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ABSTRACT

The main objective of reliability-centered maintenance is the cost-effectiveness of the maintenance 
strategy. These strategies, rather than the different components of reliability-centered maintenance 
being applied independently, are optimally integrated to take advantage of their respective strengths 
to optimize equipment reliability and life-cycle costs. The article uses reliability parameters to define 
the type of maintenance strategy and time to perform maintenance on gas compressors. This article 
presents a methodology using the gas compressor’s reliability parameters to model reliability-centered 
maintenance procedure for the gas compressors. The approach is based on reliability parameters 
gotten from the liner regression carried out on the gas compressors. The shape parameter (β) from the 
Weibull linear regression shows that most components in the two gas compressors were experiencing 
early failure with their β &lt; 1 and the distribution that best fits the data is the lognormal distribution, 
whose parameters are the shape parameter (σ’) and the scale parameter (µ’).

KEYWORDS 
Reliability, Parameter, RCM, Predictive Maintenance, Proactive Maintenance

1. INTRODUCTION

Reliability-Centered Maintenance (RCM) is the process that is used to determine the most effective 
approach to maintenance. It involves identifying actions that, when taken, will reduce the probability 
of failure and which are the most cost effective. It integrates Preventive Maintenance (PM), Predictive, 
Corrective Maintenance (also called reactive maintenance), and Proactive Maintenance to increase 
the probability that a machine or component will function in the required manner over its design life 
cycle with a minimum amount of maintenance and downtime. These principal maintenance strategies, 
rather than being applied independently, are optimally integrated to take advantage of their respective 
strengths and maximize facility and equipment reliability while minimizing life-cycle costs. The goal 
of this approach is to reduce the Life-Cycle Cost (LCC) of a facility to a minimum while continuing 
to allow the facility to function as intended with required reliability and availability. (NASA, 2008).
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Sachdeva Anish et al., (2009) proposed a new modified FMECA approach to deal with the 
problems encountered while defining the best mix of maintenance policies. An objective weighted 
function based multi-criteria failure mode analysis technique using TOPSIS was proposed to find 
more accurate and reliable priority risk numbers for performing the criticality analysis. This enables 
them to obtain a ranking of failure modes / components by incorporating several types of information 
related to performance, safety and society. Furthermore, significant failures have occurred in service, 
perhaps involving safety or financial loss. To provide timely delivery of quality products, the managers 
and engineers have been forced to optimize the performance of all systems/subsystems involved in 
their flow station. The deterioration and failure of these systems/subsystems might incur high costs 
due to production losses and delays, unplanned intervention on the system and safety hazards. To 
avoid such situations, an appropriate maintenance policy strategy is necessary to repair/ replace the 
deteriorated system before failure. Their proposed approach forms a basis for the continuous process 
of reliability design and maintenance strategy decisions. Islam (2010) described the application 
of reliability-centered maintenance methodology to the development of maintenance plan for a 
steam-process plant. His methodology showed that the main time between failures for the plant 
equipment and the probability of sudden equipment failures are decreased. Also, his results show 
that the labor cost decreases from 295,200 $/year to 220,800 $/year (about 25.8% of the total labor 
cost) for the proposed preventive maintenance planning. Moreover, the downtime cost of the plant 
components was investigated. The proposed PM planning results indicated a saving of about 80% of 
the total downtime cost as compared with that of current maintenance. Ulhas (2022) described how 
ships can benefit by deploying Big Data analytics, the Internet of Things and Artificial intelligence 
(AI) in enhancing the value of RCM in ship maintenance and thus are indispensable for the RCM. 
He believes that the synergy that will be created by using big data, RCM and AI concepts will enable 
the creation of a maintenance business model that will eventually develop a new growth engine for 
the stakeholders in the shipping industry. Renan et al. (2023) proposed novel methods that effectively 
integrate RCM and Risk-Based Maintenance (RBM) by adapting the traditional RCM method to 
incorporate risk management into maintenance planning decision-making to support maintenance 
management. The proposed Reliability and Risk Centered Maintenance (RRCM) method allows 
organizations to determine maintenance plans that ensure the reliability of the physical assets 
while considering and prioritizing the risks associated with their potential functional failures. The 
results show the ability of RRCM to assist in the development and implementation of maintenance 
plans oriented to reliability, risk, and cost. Ismail et al. (2023) proposed a Reliability-Centered 
Maintenance (RCM) strategy to minimize the risk of equipment failure and improve the safety of 
the 15-ton overhead traveling crane and save costs. Their RCM strategy was developed using Failure 
Modes and Effects Analysis (FMEA) to identify the potential failure modes of the crane and their 
consequences. The results of their FMEA were used to develop a maintenance plan that includes 
preventive maintenance tasks and procedures to prevent or mitigate the identified failures. Li et al. 
(2021) analyzed the dynamic equipment of the alkylation unit using the RCM approach to propose 
a data-driven method for building the failure mode library and integrated the maintenance records 
and failures diagnosis of the equipment to improve the traditional RCM method. Egbe et al. (2024) 
presented a methodology using the Pareto analysis in conjunction with failure mode effect and 
criticality Analysis in maintenance resources optimization to enables an organization to set priorities 
towards achieving certain goals which are availability and reliability of the equipment for operational 
excellence Their approach was based on ensuring all failure mode criticality number are considered to 
obtain the significant failures mode that you should focus on as a priority. Their analysis shows that 
failure modes; FM5, FM 3, FM 2, FM 12, FM 7 and FM 13 are confirmation to the Pareto principle, 
identifying that most of the downtime of the Instrumentation Air Compressors originated from these 
failure modes. Furthermore, their study developed a valuable tool for the oil and gas industry that are 
seeking to optimize maintenance resources and improve their operational excellence with ensured 
safety and minimal environmental impact. Ogra et al. (2021) applied reliability-centered-maintenance 
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(RCM) to reduce the operational cost of heat exchanger and feed water pump in a brewery. The feed 
water pump and heat exchanger system were selected for RCM analysis as they both have significant 
impacts on the quantity and quality of the beer produced in the brewery. The results of their RCM 
technique applied to the brewery plant showed that the Run-To-Failure frequency has been reduced. 
The preventive maintenance task was made up of scheduled reliability-centered maintenance which 
had great impact on the routine maintenance task by recommending the tasks to be carried out monthly 
and six-monthly. With the proposed labor program carried out, the results show that the labor cost 
decreases from N108,000,000.00/year to N67,200,000.00/year for the proposed PM planning. The 
results also showed that about 36.19% of the annual spare parts cost are saved when proposed PM 
planning is adopted other than the current maintenance plan.

Afefy et al. (2019) proved that RCM theory has effectively improved the reliability of 
equipment operation and reduce maintenance costs. Wei et al. (2023) introduced and implemented 
reliability-centered maintenance (RCM) assessment of ammonia-related dynamic equipment as 
a key part of the integrity management of ammonia-related dynamic equipment. Through data 
analysis and system screening they were able to clarify the operation status, key roles, and potential 
risks of each ammonia-related equipment. Furthermore, they used FMEA to analyze failure mode, 
develop suitable risk assessment criteria and risk matrix, determine the risk level of each dynamic 
equipment, and develop maintenance strategy for the equipment. Moradi et al, (2024) developed 
a mathematical programming model to determine the annual implementation and plan the annual 
equipment maintenance activities, by the minimum total annual cost and total annual Risk Priority 
Number RPN and their effect on the failure modes of physical asset management through Reliability 
Centered Maintenance RCM. Mengchu et al, (2023) presented a framework of model-based RCM 
analysis, which is driven by functional modelling and reasoning to classify failure modes and identify 
maintenance significant items (MSIs). Their study focused on identifying the so-called maintenance 
significant items through assessment of failure consequences. Their result shown that Multilevel 
flow modelling (MFM) was proved competitive to identify sufficient system functions that expect 
maintenance to preserve. It is was also able to define failure modes and represent their interactions 
with system functions, which are essential to RCM. Xiuzhen et al, (2024) proposed a mission 
reliability-centered opportunistic maintenance optimization model for multistate manufacturing 
systems to realize the optimal combination of maintenance activities of multistate manufacturing 
systems. Their result showed that the proposed approach is superior to the conventional RCM 
method, ensuring the healthy operation of the manufacturing system at a low cost. Nugroho and 
Tedjo (2024) integrated Reliability Centered Maintenance (RCM) II and Failure Modes and Effect 
Analyze (FMEA) to determine which components where due for repairs, and identifying the root 
cause of engine failure. Their results of their analysis shown that the maintenance interval for the 
Electromotor component (electric motor) of 20hours, for the Lower and upper nozzle components 
with a maintenance interval of 181 hours. Darmein et al, (2023) Presented an optimal maintenance 
strategy for gas turbines using the Reliability Centered Maintenance (RCM) method related to 
availability, reliability, maintainability, and maintenance costs. They carried out an analysis of the 
causes and effects of failure using the Failure Mode and Effect Analysis (FMEA) method, with the 
parameters of failure frequency and consequences of failure then analyzed it using the RCM worksheet 
to determine an effective maintenance strategy. The application of their RCM method was able to 
reduce maintenance costs by up to 30.678% along with reduced downtime rates, decreased failure rates 
and the number of Mean Time To Repair (MTTR). Jiang et al. (2023) combined the characteristics 
of pumped storage unit operation and maintenance management and years of maintenance practice 
experience to improve and innovate the RCM technology method, forming a reliability-centered 
pumped storage unit maintenance strategy optimization technology method applicable to pumped 
storage power generation units. This technology method has been applied on the system equipment of 
pumped storage power generation unit. It shows that the application of their technology method has 
made significant contribution to optimizing equipment maintenance strategies, reducing maintenance 
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workload and the overhaul time. Geisbush & Ariaratnam (2024) reviewed potential models for 
predicting the progression of distressed concrete pipe segments for use in RCM analysis and proposed 
a regression model operators can use to forecast when to perform maintenance activities. The results 
of their study suggest that RCM analyses for large diameter water pipelines can improve reliability, 
reduce maintenance costs, and extend the useful life of a pipeline regardless of age or material. 
Further, using their regression style model with gathered data can be used to forecast when specific 
maintenance thresholds may be reached, prompting predictive maintenance actions. Kharmanda et 
al. (2023) In their work, RCM technology used failure mode effect analysis (FMEA) was presented 
as an analytical process to determine the appropriate failure management strategies to ensure safe 
operations and cost-wise readiness. This technology method has been applied to a coffee maker. It 
shows that the application of their technology method has led to reduction in maintenance costs, 
improving quality, and increasing reliability. Several failure modes considering MSG-3 standard are 
presented to provide suitable preventive maintenance actions. The benefits of FMEA are to reduce 
costs, improve quality, and increase reliability. Edwardo, (2016) described the main objective of RCM 
is to define an equipment component maintenance policy based on several criteria, including failure, 
cost, reliability, and safety. RCM is a guide to support maintenance managers in making decisions 
about maintenance based on planning developed during RCM analysis.

Reliability analysis and planned maintenance need to be carried out to avoid loss of availability 
of equipment/systems which will help the flow station managers to optimize the performance of the 
systems and maintenance tasks as well. The problem is to predict when or if failure will occur when 
the equipment is used. This information can then be used to determine inspection and maintenance 
policies as well as warranties. It can also be used to predict costs due to maintenance and eventual 
failure if failure occurs while the equipment is in operation. However, when time to failure field data 
is analyzed using parametric analysis based on methodology that applies to time to failure data, the 
analysis would provide an in-depth information about the equipment and system reliability and their 
performance behavior over time. It is therefore necessary to carry out a reliability analysis of these 
equipment and systems to compute the functions of interest such as the distribution parameter that 
will serve as input to the reliability centered maintenance. This paper will deal with the application 
of reliability centered maintenance on gas compressors.

A flow station is a gathering center where primary separation/processing of the reservoir fluid 
takes place, these fluids are later transported to terminals for export or to the refinery, while the 
other products are either treated, flared or disposed (Devold, 2013). Operators of flow stations want 
to make as much profit as possible with ensured safety and minimum environmental impact also 
placing increased emphasis on the reliability of the flow station. The availability of flow station 
critical equipment such as Gas Compressors is the core term for maintenance activities in the flow 
station. Compressors are mechanical devices that are used to increase the pressure of compressible 
fluid such as gas or vapor and as well reduce the volume of the gas as it passes through it.
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Figure 1. Components of an RCM (NASA 2008)

1.1 Common Maintenance Practices
The reliability and maintainability of equipment determine the availability of the equipment, 

this section will deal on overview of maintenance. Figure 1 shows the different component of 
reliability centered maintenance, rather than being applied independently, are optimally integrated 
to take advantage of their respective strengths, and maximize facility and equipment reliability while 
minimizing life-cycle costs. According to Kobbacy in the modern world as today, the efficient running 
of the society depends on the smooth operation of many complex systems. All equipment is unreliable 
in the sense that it degrades with ageing and fails when it no longer has capacity to deliver required 
services or products (Kobbacy and Murthy 2008). The consequences of failure of any critical system 
could be dramatic. This might immediately bring great threats on human safety, environment damage, 
and economic efficiency. In this sense, maintenance is introduced to ensure equipment and systems 
run efficiently for their designed life at least. According to Markeset et al. (2012), there are different 
aspects of maintenance, including safety enhancing aspects of maintenance, performance enhancing 
aspects, economical aspects, quality enhancing aspects, environmental aspects, life span increasing 
aspects, and aesthetic aspects. There are mainly four kinds of maintenance programs in use, which 
are corrective maintenance, preventive maintenance and predictive maintenance. By carrying out 
the proper planned maintenance such issues as catastrophic failure, secondary damage, additional 
spare parts costs, unnecessary overtime and injury to staff can be avoided (Mobius Institute 2009). 
As a result, the uptime of the equipment may be increased, and maintenance costs may be reduced.

Different types of companies have various ways to measure the success of the operations. In some 
cases, keeping machine running is essential and failure of the equipment must be avoided to prevent 
huge costs associated with loss of production. In other cases, for instance, for supply vessels during 
the operations in the arctic, it is important to be prepared and be available for “operation windows” 
due to weather conditions. According to (Pintelon and Puyvelde 2009) Maintenance planning varies 
according to the goals of the organization. There are two definitions that one has to be aware of: 
maintenance policy and maintenance concept. Maintenance policy represents a rule or a set of rules 
describing conditions for the variety of maintenance activities. Maintenance concept is a set of policies 
and activities planned and supported by decision structure. According to Mobius Institute there are 
four commonly used maintenance policies (Mobius Institute 2009):

•	 Corrective/Breakdown maintenance
•	 Preventive maintenance
•	 Predictive maintenance
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•	 Precision maintenance

Ulansky and Raza (2024) Investigated various maintenance approaches, such as preventive and 
corrective maintenance, and evaluates their performance, considering the uncertainties introduced 
by imperfect inspections. By analyzing the existing literature and research findings, their survey 
provides valuable insights into the challenges and opportunities associated with maintenance decision 
making in the presence of inspection imperfections. The comparison between maintenance models 
with constant and non-constant probabilities of false positives and false negatives sheds light on the 
dynamic nature of these models, enabling a deeper understanding of their real-world applicability 
and effectiveness.

1.1.1 Corrective/Breakdown Maintenance
The main point of breakdown maintenance philosophy is that the machine is allowed to run until 

failure without preventive actions. This approach is cost-effective only for a few types of components 
(e.g., light bulbs) and companies. It may be done in case the repair costs exceed the costs of failure 
consequences. For most of the equipment related to offshore drilling industry this “Run-to-failure” 
philosophy may bring significant expenses. It may include secondary damage to the machine, additional 
spare-parts costs, overtime labor, production downtime and etc.

1.1.2 Preventive Maintenance
Preventive maintenance may be called time-based maintenance, calendar-based maintenance, 

planned maintenance etc. (Eti et al., 2007). The main point of this approach is to perform regular 
overhauls before the machine fails thus extending its lifetime. This philosophy is based on specifics 
periods between maintenance activities established according to the maintenance history and statistical 
analysis. The important part of this type of maintenance and one of the most uncertain is the balance 
between overhaul costs and risks associated with equipment failure. It may happen due to improper 
maintenance, poor lubrication, incorrect parts being installed etc. Thus, unnecessary performance 
of maintenance activities may often lead to higher risks of machine failure (Mobius Institute 2009). 
The advantages of this approach in comparison with the previous one are that the failure is often 
prevented, few catastrophic failures occur and there is better control over spare parts and costs.

1.1.3 Predictive Maintenance
Fortunately, the machine is able to provide to us some symptoms before failing. It could be the 

increased vibration in some parts of the equipment, abnormal temperature level, too many metal 
particles in lubrication and changes in current. All of these and other signals may predict the imminent 
failure of the system, and the maintenance activities could be planned according to this information. 
That is what the predictive maintenance approach is about. Ideally by utilizing this approach the 
lifetime of the machine is supposed to increase and maintenance costs - to reduce. Coanda et al. (2020) 
presented a state of the art of maintenance techniques, and described predictive maintenance being one 
of the biggest topics going forward. Predictive maintenance techniques were discussed and presented 
in detail creating the necessary links with nowadays industry advances: Industry 4.0. Therefore, it 
shows that the application of intelligent maintenance started to gain weight in applied maintenance 
methods due to the long-term benefits it provides. Even if the implementation of Industry 4.0 may 
be yet in an incipient phase, the value added by the means offered by it can provide a starting point 
for intelligent maintenance systems and methods which are superior to the old maintenance practices.

1.1.4 Precision/ Proactive Maintenance
Precision maintenance could be called as “Proactive Maintenance”. One of the main differences 

between this approach and predictive maintenance is the intention to find root cause of failure and 
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reduce the chance of problem to appear (M. Dunn 2008). Root-cause analysis (RCA) or Root-cause 
failure analysis (RCFA) is often considered as tool for investigating root cause of failure. It may 
imply the analysis of historical maintenance & condition monitoring records and performance of 
the specific test to identify main cause-effect relationships for the component Davies (2012). The 
whole point with the precision maintenance is to increase the reliability of the equipment. One of 
the main challenges related to precision maintenance philosophy is the implementation phase. It may 
take a significant amount of time before everyone in the whole company’s structure will accept and 
understand the benefits and principles of this approach (M. Dunn 2008).

2. METHODOLOGY

In the Oil & Gas industry, there is great attention on the concepts of maintainability, reliability 
and safety, and many analyses are used to estimate the risk of hazards and damage to equipment 
to improve maintenance policies and reduce the amount and frequency of maintenance costs. The 
major equipment failures in a Oredo Flow Station Ologbo, Nigeria are related to Gas compressors.

Gas compressors of all types are used in every phase of petrochemical industry, production, 
transportation and refinery. Flow station critical equipment such as gas compressors will not remain 
safe, reliable and available unless it is maintained. The main challenge for maintenance engineering 
is that it is practically impossible to predict exactly when things will fail. In recent years, many flow 
stations utilize advanced methods to enhance their knowledge and understanding about the Gas 
compressors’ performance and its impact on process behavior to provide a practical and structured 
approach for a satisfactory maintenance strategy.

RCM process could be arranged as shown in Figure 2. It typically follows a route of initiation 
and planning, functional failure analysis, and task selection according to IEC (IEC 60300-3 2011). 
Initiation and planning are to define the scope/ boundary of the analysis. In this phase, system 
function will be evaluated and criticality of consequence from single failure would be ranked. If the 
consequence seems to be critical, some functionality risk analysis like FMEA could be used to evaluate 
the severity consequence to the whole system out of single failure. With the result from the above 
analysis, actions could be made with consideration of both criticality and probability of occurrence. 
Different maintenance methods could be utilized for improving reliability or correcting mistakes.
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Figure 2. RCM process

The purpose of this study is to apply reliability centered maintenance using the gas compressor’s 
reliability parameter to analyze and define the type of maintenance strategy and time to perform each 
equipment maintenance procedure in both subsystems.

The data used in the study for Gas Compressor K-4000 run on a 24/7 basis.
Recording data started 1200hrs on 19th Feb 2018 and recording stop by 1300hrs on the 18th July 

2020 while that of Gas Compressor K-3600 run on a 24/7 basis. Recording of data started 1200hrs 
on 9th March 2018 and recording stop by 1300hrs on the 18th July 2020.

2.1 Reliability Parameter Estimation
The term parameter estimation refers to the process of using sample data (in reliability engineering, 

usually times-to-failure or success data) to estimate the parameters of the selected distribution, we 
used Rank Regression (or Least Squares), method in this paper. Haven determines the best failure 
distribution that fit the data from the gas compressor failure data in this case Weibull distribution 
and Lognormal distribution. The Weibull distribution reveals the nature of the failure patterns being 
experienced, with the parameters; shape parameter β, the scale parameter, η and location parameter 
γ, but in this paper we are using 2- parameter distribution hence we will be using the shape parameter 
β and the scale parameter η which is the time it takes 63,2% of the failure to have occurred in other 
words the time take for the cumulative percentage failure to be 63.2%

​MTTF  =  η * Г​(1 + ​ 1 _ β ​)​​� (1)
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Where Г is gamma function
When β = 1.0, MTTF = η, the useful life phase
When β > 1.0, MTTF is less than η, the wear-out life phase
When β < 1.0, MTTF is greater than η, the early life phase
When β = 0.5, MTTF=2x η

​R​(t)​  =  ​e−​​ ​​(​T _ η ​)​​​ β​​​� (2)

Where ​R​(T)​​ is the Weibull distribution Reliability at time (T)

​λ​(T)​  =  ​ β _ η ​ ​​(​ T _ η ​)​​​ 
β−1

​​� (3)

Where ​λ​(T)​​ is the Weibull distribution Failure Rate at time (T)
The lognormal distribution is a 2-parameter distribution with parameters 𝝁’and 𝝈’.
𝝁’ =  the mean life or MTTF in terms of the natural logarithms of the times-to-failure, is also the 

scale parameter, the scale parameter defines where the bulk of the distribution lies, scale parameter 
(µ’) which is MTTF, shows that there is a greater chance of failure occurring at that specified time 
𝝈’= standard deviation of the natural logarithms of the times-to-failure, is also the shape parameter

​R​(​t ′ ​)​  =  1 − Φ​(​ ​t ′ ​ − ​μ ′ ​ _ ​σ ′ ​  ​)​​� (4)

Where ​R​(​t ′ ​)​​ is the Lognormal distribution Reliability at time (t’)

​λ​(​t ′ ​)​  =  ​  f​(​t ′ ​)​ _ 
R​(​(​t ′ ​)​)​ ​​� (5)

Where ​λ​(​t ′ ​)​​ is the Lognormal distribution Failure Rate at time (t’)

​The proposed schedule maintenance interval  =  ​(​𝝁 ′ ​ − ​𝝈 ′ ​)​​� (6)

These reliability parameters will now serve as input to RCM to determine the type maintenance 
strategy to be used.

2.2 Case Study
This proposed methodology is presented here with a case analysis of a Gas Compressor in 

Oredo flow station Ologbo Benin, Edo State Nigeria. There are many critical equipment in a Oredo 
flow station such as the Export Pumps, Booster Pumps, Gas Compressors, Instrumentation Air 
Compressors and power source (Gas Generator). The current methodology is based on reliability 
centered maintenance (RCM) using reliability parameters on Gas Compressors, which is one of the 
main and most important functional units of the Oredo flow station. The equipment being studied 
in this research is gas compressor K-4000 and K-3600 both connected in k-out-of-n mode. Table 
1 shows the Weibull data for Governor in gas compressor K- 3600. Table 2 shows Weibull linear 
Regression for Governor in gas compressor K- 3600 Table 3 shows Weibull Data Analysis for Governor 
in gas compressor K- 3600, Table 4. Shows the Lognormal Regression for Governor for Governor 
in gas compressor K- 3600 and Figure 3 shows the Weibull Failure Rate Chart for Governor in gas 
compressor K- 3600 and Figure 4 shows the Weibull Reliability R(t) Vs Time Chart for Governor 
in gas compressor K- 3600
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Table 1. Weibull data for governor

i Adjusted Rank(i) t (hrs) X = LNt F(t) =(i-0.3)/
(N+0.4)

​​​Y​ i ​​ = LN​{​​ − LN​(​​1 − F​(​​t​)​​​)​​​}​​​​

1 1.0000 20.4 3.015534901 0.040229885 -3.192684658

2 2.0000 26.88 3.291382516 0.097701149 -2.274877577

3 3.0000 38.95 3.662278772 0.155172414 -1.780091531

4 4.0000 49.44 3.900759813 0.212643678 -1.430980590

5 5.0000 60.8 4.107589789 0.270114943 -1.155601100

6 6.0000 79.17 4.371597439 0.327586207 -0.924117873

7 7.0000 173.1 5.153869462 0.385057471 -0.721080787

8 8.0000 355.65 5.873947101 0.442528736 -0.537264880

9 9.0000 484.42 6.182952299 0.500000000 -0.366512921

10 10.0000 545.78 6.302215964 0.557471264 -0.204260615

11 11.0000 591.25 6.382238940 0.614942529 -0.046711512

12 12.0000 940.5 6.846411649 0.672413793 0.109754476

13 13.0000 1069.8 6.975226994 0.729885057 0.269192971

15 14.2500 2235.05 7.712018878 0.801724138 0.481250134

16 13.5000 4876.77 8.492238394 0.758620690 0.351632227

17 16.7500 7222.9 8.885011813 0.945402299 1.067384229

Table 2. Weibull regression for governor

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.942982348

R Square 0.889215709

Adjusted R Square 0.881302546

Standard Error 0.384043295

Observations 16

ANOVA

df SS MS F Significance F

Regression 1 16.57361915 16.57362 112.3717 4.5149E-08

Residual 14 2.064849529 0.147489

Total 15 18.63846867

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept(a) -3.894411895 0.321019911 -12.1314 8.13E-09 -4.58293113 -3.2058927 -4.58293113 -3.20589266

X Variable (β) 0.569968337 0.053767797 10.60055 4.51E-08 0.45464788 0.68528879 0.45464788 0.685288791

Weibull Parameters
β 0.569968
ƞ 927.6747
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Table 3. Weibull data analysis for governor

T(hrs) R(t) = exp(-t/𝞰)^𝞫 𝞴 = (𝞫/𝞰)(t/𝞰)^𝞫-1

20.4 0.8926738 0.003172097

26.88 0.875584029 0.002817273

38.95 0.848622287 0.00240193

49.44 0.828581835 0.002167811

60.8 0.809315437 0.001983325

79.17 0.781983007 0.001770466

173.1 0.681067803 0.001264708

355.65 0.560456999 0.000927915

484.42 0.501320342 0.000812453

545.78 0.477552792 0.000771835

591.25 0.461362583 0.000745726

940.5 0.365000459 0.000610788

1069.8 0.338024003 0.000577874

2235.05 0.19191703 0.000420949

4876.77 0.076144888 0.000300964

7222.9 0.039905913 0.000254191

Table 4. Lognormal regression for governor

SUMMARY 
OUTPUT

Regression Statistics

Multiple R 0.970492883

R Square 0.941856437

Adjusted R Square 0.937703325

Standard Error 0.217155407

Observations 16

ANOVA

df SS MS F Significance 
F

Regression 1 10.69430083 10.6943 226.7833 4.83042E-10

Residual 14 0.660190588 0.047156

Total 15 11.35449142

Coefficients Standard 
Error

t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept(a) -2.714877753 0.181519142 -14.9564 5.29E-10 -3.104197592 -2.325557913 -3.10419759 -2.325557913

X Variable (b) 0.457844763 0.030402738 15.05933 4.83E-10 0.392637375 0.523052151 0.392637375 0.523052151

Lognormal Parameters
σ' =1/b 2.184146
µ’ = exp- (a* σ') 5.929691
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Figure 3. Weibull failure rate vs time chart for governor

Figure 4. Weibull reliability R(t) vs time chart for governor

Table 5 shows the Weibull data for Engine Drive End in gas compressor K- 4000. Table 6 shows 
Weibull linear Regression for Engine Drive End in gas compressor K- 4000, Table 7 shows Weibull 
Data Analysis for Engine Drive End in gas compressor K- 4000, Table 8. Shows the Lognormal 
Regression for Engine Drive End in gas compressor K- 4000 and Figure 5 shows the Weibull Failure 
Rate Vs Time Chart for Engine Drive End in gas compressor K- 4000 and Figure 6 shows Weibull 
Reliability Vs Time Chart for Engine Drive End Gas Compressor K-4000
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Table 5. Weibull data for engine drive end gas compressor K-4000

i Adjusted Rank(i) t (hrs) X = LN(t) F(t) =(i-0.3)/(N+0.4) ​​​Y​ i ​​ = LN​{​​ − LN​(​​1 − F​(​​t​)​​​)​​​}​​​​

45 1.0000 4.5 1.504077397 0.015418502 -4.164427808

44 2.0000 11.8 2.468099531 0.037444934 -3.265862539

43 3.0000 22.62 3.118834471 0.059471366 -2.791760373

42 4.0000 23.65 3.163363115 0.081497797 -2.464974899

41 5.0000 24.02 3.178886817 0.103524229 -2.213805165

40 6.0000 27.07 3.298426104 0.125550661 -2.008715324

39 7.0000 28.38 3.345684672 0.147577093 -1.834630405

38 8.0000 40.17 3.693120448 0.169603524 -1.682804564

37 9.0000 41.58 3.727619282 0.191629956 -1.547706374

36 10.0000 47.05 3.851210866 0.213656388 -1.425611587

35 11.0000 50.28 3.917607384 0.235682819 -1.313890287

34 12.0000 58.53 4.069539443 0.257709251 -1.210613915

33 13.0000 59.42 4.084630870 0.279735683 -1.114323992

32 14.0000 67.14 4.206779992 0.301762115 -1.023888682

31 15.0000 68.87 4.232220670 0.323788546 -0.938409942

30 16.0000 71.53 4.270116942 0.345814978 -0.857161205

29 17.0000 72.94 4.289637185 0.367841410 -0.779544239

28 18.0000 83.53 4.425205849 0.389867841 -0.705058455

27 19.0000 85.03 4.443004135 0.411894273 -0.633278535

26 20.0000 93.8 4.541164856 0.433920705 -0.563837740

25 21.0000 128.64 4.857017805 0.455947137 -0.496415186

24 22.0000 201.07 5.303653106 0.477973568 -0.430725907

23 23.0000 212.8 5.360352757 0.500000000 -0.366512921

22 24.0000 214.1 5.366443196 0.522026432 -0.303540699

21 25.0000 216.5 5.377590547 0.544052863 -0.241589633

20 26.0000 224.29 5.412939857 0.566079295 -0.180451144

19 27.0000 239.34 5.477885135 0.588105727 -0.119923170

18 28.0000 241.71 5.487738660 0.610132159 -0.059805775

17 29.0000 257.6 5.551407994 0.632158590 0.000103380

16 30.0000 395.85 5.981035352 0.654185022 0.060013981

15 31.0000 412.19 6.021484408 0.676211454 0.120148778

14 32.0000 481.97 6.177881871 0.698237885 0.180750550

13 33.0000 593.54 6.386104609 0.720264317 0.242090999

12 34.0000 623.77 6.435781711 0.742290749 0.304482597

11 35.0000 715.51 6.572995575 0.764317181 0.368295023

10 36.0000 796.35 6.680038788 0.786343612 0.433978846

9 37.0000 870.91 6.769538642 0.808370044 0.502101123

continued on following page
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i Adjusted Rank(i) t (hrs) X = LN(t) F(t) =(i-0.3)/(N+0.4) ​​​Y​ i ​​ = LN​{​​ − LN​(​​1 − F​(​​t​)​​​)​​​}​​​​

8 38.0000 876.81 6.776290321 0.830396476 0.573401344

7 39.0000 907.14 6.810296793 0.852422907 0.648884157

5 39.3333 1288.32 7.161094323 0.859764317 0.675202546

4 40.6667 1424.86 7.261828842 0.889134361 0.788201088

3 42.0000 1455.26 7.282939858 0.918502203 0.919158331

2 43.3333 1726.73 7.453984725 0.947870044 1.083165440

1 44.6667 2310.98 7.745426956 0.977240088 1.330452459

Table 6. Weibull linear regression for engine drive end (EDE) gas compressor K-4000

SUMMARY 
OUTPUT

Regression Statistics

Multiple R 0.969944708

R Square 0.940792736

Adjusted R 
Square

0.939383039

Standard 
Error

0.294563237

Observations 44

ANOVA

df SS MS F Significance F

Regression 1 57.90623641 57.90623641 667.3724143 2.09045E-27

Residual 42 3.644235028 0.086767501

Total 43 61.55047143

Coefficients Standard 
Error

t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -4.526014488 0.158236623 -28.60282532 3.63558E-29 -4.845348922 -4.206680054 -4.845348922 -4.206680054

X Variable 
(β)

0.772278068 0.029894382 25.8335521 2.09045E-27 0.711948763 0.832607373 0.711948763 0.832607373

β 0.772278068
a/ β -5.860602125
Ƞ = exp-(a/ β) 350.9353874

Table 7. Weibull data analysis for engine drive end gas compressor K-4000

t (hrs) R(t) = exp(-t/𝞰)^𝞫 𝞴 = (𝞫/𝞰)(t/𝞰)^𝞫-1

4.5 0.96601001 0.005934715

11.8 0.929781084 0.004764964

22.62 0.886616035 0.004108687

23.65 0.882890871 0.004067234

Table 5. Continued

continued on following page
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t (hrs) R(t) = exp(-t/𝞰)^𝞫 𝞴 = (𝞫/𝞰)(t/𝞰)^𝞫-1

24.02 0.881565577 0.004052882

27.07 0.870883438 0.003944043

28.38 0.866419642 0.003901826

40.17 0.829017013 0.003605015

41.58 0.824830274 0.003576804

47.05 0.809074395 0.00347754

50.28 0.800105699 0.003425356

58.53 0.778197304 0.003308871

59.42 0.775912898 0.003297519

67.14 0.75668067 0.003207059

68.87 0.752506192 0.003188533

71.53 0.746178204 0.003161135

72.94 0.742867113 0.003147114

83.53 0.718891096 0.003051441

85.03 0.715614784 0.003039099

93.8 0.697002937 0.002971918

128.64 0.630852932 0.002765665

201.07 0.521820638 0.002498205

212.8 0.506847484 0.002466156

214.1 0.505226256 0.002462738

216.5 0.502252661 0.002456494

224.29 0.492770961 0.002436799

239.34 0.475156129 0.002401025

241.71 0.472462984 0.002395644

257.6 0.454942108 0.00236116

395.85 0.333714164 0.002141095

412.19 0.322292996 0.002121464

481.97 0.278689414 0.002047237

593.54 0.223006691 0.001952429

623.77 0.210295817 0.001930467

715.51 0.176657848 0.001871079

796.35 0.152142557 0.001826021

870.91 0.132962671 0.001789181

876.81 0.131567545 0.001786432

907.14 0.124654802 0.001772652

1288.32 0.065212169 0.001636553

1424.86 0.052288539 0.001599439

Table 7. Continued

continued on following page
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t (hrs) R(t) = exp(-t/𝞰)^𝞫 𝞴 = (𝞫/𝞰)(t/𝞰)^𝞫-1

1455.26 0.049812771 0.001591768

1726.73 0.032612538 0.001530959

2310.98 0.013744824 0.001432651

Table 8. Lognormal linear regression engine drive end gas compressor K-4000

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.989125947

R Square 0.97837014

Adjusted R 
Square

0.977855143

Standard Error 0.138931839

Observations 44

ANOVA

df SS MS F Significance F

Regression 1 36.6692766 36.6692766 1899.76014 1.34397E-36

Residual 42 0.810686352 0.019302056

Total 43 37.47996295

Coefficients Standard 
Error

t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept (a) -3.167319574 0.074632888 -42.43865751 4.02266E-36 -3.31793484 -3.016704309 -3.31793484 -3.016704309

X Variable (b) 0.614557047 0.014099796 43.58623796 1.34397E-36 0.586102508 0.643011587 0.586102508 0.643011587

σ' =1/b 1.627188239
µ’ = exp- (a* σ) 5.153825162

Table 7. Continued
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Figure 5. Weibull failure rate vs time chart for engine drive end gas compressor K-4000

Figure 6. Weibull reliability vs time chart for engine drive end gas compressor K-4000
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2.3 Abbreviation

µ’ Lognormal scale parameter
FM Failure Mode
FMEA Failure Mode Effect Analysis
LCC Life Cycle Cost
MTTF Mean Time to Failure
NASA National Aeronautics and Space Administration
pdf Probability Distribution Function
PM Preventive Maintenance
RCA Root Cause Analysis
RCFA Root Cause Failure Analysis
RCM Reliability Centered Maintenance
RRCM Reliability and Risk Centered Maintenance
β Weibull shape parameter
γ Weibull location parameter
η Weibull scale parameter
σ’ Lognormal shape parameter
Г gamma function

3. RESULTS AND DISCUSSION

Determining reliability parameters; shape (β) parameter scale (η) parameter Scale (µ) parameter’ 
and Shape (σ’) parameter for both Weibull and Lognormal distribution respectively for the time to 
failure data using linear regression with the aid of Microsoft excel for Governor in Gas Compressor 
K-3600 and Engine Drive End in Gas Compressor K-4000 as show in table 2, table 4, table 6 and 
table 8 respectively. Equation 2 to equation 5 was used in analyzing data for both Weibull and 
Lognormal distribution for Governor in Gas Compressor K-3600 as show in table 1, table 4 and for 
Engine Drive End in Gas Compressor K-4000 as show in table 6 to table 8 respectively. Figure 3 
show failure rate Vs time chart for Governor in Gas Compressor K-3600, while figure 4 shows the 
reliability Vs time chart for Governor in Gas Compressor K-3600, Figure 5 show failure rate Vs time 
chart for Engine Drive End in Gas Compressor K-4000, while figure 6 shows the reliability Vs time 
chart for Engine Drive End in Gas Compressor K-4000. Equation 1 and equation 6 was used to the 
proposed schedule maintenance interval. From our linear regression as shown in table 2 and table 
4 for Governor, the Correlation coefficient (R) for Lognormal distribution with 0.97 is greater than 
that of Weibull of 0.94 which indicate a stronger linear relationship between the CDF and Time for 
Lognormal compared to that of Weibull also the P-Value for Lognormal is smaller compared to that 
of Weibull. The Lognormal distribution is accepted as adequately fit these times-to-failure data at 
0.05 significance and that the data is from a lognormal distribution. Furthermore, as shown in table 
6 and table 8 for Engine Drive End in Gas Compressor K-4000, the Correlation coefficient (R) for 
Lognormal distribution with 0.98 is greater than that of Weibull of 0.96 which indicate a stronger 
linear relationship between the CDF and Time for Lognormal compared to that of Weibull also the 
P-Value for Lognormal is smaller compared to that of Weibull. Figure 3 shows the Weibull Failure 
Rate Vs Time Chart for Governor in Gas Compressor K-3600 showing a decrease in the failure rate 
over a period of time, while Figure 5 shows the Weibull Failure Rate Vs Time Chart for Engine Drive 
End in Gas Compressor K-4000 showing a decrease in the failure rate over a period of time indicating 
that the components are experiencing early failure in their life cycle. The Weibull distribution shape 
Parameter β also tells us which of the failure family is present, in this case it is mostly early life failure 
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for both compressors. Furthermore, figure 4 and figure 6 shows the reliability of the Governor and 
Engine Drive End over a period of time.

Applying reliability centered maintenance using reliability parameter method by considering 
all possible failure mode, gas compressor features and reliability parameters had been analyzed to 
define the type/class of failure and time interval to perform each components maintenance procedure 
in both systems. Following the procedure in figure 1 and figure 2. Table 9 shows the Reliability 
Centered Maintenance for Gas Compressor K-4000, while Table 10 shows the Reliability Centered 
Maintenance for Gas Compressor K-3600, it is possible to recognize that recommendation is related 
to the period and maintenance strategy. For the Engine Drive End the best pdf distribution that fit 
the data is lognormal as show in table 6 and table 8, the parameters are σ’ = 1.627188239 and µ’ = 
5.153825162. using equation 6

The proposed schedule maintenance interval = 5.153825162-1.627188239 = 3.5months. because 
in 5months there is a greater chance of failure occurring. Also, for the Governor the pdf distribution 
is lognormal and the parameters are σ’ = 2.18414642 and µ’ = 5.929690524. using equation 6

The proposed schedule maintenance = 5.929690524 - 2.18414642 = 3.7months. because in 
6months there is a greater chance of failure occurring. The same idea was applied to other components.
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4. CONCLUSION

Appropriate maintenance planning is critical for maintenance management to contribute 
to increasing availability, ensuring quality requirements, reliability and operational excellence, 
controlling the safety and environmental risks associated with physical assets. As supporting tools 
for developing maintenance strategies, Reliability-Centered Maintenance (RCM) is currently used 
in the oil and gas sector.

The following conclusions were drawn from the study.

i. 	 The use of reliability parameters as an analytical process to determine the appropriate maintenance 
strategies to ensure safe operations and cost-wise readiness in Oredo Flow station was established.

ii. 	 The study has established a methodology for reliability centered maintenance strategy that 
integrates Preventive maintenance (PM), Predictive maintenance, reactive maintenance and 
Proactive maintenance to increase the probability that a machine or component will function 
in the required manner over its design life cycle with a minimum amount of maintenance and 
downtime

iii. 	 The method rather than the principal maintenance strategies, being applied independently, were 
optimally integrated to take advantage of their respective strengths.

iv. 	 The method maximized facility and equipment reliability while minimizing life-cycle costs in 
dealing with problems encountered in flow station critical equipment such as incurred high costs 
due to production losses and delays, unplanned intervention on the system and safety hazards.

v. 	 The study has established that most components in the two gas compressors are in their early 
life cycle phase hence were experiencing early failure with their β < 1.

vi. 	 The study has established that the distribution that best fit the data was the lognormal distribution, 
whose parameters are the shape parameter (σ’) and scale parameter (µ’) which is the MTTF, 
which shown that there is a greater chance of failure occurring at that specified time.

vii. 	The study has developed a valuable tool for the oil and gas industry that are seeking to plan their 
maintenance strategy and improve their operational excellence with ensured safety and minimal 
environmental impact.

4.1. Contributions
This study tackles the critical limitation in the extant literature on reliability centered maintenance 

using failure mode effect analysis and other techniques, they did not capture the reliability parameters 
and how they could be used to plan your maintenance strategy. To overcome these limitations, this 
paper has developed a mathematical model for reliability centered maintenance of critical equipment 
such as Gas Compressors in Oredo Flow station Nigeria.
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