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ABSTRACT Gait recognition is an advanced biometric technology that can be used to identify individuals
based on their walking patterns, even from low-spatial-resolution image sequences from security surveillance
camera footage. Traditional gait recognition approaches rely on complete body information and often
overlook the challenge of occlusion. In real-world scenarios, various body parts may be occluded by physical
obstacles such as buildings, walls, fences, vehicles, trees, or even other individuals in crowded areas.
This occlusion results in a significant portion of the human body being unobserved, causing conventional
gait recognition approaches to fail to identify the person. To address this challenge, we have developed
a novel framework for gait recognition in the presence of occlusion, incorporating occlusion detection
and reconstruction (ODR) and feature extraction for gait recognition (FEGR) modules. The ODR module
identifies the occlusion type and reconstructs the occluded portions of the human body in a silhouette
sequence using three-dimensional (3D) generative adversarial networks, whereas the FEGR module extracts
partwise global and local features using 3D convolutional neural networks (CNNs) and full body features on
a frame-by-frame basis using two-dimensional CNNs. We validated our framework using the CASIA-B and
OU-MVLP datasets with artificially added occlusions and found that it showed superior performance, with
average rank-1 accuracies of 96.4%, 87.8%, and 69.2% for normal, carried object, and clothing variations
on CASIA-B and 58.9% on OU-MVLP, as well as 100.0% occlusion detection accuracy. These results
demonstrate the ability of our proposed framework to maintain superior gait recognition performance despite
the presence of occlusions.

INDEX TERMS Deep learning, feature extraction for gait recognition, gait recognition, gait recognition
against occlusion, occlusion detection and reconstruction.

I. INTRODUCTION in gait recognition, samples can be captured from a distance

Gait recognition is a long-distance behavioral biometric
technology that can be used to recognize an individual based
on their unique walking patterns. Unlike other biometric
methods such as face, fingerprint, and iris recognition,

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su

without requiring the subject’s cooperation [1]. Moreover,
gait is difficult for an individual to disguise, as it is an
unconscious and natural movement. Therefore, it has various
potential uses, including in surveillance systems [2], digital
forensics [3], and criminal investigation [4].

Despite their potential, gait recognition systems that
work well in controlled laboratory environments often
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struggle in real-life scenarios owing to several challenges
known as covariates. Covariates may be associated with
the individual of interest, for instance, carried objects [5],
shoes and clothing [6], whereas others are associated
with the surrounding environment, such as viewing angle
deviations [7], [8], occlusions [9], walking surfaces, and
shadows. These covariates have a significant negative impact
on gait recognition [10]. Occlusion is considered to be the
most critical and challenging covariate [9], as it causes parts
of the subject to be missing from image sequences, resulting
in deterioration of the quality of the observed samples even
when the overall sequences appear to be of good quality.
In real-life applications, occlusions are likely to be due
to the presence of buildings, walls, fences, vehicles, trees,
or other walking individuals, especially in crowded areas
such as airports or railway stations. There are two forms
of occlusion that may affect gait recognition, depending on
how the occluder and the subject are positioned in an image
sequence: relative dynamic occlusion and relative static
occlusion [9]. In dynamic occlusion, the obscured part of the
subject undergoes continuous change throughout the image
sequence, whereas in relative static occlusion, the obscured
part remains constant [9]. Fig. 1 shows some examples of
relative static and dynamic occlusion.

Over the past two decades, research has focused on chal-
lenges in gait recognition related to viewpoint variation [7],
[8], [11], carried objects [5], [12], and clothing [6] in cases
where there is a mismatch of subject samples between the
probe and the gallery. However, although partial occlusion
of subjects is a more frequent and complex problem in real-
world scenarios, it has received far less attention. This gap
highlights the need for more effective methods to enhance gait
recognition accuracy in cases of occlusion; such methods are
essential for real-world applications. In this study, we aim to
address the limitations of previous research by developing a
novel approach specifically designed to tackle occlusion.

Existing approaches to occlusion can be categorized
into reconstruction-free and reconstruction-based methods.
Reconstruction-free methods focus on extracting robust
features from silhouette sequences for gait recognition.
For example, such approaches may extract energy image
features over a gait cycle [13], [14], [15] using gait energy
image (GEI) [14], [15] or frame difference energy image
(FDEI) [13]. However, although good recognition accuracy
was achieved with these approaches for a small degree of
occlusion, they lose temporal features and do not work when
a large portion of the body is occluded. More recently,
whole-silhouette sequences have been used to extract features
for gait recognition in cases of occlusion. For example,
a study [16] estimated the unoccluded portion of the
human body in a silhouette, followed by normalization and
registration of the body. Moreover, this study introduced a
pairwise masking technique to select corresponding visible
regions between matching pairs of silhouettes. Finally,
GaitGL [11], an existing state-of-the-art approach, was used
as the backbone for feature extraction from the masked
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silhouette sequence and for gait recognition. Moreover, Gupta
and Chellappa [17] proposed a framework to detect occlusion
and generate occlusion encodings. This information could
be used to learn compelling occlusion-aware discriminative
features for gait recognition in cases with occlusion using
existing state-of-the-art approaches [11], [18], [19] as the
backbone.

By contrast, reconstruction-based approaches [9], [20],
[21] focus on reconstructing occluded silhouettes and extract-
ing features from the reconstructed silhouette sequence for
gait recognition. Roy et al. [20] estimated frames that
contained occlusion over a gait cycle using the Gaussian
process dynamical model and reconstructed them to extract
features for gait recognition; however, this approach required
the gait cycle to be determined in advance, which is difficult
for severely occluded sequences. To overcome the limitation,
a later study [9] used a generative adversarial network (GAN)
to reconstruct a silhouette sequence without the need to
know the gait cycle in advance. The GEI-based approach
was then used for feature extraction and gait recognition.
Another study [21] used the VGG-16 model to detect
occlusion and reconstruct the occluded frames in a gait
sequence, using pose information as a one-hot vector with a
variational autoencoder [22]. GEI was then generated using
the reconstructed silhouette sequence, and, finally, the GEI
was used to extract features for gait recognition using existing
methods such as GEINet [23]. However, these approaches
are limited by their lack of end-to-end processing; they
require separate steps for reconstruction, feature extraction,
and gait recognition, making the process time-consuming and
complicated.

In response to these challenges, in this paper we present
an end-to-end unified framework including two key modules:
(a) occlusion detection and reconstruction (ODR) and (b)
feature extraction for gait recognition (FEGR). A silhouette
sequence with or without occlusion is provided as an input
to the network. The ODR module detects whether the
sequence has occlusion; if so, it reconstructs the occluded
silhouette sequence. Next, the FEGR module performs
feature extraction using the reconstructed silhouette sequence
and gait recognition. The main contributions of our study can
be summarized as follows.

e« We propose an end-to-end unified framework that
includes ODR and FEGR modules. The ODR module
leverages a novel convolutional neural network (CNN)-
based network to detect and classify the type of
occlusion. Based on the identified occlusion type and
position, it reconstructs the occluded portions of the
silhouette sequence using a three-dimensional (3D)
GAN. The FEGR module uses a 3D CNN to extract
global and local spatiotemporal features and a two-
dimensional (2D) CNN to perform frame-by-frame
full-body feature extraction, thereby enhancing gait
recognition performance.

« We demonstrate the effectiveness of our proposed
framework through extensive experiments on two
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FIGURE 1. Example of occlusions in real-world applications. Top: a static occlusion in which concrete benches occlude a fixed portion of the person in an
image sequence; bottom: dynamic occlusion, where pillars occlude a person, and the occluded portion changes over time.

publicly available gait datasets, CASIA-B [24] and OU-
MVLP [25], with artificially added occlusions. The
experimental results show that our proposed framework
achieves superior performance in gait recognition under
conditions of occlusion, demonstrating its potential for
real-world applications.

Il. RELATED WORK

Various approaches have been developed for gait recognition.
These can be categorized into conventional and occlusion-
focused methods, as summarized in Table 1.

A. CONVENTIONAL GAIT RECOGNITION APPROACHES
1) MODEL-BASED APPROACHES
Model-based approaches focus on constructing 2D and/or 3D
representations of the human body to analyze the movement
of individual body parts. These methods extract both static
and dynamic gait features to enable human recognition. Early
approaches [26], [27], [28] fall into this category; these often
used simplified physical representations such as the dynamic
pendulum and stick models. For example, Yam et al. [26]
introduced a method that combined a bilateral symmetry
model and a coupled oscillator model inspired by pendulum
motion to capture simultaneous thigh and leg movements.
This combination facilitated the recognition of both human
walking and running patterns. Yoo et al. [28] developed a gait
recognition approach that used a neural network to create 2D
stick figures from gait silhouettes; these figures were then
analyzed using an artificial neural network to extract gait
features.

Recent advances in model-based approaches have shifted
towards the use of human pose estimation algorithms to
generate skeletal data from RGB (red, green, blue) images for
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gait recognition [29], [30], [31]. For example, PoseGait [29]
uses CNNs to estimate 3D human poses (i.e., the 3D
coordinates of body joints) from RGB images, and the
resulting skeletal data serve as inputs for spatiotemporal
feature extraction for gait recognition. Teepe et al. [30]
introduced GaitGraph, which leverages graph convolutional
networks (GCNs) to extract more refined spatiotemporal
features from skeletal data, as demonstrated on the CASIA-
B dataset [24]. Subsequently, they developed GaitGraph2
[31], combining multibranch GCNs and residual networks
to extract gait features from separate branches. Although
model-based approaches are generally robust to various
covariates, they can be affected by low resolution of
images and inaccuracies in pose estimation, leading to low
recognition accuracy.

2) APPEARANCE-BASED APPROACHES

Appearance-based approaches focus on extracting robust
features using traditional handcraft or modern CNNs from
silhouettes or RGB (Red, Green, Blue) images. They
can be categorized into two primary streams: template-
based and sequence-based approaches. The template-based
approaches [32], [33], [34], [35] transform gait sequences
into compact, representative template images by extracting
contour features and aggregating spatiotemporal informa-
tion. For example, Han and Bhanu [32] introduced GEI,
representing gait features by averaging a height-normalized
silhouette sequence for a complete gait cycle into a single
template image. Variations of GEI were later introduced;
these included gait entropy image (GEnl) [33], chrono gait
image (CGI) [34], and gait flow image (GFI) [35]. These
approaches primarily capture motion details, rendering them
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TABLE 1. Summary of conventional and occlusion-focused gait recognition approaches.

Approach type Category [references]

Summary Key methods

Model-based approaches

Conventional [26]-[31]

Constructs 2D/3D human body models to
analyze walking patterns and extract gait

Bilateral symmetry model, GCN
features for recognition.

Appearance-based approaches
[11], [18], [19], [32]-[37]

Extracts robust features from silhouettes or
RGB images; includes template-based and

GEI, GEnl, CGI, Genl, GFI,

sequence-based methods. part-based model, CNN

Reconstruction-free
approaches [13], [16], [17],
[38], [39]

Occlusion-focused

Extracts robust features to minimize the
impact of occlusions through various

Bayesian frameworks, fractal

. 1 intors
techniques. wavelet descriptors

Reconstruction-based
approaches [9], [20], [21]

Reconstructs occluded silhouettes before
feature extraction using neural networks and

GAN, Gaussian process modeling
advanced models.

resilient to variations in covariate conditions that affect static
parts of the human body.

In recent years, sequence-based approaches [11], [18],
[19], [36], [37] have become more popular than template-
based approaches for gait recognition, owing to advances in
3D CNNs and the processing power of graphics processing
units (GPUs). In these approaches, a silhouette sequence
is given as an input to the network for feature extraction
and recognition. Chao et al. [18] proposed an approach
named GaitSet that considered the silhouette sequence as a
set and employed 2D CNNs and 2D max-pooling layers to
extract intermediate feature maps. Subsequently, it split these
intermediate feature maps using horizontal pyramid mapping
to achieve the final feature representation. By contrast,
GaitPart [19] used a focal convolution layer that divided the
silhouette of a human body into several parts. A micromotion
capture module was used for each part to capture spatiotem-
poral features with greater discrimination. However, such
approaches can only extract detailed local information and
thus do not provide a sufficiently detailed global feature
representation. To overcome this problem, Lin et al. [11] pro-
posed GaitGL, which performs extraction at different levels
using a global and local feature extractor (GLFE) module.
Moreover, Chai et al. [36] employed Lagrange’s equation to
determine the significance of second-order temporal features
in gait recognition. Although these sequence-based methods
have demonstrated impressive performance under normal
walking conditions without occlusion, they generally assume
the availability of complete and unoccluded silhouette
sequences, limiting their applicability in real-world scenarios,
where occlusions frequently occur. This limitation may result
in incomplete or missing body parts in the silhouettes, in turn
leading to degraded recognition accuracy.

B. OCCLUSION-FOCUSED GAIT RECOGNITION
APPROACHES

1) RECONSTRUCTION-FREE APPROACHES
Reconstruction-free approaches extract robust features in a
manner that is comparatively insensitive to occlusion [13],
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[38], [39]. Examples include the work of Zhou et al. [38],
who proposed a Bayesian framework to fit silhouettes in the
presence of noises and occlusions. They introduced a simple
articulated model including spatial and temporal parameters
that could build substantial priors for extracting gait features.
In another study, a fractal scale wavelet-based gait descriptor
was introduced [39] to extract features over a complete gait
cycle. Chen et al. [13] proposed an approach to mitigate
the impact of silhouette incompleteness and occlusions on
gait recognition. They divided a height-normalized human
silhouette of a gait cycle into clusters; then, denoising was
performed in each cluster to calculate the dominant energy
image (DEI). Later, the FDEI was computed by combining
the DEI of a cluster with the positive difference between
consecutive frames. Finally, features were extracted from
the FDEI representation to tackle silhouette incompleteness
due to segmentation fault and occlusion. Furthermore,
Kosin et al. [14] considered occluded module exclusion
for handling partial occlusion. First, the GEI was divided
into four separate modules. Later, occlusion detection was
performed, and the corresponding occluded module was
excluded for gait recognition. However, these techniques
seem to be less effective in scenarios involving substantial
occlusion, especially when the visible areas shared between
the sample of the probe and the gallery are minimal; for
example, when the upper body of a probe and the lower body
of a gallery are occluded.

Recently, silhouette sequences have been used in feature
extraction to address the problem of occlusion in gait recogni-
tion. Xu et al. [16] introduced a method to estimate and align
the visible portions of the body, using a pairwise similarity
mask to identify corresponding regions between probe
and gallery samples. Similarly, Gupta and Chellappa [17]
developed a framework leveraging occlusion detection to
enhance discriminative feature learning, employing existing
state-of-the-art methods [11], [18], [19] to form the backbone.

2) RECONSTRUCTION-BASED APPROACHES

Reconstruction-based approaches [9], [20], [21] first recon-
struct occluded silhouettes and later extract features from
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the reconstructed silhouette sequence for gait recognition.
Hofmann et al. [40] proposed a reconstruction approach as a
preprocessing step that could be used with a gait recognition
method. First, they identified occluded silhouettes based
on pose; then, clean silhouettes were used to replace the
corrupted or occluded silhouettes. Roy et al. [20] predicted
occluded frames using the Gaussian process dynamical
model over a complete gait cycle; they later reconstructed the
occluded silhouette to extract features for gait recognition.
However, this approach was limited by the need to determine
the gait cycle in advance from an occluded silhouette
sequence; this is a particular problem when the silhouette
sequence is severely occluded. To overcome this limitation,
a conditional GAN-based approach has been proposed [9] to
perform silhouette sequence reconstruction, followed by use
of a CNN-based approach with GEI features for gait recogni-
tion. Moreover, Kumar et al. [21] applied the VGG-16 model
to identify occlusions and reconstruct occluded silhouettes,
integrating pose information as a one-hot vector within a vari-
ational autoencoder. The reconstructed silhouette sequence
was subsequently used to create GEI templates for feature
extraction and gait recognition. However, these approaches
are not end-to-end procedures; the silhouette sequence must
be reconstructed first, followed by feature extraction and
gait recognition using separate approaches. This makes the
process computationally expensive and labor-intensive.

lll. PROPOSED METHOD

A. OVERVIEW

We propose an end-to-end unified framework including two
modules: ODR and FEGR. The overview of the framework is
shown in Fig. 2. First, a silhouette sequence with or without
occlusion is provided to the framework. Then, ODR detects
the type and position of occlusion using a simple 3D CNN-
based network and reconstructs the occluded portion with
a 3D GAN. Finally, the FEGR module extracts features
from the reconstructed silhouette sequence and performs gait
recognition.

B. NOTATION

We denote by B the batch size, and by #; and 7, the numbers
of consecutive silhouette frames before and after temporal
downsampling, respectively. The input silhouette sequence to
the proposed framework is denoted by § € RE*Axwixhi
where c¢; is the number of channels, and #; and w; are the
height and width of each frame. The intermediate outputs
after the initial 3D CNN convolution are represented as Y71 €
Re2xfaxhixwi and yr2 g Reaxxhsxws regpectively, after
application of the 3D CNN and max-pool layers.

The global average pooling and the fully connected (FC)
layer are denoted by Ggaye(.) and FC(.), respectively. The
probability of predicting the occlusion type is given by F, €
RE, where L represents the predicted occlusion type. The
generator and discriminator networks for the ODR module
are denoted by G and D, respectively. The distributions
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of the ground truth silhouette sequence and the occluded
silhouette sequence are represented as X ~ pdata) and
Z ~ P(y), respectively. Overall, the loss function for GAN is
denoted by L(Gan). During feature extraction by our proposed
framework module, various intermediate and final features
are represented as XP, X0 pp, Xopp, Xhop, X3, XoU,
and X/l The temporal pooling (TP) and generalized-mean
(GeM) pooling operations are denoted by TP(.) and GeM(.),
respectively.

C. OCCLUSION DETECTION AND RECONSTRUCTION
Occlusion type estimation uses a CNN-based network con-
sisting of multiple 3D CNNs and max-pooling and FC layers
to extract features to detect the type of occlusion. A batch
of B samples, each consisting of #; consecutive silhouette
frames, is given to the network as input; this is represented
as § € ReX>wixhi wwhere ¢q is the number of channels,
and (h; x wyp) gives the height and width of each input
frame. Initially, input silhouette sequence S is passed to two
consecutive 3D CNNs with kernel sizes (3,3,3) and (3,1,1),
respectively, to provide output as YP! e Re2*2xtxw1 Next,
YP! is fed through the 3D CNN and max-pooling layer twice
to extract the spatiotemporal features as Y72 € R¢4*72x/3xw3
Then, the global average pooling and FC layer are used to
classify the type of occlusion as follows:

Fes = FC(Gayg(YP%) (1)

where Gge(.) and FC(.) are the global average pooling
and FC layer respectively. Fo; € RE is the probability of
predicting the occlusion type, and L denotes the number of
the occlusion type. Finally, the maximum probability of the
occlusion type is calculated as follows:

N

L = arg_max(Fs) ()

where L € {0,1,2,...,n} is the predicted occlusion type.
After the occlusion type has been estimated, GAN is used to
reconstruct the occluded portion of the silhouette sequence
based on the information of occlusion type.

Silhouette sequence reconstruction is used to reconstruct
the occluded silhouette sequence after estimation of the type
of occlusion. For this purpose, we devised a 3D conditional
GAN model [9], [41] including generator G (i.e., encoder
and decoder) and discriminator ID networks, as shown in
Fig. 2. The generator G reconstructs the occluded silhouette
sequence, whereas the discriminator D distinguishes between
the reconstructed and ground truth silhouette sequence.
The overall procedure can be represented as a min-max
optimization process:

MinyMaxm)LiGan) 3)
LGany = Ex~pgyy 108 D)) + Ez~p, [log(1 — D(G(2)))]
4

where x represents the samples from the distribution of the
ground truth silhouette sequence, p(dawa), and z represents
those from the distribution of the occluded silhouette
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FIGURE 2. Overview of our proposed end-to-end unified framework for gait recognition based on occlusion silhouette sequences. The top module
handles occlusion detection and reconstruction (ODR), whereas the bottom module is for feature extraction and gait recognition (FEGR). A silhouette
sequence, with or without occlusion, is provided to the framework. The ODR module detects the type and position of occlusion and reconstructs the
occluded portion using a generative adversarial network (GAN). The FEGR module then extracts features from the reconstructed silhouette sequence and
performs gait recognition. Here, GeM and FC indicate the generalized mean and fully connected layer, respectively.

sequence, p(y). I is the cross-entropy of the binary classifier
of the discriminator. The generator G aims to minimize
its loss by generating the unoccluded silhouette sequence
from the occluded one that cannot be discerned by the
discriminator D. This can be expressed as follows:

MinG)LGan) = MinG)Ez~p,, [log(1 —D(G()N]  (5)

The discriminator D differentiates between the ground truth
and reconstructed silhouette sequences and can be expressed
as follows:

Maxp)LGan) = Maxp) {Exw(aaw [log D(x)]
+ Eevpg llog(1 = DG} 6)

The generator network G consists of an encoder and
decoder network that use 3D CNNs. The occluded silhouette
sequence passes through the encoder network, which down-
samples its overall spatial and temporal resolutions to a latent
vector. Table 2 shows the overall network architecture of the
generator. Each convolution layer in the encoder has a kernel
size of 4 x 4 x 4, strides of 2 x 2 x 2, and a ReLLU activation
function. Except for the first convolution layer, all the 3D
CNNs in the encoder network contain batch normalization
(BN) layers.

By contrast, the decoder network takes the downsampled
latent vector from the encoder network and restores it
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to the original image space. The decoder also contains
four convolution layers with similar but upstrides as the
encoder. Several skip connections [42] are used in the
generator network to facilitate the direct flow of low-level
features to the upsampling layers, as shown in Table 2.
The skip connection mitigates the problem of vanishing
gradients, ensuring that the network can effectively propagate
information from the earlier to later stages of the generator
network.

The discriminator network I determines whether the
reconstructed silhouette sequences differ from the ground
truth silhouette sequences. As shown in Table 2, it comprises
five 3D CNNs, the first four of which have kernel size of
4 x 4 x 4 and stride size of 2 x 2 x 2 and contain visual
and motion features. From the second to fourth convolution,
it also contains BN layers that reduce internal covariate shifts
and improve the stability of the model. The last layer has a
kernel size of 1 x 4 x 4 with a stride of 1 x 1x 1, giving the
output a binary classification.

D. FEATURE EXTRACTION FOR GAIT RECOGNITION

The FEGR module takes the reconstructed silhouette
sequence as an input for gait recognition. It includes two
separate pipelines for extracting features, as shown in Fig. 2.
The first is based on GaitGL [11] and is used for global and
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TABLE 2. Network structure of the generator and discriminator for reconstructing the silhouette sequence. The symbol v indicates the presence of a task,

whereas - indicates its absence.

Generator
Network Layer Activation | BN | Kernel | Stride | Padding | Inputchannel | Output channel | Output shape
Input silhouette sequence - - - - - - - 32 X 64 x 64
5 Conv3D (Layer 1) LeakyReLU - 4,44) | (2,2,2) (1,1,1) 1 64 16 x 32 x 32
é Conv3D (Layer 2) LeakyReLU v 4,44) | (2,2,2) (1,1,1) 64 128 8 x 16 x 16
= Conv3D (Layer 3) LeakyReLU | Vv 444 | 22,2) | (1,1, 128 256 4x8x%x8
Conv3D (Layer 4) LeakyReLU v 4,44) | (2,2,2) (1,1,1) 256 512 2x4x4
Trans. Conv3D (Layer 5) | LeakyReLU v 4,44) | (2,2,2) (1,1,1) 512 256 4x8x%x8
Concatenation (Layer 5, Layer 3)
5 Trans. Conv3D (Layer 6) \ LeakyReLU \ v \ (4,4.4) \ 222) \ (1,1,1) \ 256 \ 128 \ 8 x 16 x 16
It Concatenation (Layer 6, Layer 2)
a) Trans. Conv3D (Layer 7) \ LeakyReLU \ v \ (4,4.4) \ (2,2.2) \ (1,1,1) \ 128 \ 64 \ 16 x 32 x 32
Concatenation (Layer 7, Layer 1)
Trans. Conv3D (Layer 8) \ LeakyReLU \ - \ 4.4, \ (2,2,2) \ (1,1,1) \ 64 \ 1 \ 32 x 64 x 64
Discriminator
Input silhouette sequence - - - - - - - 32 X 64 x 64
Conv3D (Layer 1) LeakyReLU | - | 4.4.4) | 2.22) | (1,11 1 64 16 x 32 x 32
2 Conv3D (Layer 2) LeakyReLU v 4,44) | (2,2,2) (1,1,1) 64 128 8 X 16 x 16
5 Conv3D (Layer 3) LeakyReLU v 4,44) | (2,2,2) (1,1,1) 128 256 4x8x%x8
Conv3D (Layer 4) LeakyReLU | v | 4.4.4) | 2.22) | (1.1,1) 256 512 2 x4 x4
Conv3D (Layer 5) Sigmoid - 144 | (1,1,1) | (0,0,0) 512 1 1

part-based local features, whereas the second uses 2D CNN5s
and is for extracting frame-by-frame features.

To extract the spatiotemporal features, the reconstructed
silhouette sequence is fed through the first pipeline. First,
two 3D CNNs with different kernel sizes are applied to the
reconstructed silhouette sequence and give the output X7.
Then, the GLFE block takes X7 as its input and performs
two separate tasks: first, it uses a single 3D CNN to obtain
global features from X?; second, it performs a partition of X?
to obtain multiple parts. Next, 3D CNNs are applied to part
to obtain part-based spatiotemporal features. Global and local
part-based features are aggregated, resulting in an output
of XgLFE. In this experiment, the GLFE module was used
three times: global and local features from the first two times
were aggregated on the final use by pointwise addition and
concatenation. When the merged global and local features
have been obtained, TP is performed on Xg ;1 rg- Then, finally,
GeM pooling is used to obtain the final features from this
pipeline as follows:

X&'ep = TP(GeM (X0 o)) 7

where X2 is the final feature that is added to the features
from the second pipeline and then fed through the FC layers.

Similar to the feature extraction process of the first
pipeline, a copy of the reconstructed silhouette sequence is
fed through the second pipeline as shown in Fig. 2. Here,
we consider the 2D CNN for feature extraction based on a
frame-by-frame basis; it consists of two blocks with multiple
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2D CNNs and 2D max pool layers. First Block O takes the
reconstructed silhouette sequence and applies dual 2D CNN5s
with kernel sizes of (5,5) and (3,3) to each frame. Then, a 2D
max pooling layer is used to extract crucial framewise spatial
features. Block I takes the output of Block 0 and applies dual
2D CNNs and a single 2D max pooling layer to extract depth
spatial features for each frame, with kernel sizes of (3,3)
and (3,3), respectively. Dual 2D CNNs with similar kernel
sizes are then used to obtain the frame-level features (FLE)
as XﬁLE. We use a set pooling operation to obtain set-level
features as X;;LE, as well as GeM pooling to obtain the final
features as follows:

X'y = SP(GeM (X7, 1)) )

Finally, the features from both 