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Confidence Intervals and Prediction Intervals for
Feed-Forward Neural Networksa

Richard Dybowski
King’s College London

Stephen J. Roberts
Imperial College, London

a In R. Dybowski and V. Gant (eds.), Clinical Applications of Artificial Neural Networks, Cam-
bridge University Press, (In press)

Artificial neural networks have been used as predictive systems for variety
of medical domains, but none of the systems encountered by Baxt (1995)
and Dybowski & Gant (1995) in their review of the literature provided
any measure of confidence in the predictions made by those systems. In a
medical setting, measures of confidence are of paramount importance (Holst,
Ohlsson, Peterson & Edenbrandt 1998), and we introduce the reader to a
number of methods that have been proposed for estimating the uncertainty
associated with a value predicted by a feed-forward neural network.

The chapter opens with an introduction to regression and its implementa-
tion within the maximum-likelihood framework. This is followed by a general
introduction to classical confidence intervals and prediction intervals. We
set the scene by first considering confidence and prediction intervals based
on univariate samples, and then we progress to regarding these intervals in
the context of linear regression and logistic regression. Since a feed-forward
neural network is a type of regression model, the concepts of confidence and
prediction intervals are applicable to these networks, and we look at several
techniques for doing this via maximum-likelihood estimation. An alternative
to the maximum-likelihood framework is Bayesian statistics, and we exam-
ine the notions of Bayesian confidence and predictions intervals as applied
to feed-forward networks. This includes a critique on Bayesian confidence
intervals and classification.

1.1 Regression

Regression analysis is a common statistical technique for modelling the rela-
tionship between a response (or dependent) variable y and a set x of regres-
sors x1, . . . , xd (also known as independent or explanatory variables). For
example, the relationship could be between whether a patient has a malig-
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2 Dybowski & Roberts

nant breast tumor (the response variable) and the patient’s age and level
of serum albumin (the regressors). When an article includes a discussion of
artificial neural networks, it is customary to refer to response variables as
targets and regressors as inputs. Furthermore, the ordered set {x1, . . . , xd}
is sometimes referred to as an input vector. We will adopt this practice for
the remainder of this chapter.

Regression assumes that target y is related to input vector x by stochastic
and deterministic components. The stochastic component is the random
fluctuation of y about its mean µy(x); for example, one possibility is

y = µy(x) + ε,

where noise ε, with zero mean, has a Gaussian distribution. The determin-
istic component is the functional relationship between µy(x) and x.

If the ‘true’ functional relationship between µy(x) and x is given by

µy(x) = f(x;wtrue), (1.1)

where w is a set of parameters, regression attempts to estimate this rela-
tionship from a finite dataset (a derivation or training set) by estimating
the parameter values from the data. This is done by adjusting the values of
w, under the assumption that f is the true function, to give

µ̂y(x; ŵ) = f(x; ŵ), (1.2)

where a hat denotes an estimated value. The function f(x; ŵ) will be re-
ferred to as a regression function1, and it will be used interchangeably with
µ̂y(x; ŵ). The best known example of eq.(1.2) is the simple linear regression
function,

µ̂y(x; ŵ) = ŵ0 +
d∑

i=1

ŵixi, (1.3)

where ŵ0, ŵ1, . . . , ŵd are the regression coefficients.

1.1.1 The maximum-likelihood framework

Suppose we have a dataset {x(1), y(1), . . . ,x(N), y(N)}, where y(n) is the tar-
get value associated with the n-th input vector x(n), and we wish to fit a
regression function f(x; ŵ) to this data. How do we select ŵ?

Maximum likelihood estimation (MLE) is based on the intuitive idea that
the best estimate of ŵ for f(x; ŵ) is that set of parameter values ŵMLE
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Fig. 1.1. An illustration of a regression function. The ‘true’ model consists of a
probability function p(y|x) for y, with a mean µy(x) (black curve) which is de-
pendent on x. Dataset {(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), (x(4), y(4))} can be re-
garded as having been obtained by first randomly sampling {x(1), x(2), x(3), x(4)}
from a population and then randomly sampling y(1) from p(y|x(1)), y(2) from
p(y|x(2)), y(3) from p(y|x(3)) and y(4) from p(y|x(4)). Given the result-
ing dataset {(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), (x(4), y(4))}, a regression function
µ̂y(x; ŵ) (dashed line) attempts to estimate µy(x) by adjustment of a set of model
parameters w.

for which the observed data has the highest probability of arising. More
formally,

ŵMLE = argmax
bw

p(y(1), . . . , y(N)|x(1), . . . ,x(N), ŵ), (1.4)

p(·| · ·) denoting a probability function2.
Let the distribution of y about µy(x) be defined by a conditional proba-

bility distribution p(y|x). For regression function f(x; ŵ), this distribution
is approximated by p̂(y|x, ŵ) with mean µ̂y(x; ŵ); therefore, if the cases of
dataset {x(1), y(1), . . . ,x(N), y(N)} are sampled independently from the same
population, eq.(1.4) can be simplified to

ŵMLE = argmin
bw

[
−

N∑
n=1

ln p̂(y(n)|x(n), ŵ)

]
. (1.5)

If the distribution of y about µy(x) is assumed to be Gaussian,

p̂(y|x,w) =
1√

2πσy

exp
{−[µ̂y(x;w) − y]2

σ2
y

}
, (1.6)

substitution of eq.(1.6) into the negative sum of eq.(1.5) (and ignoring con-
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stant terms) gives

ŵMLE = argmin
w

Err(w), (1.7)

where

Err(w) =
1
2

N∑
n=1

[
µ̂y(x(n);w) − y(n)

]2
, (1.8)

Err(·) denoting an error function.
If a feed-forward neural network (FNN) f(x; ŵ) is trained on dataset

{x(1), y(1), . . . ,x(N), y(N)} by minimizing Err(w), where w are the network
weights, it can be shown that the resulting network approximates the mean
value for y conditioned on x (Bishop 1995, pp. 201–203),

f(x; ŵMLE) ≈ µy(x), (1.9)

the approximation becoming equality if N goes to infinity and f(x; ŵ) has
unlimited flexibility. Thus, from eq.(1.2), an FNN trained via Err(w) can
be regarded as a regression function.

1.2 Sources of uncertainty

There are two types of prediction that we may want from a regression func-
tion for a given input x: one is the mean µy(x); the other is the target value
y associated with x.

Even if we are fortunate to have a regression function equal to the true
model, so that µ̂y(x; ŵ) is equal to µy(x) for all x, y cannot be determined
with certainty. This is due to the intrinsic random fluctuation of y about
its mean µy(x) (target noise). When y is continuously-valued, the best one
can do is establish a predictive probability density on y or a region where y

is most likely to occur – a prediction interval. We will return to the concept
of prediction intervals in the next section, our attention here being focused
on µ̂y(x; ŵ).

The acquisition of a training set {x(1), y(1), . . . ,x(N), y(N)} is prone to
sampling variation. There are two reasons for this. Firstly, there is variabil-
ity in the random sampling of x(1), . . . ,x(N) from the associated population.
Secondly, for each selected x(n), there is a random fluctuation in the value
of y about the mean µy(x), as defined by p(y|x) (figure 1.1). Consequently,
the training set used for an FNN is only one of a large (possibly infinite)
number of possibilities. Since each possible training set can give rise to a
different set of network weights ŵ, it follows that there is a distribution of
µ̂y(x; ŵ) values for a given input x.
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If we randomly sample (with replacement) an infinite number of datasets
D, the resulting µ̂y(x; ŵ) values will be distributed about the mean (or
expected value) ED[µ̂y(x; ŵ)] with sampling variance

ED[{µ̂y(x; ŵ) − ED[µ̂y(x; ŵ)]}2]

but ED[µ̂y(x; ŵ)] is not necessarily equal to µy(x), the difference

ED[µ̂y(x; ŵ)] − µy(x)

being the bias. The average proximity of µ̂y(x; ŵ) to µy(x), taken over all
D, is related to the bias and sampling variance by the expression

ED[{µ̂y(x; ŵ)− µy(x)}2] =

{ED[µ̂y(x; ŵ)]− µy(x)}2︸ ︷︷ ︸
{bias}2

+ED[{µ̂y(x; ŵ)− ED[µ̂y(x; ŵ)]}2]︸ ︷︷ ︸
variance

. (1.10)

Bias is due to a regression function having insufficient flexibility to model
the data adequately. However, on increasing the flexibility in order to de-
crease bias, sampling variance is increased (this is graphically illustrated
by Bishop (1995, p. 336)); thus, optimal

ED[{µ̂y(x; ŵ) − µy(x)}2]

requires a tradeoff between bias and variance (Gemen, Bienenstock & Doursat
1992). The standard method for achieving this tradeoff with FNNs is to
augment the error function with a term that penalizes against overfitting (a
regularization term), such as the weight decay procedure (Hinton 1989).

When a regression function is an FNN, there are additional sources of
error in ŵ (Penny & Roberts 1997). One is due to the fact that an error
function can have many local minima resulting in a number of possible ŵ.
Another potential error in ŵ arises from suboptimal training, for example,
by premature termination of a training algorithm.

In the above discussion, uncertainty in µ̂y(x; ŵ) has been attributed to un-
certainty in ŵ, but there are two sources of uncertainty not originating from
ŵ, namely, uncertainty in the input values (input noise, see section 1.6.4)
and uncertainty in the structure of the regression model (model uncertainty).
As regards the latter, regression model consists of two parts: an assumed
structure for the model and a set of parameters w whose meaning is specific
to the choice of model structure; therefore, uncertainty in µ̂y (x;ŵ) should
reflect the uncertainty in model structure as well as the uncertainty in ŵ.
An approach to this problem has been suggested by Draper (1995), in which
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a range of structural alternatives are considered, but we are not aware of an
application of this method to FNNs.

1.3 Classical confidence intervals and prediction intervals

There is uncertainty in the values of µ̂y(x; ŵ) and y due to their respective
distributions about the true mean µy(x). Such uncertainties can, in prin-
ciple, be quantified by confidence and prediction intervals. We will define
these terms and consider their application to regression, and thus to FNNs.

Let µv be the mean of a population of values v. The mean v̄ of a sample
S drawn randomly from the population is a point estimate of µv but, given
that v̄ is unlikely to be exactly equal to µv, how reliable a measure of µv

is v̄? A response to this question is to derive a lower limit λL(S) and an
upper limit λU (S) from S such that there is a 95% probability that interval
[λL(S), λU (S)] will contain µv. By this we mean that, if an infinite number
of samples S1,S2, . . . of equal size are drawn randomly (with replacement)
from the population, 95% of the intervals

[λL(S1), λU (S1)], [λL(S2), λU (S2)], · · ·
associated with these samples will overlap µv, which is fixed. Such an inter-
val is referred to as a (classical) 95% confidence interval for µv.3

If sample S consists of univariate values v(1), . . . , v(N), one can also con-
sider an interval [ψL(S), ψU (S)] such that there is a 95% probability that
a new value v(N+1) drawn randomly from the population will occur within
the interval. Such an interval is referred to as a 95% prediction interval
for v(N+1). Whereas a confidence interval is for a population parameter, a
prediction interval is for a single value randomly drawn from the population.

As an example, for sample v(1), . . . , v(N), where v is continuously valued,
the 95% prediction interval for v(N+1) is given by (Geisser 1993, pp. 6–9)

v̄ ± t.025[N−1]

(
s

√
1
N

+ 1

)
,

where t.025[N−1] is the required critical value of Student’s t-distribution (N−1
degrees of freedom), and s is the standard deviation of the sample. This
interval is wider than the 95% confidence interval for µv,

v̄ ± t.025[N−1]

(
s

√
1
N

)
,

because v(N+1) is variable whereas µv is constant.
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Fig. 1.2. True function (dashed line) and several regression functions (solid lines)
in the vicinity of x◦ (after Wonnacott & Wonnacott). The different regression
functions are caused by variation in ŵ due to sampling variation. Each black dot
is a possible value for µ̂y(x◦; ŵ), the circle representing the correct value µy(x◦).

When v is binary valued, µv is equivalent to p(v = 1), but the construction
of a confidence interval for p(v = 1) is complicated by the fact that v̄ is
discrete (Dudewicz & Mishra 1988, pp. 561–566). The discrete nature of v̄

results in a confidence interval [λL(S), λU (S)] with at least a 95% probability
of containing p(v = 1). However, for large N , v̄ can be assumed to have
a normal distribution (Hogg & Craig 1995, pp. 272–273). Given that v is
either 0 or 1 when it is binary valued, and nothing in between, there is no
prediction interval for v(N+1) as such4. For the remainder of this chapter,
confidence and prediction intervals will be understood to be of the classical
type, unless stated otherwise.

1.3.1 Confidence and prediction intervals for simple linear

regression

Confidence and prediction intervals can also be applied to regression, where
they are collectively referred to as error bars by some authors. Variation
in a finite sample S leads to variation in ŵ and thus variation in µ̂y(x; ŵ).
Consequently, there is a distribution of possible values for µ̂y(x◦; ŵ) about
µy(x◦), where x◦ is a particular value for x. This is illustrated in figure 1.2.
In section 1.3, we described the idea of attaching an interval [λL(S), λU (S)]
to v̄ such that the interval has a 95% probability of overlapping with µv.
In an analogous manner, we can conceptualize the existence of a 95% confi-
dence interval [λL(S, x◦), λU (S, x◦)] for µy(x◦) attached to each µ̂y(x◦; ŵ) by
defining it in a manner analogous to the probabilistic interpretation given to
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Fig. 1.3. An illustration of classical confidence intervals. Variation in ŵ due to
sampling variation results in a distribution of possible µ̂y(x◦; ŵ) values (figure 1.2).
This distribution is defined by a probability distribution p(µ̂y(x◦; ŵ)) (the Gaussian
curve). Four possible values of µ̂y(x◦; ŵ) randomly sampled from p(µ̂y(x◦; ŵ)) are
shown (black dots). Also shown are the 95% confidence intervals associated with
these four values. The triangle indicates the position of µy(x◦). 95% of all values
sampled from p(µ̂y(x◦; ŵ)) will have their intervals correctly bracketing µy(x◦) if
µ̂y(x◦; ŵ) is not biased. If µ̂y(x◦; ŵ) is biased then the mean of p(µ̂y(x◦; ŵ)) will
not coincide with µy(x◦).
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Fig. 1.4. Linear regression function (solid line) with a 95% confidence band for
µy(x) (region bounded by the inner dashed lines) and a 95% prediction band for
y (region bounded by the outer dashed lines) based on intervals (1.11) and (1.12),
respectively. Each circle represents a data point.
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confidence interval [λL(S, λU (S)] above, namely that [λL(S, x◦), λU (S, x◦)]
has a 95% probability of overlapping µy(x◦), which is fixed. A conceptual
representation of this idea is given in figure 1.3. Furthermore, motivated by
the above definition of prediction interval [ψL(S), ψU (S)], one can also con-
ceptualize the existence of a 95% prediction interval [ψL(S, x◦), ψU (S, x◦)]
for the unknown value of y associated with x◦. For example, if we linearly
regress y on x using {x(1), y(1), . . . , x(N), y(N)} as the sample S, the 95%
confidence interval for µy(x◦) is

µ̂y(x◦; ŵ) ± t.025[N−2]

(
s

√
1
N

+
(x◦ − x̄)2∑N

n=1(x(n) − x̄)2

)
, (1.11)

and the 95% prediction interval for y at x◦ is

µ̂y(x◦; ŵ)± t.025[N−2]

(
s

√
1
N

+
(x◦ − x̄)2∑N

n=1(x(n) − x̄)2
+ 1

)
, (1.12)

where s is the standard deviation for y(1), . . . , y(N) and x̄ is the mean of
x(1), . . . , x(N) (figure 1.4). Wonnacott & Wonnacott (1981, pp. 42-47) give
a derivation of these intervals in the context of simple linear regression,
and Penny & Roberts (1997) have been reviewed prediction intervals asso-
ciated with other forms of linear regression.

A set of confidence intervals constructed continuously over an input x pro-
duces a two-dimensional confidence band. In a similar manner, a continuous
set of prediction intervals over x produces a prediction band.

1.3.2 Confidence intervals for logistic regression

Logistic regression is the most popular technique for modelling a binary
target y as a function of input vector x (Hosmer & Lemeshow 1989, Collett
1991)5. This is done by assuming that probability p(y = 1|x) is related to
x by a logistic function,

p(y = 1|x) =

{
1 + exp

[
−
(
w0 +

d∑
i=1

wixi

)]}−1

. (1.13)

When y is binary, µy(x) is equivalent to p(y = 1|x), therefore, eq.(1.13)
can be estimated as a regression function

p̂(y = 1|x; ŵ) =

{
1 + exp

[
−
(
ŵ0 +

d∑
i=1

ŵixi

)]}−1

. (1.14)
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Fig. 1.5. Logistic regression function (solid line) with a 95% confidence band for
p(y = 1|x) (region bounded by the dashed lines) according to Hauck’s method (i.e.,
interval (1.16)).

In the context of maximum likelihood, eq.(1.5) still applies but the binary
nature of y implies a binomial distribution for y,

p(y|x) = p(y = 1|x)y [1 − p(y = 1|x)](1−y) .

It follows that the error function for eq.(1.7), which is the negative logarithm
of the relevant probability density, becomes

Err(w) = −
N∑

n=1

{y(n)p̂(y = 1|x(n);w) + [1 − y(n)][1 − p̂(y = 1|x(n);w)]}.

(1.15)

As with any regression modelling, logistic regression is susceptible to sam-
pling variation, consequently, the regression parameters, and thus the logis-
tic regression function, are subject to variation. A representation of this
variation is obtained from figure 1.2 by replacing µy(x◦) with p(y = 1|x◦)
and µ̂y(x◦; ŵ) with p̂(y = 1|x◦; ŵ), respectively. Just as with linear regres-
sion, the variation of p̂(y = 1|x◦; ŵ) about p(y = 1|x◦) due to variation
in ŵ leads to the concept of a confidence interval [λL(S, x◦), λU (S, x◦)] for
p(y = 1|x◦). This interval has been derived analytically by Hauck (1983). If
sample size N is large (N > 100), the 95% confidence interval for p(y = 1|x)
is approximated by the logistic transform of

logitp̂(y = 1|x; ŵ) ±
√

χ2
α[d+1]x

TΣ̂x/N, (1.16)
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Fig. 1.6. Regression function (solid line) obtained from a feed-forward network with
a 95% confidence band for µy(x) (region bounded by dashed lines) based on the delta
method (i.e., interval (1.21)).

where x is a d + 1 dimensional vector (1, x1, . . . , xd)T, Σ̂ is the covariance
matrix for ŵ, and χ2

α[d+1] is the χ2 critical value for the 100(1−α) percentage
point for d+1 degrees of freedom (figure 1.5)6. See Santner & Duffy (1989,
pp. 238–239) for further discussion.

1.4 Confidence intervals for feed-forward neural networks

So far, we have looked at linear and logistic regression, but if we have
µ̂y(x; ŵ) from an FNN, how can we obtain a confidence interval for µy(x)?
We start with two approaches : the delta method and the bootstrap method.

1.4.1 The delta method

If a variable v has a Gaussian distribution with variance Var(v), a 95%
confidence interval for the mean of v is given by

v ± z.025

√
Var(v),

where z.025 is the critical point of the standard normal distribution. The
delta method provides an estimate of this variance via the Taylor series.

If µ
bw is the mean vector for ŵ, the first-order Taylor expansion of µ̂y(x; ŵ)

around µ
bw gives the approximation

µ̂y(x; ŵ) ≈ µ̂y(x;µ
bw) + g(x)(ŵ − µ

bw), (1.17)
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where the i-th element of vector g(x) is the partial derivative ∂µ̂y(x; ŵ)/∂ŵi

evaluated at ŵ = µ
bw. According to the delta method (Efron & Tibshirani

1993, pp. 313–315), it follows from (1.17) that the variance for µ̂y(x; ŵ)
over all possible samples is approximated by

V̂ar(µ̂y(x; ŵ)) = gT(x)Σg(x), (1.18)

where Σ is the covariance matrix for ŵ.
The elements of a Hessian matrix H are second-order partial derivatives7

Hi,j =
∂2Err(w)
∂wi∂wj

,

evaluated at w = ŵ, where Err(w) is the relevant error function. Co-
variance matrix Σ is related to the Hessian (Press, Teukolsky, Vetterling &
Flannery 1992, pp. 672–673, 685), and if the error function is defined as
in eq.(1.8) and noise variance σ2

ε is independent of x then eq.(1.18) can be
replaced by 8

V̂ar(µ̂y(x; ŵ)) = σ2
εg

T(x)H−1g(x). (1.19)

Tibshirani (1996) estimates σ2
ε using

σ2
ε =

N∑
i=1

[
y(i) − µ̂y(x(i); ŵ)

]2
/N.

From eq.(1.19), and assuming a Gaussian target noise distribution, we
have the approximate 95% confidence interval for µy(x) (figure 1.6)

µ̂y(x; ŵ)± z.025

√
σ2

εgT(x)H−1g(x). (1.20)

Regularization is the inclusion of a penalty term in an error function to
discourage overfitting of the network to the training data. This improves
the ability of the network to generalize from the data. If regularization is
implemented by the weight-decay term (α/2)Σiw

2
i , interval (1.20) is replaced

by (Tibshirani 1996)9

µ̂y(x; ŵ)± z.025

√
gT(x)(H/σ2

ε − α)−1g(x). (1.21)

1.4.2 The bootstrap method

Suppose we have a random sample S taken from a population with param-
eter θ, and we obtain an estimate θ̂(S) of θ from S. The bootstrap method is
a remarkable computer-based resampling technique for assigning measures
of accuracy to statistical estimates (Efron 1979)10, and it will provide a
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confidence interval for any population parameter estimate whatsoever. This
involves creating a number11 of bootstrap samples S(∗1), . . . ,S(∗B) by repeat-
edly resampling S in a random manner in order to provide a distribution of
θ̂(S) : θ̂(S(∗1)), . . . , θ̂(S(∗B)). The bootstrap estimate of the standard error
of θ̂(S) is given by (Efron & Tibshirani 1993, pp. 45–49)

ŜEboot(θ̂(S)) =

√√√√ 1
B − 1

B∑
b=1

[
θ̂(S(∗b)) − θ̂boot

]2
,

where θ̂boot is the bootstrap estimate of θ̂ given by the mean
∑B

b=1 θ̂(S(∗b))/B,
and B is typically in the range 25 − 200.

In the context of regression, two types of bootstrap sample can be con-
sidered (Efron & Tibshirani 1993, pp. 113-115):

• pairs sampling in which regression is based on the bootstrap sample

{x(∗i,1), y(∗i,1), . . . ,x(∗i,N), y(∗i,N)}
taken from the true sample {x(1), y(1), . . . ,x(N), y(N)}, where (∗i, 1), . . . , (∗i,N)
is the i-th random sample with replacement of the integers 1, . . . , N ;

• residual sampling in which regression is based on the bootstrap sample

{x(1), µ̂y(x(1); ŵ) + r(∗i,1), . . . ,x(N), µ̂y(x(N); ŵ) + r(∗i,N)},
where r(∗i,1), . . . , r(∗i,N) is a random sample of the N residuals associated
with µ̂y(x(1); ŵ), . . . , µ̂y(x(N); ŵ), respectively.

Residual sampling has the advantage that it limits inferences to the set
of input values x(1), . . . ,x(N) actually observed (Baxt & White 1995), but,
unlike pairs sampling, it uses the strong assumption that residuals are inde-
pendent of the inputs. Furthermore, the x values are assumed to be random
in pairs sampling but fixed in residual sampling. The algorithms for pairs
sampling and residual sampling are as follows.

Algorithm 1. (Bootstrap pairs sampling)
begin

let {(x(1), y(1)), . . . , (x(N), y(N))} be the true sample S;
for b = 1 to B do

randomly sample (with replacement) N (x, y)-pairs from S;
let {(x(∗b,1), y(∗b,1)), . . . , (x(∗b,N), y(∗b,N))} be the random sample;
derive regression function µ̂y(x; ŵ(∗b)) from training set

{(x(∗b,1), y(∗b,1)), . . . , (x(∗b,N), y(∗b,N))};
endfor
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end

Algorithm 2. (Bootstrap residual sampling)
begin

let {(x(1), y(1)), . . . , (x(N), y(N))} be the true sample S;
derive regression function µ̂y(x; ŵ) from S;
let R be the set of residuals {r(1), . . . , r(N)}, where

r(n) = y(n) − µ̂y(x(n); ŵ);
for b = 1 to B do

randomly sample (with replacement) N residuals from R;
let {r(∗b,1), . . . , r(∗b,N)} be the random sample;
derive regression function µ̂y(x; ŵ(∗b)) from training set

{(x(1), µ̂y(x(1); ŵ) + r(∗b,1)), . . . , (x(N), µ̂y(x(N); ŵ) + r(∗b,N))};
endfor

end

For both the paired-sampling and residual-sampling approaches, the boot-
strap estimate of µ̂y(x) is given by the mean provided by the ensemble of
regression functions µ̂y(x; ŵ(∗1)), . . . , µ̂y(x; ŵ(∗B)):

µ̂y,boot(x) =
1
B

B∑
b=1

µ̂y(x; ŵ(∗b)). (1.22)

Furthermore, the bootstrap estimate of the standard error of µ̂y(x; ŵ), which
is a function of x, is given by

ŜEboot(µ̂y(x; ·)) =

√√√√ 1
B − 1

B∑
b=1

[
µ̂y(x; ŵ(∗b)) − µ̂y,boot(x)

]2
, (1.23)

with µ̂y,boot(x) defined as in eq.(1.22). Assuming a normal distribution for
µ̂y(x; ŵ) over the space of all possible ŵ, we have

µ̂y,boot(x) ± t.025[B]ŜEboot(µ̂y(x; ·))
as the 95% bootstrap confidence interval for µy(x) (Heskes 1997).

As stated earlier, logistic regression provides a regression function that
estimates the conditional probability p(y = 1|x). By using a logistic transfer
function for the output node, and the cross-entropy error function (1.15),
p(y = 1|x) can also be estimated by an FNN trained with binary target
values. Furthermore, the bootstrap estimate µ̂y,boot(x) provides a mean
conditional probability with the advantages of a bagged predictor (Breiman
1996). The concept of a confidence interval for p(y = 1|x), as used for logistic
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Fig. 1.7. Data with increasing variance. The regression function (solid line) was
estimated by a feed-forward network. Another feed-forward network was used to
estimate the input-dependent variance from which a 95% prediction band (region
bounded by dashed lines) was obtained by interval (1.26).

regression, can also be applied to an FNN; however, we have not found a
published description of a bootstrap confidence interval for p(y = 1|x) via
an FNN.

A disadvantage of the bootstrap method is that the computational cost
could be high when datasets or networks are large; however, Tibshirani
(1996) found that the bootstrap approach provided more accurate confi-
dence intervals than the delta method. A contribution to this success is
that bootstrap sampling takes into account the variability of FNNs due to
different initial network weights. Another factor in favour of the bootstrap
method is the fact that the delta method requires computation of derivatives
and Hessian-matrix inversion, the latter being a potential source of failure.

1.5 Prediction intervals for feed-forward neural networks

If y has a Gaussian distribution with mean E[y|x] and variance Var(y|x), a
95% prediction interval for y is given by

E[y|x] ± z.025

√
Var(y|x).

This is the basis for an approximate prediction interval, as follows.
The variance of y conditioned on x is defined by

Var(y|x) = E[(E[y|x] − y)2|x].
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Fig. 1.8. Both the regression function (solid line) and its associated 95% prediction
band (region bounded by dashed lines) were obtained from a Nix-Weigend network.
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Fig. 1.9. Same data as that in figure 1.8 but, instead of using a Nix-Weigend net-
work, a separate feed-forward network estimated the variance. This resulted in
a decrease in the accuracy of the 95% prediction band (region bounded by dashed
lines).

Recall that an FNN µ̂y(x(n); ŵ) trained with respect to error function

1
2

N∑
n=1

[
µ̂y(x(n);w) − y(n)

]2
, (1.24)

can approximate E[y|x]. This suggests that, in order to obtain E[(E[y|x] −
y)2|x] in place of E[y|x] by means of an FNN σ̂2

y(x; û), we should replace y
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in error function (1.24) with (E[y|x]−y)2. Therefore, if µ̂y(x; ŵ) is assumed
to be equal to E[y|x], an FNN σ̂2

y(x; û) for the estimation of Var(y|x) can
be derived by using

1
2

N∑
n=1

[
σ̂2

y(x;u) − [µ̂y(x(n); ŵ) − y(n)]2
]2

(1.25)

as the error function. This leads to the approximate 95% prediction interval

µ̂y(x; ŵ) ± z.025

√
σ̂2

y(x; û). (1.26)

A 95% prediction band resulting from this interval is shown in figure 1.7.
Rather than using two separate networks, Nix & Weigend (1995) proposed

a single network with one output for µ̂y(x; ŵ) and another for σ̂2
y(x; û), using

1
2

N∑
n=1

[
[µ̂y(x(n);w) − y(n)]2

σ̂2
y(x;u)

+ ln σ̂2
y(x;u)

]2

(1.27)

as the error function. This approach can produce improved prediction in-
tervals for y compared with the previous approach as a result of it acting
as a form of weighted regression (weighted in favour of low-noise regions)
(figure 1.8). The simpler approach based on expression (1.25) tries to fit
around high-noise regions, possibly distorting the low-noise regions (fig-
ure 1.9), whereas weighted regression is not influenced by regions of high
fluctuation.

An underlying assumption in using either (1.25) or (1.27) is that µ̂y(x; ŵ)
is equal to E[y|x], but, when this assumption is false, there will be uncer-
tainty in µ̂y(x; ŵ), in which case (1.26) will underestimate the 95% predic-
tion interval. A prediction interval that allows for the uncertainty in both
the regression function µ̂y(x; ŵ) and the noise y − µy(x) is

µ̂y(x; ŵ) ± t.025[ν]

√
V̂ar(µ̂y(x; ŵ)) + σ̂2

ε , (1.28)

where σ̂2
ε is the estimated noise variance, but the degrees of freedom ν re-

quired for an FNN is not known at the time of writing. Heskes (1997) pro-
posed the bootstrap method as a way to derive (1.28). Bootstrap estimate
(1.23) was used for V̂ar(µ̂y(x; ŵ)), and an auxiliary FNN, trained on the
unused portions of the bootstrap samples, was used to estimate σ̂2

ε . Al-
though Heskes obtained more realistic prediction intervals than provided by
the Nix-Weigend method (1995), we feel that his technique requires further
analysis.
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The methods used in this section are based on maximum likelihood esti-
mation, but variances estimated by MLE are biased:

E[V̂arMLE(y|x)] < Var(y|x).
This is caused by a tendency of an interpolant to try and fit to the data,
thereby underestimating Var(y|x). Consequently, if interval (1.26) or (1.28)
is used as the 95% prediction interval for y, the length of the interval will
be underestimated.

1.6 The Bayesian framework

The primary purpose of statistics is to make an inference about a population
on the basis of a sample taken from the population. In classical statistics,
the inference is based solely on the data consituting the sample, whereas, in
Bayesian statistics, the inference is based on a combination of prior belief
and sample data (Lee 1997). In order to make a Bayesian inference about
a random variable θ, prior belief about θ in the form of a prior (probability)
distribution p(θ), is combined with a sample S of values in order to produce
a posterior (probability) distribution p(θ|S) for θ.

Confidence and prediction intervals are also defined within the Bayesian
framework. Let µv be the mean of a population of values v, and let S be
an observed sample of values drawn from the population. If µv is regarded
as a random variable with posterior distribution p(µv|S), [λL(S1), λU (S1)]
is a 95% Bayesian confidence interval for µv if, according to p(µv|S), there
is a 95% probability that µv will fall within [λL(S), λU (S)] (Barnett 1982,
pp. 198–202). Note the difference between a classical confidence interval
and a Bayesian confidence interval: in the classical approach, µv is fixed
and [λL(S), λU (S)] varies with S; in the Bayesian approach, µv is a random
variable and [λL(S), λU (S)] is fixed once S is available (Lee 1997, pp. 49–50).

If sample S consists of univariate values v(1), . . . , v(N), and p(v(N+1)|S)
is the posterior distribution for v(N+1), [ψL(S), ψU (S)] is a 95% Bayesian
prediction interval for v(N+1) if, according to p(v(N+1)|S), there is a 95%
probability that [ψL(S), ψU (S)] will contain v(N+1) (Barnett 1982, pp. 204–
205).

1.6.1 Bayesian intervals for regression

Bayesian statistics provides a very different approach to the problem of
unknown model parameters such as network weights. Instead of considering
just a single value for a model parameter, as done by maximum likelihood
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Fig. 1.10. A 95% Bayesian prediction band for y (region bounded by dashed lines)
based on interval (1.34). The regression function (solid line) is from a feed-forward
network.

estimation, Bayesian inference expresses the uncertainty of parameters in
terms of probability distributions and integrates them out of the distribution
of interest. For example, by expressing the uncertainty in weight vector w
as the posterior probability distribution p(w|S), where S is the observed
sample, we have

p(y|x,S) =
∫
w

p(y|x,w)p(w|S)dw (1.29)

∝
∫
w

p(y|x,w)p(S|w)p(w)dw. (1.30)

The integral of eq.(1.30) can be solved analytically with approximations
(MacKay 1991). If the distribution of the noise and the prior weight distri-
bution p(w) are assumed to be Gaussian, a Gaussian posterior distribution
p(y|x,wMP ) for y can be derived in which

Ê[y|x] = µ̂y(x;wMP ), (1.31)

where wMP is w at the maximum of the posterior weight distribution
p(w|S), and

V̂ar(y|x) = β−1 + gT(x)A−1g(x), (1.32)

where the elements of matrix A are the second-order partial derivatives
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(with respect to w) of the regularized error function

β

2

N∑
n=1

[
µ̂y(x(n);w) − y(n)

]2
+

α

2

∑
i

w2
i (1.33)

evaluated at w = wMP . The second term in (1.33) (the regularization term)
results from the assumption that p(w) in eq.(1.30) is Gaussian. This leads
to the approximate 95% Bayesian prediction interval for y (figure 1.10)

µ̂y(x;wMP ) ± z.025

√
β−1 + gT(x)A−1g(x). (1.34)

Note that MLE has been avoided through the use of eq.(1.29).
The Bayesian analysis resulting in expression (1.32) demonstrates that the

variance for p(y|x,S) has contributions from the intrinsic noise variance β−1

and from the weight uncertainty. Qazaz, Williams & Bishop (1996) discuss
how, in the context of generalized linear regression, this is effected by the
distribution of data points.

Instead of using a constant value for noise variance β−1, Bishop & Qazaz
(1995) allowed it to be dependent on x. From 100 artificially-generated
datasets, each consisting of 10 data points, they demonstrated that the
Bayesian approach can give an improved estimate of noise variance compared
to a more biased estimate obtained from the same data using MLE.

1.6.2 Bayesian intervals for regression-based classification

We consider, as before, a feed-forward system which estimates class-conditional
posterior probabilities. For class Ci, say, given datum x, this is denoted as
p(Ci|x) = p(yi = 1|x). The K outputs p̂(y1 = 1|x;w), . . . , p̂(yK = 1|x;w) of
such a classifier, hence, must lie in the interval [0, 1] and sum to unity. This
may be simply achieved via the softmax (or generalized sigmoid) mapping
of a set of latent variables, r1, . . . , rK , such that

p̂(yi = 1|x;w) =
exp(ri)∑K

j=1 exp(rj)
. (1.35)

For a two-class problem, we need consider only one output, p̂(y = 1|x;w),
and eq.(1.35) reduces to the well-known logistic sigmoid,

p̂(y = 1|x;w) = g (r(x;w)) = {1 + exp[−r(x;w)]}−1.

For ease of notation we will consider, henceforth, the two-class case, with a
single output estimating p(C1|x) (which may also be denoted p(y = 1|x)).
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MacKay (1992b) suggested approximating the variation of r with w by a
linear (first-order) expansion, and the density over w, p(w|S) by a unimodal
normal distribution. This enables p(r|x;w,S) to be evaluated easily from
p(w|S). If we make a Laplace approximation to the latter (de Bruijn 1970)
then p(r|x;w,S) will also be approximated by a Gaussian (normal) distri-
bution with mean (and mode) at

rMP (x) = r(x;wMP ).

The variance of p(r|x;w,S) is given as (e.g., Bishop 1995, p. 405)

V̂ar (r|x;w,S) = hT(x)B−1h(x), (1.36)

where h(x) is the the partial derivative ∂r(x;w)/∂wi evaluated atw = wMP

and the elements of the Hessian matrix, B, are the second-order partial
derivatives of the error function with respect to w, evaluated at w = wMP ,

Bi,j =
∂2Err(w)
∂wi∂wj

.

The error function is normally a cross-entropy measure (eq.(1.15)) with an
additive regularization term.

We may consider the location of the mode (most-probable value) of the
latent distribution, rMP (x), as propagating through the sigmoidal non-
linearity, g(.), to form a MLE for the posterior,

p̂(y = 1|x;w,S) = g (rMP (x)) .

The monotonicity of g(.) means that the upper and lower bounds of a con-
fidence interval on the latent distribution p(r|x;w,S) could be mapped to
equivalent points in the posterior space. This is supported by advocates of
set-based (or interval-based) probability (e.g., Kyburg & Pittarelli 1996).

From a Bayesian decision-theoretic viewpoint, however, the notion of a
confidence interval on posterior probabilities in a classification setting is
redundant as uncertainty (confidence) is uniquely taken into account under
a Bayesian derivation of the single-valued posteriors. We consider an optimal
classifier, which provably operates by assigning an unknown datum x to class
Ck∗ if and only if

p(Ck∗|x) = max
k

{p(Ck|x)},

in other words, in a two-class setting for which p(C1|x) = p(y = 1|x), x is
classified to class C1 if p(y = 1|x) > 1 − p(y = 1|x). A strict measure of
the loss or uncertainty associated with a decision to Ck∗ is 1 − p(Ck∗|x).
Our inherent confidence in a decision is given by this quantity. Note that,
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if equal penalties are accrued for misclassification from all classes (i.e., the
so-called loss matrix is isotropic) the same decision will be made, in a two
class case, for p(Ck∗|x) = 0.51 or 0.99, but our confidence in the decision
is dramatically different. Indeed, it is common practise to include a ‘reject’
class such that x is rejected if p(Ck∗ |x) < 1 − d, where d ∈ [1/2, 1] is a
measure of the cost associated with falsely rejecting of the sample x. How
then is uncertainty incorporated in the Bayesian derivation of the posteriors?

Consider the measure p(y = 1|x;w,S) (the posterior for class C1) ex-
plicitly dependent upon the input x and implicitly on the ‘training’ data
set S and the set of unknown parameters, w, which code the analysis
model. The MLE framework considers only the most probable parame-
ter set, wMP , which is used to estimate p(y = 1|x;w,S). This results in
p(y = 1|x;wMP ,S).

In contrast the Bayesian paradigm integrates over the unknown parame-
ters,

p̃(y = 1|x;S) =
∫
w

p(y = 1|x;S,w)p(w|S)dw.

If we consider our analysis model in which p(y = 1|x;w,S) is obtained via
a monotone mapping g(.) (the logistic sigmoid) from a continuous-valued
latent variable r, i.e. p(y = 1|x;w,S) = g(r;x,w,S) then we may re-write
the above as

p̃(y = 1|x;S) =
∫

r
g(r;x,w,S)p(r|x;w,S)dr,

where p(r|x;w,S) is the distribution in r induced by the distribution in the
weights w upon which r is dependent. The above integral, however, is typ-
ically analytically intractable but may be easily evaluated using numerical
techniques. MacKay (1992) popularized some approximations (originally
considered by Spiegelhalter & Lauritzen (1990)) which not only avoid this
process but also highlight intuitively the way in which uncertainty in w,
which propagates as an uncertainty in r (i.e., p(r|x;w,S) is wide), changes
the posterior probability. This change in the posterior is known as modera-
tion and typically results in improved cross-entropy errors (MacKay 1992a).
The approximation considers a modification to the sigmoid equation of the
form

p̃(y = 1|x,S) ≈ g
{
κ[σ2

r (x)]rMP (x)
}
, (1.37)
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Fig. 1.11. Changes in slope of sigmoid due to latent variable uncertainty.

in which

κ[σ2
r (x)] =

(
1 +

πσ2
r(x)
8

)−1/2

and σ2
r (x) is the variance of the latent variable distribution, as defined in

eq.(1.36). Figure 1.11 depicts the effect changes in the latent variance (un-
certainty) have on the classification probability, p̃(y = 1|x,S) = p(C1|x,S).
Consider, for example, rMP (x) = 2. Note that the resultant estimated pos-
terior probability goes down towards 1/2 as the uncertainty in r increases.
The uncertainty in a decision is the distance from unity of the largest poste-
rior, which is worst when the posterior equals the class prior (1/2 in this two-
class problem). In a principled way, therefore, uncertainty (high variance)
in the latent distribution is automatically represented as a lower certainty
of decision.

The tacit assumption has been made in the above analysis that the density
over the weights, p(w|S), is unimodal. For the vast majority of analysis sys-
tems, however, there are many non-equivalent local maxima in the density
which would be taken into account if the requisite marginal integral was in-
deed over all w space. We may assume, however, that most probability mass
is concentrated in the regions of w space associated with peaks in p(w|S).
Integration over all w space may hence be approximated by integration over
a (finite) number of regions, Ri, each of which contains a peak in p(w|S).
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Hence

p(r|x;S) ≈
∑

i

p(Ri|S)
∫
w∈Ri

p(r|x;w,S,Ri)p(w|S,Ri)dw

which may be written as

p(r|x;S) =
∑

i

γip(r|x;S,Ri).

This latter equation represents a weighted average (with weightings given by
γi) of latent densities from a committee of classifiers. Each latent distribution
in the summation may, for example, be approximated as a Gaussian, as may
the resultant committee distribution. The latter has mean

rcomm
MP (x) =

∑
i

γirMP,i(x),

where rMP,i(x) are the modes (and means) of p(r|x;S,Ri), and a variance
of

σ2
comm(x) =

∑
i

γiσ
2
r,i(x) +

∑
i

γi(rMP,i(x) − rcomm
MP (x))2. (1.38)

This variance may thence be used, for example, with eq.(1.37) to provide a
moderated posterior probability which takes into account uncertainty due
to imprecision in the parameters of each constituent member of the com-
mittee (the first term in eq.(1.38)) and also uncertainty due to disagreement
between committee members (the second term in eq.(1.38)). It is noted
that committees are provably better in performance than the average per-
formance of their members (Bishop 1995, pp. 364–369).

1.6.3 Markov chain Monte Carlo sampling

Determination of the integral in eq.(1.29) can, in principle, be achieved
numerically using

p(y|x,S) ≈ 1
L

L∑
i=1

p(y|x,w(i)). (1.39)

This avoids the Gaussian approximations adopted in section 1.6.1 and else-
where.

The set {w(1), . . . ,w(L)} of weight vectors used for approximation (1.39)
is sampled from p(w|S) by means of Markov chain Monte Carlo (MCMC)
sampling (Gilks, Richardson & Spiegelhalter 1996). In the two standard
versions of MCMC sampling (the Metropolis method and Gibbs sampling),
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the space of possible w values (state space) is explored by random walk;
however, sampling through a random walk can perform poorly when the
state space has a large number of dimensions. In such a situation, Neal
(1996) advocates the hybrid Monte Carlo method in which state space is
replaced by a phase space consisting of (w,p) pairs in which ‘position’
vector w is augmented with a ‘momentum’ vector p. Unlike Metropolis
and Gibbs sampling, this exploits the gradient information contained in a
backpropagation-trained network.

An example of the application of MCMC is its use by Goldberg, Williams
& Bishop (1998) to model input-dependent variance, which they did using
a Gaussian process (Williams 1999).

The assumption that p(y|x,w) is Gaussian whenever y is continuous-
valued will not always be appropriate in the real world as it is possible for
p(y|x,w) to be skewed or multi-modal due to the noise being non-Gaussian.
Distribution p(y|x,w) can take on non-Gaussian forms by setting it equal
to a mixture model composed of a sum of Gaussian kernel functions (Everitt
& Hand 1981). The input-dependent mean and variance of the distribu-
tion can be derived from the mixture model by MLE (Bishop 1994) and
by MCMC (Dybowski 1997), but there is then the problem of defining an
interval when a distribution is asymmetric or multi-modal.

1.6.4 Input noise

As mentioned at the end of section 1.2, one source of uncertainty in the
output of an FNN is uncertainty in the input values. Some methods for
estimating errors due to input noise have been reviewed by Press et al.
(1992, pp. 666-670), and more recent work has been put forward by Tresp,
Ahamad & Neuneier (1994) and Townsend & Tarassenko (1997).

Wright (1999) has taken a Bayesian approach to the problem in which the
true but unobserved input x is perturbed by noise to give a noisy, observed
input z. If z◦ denotes a new observed input, and y◦ is the associated target
value, the predictive distribution p(y◦|z◦,S) can be expressed by integrating
over the unknown x◦:

p(y◦|z◦,S) =
∫
x◦

p(y◦|x◦,S)p(x◦|z◦)dx◦. (1.40)

If there is a small level of Gaussian noise on the true input, eq.(1.40) leads
to the following expression for the variance of y◦:

V̂ar(y◦|z◦) = β−1 + σ2
xh

T(z◦)h(z◦) + gT(z◦)A−1g(z◦), (1.41)
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which is similar to eq.(1.32) but with an additional term due to the introduc-
tion of noise to x. The extra term consists of the variance σ2

x of x multipled
by the squared partial derivative ∂µ̂y(x;w)/∂xi evaluated at x = z◦.

If the assumptions leading to eq.(1.41) do not hold then p(y◦|z◦,S) is
evaluated numerically, with MCMC used to estimate the inner integral in

p(y◦|z◦,S) =
∫
x◦

p(x◦|z◦)
[∫

x,w
p(y◦|x◦,w)p(x,w|S)dxdw

]
dx◦,

but a limitation of this approach is that p(x◦|z◦) is required.

1.7 Conclusion

A neural network correctly trained with binary target values can estimate
conditional class probabilities, and although it is possible to define a Bayesian
confidence interval for a posterior probability, section 1.6.2 described why,
from a Bayesian decision-theoretic viewpoint, such an interval is unneces-
sary. Furthermore, for the case when target values are real-valued, Bishop
& Qazaz (1995) have demonstrated that variances estimated within the
Bayesian framework can be less biased than those estimated by MLE; con-
sequently, the Bayesian approach is preferred to MLE.

A problem with the Bayesian approach (whether by hybrid MCMC or via
Gaussian approximations) is that implementing it tends to be more trou-
blesome than MLE. These difficulties are restricted to neural networks and
are due to the approximations used to obtain the mathematical formal-
ism. When generalized linear models are used, the implementation becomes
easy and straightforward because the approximations become exact. The
accounting for parameter uncertainty in Bayesian methods works only if
the computations are done reasonably exactly, and not by gross approxima-
tions. In contrast, MLE is easier to implement in terms of both stability of
the algorithm and speed of convergence (as measured by CPU time). Of the
MLE-based methods, the bootstrap method has been reported to provide
more accurate confidence intervals than the delta method and more accu-
rate prediction intervals than the Nix-Weigend method. Nevertheless, the
advantages of the Bayesian framework suggest that efforts should be made
toward developing stable techniques in this area so that Bayesian prediction
and confidence intervals can be obtained reliably.
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Notes
1 We have used the expression regression function instead of regression model as the

former refers to an estimated relationship between µy(x) and x (Robbins &
Munro 1951), whereas the latter refers to a family of possible relationships.

2 Symbol p will be used both for probability density functions and probability mass
functions, the correct meaning being understood from the context in which it is used.
For those readers unfamiliar with probability theory, we recommend Wonnacott &
Wonnacott (1985, pp. 52–150) followed by Ross (1988).

3 Although confidence intervals with equal tails are the most common form, there are
other possibilities (Barnett 1982, pp 172–176).

4 The predictive distribution for v(N+1) is given by

p(v(N+1) = 1|v̄, N) = (v̄N + 1)/(N + 1).

5 Both linear and logistic regression models belong to the class of models called
generalized linear models (Dobson 1990). These have the general form

g(µy(x;w)) = w0 +

dX
i=1

wixi,

where g is the link function. In simple linear regression, g(a) = a, whereas in logistic
regression, g(a) = logit(a).

6 A clear account of vectors and matrices is provided by Anton (1984).
7 The Hessian matrix and calculation of its inverse H−1 are discussed by Bishop (1995,

pp. 150-160).
8 If noise variance σ2

ε is not independent of x then H/σ2
ε in eq.(1.18) is replaced by a

matrix G defined by (Penny & Roberts 1997)

Gk,l =

NX
i=1

1

σ2
ε(x(i))

�
∂bµy(x(i); bw)

∂ bwk

∂bµy(x(i); bw)

∂ bwl
+
h
y(i) − bµy(x(i); bw)

i ∂2bµy(x(i); bw)

∂ bwk∂ bwl

�
.

9 Maximum likelihood is referred to as maximum penalized likelihood if the error
function is regularized.

10 The bootstrap method should not be confused with the jacknife or
cross-validation (Efron & Gong 1983).

11 The number of bootstrap samples needed for reliable estimates depends on the type
of statistics we are after. In the case of estimating the mean of a random variable, a
relatively small number of samples are required, whilst for estimating variance, a
larger number is needed since the estimate of the variance is more sensitive to noise.
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