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View-embedding GCN for skeleton-based
cross-view gait recognition

Md. Zasim Uddin, Member, IEEE, Ausrukona Ray, Borsha Das, and Md Atiqur Rahman Ahad, SMIEEE

Abstract—Gait has emerged as a promising biometric modality
due to its non-invasive nature and the ability to capture samples
from a distance. Model-based gait recognition using skeleton
data conveys rich information that remains invariant to carried
objects and clothing variations. However, viewing a person from
different angles alters their gait posture, resulting in increased
intra-subject variability compared to inter-subject variability.
Therefore, we propose a novel framework, View-embedding
Modified Residual Graph Convolutional Network (VeMResGCN),
for cross-view gait recognition (CVGR) by exploiting two mod-
ules: Modified Residual Graph Convolutional Network (MRes-
GCN) and View-embedding Feature Extraction (VeFE) for view-
invariant features. A state-of-the-art pose estimation algorithm
extracts skeleton key points from raw video input, from which
multiple features (e.g., relative joint positions, motion velocities,
and bone structures) are computed. The final feature vector
for gait recognition is computed by consolidating the features
from the MResGCN and VeFE modules. To the best of our
knowledge, this work is the first to extract view-invariant features
in a unified Graph Convolutional Network (GCN) for skeleton-
based CVGR. We evaluate our proposed framework on two of
the largest publicly available skeleton datasets, CASIA-B and
OUMVLP-Pose, under challenging covariates of clothing varia-
tion and carried objects. Results demonstrate that VeMResGCN
significantly outperforms state-of-the-art methods with average
rank-1 accuracies of 90.3%, 80.7%, and 73.4% for normal,
carried object, and clothing variations on CASIA-B, and 71.0%
on OU-MVLP in terms of skeleton-based CVGR. These results
demonstrate the ability of our proposed framework to maintain
superior CVGR performance despite the presence of carried
objects and clothing variations. The proposed framework holds
strong implications for real-world biometric applications, in-
cluding robust person re-identification and surveillance systems,
where maintaining consistent recognition across varying views
and covariates is crucial. The source code will be available on
https://github.com/RayAusrukona/VeMResGCN.

Index Terms—Gait recognition, Skeleton, Cross-view, View-
embedding, Residual graph convolutional network, Graph con-
volutional network, Biometrics.

I. INTRODUCTION

Biometrics refers to the recognition of individuals based
on their physiological or behavioral traits. Gait recognition,
a behavioral biometric modality, involves analyzing an in-
dividual’s unique walking patterns. Unlike other biometrics,
gait recognition does not require active participation from the
subject and can be performed unobtrusively at a distance,
even when facial or iris features are obscured. This makes
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it particularly valuable in real-world applications such as
social security, crime prevention, and forensic analysis, where
cooperation may be limited or subjects are unaware of being
observed.

Gait recognition, however, faces several challenges due to
its sensitivity to various covariates, such as clothing variations
[1], walking speed, occlusions [2], [3], carried objects [4], and
camera view variations [5], [6]. These covariates can signifi-
cantly affect both the gait itself and the features extracted for
recognition. Among these, camera view variation is considered
one of the most challenging, as changes in viewing angle can
lead to significant differences in gait appearance due to self-
occlusion, posture changes, and limb movement alterations [5],
[7]. In particular, gait features can exhibit substantial intra-
subject variation when an individual is viewed from different
angles, complicating recognition. The complexity increases
further when additional covariates, such as carried objects and
clothing variations, are present. In this paper, we address one
of the most challenging scenarios: skeleton-based cross-view
gait recognition (CVGR) under the simultaneous influence of
carried objects and clothing variations, a problem that has a
significant impact on real-world applications.

To address these challenges, researchers have explored
appearance-based and model-based approaches for gait
recognition. Appearance-based approaches often rely on
background-subtracted silhouettes, which provide detailed
shape and motion information [8]–[11]. However, silhouette
extraction is affected by background illumination changes,
even if the silhouette extraction algorithm is robust. Moreover,
the camera view angles, clothing variations, and the carried
objects negatively affect the silhouettes and make them ill-
posed. As shown in Fig. 1, carrying a bag or wearing a jacket
alters the silhouette’s shape, highlighting the limitations of
appearance-based approaches.

Model-based approaches, in contrast, reconstruct articulated
human models from gait sequences in a kinematic manner,
using features such as joint angles, limb lengths, and relative
positions [12]. These approaches are less sensitive to appear-
ance variations caused by clothing or carried objects, as they
rely on kinematic data rather than appearance. However, they
often require high-resolution image sequences, and the process
of fitting accurate models can be error-prone, limiting their
use in gait recognition. A subset of model-based approaches,
known as skeleton-based approaches, has recently emerged as
a promising alternative. By leveraging skeleton key points as
input, skeleton-based Graph Convolutional Networks (GCNs)
have demonstrated significant potential for addressing view
variation challenges in gait recognition by focusing on the
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Fig. 1. Example of a gait sequence (every fourth frame) for a subject: (a) RGB image sequence, (b) silhouette image sequence, and (c) skeleton image
sequence. On the left, the subject carried an object while wearing a jacket on the right. Carried object and clothing variation negatively affect the corresponding
silhouette image shape; however, the skeleton key points are robust against carried object and clothing variations.

extraction of view-invariant features [13]–[17].
Existing skeleton-based GCN approaches, such as ResGCN

[13], [14], SDHF-CGN [15], LUGAN-HGC [17], and ResGait
[16], perform well when the camera view angle variation
between the probe and gallery samples is small. However, they
often struggle when large view variations result in shape distor-
tion and self-occlusion. For example, as shown in Fig. 2, front
and back view skeleton sequences are prone to self-occlusions,
making key points, such as the eyes and ears, difficult to detect.
Developing a robust subspace or metric for nonaligned features
is still a major challenge, mainly when large view variations
and cross-view scenarios are considered. Furthermore, many
existing methods do not explicitly detect camera view angles,
instead extracting features without adequately accounting for
view variability.

This paper addresses the limitations by proposing a novel
framework, the View-embedding Modified Residual Graph
Convolutional Network (VeMResGCN), for CVGR. Our
framework integrates two key modules: Modified Residual
Graph Convolutional Network (MResGCN) for discriminant
feature extraction and View-embedding Feature Extraction
(VeFE) for extracting view-invariant features. The VeFE mod-
ule explicitly estimates the camera view angle, enabling the
framework to extract view-invariant features via a learned pro-
jection matrix. The MResGCN module enhances the discrim-
inative power of these features by leveraging residual graph
convolutions. Together, these modules improve the accuracy
of gait recognition across varying view angles, even in the
presence of challenging covariates such as carried objects and
clothing variations.

The framework was evaluated on two popular publicly avail-
able cross-view gait datasets: CASIA-B [1] and OUMVLP-
Pose [18], achieving state-of-the-art accuracy in skeleton-
based CVGR. Its robustness against challenging covariates,
including carried objects and clothing variations, highlights its
potential for real-world security, healthcare, and surveillance
applications, advancing the field and supporting practical de-
ployment.

II. RELATED WORK

This section explores appearance-based and model-based
approaches designed to enhance recognition accuracy and
robustness under the challenging covariates such as clothing,
carried objects, and view angle variations.

A. Appearance-based approaches

Appearance-based approaches fall into template-based and
sequence-based categories. Template-based methods accumu-
late spatiotemporal gait information into a single template
image, with Gait Energy Image (GEI) [8] being a widely used
example. GEI aggregates silhouette sequences over one gait
cycle, yielding strong performance without covariates [18].
However, real-world systems often encounter covariates, such
as carried objects or clothing variations. To address these chal-
lenges, subspace and metric learning methods were applied to
GEIs, for example, principal component analysis and linear
discriminant analysis in [8], as well as RankSVM employed
in [4], [19]. More recently, Convolutional Neural Networks
(CNNs) have been used to extract discriminative features from
GEIs. Shiraga et al. [20] introduced a simple CNN using a
single GEI as input with cross-entropy loss, while Siamese
networks, paired with contrastive loss, have been employed
in [4], [18]. However, finding a robust subspace or metric
remains challenging, particularly under large view differences
where human gait shapes become highly distorted, and motion
information is averaged in template-based methods.

Recently, researchers explored a silhouette sequence-based
approach as input for gait recognition. For example, Chao
et al. [11] proposed a concise, effective, and view-invariant
model, i.e., GaitSet, which treats gait as a set rather than
continuous silhouettes and extracts spatiotemporal features
using temporal pooling. Moreover, Fan et al. [10] introduced
a part-based model called GaitPart, where part-level spatial
and short-term temporal fine-grained motion features were
extracted using the frame-level part feature extractor and
micromotion capture module, respectively, while GaitGL [9]
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Fig. 2. Skeleton image sequences (every fourth frame) of a subject with multiple views: front, side, and back views.

introduced a fusion framework consisting of a global and local
feature extractor followed by local temporal aggregation to
extract more detailed local information. While these methods
primarily focused on vertical part-based feature extraction,
Uddin et al. [6] extended this approach by introducing a
Horizontal-Vertical Part Model (HVPM). The HVPM incor-
porates features extracted along both transverse and sagittal
planes, significantly enhancing CVGR by providing a more
comprehensive representation of spatial and temporal gait
patterns.

In addition, some methods employ view transformation
techniques to align probe and gallery features to the same
viewpoint [5]. Others incorporate view-dependent features or
embed view information during extraction. For example, Chai
et al. [7] used a selective projection layer to integrate view
information into a state-of-the-art feature extraction frame-
work. Similarly, studies in [21] embedded view information
along with the appearance and intrinsic motion information,
leveraging Lagrange’s equation and a second-order motion
extraction module to mitigate viewpoint diversity and intra-
class variations.

B. Model-based approaches

Traditional model-based approaches: In the early era of
gait recognition, several methods were developed using man-
ually modeled human body shape and motion during walking
[12], [22], [23]. Particularly, gait features were extracted from
the key joints and/or body parts, such as the position of the
hips, knees, ankles, and feet. For example, studies in [23] used
a stick or pole to construct the model, where several body
points were extracted from the gait silhouette to generate a
stick figure for gait recognition, whereas approach in [22]
developed a markerless automatic human gait identification
system that used a consecutive series of planar 2D sticks to
represent gait motion. However, the problem with these model-
based approaches is that they require high-resolution images;
otherwise, the joint position and joint angle, due to inaccurate
point estimation, produce inferior performances.

Skeleton-based approaches: The advent of DL-based pose
estimators like OpenPose [24], AlphaPose [25], and HRNet
[26] has revolutionized model-based approaches. These algo-
rithms extract skeleton key points from RGB images, provid-
ing joint locations along with estimated detection confidence
scores. The robustness of skeleton data against traditional
covariates [15], such as clothing variations and carried objects,
has catalyzed a shift from silhouette-based to skeleton-based
gait analysis. Fig. 1 illustrates this advantage: while silhou-
ettes are distorted by clothing and carried objects, skeleton
motion primarily reflects the subject’s movement dynamics.

This invariance to appearance changes, coupled with the rich
spatiotemporal information in joint trajectories, has positioned
skeleton-based methods at the forefront of gait recognition
research.

Some studies introduced DL-based approaches using skele-
ton data for gait recognition in the literature. For example, Liao
et al. [27] proposed PoseGait, which exploits spatiotemporal
gait features using CNN with human prior knowledge. They
used a combination of features from pose, angle, limb, and mo-
tion based on 3D information. On the other hand, transformer-
based approaches were explored for skeleton-based gait recog-
nition. For example, Li et al. [28] proposed an autoencoder-
based method to disentangle view, motion, and body features
explicitly that can be reconstructed from a different view.
They obtained aggregated gait features by CNN. Moreover,
Zhang et al. [29] introduced a method called Gait-TR, which
used a spatial transformer to extract gait features with high
accuracy and more robustness, whereas the approach in [30]
introduced a heterogeneous spatiotemporal axial mixer to learn
the discriminative gait feature with multifrequency signals
effectively. It performs a spatial self-attention mixer followed
by a temporal large-kernel convolution mixer.

Graph Convolutional Network-based approaches:
The success of skeleton-based Graph Convolutional Net-

works (GCNs) in action recognition, such as spatial-temporal
graph convolutional networks (ST-GCN) [31] and Residual
GCN (ResGCN) [32]), has inspired their exploitation to gait
recognition, particularly for tackling the view variation prob-
lem. A direct approach to tackle skeleton-based CVGR is
to extract robust features from a sample of a query (probe)
subject and match the corresponding feature of the sample for
the subject of the gallery regardless of the viewing angle from
which the gait is observed. This approach is known as view-
invariant gait recognition. Following the concepts of skeleton-
based GCNs for action recognition, the researcher used the
GCN for gait recognition. For example, Liu et al. [15] explored
the symmetry of human walking, such as the relationship
between the left and right legs and hands, to capture the
dependencies in dynamic motion from skeleton data. These
approaches worked better than the traditional model-based
approaches.

Furthermore, following the proven practicability of ResGCN
in action recognition, some studies explored ResGCN archi-
tecture for gait recognition. For example, the approaches in
[13], [14] explored ResGCN architecture for gait recognition
using 2D skeleton data; they fuse the multiple features from
skeletons, such as bones, velocities, and joints. Similarly,
Gao et al. [16] extracted features from the skeleton sequence
to obtain spatiotemporal dynamics using the same architec-
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Fig. 3. Overview of the proposed gait recognition framework (VeMResGCN): The left side of the framework is for skeleton preprocessing, the top right
module is MResGCN, and the bottom right module is the VeFE. Given a raw RGB video sequence, the skeleton key points were extracted using pose
estimation algorithm, and skeleton key points were preprocessed to generate multiple input features. The MResGCN and VeFE modules are then extracted
features and combined to make the final feature for gait recognition. The FC, cat, ⊗, and ⊕ indicate the fully connected layer, concatenation, element-wise
multiplication, and addition, respectively.

ture and used the thresholding technique to eliminate noise-
related redundant features due to covariate conditions, while
Ray et al. [33] introduced a multi-biometric framework that
combines features from multiple pose estimation algorithms,
utilizing both feature- and decision-level fusion to enhance
gait recognition accuracy. In addition, some studies explored
the attention module to the GCN. For example, Wang et al.
[34] introduced MS-Gait, including multistream architecture
along with channel-wise attention to GCN, while Fu et al.
[35] presented a part-aware GCN for efficient graph partition
and local-global spatial feature extraction. Moreover, similar
to the conventional generative adversarial network to image or
video, Pan et al. [17] presented a geometry-based multiview
pose generation pipeline named lower-upper GAN (LUGAN),
where the generator learns a full-rank transformation matrix
from the source pose sequence to target view. Particularly,
these studies concentrate on extracting apparent information
and fusing spatial or temporal features. However, a robust
subspace or metric for nonaligned features is difficult to
find, especially when the view differences are large due to
shape distortion. Our work directly addresses this limitation.
In this paper, we propose a unified framework including the
view-embedding feature extraction (VeFE) to overcome the
limitations of the view angle difference between the samples of
probe and gallery for CVGR. Moreover, we introduce modified
Residual GCN (MResGCN) for discriminative feature extrac-
tion.

III. PROPOSED METHOD

A. Overview

We propose a View-embedding Modified Residual Graph
Convolutional Network (VeMResGCN) for skeleton-based
CVGR. The overall framework is illustrated in Fig. 3. Initially,
a raw video sequence is taken as input. Then, a state-of-the-
art pose estimation algorithm is used to estimate skeleton key
points along with an estimation confidence score to extract
multibranch features, including relative joint positions, motion

velocities, and bone structures. Within our proposed frame-
work, we have two pivotal modules: (i) Modified Residual
Graph Convolutional Network (MResGCN) and (ii) View-
embedding Feature Extraction (VeFE). The MResGCN is
applied to capture discriminant spatiotemporal features for
gait recognition along with the view-invariant feature using
the VeFE module. Eventually, the extracted features from the
MResGCN and VeFE modules are aggregated to make final
features for gait recognition. The feature extraction and gait
recognition are trained in an end-to-end manner.

Preliminaries: In accordance with the work of MRes-
GCN, we first construct the skeleton data into a graph to
provide input to the model. The skeleton graph is denoted
by G = (V,E), where V = {v1, ..., vN} is the set of N
number of nodes representing the joints, and E is the set of
edges representing the bones captured by an adjacency matrix
A ∈ RN×N , which is an undirected graph. If vi and vj
are connected by an edge, then Ai,j = 1; otherwise, it is 0.
Thus, gait can be considered a sequence of graphs, which
has a set of feature tensor X = {xt,n ∈ RC | t, n ∈
Z, 1 ≤ t ≤ T, 1 ≤ n ≤ N} in a temporal dimension T , where
xt,n = Xt,n is the C dimensional feature vector for node vn
at time t over T , and C is a tuple of 2D coordinate (x, y)
and pose estimation confidence score c. Hence, the input gait
sequence can be described structurally by the adjacency matrix
A and the pose feature tensor X ∈ RT×N×C .

Graph convolutional network: Following the GCN pro-
posed in [36], we used the multilayer GCN with layer-wise
propagation rule at time t, denoted as follows:

X
(l+1)
t = σ

(
D̃−1/2ÃD̃−1/2X

(l)
t W (l)

)
(1)

where Ã = A+ IN is an adjacency matrix of the gait graph
G with identity matrix IN to obtain the value of the self node.
The D̃ is a diagonal degree matrix of Ã, and W (l) is a trainable
weight matrix for lth layer. Here, σ(·) denotes an activation
function, such as the ReLU(·) = max(0, ·), and X

(l)
t is the

matrix of activations in the lth layer.
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B. Human pose estimation and preprocessing

This entails the prediction of the human skeleton and 
its subsequent preprocessing to prepare the input data for 
the network. Human pose estimation predicts the spatial 
locations of human body joints from an image of a gait 
video sequence. These body joints typically include the eyes, 
ears, nose, neck, shoulders, elbows, wrists, hips, knees, and 
ankles and contain the spatiotemporal discriminating gait 
information for each subject. The task is to estimate the 
2D coordinates of N body joints, represented as X = 
(x1, y1, c1), (x2, y2, c1), ..., (xN , yN , cN ), where (xi, yi) de-
notes the 2D spatial position of the ith joint, and N is the 
total number of joints, whereas c is for confidence s core of 
each joint estimation. Deep learning-based pose estimation 
algorithms are classified i nto t op-down a nd b ottom-up ap-
proaches: the top-down approach detects the human first and 
then estimates the body parts, whereas the bottom-up approach 
detects all body parts first and then groups the parts belonging 
to distinct persons. Top-down methods use global contexts 
and structural correlation, and the performance of top-down 
models is related to human detection results. In this study, 
we considered the state-of-the-art top-down and bottom-up 
approaches for human pose estimation, such as OpenPose [24] 
for bottom-up and AlphaPose [25] and HRNet [26] for top-
down, to extract skeleton key points.

Data preprocessing is an important step for skeleton-based 
gait recognition; according to previous studies for action and 
gait recognition [14], [32], [37], we exploited the multiple 
data preprocessing techniques from the raw skeleton data 
points, including (i) relative joint positions (RJP), (ii) mo-
tion velocities (MV), and (iii) bone structure (BS) features.
Suppose that the original skeleton key points for a gait
sequence are X =

{
x ∈ RT×N×C

}
, where T , N , and

C denote the number of frames, joints, and 2D coordinates
with an estimated confidence score, respectively. The RJP
is basically the skeleton key point location compared with
the center joint cj of the skeleton. It can be calculated as
RJP = {ri|i = 1, 2...., N}, where ri is the concatenation of
x [:, i, :]− x [:, cj, :] and x [:, i, :].

Similarly, the second type of data preprocessing is mo-
tion velocities (MV), which refers to the changes of
joint positions in the next two frames in the tempo-
ral dimension. Specifically, it can be a concatenation of
MV2 = {ft|t = 1, 2...., T} and MV1 = {st|t = 1, 2...., T},
where MV2 = {x [t+ 2, :, :]− x [t, :, :]} and MV1 =
{x [t+ 1, :, :]− x [t, :, :]}.

The final skeleton preprocessing is bone structure (BS),
including bone lengths (BL) and bone angles (BA). To obtain
these two sets, the displacement of each bone is calculated
as BL = {li|i = 1, 2...., N}, and BA = {ai|i = 1, 2...., N},
where li = {x [:, i, :]− x [:, iadj , :]}, with iadj is the adjacent
joint of ith joint, and the angle for each bone is calculated by

ai,w =

{
arccos

(
li,w√

l2i,x+l2i,y

)}
, where w ∈ {x, y} denotes

the 2D coordinates.

TABLE I
NETWORK ARCHITECTURE OF THE MODIFIED RESIDUAL GRAPH

CONVOLUTIONAL NETWORK (MRESGCN) MODULE.

M
R

es
G

C
N

CASIA-B OUMVLP-Pose
Block Layer Output dimensions Block Layer Output dimensions

Block 0 Batch Norm. 60 × 17 × 6 Block 0 Batch Norm. 30 × 18 × 6

Block 1
Basic
Bottleneck
Bottleneck

60 × 17 × 64
60 × 17 × 64
60 × 17 × 32

Block 1
Basic
Bottleneck
Bottleneck

30 × 18 × 64
30 × 18 × 64
30 × 18 × 32

Block 2

Bottleneck
Bottleneck
Bottleneck
Bottleneck

30 × 17 × 128
30 × 17 × 128
15 × 17 × 256
15 × 17 × 256

Block 2

Bottleneck
Bottleneck
Bottleneck
Bottleneck
Bottleneck
Bottleneck

15 × 18 × 128
15 × 18 × 128
15 × 18 × 256
8 × 18 × 256
8 × 18 × 256
8 × 18 × 256

Block 3
Bottleneck
Bottleneck

15 × 17 × 128
15 × 17 × 128

Block 3
Avg. pool 2D
FC

1 × 256
1 × 128

Block 4
Avg. pool 2D
FC

1 × 128
1 × 128

-
-
-

-
-

C. MResGCN-based feature extraction

We modified the ResGCN architecture [32], which is de-
veloped on the basis of the ST-GCN or basic block [31]
and bottleneck block. Each basic block consists of sequential
execution of spatial graph convolution and temporal 2D convo-
lution, followed by batch normalization and ReLU activation.
By contrast, the bottleneck block is introduced based on the
concept of a subtle block structure of ResNet [38], which
used two 1 × 1 convolutional layers before and after the
common convolution layer of the ST-GCN block, respectively.
Particularly, the bottleneck block reduces the number of fea-
ture channels and parameters, allowing the model training to
become faster. A residual link also connects the features before
and after each spatial and temporal block to accelerate the
model optimization and reduce the learning difficulties.

Our network is based on the ResGCN architecture and
consists of hyperparameters of [B1, N2, N2, N2, N2] in a
sequential manner, followed by an adaptive average pool,
where B1 denotes the basic block, while N2 for the two Res-
GCN modules with bottleneck blocks. The extracted feature
using the Modified Residual Graph Convolutional Network
(MResGCN) can be considered fMResGCN , and the overall
network architecture is shown in Table I and Fig. 3.

D. View-embedding feature extraction

Inspired by the success of view-embedding into the
appearance-based approach [7], [21], in this study, we pro-
posed the use of the VeFE module for skeleton-based CVGR.
The concatenating feature map Xcat using the preprocessed
three different input skeleton features of the relative joint
positions (RJP), motion velocities (MV), and bone structure
(BS) is obtained after using the first basic (B1) and two
consecutive bottleneck blocks (N2), and fed it as the input
for the VeFE module (as shown in Fig. 3).

In accordance with the temporal max pooling using Eq.
2 on the concatenated feature (Xcat) in the time direction,
the adaptive average pooling function and fully connected
operations are performed to extract the view feature fview in
Eq. 3.

Xtemp = Ptem(Xcat) (2)

fview = FC(PAP (Xtemp)) (3)
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TABLE II
NETWORK ARCHITECTURE OF THE VEFE MODULE.

V
eF

E

CASIA-B OUMVLP-Pose

Layer Output dimensions Layer Output dimensions

Te
m

.p
oo

l
(9

6
×

17
)

Avg. pool 1D 96 × 1

Te
m

.p
oo

l
(9

6
×

18
)

Avg. pool 1D 96 × 1

View probabilities 11 View probabilities 14

View generation 1 View generation 1

HPP 96 × 17 HPP 96 × 18

View projection 17 × 96 View projection 18 × 96

Avg. pool 1D 96 × 1 Avg. pool 1D 96 × 1

FC 128 FC 128

where Ptem denotes the temporal max pooling, and PAP , FC
denotes the adaptive average pool and the fully connected
layer, respectively.

Next, on the basis of the extracted view feature, the discrete
view angle probabilities are estimated as P̂v ∈ RQ. Finally,
a discrete view angle with the maximum probability is calcu-
lated as follows:

P̂v = Wvfview +Bv (4)

and
v̂ = argmax

i
P̂v(i) (5)

where Q is the number of discrete views, Wv , Bv are the
weight matrices and bias terms, respectively. The predicted
view angle is used to generate a robust view-invariant fea-
ture for skeleton-based CVGR. A projection matrix Zv̂| =
{Z1, Z2, Z3, ...., ZQ} corresponding to the predicted view v̂
is trained, where Zi ∈ RD×D.

After estimating the camera view angle, the Horizontal
Pyramid Pooling (HPP) with N number of skeleton coordinate
points is applied on Xtemp to obtain the feature tensor fHPP ∈
RN×D, where D is the output feature dimension. Then, each
feature of the fHPP and the corresponding view projection
matrix are multiplied for the estimated view angle. After
performing matrix multiplication, we apply adaptive average
pooling, followed by a fully connected layer, and obtain
the view-invariant feature fV eFE . The overall architecture is
shown in Table II.

E. Feature aggregation

Finally, we aggregate the output features from MResGCN
and VeFE modules, namely, fMResGCN and fV eFE as:

ffinal = cat

{
fMResGCN

fV eFE

}
(6)

which is used for CVGR.

F. Loss function

We use a combined loss function consisting of Supervised
Contrastive Loss (SCL) [39] and Cross-Entropy Loss (CEL)
to train the proposed gait recognition framework effectively.
The SCL works with all positive and negative pairs in the
batch so that samples of the same class are pulled together in
the feature space, whereas the samples from different classes
are pushed apart, while CEL is used for the classification of

the view angles. During training, the final aggregated feature
ffinal is fed into SCL, and the predicted view v̂ is provided
into CEL to calculate the losses, and the combined loss is
calculated as:

Lfinal = LSCL + λLCEL (7)

where λ is a weighting parameter to control the trade-off
between supervised contrastive loss LSCL and cross-entropy
loss LCEL. For a random sample i ∈ I ≡ {1...2K} with a
batch size of K, LSCL is defined as,

LSCL =
∑
i∈I

−1

|Pos (i)|
∑

m∈Pos(i)

log
e(zi·zm/γ)∑

a∈R(i) e
(zi·za/γ)

(8)

where zi and zm denote the anchor feature and the corre-
sponding positive features of the same subject, Pos(i) ≡
{m ∈ R(i) : ym = yi} is the set of indices of all positives
in the batch distinct from i, yi is the label of the ith sample
in the batch, za is the other sample whose label is different
from zi or zm, R(i) ≡ I\i is the set excluding i from all data,
|Pos (i)| is the number of samples in Pos(i), |Pos(i)| is its
cardinality, and γ is a scalar temperature parameter.

We used the cross-entropy loss LCEL for view prediction,
and it can be defined as,

LCEL = −
K∑
j=1

M∑
i=1

yj log(pji) (9)

where K is the number of all gait skeleton sequences, and yj
is the discrete ground truth of view of the jth sequence.

IV. EXPERIMENTS

We conducted experiments using two common publicly
available benchmark datasets for CVGR, i.e., CASIA-B [40]
and OUMVLP [18], to evaluate the performance of our
proposed framework. Furthermore, we performed exhaustive
ablation studies to verify the effectiveness of the proposed
framework components.

A. Datasets and evaluation protocols

CASIA-B dataset [40] is a popular public gait dataset
widely used for CVGR including 124 subjects. Each subject
has ten sequences with 11 distinct camera view angles for 18°
intervals (0°, 18°, . . . , 180°). More specifically, six are for
normal walking (NM), two for walking with a carried object
(BG), and the remaining two are for clothing variation (CL).
We used the HRNet pose estimation algorithm [26] to estimate
2D pose sequences, similar to studies in [13], [14]. For a fair
comparison, we strictly followed the popular protocol used in
previous studies [13]–[15], [17], where the first 74 subjects are
grouped into the training set, and the remaining 50 subjects are
a part of the testing set. In the test set, the gallery set contains
the first four sequences of NM condition (NM#1-4), and the
probe set retains the remaining sequences (NM#5-6, BG#1-
2, CL#1-2); more details about training and test protocol are
shown in Table III.
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TABLE III
EXPERIMENTAL SETTING ON CASIA-B DATASET

Training
Test

Probe Gallery
Subject ID: 001-074 Subject ID: 075-124 Subject ID: 075-124
Seqs.: NM#1-6,
BG#1-2, CL#1-2

Seqs.: NM#5-6,
BG#1-2, CL#1-2

Seqs.: NM#1-4

OUMVLP dataset [18] is the world’s largest multiview
gait dataset, comprising 10307 subjects. Each subject has 14
views in a 15° interval (0°, 15°, . . . , 90°, 180°, 195°, .
. . , 270°), and each view has two sequences (#00, #01).
Each sequence comprises 18–35 frames and mostly contains
approximately 25 frames. Instead of providing RGB image
sequence, they release the skeleton pose sequence for publicly
available, OUMVLP-Pose [41], using the OpenPose [24] and
AlphaPose [25] pose estimation algorithms. Following the
official instructions [41], 5153 subjects were used for training,
while the remaining 5154 subjects were used for testing. For
testing, #00 and #01 sequences were used as the probe and
gallery sets, respectively.

B. Training and test details

Training. For the CASIA-B dataset, the Adam optimizer
with a one-cycle learning rate scheduler was used to optimize
our proposed framework, and the loss temperature γ and
hyperparameter λ were set to 0.01. The sequence length, T ,
and batch size were set to 60 and 128, respectively. In training
step one, the maximum learning rate and weight decay were
set to 1e-2 and 1e-5 for the first 300 epochs, while 1e-3 and
1e-6 for the successive 100 epochs. By contrast, sequence
length, batch size, and learning rate are set to 30, 768, and 5e-
3, respectively, for the OUMVLP-Pose datasets, and Training
continued up to 950 epochs. Here, stochastic weight averaging
[42] was applied after 80% of the maximum epochs.

In addition, the skeleton sequences were flipped from left
to right, and various uniform noises were added to augment
the training dataset. Moreover, if the length of the skeleton
sequence was less than 60 frames for CASIA-B and 30 frames
for OUMVLP, the remaining frames were selected from the
start of the original sequence and padded to the end. Each
experiment was conducted on a single NVIDIA 3090 GPU
with PyTorch.

Test. At testing, Euclidean distance was used to calculate
the distance between the feature of samples of the probe and
the gallery. The Rank-1 identification rate was used to evaluate
the performance of the proposed framework.

C. Comparison with skeleton-based state-of-the-art methods

Evaluation on the CASIA-B dataset. We compared the
performance achieved by our proposed framework with results
obtained using state-of-the-art model-based gait recognition
approaches using skeleton data. More specifically, PTSN [27],
PoseGait [27], Siamese [43], Disentanglement [28], GaitGraph
[13], GaitGraph2 [14], SDHF-CGN [15], ResGait [16], and
LUGAN-HGC [44], where GaitGraph2 [14] represent the
baseline of our proposed framework. The Rank-1 accuracy

on CASIA-B is presented in Table IV. Our proposed frame-
work exhibited superior performance. For example, with a
mean accuracy of Rank-1 under 11 probe views, excluding
identical-view cases, our proposed framework achieved the
best accuracy for the NM and BG covariate and the second-
best accuracy for the CL condition. Regarding the NM and
BG covariates, our proposed framework achieved a mean
accuracy of Rank-1 under 11 probe views, excluding identical-
view cases of 90.3% and 80.7% for NM and BG conditions,
respectively. This result indicates that our proposed framework
increases by 0.7% and 1.0% compared with the second-
best approaches, i.e., ResGait [16] and LUGAN-HGC [17],
respectively.

The proposed framework surpasses the baseline approach,
GaitGraph2 [14], with improvements of 8.3%, 7.5%, and 9.8%
for NM, BG, and CL conditions, respectively. This demon-
strates its effectiveness in addressing challenging CVGR tasks,
particularly under carried object and clothing variation covari-
ates. Notably, our approach consistently ranks as either the
best or second-best across all probe view angles. The VeFE
module plays a pivotal role in achieving view-invariance, while
the MResGCN module significantly enhances the extraction
of discriminative features for CVGR. Although our method
performs comparably to LUGAN-HGC [44] in the presence
of clothing variations, its superior accuracy in NM and BG
conditions highlights the robustness of our framework in real-
world scenarios.

Evaluation on the OUMVLP-Pose dataset. The Rank-1
accuracy achieved by our framework on the OUMVLP-Pose
[41] dataset is shown in Table V. Using skeleton key points
generated by OpenPose [25], our framework demonstrated
superior performance over several state-of-the-art methods,
including CNN-Pose [43], AGGN [43], Siamese [43], Gait-
Graph2 [14], SDHF-CGN [15], ResGait [16], and LUGAN-
HGC [44]. The average Rank-1 accuracy across all view
angles, excluding identical views, reached 50.8%, surpassing
SDHF-CGN [15] by 0.5% and GaitGraph2 [14] by 6.9%.
These results indicate that the proposed framework effectively
extracts view-invariant features under challenging cross-view
scenarios.

Furthermore, our framework attained the best or second-best
accuracy for most of the separate view angle cases (except for
180°, 195°, and 210° view angles only). However, performance
decreased slightly for back-view scenarios, such as 180°, 195°,
and 210°, where the OpenPose algorithm struggled to detect
certain key points (e.g., the nose and ears). This issue is
depicted in Fig. 4, which illustrates the difficulty of extracting
accurate skeleton sequences in these challenging angles. De-
spite these limitations, the proposed framework consistently
outperformed existing methods under similar conditions.

By contrast, when AlphaPose [25] was employed to gen-
erate skeleton data, the average Rank-1 accuracy increased to
71.0% across all view angles, excluding identical views, rep-
resenting improvements of 8.8% and 8.0% over SDHF-CGN
[15] and GaitGraph2 [14], respectively. These results demon-
strate the robustness of the proposed framework, with higher-
quality skeleton data significantly enhancing the extraction of
discriminative, view-invariant features. Particularly, clear and
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TABLE IV
RANK-1 ACCURACY (%) ON CASIA-B DATASET UNDER 11 PROBE VIEWS, EXCLUDING IDENTICAL-VIEW CASES COMPARED WITH OTHER
SKELETON-BASED METHODS. VALUES IN BOLD AND ITALIC BOLD INDICATE THE BEST AND SECOND-BEST BENCHMARKS, RESPECTIVELY.

Gallery NM#1-4 0◦-180◦

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ mean

NM#5-6

PTSN [27] 34.5 45.6 49.6 51.3 52.7 52.3 53.0 50.8 52.2 48.3 31.4 47.4
PoseGait [27] 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7
Siamese [43] 72.4 81.2 85.6 80.4 79.4 85.0 81.0 77.6 82.5 79.1 80.2 80.4

Disentanglement [28] 35.1 42.2 47.9 48.4 40.7 42.1 42.6 45.3 44.6 37.3 33.9 41.8
GaitGraph [13] 85.3 88.5 91 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7

GaitGraph2 [14] 78.5 82.9 85.8 85.6 83.1 81.5 84.3 83.2 84.2 81.6 71.8 82.0
ResGait [16] 85.2 88.4 92.8 90.3 93.2 90.5 91.3 89.6 88.6 89.7 85.8 89.6

SDHF-GCN [15] 77.3 82.8 85.1 86.0 85.5 85.4 83.7 81.5 80.5 83.9 77.6 82.7
LUGAN-HGC [44] 89.3 88.1 89.0 89.9 87.4 88.7 87.4 88.8 88.8 87.0 87.0 88.3
VeMResGCN (ours) 87.7 92.5 92.5 94.2 93.7 90.1 89.3 88.1 88.8 90.2 85.8 90.3

BG#1-2

PTSN [27] 22.4 29.8 29.6 29.2 32.5 31.5 32.1 31.0 27.3 28.1 18.2 28.3
PoseGait [27] 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5
Siamese [43] 62.5 68.7 69.4 64.8 62.8 67.2 68.3 65.7 60.7 64.1 60.3 65.0

Disentanglement [28] 24.0 29.9 31.3 33.1 29.7 25.6 27.0 29.1 28.6 28.7 28.3 28.2
GaitGraph [13] 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8

GaitGraph2 [14] 69.9 75.9 78.1 79.3 71.4 71.7 74.3 76.2 73.2 73.4 61.7 73.2
ResGait [16] 73.5 78.2 79.6 83.3 82.4 78.5 81.7 81.1 78.4 80.3 74.2 79.2

SDHF-CGN [15] 67.5 73.9 73.2 74.3 68.5 68.5 70.5 69.0 62.2 68.7 60.1 68.8
LUGAN-HGC [44] 79.4 79.5 81.6 82.4 78.1 76.2 78.7 82.0 81.6 83.0 73.6 79.7
VeMResGCN (ours) 78.3 82.6 84.4 86.9 78.8 83.0 82.8 77.5 78.4 80.7 73.7 80.7

CL#1-2

PTSN [27] 14.2 17.1 17.6 19.3 19.5 20.0 20.1 17.3 16.5 18.1 14.0 17.6
PoseGait [27] 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0
Siamese [43] 57.8 63.2 68.3 64.1 66.0 64.8 67.7 60.2 66.0 68.3 60.3 64.2

Disentanglement [28] 11.6 13.0 15.2 17.0 16.6 17.7 17.8 20.1 19.5 15.3 14.6 16.2
GaitGraph [13] 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3

GaitGraph2 [14] 57.1 61.1 68.9 66.0 67.8 65.4 68.1 67.2 63.7 63.6 50.4 63.6
ResGait [16] 64.2 68.3 74.6 75.8 71.6 72.4 69.1 70.8 67.6 70.5 67.1 70.2

SDHF-GCN [15] 63.4 65.4 66.7 64.8 63.0 66.2 69.1 63.3 61.1 65.9 60.7 64.5
LUGAN-HGC [44] 72.8 72.3 69.4 75.2 77.0 79.6 80.5 78.1 76.3 74.9 72.8 75.4
VeMResGCN (ours) 72.7 70.6 76.9 77.5 74.1 72.0 75.5 71.2 73.2 74.6 68.8 73.4

TABLE V
RANK-1 ACCURACY (%) ON OUMVLP-POSE DATASET FOR ALL VIEWING ANGLES, EXCLUDING IDENTICAL-VIEW CASES. VALUES IN BOLD AND ITALIC

BOLD INDICATE THE BEST AND SECOND-BEST BENCHMARKS, RESPECTIVELY. ‘-’ INDICATES THAT RESULTS ARE NOT AVAILABLE ON THE RESPECTIVE
PAPERS.

Method
0° - 90° 180° - 270°

0° 15° 30° 45° 60° 75° 90° 180° 195° 210° 225° 240° 255° 270° Mean

O
pe

nP
os

e

CNN-Pose [41] 8.2 13.9 18.1 22.4 21.3 18.2 10.9 7.3 13.5 12.0 20.5 17.3 13.7 9.4 14.8
AGCN [43] 19.5 30.5 35.7 38.7 34.0 36.3 29.2 22.7 28.3 27.1 33.6 29.6 30.1 24.9 30.0

Siamese [43] 25.2 39.0 45.0 48.1 43.5 44.9 36.2 27.7 35.1 34.5 42.4 38.2 39.8 33.5 38.1
GaitGraph2 [14] 34.7 45.1 49.0 53.7 54.0 51.1 45.0 24.4 34.8 31.6 45.9 52.7 49.5 42.8 43.9

ResGait [16] 39.6 49.3 56.2 58.1 57.3 59.6 47.7 35.5 40.2 43.3 47.2 54.9 55.3 46.2 49.3
SDHF-GCN [15] 29.8 48.6 56.5 60.1 55.1 56.9 51.7 44.2 49.6 48.2 55.6 50.8 51.2 46.3 50.3

LUGAN-HGC [44] 42.6 47.7 52.1 53.6 50.4 51.6 48.0 49.6 45.8 47.5 47.6 47.0 47.4 40.7 47.9
VeMResGCN (ours) 41.6 55.8 58.6 61.7 62.1 58.5 49.4 36.3 44.2 39.8 53.8 55.2 50.2 43.6 50.8

A
lp

ha
Po

se

CNN-Pose [41] 14.3 22.3 27.2 30.0 28.4 23.4 17.2 7.9 13.6 15.6 25.0 24.1 20.2 16.5 20.4
AGCN [43] 27.3 39.0 45.3 46.5 41.2 46.0 39.9 26.1 30.7 30.5 39.5 35.3 39.3 34.7 37.2

Siamese [43] 46.5 60.2 68.0 69.3 60.1 66.2 60.7 42.3 51.8 51.7 62.8 55.1 60.8 56.8 58.0
GaitGraph2 [14] 53.7 60.2 64.9 67.2 66.9 68.7 63.5 47.7 58.5 53.5 70.0 69.9 67.7 69.3 63.0

ResGait [16] - - - - - - - - - - - - - - -
SDHF-GCN [15] 44.5 61.5 70.1 72.7 63.3 70.0 67.6 50.6 57.5 57.2 66.8 59.9 64.8 62.9 62.2

LUGAN-HGC [44] - - - - - - - - - - - - - - -
VeMResGCN (ours) 62.7 75.0 78.1 79.7 78.8 76.4 72.0 56.5 64.6 59.6 76.1 74.4 72.3 67.3 71.0

accurate skeleton data are critical for reliably estimating view
angles and deriving consistent features. As shown in Fig. 4,
OpenPose struggled to generate reliable skeleton key points
for back view angles (e.g., 180°, 195°, and 210°), whereas
AlphaPose yielded a more precise skeleton. These findings
highlight the effectiveness of the proposed framework’s mod-
ules in consistently improving gait recognition accuracy for
CVGR.

V. EVALUATION OF THE PROPOSED FRAMEWORK

The proposed framework comprises several key modules:
preprocessing, VeFE, and MResGCN-based feature extraction.
We conducted various experiments, including different combi-
nations of modules, to evaluate their individual contributions.
Furthermore, we evaluated the framework’s accuracy against

the baseline model, GaitGraph2 [14], to highlight its superior
performance across different covariates, including carried ob-
jects and clothing variations, and we also compared its results
with state-of-the-art appearance-based approaches.

A. Comparison with the baseline model

Here, we present overall comparisons with the baseline
model, GaitGraph2 [14]. The results on CASIA-B [40] and
OUMVLP-Pose [41] are reported in Figs. 5 and 6. Our pro-
posed framework, i.e., VeMResGCN, outperforms the baseline
method, i.e., GaitGraph2, in every aspect. On the basis of these
results, the following conclusions are drawn: the accuracy of
our proposed framework improves for cross-view cases but is
about the same as the baseline for the same view cases. We
think the primary cause for the similar accuracy with a baseline
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180° 195° 210°

(a) OUMVLP-Pose [OpenPose]

(b) OUMVLP-Pose [AlphaPose]

Fig. 4. Example of an extracted skeleton sequence (every fourth frame) for a subject using (a) OpenPose [24]. and (b) AlphaPose [25] pose estimation
algorithm for the camera view angle: 180°, 195°, and 210°.

TABLE VI
AVERAGED RANK-1 ACCURACY (%) UNDER THE CONSIDERATION OF

DIFFERENT INPUT BRANCHES ON THE CASIA-B DATASET.

Input NM BG CL Mean
Single input feature 90.4 76.8 70.6 79.4

Multiple input features 90.3 80.7 73.4 81.5

for the same-view case as probe and gallery samples (e.g.,
90° probe angle vs. 90° gallery view angle) is that the VeFE
module’s ability to estimate view angles and extract view-
invariant features is not fully utilized, as the probe and gallery
views are essentially aligned. Consequently, the discriminative
power of the feature extraction process doesn’t significantly
improve recognition accuracy since the model doesn’t face
the challenges of cross-view variation that the VeFE module
is designed to overcome.

B. Effectiveness of preprocessing of skeleton data
We used a skeleton preprocessing technique (see Sec. III-B)

to extract multiple types of input skeleton features: (i) relative
joint positions (RJP), (ii) motion velocities (MV), and (iii)
bone structure (BS) features. To analyze the efficiency of
the multiple types of input features, we compared accuracy
with single input features, such as RJP, similar to GaitGraph
[13]. As illustrated in Table VI, the Rank-1 accuracy of
our model was 90.3%, 80.7%, and 73.4%, respectively, for
NM, BG, and CL conditions when multiple input features
are used, while 90.4%, 76.8%, and 70.6% for single-input
feature. We can observe that the accuracy is about the same
for NM cases as the single-input feature, whereas it improves
by 3.9% and 2.8%, respectively, for BG and CL conditions;
overall, it surpasses by 2.1%; therefore, multiple-input features
demonstrate better in our proposed framework.

C. Effectiveness of VeFE and MResGCN under covariate
conditions

The results are presented in Table VII and Fig. 7, show-
ing that our framework not only achieves overall accuracy
improvements but also excels in handling the challenging
covariate conditions of carried object and clothing variations.

The experimental results highlight the critical role of both
VeFE and MResGCN modules in improving recognition per-
formance under challenging conditions. When both VeFE and

TABLE VII
AVERAGED RANK-1 ACCURACY (%) OF DIFFERENT MODULES ON

CASIA-B DATASET.

MResGCN VeFE NM BG CL Mean
✗ ✗ 82.0 73.2 63.6 72.9
✓ ✗ 84.3 74.5 66.8 75.2
✗ ✓ 86.4 75.2 69.8 77.1
✓ ✓ 90.3 80.7 73.4 81.5

MResGCN are absent, the framework mirrors the baseline
approach and achieves lower accuracy: 82.0%, 73.2%, and
63.6% for NM, BG, and CL conditions, respectively. However,
when added only MResGCN improves accuracy slightly for all
conditions. For example, accuracy under the clothing variation
(CL) increases from 63.6% to 66.8%, showing the mod-
ule’s capability to extract more discriminative features even
when subjects’ appearance changes significantly. Moreover,
added VeFE without MResGCN yields a more pronounced
improvement, with accuracy under CL increasing from 63.6%
to 69.8%. This result demonstrates that the view-embedding
feature extraction is particularly effective at mitigating the
challenges posed by carried object and clothing variations, as
it produces more stable, view-invariant features. When both
modules are combined, the framework achieves the highest
performance across all conditions, with an accuracy of 90.3%
(NM), 80.7% (BG), and 73.4% (CL). More specifically, the
accuracy improved with a greater margin, i.e., 8.3%, 7.5%,
and 9.8%, as shown in Table VII. These results highlight the
synergy between VeFE and MResGCN, showing that together,
they can effectively tackle the covariates.

D. Comparison with appearance-based approaches

The results presented in Table VIII show that appearance-
based approaches, such as GaitSet [11], GaitPart [10], and
GaitGL [9], outperform our skeleton-based framework in terms
of Rank-1 accuracy. GaitGL achieves up to 97.4% for NM and
a mean accuracy of 91.8%, while our framework, VeMRes-
GCN, achieves 81.5%. This performance gap is expected since
silhouette-based appearance approaches utilize richer image-
derived features. Despite this, our skeleton-based framework,
which relies solely on skeleton key points, demonstrates
competitive results under challenging conditions such as car-
ried objects and clothing variations. Furthermore, skeleton-
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Fig. 5. Comparison of the proposed framework (VeMResGCN) with the baseline method (GaitGraph2) on the CASIA-B dataset. To provide further information,
from left to right, three groups of results are respectively shown on three probe view angles, i.e., 0°, 90°, and 180°, against all gallery-view angles. From top
to bottom, the result respectively indicates NM, BG, and CL. Best viewed in color.

based approaches offer practical advantages, including low
computational cost, robustness to illumination changes, and do
not require high-quality images. While these models currently
fall short of silhouette-based approaches in accuracy, they
present a promising, lightweight solution for real-world gait
recognition.

TABLE VIII
AVERAGED RANK-1 ACCURACIES (%) ON CASIA-B:

APPEARANCE-BASED VS. SKELETON-BASED APPROACHES.

Type Method NM BG CL Mean

Appearance-based
GaitSet [11] 95.0 87.2 70.4 84.2
GaitPart [10] 96.2 91.5 78.7 88.8
GaitGL [9] 97.4 94.5 83.6 91.8

Skeleton-based VeMResGCN (ours) 90.3 80.7 73.4 81.5

VI. CONCLUSION AND FUTURE WORK

This paper presents a framework to address the CVGR
problem within a unified approach based on the spatiotemporal
patterns of the 2D skeleton sequence. To achieve this, we

introduce a novel View-embedding Feature Extraction (VeFE)
module combined with Modified Residual Graph Convolu-
tional Networks (MResGCN), which overcomes the limitations
of existing methods by explicitly estimating view angles and
using them to extract view-invariant features. The proposed
VeMResGCN framework leverages the view-invariant features
from VeFE alongside the discriminative residual features from
the MResGCN module. The aggregated feature enhances the
framework’s ability to express and discriminate for CVGR. Ex-
perimental results on two large-scale cross-view gait datasets
demonstrate that the proposed framework achieves superior
gait recognition performance using skeleton data, even under
different covariates, such as carried objects and clothing vari-
ation.

However, the proposed framework’s limitation is its depen-
dence on the quality of the underlying pose estimation algo-
rithm. When the pose estimation algorithm fails to accurately
detect skeleton key points, particularly in challenging back-
view scenarios, recognition accuracy can decrease. Moreover,
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for NM, BG, and CL. Cross-view results are averaged on 11 views, including
identical-view cases, whereas same-view results are the average of the same
view angle for the probe and gallery. Best viewed in color.

the framework does not show substantial accuracy improve-
ment over the baseline for same-view cases, as the VeFE
module’s view-invariant feature extraction is less impactful

when probe and gallery views are already aligned. This high-
lights the need for future research to enhance the robustness
of skeleton data generation and refine feature extraction under
same-view scenarios, thereby minimizing such performance
gaps.

We anticipate that the proposed modules will serve as a
catalyst for further research in skeleton-based pattern recogni-
tion, extending to areas such as view-invariant action recog-
nition and elderly fall detection systems. Furthermore, our
VeFE module shows promise for adoption in a variety of
applications, including real-time skeleton-based person re-
identification.
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