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A B S T R A C T   

Background and objective: Keratoconus is a non-inflammatory corneal condition affecting both eyes and is present 
in one out of every 2,000 people worldwide. The cornea deforms into a conical shape and thins, resulting in high- 
order aberrations and gradual vision loss. Risk factor analysis in the degradation of keratoconus is under- 
researched. 
Methods: This research work investigates and uses effective machine learning models to gain insight. 
into how much the risk factors of a patient contribute towards the progressive stages of keratoconus, as well as 
how significant these factors are in the creation of an accurate prediction model. This research demonstrates the 
value of machine learning approaches on a clinical dataset. This research paper employs several machine 
learning algorithms to classify the patients’ stage of keratoconus using clinical information, such as measure
ments of the cornea’s topography, elevation, and pachymetry taken using pentacam equipment at Sydney’s 
Vision Eye Institute Chatswood. 
Results: Eight different machine learning techniques were investigated over three variations of a dataset and 
achieved an average accuracy of 68, 80, and 90% for the risk factor, pentacam, and cumulative datasets, 
respectively. The results show a significant increase in accuracy and a 97% increase in AUC upon the addition of 
risk factor data compared to the models trained on pentacam data alone. The machine learning methods shown 
in this paper outperform those in current research. 
Conclusions: This research highlights the importance of machine learning methods and risk factor data in the 
diagnosis of keratoconus and highlights the patient’s primary optical aid as the strongest risk factor. The goal of 
this research is to support the work of ophthalmologists in diagnosing keratoconus and providing better care for 
the patient.   

1. Introduction 

In recent years, we have observed an increase in the use of machine 
learning (ML) and artificial intelligence for the diagnosis and monitoring 
of diseases. It has established itself as an indispensable resource for 
detecting and assessing trends in medicine and research. Keratoconus is 
one such condition within the ophthalmic industry that ought to be 
examined using ML approaches. Keratoconus is a non-inflammatory 
corneal disease that can affect both eyes and is present in 1 out of 

every 2,000 patients globally. It is the deformation and thinning of the 
cornea into a conical shape, leading to optical aberrations and pro
gressive vision loss [1]. The disease frequently manifests itself in 
adolescence and progresses to a state of stabilisation by the time the 
patient reaches their forties, resulting in a significant reduction in 
quality of life. The most common diagnostic procedures for keratoconus 
are corneal topography and corneal tomography. This, in conjunction 
with clinical evaluation parameters and a systematic classification 
approach, such as the Amsler- Krumeich Grade 1–4 keratoconus 
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classification system, has been standard practice in the diagnosis of 
keratoconus and other corneal illnesses over the past several decades 
[2]. The pentacam illustrates several parameters, such as corneal cur
vature, thickness, and elevation data, through the use of colour-coded 
maps via corneal imagery, as shown in Fig. 1. The maps are displayed 
along with the corresponding numerical assessment of the patient’s 
cornea [3]. 

The Placido ring and Scheimpflug imaging are utilized to acquire the 
topographic results. Aside from that, optical coherence tomography 
(OCT) can be used to give additional quantitative and qualitative in
formation that can be used in the diagnosis process. When combined 
with other tomographic information, such as corneal thickness, this 
information can be used to classify the patient’s stage of degeneration 
[1]. 

Although there is currently no consensus on the exact cause of ker
atoconus, there are several risk factors, both environmental and genetic, 
that have been identified as being of high importance in the develop
ment of keratoconus in individuals. Gender, ethnicity, general health, 
atopy hyper-tension, hay fever, known eye history, eye rubbing, family 
history of keratoconus, and primary optical aids are just a few of the risk 
factors to consider [1]. These factors may provide more insight into 
what is most important in recognising and diagnosing not only kerato
conus but also other corneal disorders in the future. When compared to 
other ocular disorders, there are far fewer ML experiments conducted on 
the cornea [4]. The majority of the research available employs deep 
learning (DL) models, specifically convolutional neural networks, and 
applies them to corneal topography and tomography maps with eleva
tion, curvature, and thickness metrics, to detect the presence and 
severity of keratoconus in patients. The current research typically 
comprises of image datasets with fewer than 400 images, , even though, 
DL models require a robust dataset to create a generalizable model [4]. 
This shows the benefit of using predictive algorithms that do not require 
a large dataset to find a relationship between their input data and their 
output. Another factor considered in this work is the computational cost 
of training and optimising accurate deep neural networks. This research 
work uses a range of less computationally intensive machine learning 
techniques to classify the data to produce a robust set of results and 
increase the likelihood of incorporation into the clinical sector. The 
objective of this research is to show the importance of machine learning 
methods and risk factor data in the diagnosis of keratoconus. We believe 
this study can help guide clinicians on the type of data that is of the most 
importance when assessing a patient and giving an accurate diagnosis. 
This study also has the potential to highlight to individuals without a 
diagnosis if there exists a need to go for an assessment. 

In Section 2, the related work on ML and DL methods for keratoconus 
diagnosis and the literature on keratoconus risk factors will be reviewed. 
In Section 3, some light will be shed on the classification methods used 
to assess the stages of degradation in a patient. The public patient data 
used by Hallett, N. et al. [1], and how it was manipulated will be dis
cussed, along with its limitations and delimitations. The ML algorithms 

that are used for the classification problem will be described, and the 
architecture of the models used will be shown in this section. The results 
of the report will be outlined in Section 4 and analyzed in Section 5. 
Lastly, in Section 6, we will present a set of concluding statements and 
provide recommendations based on the findings of the study. 

2. Related work 

Computer-aided diagnosis (CAD) makes use of ML algorithms. These 
algorithms are trained on several diagnostic samples derived from 
medical test results along with the opinions of experts’ diagnoses to 
assist medical professionals in anticipating and detecting diseases going 
forward [6]. Machine learning has become increasingly popular in 
keratoconus. It has the effect of providing reliable and unbiased diag
nosis, which is important when diagnosing patients early on since early 
intervention with treatments like corneal crosslinking can slow down 
the degradation of the cornea, avoiding the need for a corneal transplant 
altogether [7]. 

Zéboulon et al. [8], used a large dataset with 3,000 maps and ach
ieved a highly accurate predictive model to classify patients, but the 
model’s capability to predict different stages of the disease’s progression 
has not yet been examined. Machine learning algorithms have rarely 
been used in clinical practice in the real world [9]. This could be 
attributed to a lack of large patient populations to confirm results, the 
use of diverse imaging technologies, participant groups made up of 
people of various ethnicities, medical professionals’ general accept
ability of predictive modelling for the detection of illnesses, and their 
relative consistency among clinicians. In their 2000 study, Chastang 
et al. [10], developed a binary decision tree technique based on corneal 
topography indices to distinguish clinically obvious keratoconus from 
the normal cornea. In their 2005 study, Twa et al. [11] modelled the 
corneal surface using a seventh-order Zernike polynomial as a method 
for differentiating between keratoconus and normal corneas. Smolek 
and Klyce [12] in their 1997 study, proposed a neural network approach 
that utilises corneal topography indices for keratoconus di-agnostics. All 
the above studies aim to accurately identify individuals with the con
dition of keratoconus. 

All of these approaches relied solely on the cornea’s anterior 
topography. There is a shortage of data on the impact of merging data 
from multiple devices for ML models used to identify keratoconus. Data 
on posterior corneal curvature and pachymetry were obtained and uti
lized to evaluate corneal features as technology advanced [13]. In 
clinical and subclinical keratoconus, Pinero et al. measured corneal 
vol-ume, pachymetry, and the relationship between the anterior and 
posterior shape of the cornea [14]. Fernández Pérez, Valero Marcos, and 
Martínez Peña [15] showed that using corneal equipment and in
struments, such as the Pentacam, in combination with risk factors can 
lead to the detectionof subclinical keratoconus, but at the cost of a 
higher false-positive detection rate. Other types of information, such as 
the corneal epithelial thickness map obtained by OCT, are rapidly 

Fig. 1. Keratoconus topography maps showing normal, keratoconus suspect, and moderate keratoconus [5].  
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becoming acknowledged as important for the diagnosis of keratoconus 
[16], particularly early keratoconus [17]. This illustrates that combining 
data from various devices and considering a wider range of parameters 
may help to enhance the early diagnosis of keratoconus. According to 
studies [18], ML models that used data from the Pentacam had greater 
collective sensitivity and specificity in detecting clinical keratoconus 
and subclinical keratoconus from control eyes than models that used 
data from other imaging devices. This is possibly due to the Pentacam’s 
ability to produce a larger set of data than other devices. 

2.1. Risk factors 

Demographic information, including age and gender, as well as other 
possible risk factors for keratoconus, including eye rubbing and family 
history, may help in the diagnosis of keratoconus [7]. As there are so few 
established risk factors for keratoconus, much of the current research, 
including that of Sharif et al. [19], is uncertain as to how precisely these 
variables could impact the diagnosis accuracy of the ML models that are 
now in use. The inclusion of relevant risk variables into future ML 
models for diagnostic evaluation seems like an acceptable first step. This 
research examines the associations between keratoconus and gender, 
race/ethnicity, health status, history of eye disease, history of eye rub
bing, genetics, and primary optical aid. 

2.1.1. Gender 
Differences between genders in keratoconus have been studied in 

several ways. The results differ across studies, with some demonstrating 
prevalence in women, others demonstrating higher prevalence in men, 
and still others demon-strating no significant gender prevalence [20]. 

2.1.2. Ethnicity 
Keratoconus is a worldwide condition with varying levels of fre

quency among ethnic communities in the same geographical region. 
Numerous studies have shown that both ethnicity and environmental 
factors play important roles in the progression of the illness. Until 
recently, it was thought that keratoconus afflicted people of all ethnic
ities equally [21]. Various studies, however, have shown that there is a 
disparity in prevalence based on ethnicity. For example, Lebanon has a 
high frequency of 3.3%, India’s rural parts have a prevalence of 2.3%, 
while the north of Denmark, Finland, and Russia have a lower rate [20]. 
Keratoconus was found to be substantially more common among Indians 
in Singapore than among Malays or Chinese [22]. Another study 
revealed that there was a 3.18% prevalence of keratoconus among the 
study’s sample [23]. 

2.1.3. General health 
Kumming [24] asserts that because Ehlers-Danlos Syn-drome (EDS) 

is a collagen abnormality of the body, it has the potential to disrupt 
corneal collagen and, as a result, have an impact on the progression of 
keratoconus. Keratoconus is quite rare in EDS patients. A total of 72 
patients with EDS were studied by McDermott [25], and only one pa
tient manifested keratoconus. 

Marfan syndrome is caused by mutated X-chromosome genes, it is a 
condition in which patients have a greater prevalence of keratoconus 
than in the general population. However, In a study by Maumenee [26] 
keratoconus was not a feature in any of the 160 examined patients with 
Marfan syndrome. Osteogenic imperfecta is a hereditary bone disorder 
that affects bone collagen. Keratoconus has been reported more in in
dividuals that possess this disease [27]. 

Sharif [28] looked at how common mitral valve prolapse was in 50 
people with keratoconus and found that it was much more common 
(53% vs. 7%) in the keratoconus group. These results are different from 
those of Street [29] who discovered no statistically significant difference 
in the frequency of mitral valve prolapse between keratoconus patients 
and controls. The results of a research study in which 50 people with 
keratoconus underwent cardiac echography revealed the following: 

Mitral valve abnormalities were discovered in 22% of patients, which is 
four times more than the general population (prolapse was discovered in 
4% of patients mitral insufficiency was discovered in 10% of patients, 
and mitral regurgitation was discovered in 8% of patients). The patients 
in this group of individuals who had prolapses were those who had the 
illness at an advanced stage [30]. 

Cullen [31] found that 5.5% of the 143 Down syndrome patients he 
studied had keratoconus, and he has found that patients who have 
experienced ocular traumatism are more likely to develop acute kera
toconus. Transplant patients have a greater incidence of complications 
after surgery (such as suture failure, trauma, rejection, and others) [30]. 
Keratoconus prevalence in patients with Down syndrome appears to 
differ according to the ethnic group analyzed, according to the results of 
this study [32]. 

The relationship between keratoconus and diabetes has been inves
tigated, however, the prevalence of diabetes in people with keratoconus 
is lower than in the overall population. On the other hand, those 
suffering from diabetes experience a less severe version of keratoconus 
[33]. It has been proposed that biochemical property alterations of the 
cornea in diabetics are caused by abnormal glycosylation of corneal 
stromal collagen fibres [30]. Diabetes may benefit individuals with 
keratoconus because it activates autocross linking in the corneal stroma. 
This mechanism prevents the cornea from becoming biomechanically 
weaker, which may explain why diabetes is beneficial for individuals 
with keratoconus. 

2.1.4. Hay fever and hypertension 
Statistically, there was a higher prevalence of asthma (P = 0.0002) 

and hay fever (P = 0.007) in the keratoconus group compared to the 
control group [34]. The number of times people wipe their eyes 
increased among those who had asthma, hay fever, or eczema kerato
conus disease. Tomey TMS-2, on the other hand, showed no significant 
connection with the hayfever demographics when measured against 
corneal power [34]. The findings of Naderan et al. [35], imply that 
keratoconus may be associated with other disorders, often including 
vernal keratoconjunctivitis and hypertension. 

2.1.5. Known eye history 
A possible link between keratoconus and floppy eyelid syndrome has 

been suggested by some studies [36], although there is currently no 
conclusive evidence to support this and further research or data may be 
required. Leber Congenital Amaurosis is a congenital illness that causes 
poor vision from infancy onward. In comparison to other blinding dis
eases, this condition appears to be more related to keratoconus [37]. 
Although a genetic component could be the source of this condition 
[30]. 

Keratoconus is only seldomly related to corneal dys-trophies, ac
cording to the literature [30]. Several publications have reported an 
association between keratoconus and macular dystrophy [38]. Granular 
dystrophy is linked with keratoconus, and lamellar transplantation is the 
treatment of choice for keratoconus when dystrophy worsens [30]. Only 
a small number of individuals have been diagnosed with posterior 
polymorphous corneal disease (PPCD), a very uncommon autosomal 
dominant bilateral degenerative membrane dystrophy, but PPCD has 
also been associated with keratoconus in a small number of documented 
instances [30]. 

2.1.6. Eye rubbing 
In a recent study by Ref. [39], researchers found strong evidence that 

keratoconus is linked to the habit of rubbing one’s eyes. People who did 
not have the condition and did not wear contact lenses were asked to 
massage their eyes in a controlled way for 60 s. In a second study, tears 
were collected before and after rubbing the eyes, and it was found that 
the levels of MMP-13, IL-6, and TNF were significantly higher after 
rubbing the eyes. Multiple studies have shown that the constant rubbing 
of the eyes, which is common in people with keratoconus, may help the 

A.D. Zorto et al.                                                                                                                                                                                                                                 



Informatics in Medicine Unlocked 38 (2023) 101208

4

disease get worse by keeping the levels of proteases, protease activity, 
and inflammatory mediators high. 

2.1.7. Family history (genetics) 
Genetic determinants in keratoconus are well supported by research 

findings [20]; According to the bulk of published research [21], the 
disease is inherited in an autosomal dominant way with variable 
expression and includes mild forms such as keratoconus fruste and 
moderate irregular astigmatism, among others. Several instances in the 
scientific literature show recessive inheritance, but none give clear ev
idence that three generations of the condition were reviewed or that 
minor variations of the illness were sought to be included in the pedigree 
analysis. Formal genetic analyses are needed to find out exactly how the 
different types of keratoconus are passed down and what role genetic 
factors may play in the cause of the disease, even though most research 
points to a dominant mode of inheritance [21]. 

2.1.8. Primary optical aid 
A total of 199 patients were evaluated; 53 (27%) had a history of 

wearing contact lenses before the diagnosis of keratoconus, 68 (34%) 
had no history of wearing contact lenses before or after the diagnosis of 
keratoconus, and 78 (39%) had an existing history of keratoconus before 
wearing contact lenses [40]. When it came to wearing contact lenses 
before diagnosis with keratoconus, the 53 patients had an average of 
12.2 years (with a range of 5.5–22 years) of experience, averaging 15.2 h 
each day. Although the study acknowledges that it is conceivable that 
keratoconus would still have progressed regardless of contact lens use, it 
also acknowledges that exceedingly mild symptoms of keratoconus may 

have been overlooked on the first test. It is considered that the wearing 
of contact lenses causes trauma to the cornea that, in most circum
stances, is not severe enough to cause keratoconus to develop [40]. 

3. Methodology 

3.1. Staging method 

In addition to identifying keratoconus eyes as a discrete category, 
several research studies classified keratoconus eyes into clinical phases 
and employed machine learning (ML) methods to identify each stage 
independently, as seen in Fig. 2. The study reveals a variety of classifi
cation criteria for keratoconus eyes. Kamiya et al. [42], used the 
Amsler-Krumeich (AK) classification technique for Grades 1–4, which 
strongly emphasises keratometry but also often combines refraction and 
pachymetry. measures, as shown in Table 3 [43]. Using a distinct clas
sification method, dubbed RETICS, Blazquez et al. [44], and Bolarin 
et al. [45]. The physical representations of keratoconus staging are 
illustrated in Fig. 3. 

[45] grouped eyes into Grades I–IV plus. The AK technique relies 
heavily on distant visual acuity that has been adjusted [43]. The AK 
classification may be used to identify and monitor the evolution of 
keratoconus. The Sandali classification scheme and this classification 
approach are the two most often used classification models in the 
corneal industry, according to Macsai [40]. For consistency with the 
gathered data samples, this study employs Grades 1–4 according to the 
AK grading system. Other grades and methodologies are employed in 
current research for severity classification, but this work uses Grades 

Fig. 2. Flow chart of steps taken for the analysis of KC stages for each dataset.  

Fig. 3. Physical representation of keratoconus Staging [41].  
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1–4 according to the AK grading scheme. In individuals with keratoco
nus, the AK and Sandali classifications are the most often used systems; 
however, they cannot be used interchangeably since they indicate 
various corneal abnormalities. Specifically, the AK classification is su
perior at identifying individuals in the early stages of disease and 
following their progression through time. In contrast, the Sandali clas
sification, which is based on the examination of anterior segment optical 
coherence tomography (AS-OCT) images, is useful for the diagnosis and 
followup of patients with advanced stages of keratoconus, particularly 
when selecting a surgical approach. This demonstrates the usefulness of 
the AK model as a more accurate classification model for machine 
learning (ML) algorithms, which are also reliable in earlystage diagnosis 
[40]. 

3.2. Dataset 

Most of the research in this field is concerned with image datasets for 
the prediction of keratoconus, such as this publicly available dataset 
[46] provided by Al-Timemy et al. [2], But the data used for this 
research is numerical. Between 2014 and 2017, data [47] on 124 ker
atoconus patients was gathered at the Vision Eye Institute Chatswood 
(VEIC) in Sydney, Australia. Table 1 and Table 2 contain information 
that has been extracted to be used as variables of consideration for the 
training process. Based on clinical expertise, all patients were classified 
using the AK classification, which takes into account the presence and 
severity of scarring, mean central keratometry (MCK), minimum corneal 
thickness (MCT), myopia, and astigmatism (MA). Table 3 illustrates how 
patients are classified using the AK categorization system [1]. Table 4 
shows the distribution of cases for each grade. 

3.2.1. Dataset manipulation and delimitation 
The collected dataset contains metrics that are collected according to 

the assessment of the clinician. For this paper, these data points are not 
advisable and were removed from the analysis as they do not fall in line 
with the goal of using data readily available from the patient and the 
Pentacam (or any other appropriate topography device). The dataset 
was also split into two sections for the training and testing of the model, 
with the training section comprising 90% of the entire dataset and the 
test section 10%. 

3.2.2. Data analysis 
Quantitative analysis was carried out on the dataset to assess the 

correlation between the various attributes within it. These correlations 
will be separated according to the source of the data to provide a useful 
analysis of the significance of each attribute. The dataset will be 
analyzed in three different sections: the risk factor data readily available 
from the patient, the pentacam data readily available from the device, 
and the dataset comprising both parts to see the relative effect of the 
dataset sections on their own. Within this field of research, the sample 
size of data for applications of this nature is usually much larger to make 
the predictive model more generalizable. However, this project works 
on a relatively small dataset with the assumption that the ML techniques 
will offset this drawback. In addition, the demographic characteristics of 
the dataset are evaluated to give richer interpretations of the data and 
opportunities for development. 

3.3. Machine learning vs deep learning 

Machine learning and deep learning are two popular subsets of 
artificial intelligence (AI) that rely on algorithms to make predictions or 
decisions based on input data. While both machine learning and deep 
learning can be effective on large datasets, their performance may vary 
when dealing with smaller datasets [48]. Machine learning algorithms 
use statistical techniques to find patterns in the data and make pre
dictions. They typically work well with smaller datasets because they are 
designed to be more interpretable and computationally efficient than 
deep learning algorithms. 

ML models can provide insight into why a particular prediction was 
made, which can be useful for decision-making in many applications 
[49]. In contrast, DL algorithms use complex neural networks to learn 
patterns in the data. They require a large amount of data to train and can 
be computationally intensive [48]. As a result, DL models are typically 
more effective on larger datasets. However, they can also be less inter
pretable than machine learning models, particularly when dealing with 
smaller datasets [49]. 

3.4. Machine learning algorithms and model parameters 

This study creates its models using the most popular machine 
learning methods from the scikitlearn Python package and this section 
will go into detail on what model parameters were used. 

3.4.1. Multinomial logistic regression  

• lbfgs solver  
• 10,000 maximum iterations 

Table 1 
Risk Factor Data [1].  

Variable 

Atopy Ethnicity 
Primary optical aid Gender 
Eye history Diabetes Family history Allergy Hypertension General Health Eye rubbing  

Table 2 
Pentacam and clinician data [1].  

Variable 

Steep keratometry 
Flat keratometry Thinnest pachymetry Sphere 
Cylinder Refractive axis X-axis 
y-axis Pachymetry 
Amsler-Krumeich (AK) classification  

Table 3 
Amsler–Krumeich (AK) classification scheme [1].  

Grade Characteristic 

1 Eccentric steeping 
MCK 48.00D 
MA 5.00D 

2 Absence of scarring MCT 400 μm 
MCK 53.00D 
MA 5.00–8.00D 

3 Absence of scarring MCT 300–400 μm MCK 53.00D 
MA 8.00–10.00D 

4 Central corneal scarring 
MCT 200 μm 
MCK 55.00D 
Refraction not measurable  

Table 4 
Number of cases.  

Grade Cases 

1 140 
2 51 
3 24 
4 22 
Total 237  
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3.4.2. Nearest neighbour classification  

• Neighbour count set to 4 

3.4.3. Support vector machine for classification  

• Kernel set to linear  
• 0.025 regularisation term 

3.4.4. Decision tree  

• The maximum depth of the tree is set to 5 items. 

3.4.5. Random Forest  

• Max tree depth is set to 5.  
• The maximum number of trees in the forest has been set to ten.  
• The maximum number of features to consider is set to 1. 

3.4.6. Multilayer perceptron  

• Alpha value set to 5  
• Max tree number in the forest set to 10  
• Maximum number of features to consider set to 1 

3.4.7. AdaBoost decision tree  

• All parameters left as default 

3.4.8. Quadratic discriminant analysis  

• All parameters left as default 

4. Results and analysis 

4.1. Risk factor correlation data 

The correlation heatmap of the risk factor dataset, as shown in Fig. 4 
was created with quantitative analysis using Python, and it highlights 
how strongly all the risk factors correlate to the resulting class of the 
diagnosis as well as to each other factor (see Fig. 3). There are some 
notable data points within the heatmap with a correlation of 0.2 and 
above, which are as follows.  

• The relatively high correlation of 0.5 between atopy and hay fever  

• The correlation between atopy, hypertension, hay fever, and family 
history (genetics)  

• Hypertension has a notable link to Race with a value of 0.2  
• There is also a notable correlation between gender and eye rubbing 

(0.24). 

The most significant contributor to the class assessment process ac
cording to the risk factor correlation data is the primary optical aid of 
the patient, this is followed by the gender of the patient and the runner- 
up to this is eye rubbing. The only truly notable contributor according to 
the data is the primary optical aid of the patient. The average correlation 
of the attributes to the assessment is 0.092, which can be seen as 
insignificant. 

4.2. Pentacam correlation data 

The correlation heatmap shown in Fig. 4 highlights how strongly all 
the pentacam features correlate to the resulting class of the diagnosis as 
well as to each other factor. We can see from the data that there is a 
higher overall correlation between the attributes in this section of the 
dataset compared to the risk factors section of the dataset. Within this 
section of the dataset, there are more notable correlations between the 
attributes and the assessed class. The keratometry readings are the 
highest correlators, but it is important to note the corneal thickness 
measurements (pachymetry readings) and refractive measurements also 
show high correlation. The average correlation of the attributes to the 
assessment is 0.43, which can be seen as very significant. 

4.3. Demographic diversity of data 

The demographic diversity of the dataset is illustrated in Fig. 5 
showing a skew towards Male participants (blue portion of gender di
versity pie chart), In the dataset, ethnic diversity is mostly biased to
wards three ethnicities. 

4.4. Model performance evaluation 

As we can see in Fig. 6 the prediction capability of the risk factor 
dataset has a lower average accuracy than that of the pentacam dataset, 
which itself has a lower accuracy than the cumulative dataset. This is to 
be expected, as the addition of useful data to a model will generally 
result in better performance. The data shows that the addition of risk 
factor data improved model performance by 12.5%, which is a notable 
performance boost. The MLP model is the only one to drop in accuracy 
when combining both data sections; this may be due to the depth of the 
network and its incompatibility with a high number of attributes but a 

Fig. 4. Correlation data (risk factor heatmap left, pentacam heatmap right).  

A.D. Zorto et al.                                                                                                                                                                                                                                 



Informatics in Medicine Unlocked 38 (2023) 101208

7

relatively small amount of data. We can say this illustrates the suitability 
of ML models for fields in which there is a small amount of data available 
for training. Several models performed fairly well at diagnosis with only 
risk factor data, but when we include average AUC in our analysis as 
well as Pentacam attributes, we gain more insight into what the most 
suitable model to use would be in any given scenario. In Fig. 6 the results 
show a lower average AUC for the risk factor versions of the models 
compared to the Pentacam versions of the models. This phenomenon has 
similarly been observed in a recent study, where Perez et al. [15], 
illustrated that the use of corneal equipment and techniques such as the 
Pentacam in combination with risk factors can result in the detection of 
subclinical keratoconus, but at the expense of a higher rate of 
false-positive detections. This is a limitation of the risk factor data, 
which tends to underdiagnose severity in patients. More work can be 
done in tuning the algorithms towards a lower false positive detection 
rate. 

Table 5 illustrates the three key factors in determining the signifi
cance of each section of the clinical assessment. Looking at the corre
lation data, we see that the Pentacam data has a very significant 
correlation to the assessment, compared to the risk factor data, which 
shows little relevance. However, as previously mentioned, the 12.5% 

overall increase in performance upon adding risk factor data indicates 
that there is a noticeable relevance to the assessment. The results in 
Table 5 also show a slight increase of 5% in average AUC with the 
addition of risk factor data. Table 6 and 7 illustrate how little the risk 
factor helps in improving the precision and recall of a predictive model. 

Fig. 5. Demographic diversity.  

Fig. 6. Model performance (Accuracy left, Area under curve (AUC) right).  

Table 5 
Overall comparison of results between different sections of the dataset.  

Section Risk Factor Pentacam Cumulative 

Correlation 0.09 0.43 – 
Macro Average AUC 0.56 0.92 0.97 
Accuracy 68 80 90  

Table 6 
Precision data for the created machine learning models.  

Model Risk Factor Pentacam Cumulative 

LR 0.56 0.86 0.91 
K Neighbors 0.60 0.76 0.75 
SVC 0.56 0.96 0.93 
DT 0.56 0.89 1.00 
RF 0.56 0.96 0.87 
MLP 0.56 0.77 0.77 
ADA 0.54 0.83 0.88 
QDA 0.52 0.80 0.98  

Table 7 
Recall data for the created machine learning models.  

Model Risk Factor Pentacam Cumulative 

LR 0.75 0.83 0.91 
K Neighbors 0.67 0.75 0.76 
SVC 0.75 0.92 0.92 
DT 0.75 0.79 1.00 
RF 0.75 0.88 0.96 
MLP 0.75 0.79 0.74 
ADA 0.63 0.88 0.90 
QDA 0.38 0.58 0.98  
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5. Discussion 

Discrepancies arose with regard to the most significant risk factors, i. 
e., the significance of primary optical aids and gender, in assessing the 
severity of keratoconus and current research in the literature. The results 
from the experiments on risk factor data contrast with the current 
research on these factors, which may lead us to believe that the models 
created may have suffered from data bias due to an over-representation 
of certain elements in the dataset, causing the models to favour the 
overrepresented elements. More clinical research on these factors may 
be necessary to debunk or support any correlation between these factors 
and the assessment of the disease. 

5.1. Keratoconus grade performance 

Based on the data shown in Fig. 7 and Table 8 the model’s perfor
mances in staging the degradation of keratoconus differ according to each 
stage. The accuracy of the models trained on the risk factor dataset, all 
show a general ability to classify the severity of the diagnosis as grade 1, 
but this is essentially due to the models underdiagnosing every case as 
grade 1. The only algorithm that shows more robust behaviour, in this 
case, is the quadratic discriminant analysis (QDA) algorithm, as it 
correctly classified some cases as grade 3 keratoconus but had more 
incorrect predictions for grade 1 cases. Overall, the models show poor 
performance on the risk factor section of this dataset. On the Pentacam 
dataset, the models showed a decrease in accuracy for detecting grade 1 
cases but also showed a much more robust level of prediction, with each 
model showing better performance on stages other than the first stage, 
leading to an overall increase in accuracy across the stages. Random 
Forest was the best-performing algorithm for the Pentacam dataset across 
the stages, as well as the most robust model. Meanwhile, QDA, which has 
shown the most robustness on the risk factor dataset, had trouble classi
fying the fourth stage of the disease accurately. When both datasets are 
combined, the overall performance of the models increases again, but less 
so than the difference between the risk factor dataset and the Pentacam 
dataset. All models show a satisfactory level of robustness on the cumu
lative data, but the decision tree and QDA models show great robustness 
and performance, with the decision tree model performing better overall. 

5.2. F score for model selection 

The F score is a weighted harmonic mean of precision and recall. It is 
a class-balanced accuracy metric. When false negatives and false posi
tives are important in the prediction process, the F-score is used. The 
findings demonstrate that we are more adept at predicting grade 1 cases 
than any other grade. This is likely due to unbalanced classes and the 
fact that the models in the risk factor section and some in the Pentacam 
section overfit and have a high tendency to underdiagnose the severity 
of keratoconus to grade 1 keratoconus. Since practically every instance 

in the data is classified as grade 1, the accuracy of predicted grade 1 
cases is almost equal to the accuracy of all cases; hence, the recall of the 
data dominates the overall accuracy measure. 

The adjusted F-score is a variation of the F-score that allows us to 
place a higher value on precision or recall if they are more relevant to 
our application. For this research, an F 0.5 score is used to give more 
priority to the precision value. 

Fβ =
(
1 + β2)

×
precision × recall

(
β2 × precision

)
+ recall

(1)  

where β is = 0.5. 

Fig. 7. KC Stage performance (risk factor left, pentacam middle, cumulative right).  

Table 8 
Accuracy % of the created machine learning models.  

Model Risk Factor Pentacam Cumulative 

LR 75 83 91 
K Neighbors 67 75 76 
SVC 75 92 92 
DT 75 79 100 
RF 75 88 96 
MLP 75 79 74 
ADA 63 88 90 
QDA 38 58 98  

Table 9 
F 0.5 Score for the created machine learning models.  

Model Risk Factor Pentacam Cumulative 

LR 0.59 0.85 0.91 
K Neighbors 0.61 0.75 0.74 
SVC 0.59 0.94 0.93 
DT 0.59 0.78 1.00 
RF 0.59 0.87 0.84 
MLP 0.59 0.75 0.78 
ADA 0.55 0.83 0.87 
QDA 0.48 0.72 0.98  

Table 10 
SVC Regularisation Tuning for the selected model.  

Regularisation Parameter F Score Accuracy 

0.002 0.88 88 
0.02 0.92 91 
0.2 0.92 92 
2 0.98 98 
20 0.99 99 
200 0.96 96 
2000 0.96 96  
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5.3. Selecting a model for tuning 

Based on the results shown in Table 9, the algorithm selected as the 
most suitable model for this research is the support vector classifier due 
to its higher overall F score across the three datasets. This model was 
chosen to undergo further fine-tuning, and after varying the regular
isation parameter of the algorithm, a model was created with a 0.99 F- 
score and 99% accuracy with a regularisation term of 20 as shown in 
Table 10. The ROC curve and confusion matrix of the model can also be 
seen in Fig. 8 with an AUC of 1.00. 

5.4. Research comparison 

Based on the results in Table 11, we can see that when we compare 
the performance of the DL models used by Hallett et al. [1], to the ML 
models used in this work, the ML models have a better overall perfor
mance than the DL models when using the same dataset with a small 
sample size. 

When we look at the performance of the best model in this research 
work compared to some of the state-of-the art models in current research 
in Table 12, we can see it possesses similar or greater performance than 
the models shown in the table. The SVC model presented in this research 
exhibits favourable performance despite its very small sample size when 
compared to the datasets with which it is to be evaluated, such as the 
data obtained by Kamiya et al. [50] from Kisato University (KU), and 
Malyugin et al. [51] from S. Fyodorov Eye Microsurgery Complex Head 
Office (SFEMCHO). 

6. Conclusion 

After conducting this study, we can comfortably say that the addition 
of risk factor data to the overall dataset increases the performance of the 
predictive models by a significant amount. The risk factors average 
correlation to the assessment is 0.09 which brought about a 12.5% in
crease in accuracy when employed. Comparing the results presented in 
this paper to those in the literature, there is a notable average overall 
increase in performance, illustrating the effectiveness of ML algorithms 
on small datasets over DL algorithms. Most research is focused on the 
detection of keratoconus and not the diagnosis of the stage of severity, so 
the literature used to support this study may not be wholly applicable 
but may be sufficient to serve the purpose of this paper. In the future 
work, we are aiming to expand the data and include participant di
versity. Finally, as the data for the diagnosis of this disease remains 
scarce, ML techniques should receive more favour as they demonstrate a 
notable increase in performance compared to DL techniques. With 
tuning, the efficacy of these models can significantly improve, further 
increasing the likelihood of their implementation in realworld diagnosis. 
We aim to assist ophthalmologists in their work and to deliver improved 
patient care. 
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