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Abstract 

 

Background: Previous research has suggested that children exposed to more early-life stress 

show worse mental health outcomes and impaired cognitive performance in later life, but the 

mechanisms subserving these relationships remain poorly understood.  

Method: Using miniaturised microphones and physiological arousal monitors (Electro-

Cardiography, Heart Rate Variability, Actigraphy), we examined for the first time infants’ 

autonomic reactions to environmental stressors (noise) in the home environment, in a sample 

of 82 12-month-old infants from mixed demographic backgrounds. The same infants also 

attended a lab testing battery where attention- and emotion-eliciting stimuli were presented. 

We examined how childrens’ environmental noise exposure levels at home related to their 

autonomic reactivity, and to their behavioural performance in the lab.  

Results: Individual differences in total noise exposure were independent of other socio-

economic and parenting variables. Children exposed to higher and more rapidly-fluctuating 

environmental noise showed more unstable autonomic arousal patterns overall in home 

settings. In the lab testing battery, this group showed more labile and short-lived autonomic 

changes in response to novel attention-eliciting stimuli, along with reduced visual sustained 

attention. They also showed increased arousal lability in response to an emotional stressor.  

Conclusions: Our results offer new insights into the mechanisms by which environmental 

noise exposure may confer increased risk of adverse mental health and impaired cognitive 

performance during later life. 

 

Abbreviations: ACF - Auto-Correlation Function; ANS – Autonomic Nervous System; CCF 

- Cross-Correlation Function; CHAOS - Confusion, Hubbub and Order Scale; ECG - 

Electrocardiography; GPS - Global Positioning System; HR - Heart Rate; HRV - Heart Rate 

Variability; PACF - Partial Auto-Correlation Function; RR interval - beat-to-beat interval (R 

is the peak of the QRS complex of the ECG wave); SM - Supplementary Materials 

 

Keywords: Environmental noise, autonomic nervous system, arousal, infant, attention 
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Introduction  

 

One well-replicated finding within psychology and psychiatry is that early exposure to 

stressful environments increases the risk of adverse long-term outcomes, including mental 

disorder (Businelle et al., 2013; Felitti et al., 1998) and cognitive impairment (Blair, 2010; 

Evans & Schamberg, 2009). Recent research has suggested that the increased mental health 

risk conferred by early-life stress is transdiagnostic, and not disorder-specific (Conway, 

Raposa, Hammen, & Brennan, 2018), offering some vital clues as to etiological pathways 

(Karmiloff-Smith, 1998). Early-developing impairments in brainstem-mediated arousal and 

regulation circuits may act as a common pathway, causing developmental impairments in 

domains such as socio-emotional self-regulation, inhibitory control, executive, verbal and 

motor functions, and cognitive processing (Geva & Feldman, 2008). Even minor alterations 

in responses to daily stressors may trigger a cascade of changes which cumulatively 

constitute a vulnerability to or risk factor for later psychopathology (Borsboom & Cramer, 

2013; Charles, Piazza, Mogle, Sliwinski, & Almeida, 2013; Sonuga-Barke, Koerting, Smith, 

McCann, & Thompson, 2011; Trull, Lane, Koval, & Ebner-Priemer, 2015; Wichers, 

Wigman, & Myin-Germeys, 2015). 

 

Stress is an umbrella term used to refer to actual life events or situations (‘stressors’) and to 

the cognitive and biological responses that such situations evoke (‘stress responses’) (Epel et 

al., 2018). Both aspects can be studied over multiple time-scales. Stressors range from life-

long factors (e.g. poverty) to short-term ones (e.g. a cup of tea spilled on a laptop); stress 

responses diversely include both long- and slow-acting changes in diverse endocrine and 

nervous systems designed to help an organism maintain homeostatis and allostatis in the face 

of change (Cannon, 1915; McCall et al., 2015; Selye, 1951).  

 

Within psychology and psychiatry, researchers generally measure early-life stress using 

questionnaire assessments that identify life-long stressors, such as parental conflict and 

emotional abuse (e.g. Felitti et al., 1998). Over recent years, we are increasingly becoming 

aware that short-term factors, such as environmental noise, also cause stress responses. 

Understanding these is particularly important given our current rapid urbanization as a 

species, with concomitant increase in noisy and cramped living environments (Evans, 2004).  

 

Nonauditory effects of noise are known to occur at levels far below those required to damage 

hearing (Basner et al., 2014; Pérez-Valenzuela, Terreros, & Dagnino-Subiabre, 2018). Loud 

noise increases cortisol levels in several species (Kight & Swaddle, 2011), including humans 

(Evans, Lercher, Meis, Ising, & Kofler, 2001). In 10-year-old children, high levels of 

environmental noise exposure associated with elevated resting systolic blood pressure and 

increased heart rate reactivity in response to the presentation of a novel stressor (Evans et al., 

2001). Infants exposed to high levels of noise in neonatal intensive care units show increased 

heart and respiratory rates and decreased oxygen saturation (Bremmer, Byers, & Kiehl, 2003) 

– factors also commonly reported in adults (Basner et al., 2014).  

 

Other research has used parent report to assess household chaos using questionnaires such as 

the Confusion, Hubbub and Order Scale (CHAOS, Matheny, Wachs, Ludwig, & Phillips, 

1995). Children who are chronically exposed to ambient noise exhibit poorer reading and 

language skills than matched samples (Evans, 2006; Haines, Stansfeld, Job, Berglund, & 

Head, 2001). Previous research has suggested that this may be because they learn to routinely 

screen out auditory stimuli, even those that are useful.   
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Virtually all previous research has, however, taken time-invariant snapshots to measure the 

average levels of noise to which individuals are exposed. This means that several vital 

questions remain unanswered. For example, we understand little about whether fluctuations 

in environmental noise associate with immediate changes in physiological stress, and whether 

individuals exposed to more rapidly fluctuating environmental noise show altered 

physiological stress responses. Relatedly, we understand little about how individuals exposed 

to more noise overall become hyper- or hypo-sensitised to noise (although see Basner, 

Müller, & Elmenhorst, 2011; Pearsons, Barber, Tabachnick, & Fidell, 1995). As a result of 

this, we understand little of the mechanisms through which noise exposure affects emotional 

and cognitive performance. Further, most previous research into household noise has 

examined children and adults – rather than infants, who potentially are highly sensitive to 

environmental influences during early development (e.g. Frankenhuis, Nettle, & McNamara, 

2018).  

 

We used miniaturised microphones and video cameras, along with wearable physiological 

stress monitors, to study infants’ responsivity to real-world auditory events. The same 

participating infants were also brought into the lab where we measured their reactivity while 

administering an attention task to measure visual sustained attention, and a behavioural task 

(still-face protocol) to measure emotion reactivity. Early atypical performance on both of 

these tasks has been linked to a range of later psychopathologies (Johnson, Gliga, Jones, & 

Charman, 2015; Jones, Gliga, Bedford, Charman, & Johnson, 2014; Kahle, Miller, Helm, & 

Hastings, 2018; Santucci et al., 2008). Autonomic arousal was assessed using a combination 

of Electrocardiography (ECG), Heart Rate Variability (HRV) and Actigraphy (Cacioppo, 

Tassinary, & Berntson, 2000).  

 

Because autonomic responsivity mediates both our cognitive responses to novel, attention-

eliciting stimuli and our affective responses to unexpected or stressful events (Aston-Jones & 

Cohen, 2005; Geva & Feldman, 2008), we were interested to examine how environmental 

noise affects infants’ responses both to attention- and emotion-eliciting stimuli in the lab 

battery. Relatively little previous research has, however, examined infants’ reactivity to 

attention-eliciting and emotion-eliciting stimuli within a single dataset (see Wass, 2018 for 

review; see also Aston-Jones & Cohen, 2005; Beauchaine & Thayer, 2015). Therefore, we 

were agnostic as to whether noise-related atypicalities in autonomic function would most 

affect infants’ lab-based performance in cognitive, or affective domains, or both.  

 

  



ENVIRONMENTAL NOISE AND INFANT ANS 

 - 5 - 

Method 

 

Participants 

Participants consisted of 82 infants recruited from the London, Essex, Hertfordshire and 

Cambridge regions of the UK. Exclusion criteria and demographic details are given in Table 

S1.  

 

Home Battery 

Participating parents selected a day for which they would be spending the entire day with 

their child but that was otherwise, as far as possible, typical. The researcher visited the 

participants’ homes in the morning (between 7.30 and 10am) to fit the equipment and explain 

its use, and then returned in the late afternoon (between 4 and 7pm) to remove it. Mean (std) 

recording time per day was 7.3 (1.4) hours.  

 

The equipment consisted of two wearable layers (see Figure S1). A specially designed baby-

grow was worn next to the skin, containing a built-in ECG recording device, accelerometer, 

GPS, and microphone. A T-shirt, worn on top of the device, contained a pocket to hold the 

microphone and a miniature video camera. The clothes were comfortable when worn and, 

other than a request to keep the equipment dry, participants could behave exactly as they 

would on a normal day. No discomfort in wearing the equipment was reported. To ensure 

good quality recordings, the ECG was attached using standard Ag-Cl electrodes, placed in a 

modified lead II position.   

 

Details of the criteria through which sleeping and waking segments were identified are given 

in the Supplementary Materials (SM) (section 1.2). Details of parsing of the autonomic data, 

including details of the motivation for collapsing the different autonomic indices into a single 

composite measure, are given in the SM (section 1.3). Details of the recording and coding of 

the infant microphone data are given in the SM (section 1.4). 

 

Questionnaires were also administered to assess: household income, maternal education, 

stressful events around birth (medical complications, preterm birth, drink or drugs while 

pregnant or previous miscarriage) and adverse life events since birth (serious illness, death in 

family, abuse/attacks/threats to family, unemployment in family, financial difficulties, 

committing or being victim of a crime, moving house) (Felitti et al., 1998), parental anxiety 

(GAD-7 - Spitzer, Kroenke, Williams, & Löwe, 2006), depression (PHQ-9 - Kroenke, 

Spitzer, & Williams, 2001), parental over-involvement (Hudson & Rapee, 2002) and the 

number of people living at home (Felitti et al., 1998). In addition, parent report of household 

order was assessed using the  CHAOS scale (Matheny et al., 1995).   

 

Lab Battery 

The lab battery was conducted within median (st err) 17.5 (3.5) days of the home battery. 

Details of participant drop-out for different individual tasks in the lab battery are given in the 

SM (section 1.5).  

 

For Tests 1 and 2, ECG was recorded using the same devices as for the home battery. For 

Test 3, ECG was recorded using Bionomadix BN-ECG2 and BM-ACCL3 units, along with 

an MP160 amp, from Biopac. For all ECG recordings, standard Ag-Cl electrodes placed in a 

modified lead II position were used.  
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Test 1: Still face protocol. Parent and child were seated across an 80cm-wide table, and 

instructed to play naturally with four toys positioned on the table. After four minutes, on an 

instruction from the experimenter, the parent was instructed not to respond to the infant and 

to hold a neutral face for two minutes. On a further instruction from the experimenter, the 

play resumed for a further two minutes. If the infant become distressed during the still face 

period, as judged using the standard guidelines (Weinberg & Tronick, 1996), the experiment 

was curtailed.  

 

Test 2: Repetitive, static audio-visual stimuli were presented to elicit a baseline; these were 

followed immediately by attention-eliciting videos, lasting c. 30 seconds each. The baseline 

stimuli were short auditory sounds and static pictures of animals; the attention-eliciting video 

were videos of the BBC children’s presenter Mr Tumble singing nursery rhymes. 4 blocks 

were presented, and averaged. Infants’ visual attention towards the stimulus presentation area 

was recorded and coded post hoc, and their heart rate (RR intervals) was recorded.  

 

Test 3: In addition, a secondary test of visual sustained attention was also administered. For 

reasons of space, the method for this is given in the SM (section 1.6).  
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Results 

 

The results section is in five parts. In part 1 we present descriptive analyses of the home data. 

In part 2 we examine infants’ autonomic reactions to naturally occurring environmental noise 

in the home data. In part 3 we present analyses examining sustained attention and autonomic 

responsivity to attention-eliciting stimuli in the lab battery. In part 4 we present analyses 

examining negative affect and autonomic lability in the home data. In part 5 we examine 

infants’ stress reactivity and arousal lability to an emotional stressor in the lab battery.  

 

Kolmogorov-Smirnov results indicated that not all test results observed for all variables were 

parametrically distributed. Because of this, more conservative non-parametric statistical 

analyses have been used throughout, for consistency.  

 

Part 1 - Descriptive analyses 

 
Figure 1: Data sample illustrating the raw data collected from a single participant. Six and a 

half hours’ data is presented (see time axis at the bottom). From top to bottom: the RR (inter-

beat) intervals derived from the electro-cardiography recording, indexed as Beats Per 

Minute (BPM); the heart rate variability (indexed as the Root Mean Square of Successive 

Differences (RMSSD); actigraphy (indexed as micro-Volts); the sound levels on the infant 

microphone (indexed as decibels (dB)); the results of the coding for Microphone 

Vocalisations, Microphone Ambient and Infant Vocal Affect (see SM section 1.4). For 

Microphone Ambient, only those categories that were present in the data sample are shown.  

 

Figure 2 shows the results of the descriptive statistical analyses of the home data. Figure 2a 

illustrates how the average noise levels varied across different individual data samples 

recorded. For the five participants who were lowest overall on noise, the average levels of 

waking noise are lower, and there is also a clear differentiation between the Asleep and 

Awake samples. For the participants who scored higher overall on noise, this is not the case. 

See SM Figure S3 for the same plot showing all data, and see here1 for a list showing average 

decibel levels across different categories of real-world noise. 

                                                      
1 http://www.industrialnoisecontrol.com/comparative-noise-examples.htm 

http://www.industrialnoisecontrol.com/comparative-noise-examples.htm
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For subsequent analyses, participants were split into ‘Low noise’ and ‘High noise’ using a 

median split, based on the average decibel levels observed in the microphone data recorded 

while infants were sleep. In the SM section 2.3 we also include identical analyses based on 

quartile splits. We used sleeping data because we judged that this was likely to be more free 

of possible self-generated microphone artifacts, and thus to be an accurate measure of 

background noise. Sleeping noise also showed positive bivariate associations with waking 

microphone noise rs=.33, p=.005 and with the CHAOS questionnaire rs=.29, p=.02.  

 

We also examined bivariate associations between noise and other socio-economic variables. 

Full results are given in the SM (section 1.7). In brief, sleeping microphone noise showed 

bivariate associations with the number of other people living at home (p=.02), but did not 

associate with maternal education, household income, birth stressors, adverse life events, 

parent anxiety or depression and parental over-involvement. There was no relationship 

between noise and the proportion of the recording spent sleeping. 

 

In addition to total noise levels we also examined the change in noise across time, by 

calculating Poincaré plots (see Figure 2b) (see further details in SM section 1.8). Analyses 

presented in the SM indicate that the high-noise group showed significantly more sudden 

changes in noise between consecutive 60-second epochs (Wilcoxon p=.01), when differences 

in mean noise are controlled for.   

 

Figure 2c shows the average noise levels by category of vocal/ambient noise (see SM section 

1.4), and Figure 2d shows the proportion of audio samples in each category. The high-noise 

group shows consistent trends towards higher decibel levels across different vocal/ambient 

categories. Between-group differences are larger for the sleeping relative to the waking 

sections, which is expected given that groups were defined by sleeping noise. Other 

differences can also be seen: for example, infants in the high-noise group were exposed to 

significantly less speech where the adult was talking directly to the infant, and more speech 

where the adult was talking to another adult.   
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Figure 2: a) Illustrative data samples. Each column shows the microphone data recorded 

from an individual participant. Within each column, each dot shows the average noise level 

for an individual sample (recorded once per minute). The five participants who scored lowest 

on overall noise levels are shown on the left; those who scored highest are shown on the 

right. Samples recorded while the infant was sleeping are shown in orange; those while the 

infant was awake, in purple. Full data are shown in the SM Figure S3. b) Poincaré plots, 

calculated as described in SM section 1.8. Noise levels were averaged into 60-second epochs 

and sorted into equal-sized bins on a per-participant basis to control for inter-individual 

differences in mean noise level. Noise at time t is shown on the y-axis and time t+1 on the x-

axis. Data more tightly clustered on the identity line show greater consistency across time. It 

can be seen that the high noise group show more abrupt changes in noise (e.g. from bin 1 at 

time t to bin 5 at time t+1). Statistical analyses described in the SM (section 1.8) confirm this 

as a significant pattern in the data. c) Mean volumes (in dB) recorded from the high noise 

group (blue) and low noise group (red), sorted by vocalisation/ambient category and 

sleeping/waking (see SM section 1.4 for more details). Error bars show the standard error of 

the means. d) The proportion of total samples that each vocalisation/ambient category was 

present for. For c) and d), independent samples t-tests were conducted to examine the 

significance of group differences between the high and low-noise groups. Where significant, 

these have been indicated with (*) in the legends on the x-axis.   

 

 

Part 2 - Autonomic sensitivity to environmental noise in home data  
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To examine how external noise in the home data related to autonomic changes in the child, 

we calculated the Cross-Correlation Function (CCF) between auditory noise and autonomic 

arousal (see SM section 1.9). Prior to conducting calculations, all epochs in which the infant 

was vocalising were excluded, to ensure that only external noise sources were considered. 

Analyses only included segments in which infants were at home, because in these segments 

infants were generally free-roaming (i.e. not strapped in a buggy or car seat), allowing more 

accurate estimation of autonomic arousal. Subsequent analyses found that outdoor segments 

showed similar relationships. At Time lag=0 (i.e. examining the concurrent co-fluctuation of 

autonomic arousal and external noise across the day), Wilcoxon tests indicated that both 

groups were significantly above the chance value of 0: low noise group: Z=6.2, p<.001, high 

noise group: Z=6.1, p<.001. Zero-lag correlations were also higher in the low-noise group 

than the high-noise group Z=3.2, p=.004. This indicates that for both groups, autonomic 

arousal was increased at times when external noise was higher; but that the association 

between external noise and autonomic arousal was lower in the group exposed to higher 

average levels of noise.  

 

 
Figure 3: a) Cross-correlation plot showing the relationship between auditory noise and 

autonomic arousal in the home data. For all plots, red shows the low-noise group and blue 

the high-noise group. Shaded areas show the standard error of the means. b) histograms 

showing the cross-correlation values for time lag=0 only from Figure 3a. c) RR interval 

changes to a novel attention-eliciting event in the lab battery. Shaded areas show the S.E. 

Star indicates the area of significant difference identified by the permutation test * - p<.05. 

d) Look durations during the period -5 to 0, 0 to 15 and 15 to 30 seconds relative to stimulus 

change. Stars indicate areas of significant difference - * - p<.05; (*) – p<.10. e) Look 

durations during the secondary sustained attention task (described SM section 1.6). 

 

Part 3 - Visual sustained attention in lab battery  

 

To examine infants’ responses to attention-eliciting stimuli in the lab battery, infants were 

habituated to repetitive, static stimuli before an attractive, novel stimulus was presented. 

Figure 3c shows infants’ autonomic responsiveness (indexed as RR interval change) to the 
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novel stimuli. Data were z-scored to control for individual differences, and RR interval 

changes relative to the appearance of the novel stimulus were assessed. The permutation-

based clustering analyses (SM section 1.10) indicated that infants in the high-noise group 

showed significantly more short-lived decreases in arousal (p=.004) relative to the 

appearance of the novel stimulus.  

 

Next, we examined the change in infants’ visual attention. Both groups showed an increase in 

visual attention in response to the novel stimulus (Figure 3d). Immediately following the 

stimulus, Wilcoxon tests indicated no group differences in attention (p=.38); but at later time 

intervals a significant difference emerges (p=.024). In addition, we also administered a 

separate test of visual sustained attention (see Figure 3e and SM section 1.6) which showed 

results consistent with this. Overall, these results suggest that infants from the high-noise 

group showed reduced visual sustained attention, along with more short-lived autonomic 

changes following the appearance of novel attention-eliciting stimuli.  

 

 

Part 4 – Arousal lability in home data 

 

Next we examined whether the rate of change of autonomic arousal differed between the 

high-noise and low-noise groups in the home data, by calculating the auto-correlation 

function (ACF) and partial auto-correlation function (PACF) of arousal (see Figure 4a). The 

ACF indexes the relationship between a variable and itself, considered at varied time 

intervals. Cases where the ACF shows a faster fall-off indicate that the relationship between a 

variable at time t and the same variable at time t+x is lower – i.e. that the rate of change of 

that variable overall is higher. The partial auto-correlation function (PACF) indexes the 

autocorrelation of a measure, but at each lag it controls for the effect of previous 

autocorrelations at smaller lags (Chatfield, 2004). PACFs presented in the main text are 

calculated based on 10-minute bins (see Figure 4b); in the SM section 2.2 we present the 

results of identical analyses using different epoch sizes. The first- and second-lag terms were 

both strongly significant (~=0) in both groups, indicating a second-order autoregressive 

model; the first term was highly positive, but the second term was negative (arousal levels at 

time t were negatively associated with arousal levels c.15 minutes after time t). Wilcoxon 

tests were conducted to assess how the PACF terms differed between the high- and low-noise 

groups, controlling for multiple comparisons using the Benjamini-Hochberg procedure 

(Benjamini & Hochberg, 1995). The first-order term was greater in the low-noise group 

Z=3.1, p=.002, but no significant difference was observed for the second-order term. In the 

SM section 2.2 we present analyses suggesting that the same pattern is consistently observed 

at epoch sizes greater than 10 minutes, but not at smaller epoch sizes.  Overall, these results 

indicate a faster rate of change between consecutive epochs of 10 minutes (and upwards) in 

the high-noise group. 

 

Figure 4c shows infants’ autonomic responsivity to naturally occurring negative affect in the 

home data. We identified (see SM section 1.4) moments where infants showed peak negative 

affect in their vocalisations (<=3 on a scale from 1 (most negative affect) to 9 (most 

positive)). A mean (S.E.) of 13.6 (1.2) such instances were identified per infant. Infants’ 

arousal was z-scored (to control for between-participant differences in average arousal) and 

averaged during the period from +/- 10 minutes relative to each instance (see Figure 4c). 

Although the arousal increase at the time of the negative affect vocalisations is equivalent, 

the high-noise group show faster decreases in autonomic arousal in the period c.1-5 minutes 

after the vocalisation, as indicated by a significant difference on the permutation-based 
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temporal clustering analyses (p=.042) (see SM section 1.10). This suggests that the high-

noise group showed faster physiological recovery following moments of naturally occurring 

negative affect. 

 
Figure 4: a) Auto-Correlation Function (ACF) for arousal in the home data. Red shows the 

low-noise group; blue the high-noise group. b) Partial Auto-Correlation Function (PACF) 

for arousal in the home data. Dashed red line indicates cut-off for significant PACF 

coefficients. Star indicates significant results of Wilcoxon test to examine between-group 

differences. * - p<.05. c) Arousal changes to moments of naturally occurring negative affect 

in the home data. Shaded areas show the S.E. Red shows the low-noise group; blue, the high-

noise group. Star indicates the area of significant difference identified by the permutation-

based temporal clustering analyses. * - p<.05 d) RR interval change during the still face 

procedure, and recovery afterwards in the lab battery. Red shows the low-noise group; blue, 

the high-noise group. * - p<.05. 

 

Part 5 –Arousal lability to emotional stressor in lab battery 

 

We also examined infants’ autonomic responsiveness to experimentally induced negative 

affect, using a still face procedure (Weinberg & Tronick, 1996) (see Figure 4d). Data were 

windowed in 30-second windows. Change during the still face was calculated as the final 

window during the still face minus the initial window of free play; recovery was calculated as 

the final window of resumed free play minus the final window during the still face. A non-

significant bivariate correlation was observed between home noise and HR increase during 

the still face rs=.49, p=.15; a significant bivariate correlation was observed between home 

noise and HR recovery following the still face rs =-.65, p=.049. This indicates that, in the lab 

battery, children with noisier home backgrounds showed both (non-significantly) greater HR 

increase during the still face, and greater recovery after.  
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Discussion 

 

 We measured infants’ exposure to environmental noise and autonomic reactivity in a cohort 

of 12-month-old infants from diverse socio-economic backgrounds. Our noise recordings 

indicated consistent individual differences in mean levels of noise exposure across our 

sleeping and waking samples; microphone noise data also associated with parent report via 

questionnaire (the CHAOS scale - Matheny et al., 1995). Noise associated with the number of 

people living in the home, but did not associate with other socio-economic variables such as 

maternal education and household income, parenting, or life-long stressors such as adverse 

childhood experiences. Mean levels of noise exposure also associated with variability in 

noise, such that children exposed to higher average levels of noise also experienced a faster-

changing noise profile (Figure 2b).   

 

Our results pointed to a strong phasic association between environmental noise and arousal: 

at times during the day when environmental noise was higher, infants’ autonomic arousal was 

elevated (Figure 3a). To our knowledge this is the first time that such a relationship has been 

documented. Our analyses examined externally generated noise, excluding sections in which 

the infants were themselves vocalising. The same pattern was observed in samples recorded 

at home, and outdoors.  

 

We also found that, in infants who experienced higher levels of noise at home, their 

autonomic responsiveness to noise was lower. This is consistent with previous research 

suggesting that adults exposed to more noise at home are less likely to show noise-induced 

arousal-based awakenings (Pearsons et al., 1995), and a previous study in which adults were 

exposed to noise across eight successive nights in a sleep lab (Basner et al., 2011).  

 

When we examined the same infants in controlled experimental settings we found that infants 

exposed to noisier home environments showed similar autonomic and behavioural responses 

to the ‘low-noise’ group immediately following the appearance of an attention-eliciting 

stimulus, but that these changes were more short-lived (Figure 3c-e, and Figure S5). Visual 

sustained attention was also lower in the ‘high-noise’ group. The close correspondence we 

observed between our autonomic and behavioural findings on this measure is expected, given 

extensive previous research that has identified strong associations between attention-elicited 

autonomic changes and sustained attention in infants (de Barbaro, Clackson, & Wass, 2016; 

Richards, 1985, 2010; Winterer & Weinberger, 2004).  

 

We also examined infants’ reactivity to lab-based experimental stressors, by administering a 

still-face procedure (Figure 4d) (Weinberg & Tronick, 1996). We observed non-significantly 

greater increases in arousal in response to the still-face, and significantly greater recovery 

after the still-face (Figure 4d). Here, our results were not exactly as predicted, based on 

previous research. Evans and colleagues found that children exposed to more environmental 

noise showed increased reactivity to an experimental stressor (Evans et al., 2001), and our 

present findings were directionally consistent with that. However, whereas most previous 

research has found increased reactivity to be associated with slower recovery (e.g. 

Beauchaine & Thayer, 2015), we observed both increased reactivity and faster recovery in 

the high-noise group. This may be because we used a more fine-grained temporal measure 

than in previous studies, that allows reactivity and regulation to be differentiated (cf 

Obradović & Finch, 2016; see also Fox, 1989; Gottman & Katz, 2002 for consistent results). 

Our finding that the high-noise group showed a generally more labile profile of change in 

autonomic arousal was also observed in the home data, where we also observed faster 
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recovery from moments of naturally occurring negative affect (Fig 4c), and greater variability 

(more change in autonomic arousal) over longer time-scales (see further discussion below 

and Fig 4a, 4b). Thus, we found that children exposed to higher and more variable levels of 

noise at home showed autonomic responses that were more labile across both the lab and the 

home battery and, within the lab battery, in both cognitive and affective domains.  

 

Brainstem-mediated autonomic reactivity is involved in maintaining allostasis and 

homeostasis in the face of external environmental change (Cacioppo et al., 2000). It also 

mediates cognitive responses such as reactions to a novel, unexpected external stimulus (e.g. 

Sechenov, 1965), and affective processes such as reactions to an experimental stressor 

(Aston-Jones & Cohen, 2005; Geva & Feldman, 2008; McCall et al., 2015; Wass, 2018). 

Early research identified the orienting response (Pavlov, 1927; Sechenov, 1965; Sokolov, 

1963), which is elicited by stimuli that are novel, complex, or incongruous, and which is now 

thought to be mediated largely by the parasympathetic branch of the Autonomic Nervous 

System (ANS) (Sokolov, 1963). This was differentiated from the Defensive Reaction 

(Pavlov, 1927), which is elicited by stimuli that are intense or unexpected (Sechenov, 1965), 

and which is thought to be mediated largely by the sympathetic branch of the ANS (Cacioppo 

et al., 2000; although see e.g. Porges & Furman, 2011).  

 

Extensive previous research has suggested that children raised in noisy and unpredictable 

home environments show atypical responses within both subdivisions of the ANS (e.g. Evans 

& Wachs, 2010; Bremmer et al., 2003; Basner et al., 2014). Our finding that these 

relationships can be identified earlier in development than had previously been appreciated is 

novel, but unsurprising: extensive evidence suggests that early development is highly 

sensitive to environmental influence (Frankenhuis et al., 2018). Similarly novel, but 

theoretically predicted (Wass, 2018), is our finding that environmental influences on 

autonomic function affect performance in both cognitive, and affective, domains. Consistent 

with this, other research has shown that brainstem integrity even shortly after birth can 

influence both cognitive and social developmental outcomes over longer time-frames (Geva, 

Schreiber, Segal-Caspi, & Markys-Shiffman, 2013; Geva & Feldman, 2008).  

 

Neural control over the ANS is governed by a range of brain areas centred on the locus 

coeruleus (LC) and reticular pathways in the brainstem, communicating via thalamic and 

cortical projections (e.g. Amaral & Sinnamon, 1977; Arnsten & Goldman-Rakic, 1984); 

partially discrete neural substrates control the parasympathetic and sympathetic subdivisions 

(Samuels & Szabadi, 2008). Recent research has argued that these different subdivisions 

cannot, however, reliably be differentiated in humans by comparing change in peripheral 

ANS indicators such as heart rate over different time-scales (Billman, 2013), as others had 

previously claimed. Here, we report that infants who show more long-term autonomic 

fluctuations on a >10 minute scale (but not on shorter time-scales – see Wass, de Barbaro, 

Clackson, & Leong, 2018 and SM section 2.2) show superior sustained attention, and that 

these differences associated with more labile response patterns over shorter time-frames in 

our lab testing battery. Tentatively, these findings might be attributed more to the 

sympathetic subdivision of the ANS (see Wass, de Barbaro, Clackson, & Leong, 2018). This 

is plausible, given extensive previous research suggesting that both parasympathetic and 

sympathetic subdivisions influence cognitive functions such as sustained attention in infants 

(Wass, 2018). However, future research should investigate this in more detail.  

 

Our findings may, therefore, give insight into how noisy home environments can adversely 

affect long-term affective and cognitive outcomes. However, further work remains to 
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elucidate the mechanisms underlying this relationship. For example, we found that average 

autonomic arousal did not differ between our high- and low-noise groups, but that the rate of 

change of arousal did. This begs the question of whether the differences we observed were 

due to repeated stimulation of the sympathetic nervous system (excessive long-term levels of 

chronic noise), or due to unpredictability in noise levels (excessive short-term phasic 

variability in noise). Both types of difference were present in our data (Figure 2a, 2b).    

 

In order further to investigate how autonomic lability during early development may, for 

example, disrupt the development of inter-personal emotion regulatory mechanisms, 

longitudinal studies would also be useful (Beatty & Lucero-Wagoner, 2000; Cacioppo et al., 

2000; Feldman, 2006; Geva, Sopher, et al., 2013). Animal research has also suggested that 

early-life stress can act as a risk factor in sub-optimal home environments, but an opportunity 

factor in supportive home environments (Hartman, Freeman, Bales, & Belsky, 2018). One 

possibility is that increased arousal lability may be a physiological mechanism subserving 

these bivalent effects (Boyce & Ellis, 2005; Feldman, 2006; Weinberg & Tronick, 1996; 

Obradovic, 2016). 

 

Causative pathways are hard to untangle, and it may also be that the relationships we 

observed are mediated by other, unobserved factors. For example, in our high-noise group, 

parents spent less time talking to the infant, and more time talking to other adults (Figure 2d), 

and it is possible that factors such as parental engagement may influence the relationships 

observed.  Another potential factor is the duration or quality of infant sleep (Brink, 2012; 

Pearsons et al., 1995), although we found no association between noise and time sleeping. 

Intervention studies, that examine how minimising environmental noise affects infants’ 

autonomic reactivity, may further improve our understanding of these pathways of causation.  

 

 

 

 

Key Points: 

• Early-life stress is known to confer increased transdiagnostic risk of adverse mental 

health outcomes. 

• For the first time we examined how fluctuations in external environmental noise 

affect the developing autonomic nervous system. 

• We found that children exposed to more noisy environments showed reduced 

autonomic responsiveness to novel stimuli and more fast-changing profiles of 

autonomic arousal. 

• Our results suggest new mechanisms through which high exposure to environmental 

noise stressors can confer increased risk of transdiagnostic impairment during later 

life.   
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Supplementary Materials for: 

Influences of environmental stressors on autonomic function in 12-month-old 

infants: understanding early common pathways to atypical emotion regulation 

and cognitive performance  
 

 

1 Supplementary Methods  

1.1 Demographic details 

 

Exclusion criteria were: complex medical conditions, skin allergies, heart conditions, parents 

below 18 years of age, and parents receiving care from a mental health organisation or 

professional. We also excluded families in which the primary day-time care was performed 

by a male parent, because the numbers were insufficient to provide an adequately gender-

matched sample.  

 

 

Table S1: Demographic details for the sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Infant age (days) – mean 351.9 

                   - SE  4.6 

 

Gender (% male) 39.3 

   

Infant Ethnicity (%) White British 51.9 

 Other white 11.4 

 Afro-Caribbean 8.9 

 Asian, Indian & Pakistani 10.1 

 Mixed - White/Afro-Caribbean 2.5 

 Mixed - White/Asian 7.6 

 Other mixed 7.6 

   

Household Income (%) Under £16k 30.4 

 £16-£25k 29.1 

 £26-£35k 11.4 

 £36-£50k 12.7 

 £51-£80k 8.9 

 >£80k 7.6 

   

Maternal education (%) Postgraduate 34.2 

 Undergraduate 49.4 

 FE qualification 2.5 

 A-level 3.8 

 GCSE 5.1 

 No formal qualifications 2.5 

 Other 1.3 
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Figure S1: a) equipment used. b) child and parent wearing the equipment 

 

1.2 Home/Awake coding 

Coding of when participants were at home was performed using the GPS monitors that were 

built into the recording devices. The position of the participant’s home was calculated based 

on the postcode data that they supplied, and any GPS samples within a 50m area of that 

location were treated as Home (corresponding to the accuracy of the GPS devices that we 

were using). To identify samples in which infants were sleeping, parents were asked to fill in 

a logbook identifying the times of infants’ naps during the day. This information was 

manually verified by visually examining the actigraphy and ECG data collected, on a 

participant by participant basis. Actigraphy, in particular, shows marked differences between 

sleeping and waking samples (see Supplementary Materials Figure S1), which allowed us to 

verify the parental reports with a high degree of accuracy. N=4 of the participants recorded 

did not sleep during the day that we were recording.  

 

1.3 Autonomic data parsing and calculation of the autonomic composite measure 

Analysis of the inter-beat intervals was calculated using custom-built Matlab scripts, using an 

adaption of a standard threshold procedure (Wass, de Barbaro, & Clackson, 2015), and 

verified post hoc via visual inspection. Heart rate variability was calculated using the 

PhysioNet Cardiovascular Signal Toolbox (Vest et al., 2018). A 60-second window with an 

increment of 60 seconds was implemented, and the default settings were used with the 

exception that the min/max inter-beat interval was set at 300/750 ms for the infant data and 

300/1300 ms for the adult data. The Root Mean Square of Successive Differences (RMSSD) 

measure was taken to index Heart Rate Variability, but other frequency domain measures 

were additionally inspected and showed highly similar results. To parse the actigraphy data 

we first manually inspected the data, then corrected artifacts specific to the recording device 

used, and then applied a Butterworth low-pass filter with a cut-off of 0.1 Hz to remove high-

frequency noise.  

 

In previous research we have shown strong patterns of tonic and phasic covariation between 

different autonomic measures collected from infants (Wass, Clackson, & de Barbaro, 2016; 

Wass et al., 2015). Here, we include plots showing that the present analyses replicated and 
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extended these results. The plots only show the sections of the data when participants were at 

home, comparing sections in which the infants were awake and asleep. Figure S1a shows 

cross-correlation plots examining the relationship between heart rate and movement. In both 

waking and sleeping sections the zero-lag correlation is 0.5. Figure S1c shows how these 

zero-lagged correlations vary on a per-participant basis. S1b shows an illustrative sample 

from a single participant. Sleeping sections show very low movement levels and lower heart 

rate. Of note, heart rate and movement do still inter-relate during the sleeping sections of the 

data (Figure S1c), albeit that the variability in heart rate and movement is lower. Figure S1 

d)-f) show similar relationships between heart rate and heart rate variability, illustrating the 

strong and consistent negative relationships that were observed between these variables, as 

predicted.   

 

 
Figure S1: Illustrating the relationship between the individual physiological measures 

included in the composite measure. a) Cross-correlation of the relationship between HR and 

Movement. b) Scatterplot from a sample participant. Each datapoint represents and 

individual 60-second epoch of data. c) Histograms showing the average zero-lagged 

correlation between 60-second epochs, calculated on a per-participant basis and then 

averaged. d)-f) Equivalent plots for Heart rate and Heart rate variability.  

 

As a result of these considerations, the three autonomic measures were collapsed into a single 

composite measure. This was done by calculating the natural logarithm of the actigraphy 

data, inversing the HRV data, calculating the z-score of each measure and then averaging the 

z-scores. 

 

Extensive previous research has identified fractionation, and differentiation, within our 

autonomic response systems (Janig & Habler, 2000; Kreibig, 2010; Lacey, 1967; Levenson, 

2014; Quas et al., 2014) – suggesting, for example that the sympathetic and parasympathetic 

subdivisions operate, to an extent, in a non-additive manner (Samuels & Szabadi, 2008). 

Although indubitably true, these findings should be seen as rendering incorrect our treatment 

of autonomic arousal as a one-dimensional construct. Like many other arguments concerned 

with general versus specific factors, the question is rather one of the relative proportions of 
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variance that can be accounted for by a single common factor in comparison with the 

variance accounted for by the sum of specific factors (Graham & Jackson, 1970). 

 

Due to technical problems with the ECG recording leads (N=10) and to problems with the 

placement of the ECG recording electrodes (N=2), the arousal composite data was 

unavailable for 12 of the participants tested.    

 

 

 

1.4 Microphone data coding 

 

Microphone data were recorded at 11.56 kHz, and converted to decibel values using the 

mag2db function in MATLAB.  For reasons of recording bandwidth, the microphone did not 

record continuously, but recorded a 5-second snapshot of the auditory environment every 60 

seconds throughout the day. Post hoc, trained coders listened to all audio samples recorded to 

classify the recording samples. Three types of categorisation were applied: 

 

First, coders identified whether a vocalisation was present in that sample. Four categories of 

vocalisation were identified: ‘Infant’ (samples in which the infant was vocalising); ‘Other 

child’ (samples in which another child was vocalising, as recorded on the infant’s 

microphone); ‘Ad->Infant’ (samples in which an adult was talking, and the speech was 

directed to the infant); ‘Ad->other ad’ (samples in which an adult was talking, and the speech 

was directed no to the infant but to another adult, or infant). Categories were non-exclusive – 

so, for example, a segment could be classified as containing both an infant and an ad->infant 

vocalisation. The relative proportions with which each of these categories were coded in the 

data is given in Figure 2d in the main text.   

 

Second, coders identified the ambient noises present in the microphone sample. This coding 

was performed by identifying those categories that could be reliably identified in the 

recordings. The following categories were identified: ‘Adult TV (speaking)’ (samples in 

which non-infant-directed TV or radio was audible, and the content was mainly speaking); 

‘Adult TV (music)’ (samples in which non-infant-directed TV or radio was audible, and the 

content was mainly music); ‘Child TV’ (samples in which infant-directed TV or radio was 

audible); ‘Car’ (samples in which the background noise of driving was audible); ‘Shopping 

etc’ (samples containing background interior noise, such as that of a shopping centre or other 

large public space); ‘Outdoor’ (samples containing outdoor noise).  

 

Third, coders examined just those samples in which the infant was vocalising. Each 

vocalisation was then coded for vocal affect on a scale from 1 (‘fussy and difficult’ – most 

negative affect) to 9 (‘happy and engaged’ – most positive affect). Due to its labour-intensive 

nature, this coding was conducted for 46 participants in total. In addition, 24% of the sample 

was double coded to assess inter-rater reliability; Cohen’s kappa was found to be 0.60, which 

is considered acceptable (McHugh, 2012). All coders were blinded to group outcome and to 

all intended analyses, and so the risk of Type I errors arising as a result of inconsistent data 

coding is low.  

 

In section 1.11 below (Figure S2) we examine how hand-coding of vocal affect varied as a 

function of the infants’ autonomic arousal at the time of the vocalisation.   
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1.5 Participant drop-out for individual tasks in lab battery 

 
Of the infants who participated in the home testing battery, 57 also attended the lab battery. 

Full demographic details for this population are given below: 

 

Table S2: Demographic details for the sample (lab battery only) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Participant drop-out for lab tasks: 

 

Test 1 (Figure 4d): Due to technical problems (a faulty ECG cable (N=21); inaccurate 

synching (N=13) with the recording equipment for this procedure, physiology data was 

available for 23 infants. 

 

Test 2: Autonomic data (Figure 3c) were available from this task from all participants who 

attended the lab testing session (N=57). Due to its labour-intensive nature, coding of the 

looking behaviour for this task (Figure 3d) was only completed for a subset (N=32) of 

participants.  

Infant age (days) – mean 351.7 

                   - SE  7.7 

 

Gender (% male) 43.9 

   

Infant Ethnicity (%) White British 26.6 

 Other white 10.1 

 Afro-Caribbean 8.9 

 Asian, Indian & Pakistani 7.6 

 Mixed - White/Afro-Caribbean 3.8 

 Mixed - White/Asian 6.3 

 Other mixed 3.8 

   

Household Income (%) Under £16k 22.8 

 £16-£25k 11.4 

 £26-£35k 10.1 

 £36-£50k 6.3 

 £51-£80k 8.7 

 >£80k 5.1 

   

Maternal education (%) Postgraduate 13.9 

 Undergraduate 36.7 

 FE qualification 2.5 

 A-level 1.2 

 GCSE 6.3 

 No formal qualifications 2.5 

 Other 2.5 
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Test 3 (Figure 3e): Due to non-compliance during testing, data from this task were 

unavailable from N=7 participants. N=50 were included in the test sample.  

 

1.6 Supplementary experiment to measure visual sustained attention.  

 

In addition to the test described in the main text (Test 2), for which the results are shown in 

Figure 3c and 3d), a supplementary experiment was also administered to measure visual 

sustained attention (results shown Figure 3e). The method for this experiment is given below: 

 

Test 3: Visual sustained attention was assessed using an established procedure (Wass, 

Porayska-Pomsta, & Johnson, 2011). A static image of a child’s face was presented on-

screen. An experimenter, watching a video feed, coded infant’s looking behaviour towards 

the screen using a key press. When the child looked away from the screen, the picture 

disappeared and the same image was re-presented. Stimuli were re-presented until: i) the last 

two successive looks were less than 50% of the longest unbroken look, ii) eight successive 

looks had occurred without reaching criterion, or iii) the total presentation length exceeded 

120 seconds. Three blocks were presented, each using different images.   

 

The results obtained for this experiment were analysed using the same procedures as 

described in the main text. For peak look duration, Wilcoxon tests indicated no group 

difference (p=.92); however, when examining total look duration across multiple looks 

towards a particular stimulus, a marginally non-significant group difference emerged (p=.09). 

These results are consistent with the significant results presented in the main text, indicating 

that, across two entirely separate experiments, reduced visual sustained attention was 

observed in the high-noise group.  

 

1.7 Relationships of microphone noise to other socio-economic variables 

 

Bivariate correlations were conducted to assess the relationship between sleeping microphone 

noise and other socio-economic variables. Following the procedure used throughout the 

paper, these were calculated using the more conservative non-parametric statistics 

(Spearman’s Rho) as not all variables were normally distributed.   

 

Sleeping microphone noise showed bivariate associations with the number of other people 

living in the infant’s home rs=.28, p=.02, but did not associate with maternal education 

rs=.07, p=.59, household income rs=.14, p=.23, pre-, peri- and post-natal stressors rs=-.04, 

p=.75, adverse life events rs=-.04, p=.72, parental anxiety rs=-.14, p=.26, depression rs=.01, 

p=.94, or parental overinvolvement rs=.14, p=.27. There was no relationship between noise 

and the proportion of the recording spent sleeping rs=-.12, p=.30. 

 

1.8 Poincaré analysis 

 

In order to examine intra-individual variability in noise whilst controlling for the inter-

individual differences in average noise, data were averaged into 60-second epochs and 

grouped on a per-participant basis into 5 equal-sized bins. The noise levels at time t were 

plotted on y axis and time t+1 on the x axis. Data that are more tightly clustered around the 

identity line show greater stability between consecutive epochs. From visual inspection, it 

appears that the high noise group are less tightly clustered around this line. To assess the 

significance of this difference, the standard deviation (SD) of points perpendicular to the 
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identity line was calculated (Mirescu & Harden, 2012) on a per-participant basis. A Wilcoxon 

test indicated that the SDs in the high noise group were significantly higher than those in the 

low noise group Z=2.56, p=.01. This suggests that the high-noise group show more sudden 

changes in noise, even when differences in mean and variance are controlled for.    

 

1.9 Cross-correlation analysis 

 
In a cross-correlation, the Time lag=0 moment shows the correlation across all epochs 

between the two variables considered simultaneously. The Time lag=60 moment indicates the 

correlation between noise at time t and arousal at time t+60 (i.e. 60 minutes after that 

moment). Analyses were conducted using custom-built MATLAB scripts described in further 

detail in a previous paper (de Barbaro, Clackson, & Wass, 2016), but verified using built-in 

MATLAB functions (crosscorr.m). 

 
One challenge to interpreting the significance of cross-correlations is that each variable is 

itself auto-correlated (i.e. shows a profile of change that is either slower, or faster changing 

(Chatfield, 2004; Thiebaux & Zwiers, 1984; Thorson, West, & Mendes, 2018). Thus in 

calculating a cross-correlation to index the relationship between two variables at a given 

time-lag, it is first necessary to estimate how each variable relates to itself at that time lag 

(which is described by the auto-correlation). A variety of techniques are available to do this, 

including Autoregressive Integrated Moving Average models (e.g. (Feldman, Magori-Cohen, 

Galili, Singer, & Louzoun, 2011)) or the Actor-Partner Interdependence Model (Thorson et 

al., 2018). We opted to correct for auto-correlation by calculating the Effective Sample Size 

(Clifford, Richardson, & Hemon, 1989; Thiebaux & Zwiers, 1984). At each time interval, the 

cross-correlation (i.e. the relationship between the two variables) was first calculated, and 

then the auto-correlation value for each variable (i.e. the relationship of that variable to itself, 

at that time-lag) was then calculated. The higher of these two values was used to calculate the 

Effective Sample Size, using the standard formula: 𝑁∗ =
𝑁(1−𝑟)

(1+𝑟)
 , where N* is the Effective 

Sample Size, N is the actual sample size and r is the higher of the two auto-correlation values 

obtained at that time interval for each of the two measures independently (Thiebaux & 

Zwiers, 1984). The significance level of the cross-correlation obtained was then adjusted 

based on the Effective Sample Size. In this way, we calculated the significance level of the 

relationship between two variables at a particular time-lag, independent of the relationship of 

each variable to itself at that time-lag. 

 

In order to assess the significance of the asymmetry noted for Figure 3a in the cross-

correlation function of the low-noise group, the following procedure was used. The ϱ values 

of the cross-correlation were calculated separately for each participant from y+1 to y+60 and 

from y-1 to y-60, where y is the time=0 bin and the integers represent the time lag in minutes 

between the two variables included in the cross-correlation. A series of separate t-tests were 

then conducted to directly compare the ϱ values between y+t and y-t, for each value of t from 

1 to 60 seconds. Multiple comparisons were then corrected for using the permutation-based 

temporal clustering analysis described below (section 1.10). Results suggested that a 

significant asymmetry was present in the cross-correlation function shown in Figure 3a for 

the high-noise group (p<.001) but not the low-noise group (p=n.s.). This suggests that, in the 

low-noise group only, external noise levels forwards-predict subsequent arousal levels. 

 

1.10 Permutation-based temporal clustering analyses 
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To estimate the significance of the time-series relationships in the results, a permutation-

based temporal clustering approach was used. This procedure, which is adapted from 

approaches widely used in neuroimaging analyses (Maris, 2012; Maris & Oostenveld, 2007), 

allows us to estimate the probability of temporally contiguous relationships being observed in 

our results, a fact that standard approaches to correcting for multiple comparisons fail to 

account for (Maris & Oostenveld, 2007). See also (Oakes, Baumgartner, Barrett, Messenger, 

& Luck, 2013) for a similar approach. The analysis used was designed to identify temporally 

contiguous patterns of change in instances where the centre-point of the expected response 

window is unknown (Maris & Oostenveld, 2007). 

 

In each case, the test statistic (generally paired/unpaired t-test) was calculated independently 

for each time window. Series of significant effects across contiguous time windows were 

identified using an alpha level of .05. 1000 random datasets were then generated with the 

same dimensions as the test data, the same sequence of analyses was repeated, and the 

longest series of significant effects across contiguous time windows was identified. The 

results obtained from the random datasets were used to generate a histogram, and the 

likelihood of observed results have been obtained by chance was calculated by comparing the 

observed values with the randomly generated values using a standard bootstrapping 

procedure. Thus, a p value of <.01 indicates that an equivalent pattern of temporally 

contiguous group differences was observed in 10 or fewer of the 1000 simulated datasets 

created. 

 

1.11 Relationship of vocal affect to autonomic arousal 

 

 

 
Figure S2: grey bars show a histogram of the distribution of arousal data across the entire 

sample. Red line shows a histogram of vocalisations by arousal bin. Bottom: stacked bar-

chart illustrating the proportion of samples by vocal affect, sorted per arousal bin using the 

same bins as the histograms in the plot above. Yellow colours indicate positive affect 

vocalisations, and blue colours indicate negative affect vocalisations.  
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Figure S2 shows the distribution of infant arousal samples (grey bars). Overall, this shows a 

mild negative skew with a mode>0, replicating a pattern we have noted and discussed 

previously (Wass, Clackson, & Leong, 2018). The red line, showing vocalisations by 

autonomic arousal bin, indicates that infant vocalisations were more commonly observed at 

higher autonomic arousal states. The bottom section of Figure S2 shows the distribution of 

hand-coded vocal affect by autonomic arousal. Intense negative affect was more commonly 

observed at high arousal, but intense positive states were equally common throughout. 

 

Of note, this figure has already appeared in another publication (Wass. et al., under review), 

and is only included in the Supplementary Materials here for convenience.  

 

 

2 Supplementary Results 

2.1 Supplementary Figure – raw microphone data from individual participants – entire 

sample. 

 

At the request of a reviewer we also include, for all participants, the same illustrative plots of 

the raw microphone data that Figure 2a shows for a subset of individual participants. These 

data have been processed and treated in exactly the same way as the data included in Figure 

2a.    

 

 
Figure S3: Illustrative plots of raw microphone data for all participants. These data have 

been processed in exactly the same way as the same plots, shown for a subset of participants, 

in Figure 2a in the main text. 

 

2.2 Supplementary Figure – PACF analyses with variable-sized time bins 

 

Figure 4b in the main text shows the PACF coefficients at different time lags, based on data 

epoched into 10-minute bins. Results presented in the main text indicate that the lag 1 term 

was significantly higher in the low noise group, indicating a lower rate of change between 

consecutive 10-minute epochs in the low noise group. In order to investigate the degree to 

which this finding was specific to the epoch size used in the analysis, the analysis was 

repeated using variable epoch durations. Figure S4 shows the results of this analysis. Only 
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the lag 1 terms are shown. In addition, significant negative lag 2 terms were also observed for 

all epoch sizes greater than 10 minutes, but these are not illustrated.  

 

The lag 1 PACF term decreases with increasing epoch sizes, which is as expected given the 

autocorrelation present in autonomic data (Wass et al., 2016; Wass et al., 2015). The same 

group comparison was conducted as described in the main text to investigate how far this 

finding was specific to the epoch size used in the analysis. At shorter epoch durations (1 

second/10 second), no group differences were observed. The group differences reported in 

the main text (low noise group>high noise group) were consistently significant for epoch 

durations longer than 10 minutes. These were non-significant at the longest epoch durations 

(60 minutes), but we cannot preclude the possibility that the quantity of data included in this 

analysis (average 7.3 hours per participant) rendered findings of analyses with very long 

epoch durations unreliable.  

  
Figure S4: Partial Auto-Correlation Function (PACF) for arousal in the home data, 

calculated at variable epoch durations. In each case, only the lag 1 PACF term is shown. 

Dashed red line indicates cut-off for significant PACF coefficients. Star indicates significant 

results of Wilcoxon test to examine between-group differences. * - p<.05, (*) – p<.10.  

 

 

2.3 Supplementary Figure – Main analyses subdivided using a quartile split rather than 

median split 

 

At the request of a reviewer we also include the same primary analyses featured in the main 

text, but subdivided using a quartile split, rather than a median split.  

 

The results observed are consistent with the findings based on median split analyses. The 

exception is the analysis shown in Figure S5f. The reason for this is likely to be the relatively 

higher rate of participant drop-out on this measure, due to equipment failure (see SM section 

1.5), rendering this analysis based on smaller group sizes less reliable. 

 

One further pattern of note is that group 4, representing the children exposed to highest levels 

of noise, show markedly more extreme variability across all measures presented. This 

suggests the possibility of a non-linear exposure-response relationship – i.e., that the patterns 
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we have documented in the main text may be particularly extreme for infants exposed to the 

highest levels of noise. In future research, we hope to investigate this issue in more detail.  

 
Figure S5: Main analyses subdivided using a quartile split, rather than a median split. a) 

equivalent to Fig 3a in main text; b) equivalent to Fig 3c; c) equivalent to Fig 4d; d) 

equivalent to Fig 4a; e) equivalent to Fig 4c; f) equivalent to Fig 4d.    
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