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ABSTRACT Gait recognition is an advanced biometric technology that can be used to identify individuals
based on their walking patterns, even from low-spatial-resolution image sequences from security surveillance
camera footage. Traditional gait recognition approaches rely on complete body information and often
overlook the challenge of occlusion. In real-world scenarios, various body parts may be occluded by physical
obstacles such as buildings, walls, fences, vehicles, trees, or even other individuals in crowded areas.
This occlusion results in a significant portion of the human body being unobserved, causing conventional
gait recognition approaches to fail to identify the person. To address this challenge, we have developed
a novel framework for gait recognition in the presence of occlusion, incorporating occlusion detection
and reconstruction (ODR) and feature extraction for gait recognition (FEGR) modules. The ODR module
identifies the occlusion type and reconstructs the occluded portions of the human body in a silhouette
sequence using three-dimensional (3D) generative adversarial networks, whereas the FEGRmodule extracts
partwise global and local features using 3D convolutional neural networks (CNNs) and full body features on
a frame-by-frame basis using two-dimensional CNNs. We validated our framework using the CASIA-B and
OU-MVLP datasets with artificially added occlusions and found that it showed superior performance, with
average rank-1 accuracies of 96.4%, 87.8%, and 69.2% for normal, carried object, and clothing variations
on CASIA-B and 58.9% on OU-MVLP, as well as 100.0% occlusion detection accuracy. These results
demonstrate the ability of our proposed framework to maintain superior gait recognition performance despite
the presence of occlusions.

INDEX TERMS Deep learning, feature extraction for gait recognition, gait recognition, gait recognition
against occlusion, occlusion detection and reconstruction.

I. INTRODUCTION
Gait recognition is a long-distance behavioral biometric
technology that can be used to recognize an individual based
on their unique walking patterns. Unlike other biometric
methods such as face, fingerprint, and iris recognition,
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in gait recognition, samples can be captured from a distance
without requiring the subject’s cooperation [1]. Moreover,
gait is difficult for an individual to disguise, as it is an
unconscious and natural movement. Therefore, it has various
potential uses, including in surveillance systems [2], digital
forensics [3], and criminal investigation [4].
Despite their potential, gait recognition systems that

work well in controlled laboratory environments often
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struggle in real-life scenarios owing to several challenges
known as covariates. Covariates may be associated with
the individual of interest, for instance, carried objects [5],
shoes and clothing [6], whereas others are associated
with the surrounding environment, such as viewing angle
deviations [7], [8], occlusions [9], walking surfaces, and
shadows. These covariates have a significant negative impact
on gait recognition [10]. Occlusion is considered to be the
most critical and challenging covariate [9], as it causes parts
of the subject to be missing from image sequences, resulting
in deterioration of the quality of the observed samples even
when the overall sequences appear to be of good quality.
In real-life applications, occlusions are likely to be due
to the presence of buildings, walls, fences, vehicles, trees,
or other walking individuals, especially in crowded areas
such as airports or railway stations. There are two forms
of occlusion that may affect gait recognition, depending on
how the occluder and the subject are positioned in an image
sequence: relative dynamic occlusion and relative static
occlusion [9]. In dynamic occlusion, the obscured part of the
subject undergoes continuous change throughout the image
sequence, whereas in relative static occlusion, the obscured
part remains constant [9]. Fig. 1 shows some examples of
relative static and dynamic occlusion.

Over the past two decades, research has focused on chal-
lenges in gait recognition related to viewpoint variation [7],
[8], [11], carried objects [5], [12], and clothing [6] in cases
where there is a mismatch of subject samples between the
probe and the gallery. However, although partial occlusion
of subjects is a more frequent and complex problem in real-
world scenarios, it has received far less attention. This gap
highlights the need formore effectivemethods to enhance gait
recognition accuracy in cases of occlusion; such methods are
essential for real-world applications. In this study, we aim to
address the limitations of previous research by developing a
novel approach specifically designed to tackle occlusion.

Existing approaches to occlusion can be categorized
into reconstruction-free and reconstruction-based methods.
Reconstruction-free methods focus on extracting robust
features from silhouette sequences for gait recognition.
For example, such approaches may extract energy image
features over a gait cycle [13], [14], [15] using gait energy
image (GEI) [14], [15] or frame difference energy image
(FDEI) [13]. However, although good recognition accuracy
was achieved with these approaches for a small degree of
occlusion, they lose temporal features and do not work when
a large portion of the body is occluded. More recently,
whole-silhouette sequences have been used to extract features
for gait recognition in cases of occlusion. For example,
a study [16] estimated the unoccluded portion of the
human body in a silhouette, followed by normalization and
registration of the body. Moreover, this study introduced a
pairwise masking technique to select corresponding visible
regions between matching pairs of silhouettes. Finally,
GaitGL [11], an existing state-of-the-art approach, was used
as the backbone for feature extraction from the masked

silhouette sequence and for gait recognition.Moreover, Gupta
and Chellappa [17] proposed a framework to detect occlusion
and generate occlusion encodings. This information could
be used to learn compelling occlusion-aware discriminative
features for gait recognition in cases with occlusion using
existing state-of-the-art approaches [11], [18], [19] as the
backbone.

By contrast, reconstruction-based approaches [9], [20],
[21] focus on reconstructing occluded silhouettes and extract-
ing features from the reconstructed silhouette sequence for
gait recognition. Roy et al. [20] estimated frames that
contained occlusion over a gait cycle using the Gaussian
process dynamical model and reconstructed them to extract
features for gait recognition; however, this approach required
the gait cycle to be determined in advance, which is difficult
for severely occluded sequences. To overcome the limitation,
a later study [9] used a generative adversarial network (GAN)
to reconstruct a silhouette sequence without the need to
know the gait cycle in advance. The GEI-based approach
was then used for feature extraction and gait recognition.
Another study [21] used the VGG-16 model to detect
occlusion and reconstruct the occluded frames in a gait
sequence, using pose information as a one-hot vector with a
variational autoencoder [22]. GEI was then generated using
the reconstructed silhouette sequence, and, finally, the GEI
was used to extract features for gait recognition using existing
methods such as GEINet [23]. However, these approaches
are limited by their lack of end-to-end processing; they
require separate steps for reconstruction, feature extraction,
and gait recognition, making the process time-consuming and
complicated.

In response to these challenges, in this paper we present
an end-to-end unified framework including two key modules:
(a) occlusion detection and reconstruction (ODR) and (b)
feature extraction for gait recognition (FEGR). A silhouette
sequence with or without occlusion is provided as an input
to the network. The ODR module detects whether the
sequence has occlusion; if so, it reconstructs the occluded
silhouette sequence. Next, the FEGR module performs
feature extraction using the reconstructed silhouette sequence
and gait recognition. The main contributions of our study can
be summarized as follows.

• We propose an end-to-end unified framework that
includes ODR and FEGR modules. The ODR module
leverages a novel convolutional neural network (CNN)-
based network to detect and classify the type of
occlusion. Based on the identified occlusion type and
position, it reconstructs the occluded portions of the
silhouette sequence using a three-dimensional (3D)
GAN. The FEGR module uses a 3D CNN to extract
global and local spatiotemporal features and a two-
dimensional (2D) CNN to perform frame-by-frame
full-body feature extraction, thereby enhancing gait
recognition performance.

• We demonstrate the effectiveness of our proposed
framework through extensive experiments on two
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FIGURE 1. Example of occlusions in real-world applications. Top: a static occlusion in which concrete benches occlude a fixed portion of the person in an
image sequence; bottom: dynamic occlusion, where pillars occlude a person, and the occluded portion changes over time.

publicly available gait datasets, CASIA-B [24] and OU-
MVLP [25], with artificially added occlusions. The
experimental results show that our proposed framework
achieves superior performance in gait recognition under
conditions of occlusion, demonstrating its potential for
real-world applications.

II. RELATED WORK
Various approaches have been developed for gait recognition.
These can be categorized into conventional and occlusion-
focused methods, as summarized in Table 1.

A. CONVENTIONAL GAIT RECOGNITION APPROACHES
1) MODEL-BASED APPROACHES
Model-based approaches focus on constructing 2D and/or 3D
representations of the human body to analyze the movement
of individual body parts. These methods extract both static
and dynamic gait features to enable human recognition. Early
approaches [26], [27], [28] fall into this category; these often
used simplified physical representations such as the dynamic
pendulum and stick models. For example, Yam et al. [26]
introduced a method that combined a bilateral symmetry
model and a coupled oscillator model inspired by pendulum
motion to capture simultaneous thigh and leg movements.
This combination facilitated the recognition of both human
walking and running patterns. Yoo et al. [28] developed a gait
recognition approach that used a neural network to create 2D
stick figures from gait silhouettes; these figures were then
analyzed using an artificial neural network to extract gait
features.

Recent advances in model-based approaches have shifted
towards the use of human pose estimation algorithms to
generate skeletal data from RGB (red, green, blue) images for

gait recognition [29], [30], [31]. For example, PoseGait [29]
uses CNNs to estimate 3D human poses (i.e., the 3D
coordinates of body joints) from RGB images, and the
resulting skeletal data serve as inputs for spatiotemporal
feature extraction for gait recognition. Teepe et al. [30]
introduced GaitGraph, which leverages graph convolutional
networks (GCNs) to extract more refined spatiotemporal
features from skeletal data, as demonstrated on the CASIA-
B dataset [24]. Subsequently, they developed GaitGraph2
[31], combining multibranch GCNs and residual networks
to extract gait features from separate branches. Although
model-based approaches are generally robust to various
covariates, they can be affected by low resolution of
images and inaccuracies in pose estimation, leading to low
recognition accuracy.

2) APPEARANCE-BASED APPROACHES
Appearance-based approaches focus on extracting robust
features using traditional handcraft or modern CNNs from
silhouettes or RGB (Red, Green, Blue) images. They
can be categorized into two primary streams: template-
based and sequence-based approaches. The template-based
approaches [32], [33], [34], [35] transform gait sequences
into compact, representative template images by extracting
contour features and aggregating spatiotemporal informa-
tion. For example, Han and Bhanu [32] introduced GEI,
representing gait features by averaging a height-normalized
silhouette sequence for a complete gait cycle into a single
template image. Variations of GEI were later introduced;
these included gait entropy image (GEnI) [33], chrono gait
image (CGI) [34], and gait flow image (GFI) [35]. These
approaches primarily capture motion details, rendering them

VOLUME 12, 2024 158599



K. Hasan et al.: Improving Gait Recognition Through Occlusion Detection

TABLE 1. Summary of conventional and occlusion-focused gait recognition approaches.

resilient to variations in covariate conditions that affect static
parts of the human body.

In recent years, sequence-based approaches [11], [18],
[19], [36], [37] have become more popular than template-
based approaches for gait recognition, owing to advances in
3D CNNs and the processing power of graphics processing
units (GPUs). In these approaches, a silhouette sequence
is given as an input to the network for feature extraction
and recognition. Chao et al. [18] proposed an approach
named GaitSet that considered the silhouette sequence as a
set and employed 2D CNNs and 2D max-pooling layers to
extract intermediate feature maps. Subsequently, it split these
intermediate feature maps using horizontal pyramid mapping
to achieve the final feature representation. By contrast,
GaitPart [19] used a focal convolution layer that divided the
silhouette of a human body into several parts. A micromotion
capture module was used for each part to capture spatiotem-
poral features with greater discrimination. However, such
approaches can only extract detailed local information and
thus do not provide a sufficiently detailed global feature
representation. To overcome this problem, Lin et al. [11] pro-
posed GaitGL, which performs extraction at different levels
using a global and local feature extractor (GLFE) module.
Moreover, Chai et al. [36] employed Lagrange’s equation to
determine the significance of second-order temporal features
in gait recognition. Although these sequence-based methods
have demonstrated impressive performance under normal
walking conditions without occlusion, they generally assume
the availability of complete and unoccluded silhouette
sequences, limiting their applicability in real-world scenarios,
where occlusions frequently occur. This limitation may result
in incomplete or missing body parts in the silhouettes, in turn
leading to degraded recognition accuracy.

B. OCCLUSION-FOCUSED GAIT RECOGNITION
APPROACHES
1) RECONSTRUCTION-FREE APPROACHES
Reconstruction-free approaches extract robust features in a
manner that is comparatively insensitive to occlusion [13],

[38], [39]. Examples include the work of Zhou et al. [38],
who proposed a Bayesian framework to fit silhouettes in the
presence of noises and occlusions. They introduced a simple
articulated model including spatial and temporal parameters
that could build substantial priors for extracting gait features.
In another study, a fractal scale wavelet-based gait descriptor
was introduced [39] to extract features over a complete gait
cycle. Chen et al. [13] proposed an approach to mitigate
the impact of silhouette incompleteness and occlusions on
gait recognition. They divided a height-normalized human
silhouette of a gait cycle into clusters; then, denoising was
performed in each cluster to calculate the dominant energy
image (DEI). Later, the FDEI was computed by combining
the DEI of a cluster with the positive difference between
consecutive frames. Finally, features were extracted from
the FDEI representation to tackle silhouette incompleteness
due to segmentation fault and occlusion. Furthermore,
Kosin et al. [14] considered occluded module exclusion
for handling partial occlusion. First, the GEI was divided
into four separate modules. Later, occlusion detection was
performed, and the corresponding occluded module was
excluded for gait recognition. However, these techniques
seem to be less effective in scenarios involving substantial
occlusion, especially when the visible areas shared between
the sample of the probe and the gallery are minimal; for
example, when the upper body of a probe and the lower body
of a gallery are occluded.

Recently, silhouette sequences have been used in feature
extraction to address the problem of occlusion in gait recogni-
tion. Xu et al. [16] introduced a method to estimate and align
the visible portions of the body, using a pairwise similarity
mask to identify corresponding regions between probe
and gallery samples. Similarly, Gupta and Chellappa [17]
developed a framework leveraging occlusion detection to
enhance discriminative feature learning, employing existing
state-of-the-art methods [11], [18], [19] to form the backbone.

2) RECONSTRUCTION-BASED APPROACHES
Reconstruction-based approaches [9], [20], [21] first recon-
struct occluded silhouettes and later extract features from
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the reconstructed silhouette sequence for gait recognition.
Hofmann et al. [40] proposed a reconstruction approach as a
preprocessing step that could be used with a gait recognition
method. First, they identified occluded silhouettes based
on pose; then, clean silhouettes were used to replace the
corrupted or occluded silhouettes. Roy et al. [20] predicted
occluded frames using the Gaussian process dynamical
model over a complete gait cycle; they later reconstructed the
occluded silhouette to extract features for gait recognition.
However, this approach was limited by the need to determine
the gait cycle in advance from an occluded silhouette
sequence; this is a particular problem when the silhouette
sequence is severely occluded. To overcome this limitation,
a conditional GAN-based approach has been proposed [9] to
perform silhouette sequence reconstruction, followed by use
of a CNN-based approach with GEI features for gait recogni-
tion. Moreover, Kumar et al. [21] applied the VGG-16 model
to identify occlusions and reconstruct occluded silhouettes,
integrating pose information as a one-hot vector within a vari-
ational autoencoder. The reconstructed silhouette sequence
was subsequently used to create GEI templates for feature
extraction and gait recognition. However, these approaches
are not end-to-end procedures; the silhouette sequence must
be reconstructed first, followed by feature extraction and
gait recognition using separate approaches. This makes the
process computationally expensive and labor-intensive.

III. PROPOSED METHOD
A. OVERVIEW
We propose an end-to-end unified framework including two
modules: ODR and FEGR. The overview of the framework is
shown in Fig. 2. First, a silhouette sequence with or without
occlusion is provided to the framework. Then, ODR detects
the type and position of occlusion using a simple 3D CNN-
based network and reconstructs the occluded portion with
a 3D GAN. Finally, the FEGR module extracts features
from the reconstructed silhouette sequence and performs gait
recognition.

B. NOTATION
We denote by B the batch size, and by t1 and t2 the numbers
of consecutive silhouette frames before and after temporal
downsampling, respectively. The input silhouette sequence to
the proposed framework is denoted by S ∈ Rc1×t1×w1×h1 ,
where c1 is the number of channels, and h1 and w1 are the
height and width of each frame. The intermediate outputs
after the initial 3D CNN convolution are represented as Y p1 ∈

Rc2×t2×h1×w1 and Y p2 ∈ Rc4×t2×h3×w3 , respectively, after
application of the 3D CNN and max-pool layers.

The global average pooling and the fully connected (FC)
layer are denoted by Gavg(.) and FC(.), respectively. The
probability of predicting the occlusion type is given by Fcs ∈

RL , where L̂ represents the predicted occlusion type. The
generator and discriminator networks for the ODR module
are denoted by G and D, respectively. The distributions

of the ground truth silhouette sequence and the occluded
silhouette sequence are represented as x ∼ p(data) and
z ∼ p(z), respectively. Overall, the loss function for GAN is
denoted by L(GAN ). During feature extraction by our proposed
framework module, various intermediate and final features
are represented as Xp, XpGLFE , X

p
FLE , X

out
GLFE , X

out
SLE , X

out ,
and Xfinal . The temporal pooling (TP) and generalized-mean
(GeM) pooling operations are denoted by TP(.) and GeM (.),
respectively.

C. OCCLUSION DETECTION AND RECONSTRUCTION
Occlusion type estimation uses a CNN-based network con-
sisting of multiple 3D CNNs and max-pooling and FC layers
to extract features to detect the type of occlusion. A batch
of B samples, each consisting of t1 consecutive silhouette
frames, is given to the network as input; this is represented
as S ∈ Rc1×t1×w1×h1 , where c1 is the number of channels,
and (h1 × w1) gives the height and width of each input
frame. Initially, input silhouette sequence S is passed to two
consecutive 3D CNNs with kernel sizes (3,3,3) and (3,1,1),
respectively, to provide output as Y p1 ∈ Rc2×t2×h1×w1 . Next,
Y p1 is fed through the 3D CNN and max-pooling layer twice
to extract the spatiotemporal features as Y p2 ∈ Rc4×t2×h3×w3 .
Then, the global average pooling and FC layer are used to
classify the type of occlusion as follows:

Fcs = FC(Gavg(Y p2)) (1)

where Gavg(.) and FC(.) are the global average pooling
and FC layer respectively. Fcs ∈ RL is the probability of
predicting the occlusion type, and L denotes the number of
the occlusion type. Finally, the maximum probability of the
occlusion type is calculated as follows:

L̂ = arg_max(Fcs) (2)

where L̂ ∈ {0, 1, 2, . . . , n} is the predicted occlusion type.
After the occlusion type has been estimated, GAN is used to
reconstruct the occluded portion of the silhouette sequence
based on the information of occlusion type.

Silhouette sequence reconstruction is used to reconstruct
the occluded silhouette sequence after estimation of the type
of occlusion. For this purpose, we devised a 3D conditional
GAN model [9], [41] including generator G (i.e., encoder
and decoder) and discriminator D networks, as shown in
Fig. 2. The generator G reconstructs the occluded silhouette
sequence, whereas the discriminatorD distinguishes between
the reconstructed and ground truth silhouette sequence.
The overall procedure can be represented as a min-max
optimization process:

Min(G)Max(D)L(GAN ) (3)

L(GAN ) = Ex∼p(data)[logD(x)] + Ez∼p(z) [log(1 − D(G(z)))]

(4)

where x represents the samples from the distribution of the
ground truth silhouette sequence, p(data), and z represents
those from the distribution of the occluded silhouette
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FIGURE 2. Overview of our proposed end-to-end unified framework for gait recognition based on occlusion silhouette sequences. The top module
handles occlusion detection and reconstruction (ODR), whereas the bottom module is for feature extraction and gait recognition (FEGR). A silhouette
sequence, with or without occlusion, is provided to the framework. The ODR module detects the type and position of occlusion and reconstructs the
occluded portion using a generative adversarial network (GAN). The FEGR module then extracts features from the reconstructed silhouette sequence and
performs gait recognition. Here, GeM and FC indicate the generalized mean and fully connected layer, respectively.

sequence, p(z). E is the cross-entropy of the binary classifier
of the discriminator. The generator G aims to minimize
its loss by generating the unoccluded silhouette sequence
from the occluded one that cannot be discerned by the
discriminator D. This can be expressed as follows:

Min(G)L(GAN ) = Min(G)EZ∼p(Z ) [log(1 − D(G(z)))] (5)

The discriminator D differentiates between the ground truth
and reconstructed silhouette sequences and can be expressed
as follows:

Max(D)L(GAN ) = Max(D)

{
Ex∼p(data)[logD(x)]

+ Ez∼p(z)[log(1 − D(G(z)))]
}

(6)

The generator network G consists of an encoder and
decoder network that use 3D CNNs. The occluded silhouette
sequence passes through the encoder network, which down-
samples its overall spatial and temporal resolutions to a latent
vector. Table 2 shows the overall network architecture of the
generator. Each convolution layer in the encoder has a kernel
size of 4× 4× 4, strides of 2× 2× 2, and a ReLU activation
function. Except for the first convolution layer, all the 3D
CNNs in the encoder network contain batch normalization
(BN) layers.

By contrast, the decoder network takes the downsampled
latent vector from the encoder network and restores it

to the original image space. The decoder also contains
four convolution layers with similar but upstrides as the
encoder. Several skip connections [42] are used in the
generator network to facilitate the direct flow of low-level
features to the upsampling layers, as shown in Table 2.
The skip connection mitigates the problem of vanishing
gradients, ensuring that the network can effectively propagate
information from the earlier to later stages of the generator
network.

The discriminator network D determines whether the
reconstructed silhouette sequences differ from the ground
truth silhouette sequences. As shown in Table 2, it comprises
five 3D CNNs, the first four of which have kernel size of
4 × 4 × 4 and stride size of 2 × 2 × 2 and contain visual
and motion features. From the second to fourth convolution,
it also contains BN layers that reduce internal covariate shifts
and improve the stability of the model. The last layer has a
kernel size of 1× 4× 4 with a stride of 1× 1× 1, giving the
output a binary classification.

D. FEATURE EXTRACTION FOR GAIT RECOGNITION
The FEGR module takes the reconstructed silhouette
sequence as an input for gait recognition. It includes two
separate pipelines for extracting features, as shown in Fig. 2.
The first is based on GaitGL [11] and is used for global and
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TABLE 2. Network structure of the generator and discriminator for reconstructing the silhouette sequence. The symbol ✓indicates the presence of a task,
whereas – indicates its absence.

part-based local features, whereas the second uses 2D CNNs
and is for extracting frame-by-frame features.

To extract the spatiotemporal features, the reconstructed
silhouette sequence is fed through the first pipeline. First,
two 3D CNNs with different kernel sizes are applied to the
reconstructed silhouette sequence and give the output Xp.
Then, the GLFE block takes Xp as its input and performs
two separate tasks: first, it uses a single 3D CNN to obtain
global features from Xp; second, it performs a partition of Xp

to obtain multiple parts. Next, 3D CNNs are applied to part
to obtain part-based spatiotemporal features. Global and local
part-based features are aggregated, resulting in an output
of XpGLFE . In this experiment, the GLFE module was used
three times: global and local features from the first two times
were aggregated on the final use by pointwise addition and
concatenation. When the merged global and local features
have been obtained, TP is performed on XpGLFE . Then, finally,
GeM pooling is used to obtain the final features from this
pipeline as follows:

XoutGLFE = TP(GeM (XpGLFE )) (7)

where XoutGLFE is the final feature that is added to the features
from the second pipeline and then fed through the FC layers.

Similar to the feature extraction process of the first
pipeline, a copy of the reconstructed silhouette sequence is
fed through the second pipeline as shown in Fig. 2. Here,
we consider the 2D CNN for feature extraction based on a
frame-by-frame basis; it consists of two blocks with multiple

2D CNNs and 2D max pool layers. First Block 0 takes the
reconstructed silhouette sequence and applies dual 2D CNNs
with kernel sizes of (5,5) and (3,3) to each frame. Then, a 2D
max pooling layer is used to extract crucial framewise spatial
features. Block 1 takes the output of Block 0 and applies dual
2D CNNs and a single 2D max pooling layer to extract depth
spatial features for each frame, with kernel sizes of (3,3)
and (3,3), respectively. Dual 2D CNNs with similar kernel
sizes are then used to obtain the frame-level features (FLE)
as XpFLE . We use a set pooling operation to obtain set-level
features as XpFLE , as well as GeM pooling to obtain the final
features as follows:

XoutSLE = SP(GeM (XpFLE )) (8)

Finally, the features from both pipelines are concatenated as
Xout , and the FC layer and BN layer are applied to Xout to
obtain the final feature for gait recognition as follows:

Xfinal = BN (FC(Xout )) (9)

E. LOSS FUNCTION
We use a combined loss function that integrates triplet loss [9]
and cross-entropy loss [11] to train the proposed FEGR
module efficiently. The triplet loss is used to maximize the
distance between distinct classes and reduce the distance
within the same class. Conversely, the cross-entropy loss has
the classification objective to differentiate between various
subjects. During training, the final feature Xfinal is fed into
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FIGURE 3. Example of simulated occlusion of a subject. The occluded portion is visualized in gray; for the experiments, the occluded area was masked
with black (indicating zero values). L-0, L-1, L-2, L-3, and L-4 correspond to different levels of occlusion: L-0 represents 25% lower occlusion, L-1
represents 50% lower occlusion, L-2 represents 50% left occlusion, L-3 represents 50% right occlusion, and L-4 indicates no occlusion.

each loss function separately to compute the respective losses,
and the overall combined loss is then determined as follows:

Ltotal = Ltriplet + γLcross (10)

where Ltriplet and Lcross denote the triplet and cross-entropy
losses, respectively, and γ is a weighting parameter used
to control the trade-off between the triplet loss Ltriplet and
cross-entropy loss Lcross.

IV. EXPERIMENTS
A. DATASETS
There is no publicly available gait dataset containing
both real-world occlusion and the corresponding ground
truth. Therefore, similar to the approach used in previous
studies [9], [16], [21], [43], we artificially added different
occlusions to two popular and publicly available datasets:
CASIA-B [24] and OU-MVLP [25]. For purposes of our
experiments, we artificially simulated five types of occlusion
for each subject: L-0, L-1, L-2, L-3, and L-4, where L-0
denotes masking of the lower 25%, L-1 denotes masking
of the lower 50%, L-2 denotes masking of the left 50%, L-
3 denotes masking of the right 50%, and L-4 denotes no
masking of the silhouette sequence. Fig. 3 shows silhouette
sequences with these artificial occlusions for an example
subject.

CASIA-B [24] is among the most frequently used datasets
in the gait recognition domain. It comprises 124 subjects with
11 views ranging from 0◦ to 180◦ with 18◦ intervals. Each
separate view angle consists of ten sequences under three
different settings: (i) six sequences collected under normal
walking (NM) conditions, (ii) two sequences collected while
the subject is carrying a bag (BG), and the remaining two
sequences collected with clothing variations (CL). In this
study, we used only the 90◦ view angle for all sequences to
demonstrate our proposed framework. The initial 74 subjects

were allocated for training; the remaining 50 were set
aside for testing. During the testing phase, the first four
NM sequences were used to form the gallery without any
added occlusion. Occlusion was then artificially added to
the last two NM sequences, as well as the two BG and two
CL sequences, which were used as probes to evaluate the
performance of the framework.

OU-MVLP [25] is among the largest gait datasets,
comprising 10,307 subjects. Each subject has 14 different
viewing angles (0◦, 15◦, . . . , 90◦; 180◦, 195◦, . . . , 270◦)
with 15◦ intervals, where each view has two sequences.
For our experiments, we only considered the 90◦ view.
According to the official instructions, odd-numbered IDs
were used for training, and even-numbered IDs were used for
testing. In the testing phase, the second sequences were used
without occlusion as the gallery, and the first sequences with
artificially added occlusion were used as probes.

B. TRAINING DETAILS AND TESTING
1) TRAINING
During training, the occluded silhouette sequence is fed
into the proposed framework. The ODR module detects and
reconstructs the silhouette sequence; this is then passed to
the FEGR module, which obtains the output features as
Xfinal . The combined loss is then used to compute the loss,
incorporating the Batch All (BA+) triplet loss [11], [19]. The
training batch size was set to (M ,K ), where M represents
the number of subjects in each batch, and K represents the
number of sequences for each subject.

2) TESTING
During the test phase, the occluded silhouette sequence is fed
into the framework. Here, accuracy, precision, recall, and F1-
score [44] were used to evaluate the detection of occlusion,
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and the average L2 distance between the reconstructed and
ground truth silhouette sequence was used to evaluate the
reconstruction accuracy. For evaluation of the FEGR, the
overall test dataset was divided into a gallery set and the probe
set. The distance between the gallery and probe samples
was defined as the average Euclidean distance between the
corresponding feature vectors. We used rank-1 accuracy to
evaluate the performance of the proposed framework for gait
recognition.

C. IMPLEMENTATION DETAILS
To preprocess the silhouette sequence, we used a the process
described previously [11]; specifically, the silhouette image
was normalized to a size of 64 × 64. After normalizing
the silhouette sequence, we artificially added the occlusion,
as described in section IV-A. During training, the frame
sequence length was set to 32; if the length of the sequence
was less than 16 frames, it was discarded, whereas it was
repeatedly sampled if it was more than 16 frames and
less than 32 frames. All experiments were performed on a
single NVIDIA GeForce RTX 3090 Ti GPU using a Linux
operating system with Python 3.9.2 and PyTorch 1.10.0.
For both datasets, the batch size (M ,K ) was configured to
be (16, 3), where 16 is the number of subjects and 3 is
the number of sequences per subject. The whole training
and test procedure was performed in an end-to-end manner;
specifically, the ODR and FEGR modules were trained
and tested concurrently. The learning rate (LR) was set to
0.0001 for the ODR module.

For the FEGR module, we employed different hyperpa-
rameters for the CASIA-B and OU-MVLP datasets. For the
CASIA-B dataset, the FEGR module was trained for 80k
iterations, and the weight decay was set to 5.0e-4. The LR
was initially set to 0.0001 and reduced to 0.0000 after 70k
iterations. For the OU-MVLP dataset, we trained the FEGR
module for 210k iterations with an initial weight decay of 0;
after 200k iterations, the weight decay was reset to 0.0005.
The hyperparameter γ was set to 1.0 to optimize the loss
function for the FEGR module. The LR was initially set to
0.0001 and reset to 0.00001 and 0.000001 after 150k and
200k iterations, respectively.

1) COMPUTATION TIME
Using the aforementioned hardware specification, the train-
ing process for the CASIA-B dataset was completed in
approximately 3 days, whereas that for the OU-MVLP
dataset took approximately 8 days. For testing, the end-to-
end process of identifying a subject, including the operations
of the ODR and the FEGRmodules, took about 1.5 s with the
CASIA-B dataset and 1.8 s with the OU-MVLP dataset.

D. ACCURACY OF OCCLUSION DETECTION AND
RECONSTRUCTION
Gait recognition accuracy is highly dependent on the quality
of silhouette sequence reconstruction, which in turn relies
on the detection capabilities of occlusion type estimation.

To thoroughly assess the performance of our framework,
we evaluated the occlusion detection and silhouette recon-
struction processes separately. For occlusion detection,
we used accuracy, precision, recall, and F1-score metrics,
as outlined in [44]. For silhouette sequence reconstruc-
tion, we measured performance by calculating the average
L2 distance between the reconstructed silhouette sequence
and the ground truth. The results of these evaluations
are presented in Table 3. Figs. 4, and 5 illustrate sample
silhouette sequences with artificial occlusion, showing the
reconstructed sequences generated by our proposed ODR
module and the sVideoWGAN-hinge method [9], alongside
the ground truth sequences.

Our proposed ODR module perfectly detected occlusion
and obtained 100.0% scores in all cases for each of the
considered metrics (accuracy, precision, recall, and F1-score)
as shown in Table 3. Moreover, it achieved L2 distances of
8.3% for the lower 25% occlusion (i.e., L-0) and 11.2%
for the lower 50%. Left- and right-side occlusions (i.e., L-
2 and L-3) yielded similar performance metrics, indicating
that the proposed ODR module can effectively reconstruct
a silhouette sequence regardless of whether the occlusion
is on the left or right side. These results indicate that
our proposed ODR module can perfectly a reconstructed
silhouette sequence even when 50% of the human body is
occluded.

E. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
We compared the recognition accuracy of our proposed
FEGR module with those of state-of-the-art gait recog-
nition methods, specifically direct matching (DM) [45],
sVideoWGAN-hinge [9], GaitSet [18], GaitPart [19], and
GaitGL [11]. Initially, we evaluated the gait recognition
performance of these methods (GaitSet, GaitPart, and
GaitGL) without reconstruction to establish a baseline accu-
racy under occlusion conditions. Subsequently, we assessed
the recognition accuracy using the reconstructed silhouette
sequences from our proposed ODR module, demonstrating
the effectiveness of our approach.

1) EVALUATION USING CASIA-B
The results for the CASIA-B dataset with and without
reconstruction of occluded silhouette sequences are shown
in Tables 4 and Fig. 6. Each method for gait recognition
showed improved accuracy when the reconstructed silhouette
sequence was used, demonstrating the robustness of our
approach. For lower-portion occlusion, the accuracy was
slightly improved under the NM and BG conditions, whereas
there were larger improvements under the CL condition
for lower-25% occlusion (i.e., L-0 type occlusion). Greater
improvement was seen for 50% occlusion (i.e., L-1 type
occlusion). For example, the rank-1 accuracy of GaitSet
improved from 2% to 14%, and that of GaitPart from 11%
to 16%, whereas the accuracy of our method was enhanced
from 3% to 6%.
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TABLE 3. Evaluation of occlusion detection and reconstruction of silhouette sequence.

FIGURE 4. Example of a reconstructed silhouette sequence from the CASIA-B dataset. (a) Input silhouette sequence with 50% lower occlusion, (b) the
occluded sequence reconstructed using the sVideoWGAN-hinge approach, (c) the occluded sequence reconstructed using the proposed approach, and
(d) the ground truth silhouette sequence. Green and red denote pixels that were incorrectly reconstructed or remained unreconstructed, respectively.

FIGURE 5. Example of a reconstructed silhouette sequence from the OU-MVLP dataset. (a) Input silhouette sequence with 50% lower occlusion, (b) the
occluded sequence reconstructed using the sVideoWGAN-hinge approach, (c) the occluded sequence reconstructed using the proposed approach, and
(d) the ground truth silhouette sequence. Green and red denote pixels that were incorrectly reconstructed or remained unreconstructed, respectively.

Regarding occlusions on the left and right sides, for
left-side occlusions (i.e., L-2), the accuracy of the results was
degraded severelywhen the occluded silhouette sequencewas
used for gait recognition; for example, the rank-1 accuracy
ranged from 5% to 7% for GaitSet and from 9% to 12%
for GaitPart. This may have been because subjects were
walking from right to left in the CASIA-B dataset; this
meant that the visible walking motion was predominantly

on the left side, resulting in a negative impact on gait
recognition when a subject was occluded on the left side.
However, the accuracy improved substantially for each of
the benchmarks (GaitSet, GaitPart, and GaitGL) when the
reconstructed silhouette sequence was used. For example, the
rank-1 accuracy improved from 18% to 51% for GaitSet,
and from 24% to 62% for GaitPart. Furthermore, greater
improvements in accuracy were observed under the CL and
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TABLE 4. Rank-1 accuracy (%) for silhouette sequences from the CASIA-B dataset with different types of occlusion under normal walking (NM), carrying
bags (BG), and wearing coats (CL) sequences with (W/) and without (W/O) reconstruction.

FIGURE 6. Averaged rank-1 accuracy (%) for occlusions of types L-0, L-1, L-2, L-3, and L-4 using various methods, with and without reconstruction of the
silhouette sequence, on the CASIA-B dataset with subjects walking normally (NM), carrying bags (BG), and wearing coats (CL) sequences. Here, L-0, L-1,
L-2, L-3, and L-4 represent different levels of occlusion in the silhouette sequences: L-0, lower 25% occluded; L-1, lower 50% occluded; L-2, left 50%
occluded; L-3, right 50% occluded; L-4, no occlusion.

BG conditions compared with NM when the reconstructed
silhouette sequence was used, particularly for lower and left-
side occlusions; this was because carried objects could be
observed in these types of occlusion, and our proposed ODR
module could eliminate the effects of carried object and
clothing variations.

In addition, our FEGR module achieved superior accuracy
compared with various state-of-the-art methods: DM [45],
sVideoWGAN-hinge [9], GaitSet [18], GaitPart [19], and
GaitGL [11]. The FEGRmodule showed large improvements
in accuracy compared with sVideoWGAN-hinge, GaitSet,
and GaitPart, and its accuracy was comparable with that
of GaitGL for lower-portion occlusion (i.e., L-0 and L-
1 types). For example, our FEGR module surpassed the
average rank-1 accuracy of GaitSet by 2%, 24%, and
38%, respectively, for the NM, BG, and CL conditions
with silhouette sequence reconstruction, and it surpassed
that of GaitGL by 1% for the BG and CL condition.
Moreover, our FEGR module showed significantly improved
performance for left- and right-side occlusion compared
with other methods. For example, it surpassed the rank-1
accuracy of GaitSet by 17% to 29% and 3% to 10% for
left- and right-side occlusion (i.e., L-2/L-3 type, respectively,
and showed improvements of 3% to 7% and 1% to 10%
compared with the baseline approach, GaitGL. Moreover, the
GEI-based DM approach exhibited minimal accuracy, with
an average rank-1 accuracy of 41.2% without reconstruction
of the silhouette, and sVideoWGAN achieved 53.9%; our
proposed method surpassed these by 43.3% and 30.6%,

respectively. These results indicate that the ODR module
of our proposed framework can reconstruct a silhouette
sequence while preserving its discrimination ability, and the
FEGR module achieves superior gait recognition accuracy.

2) EVALUATION USING OU-MVLP
The results for the OU-MVLP dataset are shown in Table 5,
and Fig. 7 with and without reconstruction of the silhouette
sequence. With reconstruction, the rank-1 accuracy improved
from 5.6% to 30.8% for lower 25% occlusion (i.e., L-0
type) and from 21.1% to 28.4% for L-1-type occlusion.
These results indicates that our proposed ODRmodule works
better for higher occlusion levels. By contrast, for left- and
right-side occlusion, the rank-1 accuracies without silhouette
sequence reconstruction were 1.1% and 2.0%. However, after
reconstruction of the silhouette sequence with our proposed
ODR module, these accuracies showed improvements of
25.7%, 28.6%, and 34.1% for L-2-type occlusion and 23.4%,
32.9%, and 30.0% for L-3-type occlusion compared with the
GaitSet, GaitPart, and GaitGL methods.

In addition, our FEGR module achieved the best accuracy
among the methods tested, showing improvements of 7.0%,
5.8%, 8.1%, and 7.6% for L-0, L-1, L-2, and L-3 type
occlusion, respectively, compared with GaitSet [18]. Its
accuracy was comparable with that of baseline approach
GaitGL [11], with improvements of 0.5%, 0.6%, 0.2%,
and 0.2% for L-0, L-1, L-2, and L-3 type occlusions,
respectively. These results indicate that our FEGR module
extracts more profound features for gait recognition. More-
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TABLE 5. Rank-1 accuracy (%) for silhouette sequences with (W/) and
without (W/O) reconstruction on the OU-MVLP dataset.

FIGURE 7. Averaged rank-1 accuracy (%) for occlusions of types L-0, L-1,
L-2, L-3, and L-4 using various methods, with and without reconstruction
of the silhouette sequence, on the OU-MVLP dataset. Here, L-0, L-1, L-2,
L-3, and L-4 represent different levels of occlusion in the silhouette
sequences: L-0, lower 25% occluded; L-1, lower 50% occluded; L-2, left
50% occluded; L-3, right 50% occluded; L-4, no occlusion.

over, our proposed approach significantly outperformed the
GEI-based DM approach without reconstruction of the sil-
houette sequence and the sVideoWGAN-hinge approachwith
silhouette sequence reconstruction. Specifically, the average
rank-1 accuracy improvements were 31.4% compared with
DM and 13.2% compared with sVideoWGAN-hinge.

F. DISCUSSION
1) COMPARISON WITH AND WITHOUT OCCLUSION
DETECTION
To evaluate the impact of occlusion detection on gait
recognition accuracy, we conducted experiments on the
CASIA-B dataset under different walking conditions: NM,
BG, and CL, including all considered occlusion patterns.
As shown in Table 6, significant improvements were achieved
by incorporating occlusion detection. For instance, when
using the GaitSet model [18], the rank-1 accuracy increased
from 66.6% to 87.2% for the NM condition, from 57.4% to
73.6% for BG, and from 37.4% to 49.4% for CL. Similarly,
the GaitPart model [19] showed improvements from 69.2%
to 92.8% (NM), 59.8% to 82.0% (BG), and 40.8% to
60.2% (CL) with the addition of occlusion detection.
The GaitGL model [11] also benefited significantly, with
accuracy increasing from 82.4% to 95.4% (NM), 75.4%
to 85.2% (BG), and 55.6% to 67.0% (CL). Notably, our
proposed method outperformed all other models used in
the comparison, achieving the highest rank-1 accuracies

TABLE 6. Average rank-1 accuracy (%) for all occlusion patterns on the
CASIA-B dataset, with and without occlusion detection; – denotes the
absence of a task, and ✓indicates its presence.

of 96.4%, 87.8%, and 69.2% for NM, BG, and CL,
respectively, when both occlusion detection and reconstruc-
tion were employed. These results clearly indicate that
the incorporation of occlusion detection and reconstruction
substantially enhances gait recognition performance across
various occlusion scenarios. The consistent improvements
across different models and occlusion types support the
effectiveness of our unified framework in mitigating the
adverse effects of occlusions on gait recognition accuracy.

2) LIMITATIONS
The proposed method, although an effective means of
improving gait recognition accuracy under occluded con-
ditions, has some limitations in practical applications.
For instance, the method relies on artificially generated
occlusions, which may not fully capture the complexity and
variability of real-world occlusions. In practice, occlusions
can vary significantly in terms of shape, size, and location,
making it challenging for the proposed method to gener-
alize to unseen occlusions. In addition, the reconstruction
process, although effective for the tested datasets, might be
computationally intensive and perform less well on larger
datasets or in real-time applications. To improve the method,
future work could focus on enhancing the robustness of
the reconstruction module by training it on a more diverse
set of occlusions, including those encountered in real-world
scenarios.Moreover, optimizing the computational efficiency
of themethod, potentially by incorporating lightweight neural
network architectures or advanced optimization techniques,
could make it more suitable for real-time applications.

V. CONCLUSION
In this paper, we have introduced an end-to-end unified
framework comprising ODR and FEGR modules to address
the challenges of gait recognition under conditions of
occlusion. The ODR module estimates the type of occlusion
in a gait sequence, and, based on this detection, a novel
video-based GAN reconstructs the occluded portions of the
silhouette sequence. The FEGR module then extracts both
global and local features from the entire silhouette sequence,
as well as frame-by-frame features from the reconstructed
sequence, to enhance gait recognition. To validate the
effectiveness of our proposed framework, we conducted
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experiments using artificially simulated occlusions on pub-
licly available datasets (CASIA-B and OU-MVLP). Our
approach demonstrated significant performance improve-
ments, achieving average rank-1 accuracies of 96.4%, 87.8%,
and 69.2% on CASIA-B under normal, carried object,
and clothing variation conditions, respectively, along with
100.0% accuracy in occlusion type detection. On the OU-
MVLP dataset, the framework achieved an average rank-
1 accuracy of 58.9%, again with 100.0% occlusion type
detection accuracy. These results demonstrate the ability
of our framework to substantially enhance gait recognition
accuracy even in the presence of occlusions. In future
work, we aim to extend our evaluation by incorporating
a wide variety of occlusions and collecting real-world
occlusion samples. This will further validate the robustness
and applicability of our proposed framework in more diverse
scenarios.

ACKNOWLEDGMENT
(Kamrul Hasan and Md. Zasim Uddin are co-first authors.)

REFERENCES
[1] M. Z. Uddin, D. Muramatsu, T. Kimura, Y. Makihara, and Y. Yagi,

‘‘MultiQ: Single sensor-based multi-quality multi-modal large-scale
biometric score database and its performance evaluation,’’ IPSJ Trans.
Comput. Vis. Appl., vol. 9, no. 1, pp. 1–25, Dec. 2017.

[2] I. Bouchrika, M. Goffredo, J. Carter, and M. Nixon, ‘‘On using gait
in forensic biometrics,’’ J. Forensic Sci., vol. 56, no. 4, pp. 882–889,
Jul. 2011.

[3] H. Iwama, D. Muramatsu, Y. Makihara, and Y. Yagi, ‘‘Gait verification
system for criminal investigation,’’ IPSJ Trans. Comput. Vis. Appl., vol. 5,
no. 1, pp. 163–175, 2013.

[4] N. Lynnerup and P. K. Larsen, ‘‘Gait as evidence,’’ IET Biometrics, vol. 3,
no. 2, pp. 47–54, 2014.

[5] M. Mizuno, T. Fujita, Y. Kawanishi, D. Deguchi, and H. Murase, ‘‘Subjec-
tive baggage-weight estimation based on human walking behavior,’’ IEEE
Access, vol. 12, pp. 39390–39398, 2024.

[6] M. Altab Hossain, Y. Makihara, J. Wang, and Y. Yagi, ‘‘Clothing-
invariant gait identification using part-based clothing categorization and
adaptive weight control,’’ Pattern Recognit., vol. 43, no. 6, pp. 2281–2291,
Jun. 2010.

[7] D. Muramatsu, A. Shiraishi, Y. Makihara, Md. Z. Uddin, and Y. Yagi,
‘‘Gait-based person recognition using arbitrary view transformation
model,’’ IEEE Trans. Image Process., vol. 24, no. 1, pp. 140–154,
Jan. 2015.

[8] Y. Makihara, A. Mansur, D. Muramatsu, Z. Uddin, and Y. Yagi,
‘‘Multi-view discriminant analysis with tensor representation and its
application to cross-view gait recognition,’’ in Proc. 11th IEEE Int. Conf.
Workshops Autom. Face Gesture Recognit. (FG), vol. 1, May 2015,
pp. 1–8.

[9] M. Z. Uddin, D. Muramatsu, N. Takemura, M. A. R. Ahad, and Y. Yagi,
‘‘Spatio-temporal silhouette sequence reconstruction for gait recognition
against occlusion,’’ IPSJ Trans. Comput. Vis. Appl., vol. 11, no. 1, pp. 1–18,
Dec. 2019.

[10] I. Rida, N. Almaadeed, and S. Almaadeed, ‘‘Robust gait recognition: A
comprehensive survey,’’ IET Biometrics, vol. 8, no. 1, pp. 14–28, Jan. 2019.

[11] B. Lin, S. Zhang, and X. Yu, ‘‘Gait recognition via effective global-local
feature representation and local temporal aggregation,’’ inProc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 14628–14636.

[12] M. Z. Uddin, T. T. Ngo, Y. Makihara, N. Takemura, X. Li, D. Muramatsu,
and Y. Yagi, ‘‘The OU-ISIR large population gait database with real-life
carried object and its performance evaluation,’’ IPSJ Trans. Comput. Vis.
Appl., vol. 10, no. 1, pp. 1–11, Dec. 2018.

[13] C. Chen, J. Liang, H. Zhao, H. Hu, and J. Tian, ‘‘Frame difference energy
image for gait recognition with incomplete silhouettes,’’ Pattern Recognit.
Lett., vol. 30, no. 11, pp. 977–984, Aug. 2009.

[14] P. Nangtin, P. Kumhom, and K. Chamnongthai, ‘‘Gait identification with
partial occlusion using six modules and consideration of occluded module
exclusion,’’ J. Vis. Commun. Image Represent., vol. 36, pp. 107–121,
Apr. 2016.

[15] J. Ortells, R. A. Mollineda, B. Mederos, and R. Martín-Félez, ‘‘Gait
recognition from corrupted silhouettes: A robust statistical approach,’’
Mach. Vis. Appl., vol. 28, nos. 1–2, pp. 15–33, Feb. 2017.

[16] C. Xu, S. Tsuji, Y. Makihara, X. Li, and Y. Yagi, ‘‘Occluded gait
recognition via silhouette registration guided by automated occlusion
degree estimation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops
(ICCVW), Oct. 2023, pp. 3191–3201.

[17] A. Gupta and R. Chellappa, ‘‘You can run but not hide: Improving gait
recognition with intrinsic occlusion type awareness,’’ in Proc. IEEE/CVF
Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2024, pp. 5881–5890.

[18] H. Chao, Y. He, J. Zhang, and J. Feng, ‘‘GaitSet: Regarding gait as a set
for cross-view gait recognition,’’ in Proc. AAAI Conf. Artif. Intell., vol. 33,
2019, pp. 8126–8133.

[19] C. Fan, Y. Peng, C. Cao, X. Liu, S. Hou, J. Chi, Y. Huang, Q. Li, and
Z. He, ‘‘GaitPart: Temporal part-based model for gait recognition,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 14213–14221.

[20] A. Roy, S. Sural, J. Mukherjee, and G. Rigoll, ‘‘Occlusion detection and
gait silhouette reconstruction from degraded scenes,’’ Signal, Image Video
Process., vol. 5, no. 4, pp. 415–430, Nov. 2011.

[21] S. S. Kumar, B. Singh, P. Chattopadhyay, A. Halder, and L. Wang,
‘‘BGaitR-net: An effective neural model for occlusion reconstruction in
gait sequences by exploiting the key pose information,’’ Expert Syst. Appl.,
vol. 246, Jul. 2024, Art. no. 123181.

[22] D. P. Kingma and M. Welling, ‘‘Stochastic gradient VB and the variational
auto-encoder,’’ in Proc. 2nd Int. Conf. Learn. Represent., vol. 19, 2014,
p. 121.

[23] K. Shiraga, Y. Makihara, D. Muramatsu, T. Echigo, and Y. Yagi, ‘‘GEINet:
View-invariant gait recognition using a convolutional neural network,’’ in
Proc. Int. Conf. Biometrics (ICB), Jun. 2016, pp. 1–8.

[24] S. Yu, D. Tan, and T. Tan, ‘‘A framework for evaluating the effect
of view angle, clothing and carrying condition on gait recognition,’’
in Proc. 18th Int. Conf. Pattern Recognit. (ICPR), vol. 4, Aug. 2006,
pp. 441–444.

[25] N. Takemura, Y. Makihara, D. Muramatsu, T. Echigo, and Y. Yagi, ‘‘Multi-
view large population gait dataset and its performance evaluation for cross-
view gait recognition,’’ IPSJ Trans. Comput. Vis. Appl., vol. 10, no. 1, p. 4,
Feb. 2018.

[26] C. Yam, M. S. Nixon, and J. N. Carter, ‘‘Automated person recognition
by walking and running via model-based approaches,’’ Pattern Recognit.,
vol. 37, no. 5, pp. 1057–1072, 2004.

[27] L. Wang, H. Ning, T. Tan, and W. Hu, ‘‘Fusion of static and dynamic body
biometrics for gait recognition,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 14, no. 2, pp. 149–158, Feb. 2004.

[28] J.-H. Yoo, D. Hwang, K.-Y. Moon, and M. S. Nixon, ‘‘Automated human
recognition by gait using neural network,’’ in Proc. 1st Workshops Image
Process. Theory, Tools Appl., Nov. 2008, pp. 1–6.

[29] R. Liao, S. Yu, W. An, and Y. Huang, ‘‘A model-based gait recognition
method with body pose and human prior knowledge,’’ Pattern Recognit.,
vol. 98, Feb. 2020, Art. no. 107069.

[30] T. Teepe, A. Khan, J. Gilg, F. Herzog, S. Hörmann, and G. Rigoll, ‘‘Gait-
graph: Graph convolutional network for skeleton-based gait recognition,’’
in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2021, pp. 2314–2318.

[31] T. Teepe, J. Gilg, F. Herzog, S. Hörmann, and G. Rigoll, ‘‘Towards a deeper
understanding of skeleton-based gait recognition,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2022,
pp. 1568–1576.

[32] J. Han and B. Bhanu, ‘‘Individual recognition using gait energy image,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 316–322,
Feb. 2006.

[33] K. Bashir, T. Xiang, and S. Gong, ‘‘Gait recognition using gait entropy
image,’’ in Proc. 3rd Int. Conf. Imag. Crime Detection Prevention, 2009,
pp. 1–6.

[34] J. Liu and N. Zheng, ‘‘Gait history image: A novel temporal template for
gait recognition,’’ in Proc. IEEE Multimedia Expo. Int. Conf., Jul. 2007,
pp. 257–270.

[35] T. H. W. Lam, K. H. Cheung, and J. N. K. Liu, ‘‘Gait flow image:
A silhouette-based gait representation for human identification,’’ Pattern
Recognit., vol. 44, no. 4, pp. 973–987, Apr. 2011.

VOLUME 12, 2024 158609



K. Hasan et al.: Improving Gait Recognition Through Occlusion Detection

[36] T. Chai, A. Li, S. Zhang, Z. Li, and Y. Wang, ‘‘Lagrange motion
analysis and view embeddings for improved gait recognition,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 20217–20226.

[37] J. Chen, Z. Wang, C. Zheng, K. Zeng, Q. Zou, and L. Cui, ‘‘GaitAMR:
Cross-view gait recognition via aggregated multi-feature representation,’’
Inf. Sci., vol. 636, Jul. 2023, Art. no. 118920.

[38] Z. Zhou, A. Prugel-Bennett, and R. I. Damper, ‘‘A Bayesian framework for
extracting human gait using strong prior knowledge,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 11, pp. 1738–1752, Nov. 2006.

[39] G. Zhao, L. Cui, and H. Li, ‘‘Gait recognition using fractal scale,’’ Pattern
Anal. Appl., vol. 10, no. 3, pp. 235–246, Jul. 2007.

[40] M. Hofmann, D.Wolf, and G. Rigoll, ‘‘Identification and reconstruction of
complete gait cycles for person identification in crowded scenes,’’ in Proc.
Intern. Conf. Comput. Vis. Theory Appl. (VISAPP), 2011, pp. 1–22.

[41] C. Vondrick, H. Pirsiavash, andA. Torralba, ‘‘Generating videoswith scene
dynamics,’’ inProc. Adv. Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–11.

[42] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. 18th Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent., vol. 9351, 2015, pp. 234–241.

[43] A. Gupta and V. B. Semwal, ‘‘Occluded gait reconstruction in multi person
gait environment using different numerical methods,’’ Multimedia Tools
Appl., vol. 81, no. 16, pp. 23421–23448, Jul. 2022.

[44] M. Z. Uddin, M. A. Shahriar, M. N. Mahamood, F. Alnajjar,
M. I. Pramanik, and M. A. R. Ahad, ‘‘Deep learning with image-based
autism spectrum disorder analysis: A systematic review,’’ Eng. Appl. Artif.
Intell., vol. 127, Jan. 2024, Art. no. 107185.

[45] N. Takemura, Y. Makihara, D. Muramatsu, T. Echigo, and Y. Yagi, ‘‘On
input/output architectures for convolutional neural network-based cross-
view gait recognition,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 29,
no. 9, pp. 2708–2719, Sep. 2019.

KAMRUL HASAN graduated in computer science
and engineering from Begum Rokeya Univer-
sity, Rangpur, Bangladesh. He is currently an
Artificial Intelligence Engineer at Next Solution
Lab, Bangladesh. His research interests include
computer vision and machine learning.

MD. ZASIM UDDIN (Member, IEEE) received
the Ph.D. degree in gait recognition from the
Institute of Scientific and Industrial Research,
Osaka University, Japan. He is currently an Asso-
ciate Professor with the Department of Computer
Science and Engineering, Begum Rokeya Uni-
versity, Rangpur, Bangladesh. He has been pub-
lished in IEEE TRANSACTIONS ON IMAGE PROCESSING,
EAAI, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS, IEEE FC, JIA, and IPSJ CVA, and
has served CVPR, ECCV, ICCV, WACV, and SR. His research interests
include gait recognition, computer vision, and machine learning.

AUSRUKONA RAY received the degree from
the Department of Computer Science and Engi-
neering, Begum Rokeya University, Rangpur,
Bangladesh, in 2023. She is currently a Research
Assistant with the Machine Vision Laboratory,
Begum Rokeya University. Her research interests
include computer vision and gait-based biomet-
rics.

MAHMUDUL HASAN (Senior Member, IEEE)
received the Ph.D. degree in computer vision and
human robot interactions from Saitama University,
Japan. He is currently an Associate Professor with
the Computer Science and Engineering Depart-
ment, Comilla University. His research interests
include human–computer interaction, computer
vision, signal processing, artificial intelligence,
computers in mathematics, natural language pro-
cessing, and data mining.

FADY ALNAJJAR (Member, IEEE) received the
M.S. degree in artificial intelligence and the Ph.D.
degree in system design engineering from the
University of Fukui, Japan, in 2007 and 2010,
respectively. He has been a Research Scientist
with the Brain Science Institute, RIKEN, Japan.
He conducted a neuro-robotics study to understand
the underlying mechanisms for embodied cogni-
tion and the mind. In 2012, he started exploring the
neural mechanisms of motor learning, adaptation,

and recovery after brain injury from a sensory and muscle synergy per-
spective. His research target is to develop an advanced neuro-rehabilitation
application for patients with brain injuries.

MD ATIQUR RAHMAN AHAD (Senior Member,
IEEE) received the Ph.D. degree. He became a
Professor with the University of Dhaka, in 2018,
and a specially appointed Associate Professor with
Osaka University. He is currently a Professor
of artificial intelligence and machine learning
(champion, research and innovation) with the
Department of Computer Science and Digital
Technologies, University of East London, U.K.
He is also a Guest Professor with Kyutech, Japan,

and a Visiting Professor with UCSI University, Malaysia. He works on
pattern recognition, vision, and the IoT. He has authored 15 books and more
than 200 journal/conference papers and chapters. He has been a keynote or
invited speaker more than 150 times at different conferences/universities.
He is a Senior Member of OPTICA. He has received the UGC Gold
Medal (awarded by the Honorable President of Bangladesh) and more than
50 awards. He is also an Editorial Board Member of Scientific Reports
and Nature, and serves PR, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE, IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND

IDENTITY SCIENCE, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, PRL, and
ACM IMWUT.

158610 VOLUME 12, 2024


