information technology resource. These resources can be either Compute, 

Network, or applications. Also, cybersecurity covers the integrity, availability, and 

confidentiality of the data. There are enormous types of security defense tools and 

techniques used by many originations, and each tool targets a different component 

of the system to protect. For example, a generic firewall will protect the overall 

internal IT infrastructure from any external network security threats, while WAF (web 

application firewall) is application-specific and will protect applications such as Email 

systems. These roles are unique and can’t be interchanged. Cybersecurity defenses 

don’t always depend on physical or software modules. Some policies can protect the 

system, like encryption, authentication, privileges, and segregation (logical or 

physical). On the other hand, we can have modules that can be hardware or software 

like firewall, IDS/IPS, security gateway…etc. As technology evolves, with systems 

being updated every while and new components being introduced, it becomes more 

difficult to cope with this rapid change and make sure that the system is hardened 

and safe from cyberthreats. Attackers can exploit and find ways into the systems 

without being noticed or detected since the people who manage these systems might 

not be aware of loopholes in the new systems and updates. 
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Intrusion detection systems have been used in various networks to boost the network 

security. Their roles are restricted primarily to the detection of any threats to which 

a server may be subjected. By definition, intrusion detection systems (IDS) refer to 

systems that are charged with the responsibility of monitoring network 

traffic(Margaret, 2018). Their activities are also helpful to security management in 

individual servers. These systems are always on the lookout for any suspicious 

activities within the servers or network in which they are installed. Therefore, IDSs 

are responsible not only for the detection of suspicious activities in networks and 

servers but also for reporting such issues when discovered. Even though their main 

roles are the detection and reporting of malicious activities, intrusion detection 

systems may be designed with special features that enable them to take the required 

courses of action in cases where suspicious activities are detected. Some of such 

responses include preventative measures like the obscuration of the traffic sent from 

the detected malicious IP addresses.  The operations of IDSs are never completely 

efficient as they may also be subjected to various forms of interference, such as false 

security alerts within the networks or servers guided by them. Thus, it is imperative 

that companies or network administrators perform adequate fine-tuning to their 

intrusion detection systems before installing them(Margaret, 2018). Fine-tuning, 

essentially, involves the proper configuration of intrusion detection systems to 

familiarize them with the server's or the network's normal traffic. This way, it becomes 

easy for such systems to differentiate between normal activities within the traffic and 

malicious events within the networks in which they are installed(Margaret, 2018). 

Therefore, the installation of intrusion detection systems is not efficient enough to 

guarantee absolute security in a given server or network.  
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There are four principal categories of intrusion detection systems; they include 

network intrusion detection systems (NIDS), host intrusion detection systems (HIDS) 

(Khor et al., 2010), signature-based intrusion detection systems (SIDS), and 

anomaly-based intrusion detection systems (Saleem Malik Raja and Jeya Kumar, 

2014). NIDS are installed at specific points within a network to monitor traffic from 

various sources within the network. HIDS are often deployed on all computers and 

other devices in a network and usually have direct access to an enterprise's internal 

networks and the internet(Tanmoy and Niva, 2017). The main advantages of HIDS 

over NIDS include the ability to detect malicious actions originating from both the 

organization and infected hosts (Tanmoy and Niva, 2017). Signature-based intrusion 

detection systems mainly detect threats by comparing the characteristics of data 

traffic within a network and comparing them to the properties of known threats. On 

the other hand, anomaly-based intrusion detection systems often determine the 

anomalies within the general traffic of a network by comparing them against an 

established baseline. Thus, the rationale behind the operation of such systems is the 

ability to report any changes in the network baseline. Such changes are 

automatically associated with malicious intrusion.  

The installation of intrusion detection systems in devices, servers, or networks 

comes with several benefits that help to enhance cybersecurity. The first and the 

most essential benefit of these systems is the ability to provide organizations and 

other forms of network managers with information on the security statuses of their 

networks or servers. Generally, intrusion and detection systems can be used to not 

only detect the presence of malicious activities but also to analyze and categorize 

such incidents. The results of such analyses are useful to organizations as they 
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dictate the types of actions to be taken by the affected organizations for optimal 

security. Thus, they act as both network guards and essential factors of decision-

making processes aimed at the improvement of network security.  

Opposite to the notion that network security systems are caused by data traffic from 

external sources, there are cases in which such issues originate from within the 

individual servers connected to a given network. Thus, it is imperative that the 

system bugs that originate from within these devices are also detected. Intrusion 

detection systems, especially the HIDS, are renowned for their ability to detect 

malicious activities of traffic within individual servers. This property enables 

organizations to identify and remedy faulty network configurations and assess such 

systems for future risks. By providing organizations with adequate information on 

regulatory condition, IDSs offers more unobstructed visibility across the networks of 

such organizations, making it easier for them to conform to the security 

regulations(DOUGLAS et al., 2015). The final benefit of such systems comes in the 

form of their ability to boost organizational security response systems. Due to their 

ability to detect hosts and devices within a network, intrusion detection systems are 

used for data inspection within network packets and the identification of the operating 

systems of the services employed. The utilization of IDS to gather such information 

is considered more efficient as it operates better than manual census (FSabahi and 

AMovaghar, 2008). Generally, the installation of intrusion detection systems in a 

network comes with more benefits than just the detection of intrusion; it also enables 

organizations to effectively control their networks and servers while conforming to 

the security legislation.  
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2.2.1 IDS (Intrusion Detection System) 

The Intrusion detection system is a system that analyzes and observes the network 

activity to find intrusions. Intrusion is any attempt that may affect the integrity, 

availability, and confidentiality of a system or network. Generally, there are two 

approaches to collecting data for the intrusion detection system. The data can be 

either collected from the network or the Hosts(Sazzadul Hoque, 2012). 

There are different approaches that allow the IDS to detect malicious attacks, which 

are (anomaly, misuse) 

2.2.2 NIDS (Network Intrusion Detection System): 

With the increase of intercommunications in either Local area networks or wide area 

networks, the cyber security threats have increased on the network side, mainly 

because there is more exposure to the internet and more visible attack points. For 

this reason, NIDs were introduced to close this gap and secure the systems. NIDS 

scans network traffic and analyzes any abnormality on the network level. Network 

traffic can be local between hosts in the local network or communication that leaves 

the local network to WAN (wide area Network) or the internet. Usually, the networks 

are not unified, even in a single organization. An organization can have completely 

separated networks or, logically, separated by VLAN or subnet. It might require 

installing a firewall/IDS/IPS in each network or segment. Even in the same network 

segment, multiple IDSs with different roles might be required as there might be 

various systems and applications.  
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Figure 2 NIDS 

 

2.2.3 HIDS (Host-Based Intrusion Detection System) 

The HIDS evaluates the host activity, primarily the logs generated from the operating 

system or the applications. These logs contain information related to computing 

utilization, network, memory, health, etc. Usually, the monitoring happens by 

installing an agent in the host, which will collect the required information and pass it 

to a centralized server. In a virtual environment or cloud, it can be done on the 

hypervisor level, where there is no need to install an agent, and it does not require 

resources on the targeted virtual machine.  
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Figure 3 HIDS 

 

2.2.4 IDS approaches  

There are different approaches that allow the IDS to detect malicious attacks 

(anomaly, misuse), which will be discussed as follows.  

2.2.4.1 Misuse: 

These types of IDS depend on signatures to identify benign flows in the network. 

After observing the network activity, a knowledge base can be constructed. 

Depending on this knowledge base, the IDS can trigger an alarm after observing the 

signatures. Signatures are unique by nature, and the issue with this approach is that 

the network is dynamic and changing. If the behavior of the system changes due to 

user activity or an update, the IDS will trigger false alarms. Even on the malicious 
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side, if there is a small change in the malicious attack or a variation, it will have a 

unique identity. The IDS might not be able to identify it and will miss a legitimate 

alarm. 

Advantage: 

One of the main advantages of the Misuse is that the models are built on known 

intrusive malicious signatures. Since these signatures are well-defined, the 

administrator of the systems can easily relate to any alert that exists in the knowledge 

base. Also, this approach can immediately start protecting your network since the 

signatures are already installed in the IDS(“Intrusion Detection Systems > Triggering 

Mechanisms | Cisco Press,” n.d.).  

Disadvantages: 

- Maintaining the signature database for all types of cyber threats is a very 

difficult task. 

- It is necessary to update the database very frequently to keep the IDS up to 

date. 

- Misuse might have trust issues, as these signatures are usually provided by 

vendors and suppliers that offer the IDS modules. The vendors can prepare 

signatures that can be intentionally bypassed without triggering any 

alarm.(“Intrusion Detection Systems > Triggering Mechanisms | Cisco Press,” 

n.d.) 
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2.2.4.2 Anomaly  

This approach depends on having a dataset that captures network traffic. This 

dataset contains variables or features that represent each flow in the network 

communications. The variables and features are reflections of the network activity, 

so when observed and analyzed, the IDS can distinguish the benign flow from the 

malicious flows. This can be done by understanding how far these features deviate 

from the benign features. 

There are multiple approaches that can achieve anomaly detection, which are 

supervised and unsupervised classification. 

Advantages 

- Since every network is unique, anomaly systems take advantage of that as it 

is trained on the target network. Attackers will have difficulty imitating users 

as the anomaly system keeps user-profile records, and each user in the 

network is unique, and any deviation from these profiles will trigger an alarm. 

- Anomaly is not based on specific traffic that represents known intrusive 

activity (as in a signature-based IDS). An anomaly detection system can 

detect zero-day attacks, as the system generates an alarm because it 

deviates from normal activity, not from a handcrafted malicious signature 

database.(“Intrusion Detection Systems > Triggering Mechanisms | Cisco 

Press,” n.d.) 
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Disadvantages 

- The System must be trained on the target network, and during the training 

time, the network can be targeted for attacks. 

-  Since the training will be specific to the target network, the administrators will 

face the complex task of associating events with alarms and triggers. This 

task can’t be recycled as it is very specific to the target network. 

- There are no guarantees that the training will actually result in a capable 

system to detect malicious events. The only way to validate is to simulate 

attacks and study the triggered events. 

- If the attacks have a very similar pattern to the user profile, maybe the system 

will not detect these attacks. 

2.2.4.3 Supervised Models: 

The supervised models require input and output data. The input data represents the 

features and variables. The output data represents the class or type of input data. 

For the supervised model to work for IDS, the data acquired needs to be labeled for 

each flow. This might cause an issue for the development of this type of model 

because these labels are usually handcrafted. Another issue is determining the 

dimensionality of the features and how much is enough of a subset while maintaining 

accuracy. The data needs to be split into two parts: one part is training, and the other 

is validation. There are many types of supervised models with many variations, like 

support vector machines, decision trees, random forests, and neural networks.  
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2.2.4.4 Unsupervised: 

Unsupervised learning does not require labels (output). These models capture 

patterns from the features. The model can be provided with a numerical target. From 

these patterns, the model can make clusters or groups where we can distinguish the 

benign group from the malicious groups. Examples of unsupervised algorithms are 

k-nearest neighbors, k-means clustering, and hierarchical clustering.  

2.2.5 DDoS attacks (Distributed Denial-of-Service Attack): 

Denial of service and distributed denial of service (DoS/DDoS) remain one of the 

cybersecurity issues that are persistent and keep happening throughout the years. 

One of the main features of the Internet is the openness and connectivity of diverse 

networks together. At the same time, the DOS/DDOS takes advantage of the internet 

diversity and connectivity. The advantage is that the internet is not centralized and 

distributed all around the world, with many networks that are connected together. 

Since there happens to be connections from anywhere, the DDOS can orchestrate 

a DDOS attack from many networks, and it will be difficult to validate all of these 

connections. In this part, there will be a discussion on DDOS and how it works, along 

with some history of DDOS. 

In order to proceed, we need to understand the concept of DDOS. The DDOS is an 

orchestrated attempt between multiple computers to initiate an attack at the same 

time targeting a server or service. This attempt will consume the resources of the 

service, and when the server is short of resources (compute/memory/Storage), 

legitimate connections from normal users will not be granted.  
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To summarize, DDoS is a collection of multiple interconnected devices that can be 

computers, smartphones, or IoT devices. These devices are infected and can be 

controlled, which allows 3rd party to control these devices. Once a large number of 

network devices have been in control, they can be used to orchestrate a DDoS 

attack. The infected devices are usually called zombies in computer science 

terminology(Kamboj et al., 2017). Cybercriminals exchange these zombies and can 

offer them for rent to facilitate the attacks. Zombies can also be called bots. There 

are different models to make bots, and the first method is the client-server model. All 

the infected bots are connected to a central server that controls them all. The second 

approach is to have a peer-to-peer model. These bots don’t connect directly to a 

central server. But they connect with each other, and the control of these bots can 

be done by digital signatures. The peer-to-peer model is the latest way for the 

botnets because it is difficult to trace, as each bot is connected to another bot instead 

of the central server. The way these bots can communicate with each other is by 

initiating a connection to a random IP address until the other bots reply. 

Why Multiple Machines: 

A single machine can only generate a small number of requests and bandwidth, but 

multiple machines can make much more. While having multiple machines, it will be 

much harder to shut down connections as there will be many connections 

established at the same time, and it will be stealthier. A simple filter of IP address 

will not work, and if the service provider considers adding more resources to 

accommodate the attack, the attacker will simply add more bots until the service fails 

and the attack succeeds. The scale of the DDoS attacks has advanced in the past 

years, and the volume of attacks has reached 3.47 terabytes per second in 
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2022(“Microsoft fends off record-breaking 3.47Tbps DDoS attack | Ars Technica,” 

n.d.). Some examples of DDoS attacks are as follows: 

Yo-Yo attack: 

One of the recent types of DDoS attacks is the Yo-Yo attack. The Yo-Yo attacks take 

advantage of the auto-scaling of the Virtual machines in the cloud. The process of 

this type of attack is to overwork the virtual machine and invoke autoscaling. The 

primary intention of the Yo-Yo attack is to cause economic damage to the 

organization as the organization will allocate more unnecessary resources to keep 

the virtual Machine running. At the same time, the Yo-Yo attack can also cause 

performance damage because, during the resource allocation in the autoscaling 

process, the Virtual Machine will face performance degradation(David and Barr, 

2021). 

Advanced persistent DoS: 

Most DDoS attacks don’t last for a long period as the victim can mitigate and find a 

solution for the attack. Meanwhile, the persistent attack can last as long as a month. 

The attackers will have multiple targets and switch between these targets, so the 

victim can’t mitigate and have the time to resolve these attacks, while at the same 

time, they keep concentrating on the main target server. 

Major Attacks in History: 

The table below has the chronological order of the DDoS attack and the increased 

complexity of the attacks as time passes. The table was retrieved from (İlker and 

Richard, 2020) 
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Table 1 Chronological evolution of DDoS attacks(İlker and Richard, 2020) 

Date Description 

Pre-

1989 

Non-computer DOS using sabotage and sit-ins 

1989 AIDS ransomware. 

1995 German government blocks access to sexual material. 

1995 Strano Network DDoS protests French nuclear weapons tests. 

1996 Panix ISP in New York disabled by SYN flood attack. 

1997 Electronic Disturbance Theater (EDT) uses Floodnet to protest Mexican government 

attacks on Mayan anarchists. 

1998 US DoD DDoS attack on EDT during Ars Technica festival. 

1998 LOpht testify to Congress that total Internet disruption is easy. 

1999 Electro-hippies use EDT Floodnet to attack WTO. 

1999_2

000 

Trinoo, TFN, TFN2K and Stacheldraht available online. 

2000 Mafiaboy takes down Yahoo, Amazon, Dell, ebay, CNN, etc. 

2001 Code Red worm DDoS of WhiteHouse.gov. 

2001 After Hainan incident, Chinese group launches DDoS on US military sites. 

2001 German protesters use Floodnet to attack Lufthansa. 

2003 Blaster worm SYN flood of Microsoft update servers. 

2003 Blaster worm during blackout of US power grid. 

2005 Gpcoder ransomware. 

2007 Russian population launches Cyberwar with DDoS on Estonia. 

2007 Pro-Putin botnets launch DDoS attacks. 

2008 Chinese DDoS attacks on CNN. 

2008 DDoS attacks on Georgia sites while Russian military attacks. 

2008 Myanmar state uses DDoS to silence dissident Voice of Burma. 

2008 DDoS attacks on RFE/RL Tajik, Farsi, Russian, etc. services. 
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2008 Ukraine attacked by unidentified anti-NATO sources. 

2009 Hamas and Israel launch DDoS attacks on each other. 

2009 USA and South Korean sites get DDoS attacks. 

2009 Kyrgyzstan, Kazakhstan and Iran DDoS silences dissent. 

2010 Vietnamese protest of Chinese mining gets DDoS. 

2010 Anonymous titstorm attack on RIAA and MPAA. 

2010 Anonymous Operation Payback DDoS on payment sites. 

2010 Arab Spring leads to Internet blackouts. 

2011 Telecomix anti-Internet blackout actions. 

2013 Spamhaus receives massive DDoS of 300 Gbps. 

2013 Cryptolocker ransomware spread by botnets. 

2014 Ransomware (Cryptorbit, Locky, Petya) starts using bitcoin. 

2014-

2015 

Lizard Squad stresser 579 Gbps DDoS of gaming industry. 

2015 DDoS for hire botnets: 25 wired, 8 mobile. 

2015 Large parts of the power grid in Ukraine disabled. 

2016 Black Lives Matter receives flooding and slow loris attacks. 
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This chapter will go through a systematic search. The systematic search will consist 

of all research that relates to IDS that uses machine learning and Artificial 

intelligence. A table of the systematic search will be reviewed with all the researched 

regardless of the type of the dataset and the approach used. A detailed review of 

some research will be done into three categories, which are Hybrid Models, Pre-

processing, and Deep Learning. 

The search is primarily done in IEEE, Elsevier, and ACM. The search was broadened 

by using the library site and Google Scholar. Search Keys that were used in the 

systematic search (Multiclass, multi classifier) with the assessment terms 

(classification, model, algorithm, machine learning, AI) and then industry terms (IDS, 

Cybersecurity, DDoS) and other related terms (KDDCUP, CIC-IDS-2018).  

We have used different search key strings that are as follows: 

Table 2 Systematic Search Key Strings 

step 1  step 2  step 3  step 4 

Multiclass AND/OR classification AND/OR IDS AND/OR KDDCUP 

multi classifier  model  Cybersecurity  CIC-IDS-

2018 
 

 algorithm  DDoS  
 

 
 machine learning  

 
 

 

 
 AI  

 
 

 

We have used different permutations and concatenation of the above table. The 

search period varied based on the time point of the research, as there were some 

updates during the research period. The presented research was done on points of 

time; the first one focused on research done between 2020 and 2021. The second 
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search was focused on the time period (2020 to 2023). The criteria for the selected 

papers are published, and it can be peer-reviewed a conference, or a survey.  

2.3 Literature Review and Systematic Content-Analysis 

2.3.1 Search (2020 to 2021) 

Table 3 systematic search 

Reference Title Year Type Author Dataset Methodology  Results 

(Arivardhini 

et al., 2020) 

A Hybrid 

Classifier 

Approach for 

Network 

Intrusion 

Detection 

2020 Conference Arivardhini, S 

Alamelu, L M 

Deepika, S 

NSL 

KDD 

data 

Support Vector Machine (SVM), 

decision tree (J48), and Naive 

Bayes (NB) 

Use a Majority Voting scheme 

No Results were shown 

(Chen et al., 

2020) 

A Novel 

Preprocessing 

Methodology for 

DNN-Based 

Intrusion 

Detection 

2020 Conference Chen, Peng 

Guo, Yunfei 

Zhang, 

Jianpeng 

Wang, Yawen 

Hu, 

Hongchao 

KDDCu

p'99 

DNN 

Deep Neural Network 

Pre-processing  : 

1- Numeralization 

2- Transformation: 

3- Numeralization(Mi

n-Max) 

improve accuracy, recall, 

and F1 score, with no 

significant degradation in 

precision 

(Bharati and 

Tamane, 

2020) 

NIDS-Network 

Intrusion 

Detection 

System Based 

on Deep and 

Machine 

Learning 

Frameworks 

with 

CICIDS2018 

using Cloud 

Computing 

2020 Conference Bharati, M P 

Tamane, S 

CIC-

IDS-

2018 

Extra-Tree 

GBoost Tree 

Random Forest Tree 

MLP 

The results compare 

different Models and their 

results.  

 

(Haghighat 

and Li, 

2021) 

Intrusion 

detection 

system using 

voting-based 

neural network 

2021 Journal 

Article 

Haghighat, 

MH 

Li, J 

KDDCU

P'99 

CTU-13 

novel voting-based deep 

learning framework 

- Deep Neural 

Network 

- Recurrent Neural 

Network (RNN), 

The voting system has 

shown better results, 

where it reduces false 

alarms. 
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- Convolutional 

Neural Network 

- Boltzmann 

Machine 

- Stacked Auto-

Encoder 

(Syarif et al., 

2020) 

Feature 

Selection 

Algorithm For 

Intrusion 

Detection Using 

Cuckoo Search 

Algorithm 

2020 Conference Syarif, I 

Afandi, R F 

Astika 

Saputra, F 

Botnet 

ISCX 

2017 

KDDCU

P'99 

NSL-

KDDCU

P 

Cuckoo Search (CS) as 

feature selection and 

compare with GA and PSO 

using Decision Tree 

The CS has reduced 

most of the features, but it 

only has shown better 

performance in ISCX 

2017, while PSO had 

better accuracy in NSL 

KDDcup99 and NSL-

KDDCUP. 

(Atefi et al., 

2020) 

A Hybrid 

Anomaly 

Classification 

with Deep 

Learning (DL) 

and Binary 

Algorithms (BA) 

as Optimizer in 

the Intrusion 

Detection 

System (IDS) 

2020 Conference Atefi, K 

Hashim, H 

Khodadadi, T 

"CICIDS

2017 

A hybrid Anomaly 

Classification of IDS with 

Deep Learning (DL) and 

Binary Algorithms (BA) as 

The author did not 

explain how the hybrid 

models work, but he 

compared different hybrid 

couples and showed that 

DNN+BGSA has 

increased accuracy.  

(Kishore 

and 

Chauhan, 

2020) 

Evaluation of 

Deep Neural 

Networks for 

Advanced 

Intrusion 

Detection 

Systems 

2020 Conference Kishore, R 

Chauhan, A 

KDDCU

P'99' 

DNN and compared it to linear 

regression, Naive Bayes, K 

nearest neighbor, Decision 

tree, and Adaboost. 

In this paper, it was 

shown that SNN performs 

better than other Models, 

but The Author did not 

show a confusion matrix 

where we can compare 

FP, TP, TN, and FN. 

(Abdul 

Lateef et al., 

2020) 

Hybrid Intrusion 

Detection 

System Based 

on Deep 

Learning 

2020 Conference Abdul Lateef, 

A A 

Faraj Al-

Janabi, S T 

Al-Khateeb, 

B 

KDD'99 binary class IDS based on 

RNNs 

The Crow Swarm 

Optimization (CSO) algorithm 

has been used to reduce the 

dataset features. 

The author has made 

multiple trails for feature 

reduction using CSO and 

trained on RNN with each 

trail. It was shown that 

only three features are 

sufficient to make a 

classification, but the 

paper did not show any 
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results that identify false 

alarms. 

2.3.2 Search (2020 to 2023) 

This Systematic search was focused on the CIC-IDS-2018 dataset and models that 

used multiclassification with this dataset for IDS, and the search period was from 

2020 to 2023. 

Table 4 Systematic Search Table (2020-2023) 
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Benign 0.99 0.92 x x x x x x x x x 0.99 1.00 

Bot 1.00 1.00 x x x x x x x x x 1.00 0.83 

Brute Force -Web x x x x x x x x x x x 0.00 0.75 

Brute Force -XSS x x x x x x x x x x x 0.00 1.00 

BruteForce 1.00 0.99 x x x x x x x x x x x 

DDoS 0.99 1.00 x x x x x x x x x x x 

DDOS -HOIC x x x x x x x x x x x 1.00 1.00 

DDOS -LOIC-UDP x x x x x x x x x x x 0.72 1.00 

DDoS attacks-LOIC-

HTTP 

x x x x x x x x x x x 0.99 1.00 

DoS 0.99 0.98 x x x x x x x x x x x 

DoS attacks-

GoldenEye 

x x x x x x x x x x x 0.99 1.00 

DoS attacks-Hulk x x x x x x x x x x x 0.96 1.00 

DoS attacks-

SlowHTTPTest 

x x x x x x x x x x x 0.75 1.00 

DoS attacks-Slowloris x x x x x x x x x x x 0.95 1.00 

FTP-BruteForce x x x x x x x x x x x 0.71 0.88 

Infiltration 0.96 0.97 x x x x x x x x x 0.44 1.00 

Overall x x 0.98 94.3

9 

96.0

0 

98.8

0 

1.00 0.78 99.0

0 

0.89 0.98 x x 

SQL Injection 0.87 x x x x x x x x x x 0.00 0.92 
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SSH-Bruteforce x x x x x x x x x x x 0.99 1.00 

Web attacks x 1.00 x x x x x x x x x x x 

2.4 Hybrid Models: 

Many researchers used the approach of having multiple algorithms, but they have 

taken different techniques to make them interact or merge the results. The following 

will discuss different strategies used in multiple papers mentioned in the table above. 

2.4.1 A Hybrid Classifier Approach for Network Intrusion Detection 

We have the first review for the paper “A Hybrid Classifier Approach for Network 

Intrusion Detection” (Arivardhini et al., 2020). The author has proposed to use 

multiple classifiers. Each classifier will classify the flow to determine if the flow is 

considered an anomaly or benign. We can see the model proposed per the below 

algorithm. 

algorithm 1 A Hybrid Classifier Approach for Network Intrusion Detection(Arivardhini et al., 2020) 

Procedure model ( )  

Input = NSL KDD data set  

Reduce 'n' features to 'm’ based on number of proposed filters.  

Use Majority Voting scheme  

Deploy a hybrid model consisting of J48, SVM, Naive Bayes. 

Propose the model ‘M’ for every feature F n 

Provide F n to J48, SVM, Naive Bayes using NSL KDD data set.  

Calculate  

• A1 = J48 model accuracy 

• A2 = SVM model accuracy 

• A3 = Naive Bayes model accuracy  



37 
 

• E = Ensemble Representing J48, SVM, Naive Bayes 

Compare the accuracy of A1, A2, A3, E  

Select the model which has the highest accuracy M = E 

 

The proposed model will select the correct model based on accuracy, and the author 

claims that the voting system has improved performance. Unfortunately, no results 

were presented in the paper. It is a reasonable approach, but there are different 

issues, which are as follows: 

1- The voting system is based on the model's accuracy, but the author did not 

mention different accuracy for different classes. 

2-  How will the model be able to produce accuracy for a single new instance? 

It seems that the hybrid model will vote for a single model for the whole 

Dataset.  

3- There are no results to evaluate or to compare. 

2.4.2 Intrusion detection system using voting-based neural network 

The paper(Haghighat and Li, 2021) below has a similar approach to the previous 

one. The author proposes to have multiple classifiers, and they all will be trained and 

validated. Then, the author proposed to have a mechanism to choose algorithms 

that are eligible to enter the voting process. The voting process goes as follows: 

- All trained models will have an uncertainty factor on the output layer. This 

factor can be used as a measure to let the model participate in the voting.  

- All model’s uncertainty will be sorted, and a threshold will be used to eliminate 

unfitted models. 



38 
 

Then, voting will be used to determine the results, as shown in the diagram below. 

 

Figure 4 Intrusion detection system using a voting-based neural network (Haghighat and Li, 2021) 

This is a summary of the paper, and there are more details in the algorithm. But in 

general, the same procedure was used in two datasets, which are NSL-KDD and 

CTU-13.  

The results presented in the paper were in two forms (binary and multiple classes). 

In general, the results in the binary were much better than the multiple classes, and 

it was expected. As per  (Personnaz et al., 1990), using binary states instead of 

multilayer networks is much more powerful, and using binary states can have better 

results and less training time. The result is presented in the paper for NSL-KDD. 
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Binary Results: 

Table 5 Binary Results for (Intrusion Detection System using Voting-based Neural Network)(Haghighat and Li, 
2021) 

 

 

Multiclass: 

Table 6 Multiclass Results for (Intrusion Detection System using Voting-based Neural Network)(Haghighat and 
Li, 2021) 

 

 

False Negative/Positive Rates: 

Table 7 False Negative/Positive Rates for (Intrusion Detection System using a Voting-based Neural 
Network)(Haghighat and Li, 2021) 

 FPR FNR Accuracy Precision Recall F Score 

Binary 0.0011 0.0016 0.9986 0.9993 0.9984 0.9989 

Multiclass 0.0982 0.0021 0.9563 0.9302 0.9979 0.9628 
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2.4.3 A Hybrid Anomaly Classification with Deep Learning (DL) and Binary 

Algorithms (BA) as Optimizer in the Intrusion Detection System (IDS) 

This paper(Atefi et al., 2020) below proposes to use DNN with Binary algorithms for 

IDS using the CICIDS 2017 dataset. This proposal uses DNN as the primary 

classifier and then uses the Binary Bat algorithm (BBA), Binary Genetic Algorithm 

(BGA), and Binary Gravitational Search Algorithm as optimizers. The author has 

tested DNN with every mentioned Binary algorithm independently. DNN was coupled 

either with BBA, BGA, or BGSA. The way each test for each couple was conducted 

as illustrated below: 

 

Figure 5 overall view of the complete system(Atefi et al., 2020) 

As seen in the diagram above. There are two models presented. One of them is 

DDN, and the other is one of the Binary algorithms. Both will process the data and 

classification, and based on the accuracy, Time, and Confusion matrix, the result will 

be computed from the output of both models.  
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Figure 6 Comparative Results(Atefi et al., 2020) 

It is clearly visible from the graph that the Model DNN+BGSA has performed 

significantly better than the rest of the models in accuracy, recall, and precision. 

 

Figure 7 Confusion Matrix(Atefi et al., 2020) 

From the confusion matrix, again, we can see that DNN+BGSA performed better 

than the rest of the models in all categories (TP, FP, TN, and FN) 

The results look promising, but the author did not show how exactly the results of 

the DDN and binary algorithms will be joined for the final results. There is no 

discussion of whether the results will be based on the voting system or explicitly use 
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the accuracy and confusion matrix to get the results for classification. Also,  this 

seems to work on offline data, where you can generate and model and select the 

binary model with a confusion matrix and accuracy. How will this work on a live 

system where the IDS receives network flows almost every second? 

2.5 Pre-processing and feature reduction techniques: 

This part will focus on papers that have an emphasis on pre-processing and feature 

reduction. This part is mandatory for research as most of the Dataset related to IDS 

has a very high dimensionality. For example, the KDDCUP has 42 features, while 

the CICIDS2018 has 80 features. Computing that many features in any model may 

cause a lot of issues. Most of the IDS datasets are considered big data, and the 

computing power required to create a model is massive. Some algorithms refuse to 

take Dataset with very high dimensionality, such as the default random forest 

package in RStudio. In a much worse scenario, the algorithm will start, and after a 

very long time of waiting, it will fail because of limited resources. This will definitely 

cause issues with many algorithms and compute resources. Finally, the imbalance 

of the Dataset. The datasets will definitely be imbalanced, and some pre-processing 

is required in order for the algorithms to output reasonable results. 

2.5.1 Hybrid Intrusion Detection System Based on Deep Learning 

The paper(Abdul Lateef et al., 2020) below proposed a model that utilizes an 

algorithm called CSO (CROW SWARM OPTIMIZATION ALGORITHM), which will 

act to reduce the number of features in the Dataset. Then, RNN will be used to 

calculate the accuracy to either accept these features or not. In this research, the 

author has opted to use the popular Dataset for IDS, which is KDDCUP. The model 

proposed can be well presented in the diagram below. 
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Figure 8 Overall view of the model process(Abdul Lateef et al., 2020) 

As we can see, the model will have the following steps based on the diagram above. 

1- New Dataset as input 

2- Mapping and pre-processing 

3- RNN will compute the Dataset and generate mode features accuracy as 

output 

4- CSO will output the current features and halt, or it will propose a new feature 

set that will loop back to step 1 (new Dataset input) 

The author has tested this method with 20 trials, and the optimal number of features 

selected was 3 with a CSO accuracy of 96.2720% and (RNN-selected features 

accuracy) of 98.34%. Luckily, the author shared a comparison table using a similar 

approach for feature reduction with different algorithms. 
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Table 8 Accuracy for each model(Abdul Lateef et al., 2020) 

Method Name  Number 
of 

Features  

Accuracy   

PSO + AUC  12  94.49  
SSO + RS  6  93.60  
CFA+ DT  10  92.05  
ACO  8  98.90  
ACO + SVM  14  98.00  
PSO + RF  6  98.00  
ABC + KNN  7  98.90  
IBWOA  5  97.89  
Firefly + BN  
  

10  99.95  

FGLCC + CFA + DT  10  95.03  

CSO +RNN (this 
paper) 

3  98.34  

It is true that the author was able to reduce the number of features to as low as three 

features, but the aim is to reduce the features while maintaining accuracy. Also, the 

author has only shown the general accuracy of the model. In reality, the datasets will 

have mostly benign flows, and if the model predicts all the benign flows correctly, it 

will definitely have a high accuracy. But that does suffice the aim of IDS, where it 

has detected flows with anomalies, and naturally, they have a small percentage of 

the overall Dataset. A confusion matrix will be more suitable for evaluating and 

finding the rate of error for each class of anomaly.  

2.5.2 A Novel Preprocessing Methodology for DNN-Based Intrusion Detection 

In the paper(Chen et al., 2020) below, the author proposes some pre-processing 

techniques that can enhance the performance of DNN models on the KDDCup 

dataset. The author claims that these techniques increase the F1, accuracy, and 

recall in his/her experiments.  
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The pre-processing methods used in this paper are as follows: 

- Enumeration:  

There are some features in the KDDCUP dataset that are factors or symbolic. 

These features, such as (service, protocol, and type) may cause issues in 

DNN models and need to be modified. The author suggests having these 

features mapped to numerical values. 

- Transformation: 

There are some features when compared to each other; we can see that there 

is a significant gap between them. For example, comparing duration [0, 

58329] and src_bytes [0, 1379963888], we can notice the gap between these 

two features. The solution is to manipulate the values mathematically using     

y = lg(x + 1) 

- Normalization: 

Finally, the Min-Max method is used to normalize the Dataset. 

The author did the experiment on multiple algorithms, and he/she has benchmarked 

the performance between raw Dataset and pre-processed Dataset for KDDCUP 
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Figure 9 F1, Accuracy, Precision, and Recall(Chen et al., 2020) 

 

As we can see from the graph,  the preprocessing has increased the performance in 

recall, F1, and accuracy. The issue is that the author has calculated the general 

accuracy of the model but did not show the accuracy for each class, and then we 

can decide if it has made any enhancements in FP or FN. 

Also, the enumeration of factor or symbolic data might cause issues . Some data, if 

enumerated, may cause wrong assumptions. For example, if we assume TCP=1, 

UDP=2, then we can make a comparison (1<2). But we can’t say that TCP<UDP. I 

suppose these features might require different ways to be modified.  
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2.5.3 Feature Selection Algorithm For Intrusion Detection Using Cuckoo Search 

Algorithm 

In the paper(Syarif et al., 2020) below, the author aims at feature reduction to 

facilitate building models with a very high dimensionality. Datasets with a very high 

dimensionality might be very difficult to process and may consume a lot of time and 

process power to model. The idea is to select features that have more importance 

to make a decision and remove features that are irrelevant. 

To achieve this task, the author suggested using a coco search algorithm and 

building a decision tree model. In this paper, multiple tests were made with different 

datasets and different feature selection algorithms.  

Table 9 Accuracy before and after reduction(Syarif et al., 2020) 

Name 

of 

Dataset 

Number of Features 

 
Training Time Accuracy 

Full 

Data 

GA PSO CS Full 

Data 

GA PSO CS Full 

Data 

GA PSO CS 

Botnet 

ISCX 

2017 

79 15 21 11 138s 80s 98 

s 

19s 99,98% 99,85% 99,85% 99,98% 

KDDCup 

‘99 

41 17 19 13 524 s 200s 198 

s 

106 

s 

99,96% 99,93% 99,95% 99,94% 

NSL-

KDD 

41 15 12 9 227 s 63s 62 

s 

34 

s 

99,78% 99,69% 99,79% 99,60% 

From the table above, we can observe the CS algorithm is able to reduce more 

features than GA and PSO. For that reason, building a decision with CS reduction 

took much less time to train. On the other hand, the CS was only able to perform 

better in Botnet ISCX Dataset in accuracy than the other algorithm, while PSO 

exceeded the other in accuracy with KDDCup and NSL-KDD datasets. 
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It is true the proposed features reduction algorithm (CS) was able to outperform the 

others, but the performance in accuracy did not meet expectations. The main target 

of the IDS is to provide true alarms to facilitate operations in IT departments and not 

to be overwhelmed with false alarms that have to be investigated. 

2.6 Deep Neural Networks 

This part will focus on research that only covers deep learning techniques on IDS. 

There are multiple papers that have shown interest in this type of algorithm. 

2.6.1 Evaluation of Deep Neural Networks for Advanced Intrusion Detection 

Systems 

In the paper(Kishore and Chauhan, 2020) below, the author tried to test DNN with 

KDDCUP for IDS. Multiple DNN models were produced, and they were compared 

with other models, which are: 

1- Linear Regression  

2- Naïve Bayes 

3- KNN 

4- Decision Trees 

5- AdaBoost 

6- Random Forest 

7- SVM-Rbf 

8- SVM-Linear 

 

A benchmark comparison between these models so we can compare. 

Table 10 Benchmark table with Accuracy, precision, Recall, and F1(Kishore and Chauhan, 2020) 
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Algorithms  Accuracy  Precision  Recall  F1-
Score  

Lin-
Regression  

0.849  0.988  0.822  0.896  
Naive Bayes  0.928  0.987  0.924  0.953  

KNN  0.928  0.997  0.914  0.953  
Decision Tree  0.927  0.998  0.911  0.952  

Adaboost  0.926  0.996  0.912  0.950  
Random 
Forest  

0.927  0.998  0.911  0.951  
SVM-Rbf  0.811  0.922  0.772  0.868  

SVM-Linear  0.813  0.993  0.771  0.867  
*DNN-1  0.928  0.997  0.914  0.953  
DNN-2  0.929  0.996  0.913  0.955  
DNN-3  0.930  0.996  0.916  0.956  
DNN-4  0.928  0.998  0.914  0.953  
DNN-5  0.927  0.999  0.912  0.954  

As we can observe, there are five tests on DNN (1-5), and we can see that DNN-3 

achieved the best accuracy. DNN-5 gets the best precision, Naïve Bayes the best 

recall, and DNN-2 the best F1. From a personal perspective, these results do not 

show any real advantage of DNN compared to the other algorithms because the 

increased performance is scattered between different models in DNN. Also, the 

comparison is not sufficient and not deep enough to clearly state that DNN models 

perform better than the others. 

2.6.2  NIDS-Network Intrusion Detection System Based on Deep and Machine 

Learning Frameworks with CICIDS2018 using Cloud Computing 

The paper(Bharati and Tamane, 2020) below compares different algorithms using 

the CICIDS2018 Dataset. The author’s focus is that the Dataset is modern compared 

to the KDDCUP dataset, and it contains the latest and cutting-edge threats. For this 

purpose, the author made multiple tests with different algorithms, which are: 

• Extra-Tree 

• GBoost Tree 
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• Random Forest Tree 

• MLP 

For these tests with different algorithms coupled with the CICIDS2018 Dataset, 

a comparison table is produced below: 

 

Figure 10 Accuracy for the models(Bharati and Tamane, 2020) 

  

Figure 11 Training Time(Bharati and Tamane, 2020) 

From the results above, we can see the models have a very comparable 

accuracy while only the MLP has slightly less accuracy. On the other hand, the 

random forest was the slowest to train, and it took much more time. There are 

many factors to consider in the training time for each model, such as optimization 

for big data, parallelism (multi-threading, clustering), and time and space 

complexity. There are different implementations in different environments, which 

will definitely affect the training time. 
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2.7 Discussion 

This chapter provided a comprehensive review of the key studies and techniques 

used in the design and implementation of intrusion detection systems using machine 

learning. Throughout the review, it became evident that while many approaches 

have reported good results in specific use cases, most models failed to perform 

consistently across different traffic types and datasets. A significant observation was 

the dominance of binary classification methods in past research, where the focus is 

often limited to distinguishing between benign and malicious traffic without further 

granularity. This approach lacks the depth needed to deal with real-world scenarios, 

which require detection at the level of specific attack types. The review also noted 

that hybrid and ensemble techniques often achieved higher performance, but these 

were rarely modular or adaptive. These insights further support the idea of adopting 

a per-instance model selection strategy, where each instance is dynamically 

evaluated to determine the most effective classifier based on its specific 

characteristics. 

2.8 Chapter Conclusion 

After surveying multiple recent papers, we can see some trends or popular 

techniques that can be found in most of them. Even though the KDDCUP is 

considered old and does not represent current cybersecurity threats, it is still used 

in recent research for IDS and test models. The reason could be that many 

researchers were already using the Dataset, and new studies needed to compare 

and benchmark with older research. Another reason is that the Dataset is already 

converted to flows and ready for machine learning algorithms. Another trend that we 

can see is the use of deep learning algorithms, especially DNN. Many researchers 
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introduced DNN for IDS with different flavors. Many of these papers have shown 

increased performance in accuracy and precision. Dealing with a very high 

dimensionality dataset could be an obstacle to performing the tests and proceeding 

with research. For that reason, some researchers suggested dimensionality 

reduction with different approaches and algorithms that can ease and facilitate 

machine learning. Finally, we have the hybrid models, where multiple models will 

work together to classify a flow as a benign or a threat. In this research, the adopted 

technique would be a “hybrid classifier”.  It is inspired by “A Hybrid Classifier 

Approach for Network Intrusion Detection” (Arivardhini et al., 2020) The voting 

system will be used after the selection of the classifiers that will be determined by 

the Master classifier. In addition, the voting criteria may be amended and not 

necessarily follows the same condition.  
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Chapter 3 Dataset Scoping: 

3.1 Chapter Introduction 

This chapter will have a survey about the datasets that are being used in the 

research field. It will show how that many of the datasets are derived from the 

KDDCUP dataset. Even though it’s widely used, the chapter will show the 

shortcomings of the dataset and why it should not be used for IDS. The chapter will 

have some studies that show the inconsistencies and the other issues with the 

dataset. In the end, the chapter will have the reasoning for choosing CSE-CIC-

IDS2018. More details about CSE-CIC-IDS2018 are discussed in Chapter 6. The 

further details cover the features, type of attacks, and statistical analysis of the 

dataset. 
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3.2 Sample of major Datasets 

Identifying Cybersecurity threats in the network traffic has become more and more 

complex as the cyber attacks have become more advanced. Data has become a tool 

that facilitates cyber threats, and the number of attacks has increased in recent 

years. Many organizations have an Intrusion Detection System(IDS), but the data 

that powers the IDS are outdated and can’t keep up with the rapid change in cyber 

attacks. In this section, we will discuss the current datasets that are used in research 

and the problems that may occur with these datasets. Then, we will view the 

limitations of the classes that are present in these datasets. The nature of these 

datasets is that it has a huge gap in classes (attack types) and imbalance, which 

may cause a problem in machine learning classification and detection. 

In 1999, the KDDCUP99(“KDD Cup 1999 Data,” n.d.) was introduced, and since that 

time, it has been considered the de facto IDS machine learning dataset, and it was 

mainly used for anomaly detection. The data is based on the DARPA98 

dataset(Lippmann et al., 2000), and it was prepared by Stolfo(Stolfo et al., 2000). The 

data represents seven weeks of network traffic with 5 million records. The dataset 

contains 41 features for each record, and every record is labeled either benign or part 

of the following groups: 

1) Denial of Service Attack (DoS) 

2) User to Root Attack (U2R) 

3) Remote to Local Attack (R2L) 

4) Probing Attack 

KDDCUP has some problems, and these problems are the following(Tavallaee et al., 

2015): 
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- The data was synthesized to preserve privacy  

- Traffic collectors were overloaded, and there were packet drops  

- No exact definition of the attacks 

The CSE-CIC-IDS2018 Dataset was chosen because the data is recent, and there 

are many different cybersecurity attacks that are considered modern and have a true 

representation of modern networks. The CSE-CIC-IDS2018 data is a result of 

simulated attacks that took several days and are captured as PCAPs. Then, the data 

is converted to CSV format with labels. In addition, the CIC-IDS-2018 has a wider 

range of attacks than the KDDcup, which is limited. These attacks cover various 

forms, such as denial of service, distributed denial of service, Brute force, Botnet, 

Web attack, XSS, Infiltration, and SQL injection(Thakkar and Lohiya, 2020). These 

attacks are captured from real network traffic with 80 features. 

3.3 Dataset Problem 

The problem with the current research is that most of them are dependent on the 

kddcup dataset. According to many critiques, the dataset is outdated and has many 

inconsistencies and redundancies that can skew the results. Sabhnani suggests that 

the dataset has deficiencies and limitations and should not be used in machine 

learning (Sabhnani and Serpen, 2004). Hindi, who conducted a survey on many 

types of research done on IDS from 2008 to 2018, found that most of the research 

depended on the KDD CUP dataset or forked versions(Hindy et al., 2018). 
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Figure 12 Dataset Distribution (From Hindi) 

  A similar survey was conducted by myself for 2019-2020, and I found out that the 

same dataset is heavily used (table systematic search).  

3.4 Limited Classes 

As a result of using the same dataset by many researchers, most of the 

classifications are done on the same group of threats (Dos, R2L, U2R, Probe). These 

groups of threats do not reflect current network cybersecurity threats. For illustration, 

see the pie chart below provided by (Hindy et al., 2018). 
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Figure 13 Covered Attacks from 2008 to 2018 

  

3.5 Inconsistent accuracy for different classes 

Another reason to establish this research is that most of the researchers use similar 

schema, and most of them fail to present the accuracy of the classifier for each type 

of attack (Dos, R2L, U2R, Probe). Some of the researchers have shown the results 

for each class of intrusion, but the results show the contrast of accuracies of each 

class. A survey was done by Urvashi where the researcher made a comparison 

between 20 classifiers based on True-positive and false-positive(Urvashi and Jain, 

2015). As seen in the table below, most of the classifiers fail to achieve consistent 

results for all categories. 

Table 11 Classifiers Comparison from Urvashi 

Seq.  Classifier  Metric  DoS  Probe  U2R  R2L  Training Set 
Size 

1  K-Means (Qiang 
W.V.,2004) TP  87.6  97.3  29.8  6.4 2,776 

  FP  2.6  0.4  0.4  0.1  

2  
NEA 
(Maheshkumar S., 
2002) 

TP  96.7  72.4  22.3  7.8 1,074,991 

  FP  0.8  0.2  0.1  0.6  
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Seq.  Classifier  Metric  DoS  Probe  U2R  R2L  Training Set 
Size 

3  FCC (Qiang 
W.V.,2004) TP  91.6  77.8  12.7  27.8 2,776 

  FP  0.03  0.023  0.13  0  

4  ID3 (Amanpreet C., 
2011) TP  74.4  57.14  20  6.25 145,586 

  FP  1.71  2.5  3.1  1.1  

5  J48 (Huy A.N., 
2008) TP  96.8  75.2  12.2  0.1 49,596 

  FP  1  0.2  0.1  0.5  

6  PART (Mohammed 
M.M., 2009) TP  97.0  80.8  1.8  4.6 444,458 

  FP  0.7  0.3  0.5  0.01  

7  NBTree (Huy A.N., 
2008) TP  97.4  73.3  1.2  0.1 49,596 

  FP  1.2  1.1  0.1  0.5  

8  SVM (Huy A.N., 
2008) TP  96.8  70.1  15.7  2.2 49,596 

  FP  1.11  0.5  0.01  0  

9  
Fuzzy logic 
(Shanmugaradtru 
R, 
2011) 

TP  94.8  98.4  69.6  92.1 54,226 

  FP  5.5  1.8  6.7  10.7  

10  naïve Bayes (Huy 
A.N.,2008) TP  79.2  94.8  12.2  0.1 49,596 

  FP  1.7  13.3  0.9  0.3  

11  BayesNet (Huy 
A.N., 2008) TP  94.6  83.8  30.3  5.2 49,596 

  FP  0.2  0.13  0.3  0.6  

12  Decision Table 
(Yeung d.Y., 2002) TP  97.0  57.6  32.8  0.3 15,919 

  FP  10.7  0.4  0.3  0.1  

13  
Random Forest 
classifier (Yeung 
D.Y., 2002) 

TP  99.2  98.2  86.2  54.0 15,919 

  FP  0.05  0.01  0.02  0.09  

14  Jrip (Huy A.N., 
2008) TP  97.4  83.8  12.8  0.1 49,596 

  FP  0.3  0.1  0.1  0.4  

15  OneR (Huy 
A.N.,2008) TP  94.2  12.9  10.7  10.7 49,596 

  FP  6.8  0.1  2  0.1  

16  MLP (Huy 
A.N.,2008) TP  96.9  74.3  20.1  0.3 49,596 

  FP  1.4  0.1  0.1  0.5  

17  SOM (Huy 
A.N.,2008) TP  96.4  74.3  13.3  0.1 49,596 

  FP  0.8  0.3  0.1  0.4  

18  
GAU 
(Maheshkumar S., 
2002) 

TP  82.4  90.2  22.8  9.6 1,074,991 

  FP  0.9  11.3  0.05  0.1  

19  MARS (Sriniras 
M.,2002) TP  94.7  92.32  99.7  99.5 11,982 
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Seq.  Classifier  Metric  DoS  Probe  U2R  R2L  Training Set 
Size 

  FP  8.9  12.2  22.4  17.9  

20  Apriori (Mohammed 
M.M.,2009) TP  87.9  76.23  12.3  30.6 444,458 

  FP  0.67  1.7  8.9  23.8  

As seen in the table above, most of the classifiers fail to predict U2R and R2L 

accurately. Even if some of them have high accuracy in all classes, they produce 

very high False-Positive rates. As an example, for that scenario, the MARS classifier 

has 99.7 for U2R, but the false positive is 22.4. Not being able to predict all classes 

accurately or having high false positives can lead to unreliable results.  

For these reasons, research and investigation should be conducted. A dataset needs 

to be created that represents a modern network with modern cybersecurity threats 

because of the time restrictions and the tools that regenerate the flows that are the 

same as the datasets presented. We had to move this target as part of the future 

work. There was some work already conducted for this part of the research, but it 

was not complete. Reference to the work can be found in the appendix, titled 

(Building PCAP) 

3.6 Discussion 

This chapter reviewed several commonly used datasets in intrusion detection system 

(IDS) research, ultimately focusing on CIC-IDS2018 due to its richness and 

alignment with modern network threats. Despite being a popular choice in recent 

studies, the dataset presents several challenges that could affect model 

performance if left unaddressed. These include class imbalance, especially with 

underrepresented attack types, redundant or noisy features, and inconsistent 

distribution of labels. Such issues can cause biased learning and misleading 

evaluation results, especially in multiclass scenarios. The discussion in this chapter 
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emphasized the importance of understanding these structural limitations early in the 

process so they can be accounted for during preprocessing and model design. The 

choice to use CIC-IDS2018 was not without compromise, but the availability of 

multiclass labels and updated attack simulations made it the most suitable option for 

the goals of this research. The insights gained here guide the technical decisions 

applied in later chapters. 

3.7 Chapter Conclusion: 

This chapter presented a detailed analysis of datasets relevant to IDS research, 

emphasizing the importance of choosing one that aligns with the objectives of 

multiclass classification and model flexibility. After assessing the features and 

limitations of multiple sources, CIC-IDS2018 was selected due to its broad 

representation of attack types and traffic diversity. However, several issues, such as 

the presence of class imbalance, redundant fields, and inconsistency in some labels, 

were identified. These factors are expected to influence training effectiveness and 

classifier accuracy, particularly in identifying minority class attacks. Acknowledging 

these limitations early allows the research to proactively apply targeted 

preprocessing techniques such as feature selection, normalization, and sampling 

strategies. Ultimately, the dataset chosen provides a strong yet realistic foundation 

on which to evaluate the proposed classifier portfolio model. The next chapter 

introduces the methodological framework that builds on this dataset and supports 

the core structure of the research design. 
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Chapter 4  Research Methodologies  

4.1 Chapter Introduction 

will cover two main aspects of the research design. The first aspect is the general 

design, where the project is inspired by the CRISP-DM framework. In this part, the 

main focus is to have a structured approach to build and deploy a model. It covers 

Data understanding, preparation, modeling, Evaluation, and deployment. Then, we 

propose an adaptation of the framework that will be used to develop the AI models. 

The second part of the chapter will describe the proposed classifier. This part will go 

into detail on how to construct the portfolio of classifiers along with the master 

classifier and then how the classification will work. A complete step-by-step process 

is presented to clarify how it would work. 
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4.2 Proposed Design 

In this chapter, we will discuss the research methodologies and approaches. The 

research approach is mainly inspired by the CRISP-DM approach. CRISP-DM, 

which stands for (Cross Industry Standard Process for Data Mining) is considered 

the de facto for data science standardization. Most of the steps taken in this research 

are based on this approach to achieve the aims and targets of the research. 

 

Figure 14 CRISP-DM retrieved from the official CRISP-DM website(“What is CRISP DM? - Data Science Process 
Alliance,” n.d.) 

The research will adopt the steps shown in the diagram above that are part of the 

CRSIP-DM. As it is clearly visible in the diagram, there are multiple steps in circular 

motion that can ensure continuous improvements. The steps start with 

understanding the business, Data Understanding, Data Preparation, Modeling, and 

Evaluation, and finally it ends with Deployment.(“What is CRISP DM? - Data Science 

Process Alliance,” n.d.) 

The research will go through multiple stages. The first stage is to evaluate different 

multiclass classification algorithms. The evaluation will go through the performance 
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and accuracy of the classifiers and determine if the classifier is fit to be included in 

the research. As most of the classifiers are already established and can perform well 

in the domain of IT security, we might have to make further inspections since the 

nature of the data requires further input and validation. The overview of the data will 

have a very high percentage and occurrences of benign connections. As a result of 

that huge imbalance, any classifier will be able to have a very high general accuracy 

in binary classification. In this case, we will investigate the accuracy of each type of 

attack as the classification in minority data is more important because the minority 

is the attack class. In addition, another metric that will be considered is the 

TF/FT/TT/FF matrix so we can have a better understanding of each classification 

type.  

The second step is to evaluate different methods to have different classifiers work 

together for classification. Based on the survey done in the previous chapter, there 

are some researchers that have made this approach either by voting or merging. In 

this research, the result of each classifier will be encoded, and the dataset will be 

rebuilt for classification and to find the best classifier for each connection.  

We will follow the below logical flow chart that’s inspired by the “Cross Industry 

Standard Process for Data Mining.”   
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Figure 15 Research Methodology 

The first phase of the approach is to get the Data. The usual data format for this 

type of problem is PCAP. SolarWinds defined the PCAP as “Packet capture is a 

networking practice involving the interception of data packets traveling over a 

network. Once the packets are captured, they can be stored by IT teams for 

further analysis. The inspection of these packets allows IT teams to identify 

issues and solve network problems affecting daily operations.”(“What Is Packet 

Capture (PCAP)? - IT Glossary | SolarWinds,” n.d.). PCAPs are all the 

communication in the network, either from the end device, servers, or network 

devices. The PCAP can easily be converted to CSV (comma-separated vectors). 

While it’s easy to get the PCAP, it’s difficult to get a PCAP that has genuine 

connections that are threats. Another issue with this type of data is that it needs 

to be labeled. Labeling millions of records is a very difficult task, and even if the 

process is automated, the automation is prone to errors and can mislabel the 

records. The reasonable approach is to find readymade data for cybersecurity 

with labels. A survey about the datasets is already done in the Dataset chapter. 

Import Data 

Clean Data 

Identify Data Types 

Remove Columns 

(constant, 

Explore Data 

Modeling 

Visualize  

Benchmark 
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Importing the data in the prober system is a challenge because of the size of the 

data and the high dimensionality (number of features or rows). We will go through 

different methods like sampling and testing tools that can handle this size of data. 

Since sampling theoreticality could work to import a sub-sample that can 

represent the complete dataset, but in reality, the data is very sensitive, and all 

records must be imported. For this reason, in this research, we have tested 

different tools to check if they can handle the data with different tools. 

After importing the data to the desired tool, it will be explored and checked to see 

if the data is clean. Cleaning the data will include deleting rows that have any 

missing information or labels. In addition, the process will check if there are any 

unnecessary columns to be removed for different reasons. For example, some 

columns could be removed because they have constant values, or the data 

presented is irrelevant to the classification and might affect the model building. 

Another step in cleaning the data is the redundancy of the rows. Repeated 

records should be removed from the dataset to reduce the size and proper build 

for models. Once the data is cleaned up, it will be ready to be used to construct 

a model for classification. Different models will be built and evaluated. Finally, 

after classification and prediction, we will visualize the result for benchmarking 

and validation. The process will be repeated until satisfactory results are 

acquired. 

The idea is to have multiple classifiers work together to determine the best classier 

in order to have the highest accuracy possible. As discussed in the literature review, 

there are some approaches that use a voting system, while others use fusion. Some 

papers propose a generic approach that will determine the classifier that will work 
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with all the data; on the other hand, some researchers use cluster and group data to 

determine the classifier that fits each group. In our case, a master classifier will select 

a classifier for each instance or flow. For this part, we propose a novel approach to 

build up a master model with the following process. 

First, we determine some classifiers that can work with this type of dataset. The 

classifier should be capable of handling big data, high dimensionality, and multiclass 

classification. In addition to these conditions, the duration to process these data and 

build a model should be in a reasonable time. To build these models, we depend on 

software and packages that are specialized in Machine learning and Artificial 

intelligence. In the selection of software packages chapter, we will show the 

experience with multiple tools and libraries that are potentially suitable for this 

purpose, and we have determined that h2o in Rstudio would be the suitable tool to 

process the data and build models. Within h2o, there are multiple models that can 

be used, but we have restricted the use of Distributed Random Forest, Naïve bays, 

Deep Learning, GLM, and GBM; the reason for this restriction is that only these 

models can support multiclass classification.  

4.3 Proposed Method: 

The idea of the proposed method is to have a portfolio of multiple classifiers to detect 

or classify threats in IT networks. Different classifiers behave differently, and no 

single classifier can have 100% accuracy. For this reason, will have multiple 

classifiers that will be trained. These classifiers will be evaluated to determine if they 

can be part of the portfolio and benchmarked. Then, we will use a Master classifier 

to classify which classifier is more suitable for each instance or connection flow. The 
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whole process is done in three phases, which are the offline phase, the classification 

of a classifier, and finally, the classification.  

4.3.1 Offline phase: 

 

 

Figure 16 Offline phase in the proposed method 

In the offline phase, once the dataset is ready and cleaned from any missing data 

and the columns have an insignificant effect on the prediction removed, the process 

will start to build and train multiple classification models. After that, each model will 

be evaluated and benchmarked based on the general accuracy. If the model has an 

accuracy that is within the threshold, then it will be part of the portfolio of classifiers. 

On the contrary, if the model is below the threshold, it will be discarded and will not 

join the portfolio. During the benchmarking process, the top classifier will be 

determined as a backup classifier. 
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4.3.2 Encoding for the master classifier: 

 

 

Figure 17 get all classifications from all models. 

Encoding for the master classifier will be done as described in the above diagram. 

First, the dataset will be prepared, where we will get the prediction and classification 

from all classifiers in the portfolio. Each classifier might have a different prediction or 

matching prediction to other classifiers. This process is still offline, and it’s part of the 

training, so the classification doesn’t have to be in parallel. The process will be 

sequential, where the classification will start from the first classifier and finish the 

whole process, then it will proceed to the next classifier. Doing this step in a 

sequential manner can save computing power and memory resources, as each 

model can consume all the resources that we have in the research. Once all the 

classifications from all classifiers are done, the results will be aggregated, as shown 

in the diagram above.  



69 
 

 

 

Figure 18 Preparing encoded dataset for the master Model. 

The next step will start with adding the truth value from the original dataset to the 

aggregated data. Then, the encoding process will start with every Classifier 

prediction being compared to the truth value, and if the prediction matches the truth 

value, then the prediction will be changed to 1. If the prediction does not match, then 

the value will be changed to 0. The binary values will be concatenated and merged 

into a single binary value, as shown in the table in the diagram above. Finally, all the 

columns that represent the features in the original data will be added back. The 

dataset will be ready for the master classifier for training, as shown in the diagram 

below. 
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Figure 19 Encoded Dataset ready for Training. 

4.3.3 Online prediction: 

After the training is done, the master model is ready for prediction. The original 

dataset will be used as an input for the master classifier. The master classifier will 

output a binary code, as seen in the diagram below. Each digit in the binary code 

represents a classifier in the portfolio, and if the digit is 1, we can use the classifier 

represented in that digit. If all digits have zero value, then we will depend on the 

backup classifier. 

 

Figure 20 Classification for classifiers 
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Figure 21 Overall Methodology 

In order to understand the flow of the process, the following will explain every step 

as enumerated in the graph. 

1- The data will be split into three parts.  

a. Training 60% 

b. First stage-Validation 20% 

c. Second Stage-Validation 20% 

2- Five models are built using the training data and first-stage validation data, 

which are distributed Random forest, Deep learning, Naïve Bayese, Random 

Forest, GLM, and GBM. 

3- The validation predictions will be aggregated along with features it will look 

as below. 

…Features… Class(Original) DRF DL RF GLM GBM 

… Benign Infiltration Benign Benign Brute Force -Web Benign 
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4- The labels will converted into binary values in two steps 

Step 1 
…Features… Class(Original) DRF DL RF GLM GBM 

… Benign 0 1 1 0 1 

 

Step 2 
…Features… Class 

… 01101 

 

5- In this step, a Random Forest Model, which is considered the master 

classifier, is built based on the binary class generated. 

6- The model will predict the phase 2 validation data using the same set of 

features, except the class is changed to the binary code. Example below: 

…Features… Class 

… 10011 

7- The selection phase will be done as below: 

 

Figure 22 Overall view of the Portfolio result decodes and final result. 
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4.4 Discussion 

This chapter detailed the methodological framework used throughout the research, 

with a specific emphasis on how machine learning models are developed and 

evaluated in the context of intrusion detection. The use of the CRISP-DM model 

structure provided a logical and systematic path from problem definition to 

evaluation. The design of a per-instance model selection approach addresses one 

of the key limitations identified in earlier chapters, namely, that a single classifier 

often fails to generalize across different traffic patterns. The dynamic portfolio 

strategy allows the system to apply the most suitable classifier based on the nature 

of each instance, improving classification accuracy and adaptability. The discussion 

also highlighted some of the practical constraints in methodology, such as the need 

for computational efficiency, cross-validation strategies, and maintaining a balanced 

evaluation approach for multiclass problems. These factors were carefully 

accounted for to ensure that the chosen methods align with both academic rigor and 

real-world practicality. 

4.5 Chapter Conclusion  

In conclusion, this chapter established the methodological backbone of the study, 

clearly outlining how the research was designed, executed, and validated. By 

adopting a structured and iterative approach to data mining and model evaluation, 

the methodology ensures that the research remains replicable and logically sound. 

The chapter explained how CRISP-DM principles were adapted to suit the needs of 

the intrusion detection use case, while also introducing the concept of per-instance 

classifier selection. This framework is intended to offer both flexibility and precision, 

reflecting the core research aim of developing a responsive and effective detection 
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system. The processes described in this chapter, from dataset preparation to 

portfolio design, provide the foundation upon which the classifier models are built 

and tested in the following chapters. The next step in the research is to describe the 

technical environment and toolset used to support this methodology. 
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Chapter 5 Investigation and selection of software packages 

5.1 Chapter Introduction 

In Chapter 5, we survey different tools that serve AI and machine learning. In order 

to have the right tools, we need to make the survey and understand the tools. Having 

the right software and services would facilitate the progress of the research. In 

addition to the software and services, we will compare local compute and cloud 

services. The selection criteria for the tools would take into consideration the 

capability of the tool, ability to handle the dataset, ease of use, and finally, cost. 

In this chapter, we will discuss different tools and software that could be used in 

machine learning which are related to this research. First, we will see the evolution 

of these tools and how they have evolved over the years with many introductions of 

machine learning tools. As we will see, the machine learning tool took advantage of 

different architectures. The first architecture in this chapter is the traditional local 

compute, and then the GPU compute that can speed up the computation process. 

Finally, we have the cloud, which provides virtually unlimited resources that can 

accommodate any need for any machine learning project. Overly, the chapter will go 

as follows: chronological order of machine learning software and testing software 

packages (local and cloud), and finally, the selected list of tools and software. 
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5.2 Chronological order of libraries in Machine learning and Artificial 

intelligence  

In this part, we will go over the libraries in chronological order from the past 30 years.  

Table 12 History of Machine learning tools and software 

Machine learning Tool Brief description  

R language R was developed in 1993, and the framework for R is still under active 
development. Since R language is an open-source project, there are 
many packages and integrations that are developed by different entities 
that keep this language and its development tools alive and active. R 
language was initially targeting statistical computing and analysis, but 
now R language covers wider domains such as data mining, 
bioinformatics, and machine learning. The R framework has its official 
package manager called CRAN, and it can use external sources using R 
tools, which allows R language to have the latest algorithms and 
functions available for the user(“R: The R Project for Statistical 
Computing,” n.d.).  

MLC++ From the name of the library, we can know the library was developed in 

C++. MLC++ was developed at Sanford University in 1994 and then 

maintained by Silicon Graphics IC (Silicon Graphics was bought by 

Hewlett Packard). This library mainly focuses on pattern recognition, data 

mining, and statistical analysis. The development of these libraries 

seems to be halted since there is no reference for the library on the 

Hewlett Packard website(“MLC++, A Machine Learning Library in C++,” 

n.d.). 

OpenCV OpenCV was released in 2000. This library was developed by Intel, and 

its focus is Real-time computer vision. This library allows image 

recognition, tracking, and object identification. The library has interfaces 

with many languages and is widely used(“OpenCV - Open Computer 

Vision Library,” n.d.). 

 

scikit-learn The introduction of scikit-learn was a major milestone. The library is 

open-source, and it is a product of Google Code Summer Camp. The 
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library was written in Python using existing library’s like NumPy, and 

matplotlib. scikit-learn is in continuous development and has a great 

number of functions in machine learning(“scikit-learn: machine learning 

in Python — scikit-learn 1.3.0 documentation,” n.d.). 

Weka Weka was developed in 1993 at the University of Waikato, New Zealand. 

Initially, the library was built in C++, but then it was rebuilt in Java. The 

tool can do pre-processing, clustering, classification, and regression. In 

addition, deep learning was later introduced. The tool is intuitive and has 

a graphical user interface for ease of use(“Weka 3 - Data Mining with 

Open Source Machine Learning Software in Java,” n.d.). 

RapidMiner RapidMiner was known as Yale and was released in 2001. The 

application can provide a wide spectrum of machine learning and data 

analysis applications. The tool does provide a graphical user interface for 

ease of use and processing(“RapidMiner | Amplify the Impact of 

Your People, Expertise & Data,” n.d.). 

Spark MLlib Spark MLlib is part of the spark project from Apache, which was 

introduced in 2015. The project depends on the Spark core, and some of 

the main advantages are its ability to operate in distributed systems, and 

it is memory-based rather than disk-based. These two features can make 

this library operate much faster than any other library because it can be 

installed on many commodity hardware to achieve great performance 

that is parallel to enterprise hardware(“MLlib | Apache Spark,” n.d.).  

 

Torch Torch is a machine-learning language that provides a scientific 
computing framework. The language is open-source, and it is based on 
Lua. The language provided functions that are written in C language and 
can be invoked by LuaJIT. In recent years, the development has moved 
to Python, and now it is called Pytorch (“PyTorch,” n.d.).  

Caffe Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep 

learning framework originally developed at the University of California, 
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Berkeley, in 2017. It is open source, under a BSD license. It is written in 

C++ with a Python interface. Caffe is being used in academic research 

projects, startup prototypes, and even large-scale industrial applications 

in vision, speech, and multimedia(“Caffe | Deep Learning Framework,” 

n.d.).  

TensorFlow TensorFlow is an open-source project that was introduced in 2015. The 

tool has great support from the open-source community, which gives it 

flexibility in its ecosystem. TensorFlow allowed scientists and 

researchers to develop state-of-the-art Machine learning models and 

build applications that are supported by Artificial Intelligence. The 

framework has the latest functions and algorithms in Machine Learning, 

and it does support the latest technologies like GPU processing.  Finally, 

TensorFlow is compatible with Python, C++, and many other 

languages.(“TensorFlow,” n.d.) 

H2O H2O is an open-source project that was introduced in 2011. One of the 

main features of this library is that it has linear scalability, and it does 

operate in memory rather than on disk. These two features make it robust 

and much faster than other tools. The library supports most of the 

Machine learning algorithms, and it keeps updates coming very 

frequently.(“H2O.ai | The fastest, most accurate AI Cloud Platform,” n.d.) 

 

Figure 23 Chronological order of Machine Learning Tools 

 

2018

• Torch

2017

• caffe

2015

• TensorFlow 

2015

• Spark MLlib11 

2011

• H2O

2007

• scikit-learn

2000

• opeccv

1994

• MLC++

1993

• R

• weka 



79 
 

5.3 Testing Software Packages 

The initial preferred approach is to use local resources (compute) for machine 

learning and building multiple models. The benefit of having the models built 

locally is that it will eliminate the requirement to transmit the data from local 

to cloud and vis versa. The second benefit is that the cloud solutions for 

machine learning will require the reconstruction of the script and the study of 

new tools with a steep learning curve. Studying will be required to adapt to 

any public cloud solution for machine learning. On the other hand, the 

problem with local resources is the limitation of the resources. The size of the 

datasets is huge and doesn’t fit into memory. Also, the compute time is long, 

which will slow the flow and speed of the development of the models. Any 

minor modification in the model will require multiple hours to rebuild.  

In contrast, we have cloud solutions that are elastic and have the capability 

to virtually accommodate any workload required. The initial impression of 

cloud computing was that it would be cost-effective to build the models, but 

after investigating the pricing for cloud computing, it was clear that the cloud 

is much more expensive than local resources. Using Microsoft Azure 

Calculator (“Pricing Calculator | Microsoft Azure,” n.d.) the average monthly 

cost for the resource (D64d v5) with the following specifications (64 vCPUs, 

256 GB RAM) is US$3,106.88 monthly. This cost will come to around 

37,282.56 USD annually. These values are way beyond the budget, and even 

if we consider that these resources will be shut down periodically, the value 

will remain high. Another factor that needs to be considered in cloud adoption 

is the cost of the bandwidth. The bandwidth cost will be high since the dataset 
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size is huge and will require a lot of bandwidth for transit between local and 

cloud. The cloud solution is convenient as a solution, but financially, it does 

not fit all scenarios and requirements. It is difficult to make a direct comparison 

in pricing between cloud and on-premise solutions, but even the intention to 

acquire these specifications on-premise will be difficult as these requirements 

are enterprise and can’t be acquired by an average consumer. 

 

5.3.1 Local Compute 

The initial preferred approach is to use local resources (compute) for machine 

learning and building multiple models. Below are some of the tested packages 

and tools. 

o TensorFlow  

▪ TensorFlow is dependent on other libraries (Cuda) and specific 

drivers in order to function. Multiple attempts were made in 

order to get the TensorFlow to work in the local system. The 

problem with this library is that it requires a specific version of 

Cuda and NVidia drivers in order to function. Also, the 

documentation for these libraries is weak and not centralized. It 

does not work out of the box and requires a lot of work to have 

a functioning system. Any minor update will cause the system 

to crash. Another issue is that the library uses GPU to process 

the data, and if the loaded data exceeds the memory in the 

GPU, the performance will degrade drastically. Finally, for the 
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reasons mentioned above, we have opted not to use 

TensorFlow. 

o Python with Scikit-learn  

▪ Using Scikit-learn would require using Python. In order to load 

the data, Pandas libraries need to be called to load the data 

frame. The Data frame does not fit into memory, and Panda 

does handle large data very well. As a workaround, chunks 

were used to resolve the issue, but the performance was very 

slow to build models with this method.  

o Standard RStudio packages  

▪ RStudio with Standard libraries was used in the initial tests of 

the project. The data was loaded without any issues. RStudio 

was capable of managing memory and utilizing storage paging 

and did all of the management without any intervention. 

However, the issue relies on standard packages that have a lot 

of limitations. For example, Neuralnet did not utilize all CPU 

resources and was prohibitively slow. Another example is the 

standard random forest from CRAN. The Standard Random 

Forest has a limit on the number of levels of the factors. And the 

data types have some factors that exceed these levels. At the 

same time, the library is also not exhausting the CPU resources, 

and the process time is very slow. 

o RapidMiner 
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▪ RapidMiner was tested on loading the dataset. The Dataset was 

loaded, but after importing the data, the application was barely 

usable and not responsive. Also, the application crashes 

randomly and unpredictably. Another issue is that the user does 

not have the freedom to manipulate the data within the 

application. For example, converting the data from Decimal to 

binary. For these reasons, RapidMiner was excluded from the 

project. 

o Weka 

▪ Weka had very similar issues to RapidMiner. The application 

becomes unresponsive and crashes unpredictably. If the data 

loads, Weka will take unreasonable time to process the data 

and build models. 

  

o H2O package in RStudio 

▪ H2O.ai was used in the project in RStudio. It has good 

integration with RStudio, and the data can be moved between 

H2o Data and RStudio easily without any dependency on any 

additional libraries. The data was easily loaded and processed 

without error and crashing. H2O is able to fully utilize the CPU, 

and the memory is fully optimized, where it does not fully occupy 

the memory when the data is loaded and the models are built. 

The h2O can use the CUDA libraries to utilize the GPU, but it 

was not used as the official website lacks documentation for the 
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integration, and a previous attempt with TensorFlow showed 

that if the data does not fit in the GPU memory, the performance 

will get dramatically worse. In addition, h2o can run as a service 

where the h2o can run on its own, and the data can be viewed 

in the web browser, build models, and generate plots and 

graphs. Once a model is built, it’s easy to move this model 

regardless of the h2o version and system that is being used 

since the h2o can export the models in POJO format, which 

facilitates moving the models between different systems and 

versions. 

5.3.2 Cloud Compute: 

o There are multiple public cloud services, and they offer machine 

learning models as a service. Most of these services are dependent on 

the compute resource, and the service comes prebuilt with the required 

machine learning libraries. It will be fair to compare the computing price 

only, as the libraries and tools can be installed by the user. For 

comparison, the following specifications were targeted. 

▪ 64 compute cores. (Regardless of generation) 

▪ 256 Gigabytes of Memory  

▪ Ubuntu operating system 

▪ The Server can be either dedicated or shared  

▪ The resource will be on demand, and the selection will not 

consider reservation discount as the reservation will require at 
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least 1-year reservation commitment. For that reason, we will 

only consider the pay-as-you-use model. 

 

o Azure 

▪ Using Microsoft Azure Calculator (Pricing Calculator | Microsoft 

Azure), the average monthly for the resource (E64a v4) with the 

following specs (64 vCPUs, 256 GB RAM) is 3,270.40 monthly. 

Annually, 39,244.8 USD West US 

o Amazon 

▪ Amazon was checked for the computing price. For a compute 

instance that matches the specifications that we have 

determined, we have chosen m6g.16xlarge. This instance will 

cost 2354.69 USD monthly and 28,256.26 USD annually. East 

US Ohio 

o Huawei  

▪ 1,710.28 USD and annually 20,523.36USD instance 

m6.16xlarge.8 CN-southwest Guiyang1  

Table 13 Comparison between different cloud providers 

Specifications  Cloud 

Provider  

Amazon Azure  Huawei 

vCPU 64 Location  East US Ohio West US CN-southwest 

Guiyang1 

 Instance type m6g.16xlarge E64a v4 m6.16xlarge.8 
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Memory 562 Monthly 2354.69 USD 3,270.40 

USD 

1,710.28 USD 

 Yearly 28,256.26 USD 39,244.8 

USD 

20,523.36 

USD 

 

5.3.3 Tools used in the research: 

After reviewing and investigating many tools for the research, it was determined to 

use the following tools: 

- Local Compute: 

o Rstudio  

o H2o.AI 

- Cloud  

o Huawei Cloud  

o Regular Virtual Machine, with specifications mentioned before. 

o Use Rstudio  

o H2o.AI 

The reason to use Regular virtual machines instead of readymade Machine learning 

tools is to preserve the code that was developed in local computing and avoid 

redeveloping the same script. At the same time, any saved data frame and datatypes 

can be preserved and transitioned between local and cloud. 

5.4 Discussion 

This chapter reviewed the software tools and platforms used throughout the 

research, with a focus on selecting components that support both model 
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development and performance evaluation. The investigation covered a range of 

environments, including both local machines and cloud-based platforms, to 

determine the most suitable setup for training and testing complex models. Several 

trade-offs were noted during this process. For instance, while local tools provided 

more direct control and simplicity for debugging, cloud platforms offered better 

scalability and compute capacity for training deep learning models. The selection of 

tools like RStudio, Python, and specific machine learning libraries was made based 

on their compatibility with the chosen methodology and dataset. This discussion also 

emphasized the importance of a modular and reproducible environment, one that 

could support different classifiers under a unified framework. The software 

architecture was structured in a way that enables consistent preprocessing, training, 

validation, and result interpretation across all model types. 

5.5 Chapter Conclusion 

In conclusion, this chapter outlined the process of evaluating and selecting the 

software tools required to implement the proposed methodology. The research 

demanded a flexible environment capable of supporting both traditional machine 

learning models and more complex ensemble approaches. By assessing different 

platforms, IDEs, and library options, the final selection was made with an emphasis 

on computational efficiency, ease of integration, and reproducibility. Both local and 

cloud-based setups were utilized at different phases of experimentation, each 

playing a role in balancing control with processing power. The tools chosen allow for 

seamless model deployment, testing, and visualization, all of which are critical in 

executing the methodology described in the previous chapter. With the software 

environment established, the thesis now moves forward to data exploration, where 
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the structure and behavior of the selected dataset are analyzed in preparation for 

model building. 
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Chapter 6 Data Exploration 

6.1 Chapter Introduction 

 

In this research, we have determined to use the CSE-CIC-IDS2018 data. As 

discussed in the Dataset chapter, the KDDCUP dataset and all of its derivatives will 

be excluded as the data is old, and there are many recommendations in the data 

science community not to use the KDDcup dataset as it has a lot of inconsistency, 

and it’s not a true representation of the modern network in the industry, and the type 

of threats included in the dataset are old and not modern. 

The CSE-CIC-IDS2018 Dataset was chosen because the data is recent, and there 

are many different cybersecurity attacks that are considered modern and have a true 

representation of modern networks.  

In this chapter, we will explore the CSE-CIC-IDS2018 dataset. first, we will view how 

the dataset is generated and labeled. A discussion was presented about some 

issues related to the dataset, such as size and consistency. Finally, after reviewing 

the feature, a statistical exploration is done that will show distribution trends that 

show patterns for selected attacks. 
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6.2 Construction of the dataset  

The CSE-CIC-IDS2018 data is a result of simulated attacks that took several days 

and are captured as PCAPs. Then, the data is converted to CSV format with labels. 

The advantage of using the CSE-CIC-IDS2018 data is that the data is reproducible 

with the same features. The author of the data demonstrated how the data is 

generated and captured. In addition, the author made the tools available to convert 

the PCAP to flows with all the features. Simply, any person can regenerate the data 

with the same format easily with the tool available with any new attack. The only 

problem that can be faced to reproduce the data is labeling the flows with the right 

information. Even if we consider the timestamps of the attacks, we might mislabel 

the benign flows with the attacks.  Below is the summary of the attacks done on the 

data, along with the duration from the author's website. 

Table 14: attacks durations in CSE-CIC-IDS2018 from CSE-CIC website  (Canadian Institute for Cybersecurity, 
2018) 

Attack Tools Duration Attacker Victim 

Bruteforce 
attack 

FTP – Patator 

SSH – Patator 

One day Kali linux Ubuntu 16.4 
(Web Server) 

DoS attack Hulk, GoldenEye, 

Slowloris, Slowhttptest 

One day Kali linux Ubuntu 16.4 
(Apache) 

DoS attack Heartleech One day Kali linux Ubuntu 12.04 
(Open SSL) 

Web attack • Damn Vulnerable 
Web App 
(DVWA) 

• In-house 
selenium 
framework (XSS 
and Brute-force) 

Two 
days 

Kali linux Ubuntu 16.4 
(Web Server) 
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Infiltration attack • First level: 
Dropbox 
download in a 
windows machine 

• Second Level: 
Nmap and 
portscan 

Two 
days 

Kali linux Windows 
Vista and 
Macintosh 

Botnet attack • Ares (developed 
by Python): 
remote shell, file 
upload/download, 
capturing 

• screenshots and 
key logging 

One day Kali linux Windows 
Vista, 7, 8.1, 
10 (32-bit) 
and 10 (64-
bit) 

DDoS+PortScan Low Orbit Ion Canon 
(LOIC) for UDP, TCP, or 
HTTP requests 

Two 
days 

Kali linux Windows 
Vista, 7, 8.1, 
10 (32-bit) 
and 10 (64-
bit) 

 

6.3 Challenges: 

There were different challenges in the acquired data from CSE-CIC-IDS2018. The 

challenges start from getting the data from the Amazon servers, and there are issues 

with the consistency of the data. There are millions of data records, and it’s difficult 

to scan through the data manually and find the errors in each record. In this research, 

we have faced two major challenges with the CSE-CIC-IDS2018 data, which are the 

size and the consistency. 
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1- Data Size: 

One of the main challenges in acquiring the data was size. The author made the 

data available through Amazon bucket storage. Downloading the data was by parts 

for each day, and the downloaded data included CSV files. The CSV files were 

already labeled and ready for machine learning. In addition to that, the Data included 

the TCP dumps, which were huge and very slow to download. The process has faced 

many interruptions and disconnections. Even after downloading the data, we have 

faced data corruption that needs to be mitigated by redownloading the same files 

again. 

2- Data Consistency: 

The CSE-CIC-IDS2018 data has a lot of issues related to format and consistency. 

Finding these errors was a pure trial and error process.  The CSE-CIC-IDS2018 data 

comes in multiple files, and each file represents one day of data collection. The data 

needs to be merged for exploration and machine learning. Upon merging these files, 

many issues occurred, which related to mismatching the number of columns and 

repetitive headers. 

a. Mismatching number of columns: 

As mentioned, each file represents a day of collected data. When we 

attempted to merge all files together, we received an error that there was a 

mismatching number of columns. We had to view different files randomly to 

find out that some files had extra columns that consisted of (TimeStamp, src 

IP, src port, and dest IP). We had to drop these extra columns from the files 

that had it so all the files were uniform and consistent.   
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b. Repeated header: 

This error was discovered when some columns were supposed to have 

a datatype that is number/integer, but the RStudio identified it as text/string. 

We had to run a script that would go through each line of the CSV file to check 

if it was a number or not. Then we found the first line that is not a number was 

actually a repeated header of the column names. After inspecting the files, 

we found that some files have the header repeated randomly in different parts 

of the file. 

6.4 List of features in the CSE-CIC-IDS2018 Dataset: 

The below list is the extracted features from the PCAP files. The extracted features 

were captured using the CICflowmeter tool that was developed by the author of the 

dataset. These features represent some characteristics of the network flows. Each 

group of flows can be viewed either as benign or attacks, and the way to distinguish 

any of them is by the list of features presented. We can see that some features 

represent time, and some of them represent size and number while others flag. 

Some features can be derived from others, and some of them are tightly related. 

This can be explained since some features represent the size of packets (max, min, 

average, and std) for the forward direction, and we can see that these features have 

a tight relationship. It's difficult to review every feature in the dataset, as the main 

focus of this research is the classification rather than network study. For further 

information, a person can review these features from the author's site(“IDS 2018 | 

Datasets | Research | Canadian Institute for Cybersecurity | UNB,” n.d.).  The list of 

features provided below is presented exactly as written by the author. 
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fl_dur : Flow duration 

tot_fw_pk : Total packets in the forward direction 

tot_bw_pk : Total packets in the backward direction 

tot_l_fw_pkt : Total size of packet in forward 

direction 

fw_pkt_l_max : Maximum size of packet in forward 

direction 

fw_pkt_l_min : Minimum size of packet in forward 

direction 

fw_pkt_l_avg : Average size of packet in forward 

direction 

fw_pkt_l_std : Standard deviation size of packet in 

forward direction 

Bw_pkt_l_max : Maximum size of packet in 

backward direction 

Bw_pkt_l_min : Minimum size of packet in 

backward direction 

Bw_pkt_l_avg : Mean size of packet in backward 

direction 

Bw_pkt_l_std : Standard deviation size of packet in 

backward direction 

fl_byt_s : flow byte rate that is number of packets 

transferred per second 

fl_pkt_s : flow packets rate that is number of 

packets transferred per second 

fl_iat_avg : Average time between two flows 

fl_iat_std : Standard deviation time two flows 

fl_iat_max : Maximum time between two flows 

fl_iat_min : Minimum time between two flows 

fw_iat_tot : Total time between two packets sent in 

the forward direction 

fw_iat_avg : Mean time between two packets sent 

in the forward direction 

fw_iat_std : Standard deviation time between two 

packets sent in the forward direction 

fw_iat_max : Maximum time between two packets 

sent in the forward direction 

fw_iat_min : Minimum time between two packets 

sent in the forward direction 

bw_iat_tot : Total time between two packets sent in 

the backward direction 

bw_iat_avg : Mean time between two packets sent 

in the backward direction 

bw_iat_std : Standard deviation time between two 

packets sent in the backward direction 

bw_iat_max : Maximum time between two packets 

sent in the backward direction 

bw_iat_min : Minimum time between two packets 

sent in the backward direction 
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fw_psh_flag : Number of times the PSH flag was set 

in packets travelling in the forward direction (0 for 

UDP) 

bw_psh_flag : Number of times the PSH flag was 

set in packets travelling in the backward direction (0 

for UDP) 

fw_urg_flag : Number of times the URG flag was set 

in packets travelling in the forward direction (0 for 

UDP) 

bw_urg_flag : Number of times the URG flag was 

set in packets travelling in the backward direction (0 

for UDP) 

fw_hdr_len : Total bytes used for headers in the 

forward direction 

bw_hdr_len : Total bytes used for headers in the 

forward direction 

fw_pkt_s : Number of forward packets per second 

bw_pkt_s : Number of backward packets per 

second 

pkt_len_min : Minimum length of a flow 

pkt_len_max : Maximum length of a flow 

pkt_len_avg : Mean length of a flow 

pkt_len_std : Standard deviation length of a flow 

pkt_len_va : Minimum inter-arrival time of packet 

fin_cnt : Number of packets with FIN 

syn_cnt : Number of packets with SYN 

rst_cnt : Number of packets with RST 

pst_cnt : Number of packets with PUSH 

ack_cnt : Number of packets with ACK 

urg_cnt : Number of packets with URG 

cwe_cnt : Number of packets with CWE 

ece_cnt : Number of packets with ECE 

down_up_ratio : Download and upload ratio 

pkt_size_avg : Average size of packet 

fw_seg_avg : Average size observed in the forward 

direction 

bw_seg_avg : Average size observed in the 

backward direction 

fw_byt_blk_avg : Average number of bytes bulk rate 

in the forward direction 

fw_pkt_blk_avg : Average number of packets bulk 

rate in the forward direction 

fw_blk_rate_avg : Average number of bulk rate in 

the forward direction 

bw_byt_blk_avg : Average number of bytes bulk 

rate in the backward direction 

bw_pkt_blk_avg : Average number of packets bulk 

rate in the backward direction 

bw_blk_rate_avg : Average number of bulk rate in 

the backward direction 

subfl_fw_pk : The average number of packets in a 

sub flow in the forward direction 
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subfl_fw_byt : The average number of bytes in a 

sub flow in the forward direction 

subfl_bw_pkt : The average number of packets in a 

sub flow in the backward direction 

subfl_bw_byt : The average number of bytes in a 

sub flow in the backward direction 

fw_win_byt : Number of bytes sent in initial window 

in the forward direction 

bw_win_byt : # of bytes sent in initial window in the 

backward direction 

Fw_act_pkt : # of packets with at least 1 byte of TCP 

data payload in the forward direction 

fw_seg_min : Minimum segment size observed in 

the forward direction 

atv_avg : Mean time a flow was active before 

becoming idle 

atv_std : Standard deviation time a flow was active 

before becoming idle 

atv_max : Maximum time a flow was active before 

becoming idle 

atv_min : Minimum time a flow was active before 

becoming idle 

idl_avg : Mean time a flow was idle before 

becoming active 

idl_std : Standard deviation time a flow was idle 

before becoming active 

idl_max : Maximum time a flow was idle before 

becoming active 

idl_min : Minimum time a flow was idle before 

becoming active 

6.5 Dataset Exploration 

The original dataset contains around 16 million records with very high dimensionality, 

so it will be hard to manipulate and process as it is. We seek to remove duplicate 

records from the dataset to facilitate the process, as it requires more time, memory, 

and computing power. After deduplicating the data and removing consistent 

columns, the dataset summary is as follows in the table below. We can notice that 

most of the data consists of benign records and data flows that make up 

approximately 88% of the dataset. The rest of the data consists of all the other data 

which are the target for classification. Some of the attacks have a higher percentage 

of records, and that’s understandable because of their nature. For example, we have 
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the sum of all DDoS attack types that have a high percentage in the dataset, which 

is around ~6.7%. This is normal as the DDoS attacks will require a large number of 

connections that are initiated from many different sources to a targeted server. 

These huge numbers of connections will exhaust the server and will start dropping 

legitimate connections and will not be able to provide service. 

 

Table 15 Distribution of Classes in CSE-CIC-IDS2018 

names Count Percentage 

Benign 10210250 88.30831 

Bot 144535 1.25008 

Brute Force -Web 553 0.00478 

Brute Force -XSS 228 0.00197 

DDOS attack-HOIC 198861 1.71995 

DDOS attack-LOIC-UDP 1730 0.01496 

DDoS attacks-LOIC-HTTP 575364 4.97632 

DoS attacks-GoldenEye 41406 0.35812 

DoS attacks-Hulk 145199 1.25582 

DoS attacks-SlowHTTPTest 55 0.00048 

DoS attacks-Slowloris 9908 0.08569 

FTP-BruteForce 53 0.00046 

Infilteration 139775 1.20891 

SQL Injection 84 0.00073 

SSH-Bruteforce 94048 0.81342 

Total  11562049 100.00000 
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Figure 24 Distribution of attacks after removing Benign 

benign was removed from the chart so the attack distribution could be more visible. 

As we have seen in the summary table above, the benign records are around ~88%, 

so we will have difficulty viewing the attacks in the graph. As discussed before, we 

can visibly see that most of the remaining data is DDOS attacks, which is around 

~6.7%, and then the rest of the attacks would be around ~4.9%.  

6.5.1 Initial observations: 

- The dataset size and the number of features (80 features) are huge for any 

manual process and highly intensive for computation. 

- Not all features are worth analyzing to find any pattern to assist in any 

classification and making the decision. 

- The distribution of classes is not balanced and might cause a high rate of 

False-Positive or False-Negative results.  



98 
 

 

 

 

 

Figure 25 Correlation Matrix for CSE-CIC-IDS2018 

If we have a look at the correlation matrix of the features in the chart and the table 

below, We can see many relations between the features, and it is expected, as some 

features are just derived from other features like (Min-Max-std-Mean). The case can 

be seen in Idle (Idl.min, Idle.max, Idle.std, and Idle.Mean). These types of features 
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will have a correlation. All features are either linked to the duration, time, size, or 

length of different elements within a flow.   

In the table below, we only show variables that have a correlation that is more than 

0.9 and below -0.90. As we can observe from the table, many of the variables have 

a correlation with some of their derivatives (Maximum, Minimum, Standard deviation, 

or Mean). 

Table 16 Correlation Coefficient Table 

Row Column Correlation Coefficient 

Tot.Bwd.Pkts TotLen.Bwd.Pkts 0.993591 

Fwd.Pkt.Len.Max Fwd.Pkt.Len.Mean 0.879368 

Fwd.Pkt.Len.Max Fwd.Pkt.Len.Std 0.954824 

Fwd.Pkt.Len.Mean Fwd.Pkt.Len.Std 0.890569 

Bwd.Header.Len Subflow.Bwd.Pkts 0.997801 

Bwd.Pkt.Len.Max Bwd.Pkt.Len.Std 0.96619 

Flow.IAT.Std Flow.IAT.Max 0.895744 

Flow.Duration Flow.IAT.Min 0.814468 

Flow.IAT.Std Flow.IAT.Min -0.95762 

Bwd.Header.Len Subflow.Bwd.Byts 0.996151 

Flow.IAT.Min Fwd.IAT.Tot 0.814475 

Flow.IAT.Mean Fwd.IAT.Mean 0.999964 

Flow.IAT.Std Fwd.IAT.Std 0.999981 

Flow.IAT.Max Fwd.IAT.Std 0.895752 

Flow.IAT.Min Fwd.IAT.Std -0.95761 

Flow.IAT.Std Fwd.IAT.Max 0.895737 

Flow.IAT.Max Fwd.IAT.Max 0.999994 

Fwd.IAT.Std Fwd.IAT.Max 0.895755 

Bwd.Pkt.Len.Mean Pkt.Size.Avg 0.938971 

Flow.IAT.Std Fwd.IAT.Min -0.95761 

Flow.IAT.Min Fwd.IAT.Min 0.999996 

Fwd.IAT.Tot Fwd.IAT.Min 0.814487 

Fwd.IAT.Std Fwd.IAT.Min -0.9576 
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Bwd.IAT.Std Bwd.IAT.Max 0.875919 

Bwd.IAT.Mean Bwd.IAT.Min 0.89453 

Bwd.Pkt.Len.Mean Bwd.Seg.Size.Avg 1 

Flow.Duration Fwd.IAT.Tot 0.999986 

Flow.Duration Fwd.IAT.Min 0.81448 

Flow.Pkts.s Fwd.Pkts.s 0.994678 

Fwd.Pkt.Len.Min Pkt.Len.Min 0.896394 

Bwd.Pkt.Len.Max Pkt.Len.Max 0.949866 

Bwd.Pkt.Len.Std Pkt.Len.Max 0.944087 

Bwd.Pkt.Len.Mean Pkt.Len.Mean 0.943686 

Bwd.Pkt.Len.Max Pkt.Len.Std 0.899934 

Bwd.Pkt.Len.Mean Pkt.Len.Std 0.849163 

Bwd.Pkt.Len.Std Pkt.Len.Std 0.937577 

Pkt.Len.Max Pkt.Len.Std 0.958434 

Pkt.Len.Mean Pkt.Len.Std 0.861471 

Flow.IAT.Max Idle.Mean 0.930967 

Flow.IAT.Max Idle.Std 0.940928 

RST.Flag.Cnt ECE.Flag.Cnt 0.999987 

Flow.IAT.Max Idle.Max 0.948219 

Flow.IAT.Min Idle.Mean -0.93713 

Flow.IAT.Min Idle.Std -0.92362 

Flow.IAT.Min Idle.Max -0.92779 

Flow.IAT.Std Idle.Mean 0.974618 

Flow.IAT.Std Idle.Std 0.956771 

Flow.IAT.Std Idle.Max 0.956541 

Fwd.Header.Len Subflow.Fwd.Pkts 0.995575 

Fwd.Header.Len Fwd.Act.Data.Pkts 0.991472 

Pkt.Size.Avg Bwd.Seg.Size.Avg 0.938971 

Tot.Fwd.Pkts Subflow.Fwd.Pkts 1 

Fwd.IAT.Max Idle.Mean 0.930953 

Fwd.IAT.Max Idle.Std 0.940928 

Tot.Bwd.Pkts Subflow.Bwd.Pkts 1 

TotLen.Bwd.Pkts Subflow.Bwd.Pkts 0.993591 

Fwd.IAT.Max Idle.Max 0.948214 

Tot.Bwd.Pkts Subflow.Bwd.Byts 0.993591 
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Fwd.IAT.Min Idle.Mean -0.93711 

Fwd.IAT.Min Idle.Std -0.92362 

Subflow.Bwd.Pkts Subflow.Bwd.Byts 0.993591 

Fwd.IAT.Min Idle.Max -0.92778 

Fwd.IAT.Std Idle.Mean 0.974652 

Fwd.IAT.Std Idle.Std 0.956757 

Active.Mean Active.Max 0.947795 

Active.Mean Active.Min 0.907754 

Fwd.IAT.Std Idle.Max 0.956546 

Fwd.Pkt.Len.Max Fwd.Seg.Size.Avg 0.879368 

Fwd.Pkt.Len.Mean Fwd.Seg.Size.Avg 1 

Fwd.Pkt.Len.Std Fwd.Seg.Size.Avg 0.890569 

Fwd.PSH.Flags SYN.Flag.Cnt 1 

Fwd.URG.Flags CWE.Flag.Count 1 

Pkt.Len.Mean Pkt.Size.Avg 0.995625 

Pkt.Len.Mean Bwd.Seg.Size.Avg 0.943686 

Pkt.Len.Std Pkt.Size.Avg 0.853663 

Pkt.Len.Std Bwd.Seg.Size.Avg 0.849163 

Protocol Bwd.Pkt.Len.Min 0.851049 

Subflow.Fwd.Pkts Fwd.Act.Data.Pkts 0.999189 

Idle.Mean Idle.Std 0.980718 

Tot.Bwd.Pkts Bwd.Header.Len 0.997801 

Tot.Fwd.Pkts Fwd.Header.Len 0.995575 

Tot.Fwd.Pkts Fwd.Act.Data.Pkts 0.999189 

TotLen.Bwd.Pkts Bwd.Header.Len 0.996149 

TotLen.Bwd.Pkts Subflow.Bwd.Byts 1 

TotLen.Fwd.Pkts Subflow.Fwd.Byts 1 

Idle.Mean Idle.Max 0.981832 

Idle.Std Idle.Max 0.992293 

In order to reduce the list and have fewer parameters to investigate, we removed 

rows that have variable name similarity of more than 70%. The below table shows 

the output result. 
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Table 17 Reduced Correlation Table 

Row Column Correlation Coefficient 
Bwd.Header.Len Subflow.Bwd.Pkts 0.997801 
Bwd.Header.Len Subflow.Bwd.Byts 0.996151 

Bwd.Pkt.Len.Mean Pkt.Size.Avg 0.938971 
Bwd.Pkt.Len.Mean Bwd.Seg.Size.Avg 1 

Flow.Duration Fwd.IAT.Tot 0.999986 
Flow.Duration Fwd.IAT.Min 0.81448 
Flow.IAT.Max Idle.Mean 0.930967 
Flow.IAT.Max Idle.Std 0.940928 
Flow.IAT.Max Idle.Max 0.948219 
Flow.IAT.Min Idle.Mean -0.93713 
Flow.IAT.Min Idle.Std -0.92362 
Flow.IAT.Min Idle.Max -0.92779 
Flow.IAT.Std Idle.Mean 0.974618 
Flow.IAT.Std Idle.Std 0.956771 
Flow.IAT.Std Idle.Max 0.956541 

Fwd.Header.Len Subflow.Fwd.Pkts 0.995575 
Fwd.Header.Len Fwd.Act.Data.Pkts 0.991472 

Fwd.IAT.Max Idle.Mean 0.930953 
Fwd.IAT.Max Idle.Std 0.940928 
Fwd.IAT.Max Idle.Max 0.948214 
Fwd.IAT.Min Idle.Mean -0.93711 
Fwd.IAT.Min Idle.Std -0.92362 
Fwd.IAT.Min Idle.Max -0.92778 
Fwd.IAT.Std Idle.Mean 0.974652 
Fwd.IAT.Std Idle.Std 0.956757 
Fwd.IAT.Std Idle.Max 0.956546 

Fwd.Pkt.Len.Max Fwd.Seg.Size.Avg 0.879368 
Fwd.Pkt.Len.Mean Fwd.Seg.Size.Avg 1 
Fwd.Pkt.Len.Std Fwd.Seg.Size.Avg 0.890569 
Fwd.PSH.Flags SYN.Flag.Cnt 1 
Fwd.URG.Flags CWE.Flag.Count 1 
Pkt.Len.Mean Pkt.Size.Avg 0.995625 
Pkt.Len.Mean Bwd.Seg.Size.Avg 0.943686 
Pkt.Len.Std Pkt.Size.Avg 0.853663 
Pkt.Len.Std Bwd.Seg.Size.Avg 0.849163 

Protocol Bwd.Pkt.Len.Min 0.851049 
Subflow.Fwd.Pkts Fwd.Act.Data.Pkts 0.999189 

Tot.Bwd.Pkts Bwd.Header.Len 0.997801 
Tot.Fwd.Pkts Fwd.Header.Len 0.995575 
Tot.Fwd.Pkts Fwd.Act.Data.Pkts 0.999189 

TotLen.Bwd.Pkts Bwd.Header.Len 0.996149 
TotLen.Bwd.Pkts Subflow.Bwd.Byts 1 
TotLen.Fwd.Pkts Subflow.Fwd.Byts 1 

From the table above, we will inspect and plot some of the related columns from the 

dataset. As we can see, the correlations had been coupled into groups so we could 

have a better understanding of the relations. At first, we inspect ( Bwd.Header.Lenm 

and Subflow.Bwd.Pkts ).  
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Figure 26 plot for Bwd.Header.Lenm  vs Subflow.Bwd.Pkts 

 

Figure 27 (Bwd.Header.Lenm  vs Subflow.Bwd.Pkts) for each class 
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From the plot above, we can’t have a lot of information or observation since most of 

the data density is on a very small spot on the plot. In order to have a better view of 

the plot, we removed the outliers so we can see if there is any trend or pattern. 

 

 

Figure 28 (Bwd.Header.Lenm  vs Subflow.Bwd.Pkts) for each class after removing outliers 

From the above plot, we can have a lot of observations for these two features. We 

can summarize them with the following: FTP- Bruteforce, SQL injection, SSH-

Bruteforce, DoS attacks slowHTTPtest, Bruteforce -Web, BruteForce -XSS, and 

DDoS attack-LOIC-UDP are all restricted in four points, and if any data are in these 

points is suspected to be part of one of these attacks. The same is true for the other 

attacks; we can see some patterns and concentration of points in the plots that can 

help as indicators of attacks. 
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We have created other samples of relations that can be viewed for observation. 

 

 

Figure 29 Sample plots 
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6.6 Discussion 

The data exploration process was an essential phase in understanding the structure 

and behavior of the CIC-IDS2018 dataset. One of the most prominent issues 

identified was the significant class imbalance, where certain types of attacks, such 

as “Infiltration” and “Heartbleed,” were represented by only a few instances 

compared to much larger classes like “BENIGN” or “DoS Hulk.” This imbalance can 

lead to biased model training, where the classifier becomes more accurate at 

detecting frequent attack types but fails to properly recognize rare or emerging 

threats. On the other hand, the correlation matrix revealed that some features 

exhibited strong linear relationships, indicating potential redundancy. These 

relationships suggest that not all features are equally valuable for model training, 

and that dimensionality reduction techniques, such as feature selection or PCA, 

could improve overall performance and reduce overfitting. Additionally, the feature 

value distributions varied significantly across attributes, which supports the decision 

to normalize the dataset to bring features to a similar scale. Another key observation 

was that certain classes shared similar patterns in feature space, which could 

increase the risk of misclassification. These overlaps suggest the need for more 

flexible and instance-aware classifiers. Overall, the insights gained from this 

exploration directly informed the preprocessing strategies and helped shape the 

model-building steps in the upcoming chapters. 

6.7 Chapter Conclusion  

In conclusion, the data exploration process helped uncover essential characteristics 

of the CIC-IDS2018 dataset that directly influence how the classification models 

should be developed and evaluated. The analysis revealed several key issues, most 
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notably, the imbalance in class representation, where some attack types were 

underrepresented to the point that a default classifier might easily overlook them. 

This highlights the need for sampling or balancing techniques during preprocessing 

to avoid model bias. Additionally, the correlation analysis showed that many features 

are highly related, which means that some attributes could be removed without 

compromising the integrity of the dataset. This opens the door for dimensionality 

reduction techniques to simplify the model and improve training speed. Feature 

distribution plots also indicated the need for normalization to ensure that classifiers 

treat all attributes fairly. Beyond the technical findings, the exploration helped shape 

the direction of the modeling strategy by pointing out which features and issues to 

prioritize. It confirmed that CIC-IDS2018, while not perfect, is still highly suitable for 

building a robust multiclass intrusion detection system. The insights gathered here 

serve as a bridge into the model development phase, where a sub-sampled version 

of the dataset will be used to begin training and evaluating classification models. 
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Chapter 7 Building Models using Sub-Sample: 

7.1 Chapter Introduction  

In this chapter, we will go through building and testing different models. This process 

will have the model being built with the training and validation data. An additional 

test will be conducted using the test data portion of the dataset. Overall, this chapter 

will go through the following: fixing the data balance in the Dataset (CSE-CIC-

IDS2018) by getting subsamples and upsampling. Then, we will build models and 

get their performance per class (Gradient Boosting Machine, Generalized Linear 

Models, Deep Learning Model, Random Forest, Distributed Random Forest). Finally, 

we will review some failed attempts and review the result. 
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7.2 Justification for using Sub-sampling 

Due to the limitation of the local compute, memory, and fast storage, the logical 

approach is to use sub-sample of the dataset. In order to read the dataset and build 

multiple models on a standard workstation would not be feasible as the models 

would also require a large amount of memory. In addition the dataset has a very high 

dimensionality and  the models that need to be built require a very high compute 

power. In the end, it was decided to test and start with sub-sample.ts. 

7.3 Data Balance 

During the investigation and exploration of the dataset. The presented data has 

major issues. The first issue is the imbalance of the classes, and the second issue 

is the size of the data. We needed to make sure that  Data manipulation does not 

affect the accuracy of the actual test. So, the manipulations were done only on the 

training subset. The process was done with the following steps: 

1- 60% was taken from the data. Because there is a huge gap between each 

class, we wanted to guarantee that each class is presented in the training, so 

we took 60% from each class instead of a random sample. 

Table 18 60% sample from each class 

                  Benign                      Bot         Brute Force -Web  

                 6126150                    86721                      331  

        Brute Force -XSS         DDOS attack-HOIC     DDOS attack-LOIC-UDP  

                     136                   119316                     1038  

  DDoS attacks-LOIC-HTTP    DoS attacks-GoldenEye         DoS attacks-Hulk  

                  345218                    24843                    87119  

DoS attacks-SlowHTTPTest    DoS attacks-Slowloris           FTP-BruteForce  

                      33                     5944                       31  

           Infilteration            SQL Injection           SSH-Bruteforce  

                   83865                       50                    56428 
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2- There is a big gap between Benign and the rest of the classes, so we had to 

down-sample it. 

Table 19 Down-sampling benign Class 

                  Benign                      Bot         Brute Force -Web  

                  126150                    86721                      331  

        Brute Force -XSS         DDOS attack-HOIC     DDOS attack-LOIC-UDP  

                     136                   119316                     1038  

  DDoS attacks-LOIC-HTTP    DoS attacks-GoldenEye         DoS attacks-Hulk  

                  345218                    24843                    87119  

DoS attacks-SlowHTTPTest    DoS attacks-Slowloris           FTP-BruteForce  

                      33                     5944                       31  

           Infilteration            SQL Injection           SSH-Bruteforce  

                   83865                       50                    56428 

 

3- For the rest of the classes, we had to up-sample it. And then, we took a subset 

for each (10%) 

 

Table 20 up sampling 

                  Benign                      Bot         Brute Force -Web         Brute Force -XSS  

                   34521                    34521                    34521                    34521  

        DDOS attack-HOIC     DDOS attack-LOIC-UDP   DDoS attacks-LOIC-HTTP    DoS attacks-GoldenEye  

                   34521                    34521                    34521                    34521  

        DoS attacks-Hulk DoS attacks-SlowHTTPTest    DoS attacks-Slowloris           FTP-BruteForce  

                   34521                    34521                    34521                    34521  

           Infilteration            SQL Injection           SSH-Bruteforce  

                   34521                    34521                    34521 

 

Using the balanced data, we have tested it by building a model, which is a Random 

forest from Ranger. This package is part of the CRAN Package manager from 

RStudio. The results are as follows. 
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Table 21 Overall Accuracy 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull AccuracyPValue  McnemarPValue  

    0.94167415     0.93750802     0.94103238     0.94231097     0.06666667     0.00000000            NaN  

 

Table 22 Ranger Training results per class 

Class precision recall f1 

Benign 0.97023 0.941253 0.955522 

Bot 0.99971 0.999942 0.999826 

Brute Force -Web 0.996511 0.97642 0.986364 

Brute Force -XSS 0.999768 1 0.999884 

DDOS attack-HOIC 0.999768 0.999942 0.999855 

DDOS attack-LOIC-UDP 0.999103 1 0.999551 

DDoS attacks-LOIC-HTTP 0.99942 0.999073 0.999247 

DoS attacks-GoldenEye 1 1 1 

DoS attacks-Hulk 1 1 1 

DoS attacks-SlowHTTPTest 0.585971 0.8184 0.682952 

DoS attacks-Slowloris 1 1 1 

FTP-BruteForce 0.699069 0.421859 0.526186 

Infilteration 0.944691 0.96828 0.95634 

SQL Injection 0.976742 1 0.988234 

SSH-Bruteforce 1 0.999942 0.999971 

From the multiclass results and overall results, we can see that the trained model 

outputs have great results where each class has a precision of either one or 

approaching one. We can proceed using the data for testing/validation. 

The model reports the important variables. We have kept the important variables 

and removed the least important ones. The remaining used variables are the 

following. 
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Table 23 Remaining Features 

Dst.Port Flow.Duration Tot.Fwd.Pkts TotLen.Fwd.Pkts Fwd.Pkt.Len.Max Fwd.Pkt.Len.Mean 

Fwd.Pkt.Len.Std Flow.Byts.s Flow.Pkts.s Flow.IAT.Mean Flow.IAT.Std Flow.IAT.Max 

Flow.IAT.Min Fwd.IAT.Mean Fwd.IAT.Std Bwd.IAT.Min Fwd.Header.Len Fwd.Pkts.s 

Bwd.Pkts.s Fwd.Seg.Size.Avg Subflow.Fwd.Pkts Subflow.Fwd.Byts Init.Fwd.Win.Byts Fwd.Act.Data.Pkts 

Fwd.Seg.Size.Min 
     

 

7.4 Test and validation with different classification models: 

There were multiple models that we built in order to create a portfolio of models. The 

aim is to have a model that supports multiclassification. Some models may support 

multiclassification but in different frameworks or scripting languages. This research 

target is to validate the proposed methodology and algorithm using multiple 

classifiers for multi-classification. We opted to use tools that have support for multi-

classification out of the box, where there is the least modification and alteration 

needed to build the model. Our search has resulted in the following Models that  

support both RStudio and H2O: 

- Random Forest H2O 

- Distributed Random forest from Ranger 

- Deep Learning 

- GLM 

- GBM 

- Naïve Bays (Failed attempt presented in the appendix) 

- Support Vector Machine ((Failed attempt presented in the appendix) 

- KNN (Failed attempt presented in the appendix) 
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7.4.1 Gradient Boosting Machine (GBM) 

A gradient gradient-boosting machine is used for Classification. The function uses a 

forward learning ensemble method. Prediction quality increases through refined 

approximations. H2O’s GBM will build regression trees with all features in a 

distributed manner. These regression trees would be built in parallel. 

Model Parameters: 
Table 24 GBM Model Parameters 

Parameter Value Description 

model_id 
GBMModel 

Destination id for this model; auto-generated if not 

specified. 

nfolds 
5 

Number of folds for K-fold cross-validation (0 to 

disable or >= 2). 

keep_cross_validation_predictions 
true 

Whether to keep the predictions of the cross-

validation models. 

fold_assignment 
Random 

Cross-validation fold assignment scheme, if 

fold_column is not specified. The 'Stratified' option 

will stratify the folds based on the response variable, 

for classification problems. 

response_column 
Class Response variable column. 

ignored_columns 
 Names of columns to ignore for training. 

r2_stopping 
1.7976931348623157e+308 

r2_stopping is no longer supported and will be 

ignored if set - please use stopping_rounds, 

stopping_metric and stopping_tolerance instead. 

Previous version of H2O would stop making trees 

when the R^2 metric equals or exceeds this 

stopping_metric 
 

Metric to use for early stopping (AUTO: logloss for 

classification, deviance for regression and 

anonomaly_score for Isolation Forest). Note that 

custom and custom_increasing can only be used in 

GBM and DRF with the Python client. 

seed 
1111 

Seed for pseudo random number generator (if 

applicable) 

distribution 
multinomial Distribution function 
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histogram_type 
UniformAdaptive 

What type of histogram to use for finding optimal split 

points 

max_abs_leafnode_pred 
1.7976931348623157e+308 Maximum absolute value of a leaf node prediction 

categorical_encoding 
Enum Encoding scheme for categorical features 

 

Building the GBM Matrix requires a Training set and validation set, and the 

framework will output a confusion matrix for each. We will examine both below. 

Training Confusion Matrix: 

Table 25 Training Confusion Matrix 
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2 

Bot 1 
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9 
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0.000

1 
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Brute Force 

-Web 
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0.9
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0 / 

34,521Rat

e: DDOS 

attack-

HOIC 

1 

DDOS attack-
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0.9
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3 
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6 

3564

9 

3451

7 

0.073

3 

37,953 / 

517,815 
  

Recall 0.74 1 0.97 0.96 1 1 1 1 1 0.52 1 1 0.71 1 1       
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Cross-validation Matrix 

Table 26 Cross-validation Matrix 
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5 
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Recall 0.74 1 0.97 0.98 1 1 1 1 1 0.55 1 0.96 0.7 1 1       
Based on the precision of both confusion matrices (Training and Validation), we can 

see that they are almost identical, and there is no change in precision between the 

training and validation. We can notice that the precision for the benign class is 

around 0.7, which is considered very low since the dataset has a high constitution of 

the benign class. It is expected that the model will not perform well, even if the other 

classes have a high precision. The rate of misclassification on the benign side will 

be high. 
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Performance table with test Data: 

Table 27 Performance and Overall Accuracy 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   

AccuracyNull  

     0.7568898      0.4244448      0.7564380      0.7573412      

0.8830848  

AccuracyPValue  McnemarPValue  

     1.0000000            NaN  

As expected, we discussed in the training and validation confusion matrices that the 

benign has around 0.7 precision, which will impact the overall performance of the 

model. We can see the impact in the above matrix, as the accuracy has a value 

around ~0.756 

Performance Per-Class 

Their performance per class has differences in the test data compared to training. 

The model failed to classify BruteForce -Web,  BruteForce -XSS, DoS attacks-

SlowHTTPtes, FTP-BruteForce, infiltration, and SQL-Injection.  

Table 28 Per-Class Performance 

Class Sensiti

vity 

Specifi

city 

Pos Pred 

Value 

Neg Pred 

Value 

Precisi

on 

Recall F1 Prevale

nce 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.7289

64 

0.9699

09 

0.994565 0.32147 0.994

565 

0.728

964 

0.841

299 

0.8830

85 

0.643737 0.647255 0.849436139 

Class: Bot 0.9996

54 

0.9999

02 

0.992308 0.999996 0.992

308 

0.999

654 

0.995

967 

0.0125

01 

0.012496 0.012593 0.999777982 

Class: Brute Force -Web 0.9939

39 

0.9892

03 

0.00436 1 0.004

36 

0.993

939 

0.008

682 

4.76E-

05 

4.73E-05 0.010844 0.991571021 

Class: Brute Force -XSS 0.9705

88 

0.9986

06 

0.013464 0.999999 0.013

464 

0.970

588 

0.026

559 

1.96E-

05 

1.90E-05 0.001413 0.984596994 
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Class: DDOS attack-

HOIC 

1 0.9999

13 

0.995046 1 0.995

046 

1 0.997

517 

0.0171

99 

0.017199 0.017285 0.999956438 

Class: DDOS attack-

LOIC-UDP 

1 0.9999

37 

0.7023 1 0.702

3 

1 0.825

119 

0.0001

5 

0.00015 0.000213 0.999968282 

Class: DDoS attacks-

LOIC-HTTP 

0.9969

99 

0.9991

48 

0.983945 0.999843 0.983

945 

0.996

999 

0.990

429 

0.0497

63 

0.049614 0.050423 0.998073528 

Class: DoS attacks-

GoldenEye 

0.9995

97 

0.9999

18 

0.977638 0.999999 0.977

638 

0.999

597 

0.988

496 

0.0035

81 

0.00358 0.003661 0.999757642 

Class: DoS attacks-Hulk 0.9992

42 

0.9999

6 

0.99684 0.99999 0.996

84 

0.999

242 

0.998

04 

0.0125

58 

0.012549 0.012588 0.999601058 

Class: DoS attacks-

SlowHTTPTest 

0.1875 0.9999

92 

0.096774 0.999996 0.096

774 

0.187

5 

0.127

66 

4.61E-

06 

8.65E-07 8.94E-06 0.593745964 

Class: DoS attacks-

Slowloris 

0.9989

91 

0.9998

15 

0.822438 0.999999 0.822

438 

0.998

991 

0.902

157 

0.0008

57 

0.000856 0.001041 0.99940281 

Class: FTP-BruteForce 0.8666

67 

0.9999

78 

0.147727 0.999999 0.147

727 

0.866

667 

0.252

427 

4.32E-

06 

3.75E-06 2.54E-05 0.933322522 

Class: Infilteration 0.7031

62 

0.7721

55 

0.036391 0.995318 0.036

391 

0.703

162 

0.069

2 

0.0120

89 

0.008501 0.233591 0.73765863 

Class: SQL Injection 0.92 0.9990

86 

0.007206 0.999999 0.007

206 

0.92 0.014

299 

7.21E-

06 

6.63E-06 0.00092 0.959543185 

Class: SSH-Bruteforce 0.9997

16 

0.9999

95 

0.999362 0.999998 0.999

362 

0.999

716 

0.999

539 

0.0081

34 

0.008132 0.008137 0.99985561 

 

Table 29 Confusion Matrix for the Test Data 
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Benign 223287

0 

8 0 0 0 0 22 0 1 0 0 0 1217

2 

0 0 

Bot 332 4334

5 

0 0 0 0 0 0 0 0 0 0 4 0 0 

Brute Force -Web 37063 0 164 0 0 0 267 0 0 0 0 0 120 0 0 

Brute Force -XSS 4749 0 0 66 0 0 6 0 0 0 0 0 80 1 0 

DDOS attack-HOIC 295 0 0 0 5965

8 

0 0 0 0 0 0 0 2 0 0 

DDOS attack-LOIC-UDP 0 0 0 0 0 519 220 0 0 0 0 0 0 0 0 

DDoS attacks-LOIC-

HTTP 

2789 0 0 0 0 0 17209

1 

0 0 0 0 0 19 0 0 

DoS attacks-GoldenEye 243 0 0 0 0 0 0 1241

6 

32 0 3 0 6 0 0 

DoS attacks-Hulk 136 0 0 0 0 0 0 0 4352

6 

0 0 0 2 0 0 
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DoS attacks-

SlowHTTPTest 

24 0 0 0 0 0 0 0 0 3 0 2 2 0 0 

DoS attacks-Slowloris 632 0 0 0 0 0 0 4 0 0 2969 0 3 1 1 

FTP-BruteForce 58 0 0 0 0 0 0 0 0 13 0 13 3 0 1 

Infilteration 780738 7 0 0 0 0 0 0 0 0 0 0 2948

5 

0 6 

SQL Injection 3129 0 1 2 0 0 3 0 0 0 0 0 34 23 0 

SSH-Bruteforce 17 0 0 0 0 0 0 1 0 0 0 0 0 0 2820

6 

 

Figure 30 Per-Class precision 

Depending on the performance metrics presented, we can note that the GBM 

Performs well in most of the classes, but there are still some classes that are either 

unpredicted or have a very low precision, which affects the overall performance of 

the Model. 

7.4.2 Generalized Linear Models (GLM) 

The Generalized Linear Model (GLM) from H2o is a regression model that targets 

exponential, Gaussian, binomial, and gamma distributions. The function can behave 

differently based on the requirements and type of prediction or classification. 
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Table 30 Model Parameters for GLM 

Parameter Value Description 

model_id 
GLMModel Destination id for this model; auto-generated if not specified. 

seed 
-8071143158777241479 Seed for pseudo random number generator (if applicable) 

fold_assignment 
 

Cross-validation fold assignment scheme, if fold_column is not 

specified. The 'Stratified' option will stratify the folds based on the 

response variable, for classification problems. 

response_column 
Class Response variable column. 

ignored_columns 
 Names of columns to ignore for training. 

family 
multinomial 

Family. Use binomial for classification with logistic regression, 

others are for regression problems. 

solver 
IRLSM 

AUTO will set the solver based on given data and the other 

parameters. IRLSM is fast on on problems with small number of 

predictors and for lambda-search with L1 penalty, L_BFGS scales 

better for datasets with many columns. 

alpha 
0.5 

Distribution of regularization between the L1 (Lasso) and L2 

(Ridge) penalties. A value of 1 for alpha represents Lasso 

regression, a value of 0 produces Ridge regression, and anything 

in between specifies the amount of mixing between the two. 

Default value of alpha is 0 when SOLVER = 'L-BFGS'; 0.5 

otherwise. 

lambda 
0 Regularization strength 

max_iterations 
50 Maximum number of iterations 

objective_epsilon 
0.000001 

Converge if objective value changes less than this. Default 

indicates: If lambda_search is set to True the value of 

objective_epsilon is set to .0001. If the lambda_search is set to 

False and lambda is equal to zero, the value of objective_epsilon 

is set to .000001, for any other value of lambda the default value 

of objective_epsilon is set to .0001. 

gradient_epsilon 
0.000001 

Converge if objective changes less (using L-infinity norm) than 

this, ONLY applies to L-BFGS solver. Default indicates: If 

lambda_search is set to False and lambda is equal to zero, the 

default value of gradient_epsilon is equal to .000001, otherwise 

the default value is .0001. If lambda_search is set to True, the 

conditional values above are 1E-8 and 1E-6 respectively. 
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link 
multinomial Link function. 

lambda_min_ratio 
0.0001 

Minimum lambda used in lambda search, specified as a ratio of 

lambda_max (the smallest lambda that drives all coefficients to 

zero). Default indicates: if the number of observations is greater 

than the number of variables, then lambda_min_ratio is set to 

0.0001; if the number of observations is less than the number of 

variables, then lambda_min_ratio is set to 0.01. 

max_active_predictors 
5000 

Maximum number of active predictors during computation. Use 

as a stopping criterion to prevent expensive model building with 

many predictors. Default indicates: If the IRLSM solver is used, 

the value of max_active_predictors is set to 5000 otherwise it is 

set to 100000000. 

obj_reg 
0.000001931191641802574 

Likelihood divider in objective value computation, default is 

1/nobs 

 

Training Confusion Matrix  

Table 31 Confusion Matrix for GLM 

                                      

 B
e
n
i
g
n
 

B
o
t
 

B
r
u
t
e
 F
o
r
c
e
 -

W
e
b
 

B
r
u
t
e
 F
o
r
c
e
 -

X
S
S
 

D
D
O
S
 
a
t
t
a
c
k
-

H
O
I
C
 

D
D
O
S
 
a
t
t
a
c
k
-

L
O
I
C
-
U
D
P
 

D
D
o
S
 

a
t
t
a
c
k
s
-

L
O
I
C
-
H
T
T
P
 

D
o
S
 
a
t
t
a
c
k
s
-

G
o
l
d
e
n
E
y
e
 

D
o
S
 
a
t
t
a
c
k
s
-

H
u
l
k
 

D
o
S
 
a
t
t
a
c
k
s
-

S
l
o
w
H
T
T
P
T
e
s
t
 

D
o
S
 
a
t
t
a
c
k
s
-

S
l
o
w
l
o
r
i
s
 

F
T
P
-

B
r
u
t
e
F
o
r
c
e
 

I
n
f
i
l
t
e
r
a
t
i
o

n
 

S
Q
L
 

I
n
j
e
c
t
i
o
n
 

S
S
H
-

B
r
u
t
e
f
o
r
c
e
 

E
r
r
o
r
 

R
a
t
e
 

P
r
e
c
i
s
i
o
n

 

Benign 
147

87 
503 

117

8 
784 189 0 

262

9 
39 219 2 109 1 

135

85 
485 11 

0.5

717 

19,7

34 / 

34,5

21 

0.

59 

Bot 
104

3 

329

54 
3 0 0 0 0 0 8 0 0 0 513 0 0 

0.0

454 

1,56

7 / 

34,5

21 

0.

97 

Brute 

Force -

Web 

115

0 
0 

150

50 

577

8 
0 0 

148

6 
0 0 0 0 0 620 

104

37 
0 

0.5

64 

19,4

71 / 

34,5
21 

0.

79 

Brute 

Force -
XSS 

0 0 
130

8 

293

02 
0 0 

169

1 
0 0 0 0 0 237 

198

3 
0 

0.1

512 

5,21

9 / 

34,5

21 

0.

67 

DDOS 
attack-

HOIC 

0 0 0 0 
345

14 
0 0 0 0 0 0 0 4 3 0 

0.0

002 

7 / 
34,5

21 

0.

99 

DDOS 
attack-

LOIC-UDP 

0 0 0 0 0 
341

98 
0 0 0 0 0 0 323 0 0 

0.0

094 

323 

/ 

34,5

21 

1 

DDoS 
attacks-

LOIC-

HTTP 

0 0 0 2 0 44 
344

72 
0 0 0 0 0 3 0 0 

0.0

014 

49 / 

34,5

21 

0.

82 

DoS 

attacks-

GoldenEy

e 

4 0 0 1 0 0 0 
342

34 
197 0 85 0 0 0 0 

0.0

083 

287 

/ 

34,5

21 

0.

98 
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DoS 

attacks-
Hulk 

0 0 28 1 0 0 0 112 
341

04 
0 0 0 0 276 0 

0.0

121 

417 

/ 

34,5

21 

0.

97 

DoS 

attacks-
SlowHTTP

Test 

0 0 0 0 0 0 0 0 0 
282
31 

0 
629
0 

0 0 0 
0.1
822 

6,29

0 / 
34,5

21 

0.
5 

DoS 

attacks-

Slowlori

s 

0 0 0 46 0 0 0 342 256 28 
336

85 
4 24 136 0 

0.0

242 

836 

/ 

34,5

21 

0.

99 

FTP-

BruteFor

ce 

0 0 0 0 0 0 0 0 0 
278

48 
0 

667

3 
0 0 0 

0.8

067 

27,8
48 / 

34,5

21 

0.

51 

Infilter

ation 

795

4 
493 639 

302

8 
163 0 889 320 361 19 160 2 

200

30 
440 23 

0.4

198 

14,4

91 / 

34,5
21 

0.

56 

SQL 

Injectio
n 

0 0 749 
489

2 
0 0 685 0 0 0 0 0 710 

274

85 
0 

0.2

038 

7,03

6 / 

34,5

21 

0.

67 

SSH-

Brutefor
ce 

0 0 0 0 0 0 0 0 60 1 0 3 0 9 
344

48 

0.0

021 

73 / 

34,5
21 

1 

Total 
249
38 

339
50 

189
55 

438
34 

348
66 

342
42 

418
52 

350
47 

352
05 

561
29 

340
39 

129
73 

360
49 

412
54 

344
82 

0.2
002 

103,

648 

/ 

517,

815 

  

Recall 
0.4
3 

0.9
5 

0.4
4 

0.8
5 

1 
0.9

9 
1 

0.9
9 

0.9
9 

0.8
2 

0.9
8 

0.1
9 

0.5
8 

0.8 1     
  

 

In the training confusion matrix, we can see that benign has a very low precision. 

This is considered a bad indicator, as it happened in GBM. The high percentage of 

the benign in the dataset will have an effect on the overall accuracy and precision. 

The other classes have good overall precision, except for FTP-BruteForce and SQL 

injection. 

Overall Performance 

Table 32 Overall Performance for the Model 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull  

     0.4874235      0.2155967      0.4868973      0.4879497      0.8830848  

AccuracyPValue  McnemarPValue  
   

     1.0000000            NaN  
    

As expected from the training confusion matrix, the test classification accuracy has 

an overall accuracy of ~0.48.  General overview of the results and inspecting the 
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precision of each class. We can conclude that the model is not performing very well. 

In the majority of the classes, the model fails in classification.  

Performance Per-Class 

Table 33 Performance per-class for GLM 
 

Sensit

ivity 

Specif

icity 

Pos Pred 

Value 

Neg Pred 

Value 

Preci

sion 

Recal

l 

F1 Preval

ence 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.426

43 

0.972

663 

0.991584 0.18335 0.991

584 

0.426

43 

0.596

385 

0.8830

85 

0.376574 0.37977 0.699546 

Class: Bot 0.952

975 

0.987

287 

0.486897 0.999397 0.486

897 

0.952

975 

0.644

503 

0.0125

01 

0.011913 0.024467 0.970131 

Class: Brute Force -

Web 

0.442

424 

0.970

766 

0.000719 0.999973 0.000

719 

0.442

424 

0.001

437 

4.76E-

05 

2.10E-05 0.029253 0.706595 

Class: Brute Force -

XSS 

0.955

882 

0.978

725 

0.00088 0.999999 0.000

88 

0.955

882 

0.001

759 

1.96E-

05 

1.87E-05 0.021293 0.967304 

Class: DDOS attack-

HOIC 

0.999

883 

0.994

925 

0.775172 0.999998 0.775

172 

0.999

883 

0.873

304 

0.0171

99 

0.017197 0.022185 0.997404 

Class: DDOS attack-

LOIC-UDP 

0.994

22 

0.999

936 

0.698241 0.999999 0.698

241 

0.994

22 

0.820

35 

0.0001

5 

0.000149 0.000213 0.997078 

Class: DDoS attacks-

LOIC-HTTP 

0.998

499 

0.928

342 

0.421873 0.999915 0.421

873 

0.998

499 

0.593

14 

0.0497

63 

0.049689 0.117781 0.963421 

Class: DoS attacks-

GoldenEye 

0.992

11 

0.998

738 

0.738656 0.999972 0.738

656 

0.992

11 

0.846

825 

0.0035

81 

0.003553 0.00481 0.995424 

Class: DoS attacks-

Hulk 

0.988

292 

0.993

791 

0.669346 0.99985 0.669

346 

0.988

292 

0.798

135 

0.0125

58 

0.012411 0.018542 0.991041 

Class: DoS attacks-

SlowHTTPTest 

0.75 0.999

842 

0.021429 0.999999 0.021

429 

0.75 0.041

667 

4.61E-

06 

3.46E-06 0.000161 0.874921 

Class: DoS attacks-

Slowloris 

0.972

746 

0.996

831 

0.208405 0.999977 0.208

405 

0.972

746 

0.343

268 

0.0008

57 

0.000833 0.003999 0.984789 

Class: FTP-

BruteForce 

0.4 0.999

981 

0.082192 0.999997 0.082

192 

0.4 0.136

364 

4.32E-

06 

1.73E-06 2.10E-05 0.69999 

Class: Infilteration 0.574

215 

0.647

137 

0.019524 0.992013 0.019

524 

0.574

215 

0.037

765 

0.0120

89 

0.006942 0.355539 0.610676 

Class: SQL Injection 0.8 0.986

482 

0.000426 0.999999 0.000

426 

0.8 0.000

852 

7.21E-

06 

5.77E-06 0.013524 0.893241 

Class: SSH-

Bruteforce 

0.997

377 

0.999

669 

0.961098 0.999978 0.961

098 

0.997

377 

0.978

902 

0.0081

34 

0.008113 0.008441 0.998523 

 

 

Table 34 Confusion Matrix for GLM (Test Data) 
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Benign 130618

6 

4297

9 

10055

3 

6996

6 

1712

9 

2 23506

4 

3833 2065

0 

520 1076

3 

61 120839

9 

4586

3 

1107 

Bot 1301 4132

1 

0 0 0 0 0 0 14 0 0 0 724 0 0 

Brute Force -Web 5 0 73 32 0 0 4 0 0 0 0 0 1 50 0 

Brute Force -XSS 0 0 0 65 0 0 1 0 0 0 0 0 1 1 0 

DDOS attack-HOIC 0 0 0 0 5965

1 

0 0 0 0 0 0 0 5 2 0 

DDOS attack-LOIC-

UDP 

0 0 0 0 0 516 0 0 0 0 0 0 3 0 0 

DDoS attacks-LOIC-

HTTP 

0 0 0 25 0 220 17235

0 

0 0 0 0 0 11 3 0 

DoS attacks-

GoldenEye 

1 0 0 0 0 0 0 1232

3 

66 0 31 0 0 0 0 

DoS attacks-Hulk 0 0 31 2 0 0 0 116 4304

9 

0 0 0 0 361 0 

DoS attacks-

SlowHTTPTest 

0 0 0 0 0 0 0 0 0 12 0 4 0 0 0 

DoS attacks-Slowloris 0 0 0 3 0 0 0 36 25 2 2891 0 2 13 0 

FTP-BruteForce 0 0 0 0 0 0 0 0 0 9 0 6 0 0 0 

Infilteration 9779 566 810 3762 172 1 1116 375 456 16 187 2 24078 580 32 

SQL Injection 0 0 1 3 0 0 0 0 0 0 0 0 1 20 0 

SSH-Bruteforce 0 0 0 0 0 0 0 0 55 1 0 0 1 17 2814

0 

 

Figure 31 Per-Class Performance for GLM 
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We can observe that GLM has failed in multiple classes, which are very similar to 

the GBM model, but with additional classes that have very low precision, which is 

DoS attacks-Sloworis. 

7.4.3 Deep Learning (Neural Networks) 

The package used for the Deep neural network is from h2o in Rstudio. This package 

uses the feedforward method artificial network. The network is capable of having a 

huge number of hidden layers that have neurons, rectifiers, and activation functions. 

This function has a lot of features that assist the training of models in deep learning. 

Some of them are adaptive learning and grid search, which can increase and 

facilitate a high accuracy with the model predictions and classifications. Finally, the 

function is highly optimized as it uses multithreading (async), which allows utilization 

of the system resources. Similar to GBM, in order to build the model, we have to 

provide Training and validation Data. In building the model, we used the below 

inputs. 

 

Table 35 Model Parameters for DeepLearning 

Parameter Value Description 

model_id 
NNModel Destination id for this model; auto-generated if not specified. 

nfolds 
15 Number of folds for K-fold cross-validation (0 to disable or >= 2). 

fold_assignment 
Random 

Cross-validation fold assignment scheme, if fold_column is not 

specified. The 'Stratified' option will stratify the folds based on the 

response variable, for classification problems. 

response_column 
Class Response variable column. 

ignored_columns 
 Names of columns to ignore for training. 

score_each_iteration 
true Whether to score during each iteration of model training. 

overwrite_with_best_model 
false 

If enabled, override the final model with the best model found during 

training. 
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activation 
RectifierWithDropout Activation function. 

hidden 
200, 200 Hidden layer sizes (e.g. [100, 100]). 

epochs 
3.540479626199161 

How many times the dataset should be iterated (streamed), can be 

fractional. 

seed 
42 

Seed for random numbers (affects sampling) - Note: only 

reproducible when running single threaded. 

distribution 
multinomial Distribution function 

stopping_rounds 
0 

Early stopping based on convergence of stopping_metric. Stop if 

simple moving average of length k of the stopping_metric does not 

improve for k:=stopping_rounds scoring events (0 to disable) 

stopping_metric 
 

Metric to use for early stopping (AUTO: logloss for classification, 

deviance for regression and anonomaly_score for Isolation Forest). 

Note that custom and custom_increasing can only be used in GBM 

and DRF with the Python client. 

export_weights_and_biases 
true 

Whether to export Neural Network weights and biases to H2O 

Frames. 

categorical_encoding 
OneHotInternal Encoding scheme for categorical features 
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Training Confusion Matrix: 

 

Table 36 Training Confusion Matrix  for Deep Learning 
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0.9

5 
0 0 0 1     

  

 

 

 

 

 



127 
 

Cross-validation Matrix 

Table 37 Cross-validation Matrix for Deep Learning 
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0 0 200 0.19
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2 
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82 Dec-55 0 
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1 4 / 4,140 0.4 
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5 

0.18
16 

209,963 
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1,156,1
98 

  

Recall 0.81 1 0.78 0.95 1 0.9
9 0.99 1 1 1 0.9

5 0 0 0 1       

The Training and Validation Matrices have different values in precision for each 

class. Some classes had a very low precision, especially Benign, which has a 

precision of 0.5, but staringly, it got ~0.9 in the validation matrix.  Some classes were 

not detected at all in both Matrices. Anyway, we will have the model test on the test 

Data. 
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Performance table with test Data: 

Table 38 Overall Performance 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   

AccuracyNull  

     0.8178779      0.4877315      0.8174714      0.8182840      

0.8830848  

AccuracyPValue  McnemarPValue  

     1.0000000            NaN  

 

The overall accuracy of the model is performing well in comparison to the Training 

metrics. Even though the model has failed in many classes, as we can see in the 

table below. However, the high accuracy value may be attributed to the high 

precision of the benign class. 

Table 39 Per-Class Accuracy for Deep Learning 
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Specifi
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Pos Pred 

Value 

Neg Pred 

Value 

Precisi

on 

Recall F1 Prevale

nce 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.8080

39 

0.9259

05 

0.988005 0.389719 0.9880

05 

0.8080

39 

0.8890

06 

0.8830

85 

0.713567 0.722229 0.866972 

Class: Bot 0.9977

63 

0.9681

86 

0.284188 0.999971 0.2841

88 

0.9977

63 

0.4423

76 

0.0125

01 

0.012473 0.043889 0.982974 

Class: Brute Force -Web 0.7515

15 

0.9860

6 

0.002558 0.999988 0.0025

58 

0.7515

15 

0.0050

99 

4.76E-

05 

3.57E-05 0.013975 0.868788 

Class: Brute Force -XSS 0.9852

94 

0.9509

31 

0.000394 1 0.0003

94 

0.9852

94 

0.0007

87 

1.96E-

05 

1.93E-05 0.049088 0.968112 

Class: DDOS attack-

HOIC 

0.9999

33 

0.9900

87 

0.638373 0.999999 0.6383

73 

0.9999

33 

0.7792

56 

0.0171

99 

0.017198 0.026941 0.99501 

Class: DDOS attack-

LOIC-UDP 

0.9961

46 

0.9967

09 

0.043329 0.999999 0.0433

29 

0.9961

46 

0.0830

46 

0.0001

5 

0.000149 0.00344 0.996427 
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Class: DDoS attacks-

LOIC-HTTP 

0.9927

76 

0.9375

87 

0.454451 0.999597 0.4544

51 

0.9927

76 

0.6234

93 

0.0497

63 

0.049404 0.108711 0.965181 

Class: DoS attacks-

GoldenEye 
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12 

0.9948

1 
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26 
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12 
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02 
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53 
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0.261538 0.987916 0.2615

38 

0.0004

05 

0.0008

1 

0.0120

89 

4.90E-06 1.87E-05 0.500196 

Class: SQL Injection 0 1 NA 0.999993 NA 0 NA 7.21E-

06 

0 0 0.5 

Class: SSH-Bruteforce 0.9973

77 

0.9998

14 

0.977796 0.999978 0.9777

96 

0.9973

77 
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0.008113 0.008297 0.998596 

 

Table 40 Confusion Matrix for Deep Learning with Test Data 
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Benign 247508

3 

10495

1 

4791

7 

16417

0 

3353

5 

1051

2 

20487

7 

1717

7 

1886 122 2180 0 46 0 619 

Bot 81 43263 0 0 0 15 0 1 0 0 0 0 0 0 0 

Brute Force -Web 0 0 124 41 0 0 0 0 0 0 0 0 0 0 0 

Brute Force -XSS 0 0 1 67 0 0 0 0 0 0 0 0 0 0 0 

DDOS attack-HOIC 0 0 2 0 5965

4 

2 0 0 0 0 0 0 0 0 0 

DDOS attack-LOIC-UDP 2 0 0 0 0 517 0 0 0 0 0 0 0 0 0 

DDoS attacks-LOIC-

HTTP 

33 0 0 979 14 221 17136

2 

0 0 0 0 0 0 0 0 

DoS attacks-GoldenEye 1 0 0 0 0 0 0 1240

5 

3 0 12 0 0 0 0 

DoS attacks-Hulk 2 0 6 13 0 0 0 117 4341

1 

0 10 0 0 0 0 

DoS attacks-

SlowHTTPTest 

0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 

DoS attacks-Slowloris 40 0 6 10 5 0 0 53 17 0 2839 0 2 0 0 

FTP-BruteForce 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 

Infilteration 29889 4020 407 4972 239 658 836 590 245 6 33 0 17 0 20 
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SQL Injection 0 0 11 14 0 0 0 0 0 0 0 0 0 0 0 

SSH-Bruteforce 0 0 0 0 0 7 0 0 66 1 0 0 0 0 2814

0 

 

 

Figure 32 Per-Class Performance for Deep Learning 

As seen in the figure above, the deep learning model has failed many classes and 

could not classify them with 0 precision. Even though the model's overall accuracy 

is over ~0.8, which means that the model can perform on the majority of the data, it 

will misclassify minor classes. 

7.4.4 Random Forest (Ranger)  

Ranger is one of the fastest implementations for RStudio that exists in standard 

CRAN packages. The Ranger function is extremely fast, and it can handle large data 

with high dimensionality even in commodity hardware, as the algorithm is highly 

optimized. The algorithm can have different functions based on the scenario as it 

supports classification, regression, and prediction. 
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The model has followed the same procedure as the previous models, and we have 

used the parameters below to build the model. 

 

Table 41 Parameter Inputs for Random Forest (Ranger) 

Type:                                                      Classification  

Number of trees:                                 500  

Sample size:                                          517815  

Number of independent variables:  70  

Mtry:                                                      8  

Target node size:                                 1  

Variable importance mode:               impurity  

Splitrule:                                                gini  

OOB prediction error:                         7.37 % 

 

Table 42 Confusion Matrix for Random Forest (Ranger) - Training Data 
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Benign 3335

5 

0 0 0 0 0 4 0 0 0 0 0 390 0 0 0.99 

Bot 0 3452

1 

0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 

Brute Force -Web 12 0 3401

2 

0 0 0 0 0 0 0 0 0 1 0 0 1.00 

Brute Force -XSS 0 0 0 3427

4 

0 0 0 0 0 0 0 0 0 0 0 1.00 

DDOS attack-HOIC 0 0 0 0 3452

1 

0 0 0 0 0 0 0 0 0 0 1.00 

DDOS attack-LOIC-

UDP 

0 0 0 0 0 3452

1 

0 0 0 0 0 0 0 0 0 1.00 
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DDoS attacks-LOIC-

HTTP 

2 0 0 0 0 0 3451

7 

0 0 0 0 0 0 0 0 1.00 

DoS attacks-

GoldenEye 

0 0 0 0 0 0 0 3452

1 

0 0 0 0 0 0 0 1.00 

DoS attacks-Hulk 0 0 0 0 0 0 0 0 3452

1 

0 0 0 0 0 0 1.00 

DoS attacks-

SlowHTTPTest 

0 0 0 0 0 0 0 0 0 1469

2 

0 0 1 0 0 1.00 

DoS attacks-Slowloris 0 0 0 0 0 0 0 0 0 0 3452

1 

0 1 0 0 1.00 

FTP-BruteForce 0 0 0 0 0 0 0 0 0 1982

9 

0 3452

1 

0 0 3 0.64 

Infilteration 1151 0 0 0 0 0 0 0 0 0 0 0 3412

8 

0 0 0.97 

SQL Injection 1 0 509 247 0 0 0 0 0 0 0 0 0 3452

1 

0 0.98 

SSH-Bruteforce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3451

8 

1.00 

On the training set, we can see that the model is very promising, and the per-class 

precision is around ~1 for almost all the classes except for the FTP-brute force. We 

need to validate these metrics with actual test data because we might have an 

overfitting issue with results mostly approaching 1. 

 Performance table with test Data: 

Table 43 Overall Performance for Random Forest (Ranger) 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   
AccuracyNull  

     0.7893861      0.4687281      0.7889566      0.7898151      
0.8830848  

AccuracyPValue  McnemarPValue  

     1.0000000            NaN  
With the test data, we have some changes that we can immediately notice. First, the 

accuracy is around ~0.79., and the majority of the classes have a precision 

approaching 1, but now we have more classes that have less precision, which are 

BruteForce-Web, BruteForce-XSS, FTP-BruteForce, and Infiltration. It's important to 
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note that the results of the training phase should not be used as an indicator, and 

testing must always be conducted. 

 

Table 44 Per-Class Performance for Random Forest (Ranger) 

 

 

 

 

 
Sensiti

vity 

Specifi
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Pos Pred 

Value 

Neg Pred 

Value 

Precisi

on 

Recall F1 Prevale

nce 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.7640

46 

0.9813

73 

0.996783 0.355109 0.996

783 

0.764

046 

0.865

034 

0.8830

85 

0.674718 0.676895 0.872709 

Class: Bot 0.9998

62 

0.9999

41 

0.995362 0.999998 0.995

362 

0.999

862 

0.997

607 

0.0125

01 

0.012499 0.012557 0.999901 

Class: Brute Force -Web 0.9818

18 

0.9994

16 

0.074074 0.999999 0.074

074 

0.981

818 

0.137

755 

4.76E-

05 

4.67E-05 0.000631 0.990617 

Class: Brute Force -XSS 0.9264

71 

0.9998

93 

0.144828 0.999999 0.144

828 

0.926

471 

0.250

497 

1.96E-

05 

1.82E-05 0.000125 0.963182 

Class: DDOS attack-

HOIC 

1 0.9998

07 

0.989107 1 0.989

107 

1 0.994

524 

0.0171

99 

0.017199 0.017389 0.999904 

Class: DDOS attack-

LOIC-UDP 

1 0.9999

45 

0.732017 1 0.732

017 

1 0.845

277 

0.0001

5 

0.00015 0.000204 0.999973 

Class: DDoS attacks-

LOIC-HTTP 

0.9984

94 

0.9994

8 

0.990159 0.999921 0.990

159 

0.998

494 

0.994

309 

0.0497

63 

0.049688 0.050182 0.998987 

Class: DoS attacks-

GoldenEye 
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Table 45 Confusion Matrix for Test Data for Random Forest (Ranger) 
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Figure 33 Per-class Performance for Random Forest (Ranger) 
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As discussed earlier, the Random Forest Model performed very well in most of the 

classes, but in some classes, the model failed with a very low precision. 

7.4.5 Distributed Random Forest (DRF) 

One of the powerful classification Models is the distributed Random Forest (DRF). 

When the function is invoked, the DRF will generate a forest and its primary tasks 

classification or regression. The more trees that the function generates, the less 

variance will be present in the results.  

Model Parameters: 
Table 46 Model Parameters for DRF 

Parameter Value Description 

model_id 
RFModel Destination id for this model; auto-generated if not specified. 

fold_assignment 
 

Cross-validation fold assignment scheme, if fold_column is not 

specified. The 'Stratified' option will stratify the folds based on 

the response variable, for classification problems. 

response_column 
Class Response variable column. 

ignored_columns 
 Names of columns to ignore for training. 

ntrees 
100 Number of trees. 

max_depth 
500 Maximum tree depth (0 for unlimited). 

min_rows 
10 Fewest allowed (weighted) observations in a leaf. 

r2_stopping 
1.7976931348623157e+308 

r2_stopping is no longer supported and will be ignored if set - 

please use stopping_rounds, stopping_metric and 

stopping_tolerance instead. Previous version of H2O would 

stop making trees when the R^2 metric equals or exceeds this 

stopping_metric 
 

Metric to use for early stopping (AUTO: logloss for classification, 

deviance for regression and anonomaly_score for Isolation 

Forest). Note that custom and custom_increasing can only be 

used in GBM and DRF with the Python client. 

seed 
-5640707449536764199 Seed for pseudo random number generator (if applicable) 

binomial_double_trees 
true 

For binary classification: Build 2x as many trees (one per class) 

- can lead to higher accuracy. 

histogram_type 
UniformAdaptive What type of histogram to use for finding optimal split points 
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categorical_encoding 
Enum Encoding scheme for categorical features 

calibration_frame 
ValidateSampel_sid_903c_23 Calibration frame for Platt Scaling 

distribution 
multinomial Distribution function 

 

Training Confusion Matrix: 

Table 47 Training Confusion Matrix for DRF 
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Validation Matrix: 

Table 48 Validation Matrix for DRF 
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After observing the Training and the validation confusion matrices, we see a lot of 

contradictions. The first one is that the training matrix has almost all the classes have 

a precision of almost 1, except for the benign, where the precision is around ~0.77. 
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In contrast, the validation matrix has benign precision with a value of 1, and the rest 

of the classes also approach 1, except for DoS attacks-SlowHTTPTest, DoS attacks-

Slowloris, FTP-BruteForce, Infiltration, and SQL Injection. The precision of these 

classes is very low or almost 0. 

Overall Performance with Test Data: 

After Inspecting the overall accuracy of the mode and looking at the precision for 

each class, we say that the model is performing well in most of the classes, but in 

some classes, it failed to predict, and that impacts the overall accuracy, which is 

~0.76. If we observe the precision for each class, we can see that the model has the 

majority of the classes with precision approaching 1, except for Brute Force -Web, 

Brute Force -XSS, DoS attacks-SlowHTTPTest, DoS attacks-Slowloris, FTP-

BruteForce, Infiltration, and  SQL Injection. The precision for these classes is low or 

approaching zero. 

Table 49 Overall Accuracy for DRF with Test Data 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   

AccuracyNull  

     0.7656437      0.4366761      0.7651976      0.7660894      

0.8830848  

AccuracyPValue  McnemarPValue  

     1.0000000            NaN  
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Table 50 Per-Class Performance for DRF with Test Data 
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Table 51 Confusion Matrix (DRF) for Test Data 
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Figure 34 Performance for DRF 

As discussed earlier, we can see on the graph above that the Model is performing 

well except for some classes that were totally misclassified or have a very low 

precision. 

 

7.4.6 Portfolio Classifier (Random Forest) 

As discussed earlier and explained, the portfolio classifier is built using multiple 

classifiers; we will follow the pseudo-code below for the model build. 

7.4.6.1 Build mode: 

We will follow the pseudo-code that is below to build the portfolio classifier. For more 

details, please refer to the source code in the appendix. 
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Figure 35 Build Master Model 

7.4.6.2 Classify using the portfolio Model.  

The same goes for prediction. We will use the following step to retrieve the prediction 

from the model. 

Load Models (GBM,GLM,DeepLearning,RF,DRF)  

Load Training Data ->TD 

For each Model: 

 Model.predict(TD)->Predictions 

Convert Predictions to binary: 

 For each prediction: 

  If prediction is True: 

   Add Model Digit as 1 

  Else 

   Add Model Digit as 0 

Add Binary Codes to the TD 

Build Model to predict the binary codes->Portfolio Classifier 
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Figure 36Classification Using Master Model 

Please note that these pseudo codes are abstract, and a detailed code can be found 

in the appendix, along with an explanation of the methodology. 

7.4.6.3 Performance  

Inspecting the overall accuracy of the portfolio multi-classifier, we can see that there 

is a slight increase, but the increase is insignificant.  

 

Load Models (GBM,GLM,DeepLearning,RF,DRF)  

Load Portfolio Classifier 

Load test Data->TD  

Portfolio Classifier.predict (TD)->Binary Prediction  

For each in binary prediction: 

 Identify the model for each digit 

 If the digit is 1: 

  Model.predict(TD) 

 Else : 

  Ignore Model    

Get vote for successful models that can participate in the 

vote. 
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Table 52 Overall Results 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull  

     0.7977272      0.4796524      0.7973041      0.7981499      0.8830833  

AccuracyPValue  McnemarPValue  
  

     1.0000000            NaN  
   

 

Table 53 Per-Class Results 

 

 

Table 54 Master Classifier - Confusion Matrix 

 
 

Sensiti

vity 

Specifi

city 

Pos Pred 

Value 

Neg Pred 

Value 

Precisi

on 

Recall F1 Prevale

nce 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.7737

89 

0.9792

49 

0.996462 0.364325 0.996

462 

0.773

789 

0.871

121 

0.8830

83 

0.68332 0.685746 0.876519 

Class: Bot 0.9998

15 

0.9999

43 

0.995522 0.999998 0.995

522 

0.999

815 

0.997

664 

0.0125

01 

0.012499 0.012555 0.999879 

Class: Brute Force -Web 0.9818

18 

0.9992

69 

0.060089 0.999999 0.060

089 

0.981

818 

0.113

247 

4.76E-

05 

4.67E-05 0.000777 0.990544 

Class: Brute Force -XSS 0.9264

71 

0.9998

55 

0.111504 0.999999 0.111

504 

0.926

471 

0.199

052 

1.96E-

05 

1.82E-05 0.000163 0.963163 

Class: DDOS attack-

HOIC 

1 0.9997

25 

0.98452 1 0.984

52 

1 0.992

2 

0.0172 0.0172 0.01747 0.999862 

Class: DDOS attack-

LOIC-UDP 

1 0.9999

41 

0.715862 1 0.715

862 

1 0.834

405 

0.0001

5 

0.00015 0.000209 0.99997 

Class: DDoS attacks-

LOIC-HTTP 

0.9983

08 

0.9994

41 

0.989418 0.999911 0.989

418 

0.998

308 

0.993

843 

0.0497

64 

0.04968 0.050211 0.998875 

Class: DoS attacks-

GoldenEye 

1 0.9999

48 

0.985872 1 0.985

872 

1 0.992
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0.0035

81 

0.003581 0.003632 0.999974 

Class: DoS attacks-Hulk 0.9998

39 

0.9999

85 

0.998807 0.999998 0.998

807 

0.999

839 

0.999

323 

0.0125

58 

0.012556 0.012571 0.999912 

Class: DoS attacks-

SlowHTTPTest 

0.1875 0.9999

94 

0.130435 0.999996 0.130

435 

0.187

5 

0.153

846 

4.61E-

06 

8.65E-07 6.63E-06 0.593747 

Class: DoS attacks-

Slowloris 

1 0.9999

43 

0.937539 1 0.937

539 

1 0.967

763 

0.0008

57 

0.000857 0.000914 0.999971 

Class: FTP-BruteForce 0.8666

67 

0.9999

91 

0.288889 0.999999 0.288

889 

0.866

667 

0.433

333 
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06 

3.75E-06 1.30E-05 0.933329 

Class: Infilteration 0.8005

2 

0.7997

49 

0.046634 0.996957 0.046

634 

0.800

52 

0.088

135 

0.0120

88 

0.009677 0.207507 0.800134 

Class: SQL Injection 0.88 0.9999

22 

0.075601 0.999999 0.075

601 

0.88 0.139

241 

7.21E-

06 

6.34E-06 8.39E-05 0.939961 

Class: SSH-Bruteforce 0.9997

16 

0.9999

92 

0.999044 0.999998 0.999

044 

0.999

716 

0.999

38 

0.0081

34 

0.008132 0.00814 0.999854 
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Benign 237012

3 

7 1 1 0 0 76 0 0 0 0 0 8330 0 0 

Bot 195 4335

2 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Brute Force -Web 2500 0 162 3 0 0 17 0 0 0 0 0 12 2 0 

Brute Force -XSS 499 0 0 63 0 0 0 0 0 0 0 0 2 1 0 

DDOS attack-HOIC 933 0 0 0 5965

8 

0 0 0 0 0 0 0 5 0 0 

DDOS attack-LOIC-UDP 6 0 0 0 0 519 199 0 0 0 0 0 1 0 0 

DDoS attacks-LOIC-

HTTP 

1842 0 0 0 0 0 17231

7 

0 0 0 0 0 1 0 0 

DoS attacks-GoldenEye 169 0 0 0 0 0 0 1242

1 

7 0 0 0 2 0 0 

DoS attacks-Hulk 46 0 0 0 0 0 0 0 4355

2 

0 0 0 2 0 4 

DoS attacks-

SlowHTTPTest 

17 0 0 0 0 0 0 0 0 3 0 2 1 0 0 

DoS attacks-Slowloris 198 0 0 0 0 0 0 0 0 0 2972 0 0 0 0 

FTP-BruteForce 15 0 0 0 0 0 0 0 0 13 0 13 3 0 1 

Infilteration 686178 1 0 0 0 0 0 0 0 0 0 0 3356

5 

0 3 

SQL Injection 261 0 2 1 0 0 0 0 0 0 0 0 5 22 0 

SSH-Bruteforce 27 0 0 0 0 0 0 0 0 0 0 0 0 0 2820

6 

If we view the precision for each class, we can see that the portfolio classifier has 

most of the classes approaching 1. However, the model still follows the same trend, 

as there are some classes that have been misclassified, and they match the models 

in the portfolio. 
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Figure 37Precision for each class (Portfolio Classifier) 

 

Figure 38 Precision Comparison Between All Models including Portflio Classifier 

 Comparing the Portfolio classier to the other models that we have built. We note the 

portfolio classifier outperforms, and in almost every class, the portfolio classifier is 

either ranked one or very close to 1. There are a few exceptions that we can see in 

the graph where the portfolio classifier is underperforming. 
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7.5 Discussion 

This chapter introduced the first experimental phase of the research, focusing on 

training and evaluating models using a sub-sample of the CIC-IDS2018 dataset. The 

goal was to test the core classifiers independently and assess how well they perform 

on a controlled, smaller dataset before scaling up. The results demonstrated a clear 

difference in performance between models, with algorithms such as Random Forest 

and Deep Learning achieving stronger accuracy and F1 scores, especially in 

handling multiclass predictions. Meanwhile, models like Generalized Linear Models 

(GLM) and Gradient Boosting Machine (GBM) showed relatively weaker 

performance on minority attack types. These results reinforce the idea that no single 

classifier performs best across all scenarios. Additionally, the per-instance voting 

mechanism, where multiple models are consulted for classification, showed early 

signs of improving precision and recall by leveraging each model's strengths. This 

discussion also highlighted how the sub-sample allowed for fast iteration and early 

testing of the hybrid model design without requiring full-scale computational 

resources. The performance variations across attack classes further support the 

proposed per-instance selection strategy, as it offers flexibility and adaptability when 

dealing with diverse traffic patterns in real-world networks. 

7.6 Chapter Conclusion  

In summary, this chapter evaluated the performance of several individual classifiers 

on a sub-sampled version of the CIC-IDS2018 dataset. The experiments confirmed 

that different models excel in different areas, with some providing better overall 

accuracy, while others performed better on underrepresented classes. These results 

validated one of the key premises of the research: that no single model is sufficient 
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for optimal detection in a multiclass intrusion environment. The findings also 

emphasized the importance of model diversity and the value of a dynamic selection 

strategy, where classifiers can be chosen based on the characteristics of each 

instance. The sub-sampling approach proved useful for early-stage model 

comparison, allowing for efficient testing of design assumptions and baseline 

performance without the overhead of full dataset training. The next chapter will 

extend this work by applying the same modeling techniques to the complete dataset, 

offering a more robust evaluation of classifier performance under realistic data 

conditions. 

  



149 
 

Chapter 8 Building Models with a Complete Dataset 

8.1 Chapter Introduction  

After attempting to use a reduced subset of the dataset for training, it was noticed 

that the results could be unreliable, and many of the models were not able to produce 

reasonable predictions. The justification for using a subset of the dataset for training 

was the lack of computing and memory resources to build the required models. In 

order to eliminate the lack of computing resources, we opted to use cloud services 

from Huawei. There are AI services available in Amazon, Microsoft Azure.. etc., but 

we chose to provision a Virtual Machine in the cloud with the same tools that were 

used in the local computer for the first tests. The reason that we used a virtual 

machine was to use the same script that was already done on the local machine. In 

this part, we have done the same process but using the complete dataset for training 

and testing without getting smaller subsets for training that will affect the 

performance of the produced models. At first, we have built all models that will 

participate in the portfolio. 
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8.2 Gradient Boosting Machine (GBM) 

We have built a model using the GBM package from h2o in Rstudio, as done in the 

previous attempt with the full dataset, and these are the parameters that were used 

to build this model. 

 

Table 55 Performance for GBM 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
AccuracyPValue  

     0.9878105      0.9411469      0.9876833      0.9879367      0.8829398      0.0000000  

 McnemarPValue  

           NaN  

 

Table 56 Per-Class Performance for GBM 
 

Sensit

ivity 

Specif

icity 

Pos Pred 

Value 

Neg Pred 

Value 

Preci

sion 

Recal

l 

F1 Preval

ence 

Detectio

n Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.999

608 

0.899

2 

0.98680

7 

0.996724 0.986

807 

0.999

608 

0.993

166 

0.882

94 

0.88259

4 

0.894393 0.949404 

Class: Bot 0.998

4 

1 0.99997

2 

0.99998 0.999

972 

0.998

4 

0.999

186 

0.012

544 

0.01252

4 

0.012524 0.9992 

Class: Brute Force -

Web 

0.405

594 

1 0.98305

1 

0.999971 0.983

051 

0.405

594 

0.574

257 

4.95E-

05 

2.01E-05 2.04E-05 0.702797 

Class: Brute Force -

XSS 

0.893

617 

0.999

999 

0.93333

3 

0.999998 0.933

333 

0.893

617 

0.913

043 

1.63E-

05 

1.45E-05 1.56E-05 0.946808 

Class: DDOS attack-

HOIC 

1 1 1 1 1 1 1 0.017

081 

0.01708

1 

0.017081 1 

Class: DDOS attack-

LOIC-UDP 

0.953

437 

0.999

975 

0.85828

3 

0.999993 0.858

283 

0.953

437 

0.903

361 

0.000

156 

0.00014

9 

0.000173 0.976706 

Class: DDoS attacks-

LOIC-HTTP 

0.998

49 

0.999

985 

0.99970

9 

0.999921 0.999

709 

0.998

49 

0.999

099 

0.049

942 

0.04986

6 

0.049881 0.999237 

Class: DoS attacks-

GoldenEye 

0.999

418 

0.999

998 

0.99932

2 

0.999998 0.999

322 

0.999

418 

0.999

37 

0.003

569 

0.00356

7 

0.003569 0.999708 

Class: DoS attacks-

Hulk 

0.999

972 

0.999

995 

0.99964

2 

1 0.999

642 

0.999

972 

0.999

807 

0.012

547 

0.01254

7 

0.012551 0.999984 
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Class: DoS attacks-

SlowHTTPTest 

0.578

947 

0.999

997 

0.52381 0.999997 0.523

81 

0.578

947 

0.55 6.57E-

06 

3.81E-06 7.27E-06 0.789472 

Class: DoS attacks-

Slowloris 

0.994

045 

0.999

999 

0.99920

2 

0.999995 0.999

202 

0.994

045 

0.996

617 

0.000

871 

0.00086

6 

0.000867 0.997022 

Class: FTP-

BruteForce 

0.312

5 

0.999

997 

0.38461

5 

0.999996 0.384

615 

0.312

5 

0.344

828 
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06 

1.73E-06 4.50E-06 0.656249 

Class: Infilteration 0.035

185 

0.999
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0.56102 0.988304 0.561

02 

0.035
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0.066
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0.012
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0.00042

6 

0.00076 0.517424 

Class: SQL Injection 0.419
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1 0.92857

1 

0.999994 0.928

571 

0.419

355 

0.577

778 

1.07E-

05 

4.50E-06 4.84E-06 0.709677 

Class: SSH-

Bruteforce 

0.999

788 

0.999

999 

0.99983 0.999998 0.999

83 

0.999

788 

0.999

809 

0.008

147 

0.00814

5 

0.008147 0.999893 

 

 

Confusion Matrix 

Table 57Confusion Matrix For GBM 
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Benign 255114

9 

58 80 3 0 1 147 4 0 0 15 0 3378

3 

14 2 

Bot 1 3620

1 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Brute Force -Web 1 0 58 0 0 0 0 0 0 0 0 0 0 0 0 

Brute Force -XSS 0 0 0 42 0 0 0 0 0 0 0 0 0 3 0 

DDOS attack-HOIC 0 0 0 0 4937

4 

0 0 0 0 0 0 0 0 0 0 

DDOS attack-LOIC-UDP 0 0 0 0 0 430 71 0 0 0 0 0 0 0 0 

DDoS attacks-LOIC-

HTTP 

15 0 4 2 0 20 14413

9 

0 0 0 0 0 0 1 0 

DoS attacks-GoldenEye 5 0 0 0 0 0 0 1031

0 

1 0 0 0 0 0 1 

DoS attacks-Hulk 9 0 0 0 0 0 0 2 3626

7 

0 0 0 0 0 2 

DoS attacks-

SlowHTTPTest 

0 0 0 0 0 0 0 0 0 11 0 10 0 0 0 

DoS attacks-Slowloris 2 0 0 0 0 0 0 0 0 0 2504 0 0 0 0 
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FTP-BruteForce 0 0 0 0 0 0 0 0 0 8 0 5 0 0 0 

Infilteration 964 0 0 0 0 0 0 0 0 0 0 0 1232 0 0 

SQL Injection 0 0 1 0 0 0 0 0 0 0 0 0 0 13 0 

SSH-Bruteforce 3 0 0 0 0 0 0 0 0 0 0 1 0 0 2354

4 

 

 

Figure 39 Per-Class precision for GBM 

8.3 Generalized Linear Models (GLM) 

Overall 

Table 58 Overall Performance for GLM 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 

AccuracyPValue  

     0.9777974      0.8908473      0.9776269      0.9779669      0.8829398      0.0000000  

 McnemarPValue  

           NaN  

 

 

 

Table 59 Per-Class Performance for GLM 
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Sensiti

vity 

Specifi

city 

Pos Pred 

Value 

Neg Pred 

Value 

Precisi

on 

Recall F1 Prevale

nce 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.9970

68 

0.8427

43 

0.979518 0.974426 0.979

518 

0.997

068 

0.988

215 

0.8829

4 

0.880351 0.898759 0.919905 

Class: Bot 0.9848

04 

0.9998

88 

0.991091 0.999807 0.991

091 

0.984

804 

0.987

937 

0.0125

44 

0.012354 0.012465 0.992346 

Class: Brute Force -Web 0 0.9999

97 

0 0.999951 0 0 NA 4.95E-

05 

0 3.11E-06 0.499998 

Class: Brute Force -XSS 0.4680

85 

1 1 0.999991 1 0.468

085 

0.637

681 

1.63E-

05 

7.61E-06 7.61E-06 0.734043 

Class: DDOS attack-

HOIC 

0.8244

02 

0.9982

84 

0.893062 0.996952 0.893

062 

0.824

402 

0.857

36 

0.0170

81 

0.014082 0.015768 0.911343 

Class: DDOS attack-

LOIC-UDP 

0.9756

1 

0.9999

38 

0.710824 0.999996 0.710

824 

0.975

61 

0.822

43 

0.0001

56 

0.000152 0.000214 0.987774 

Class: DDoS attacks-

LOIC-HTTP 

0.9401

62 

0.9996

16 

0.992287 0.996863 0.992

287 

0.940

162 

0.965

521 

0.0499

42 

0.046953 0.047318 0.969889 

Class: DoS attacks-

GoldenEye 

0.7144

24 

0.9999

26 

0.971911 0.998978 0.971

911 

0.714

424 

0.823

51 

0.0035

69 

0.00255 0.002623 0.857175 

Class: DoS attacks-Hulk 0.9971

32 

0.9988

37 

0.915915 0.999964 0.915

915 

0.997

132 

0.954

8 

0.0125

47 

0.012511 0.01366 0.997985 

Class: DoS attacks-

SlowHTTPTest 

0 1 NA 0.999993 NA 0 NA 6.57E-

06 

0 0 0.5 

Class: DoS attacks-

Slowloris 

0.7030

57 

0.9999

84 

0.974684 0.999741 0.974

684 

0.703

057 

0.816

882 

0.0008

71 

0.000613 0.000629 0.85152 

Class: FTP-BruteForce 0 1 NA 0.999994 NA 0 NA 5.54E-

06 

0 0 0.5 

Class: Infilteration 0.0081

11 

0.9998

46 

0.391724 0.987981 0.391

724 

0.008

111 

0.015

893 

0.0121

14 

9.83E-05 0.000251 0.503978 

Class: SQL Injection 0 1 NA 0.999989 NA 0 NA 1.07E-

05 

0 0 0.5 

Class: SSH-Bruteforce 0.9974

52 

0.9998

22 

0.97879 0.999979 0.978

79 

0.997

452 

0.988

033 

0.0081

47 

0.008126 0.008302 0.998637 

Confusion Matrix 

Table 60 Confusion Matrix for GLM 
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21 18 

Bot 314 3570
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0 0 0 0 0 0 0 0 0 0 7 0 0 

Brute Force -Web 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Brute Force -XSS 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 

DDOS attack-HOIC 4782 0 0 0 4070

4 

0 0 0 0 0 0 0 82 10 0 

DDOS attack-LOIC-UDP 0 0 0 0 0 440 179 0 0 0 0 0 0 0 0 

DDoS attacks-LOIC-

HTTP 

1046 0 0 0 0 5 13571

9 

0 0 0 0 0 4 0 0 

DoS attacks-GoldenEye 102 0 0 0 0 0 0 7370 104 0 4 0 3 0 0 

DoS attacks-Hulk 271 0 0 0 0 0 0 2914 3616

4 

0 15 0 78 0 42 

DoS attacks-

SlowHTTPTest 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DoS attacks-Slowloris 30 0 0 0 0 0 0 15 0 0 1771 0 1 0 0 

FTP-BruteForce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Infilteration 439 0 0 0 0 2 0 0 0 0 0 0 284 0 0 

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SSH-Bruteforce 491 0 1 0 0 0 0 0 0 0 0 1 16 0 2348

9 

 

Figure 40 Per-Class Precision for GLM 

8.4 Deep Learning (Neural network) 

Table 61 Overall Performance for Deep Learning 

 

0

0.2

0.4

0.6

0.8

1

1.2

GLM

Precision

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
AccuracyPValue  

     0.9813317      0.9081043      0.9811750      0.9814874      0.8829398      0.0000000  

 McnemarPValue  

           NaN  
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Table 62 Per-Class Performance for Deep Learning 

Table 63 Confusion Matrix for Deep Learning 
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Benign 255123

0 

605 143 47 15 367 8739 542 622 19 1351 16 3492

3 

31 64 

Bot 2 3562

9 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Brute Force -Web 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Brute Force -XSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Sensiti

vity 

Specifi

city 

Pos Pred 

Value 

Neg Pred 

Value 

Precisi

on 

Recall F1 Prevale

nce 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.9996

4 

0.8596

66 

0.981728 0.996851 0.981

728 

0.999

64 

0.990

603 

0.8829

4 

0.882622 0.899049 0.929653 

Class: Bot 0.9826

25 

0.9999

99 

0.999944 0.999779 0.999

944 

0.982

625 

0.991

209 

0.0125

44 

0.012326 0.012327 0.991312 

Class: Brute Force -Web 0 1 NA 0.999951 NA 0 NA 4.95E-

05 

0 0 0.5 

Class: Brute Force -XSS 0 1 NA 0.999984 NA 0 NA 1.63E-

05 

0 0 0.5 

Class: DDOS attack-

HOIC 

0.9996

96 

0.9999

87 

0.999251 0.999995 0.999

251 

0.999

696 

0.999

474 

0.0170

81 

0.017076 0.017089 0.999842 

Class: DDOS attack-

LOIC-UDP 

0 1 NA 0.999844 NA 0 NA 0.0001

56 

0 0 0.5 

Class: DDoS attacks-

LOIC-HTTP 

0.9387

56 

0.9998

78 

0.997534 0.996791 0.997

534 

0.938

756 

0.967

253 

0.0499

42 

0.046883 0.046999 0.969317 

Class: DoS attacks-

GoldenEye 

0.4397

05 

0.9999

96 

0.997581 0.997997 0.997

581 

0.439

705 

0.610

375 

0.0035

69 

0.001569 0.001573 0.719851 

Class: DoS attacks-Hulk 0.9828

5 

0.9980

6 

0.86553 0.999782 0.865

53 

0.982

85 

0.920

467 

0.0125

47 

0.012332 0.014248 0.990455 

Class: DoS attacks-

SlowHTTPTest 

0 1 NA 0.999993 NA 0 NA 6.57E-

06 

0 0 0.5 

Class: DoS attacks-

Slowloris 

0.4577

21 

0.9999

95 

0.988003 0.999527 0.988

003 

0.457

721 

0.625

61 

0.0008

71 

0.000399 0.000404 0.728858 

Class: FTP-BruteForce 0 1 NA 0.999994 NA 0 NA 5.54E-

06 

0 0 0.5 

Class: Infilteration 0 0.9998

67 

0 0.987885 0 0 NA 0.0121

14 

0 0.000131 0.499933 

Class: SQL Injection 0 1 NA 0.999989 NA 0 NA 1.07E-

05 

0 0 0.5 

Class: SSH-Bruteforce 0.9971

97 

0.9999

44 

0.993233 0.999977 0.993

233 

0.997

197 

0.995

211 

0.0081

47 

0.008124 0.00818 0.998571 
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DDOS attack-HOIC 36 0 0 0 4935

9 

0 0 0 0 0 0 0 1 0 0 

DDOS attack-LOIC-UDP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DDoS attacks-LOIC-

HTTP 

279 0 0 0 0 0 13551

6 

55 0 0 0 0 1 0 0 

DoS attacks-GoldenEye 9 0 0 0 0 0 0 4536 0 0 0 0 2 0 0 

DoS attacks-Hulk 267 0 0 0 0 0 0 5169 3564

6 

0 15 0 85 0 2 

DoS attacks-

SlowHTTPTest 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DoS attacks-Slowloris 0 0 0 0 0 0 0 14 0 0 1153 0 0 0 0 

FTP-BruteForce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Infilteration 169 25 0 0 0 84 102 0 0 0 0 0 0 0 0 

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SSH-Bruteforce 157 0 0 0 0 0 0 0 0 0 0 0 3 0 2348

3 

 

Figure 41 Precision for Deep Learning 

8.5 Random Forest (Ranger) 

Table 64 Overall Performance for RF (Ranger) 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
AccuracyPValue  

     0.9898437      0.9514503      0.9897274      0.9899589      0.8829398      0.0000000  

 McnemarPValue  

           NaN  
Results 

Table 65 Per-Class Performance for RF (Ranger) 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

NN

Precision
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Sensiti

vity 

Specifi

city 

Pos Pred 

Value 

Neg Pred 

Value 

Precisi

on 

Recall F1 Prevale

nce 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.9994

02 

0.9180

26 

0.989242 0.995115 0.989

242 

0.999

402 

0.994

296 

0.8829

4 

0.882412 0.892008 0.958714 

Class: Bot 0.9932

98 

1 1 0.999915 1 0.993

298 

0.996

638 

0.0125

44 

0.01246 0.01246 0.996649 

Class: Brute Force -Web 0.4965

03 

1 1 0.999975 1 0.496

503 

0.663

551 

4.95E-

05 

2.46E-05 2.46E-05 0.748252 

Class: Brute Force -XSS 0.7234

04 

1 1 0.999996 1 0.723

404 

0.839

506 

1.63E-

05 

1.18E-05 1.18E-05 0.861702 

Class: DDOS attack-

HOIC 

0.9964

76 

0.9999

58 

0.997567 0.999939 0.997

567 

0.996

476 

0.997

021 

0.0170

81 

0.017021 0.017063 0.998217 

Class: DDOS attack-

LOIC-UDP 

0.9733

92 

0.9999

76 

0.862475 0.999996 0.862

475 

0.973

392 

0.914

583 

0.0001

56 

0.000152 0.000176 0.986684 

Class: DDoS attacks-

LOIC-HTTP 

0.9987

6 

0.9999

75 

0.999515 0.999935 0.999

515 

0.998

76 

0.999

137 

0.0499

42 

0.04988 0.049904 0.999367 

Class: DoS attacks-

GoldenEye 

0.9999

03 

1 1 1 1 0.999

903 

0.999

952 

0.0035

69 

0.003569 0.003569 0.999952 

Class: DoS attacks-Hulk 1 0.9999

99 

0.999945 1 0.999

945 

1 0.999

972 

0.0125

47 

0.012547 0.012548 1 

Class: DoS attacks-

SlowHTTPTest 

0.4736

84 

0.9999

97 

0.5 0.999997 0.5 0.473

684 

0.486

486 

6.57E-

06 

3.11E-06 6.23E-06 0.736841 

Class: DoS attacks-

Slowloris 

1 0.9999

98 

0.998019 1 0.998

019 

1 0.999

009 

0.0008

71 

0.000871 0.000873 0.999999 

Class: FTP-BruteForce 0.125 1 0.666667 0.999995 0.666

667 

0.125 0.210

526 

5.54E-

06 

6.92E-07 1.04E-06 0.5625 

Class: Infilteration 0.2259

32 

0.9995

3 

0.854874 0.990593 0.854

874 

0.225

932 

0.357

406 

0.0121

14 

0.002737 0.003202 0.612731 

Class: SQL Injection 0.7096

77 

1 1 0.999997 1 0.709

677 

0.830

189 

1.07E-

05 

7.61E-06 7.61E-06 0.854839 

Class: SSH-Bruteforce 0.9999

58 

1 1 1 1 0.999

958 

0.999

979 

0.0081

47 

0.008147 0.008147 0.999979 

Confusion Matrix 

Table 66 Confusion Matrix RF(Ranger) 
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Benign 255062

4 

243 72 13 174 0 109 0 0 9 0 5 2710

3 

9 0 

Bot 0 3601

6 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Brute Force -Web 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 
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Brute Force -XSS 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 

DDOS attack-HOIC 119 0 0 0 4920

0 

0 0 0 0 0 0 0 1 0 0 

DDOS attack-LOIC-UDP 0 0 0 0 0 439 70 0 0 0 0 0 0 0 0 

DDoS attacks-LOIC-

HTTP 

58 0 0 0 0 12 14417

8 

0 0 0 0 0 0 0 0 

DoS attacks-GoldenEye 0 0 0 0 0 0 0 1031

5 

0 0 0 0 0 0 0 

DoS attacks-Hulk 0 0 0 0 0 0 0 1 3626

8 

0 0 0 0 0 1 

DoS attacks-

SlowHTTPTest 

0 0 0 0 0 0 0 0 0 9 0 9 0 0 0 

DoS attacks-Slowloris 5 0 0 0 0 0 0 0 0 0 2519 0 0 0 0 

FTP-BruteForce 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 

Infilteration 1343 0 0 0 0 0 0 0 0 0 0 0 7911 0 0 

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 

SSH-Bruteforce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2354

8 

 

Figure 42 Precision for RF 

8.6 Distributed Random Forest (DRF)  

Table 67 Overall Performance for DRF 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 

AccuracyPValue  

     0.9875572      0.9397946      0.9874288      0.9876847      0.8829398      0.0000000  

0

0.2

0.4

0.6

0.8

1

1.2

Ranger

Precision
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 McnemarPValue  

           NaN  

 

 

Results 

Table 68 Per-Class Performance for DRF 
 

Sensiti

vity 

Specifi

city 

Pos Pred 

Value 

Neg Pred 

Value 

Precisi

on 

Recall F1 Prevale

nce 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.9997

61 

0.8960

41 

0.986401 0.997992 0.986

401 

0.999

761 

0.993

036 

0.8829

4 

0.882729 0.894898 0.947901 

Class: Bot 0.9890

79 

1 1 0.999861 1 0.989

079 

0.994

509 

0.0125

44 

0.012407 0.012407 0.994539 

Class: Brute Force -Web 0.4265

73 

1 1 0.999972 1 0.426

573 

0.598

039 

4.95E-

05 

2.11E-05 2.11E-05 0.713287 

Class: Brute Force -XSS 0.5106

38 

1 1 0.999992 1 0.510

638 

0.676

056 

1.63E-

05 

8.30E-06 8.30E-06 0.755319 

Class: DDOS attack-

HOIC 

0.9999

39 

1 1 0.999999 1 0.999

939 

0.999

97 

0.0170

81 

0.01708 0.01708 0.99997 

Class: DDOS attack-

LOIC-UDP 

0.9778

27 

0.9999

43 

0.726524 0.999997 0.726

524 

0.977

827 

0.833

648 

0.0001

56 

0.000153 0.00021 0.988885 

Class: DDoS attacks-

LOIC-HTTP 

0.9982

61 

0.9997

98 

0.99617 0.999909 0.996

17 

0.998

261 

0.997

215 

0.0499

42 

0.049855 0.050046 0.99903 

Class: DoS attacks-

GoldenEye 

0.9998

06 

1 0.999903 0.999999 0.999

903 

0.999

806 

0.999

855 

0.0035

69 

0.003568 0.003569 0.999903 

Class: DoS attacks-Hulk 1 0.9999

96 

0.999724 1 0.999

724 

1 0.999

862 

0.0125

47 

0.012547 0.012551 0.999998 

Class: DoS attacks-

SlowHTTPTest 

0 1 NA 0.999993 NA 0 NA 6.57E-

06 

0 0 0.5 

Class: DoS attacks-

Slowloris 

0.9920

6 

1 1 0.999993 1 0.992

06 

0.996

014 

0.0008

71 

0.000865 0.000865 0.99603 

Class: FTP-BruteForce 0 1 NA 0.999994 NA 0 NA 5.54E-

06 

0 0 0.5 

Class: Infilteration 0.0153

36 

0.9999

79 

0.901007 0.98807 0.901

007 

0.015

336 

0.030

159 

0.0121

14 

0.000186 0.000206 0.507658 

Class: SQL Injection 0 1 NA 0.999989 NA 0 NA 1.07E-

05 

0 0 0.5 

Class: SSH-Bruteforce 0.9989

38 

1 1 0.999991 1 0.998

938 

0.999

469 

0.0081

47 

0.008138 0.008138 0.999469 
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Confusion Matrix 

Table 69 Confusion for DRF 
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Benign 255153

9 

396 80 23 3 2 85 0 0 19 20 16 3447

8 

31 23 

Bot 0 3586

3 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Brute Force -Web 0 0 61 0 0 0 0 0 0 0 0 0 0 0 0 

Brute Force -XSS 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 

DDOS attack-HOIC 0 0 0 0 4937

1 

0 0 0 0 0 0 0 0 0 0 

DDOS attack-LOIC-UDP 0 0 0 0 0 441 166 0 0 0 0 0 0 0 0 

DDoS attacks-LOIC-

HTTP 

544 0 2 0 0 8 14410

6 

0 0 0 0 0 0 0 0 

DoS attacks-GoldenEye 1 0 0 0 0 0 0 1031

4 

0 0 0 0 0 0 0 

DoS attacks-Hulk 6 0 0 0 0 0 0 2 3626

8 

0 0 0 0 0 2 

DoS attacks-

SlowHTTPTest 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DoS attacks-Slowloris 0 0 0 0 0 0 0 0 0 0 2499 0 0 0 0 

FTP-BruteForce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Infilteration 59 0 0 0 0 0 0 0 0 0 0 0 537 0 0 

SQL Injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SSH-Bruteforce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2352

4 



161 
 

 

Figure 43 Percision for DRF 

8.7 Portfolio Classifier (Random Forest) 

Table 70 Overall Performance 

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 

AccuracyPValue  

     0.9899385      0.9519115      0.9898228      0.9900532      0.8829630      0.0000000  

 McnemarPValue  

           NaN  

Results 

Table 71 Per-Class Performance 
 

Sensiti

vity 

Specifi

city 

Pos Pred 

Value 

Neg Pred 

Value 

Precisi

on 

Recall F1 Prevale

nce 

Detection 

Rate 

Detection 

Prevalence 

Balanced 

Accuracy 

Class: Benign 0.9994

09 

0.9187

91 

0.989344 0.995168 0.989

344 

0.999

409 

0.994

351 

0.8829

63 

0.882441 0.891945 0.9591 

Class: Bot 0.9948

15 

1 1 0.999934 1 0.994

815 

0.997

401 

0.0125

45 

0.01248 0.01248 0.997408 

Class: Brute Force -Web 0.4965

03 

1 1 0.999975 1 0.496

503 

0.663

551 

4.95E-

05 

2.46E-05 2.46E-05 0.748252 

Class: Brute Force -XSS 0.7234

04 

1 1 0.999996 1 0.723

404 

0.839

506 

1.63E-

05 

1.18E-05 1.18E-05 0.861702 

Class: DDOS attack-

HOIC 

0.9997

57 

1 1 0.999996 1 0.999

757 

0.999

878 

0.0170

82 

0.017078 0.017078 0.999878 

0
0.2
0.4
0.6
0.8

1
1.2

DRF

Precision



162 
 

Class: DDOS attack-

LOIC-UDP 

0.9733

92 

0.9999

73 

0.84749 0.999996 0.847

49 

0.973

392 

0.906

089 

0.0001

56 

0.000152 0.000179 0.986683 

Class: DDoS attacks-

LOIC-HTTP 

0.9984

9 

0.9999

87 

0.999743 0.999921 0.999

743 

0.998

49 

0.999

116 

0.0499

43 

0.049868 0.049881 0.999238 

Class: DoS attacks-

GoldenEye 

0.9999

03 

1 1 1 1 0.999

903 

0.999

952 

0.0035

69 

0.003569 0.003569 0.999952 

Class: DoS attacks-Hulk 1 0.9999

98 

0.999862 1 0.999

862 

1 0.999

931 

0.0125

48 

0.012548 0.012549 0.999999 

Class: DoS attacks-

SlowHTTPTest 

0.2631

58 

0.9999

97 

0.384615 0.999995 0.384

615 

0.263

158 

0.312

5 

6.57E-

06 

1.73E-06 4.50E-06 0.631578 

Class: DoS attacks-

Slowloris 

0.9992

06 

1 1 0.999999 1 0.999

206 

0.999

603 

0.0008

71 

0.000871 0.000871 0.999603 

Class: FTP-BruteForce 0.0625 1 1 0.999995 1 0.062

5 

0.117

647 

5.54E-

06 

3.46E-07 3.46E-07 0.53125 

Class: Infilteration 0.2267

51 

0.9994

81 

0.842497 0.990623 0.842

497 

0.226

751 

0.357

33 

0.0120

87 

0.002741 0.003253 0.613116 

Class: SQL Injection 0.7096

77 

1 1 0.999997 1 0.709

677 

0.830

189 

1.07E-

05 

7.61E-06 7.61E-06 0.854839 

Class: SSH-Bruteforce 0.9999

15 

1 1 0.999999 1 0.999

915 

0.999

958 

0.0081

47 

0.008147 0.008147 0.999958 

 

Confusion Matrix 

Table 72 Confusion Matrix for Portfolio Classifier 
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ot 

Brute 

Force -

Web 

Brute 

Force 

-XSS 

DDOS 

attack-

HOIC 

DDOS 

attack-

LOIC-

UDP 

DDoS 

attacks-

LOIC-

HTTP 

DoS 

attacks-

GoldenE

ye 

DoS 

attack

s-Hulk 

DoS 

attacks-

SlowHTTP

Test 

DoS 

attacks-

Slowlori

s 

FTP-

Brute

Force 

Infil

tera

tion 

SQL 

Injec

tion 

SSH-

Brute

force 

Benign 25

50

62

4 

1

8

8 

71 13 12 1 139 0 0 14 2 7 270

15 

9 1 

Bot 0 3

6

0

7

1 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Brute 

Force -

Web 

0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 

Brute 

Force -

XSS 

0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 
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DDOS 

attack-

HOIC 

0 0 0 0 49362 0 0 0 0 0 0 0 0 0 0 

DDOS 

attack-

LOIC-UDP 

0 0 0 0 0 439 79 0 0 0 0 0 0 0 0 

DDoS 

attacks-

LOIC-

HTTP 

25 0 1 0 0 11 144139 0 0 0 0 0 0 0 0 

DoS 

attacks-

GoldenEy

e 

0 0 0 0 0 0 0 10315 0 0 0 0 0 0 0 

DoS 

attacks-

Hulk 

3 0 0 0 0 0 0 1 36268 0 0 0 0 0 1 

DoS 

attacks-

SlowHTTP

Test 

0 0 0 0 0 0 0 0 0 5 0 8 0 0 0 
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Figure 44 Compare the Master Model with the Models in Portfolio 

 

In the figure above, we can see clearly that the master model outperforms the other 

models in the portfolio. In almost every case, the master model has better precision. 

The assumption is that the multi-classifier portfolio works as expected. It seems the 

Ranger model has more influence on the master model than the others. Between 

both, Ranger has similar results, but there is a big gap in the FTP-Brute Force Class. 

It seems that the master model has taken advantage of the multiple classifiers. 

Further details can be seen in the next graphs. 

In the next graphs (Figure 47 Benchmark (Full vs Sub-sample)), we have compared 

the performance between the models using the complete sample and the 

subsample. We can see a clear improvement in the performance precision between 

the two sets of models. Especially in the master model, we can see that the master 

model using subsample has failed in many classes as many class has precision 
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close to zero, while the model built with the full dataset is almost 1 in all classes with 

few exceptions, as seen in the figures. 

 

Figure 45 Benchmark (Full vs Sub-sample) 
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8.8 Discussion 

In this chapter, the models introduced earlier were trained and evaluated using the 

full CIC-IDS2018 dataset to understand how each classifier performs under more 

realistic and demanding conditions. Compared to the sub-sampled experiments in 

the previous chapter, the complete dataset introduced new challenges in terms of 

processing time, class imbalance, and detection complexity. The performance 

results revealed that while some models maintained their effectiveness, others 

experienced a drop in accuracy and precision, particularly when dealing with minority 

attack classes. Random Forest and Deep Learning models continued to perform 

strongly, particularly in handling the more frequent classes. However, their ability to 

generalize across rare or less distinguishable attacks remained limited without 

additional balancing techniques. The per-instance voting classifier again showed 

improvement over individual models, especially in reducing false negatives and 

achieving better consistency across all classes. This reinforces the argument that 

combining models based on instance-specific behavior offers more robust and 

flexible detection. The discussion also considered the scalability of the approach, as 

training on the full dataset placed higher demands on computational resources and 

memory, particularly for deep learning-based architectures. 

8.9 Chapter Conclusion 

This chapter completed the second stage of experimentation by scaling the classifier 

models to the full CIC-IDS2018 dataset. The purpose of this step was to observe 

model behavior under real-world data conditions and validate the earlier results 

obtained from the sub-sampled dataset. The findings confirmed that while some 

classifiers performed well in both setups, others struggled with the full dataset’s 
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complexity, highlighting the value of using a diverse set of models rather than relying 

on a single one. The performance of the per-instance classifier portfolio remained 

strong and consistent, offering better generalization across both major and minor 

classes, and handling imbalanced data more effectively than standalone classifiers. 

These results support the feasibility of deploying a model selection strategy in a 

practical environment where traffic types vary significantly. With the full dataset 

results established, the next chapter shifts focus toward comparative benchmarking 

with existing solutions and further analyzing the evaluation metrics that define the 

effectiveness of the proposed approach. 
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Chapter 9 Evaluation and Discussion 

9.1 Chapter Introduction  

In this Chapter, we will benchmark the results of the proposed Portfolio classifier with 

other research that was done between 2020 and 2023 on the same dataset, which 

is CSE-CIC-IDS2018. We will view the benchmark multiple performance metrics, 

which are precision, F1 Score, and Accuracy. Making the benchmark has some 

challenges, and the primary challenge is the type of classification. Many researchers 

do binary classification, and that means the classification will only identify if the 

presented instance is benign or a threat. Without knowing the type of the threat, it's 

difficult to mitigate and plan for action for the threat. In contrast, binary classification 

has shown that they have a very high accuracy and precision. In this part, we have 

ignored the sample size and any manipulation of the dataset. We only focused on 

the end results, and the reason is that we can’t replicate each research in order to 

be able to do a direct comparison and benchmarking. It's also worth noting that some 

researchers have done multiclassification, but they have coupled and merged 

multiple classes into one. For example, some research papers used the DDoS class, 

which covers all other DDoS classes such as DDoS attack-HOIC DDoS attack and 

LOIC-UDP. Doing such a thing will increase classifier performance, but at the same 

time, the user will lose information to identify which type of DDoS attack he/she is 

facing.  

Through all the benchmarks that are listed below, we can observe that the proposed 

model performance is either better or similar to the other research.  We will see in 

detail the benchmarks that cover different metrics, which are F1 Score, accuracy, 

precision, and recall. 
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We can see below the list of classes that are original in the dataset and the ones 

that are recreated and coupled. 

Label map: 

Table 73 List of original Classes and new classes 

Class Original Class 

Benign TRUE 

Bot TRUE 

Brute Force -Web TRUE 

Brute Force -XSS TRUE 

DDOS attack-HOIC TRUE 

DDOS attack-LOIC-UDP TRUE 

DDoS attacks-LOIC-HTTP TRUE 

DoS attacks-GoldenEye TRUE 

DoS attacks-Hulk TRUE 

DoS attacks-SlowHTTPTest TRUE 

DoS attacks-Slowloris TRUE 

FTP-BruteForce TRUE 

Infilteration TRUE 

SQL Injection TRUE 

SSH-Bruteforce TRUE 

DDOS False 

DOS False 

BruteForce False 
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9.2 Precision Benchmark: 

In this part, we will do the benchmark on a precision metric with 13 research papers, 

as seen in the table below. The first part, which is the most important, is the precision 

of the benign class. We can see that in this class, most of the proposed models 

achieved a precision of 0.99, which is similar to the other research. The same 

scenario for Bot, but Hagar's research got a little lower performance, which is around 

~0.83.  For the rest of the classes that are original, we note Brute Force-Web, Brute 

Force-XSS, and SQL injection. They have 0 precision in Chimphlee Research, but 

the proposed model along with Heger has similar results with small differences. In 

the proposed model, DoS attacks-SlowHTTPTest had the lowest precision 

compared to the other research, and it was around ~0.38. There are nine researches 

included in the benchmark that have an overall precision, and the precision overly 

ranges between ~0.9 to 1, but some searches were as low as 0.78. It is expected to 

have an overall precision higher as this approach is dependent on binary 

classification, and it reduces the amount of information needed to understand the 

advantages and disadvantages of the model.  Finally, the researchers that have 

done classification on classes that are not original have achieved very precision on 

classes that they have introduced.  
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Table 74 Precision Performance Benchmark 
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Bot 1.00 1.00 1.00 x x x x x x x x x 1.00 0.83 

Brute Force -Web 1.00 x x x x x x x x x x x 0.00 0.75 

Brute Force -XSS 1.00 x x x x x x x x x x x 0.00 1.00 

BruteForce x 1.00 0.99 x x x x x x x x x x x 

DDoS x 0.99 1.00 x x x x x x x x x x x 

DDOS attack-HOIC 1.00 x x x x x x x x x x x 1.00 1.00 

DDOS attack-LOIC-UDP 0.85 x x x x x x x x x x x 0.72 1.00 

DDoS attacks-LOIC-HTTP 1.00 x x x x x x x x x x x 0.99 1.00 

DoS x 0.99 0.98 x x x x x x x x x x x 

DoS attacks-GoldenEye 1.00 x x x x x x x x x x x 0.99 1.00 

DoS attacks-Hulk 1.00 x x x x x x x x x x x 0.96 1.00 

DoS attacks-SlowHTTPTest 0.38 x x x x x x x x x x x 0.75 1.00 

DoS attacks-Slowloris 1.00 x x x x x x x x x x x 0.95 1.00 

FTP-BruteForce 1.00 x x x x x x x x x x x 0.71 0.88 

Infilteration 0.84 0.96 0.97 x x x x x x x x x 0.44 1.00 

Overall x x x 0.98 94.39 96.00 98.80 1.00 0.78 99.00 0.89 0.98 x x 
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Web attacks x x 1.00 x x x x x x x x x x x 

 

9.3 Accuracy Benchmark 

In this part, there are seven researchers that provided the accuracy and were 

included in this benchmark. As discussed earlier, each research is done differently, 

and the comparison could have some difficulties as the metric is not exactly the 

same. We can directly compare the proposed model with Jiyeon's research as the 

research provides accuracy for each class. Comparing the accuracies for both 

models, we can observe that both perform well in each class, but we will view the 

extreme differences between both. In the FTP-Brute Force and DoS attack 

HTTPtest, the proposed model accuracies were around 0.53 and 0.63, respectively, 
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while Jiyeon achieved 0.98 and 1 in the same order. On the other hand, infiltration 

and SQL injection, the proposed model achieved 0.61 and 0.85 compared to 0.35 

and 0.08 in Jiyeon. The overall accuracy in the proposed model is 98.9, and when 

compared to the other research, we can see that it ranges between 0.83 and 1. 

Overall, the accuracy in the proposed model has acceptable results when compared 

to the other research, either in the multi-Classifiaction or the general accuracy. 

Table 75 Accuracy Benchmark 
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Benign 0.96 x x x x x x x x x x 1 

Bot 1 1 x x x x x x x x x 1 

Brute Force -Web 0.75 x x x x x x x x x x 0.3 

Brute Force -XSS 0.86 x x x x x x x x x x 0.65 

BruteForce x 1 x x x x x x x x x x 

DDoS x x x x x x x x x x x x 

DDOS attack-HOIC 1 x x x x x x x x x x 1 

DDOS attack-LOIC-UDP 0.99 x x x x x x x x x x 1 

DDoS attacks-LOIC-HTTP 1 x x x x x x x x x x 1 

DoS x 1 x x x x x x x x x x 

DoS attacks-GoldenEye 1 x x x x x x x x x x 0.47 

DoS attacks-Hulk 1 x x x x x x x x x x 1 

DoS attacks-SlowHTTPTest 0.63 x x x x x x x x x x 1 

DoS attacks-Slowloris 1 x x x x x x x x x x 0.66 

FTP-BruteForce 0.53 x x x x x x x x x x 0.98 

Infilteration 0.61 0.86 x x x x x x x x x 0.35 

SQL Injection 0.85 1 x x x x x x x x x 0.08 

SSH-Bruteforce 1 x x x x x x x x x x 0.96 

Web attacks x x x x x x x x x x x X 

Overall 98.9 x 0.98 99.97 94.5 98.8 1 0.83 98 0.89 0.98 x 

 

9.4 F1 Score Benchmark 

There are 11 pieces of research included in the F1 score benchmark. In the General 

view we can observe that the proposed model has acceptable results in all classes 
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compared to the other models, which have an F1 score per class, except for the 

BruteForce-Web, FTP-BruteForce, and infiltration, where the results are 0.66, 0.12, 

and 0.36 respectively compared to results that are around 0.9 for both Brute force-

Web and FTP-Brute Force in Di and Handika, except for infiltration where the results 

were not presented or 0 like chimphlee research. 

Table 76 F1 Score Benchmark 
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Benign 0.99 x x x 0.99 x x x x x x 0.99 

Bot 1.00 1.00 x 95.13 1.00 x x x x x x 1.00 

Brute Force -Web 0.66 x x 89.10 0.80 x x x x x x 0.00 

Brute Force -XSS 0.84 x x 90.11 0.66 x x x x x x 0.00 

BruteForce x 1.00 x x x x x x x x x x 

DDoS x x x x x x x x x x x x 

DDOS attack-HOIC 1.00 x x 90.08 1.00 x x x x x x 1.00 

DDOS attack-LOIC-UDP 0.91 x x 96.99 1.00 x x x x x x 0.84 

DDoS attacks-LOIC-HTTP 1.00 x x 89.32 1.00 x x x x x x 0.98 

DoS x 1.00 x x x x x x x x x x 

DoS attacks-GoldenEye 1.00 x x 94.11 1.00 x x x x x x 0.71 

DoS attacks-Hulk 1.00 x x 91.91 1.00 x x x x x x 0.98 

DoS attacks-SlowHTTPTest 0.31 x x 95.54 x x x x x x x 0.61 

DoS attacks-Slowloris 1.00 x x 90.35 1.00 x x x x x x 0.94 

FTP-BruteForce 0.12 x x 92.41 1.00 x x x x x x 0.79 

Infilteration 0.36 0.93 x x x x x x x x x 0.02 

Overall x x 0.98 x x 93.00 97.90 1.00 0.78 0.85 0.98 x 

SQL Injection 0.83 1.00 x x 0.71 x x x x x x 0.00 

SSH-Bruteforce 1.00 x x 93.00 1.00 x x x x x x 1.00 

Web attacks x x x x x x x x x x x x 

 

9.5 Recall Benchmark 

The Recall Benchmark had 11 research that have presented the recall metric. Only 

three researchers have included per-class recall values, which are Seth, Chimphlee, 

and Hagar. When comparing the proposed mode to these three searches, we can 
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note that Hagar has the best results, which is almost around 1 in all classes, except 

FTP-Brute Force (~0.7).  

Table 77 Recall Benchmark 
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Benign 1.00 1.00 x x x x x x x x 1.00 0.95 

Bot 0.99 1.00 x x x x x x x x 1.00 0.90 

Brute Force -Web 0.50 x x x x x x x x x 0.00 0.99 

Brute Force -XSS 0.72 x x x x x x x x x 0.00 1.00 

BruteForce x 0.96 x x x x x x x x x x 

DDoS x 1.00 x x x x x x x x x x 

DDOS attack-HOIC 1.00 x x x x x x x x x 1.00 1.00 

DDOS attack-LOIC-UDP 0.97 x x x x x x x x x 0.99 1.00 

DDoS attacks-LOIC-HTTP 1.00 x x x x x x x x x 0.97 1.00 

DoS x 0.99 x x x x x x x x x x 

DoS attacks-GoldenEye 1.00 x x x x x x x x x 0.55 1.00 

DoS attacks-Hulk 1.00 x x x x x x x x x 1.00 1.00 

DoS attacks-SlowHTTPTest 0.26 x x x x x x x x x 0.51 1.00 

DoS attacks-Slowloris 1.00 x x x x x x x x x 0.94 1.00 

FTP-BruteForce 0.06 x x x x x x x x x 0.88 0.76 

Infilteration 0.23 0.62 x x x x x x x x 0.01 1.00 

Overall x x 0.98 91.00 97.10 1.00 0.83 99.00 0.89 0.98 x x 

SQL Injection 0.71 x x x x x x x x x 0.00 0.99 
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Web attacks x 1.00 x x x x x x x x x x 

 

9.6 Discussion  

This chapter provided a detailed evaluation of the proposed hybrid model using 

performance metrics that reflect real-world IDS expectations. The comparison 

between individual classifiers and the per-instance voting approach demonstrated 

consistent advantages in precision, recall, and overall classification stability. One of 

the key findings was the improved handling of minority classes, where most 

standalone models typically showed poor sensitivity. The master classifier, acting as 
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a rule-based guide, was effective in filtering out less-relevant models and contributed 

to the overall efficiency of the portfolio. Furthermore, the combination of the master 

model and portfolio strategy resulted in fewer false positives compared to baseline 

models, which is a critical factor in operational environments. These results highlight 

the benefit of dynamically selecting classifiers based on instance-level behavior, 

especially when traffic is highly diverse. The discussion also touched on benchmark 

comparisons with related studies, showing that the proposed method is not only 

competitive but also introduces a flexible architecture that can adapt to different 

detection requirements. This adaptability positions the model as a practical 

candidate for deployment in layered security systems. 

9.7 Chapter Conclusion  

In conclusion, this chapter validated the performance of the proposed intrusion 

detection system by comparing it against traditional models and existing solutions in 

the literature. The per-instance classifier portfolio consistently demonstrated better 

balance between detection rates and false alarms across all tested scenarios. Its 

effectiveness in detecting minority class attacks and reducing false positives 

supports the original research hypothesis and confirms the value of integrating 

model diversity. Additionally, the evaluation confirmed that combining a rule-based 

master classifier with dynamic portfolio voting results in a more adaptable and 

accurate detection process. The benchmark comparisons further established that 

this research offers improvements over many standard classification strategies used 

in IDS today. These conclusions mark the completion of the experimental phase of 

the thesis. The final chapter will summarize the research contributions, discuss the 

implications of the findings, and outline potential directions for future work.  
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Chapter 10 Conclusion 

This chapter will have the discussion and conclusion by summarizing the thesis and 

showing if the research goals have been fulfilled. Also, it will show major findings, 

impact on the Industry, limitations, and future work. 

In the introduction, we have 3 points that we consider contributions to knowledge. 

We will review each and validate each one of them as follows. 

• The ability to create a (portfolio classifier) with no budget with precision and 

accuracy relevant to my thesis  

o The Portfolio Classifier (hybrid Classifier) is created in this research, 

and as shown in the benchmark, the performance and accuracy are 

comparable to other researches that use the same dataset and do 

multiclassification. 

• per instance selection of classifier, where only selected classifiers can vote in 

each instance, so there will be a different set of classifiers to vote on for every 

threat. 

o We have trained multiple models on a dataset that was captured from 

network traffic. The models were used to be used in the portfolio. A 

master classifier was built based on the classifiers that are part of the 

portfolio. The master classifier is able to select the classifiers that can 

participate in the voting to classify the instance.  

• Modularity of the Model, where additional classifiers can be plugged in to 

enhance performance 
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o As we have progressed in the research. We were able to add and 

remove models from the portfolio. Adding more classifiers is feasible 

and potentially can increase the performance and accuracy.. 

 

In this thesis, we have covered the general concepts of cybersecurity in order to 

allow the reader to comprehend the meaning of IDS and its function. We have 

covered the history and evolution of cyber security threats. In addition, we reviewed 

the tools and approaches that mitigate and defend systems from Cybersecurity 

threats. We have made data exploration and analysis of the dataset. Via this 

process, we have faced some challenges, but through the summaries and observing 

the plots and distribution of the classes, we were able to understand some 

characteristics of the Dataset CIC-IDS-2018. 

Our proposed model is a portfolio of classifiers, where a classifier will be chosen for 

each network flow to assist in the classification of either a benign or a threat. For this 

reason, we have built multiple models that support multiclassification to construct the 

portfolio. We have made different attempts in this thesis. The first attempt involved 

using a subsample of the data. The results of this attempt were not satisfying when 

compared to published research papers. Then, we made a second attempt where 

we used the complete dataset, except for duplicates and NAs. In the second attempt, 

the results were much better than the first attempt, and a benchmark between the 

first and second attempts to compare both results. When both results were 

compared, we noticed a significant increase in performance for the second attempt. 
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We have made a similar comparison to other papers that have used the same 

dataset and used multiclassification.  The benchmark showed that the proposed 

model either has a similar or exceeds the other research results (in most cases). The 

benchmarks used to compare other research results were precision, accuracy, F1 

score, and recall. Not all research presented the complete data or used the same 

criteria, as some of the research clubbed some classes into categories, so the 

comparison and benchmarking would not have a complete picture. Overall, we could 

see potential in the proposed model when compared to others, and there is room for 

a lot of improvements and enhancements. 

Using multiple classifiers can increase the performance as some classifiers work 

better with different types of classes in the same dataset. There are algorithms that 

use this approach that are either dependent on voting or fusion. In the proposed 

model, we classify the classifiers that will participate in the vote. Not all classifiers fit 

for each instance or flow in the dataset. In the proposed model, for each flow, we 

can have a different set of classifiers that can participate in the vote. This approach 

has increased the performance of the overall model when compared to each 

individual model in the portfolio. This approach can assist in cybersecurity as it can 

be easily expanded and enhanced by simply adding more models to the portfolio, 

which will increase performance and accuracy. With increased accuracy, 

organizations and industries will have fewer false alarms and a higher detection rate 

for anomalies, which will help Security operation centers (SOC) operators handle 

fewer floods of false alarms and focus on real threats. 

The proposed model is modular in its nature. There are a lot of ways to enhance and 

have better performance. The simple way to enhance the model is by adding more 
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models to the portfolio; this way, the master classifier will have a wider selection of 

models that can participate in the voting. The second approach is to use multiple 

datasets for training or develop a tool that can capture the data for training. Another 

enhancement that can be done is by using multi-step classification. We can use a 

binary classifier that will determine if the flow is benign or an anomaly. If the flow 

anomaly, then we used the proposed model.  
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Appendix : 

building PCAP  

In order to test models with real traffic data a network infrastructure was built on 

some servers. The infrastructure built as follows: 

 

 

1- Host is the physical hypervisor that will host all the virtual machines  

2- Virtual Firewall is PFSense which has three interfaces for routing  

a. Private LAN network for Kali 

b. Private LAN network for the victims 

c. WAN Network with the host to allow internet traffic  

3- Virtual Ubuntu 20 for recent attacks(old attacks will not work) 

a. SSH open 

b. FTP open 
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c. Open SS enable 

d. Apache enabled 

e. Firewall disabled 

4- Virtual Windows 10 for recent attacks (old attacks will not work) 

a. IIS installed 

5- Virtual windows 7 (exploitable for many attacks) 

a. Old adobe acrobat 9.0 is installed 

6- Virtual Ubuntu 16 (exploitable for many attacks) 

a. SSH open 

b. FTP open 

c. Open SS enable 

d. Apache enabled 

e. Firewall disabled 

The firewall was placed in the middle to force all traffic to pass through, so the data 

collection will be easier. The PFsense was connected to wireshark in the host via 

SSH to generate the PCAP on the fly. 

Each virtual node in the victim side has a python script that will access a random 

website to simulate benign traffic  

import time 

import webbrowser 

import random 

import os 
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f = open("websites.csv", "r") 

lines=f.readlines() 

t_end = time.time() + 60 * 20 

while time.time() < t_end: 

    webbrowser.open(random.choice(lines),new=0) 

    time.sleep(15) 

    os.system("taskkill /im firefox.exe /f") 

    os.system("taskkill /im msedge.exe /f") 

    os.system("taskkill /im iexplore.exe /f") 

 

 

Generating attacks: 

Kali Linux was prepared with script to initiate attacks following attacks  

- patator ssh_login 

- patator ftp_login 

- hulk-master 

- GoldenEye 

- Slowloris 

- slowhttptest  

- msfconsole  

each attack is timed and a time stamp is recorded with timestamp, Source IP and 

destination IP. Once the attacks are done and the data is extracted from wireshark, 

the pcap fille is processed in CICFlow to extract features and generate flows ready 
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for machine learning. From the matching timestamsp and destination IP we can label 

the flows with the corresponding attack in the scipt. 

Failed Attempts: 

1- SVM 

SVM is binary classifier by in its core. In order, to test with Multiclass, the 

library (e1071) was used to build SVM model. Unfortunately, this library 

consumed a lot of resources and time without getting an out. 

2- KNN 

This model was built, but the results were not optimistic to be included. 

Naïve Bayes  

 

Naïve Bayes was used in RStudio using the H2o Package. This function or algorithm 

depends on the assumption that each predictor is independent and a Gaussian 

distribution with numeric predictors that has mean, and STD computed in the training 

set. The same goes as we did the past models, we have provided the function with 

Training Data to build it. 

 

Parameter Value Description 

model_id NBModel Destination id for this model; auto-generated if not specified. 

nfolds 5 Number of folds for K-fold cross-validation (0 to disable or >= 2). 

seed 1234 Seed for pseudo random number generator (only used for cross-validation and fold_assignment="Random" or "AUTO") 

fold_assignment Random Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify the folds based 
on the response variable, for classification problems. 

response_column Class Response variable column. 

ignored_columns 
 

Names of columns to ignore for training. 
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      Accuracy          Kappa  
    0.26684434     0.21447607  
 AccuracyLower  
AccuracyUpper  
    0.26563995     0.26805133  
  AccuracyNull 
AccuracyPValue  
    0.06666667     0.00000000  
 McnemarPValue   
           NaN   
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Test on KDDCUP 

 

the KDDcup dataset was preprocessed by removing the duplicates and empty rows. 

The following represent the dataset classes without the normal class. 

 

names count Percentage  

back 968 0.090 

buffer_overflow 30 0.003 

ftp_write 8 0.001 

guess_passwd 53 0.005 

imap 12 0.001 

ipsweep 3723 0.346 

land 19 0.002 

loadmodule 9 0.001 

multihop 7 0.001 

neptune 242149 22.526 

nmap 1554 0.145 

0

0.2

0.4

0.6

0.8

1

1.2

NB
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normal 812814 75.611 

perl 3 0.000 

phf 4 0.000 

pod 206 0.019 

portsweep 3564 0.332 

rootkit 10 0.001 

satan 5019 0.467 

smurf 3007 0.280 

spy 2 0.000 

teardrop 918 0.085 

warezclient 893 0.083 

warezmaster 20 0.002 

Total  1074992 100.000 
 

 

 

 

In the above graph, we can see the distribution of threat types, and we clearly find 

that the Neptune attacks are has a huge count compared to the rest. This is maybe 

a result of removing duplicates and missing values. 
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Correlation heatmap: 

We can see that most of the correlated features are the features related to the error 

rate and count. And these relations are expected since they are mostly derived from 

the error count. 

 

First Run using Distributed Random Forest 

At this stage, a distributed random forest model is created with the complete set of 

features. This step will help to determine or select features, so we can reduce the 

Dataset with the same accuracy. Also, it will assist in having a benchmark to 

compare with the reduced model. 

Distributed Random Forest Training: 
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Training matrix : 

This is the training matrix of the distributed random forest with a training size equal 

to 0.75 of the Dataset. 

 

model   drf-62b6f06b-971b-4e1b-837c-27a467942b9b  

 model_checksum   $                                                  (272,627,320,440,848,000.00) 

 frame   frame_0.750  

 frame_checksum   $                                                7,848,675,700,881,100,000.00  

 description   Metrics reported on Out-Of-Bag training samples  

 model_category   Multinomial  

 scoring_time   $                                                                 1,617,119,055,988.00  

 predictions   ·  

 MSE   $                                                                                                   0.00  

 RMSE   $                                                                                                   0.01  

 nobs   $                                                                                  3,673,643.00  

 custom_metric_name   ·  

 custom_metric_value   $                                                                                                        -    

 r2   $                                                                                                   1.00  

 logloss   $                                                                                                   0.00  

 mean_per_class_error   $                                                                                                   0.38  

 AUC   NaN  

 pr_auc   NaN  

 multinomial_auc_table   ·  

 
multinomial_aucpr_table   ·  
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Training Confusion matrix  
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back 
164

2 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0.003 
5 / 

1,647 1 

buffer_overf
low 0 13 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 2 0 0.48 44555 0.87 

ftp_write 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 44353 NaN 

guess_passw
d 0 0 0 41 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

0.046
5 15738 1 

imap 0 0 0 0 2 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 
0.714

3 44323 1 

ipsweep 0 0 0 0 0 9358 0 0 0 0 1 35 0 0 0 0 0 0 0 0 0 0 0 
0.003

8 
36 / 

9,394 1 

land 0 0 0 0 0 0 15 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 
0.166

7 44273 0.75 

loadmodule 0 1 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 1 0 1 44416 0 

multihop 0 1 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 44321 NaN 

neptune 0 0 0 0 0 0 0 0 0 
80399

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 / 

803,993 1 

nmap 0 0 0 0 0 17 0 0 0 0 1676 24 0 0 0 0 0 0 0 0 0 0 0 
0.023

9 
41 / 

1,717 1 

normal 0 0 0 0 0 5 5 0 0 0 0 729167 0 0 0 1 0 3 1 0 0 13 0 0 
28 / 

729,195 1 

perl 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN 

phf 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 44258 NaN 

pod 0 0 0 0 0 0 0 0 0 0 0 3 0 0 196 0 0 0 0 0 0 0 0 
0.015

1 3 / 199 1 

portsweep 0 0 0 0 0 0 0 0 0 1 0 12 0 0 0 7805 0 2 0 0 0 0 0 
0.001

9 
15 / 

7,820 1 

rootkit 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 44479 NaN 

satan 0 0 0 0 0 1 0 0 0 0 0 74 0 0 0 0 0 
1180

3 0 0 0 0 0 
0.006

3 
75 / 

11,878 1 

smurf 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 
21061

28 0 0 0 0 0 

3 / 
2,106,1

31 1 

spy 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN 

teardrop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738 0 0 0 0 / 738 1 

warezclient 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 743 0 
0.059

5 
47 / 
790 0.98 

warezmaster 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 9 
0.307

7 44299 1 

Total 
164

2 15 0 41 2 9381 20 1 0 
80399

5 1679 729422 0 0 196 7806 0 
1180

8 
21061

29 0 738 759 9 
0.000

1 

315 / 
3,673,6

43   

Recall 1 0.52 0 0.95 0.29 1 0.83 0 0 1 0.98 1 0 0 0.98 1 0 0.99 1 0 1 0.94 0.69       



202 
 

Validation Matrix: 

0.25 of the Dataset was used for validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model drf-62b6f06b-971b-4e1b-837c-27a467942b9b 

model_checksum -2.72627E+17 

frame frame_0.250 

frame_checksum 3.28803E+18 

description · 

model_category Multinomial 

scoring_time 1.61712E+12 

predictions · 

MSE 0.000123 

RMSE 0.011074 

nobs 1224788 

custom_metric_name · 

custom_metric_value 0 

r2 0.999993 

logloss 0.001162 

mean_per_class_error 0.276288 

AUC NaN 

pr_auc NaN 

multinomial_auc_table · 

multinomial_aucpr_table · 
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Confusion  matrix : 
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back 554 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0.0036 2 / 556 1 

buffer_overflow 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0.4 44232 1 

ftp_write 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN 

guess_passwd 0 0 0 9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.1 44206 1 

imap 0 0 0 0 3 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0.4 44232 1 

ipsweep 0 0 0 0 0 3073 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0.0045 14 / 3,087 1 

land 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 3 0.6 

loadmodule 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN 

multihop 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN 

neptune 0 0 0 0 0 0 0 0 0 268024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 / 
268,024 1 

nmap 0 0 0 0 0 12 0 0 0 0 573 14 0 0 0 0 0 0 0 0 0 0 0 0.0434 26 / 599 1 

normal 0 0 0 0 0 2 2 0 0 0 0 243579 0 0 0 0 0 0 0 0 0 3 0 0 
7 / 
243,586 1 

perl 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN 

phf 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN 

pod 0 0 0 0 0 0 0 0 0 0 0 2 0 0 63 0 0 0 0 0 0 0 0 0.0308 23774 1 

portsweep 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 2584 0 1 0 0 0 0 0 0.0035 9 / 2,593 1 

rootkit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

satan 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 3993 0 0 0 0 0 0.0052 21 / 4,014 1 

smurf 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 701754 0 0 0 0 0 
1 / 
701,755 1 

spy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   
0 / 0Rate: 
spy NaN 

teardrop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 239 0 0 0.0083 2 / 241 1 

warezclient 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 214 0 0.0696 16 / 230 0.99 

warezmaster 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 5 0.2857 44234 1 

Total 554 3 0 9 3 3087 5 0 0 268025 573 243671 0 0 63 2584 0 3996 701754 0 239 217 5 0.0001 
115 / 
1,224,788   

Recall 1 0.6 0 0.9 0.6 1 1 0 0 1 0.96 1 0 0 0.97 1 NaN 0.99 1 NaN 0.99 0.93 0.71       
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Variable Importance 

At this stage, we can determine which factors we can use for the second test with random 

forest. Based on the scaled_importance, we have selected factors that have a value 

greater than 0.3. 
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Variable Importance Table 

variable relative_importance scaled_importance percentage 

count 11859210 1 0.1263 

same_srv_rate 11688206 0.9856 0.1245 

protocol_type 11003613 0.9279 0.1172 

srv_count 10597117 0.8936 0.1128 

dst_host_same_srv_rate 7336097 0.6186 0.0781 

dst_host_same_src_port_rate 5948306 0.5016 0.0633 

dst_host_diff_srv_rate 5567899.5 0.4695 0.0593 

logged_in 4536479.5 0.3825 0.0483 

diff_srv_rate 3725651.75 0.3142 0.0397 

flag 3521670 0.297 0.0375 

dst_host_count 2578363.75 0.2174 0.0275 

service 2501159.5 0.2109 0.0266 

dst_host_srv_count 2326045.25 0.1961 0.0248 

srv_serror_rate 2136325.75 0.1801 0.0227 

serror_rate 2085115.375 0.1758 0.0222 

dst_host_srv_diff_host_rate 1722246.375 0.1452 0.0183 

dst_host_srv_serror_rate 1406472.5 0.1186 0.015 

dst_host_serror_rate 1380117.125 0.1164 0.0147 

srv_diff_host_rate 653914.875 0.0551 0.007 

dst_host_rerror_rate 458241.8125 0.0386 0.0049 

dst_host_srv_rerror_rate 254065.2188 0.0214 0.0027 

rerror_rate 198456.9219 0.0167 0.0021 

srv_rerror_rate 175007.0625 0.0148 0.0019 

duration 115320.625 0.0097 0.0012 

src_bytes 45980.3047 0.0039 0.0005 
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hot 34724.5781 0.0029 0.0004 

wrong_fragment 32910.9648 0.0028 0.0004 

num_compromised 13082.9023 0.0011 0.0001 

dst_bytes 5480.2305 0.0005 0.0001 

is_guest_login 1813.0879 0.0002 0 

num_failed_logins 932.4665 0.0001 0 

land 364.8605 0 0 

num_root 332.1861 0 0 

root_shell 278.7813 0 0 

num_file_creations 221.6001 0 0 

num_access_files 182.6476 0 0 

num_shells 68.4239 0 0 

su_attempted 54.1832 0 0 

urgent 28.6472 0 0 

is_host_login 0 0 0 

 

Distributed Random Forest After reduction 

At this stage, we have reduced the Dataset based on the most important classes or 

factors. A distributed random forest is built with this reduction.  

Scoring of the Distributed Random forest after feature reduction  
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Correlation After Reduction  
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Model Training Matrix  

 

model drf-e1fea77c-d26d-42cb-b329-aad94a5cc57a 

model_checksum -7.30695E+17 

frame frame_0.750 

frame_checksum 7.84868E+18 

description 
Metrics reported on Out-Of-Bag training 
samples 

model_category Multinomial 

scoring_time 1.61712E+12 

predictions · 

MSE 0.001356 

RMSE 0.03683 

nobs 3673643 

custom_metric_name · 

custom_metric_value 0 

r2 0.999917 

logloss 0.005877 

mean_per_class_error 0.6047 

AUC NaN 

pr_auc NaN 

multinomial_auc_table · 

multinomial_aucpr_table · 
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Confusion Matrix for Training  
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back 73 0 0 0 0 0 0 0 0 0 0 1573 0 0 0 0 0 0 0 0 0 1 0 0.9557 1,574 / 1,647 0.89 

buffer_overflow 0 0 0 0 0 0 0 0 0 1 0 23 0 0 0 0 0 0 0 0 0 1 0 1 25 / 25 NaN 

ftp_write 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 44353 NaN 

guess_passwd 0 0 0 36 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0.1628 15888 0.95 

imap 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0.8571 44354 1 

ipsweep 0 0 0 0 0 6739 0 0 0 0 1 2648 0 0 1 0 0 0 5 0 0 0 0 0.2826 2,655 / 9,394 0.9 

land 0 0 0 0 0 0 0 0 0 2 0 16 0 0 0 0 0 0 0 0 0 0 0 1 18 / 18 NaN 

loadmodule 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 1 44416 0 

multihop 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 1 44321 NaN 

neptune 0 0 0 0 0 0 0 0 0 803979 0 13 0 0 0 0 0 1 0 0 0 0 0 0 14 / 803,993 1 

nmap 0 0 0 0 0 733 0 0 0 0 906 74 0 0 3 0 0 0 1 0 0 0 0 0.4723 811 / 1,717 0.97 

normal 7 0 0 2 0 3 0 1 0 10 24 729043 0 0 10 6 0 17 6 0 1 65 0 0.0002 152 / 729,195 0.99 

perl 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN 

phf 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 44258 NaN 

pod 1 0 0 0 0 48 0 0 0 0 0 26 0 0 108 0 0 1 15 0 0 0 0 0.4573 91 / 199 0.77 

portsweep 0 0 0 0 0 0 0 0 0 2 0 15 0 0 0 7802 0 1 0 0 0 0 0 0.0023 18 / 7,820 1 

rootkit 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 44479 NaN 

satan 0 0 0 0 0 0 0 0 0 2 0 93 0 0 3 3 0 11775 2 0 0 0 0 0.0087 103 / 11,878 1 

smurf 0 0 0 0 0 0 0 0 0 0 0 21 0 0 15 0 0 1 2106094 0 0 0 0 0 37 / 2,106,131 1 

spy 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 2 / 2Rate: spy NaN 

teardrop 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 722 0 0 0.0217 16 / 738 1 

warezclient 1 0 0 0 0 0 0 0 0 0 0 542 0 0 0 0 0 0 0 0 0 247 0 0.6873 543 / 790 0.79 

warezmaster 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 1 13 / 13 NaN 

Total 82 0 0 38 1 7523 0 1 0 803996 932 734163 0 0 140 7811 0 11796 2106123 0 723 314 0 0.0017 6,118 / 3,673,643  

Recall 0.04 0 0 0.84 0.14 0.72 0 0 0 1 0.53 1 0 0 0.54 1 0 0.99 1 0 0.98 0.31 0    
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Validation Metric 

 

model 
drf-e1fea77c-d26d-42cb-b329-
aad94a5cc57a 

model_checksum -7.30695E+17 

frame frame_0.250 

frame_checksum 3.28803E+18 

description · 

model_category Multinomial 

scoring_time 1.61712E+12 

predictions · 

MSE 0.001375 

RMSE 0.037088 

nobs 1224788 

custom_metric_name · 

custom_metric_value 0 

r2 0.999916 

logloss 0.005852 

mean_per_class_error 0.511234 

AUC NaN 

pr_auc NaN 

multinomial_auc_table · 

multinomial_aucpr_table · 
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Confusion Matrix for Validation  
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back 18 0 0 0 0 0 0 0 0 0 0 537 0 0 0 0 0 0 0 0 0 1 0 0.9676 538 / 556 0.9 

buffer_overflow 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1 0 1 44321 NaN 

ftp_write 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN 

guess_passwd 0 0 0 8 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0.2 44237 0.8 

imap 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0.6 44260 1 

ipsweep 0 0 0 0 0 2225 0 0 0 0 0 862 0 0 0 0 0 0 0 0 0 0 0 0.2792 862 / 3,087 0.89 

land 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 44258 NaN 

loadmodule 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN 

multihop 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN 

neptune 0 0 0 0 0 0 0 0 0 268018 0 6 0 0 0 0 0 0 0 0 0 0 0 0 6 / 268,024 1 

nmap 0 0 0 0 0 262 0 0 0 0 293 40 0 0 4 0 0 0 0 0 0 0 0 0.5109 306 / 599 0.95 

normal 2 0 0 2 0 1 0 0 0 3 16 243537 0 0 2 1 0 7 1 0 0 14 0 0.0002 49 / 243,586 0.99 

perl 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 44229 NaN 

phf 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN 

pod 0 0 0 0 0 18 0 0 0 0 0 7 0 0 38 0 0 1 1 0 0 0 0 0.4154 27 / 65 0.81 

portsweep 0 0 0 0 0 0 0 0 0 1 0 11 0 0 0 2580 0 1 0 0 0 0 0 0.005 13 / 2,593 1 

rootkit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

satan 0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 3983 0 0 0 0 0 0.0077 31 / 4,014 1 

smurf 0 0 0 0 0 0 0 0 0 0 0 4 0 0 3 0 0 0 701748 0 0 0 0 0 7 / 701,755 1 

spy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

teardrop 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 233 0 0 0.0332 8 / 241 1 

warezclient 0 0 0 0 0 0 0 0 0 0 0 170 0 0 0 0 0 0 0 0 0 60 0 0.7391 170 / 230 0.79 

warezmaster 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 1 44384 NaN 

Total 20 0 0 10 2 2506 0 0 0 268022 309 245240 0 0 47 2581 0 3992 701750 0 233 76 0 0.0017 
2,045 / 1,224,788Total: 
Rate   
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Variable Importance  

 

 

 

Variable Importance Table  

variable relative_importance scaled_importance percentage 

count 20127888 1 0.2026 

srv_count 14606322 0.7257 0.147 

protocol_type 14226244 0.7068 0.1432 

same_srv_rate 10842952 0.5387 0.1092 

dst_host_same_src_port_rate 8352236 0.415 0.0841 

diff_srv_rate 8204572 0.4076 0.0826 

flag 7946105 0.3948 0.08 

logged_in 5893682 0.2928 0.0593 

dst_host_diff_srv_rate 4986479 0.2477 0.0502 

dst_host_same_srv_rate 4146581 0.206 0.0417 
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Test With Deep learning (DNN) on reduced features  

 

Training matrix 

model deeplearning-0594f7fe-b0b5-457a-abc8-78fb91d7c0b6 

model_checksum -1.8E+18 

frame · 

frame_checksum 0 

description Metrics reported on temporary training frame with 9976 
samples 

model_category Multinomial 

scoring_time 1.62E+12 

predictions · 

MSE 0.004302 

RMSE 0.065587 

nobs 9976 

custom_metric_name · 

custom_metric_value 0 

r2 0.997001 

logloss 0.02805 
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mean_per_class_error 0.235354 

AUC NaN 

pr_auc NaN 

multinomial_auc_table · 

multinomial_aucpr_table · 
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Confusion Matrix 
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back 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 1 44384 NaN 

buffer_overflow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

ftp_write 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

guess_passwd 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN 

imap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

ipsweep 0 0 0 0 0 25 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0.2424 12267 0.78 

land 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

loadmodule 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

multihop 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 44197 NaN 

neptune 0 0 0 0 0 0 0 0 0 2222 0 0 0 0 0 0 0 2 0 0 0 0 0 0.0009 2 / 2,224 1 

nmap 0 0 0 0 0 5 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0.7 44387 1 

normal 0 0 0 0 0 0 0 0 0 1 0 7569 0 0 0 0 0 8 0 0 0 0 0 0.0012 9 / 7,578 1 

perl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

phf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

pod 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

portsweep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 1 0 0 0 0 0 0.0313 11689 1 

rootkit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

satan 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 38 0 0 0 0 0 0.05 14642 0.75 

smurf 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0.0541 13547 1 

spy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

teardrop 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 6 0 0 0.3333 44264 1 

warezclient 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 
4 / 4Rate: 
warezclient 

NaN 

warezmaster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 / 0 NaN 

Total 0 0 0 0 0 32 0 0 0 2223 3 7595 0 0 0 31 0 51 35 0 6 0 0 0.0047 47 / 9,976   

Recall 0 NaN NaN 0 NaN 0.76 NaN NaN 0 1 0.3 1 NaN NaN NaN 0.97 NaN 0.95 0.95 NaN 0.67 0 NaN     
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Validation Metric 

model deeplearning-0594f7fe-b0b5-457a-abc8-78fb91d7c0b6 

model_checksum -1.8E+18 

frame frame_0.250 

frame_checksum 1.02E+18 

description Metrics reported on full validation frame 

model_category Multinomial 

scoring_time 1.62E+12 

predictions · 

MSE 0.005857 

RMSE 0.076533 

nobs 268677 

custom_metric_name · 

custom_metric_value 0 

r2 0.996096 

logloss 0.035909 

mean_per_class_error 0.544477 

AUC NaN 

pr_auc NaN 

multinomial_auc_table · 

multinomial_aucpr_table · 

 

 

 

 

 

 

 

 

 



218 
 

Validation Confusion Matrix 
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back 0 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0 0 1 
250 / 250 

NaN 

buffer_overflow 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 
44258 

NaN 

ftp_write 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 1 
44321 

NaN 

guess_passwd 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 1 
44384 

NaN 

imap 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 
44197 

NaN 

ipsweep 0 0 0 0 0 731 0 0 0 0 0 221 0 0 0 0 0 1 0 0 0 0 0 0.2329 
222 / 953 

0.73 

land 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 
44290 

NaN 

loadmodule 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 
44290 

NaN 

multihop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   
0 / 0 

NaN 

neptune 0 0 0 0 0 8 0 0 0 60371 0 15 0 0 0 1 0 193 0 0 0 0 0 0.0036 217 / 
60,588 

1 

nmap 0 0 0 0 0 233 0 0 0 0 64 83 0 0 0 0 0 0 0 0 0 0 0 0.8316 
316 / 380 

0.9 

normal 0 0 0 0 0 4 0 0 0 19 7 202804 0 0 0 17 0 184 2 0 20 0 0 0.0012 253 / 
203,057 

1 

perl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   
0 / 0 

NaN 

phf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   
0 / 0 

NaN 

pod 0 0 0 0 0 9 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 1 
44 / 44 

NaN 

portsweep 0 0 0 0 0 0 0 0 0 1 0 13 0 0 0 871 0 15 0 0 0 0 0 0.0322 
29 / 900 

0.98 

rootkit 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 
44197 

NaN 

satan 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 1220 0 0 7 0 0 0.0409 
52 / 1,272 

0.74 

smurf 0 0 0 0 0 19 0 0 0 0 0 11 0 0 0 0 0 0 720 0 0 0 0 0.04 
30 / 750 

1 

spy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   
0 / 0 

NaN 

teardrop 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 45 0 0 153 0 0 0.3405 
79 / 232 

0.85 

warezclient 0 0 0 0 0 0 0 0 0 0 0 219 0 0 0 0 0 0 0 0 0 0 0 1 219 / 
219Rate: 
warezclient 

NaN 

warezmaster 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 1 
44384 

NaN 

Total 0 0 0 0 0 1004 0 0 0 60391 71 203762 0 0 0 889 0 1658 722 0 180 0 0 0.0065 1,743 / 
268,677 

  

Recall 0 0 0 0 0 0.77 0 0 NaN 1 0.17 1 NaN NaN 0 0.97 0 0.96 0.96 NaN 0.66 0 0       
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Variable Importance 

 

 

Variable Importance Table  

variable relative_importance scaled_importance percentage 

srv_count 1 1 0.1691 

count 0.6503 0.6503 0.11 

logged_in 0.6356 0.6356 0.1075 

flag 0.6181 0.6181 0.1045 

dst_host_same_srv_rate 0.5969 0.5969 0.1009 

protocol_type 0.5512 0.5512 0.0932 

dst_host_diff_srv_rate 0.5004 0.5004 0.0846 

same_srv_rate 0.4642 0.4642 0.0785 

dst_host_same_src_port_rat
e 

0.4621 0.4621 0.0782 

diff_srv_rate 0.4344 0.4344 0.0735 
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Scripts  

 

Create Models  

 

 

#Libaraies 

kddcup_data_corrected<-NULL 

prediction<-NULL 

Sample<-NULL 

TrainSample<-NULL 

ValidateSampel<-NULL 

predictSample<-NULL 

library(readr) 

library(dbplyr) 

library(tidyverse) 

library(ranger) 

library(caret) 

library(mlbench) 

library(dplyr) 
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library(magrittr) 

library(nnet) 

library(caret) 

 

number2binary = function(number, noBits) { 

  binary_vector = rev(as.numeric(intToBits(number))) 

  if(missing(noBits)) { 

    return(binary_vector) 

  } else { 

    binary_vector[-(1:(length(binary_vector) - noBits))] 

  } 

} 

upsampleData = function(SSample,percentage){ 

   

  set.seed(234) 

  sampledData <- upSample(x = SSample[,-ncol(SSample)], 

                          y = SSample$Class) 

  sampledData$Class<-as.factor(sampledData$Class) 
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  Sample <- sampledData %>% group_by(Class) %>% 

sample_n(if_else(n()*percentage<1,1,n()*percentage)) 

   

  Sample$Class<-as.factor(Sample$Class) 

  levels(Sample$Class) 

  summary(Sample$Class) 

  return (Sample) 

   

   

} 

 

loadCleanData<-function(){ 

  CIC<-read_csv(file ="CICLatest.CSV") 

  names(CIC)[names(CIC) == "Label"] <- "Class" 

  #importVAR<-read.csv("D:\\CIC 

PHD\\DataSource\\ImportVarForReductiom.csv",header = TRUE) 

   

  #CIC<-CIC[,importVAR$importantVal] 
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  return (CIC) 

} 

getSample<-function(percentage){ 

  kddcup_data_corrected$Class<-as.factor(kddcup_data_corrected$Class) 

   

  Sample <- kddcup_data_corrected %>% group_by(Class) %>% 

sample_n(if_else(n()*percentage<1,1,n()*percentage)) 

   

  Sample$Class<-as.factor(Sample$Class) 

  levels(Sample$Class) 

  summary(Sample$Class) 

  return (Sample) 

} 

 

 

 

RFF<-function(){ 
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  TrainSample$Class<-as.factor(TrainSample$Class) 

  # rg.iris <- ranger(Class ~ ., data = TrainSample, importance = 

"impurity",local.importance = TRUE) 

  # rg.iris 

  # library(data.table)     

  # importantVAR<-as.data.table(rg.iris$variable.importance.local)[,Class := 

TrainSample$Class][,lapply(.SD,mean),by=Class] 

  # 

write.csv(importantVAR,"D://Porcessing//Canadian//newResults//importnatntVAR.csv") 

  # ranger::importance(rg.iris) 

  rg.iris <- ranger(Class ~ ., data = TrainSample, importance = "impurity") 

  rg.iris 

  saveRDS(rg.iris, "Models//RFModelToLoad.rds") 

  sink("Results//RFModelResult.txt") 

  print(rg.iris) 

  sink() 

  pr<-NULL 
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  pr$Validate<-predict(rg.iris,subset(ValidateSampel,,-c(Class))) 

  pr$predict<-predict(rg.iris,subset(TrainSample,,-c(Class))) 

  return(pr) 

} 

 

LoadModels<-function(){ 

  library(h2o) 

  h2o.init() 

  Deepmodel<-

h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\Deeplearning") 

  Allh2oData<-as.h2o(select(TrainSample,-Class)) 

  Data15H20<-as.h2o(ValidateSampel) 

  FinalS<-as.h2o(select(FinalStageSample,-Class)) 

  pred <- h2o.predict(Deepmodel, Allh2oData) 

  pred15<-h2o.predict(Deepmodel, Data15H20) 

  FinalSS<-h2o.predict(Deepmodel,FinalS) 

  pr<-NULL 

  pr$NNpr15<-as.data.frame(pred15) 

  pr$NNpr05<-as.data.frame(pred) 
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  pr$NNFinal<-as.data.frame(FinalSS) 

   

   

  ###################DRF############ 

  RF <-h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\DRF") 

  pred <- h2o.predict(RF, Allh2oData) 

  pred15<-h2o.predict(RF, Data15H20) 

  FinalSS<-h2o.predict(RF,FinalS) 

  pr$RFpr15<-as.data.frame(pred15) 

  pr$RFpr05<-as.data.frame(pred) 

  pr$RFFinal<-as.data.frame(FinalSS) 

  ########################GLM <- ############## 

  GLM <- h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\GLM") 

  pred <- h2o.predict(GLM, Allh2oData) 

  pred15<-h2o.predict(GLM, Data15H20) 

  FinalSS<-h2o.predict(GLM,FinalS) 

  pr$GLMpr15<-as.data.frame(pred15) 

  pr$GLMpr05<-as.data.frame(pred) 
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  pr$GLMFinal<-as.data.frame(FinalSS) 

  #####################GBM <- ############### 

  GBM <- h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\GBM") 

  pred <- h2o.predict(GBM, Allh2oData) 

  pred15<-h2o.predict(GBM, Data15H20) 

  FinalSS<-h2o.predict(GBM,FinalS) 

  pr$GBMpr15<-as.data.frame(pred15) 

  pr$GBMpr05<-as.data.frame(pred) 

  pr$GBMFinal<-as.data.frame(FinalSS) 

  ######################KMEANS######### 

  NB<-h2o::h2o.loadModel("D:\\Porcessing\\kdd\\newResults\\Models\\NB") 

  pred <- h2o.predict(NB, Allh2oData) 

  pred15<-h2o.predict(NB, Data15H20) 

  FinalSS<-h2o.predict(NB,FinalS) 

  pr$NBpr15<-as.data.frame(pred15) 

  pr$NBpr05<-as.data.frame(pred) 

  pr$NBFinal<-as.data.frame(FinalSS) 

  return(pr) 
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} 

MultipleClassificaitionH2o<-function(){ 

  library(h2o) 

  h2o.init(max_mem_size = "500g") 

  TrainSample$Class<-as.factor(TrainSample$Class) 

  ValidateSampel$Class<-as.factor(ValidateSampel$Class) 

  train<-as.h2o(TrainSample) 

  valid<-as.h2o(ValidateSampel) 

  #splits <- h2o.splitFrame(SampleH2o, c(0.90,0.08), seed=1234) 

  #train  <- h2o.assign(splits[[1]], "train.hex") # 60% 

  #valid  <- h2o.assign(splits[[2]], "valid.hex") # 20% 

  response <- "Class" 

  predictors <- setdiff(names(train), response) 

  predictors 

  print("deeplearning Strated") 

  m3 <- h2o.deeplearning( 

    model_id="NNModel",  

    training_frame=train,  
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    validation_frame=valid,  

    x=predictors,  

    y=response,  

    nfolds = 15,                                   # 10x cross validation 

    #keep_cross_validation_fold_assignment = TRUE, 

    #fold_assignment = "Stratified", 

    activation = "RectifierWithDropout", 

    score_each_iteration = TRUE, 

    hidden = c(200, 200),           # 5 hidden layers, each of 200 neurons 

    epochs = 15, 

    variable_importances = TRUE, 

    export_weights_and_biases = TRUE, 

    seed = 42 

     

  )  

  # hyper_params <- list( balance_classes = c(TRUE, FALSE) ) 

  # grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame 

= valid, 
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  #                  algorithm = "deeplearning", grid_id = "NNGrid", hyper_params = 

hyper_params, 

  #                  search_criteria = list(strategy = "Cartesian"), seed = 1234) 

  #  

  # # Sort the grid models by logloss 

  # sorted_grid <- h2o.getGrid("NNGrid", sort_by = "logloss", decreasing = FALSE) 

  # sorted_grid 

   

   

  print("model built") 

   

  h2o.performance(m3, train=T)          ## sampled training data (from model building) 

  h2o.performance(m3, valid=T)          ## sampled validation data (from model building) 

  h2o.performance(m3, newdata=train)    ## full training data 

  h2o.performance(m3, newdata=valid)    ## full validation data 

  Allh2oData<-as.h2o(subset(TrainSample,,-c(Class))) 

  Data15H20<-as.h2o(ValidateSampel) 

  pred <- h2o.predict(m3, Allh2oData) 

  pred15<-h2o.predict(m3, Data15H20) 
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  # predG <- h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Allh2oData) 

  # pred15G<-h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Data15H20) 

  pr<-NULL 

  pr$NNpr15<-as.data.frame(pred15) 

  pr$NNpr05<-as.data.frame(pred) 

  # pr$NNpr15G<-as.data.frame(pred15G) 

  # pr$NNpr05G<-as.data.frame(predG) 

  h2o::h2o.saveModel(m3,"Models//",force = TRUE) 

  # h2o::h2o.saveModel(h2o.getModel(sorted_grid@model_ids[[1]]),"Models//",force = 

TRUE) 

  print("deeplearning results finished") 

  ################RandomForest 

  print("random forest started") 

  RF <- h2o.randomForest( 

    model_id="RFModel", 

    x = predictors, 

    y = response, 

    ntrees = 100, 

    max_depth = 500, 
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    min_rows = 10, 

    calibrate_model = FALSE, 

    calibration_frame = valid, 

    binomial_double_trees = TRUE, 

    training_frame = train, 

    validation_frame = valid) 

  # hyper_params <- list( balance_classes = c(TRUE, FALSE) ) 

  # grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame 

= valid, 

  #                  algorithm = "randomForest", grid_id = "RFGrid", hyper_params = 

hyper_params, 

  #                  search_criteria = list(strategy = "Cartesian"), seed = 1234) 

  #  

  # # Sort the grid models by logloss 

  # sorted_grid <- h2o.getGrid("RFGrid", sort_by = "logloss", decreasing = FALSE) 

  # sorted_grid 

   

  print("random forest finished") 

  h2o.performance(RF, train=T)          ## sampled training data (from model building) 
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  h2o.performance(RF, valid=T)          ## sampled validation data (from model building) 

  h2o.performance(RF, newdata=train)    ## full training data 

  h2o.performance(RF, newdata=valid)    ## full validation data 

  pred <- h2o.predict(RF, Allh2oData) 

  pred15<-h2o.predict(RF, Data15H20) 

  # predG <- h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Allh2oData) 

  # pred15G<-h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Data15H20) 

  pr$RFpr15<-as.data.frame(pred15) 

  pr$RFpr05<-as.data.frame(pred) 

  # pr$RFpr15G<-as.data.frame(pred15G) 

  # pr$RFpr05G<-as.data.frame(predG) 

  h2o::h2o.saveModel(RF,"Models//",force = TRUE) 

  # h2o::h2o.saveModel(h2o.getModel(sorted_grid@model_ids[[1]]),"Models//",force = 

TRUE) 

   

  print("random forest results finished") 

  ################################## 

  ##########################GLM############## 

  print("GLM started") 
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  GLM <- h2o.glm( 

    model_id="GLMModel", 

    family = "multinomial", 

    x = predictors, 

    y = response, 

    training_frame = train, 

    lambda = 0) 

   

   

   

  h2o.coef_norm(GLM) 

  h2o.performance(GLM, train=T)          ## sampled training data (from model building) 

  h2o.performance(GLM, valid=T)          ## sampled validation data (from model building) 

  h2o.performance(GLM, newdata=train)    ## full training data 

  h2o.performance(GLM, newdata=valid)    ## full validation data 

  pred <- h2o.predict(GLM, Allh2oData) 

  pred15<-h2o.predict(GLM, Data15H20) 
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  pr$GLMpr15<-as.data.frame(pred15) 

  pr$GLMpr05<-as.data.frame(pred) 

  h2o::h2o.saveModel(GLM,"Models//",force = TRUE) 

   

  print("GLM finished") 

  #  

  #####################################GBM####### 

  print("GBM started") 

  GBM <- h2o.gbm( 

    model_id="GBMModel", 

    x = predictors, 

    y = response, 

    nfolds = 5, 

    seed = 1111, 

    keep_cross_validation_predictions = TRUE, 

    training_frame = train) 

   

  # hyper_params <- list( balance_classes = c(TRUE, FALSE) ) 
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  # grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame 

= valid, 

  #                  algorithm = "gbm", grid_id = "GBMGrid", hyper_params = hyper_params, 

  #                  search_criteria = list(strategy = "Cartesian"), seed = 1234) 

  #  

  # # Sort the grid models by logloss 

  # sorted_grid <- h2o.getGrid("GBMGrid", sort_by = "logloss", decreasing = FALSE) 

  # sorted_grid 

   

  h2o.performance(GBM, train=T)          ## sampled training data (from model building) 

  h2o.performance(GBM, valid=T)          ## sampled validation data (from model building) 

  h2o.performance(GBM, newdata=train)    ## full training data 

  h2o.performance(GBM, newdata=valid)    ## full validation data 

  pred <- h2o.predict(GBM, Allh2oData) 

  pred15<-h2o.predict(GBM, Data15H20) 

  # predG <- h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Allh2oData) 

  # pred15G<-h2o.predict(h2o.getModel(sorted_grid@model_ids[[1]]), Data15H20) 

  pr$GBMpr15<-as.data.frame(pred15) 

  pr$GBMpr05<-as.data.frame(pred) 
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  # pr$GBMpr15G<-as.data.frame(pred15G) 

  # pr$GBMpr05G<-as.data.frame(predG) 

  h2o::h2o.saveModel(GBM,"Models//",force = TRUE) 

  # h2o::h2o.saveModel(h2o.getModel(sorted_grid@model_ids[[1]]),"Models//",force = 

TRUE) 

   

  print("GBM finished") 

  # #########################KM########################### 

  # print("k-means started") 

  # KM <- h2o.kmeans( 

  #   model_id="KMModel", 

  #   x = predictors, 

  #   training_frame = train, 

  #   k = 10, 

  #   estimate_k = TRUE, 

  #   standardize = FALSE, 

  #   seed = 1234) 

  #  

  # h2o.performance(KM, train=T)          ## sampled training data (from model building) 
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  # h2o.performance(KM, valid=T)          ## sampled validation data (from model building) 

  # h2o.performance(KM, newdata=train)    ## full training data 

  # h2o.performance(KM, newdata=valid)    ## full validation data 

  # pred <- h2o.predict(KM, Allh2oData) 

  # pred15<-h2o.predict(KM, Data15H20) 

  # FinalSS<-h2o.predict(KM,FinalS) 

  # pr$NBpr15<-as.data.frame(pred15) 

  # pr$NBpr05<-as.data.frame(pred) 

  # pr$NBFinal<-as.data.frame(FinalSS) 

  # h2o::h2o.saveModel(NB,"D://Porcessing//Canadian//newResults//",force = TRUE) 

  #  

  #  

  ########################################################## 

  return(pr) 

} 

getSummary<-function(predictions,Truth,name){ 

  Truth$Class<-as.factor(Truth$Class) 

  predictions<-factor(predictions,levels = levels(Truth$Class)) 
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  levels(Truth$Class) 

  levels(predictions) 

  summary(predictions) 

  cm<-as.matrix(table(Truth$Class, predictions)) 

  write.csv(cm,paste("Results//",name,"-ConfusionMatrix.csv")) 

  src<-levels(predictions) 

  ppr<-levels(Truth$Class) 

  diff 

  print(cm) 

  n = sum(cm)  

  nc = nrow(cm)  

  diag = diag(cm)  

  print(sum(diag==0)) 

  rowsums = apply(cm, 1, sum)  

  colsums = apply(cm, 2, sum)  

  p = rowsums / n  

  q = colsums / n  

  accuracy = sum(diag) / n  
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  accuracy 

  precision = diag / colsums  

  recall = diag / rowsums  

  f1 = 2 * precision * recall / (precision + recall)  

  write.csv(data.frame(precision, recall, f1),paste("Results//",name,"-Accurecy.csv"))  

   

   

   

  Truth$Class<-as.factor(Truth$Class) 

  MCM<-confusionMatrix(predictions,Truth$Class) 

  sink(paste("Results//",name,"-ConfusionMatrix2OverAll.csv")) 

  print(MCM$overall) 

  sink() 

  write.csv(MCM$byClass,paste("Results//",name,"-ConfusionMatrix2ByClass.csv"))  

  write.csv(MCM$table,paste("Results//",name,"-ConfusionMatrix2table.csv"))  

  ###Done 
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} 

getAllSummery <- function (){ 

  ##Training 

  getSummary(RFPr$Validate$predictions,ValidateSampel,"RangerLatest") 

  getSummary(h2opredictions$NNpr15$predict,ValidateSampel,"NN") 

  #getSummary(h2opredictions$NNpr15G$predict,ValidateSampel,"NNGrid") 

  getSummary(h2opredictions$RFpr15$predict,ValidateSampel,"DRF") 

  #getSummary(h2opredictions$RFpr15G$predict,ValidateSampel,"DRFGrid") 

  getSummary(h2opredictions$GLMpr15$predict,ValidateSampel,"GLM") 

  getSummary(h2opredictions$GBMpr15$predict,ValidateSampel,"GBM") 

  #getSummary(h2opredictions$GBMpr15G$predict,ValidateSampel,"GBMGrid") 

   

   

   

} 
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###########Test raw############## 

 

smp_size <- floor(0.75 * nrow(kddcup_data_corrected)) 

 

## set the seed to make your partition reproducible 

set.seed(123) 

train_ind <- sample(seq_len(nrow(kddcup_data_corrected)), size = smp_size) 

 

TrainSample <- kddcup_data_corrected[train_ind, ] 

ValidateSampel <- kddcup_data_corrected[-train_ind, ] 

###################################### 

 

kddcup_data_corrected<-loadCleanData() 

kddcup_data_corrected<-kddcup_data_corrected[Reduce(`&`, 

lapply(kddcup_data_corrected, function(x) !is.na(x)  & is.finite(x))),] 

 

#TrainSample<-readRDS("D:\\CIC PHD\\DataSource\\TrainSample.rds") 

#ValidateSampel<-readRDS("D:\\CIC PHD\\DataSource\\ValidateSample.rds") 
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#FinalStageSample<-readRDS("D:\\CIC PHD\\DataSource\\FinalStageSample.rds") 

 

 

library(caret) 

library(data.table) 

#k#ddcup_data_corrected2<-

downSample(kddcup_data_corrected,kddcup_data_corrected$Class) 

kddcup_data_corrected$Class<-as.factor(kddcup_data_corrected$Class) 

summary(kddcup_data_corrected$Class) 

TrainSample<-getSample(0.7) 

ValidateSampel<-setdiff(kddcup_data_corrected, TrainSample) 

summary(TrainSample$Class) 

summary(ValidateSampel$Class) 

saveRDS(TrainSample,"\\Data\\TrainSample.rds") 

saveRDS(ValidateSampel,"\\Data\\ValidateSample.rds") 

kddcup_data_corrected<-NULL 

kddcup_data_corrected2<-NULL 

DT<-NULL 

predictSample$Class<-as.factor(predictSample$Class) 
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library(psych) 

 

#corPlot(subset(TrainSample,,-c(Class))) 

 

######################### 

 

 

 

#cor(subset(TrainSample,,-c(Class)), use = "complete.obs") 

prediction<-as.data.frame(RFPr$predict$predictions) 

 

RFPr<-RFF() 

h2opredictions<-MultipleClassificaitionH2o() 

saveRDS(h2opredictions,"Data\\h2opredictions.rds") 

saveRDS(RFPr,"Data\\RFPr.rds") 

getAllSummery() 
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newTester<-TrainSample 

newTester$Class<-as.character(newTester$Class) 

newTester$RFPred<-RFPr$predict$predictions 

#levels(h2opredictions$NNpr15$predict)<-levels(kddcup_data_corrected$Class) 

newTester$NNet<-(h2opredictions$NNpr05$predict) 

newTester$RF<-(h2opredictions$RFpr05$predict) 

newTester$GML<-(h2opredictions$GLMpr05$predict) 

newTester$GBM<-(h2opredictions$GBMpr05$predict) 

#newTester$NB<-(h2opredictions$NBpr05$predict) 

 

newTester$BooleanRFPred<-if_else(newTester$RFPred==newTester$Class,1,0) 

newTester$BooleanNNet<-if_else(newTester$NNet==newTester$Class,1,0) 

newTester$BooleanRF<-if_else(newTester$RF==newTester$Class,1,0) 

newTester$BooleanGML<-if_else(newTester$GML==newTester$Class,1,0) 

newTester$BooleanGBM<-if_else(newTester$GBM==newTester$Class,1,0) 

#newTester$BooleanNB<-if_else(newTester$NB==newTester$Class,1,0) 
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newTester<-newTester %>%  

  mutate(Classifers = paste(as.character(BooleanRFPred), 

                            as.character(BooleanNNet), 

                            as.character(BooleanRF), 

                            as.character(BooleanGML), 

                            as.character(BooleanGBM), 

                            #as.character(BooleanNB), 

                             

                            sep = "")) 

newTester<-newTester %>% 

  mutate(numericalClass=strtoi(Classifers, base = 2)) 

 

newTester$BooleanRFPred<-NULL 

newTester$Classifers<-NULL 

newTester$BooleanRF<-NULL 

newTester$BooleanNNet<-NULL 

newTester$BooleanGML<-NULL 
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newTester$BooleanGBM<-NULL 

# newTester$BooleanNB<-NULL 

 

newTester$RFPred<-NULL 

newTester$RF<-NULL 

newTester$NNet<-NULL 

newTester$GML<-NULL 

newTester$GBM<-NULL 

newTester$NB<-NULL 

newTester$Class<-NULL 

newTester$numericalClass<-as.factor(newTester$numericalClass) 

NUMCLASS <- ranger(numericalClass ~ ., data = newTester, importance = "impurity") 

saveRDS(NUMCLASS, "D://CIC PHD//Model//FinalModel.rds") 

NumericalPred<-predict(NUMCLASS,subset(FinalStageSample,,-c(Class))) 

NUMCLASS$prediction.error 

NumericalPred$predictions<-as.factor(NumericalPred$predictions) 

#kddcup_data_corrected$numPred<-NumericalPred$predictions 
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summary(NumericalPred$predictions) 

summary(newTester$numericalClass) 

which(NumericalPred$predictions == 0)[[1]] 

match(0 , NumericalPred$predictions) 

length(which(NumericalPred$predictions == 0)) 

final[78700][1] 

PPPP<-NULL 

PPPP$myPred<-NumericalPred$predictions 

 

library(binaryLogic) 

PPPP$KKK<-PPPP$myPred 

PPPP$KKK<-as.integer(as.character(PPPP$KKK)) 

PPPP$KKK<-rbind(as.binary(PPPP$KKK,n=5)) 

myBinaryDataframe<-do.call(rbind.data.frame, PPPP$KKK) 

FinalResultWithAll<-NULL 

colnames(myBinaryDataframe) <- c("BooleanRFPre", 

                                 "BooleanNNet", 

                                 "BooleanRF", 
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                                 "BooleanGML", 

                                 "BooleanGBM" 

) 

# "BooleanGML", 

# "BooleanGBM", 

# "BooleanNB") 

 

FinalResultWithAll$BooleanRFPre<-(myBinaryDataframe$BooleanRFPre) 

FinalResultWithAll$BooleanNNet<-(myBinaryDataframe$BooleanNNet) 

FinalResultWithAll$BooleanRF<-myBinaryDataframe$BooleanRF 

FinalResultWithAll$BooleanGML<-myBinaryDataframe$BooleanGML 

FinalResultWithAll$BooleanGBM<-myBinaryDataframe$BooleanGBM 

# FinalResultWithAll$BooleanNB<-myBinaryDataframe$BooleanNB               

FinalResultWithAll$RFPred<-(RFPr$FinalPR$predictions) 

FinalResultWithAll$NNet<-(h2opredictions$NNFinal$predict) 

FinalResultWithAll$RF<-(h2opredictions$RFFinal$predict) 

FinalResultWithAll$GML<-(h2opredictions$GLMFinal$predict) 

FinalResultWithAll$GBM<-(h2opredictions$GBMFinal$predict) 
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#FinalResultWithAll$NB<-(h2opredictions$NBFinal$predict)               

#FinalResultWithAll$NNet<-unlist(FinalResultWithAll$NNet) 

#library(dplyr) 

asDataFrameResult<-bind_cols(FinalResultWithAll) 

asDataFrameResult$RFPred[asDataFrameResult$BooleanRFPre==FALSE]<-NA 

asDataFrameResult$NNet[asDataFrameResult$BooleanNNet==FALSE]<-NA 

asDataFrameResult$RF[asDataFrameResult$BooleanRF==FALSE]<-NA 

asDataFrameResult$GML[asDataFrameResult$BooleanGML==FALSE]<-NA 

asDataFrameResult$GBM[asDataFrameResult$BooleanGBM==FALSE]<-NA 

#asDataFrameResult$NB[asDataFrameResult$BooleanNB==FALSE]<-NA 

filter(asDataFrameResult,BooleanNNet==FALSE &  

         BooleanRF==FALSE & 

         BooleanGML==FALSE & 

         BooleanGBM==FALSE & 

         BooleanRFPre==FALSE ) 

cleanResults<-asDataFrameResult 

cleanResults$BooleanRFPre<-NULL 

cleanResults$BooleanNNet<-NULL 
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cleanResults$BooleanRF<-NULL 

cleanResults$BooleanGML<-NULL 

cleanResults$BooleanGBM<-NULL 

####Add later "RFPred", 

#final<-apply(asDataFrameResult[,c("RFPred","NNet","RF")], 1, function(x) 

names(table(x))[which.max(table(x))]) 

final<-vector("list", nrow(asDataFrameResult)) 

ResTable<-setDT(cleanResults) 

final<-apply(ResTable,1,function(x) names(which.max(table(x)))) 

final<-as.data.frame(final) 

 

cleanResults$NNet<-NULL 

 

 

 

for (i in 1:nrow(asDataFrameResult)) { 

  if ( 

    (asDataFrameResult$BooleanRFPre[i]==TRUE )& 

    (asDataFrameResult$BooleanNNet[i] ==TRUE)& 
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    (asDataFrameResult$BooleanRF[i]==TRUE) 

  ){ 

    tt <- (asDataFrameResult[i,c("RFPred","NNet","RF")]) 

     

    if(tt$RFPred==tt$RF & tt$RFPred==tt$NNet){ 

      final[[i]]<-toString(tt$RFPred) 

      print("all equal") 

    } 

    else{ 

      final[[i]]<-toString(apply(tt, 1, function(x) names(table(x))[which.max(table(x))])) 

    } 

     

  } 

   

  else if(asDataFrameResult$BooleanRFPre[i]==FALSE & 

          asDataFrameResult$BooleanNNet[i]==FALSE & 

          asDataFrameResult$BooleanRF[i]==FALSE){ 

    final[[i]]<-toString(asDataFrameResult[i,c("RFPred")][[1]]) 
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    print("all false") 

  } 

  else if(asDataFrameResult$BooleanRFPre[i]==TRUE & 

          asDataFrameResult$BooleanNNet[i]==TRUE & 

          asDataFrameResult$BooleanRF[i]==FALSE){ 

    final[[i]]<-toString(asDataFrameResult[i,c("RFPred")][[1]]) 

    print("TTF") 

  } 

  else if(asDataFrameResult$BooleanRFPre[i]==TRUE & 

          asDataFrameResult$BooleanNNet[i]==FALSE & 

          asDataFrameResult$BooleanRF[i]==TRUE){ 

    final[[i]]<-toString(asDataFrameResult[i,c("RFPred")][[1]]) 

  } 

  else{ 

    final[[i]] <- toString(apply(asDataFrameResult[i,c("RFPred","NNet","RF")], 1, 

function(x) names(table(x))[which.max(table(x))])) 

    print("entered") 

  } 
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} 

#finalResAsDataframe<-bind_cols(final) 

#finalResAsDataframe<-transpose(finalResAsDataframe) 

getSummary(final,FinalStageSample,"Tommorow_without_NNA") 

getSummary(RFPr$FinalPR$predictions,FinalStageSample,"FinalRandomForesrt") 

getSummary(h2opredictions$NNFinal$predict,FinalStageSample,"FinalNN") 

getSummary(h2opredictions$RFFinal$predict,FinalStageSample,"FinalRFH2o") 

getSummary(h2opredictions$GLMFinal$predict,FinalStageSample,"FinalGLM") 

getSummary(h2opredictions$GBMFinal$predict,FinalStageSample,"FinalGBM") 

# getSummary(h2opredictions$NBFinal$predict,FinalStageSample,"FinalNB") 

#  

levels(nfinal$results)<-levels(kddcup_data_corrected$Class) 

# 

 

Master Model 

 

#Libaraies 

kddcup_data_corrected<-NULL 

prediction<-NULL 
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Sample<-NULL 

#library(readr) 

library(dbplyr) 

library(tidyverse) 

library(ranger) 

library(caret) 

#library(keras) 

library(dplyr) 

library(magrittr) 

library(nnet) 

library(caret) 

library(Rcpp) 

 

getSummary<-function(predictions,Truth,name){ 

  Truth$Class<-as.factor(Truth$Class) 

  predictions<-factor(predictions,levels = levels(Truth$Class)) 

  levels(Truth$Class) 

  levels(predictions) 
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  summary(predictions) 

  cm<-as.matrix(table(Truth$Class, predictions)) 

  write.csv(cm,paste("Results//",name,"-ConfusionMatrix.csv")) 

  src<-levels(predictions) 

  ppr<-levels(Truth$Class) 

  diff 

  print(cm) 

  n = sum(cm)  

  nc = nrow(cm)  

  diag = diag(cm)  

  print(sum(diag==0)) 

  rowsums = apply(cm, 1, sum)  

  colsums = apply(cm, 2, sum)  

  p = rowsums / n  

  q = colsums / n  

  accuracy = sum(diag) / n  

   

  accuracy 
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  precision = diag / colsums  

  recall = diag / rowsums  

  f1 = 2 * precision * recall / (precision + recall)  

  write.csv(data.frame(precision, recall, f1),paste("Results//",name,"-Accurecy.csv"))  

   

   

   

  Truth$Class<-as.factor(Truth$Class) 

  MCM<-confusionMatrix(predictions,Truth$Class) 

  sink(paste("Results//",name,"-ConfusionMatrix2OverAll.csv")) 

  print(MCM$overall) 

  sink() 

  write.csv(MCM$byClass,paste("Results//",name,"-ConfusionMatrix2ByClass.csv"))  

  write.csv(MCM$table,paste("Results//",name,"-ConfusionMatrix2table.csv"))  

  ###Done 

   

   

} 
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LoadModels<-function(){ #fix later 

   

  library(h2o) 

  h2o.init(max_mem_size = "32g") 

  print("deepModel Started") 

  Deepmodel<-h2o::h2o.loadModel("Models/") 

  h2o.save_mojo(Deepmodel, path = "Models/",force = TRUE) 

  h2o.performance(Deepmodel,Deepmodel@p) 

  print("load data") 

  TrainSample$Class<-as.factor(TrainSample$Class) 

  ValidateSampel$Class<-as.factor(ValidateSampel$Class) 

  Allh2oData<-as.h2o(subset(TrainSample,,-c(Class))) 

  Data15H20<-as.h2o(ValidateSampel) 

  FinalS<-as.h2o(subset(FinalStageSample,,c(-Class))) 

  print("finished load data") 

  response <- "Class" 

  predictors <- setdiff(names(train), response) 

  pred <- h2o.predict(Deepmodel, Allh2oData) 
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  pred15<-h2o.predict(Deepmodel, Data15H20) 

  FinalSS<-h2o.predict(Deepmodel,FinalS) 

  pr<-NULL 

  pr$NNpr15<-as.data.frame(pred15) 

  pr$NNpr05<-as.data.frame(pred) 

  pr$NNFinal<-as.data.frame(FinalSS) 

  print("deep Model finsished") 

   

  ###################DRF############ 

  print("rdf started") 

  RF <-h2o::h2o.loadModel("D:\\CIC PHD\\Model\\RFGrid_model_1") 

  RF2 <-h2o::h2o.loadModel("D:\\CIC PHD\\Model\\RFGrid_model_2") 

  pred <- h2o.predict(RF, Allh2oData) 

  pred15<-h2o.predict(RF, Data15H20) 

  FinalSS<-h2o.predict(RF,FinalS) 

  pr$RFpr15<-as.data.frame(pred15) 

  pr$RFpr05<-as.data.frame(pred) 

  pr$RFFinal<-as.data.frame(FinalSS) 
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  print("rdf finished") 

  ########################GLM <- ############## 

  GLM <- h2o::h2o.loadModel("D:\\Porcessing\\Canadian\\Models\\GLMModel") 

  print("GLM started") 

  pred <- h2o.predict(GLM, Allh2oData) 

  pred15<-h2o.predict(GLM, Data15H20) 

  FinalSS<-h2o.predict(GLM,FinalS) 

  pr$GLMpr15<-as.data.frame(pred15) 

  pr$GLMpr05<-as.data.frame(pred) 

  pr$GLMFinal<-as.data.frame(FinalSS) 

  print("GLM finished") 

  #####################GBM <- ############### 

  GBM <- h2o::h2o.loadModel("D:\\CIC PHD\\Model\\GBMModel") 

   

  print("GBM started") 

   

  pred <- h2o.predict(GBM, Allh2oData) 

  pred15<-h2o.predict(GBM, Data15H20) 



261 
 

  FinalSS<-h2o.predict(GBM,FinalS) 

  pr$GBMpr15<-as.data.frame(pred15) 

  pr$GBMpr05<-as.data.frame(pred) 

  pr$GBMFinal<-as.data.frame(FinalSS) 

  print("GBM finished") 

  print("ranger started") 

  rg.iris<-readRDS("D:\\CIC PHD\\Model\\RFModelToLoad.rds") 

  pr$Validate<-predict(rg.iris,subset(ValidateSampel,,-c(Class))) 

  pr$predict<-predict(rg.iris,subset(TrainSample,,-c(Class))) 

  pr$FinalPR<-predict(rg.iris,subset(FinalStageSample,,-c(Class))) 

  print("ranger Finished") 

  return(pr) 

} 

TrainSample<-read_rds("D://Porcessing//Canadian//splitRDS//TrainSample.rds") 

ValidateSampel<-read_rds("D://Porcessing//Canadian//splitRDS//ValidateSampel.rds") 

FinalStageSample<-

read_rds("D://Porcessing//Canadian//splitRDS//FinalStageSample.rds") 

h2opredictions<-LoadModels() 

RFpred<-readRDS("Data\RFPr.rds") 
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h2opredictions<-readRDS("Data\\h2opredictions.rds") 

 

############add prediction lables to the training dataset 

newTester<-TrainSample 

newTester$Class<-as.character(newTester$Class) 

newTester$RFPred<-RFPr$predict$predictions 

newTester$NNet<-(h2opredictions$NNpr05$predict) 

newTester$RF<-(h2opredictions$RFpr05$predict) 

newTester$GML<-(h2opredictions$GLMpr05$predict) 

newTester$GBM<-(h2opredictions$GBMpr05$predict) 

 

############compare and make the lables binary when campred to the true  Value 

 

newTester$BooleanRFPred<-if_else(newTester$RFPred==newTester$Class,1,0) 

newTester$BooleanNNet<-if_else(newTester$NNet==newTester$Class,1,0) 

newTester$BooleanRF<-if_else(newTester$RF==newTester$Class,1,0) 

newTester$BooleanGML<-if_else(newTester$GML==newTester$Class,1,0) 

newTester$BooleanGBM<-if_else(newTester$GBM==newTester$Class,1,0) 
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############ merge the binary for each model ############ 

 

newTester<-newTester %>%  

  mutate(Classifers = paste(as.character(BooleanRFPred), 

                            as.character(BooleanNNet), 

                            as.character(BooleanRF), 

                            as.character(BooleanGML), 

                            as.character(BooleanGBM), 

                            sep = "")) 

#####################Remove unneccesry Values from the 

DF########################### 

newTester$BooleanRF<-NULL 

newTester$BooleanNNet<-NULL 

newTester$BooleanGML<-NULL 

newTester$BooleanGBM<-NULL 

newTester$RFPred<-NULL 

newTester$RF<-NULL 

newTester$NNet<-NULL 
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newTester$GML<-NULL 

newTester$GBM<-NULL 

newTester$NB<-NULL 

newTester$Class<-NULL 

newTester$BooleanRFPred<-NULL 

############################# 

newTester$Classifers<-as.factor(newTester$Classifers) 

NUMCLASS <- ranger(Classifers ~ ., data = newTester, importance = "impurity") 

saveRDS(NUMCLASS, "Models\\MasterModel.rds") 

NumericalPred<-predict(NUMCLASS,subset(ValidateSampel,,-c(Class))) 

saveRDS(NumericalPred,"Data\\ValidatePredFinal.rds") 

NumericalPred<-read_rds("D://Porcessing//Canadian//processed - Model 

Data//FinalPred.rds") 

NUMCLASS$prediction.error 

NumericalPred$predictions<-as.factor(NumericalPred$predictions) 

summary(NumericalPred$predictions) 

NumericalPred$predictions[NumericalPred$predictions=="0000"]<-"1000" 

##################3 

DataPredF<-NULL 
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DataPredF$predictions<-NumericalPred$predictions 

DataPredF<-as.data.frame(DataPredF) 

DataPredF$predictions<-lapply(DataPredF$predictions, as.character) 

myBinaryDataframe<- NULL 

emptyColoumsn <- c("BooleanRFPre", 

                   "BooleanNNet", 

                   "BooleanRF", 

                   "BooleanGML", 

                   "BooleanGBM" 

) 

myBinaryDataframe$BooleanRFPre<-as.integer(substr(DataPredF$predictions,1,1)) 

myBinaryDataframe$BooleanNNet<-as.integer(substr(DataPredF$predictions,2,2)) 

myBinaryDataframe$BooleanRF<-as.integer(substr(DataPredF$predictions,3,3)) 

myBinaryDataframe$BooleanGML<-as.integer(substr(DataPredF$predictions,4,4)) 

myBinaryDataframe$BooleanGBM<-as.integer(substr(DataPredF$predictions,5,5)) 

 

myBinaryDataframe$RFPred<-(RFPr$Validate$predictions) 

myBinaryDataframe$NNet<-(h2opredictions$NNpr15$predict) 
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myBinaryDataframe$RF<-(h2opredictions$RFpr15$predict) 

myBinaryDataframe$GML<-(h2opredictions$GLMpr15$predict) 

myBinaryDataframe$GBM<-(h2opredictions$GBMpr15$predict) 

 

myBinaryDataframe$RFPred[myBinaryDataframe$BooleanRFPre==0]<-NA 

myBinaryDataframe$NNet[myBinaryDataframe$BooleanNNet==0]<-NA 

myBinaryDataframe$RF[myBinaryDataframe$BooleanRF==0]<-NA 

myBinaryDataframe$GML[myBinaryDataframe$BooleanGML==0]<-NA 

myBinaryDataframe$GBM[myBinaryDataframe$BooleanGBM==0]<-NA 

 

myBinaryDataframe$BooleanRFPre<-NULL 

myBinaryDataframe$BooleanNNet<-NULL 

myBinaryDataframe$BooleanRF<-NULL 

myBinaryDataframe$BooleanGML<-NULL 

myBinaryDataframe$BooleanGBM<-NULL 

library(data.table) 

ResTable<-setDT(myBinaryDataframe) 

final<-apply(myBinaryDataframe,1,function(x) names(which.max(table(x)))) 
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getSummary(final,ValidateSampel,"MasterResults") 


