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A computer system's security can be compromised in many ways—a 

denial-of-service attack can make a server inoperable, a worm can destroy 

a user's private data, or an eavesdropper can reap financial rewards by 

inserting himself in the communication link between a customer and her 

bank through a man-in-the-middle (MITM) attack. What all these 

scenarios have in common is that the adversary is an untrusted entity that 

attacks a system from the outside—we assume that the computers under 

attack are operated by benign and trusted users. But if we remove this 

assumption, if we allow anyone operating a computer system—from 

system administrators down to ordinary users—to compromise that 

system's security, we find ourselves in a scenario that has received 

comparatively little attention.  

Attacks by a trusted user on a computer system, called a man-at-the-end 

(MATE) scenario, can take many forms. In a tampering attack, an 

adversary violates the integrity of a piece of software under his control, 

perhaps by modifying it in ways the software vendor didn't intend. In a 

malicious reverse-engineering attack, he violates the vendor's 

confidentiality rights by extracting intellectual property from the 

software, such as algorithms, designs, or implementations. Finally, in a 

cloning attack, he violates copyright laws by making and distributing 

illegal copies of the software.  

Methods for protecting against MATE attacks are variously known as anti-

tamper techniques, digital asset protection, or, more commonly, software 

protection. 1 To protect against tampering attacks, tamper-proofing 

techniques look for modifications to a program, and when they find them, 



take offensive or defensive measures. For example, a tamper-proof 

program can repair itself, refuse to run, run but produce erroneous 

results, destroy objects in its environment, or "phone home" to alert the 

vendor that an integrity violation has taken place. To protect against 

reverse-engineering attacks, obfuscation techniques modify a program 

(once at compile-time or continuously at runtime) to make it harder for 

the adversary to analyze or comprehend. To protect against cloning 

attacks, software watermarking techniques modify a program to tie it 

uniquely to its legitimate user. Some software protection techniques are 

software-only, whereas others augment software-based protection 

techniques with various forms of tamper-resistant hardware, such as 

smart cards, trusted platform modules (TPMs), or crypto-processors.  

Software protection is increasingly becoming an important requirement 

for industrial software development, especially when building systems for 

military defense, national infrastructure, and medical informatics. Every 

software vendor should be aware of the potential for MATE-style attacks 

against its products and the techniques available to mitigate these attacks. 

Employing software protection techniques can mean the difference 

between business survival and failure. We're therefore pleased to present 

this special issue on new tools and techniques for software protection.  

 

Applications of Software Protection 

 

At its core, a MATE attack occurs when an adversary gains physical access 

to a device and compromises it by inspecting or tampering with the 

hardware itself or the software it contains. Historically, software 

protection first appeared as (often feeble) attempts at adding license-

checking code to computer games, followed by algorithms for white-box 

cryptography 2 used for digital-media piracy protection. Today, however, 

we see an increasing number of application areas susceptible to MATE 

attacks, along with a need for comprehensive software protection 



techniques that provide a nontrivial level of security against concerted 

attacks by accomplished adversaries.  

More and more, our national infrastructure relies on distributed software 

systems. An example is the Advanced Metering Infrastructure (AMI) that 

lets utility companies collect electricity usage information from users' so-

called smart meters. It also allows them, among other things, to shut 

down or limit services to a group of customers in response to power 

shortages. A MATE attack against a smart meter could not only help a 

user avoid paying electricity bills, but may also have more far-reaching 

consequences—for example, a terrorist who can compromise a smart 

meter could conceivably cause nationwide blackouts. 3 Likewise, with 

wireless sensor networks increasingly in use by the military to monitor 

combat zones, an adversary who can compromise a sensor node can insert 

false data into the system or refuse to forward data received from other 

sensors.  

Computer and video games now form a significant part of the US and 

world economies: in 2009, US retail sales of such games added $4.9 

billion to the US gross domestic product, 4 and in 2011, the US virtual-

goods market will reach $2.1 billion ( www.insidevirtualgoods.com/us-

virtual-goods). Thus, in the past, cheating in massively multiplayer online 

games was only a problem for game vendors concerned with losing 

revenue, but rampant counterfeiting of virtual goods could now devalue 

online currencies and by extension impact the global economy.  

Finally, our most private information, including our medical and financial 

records, is stored in electronic form. On the surface, it might seem that 

standard practices, such as encrypting transmitted documents, would be 

enough to guarantee the confidentiality and integrity of such records. 

However, this ignores MATE-style attacks that target the endpoints of 

data transmission. For example, in a medical record scenario, an 

adversary could bypass the two-factor authentication used to protect 

documents downloaded to a PC in a doctor's office (say, smart card plus 



password) by compromising the smart-card reader or the password-

checking software. This problem is exacerbated when documents are 

stored on mobile devices, such as laptops and PDAs, outside a physically 

secured environment. Similar issues arise for classified military 

documents or documents containing confidential intellectual property.  

 

Techniques for Software Protection 

The software protection problem is fundamentally harder (and, under 

very general circumstances, impossible to solve 5 ) than other, more 

commonly studied security problems. The reason is the very liberal attack 

model that software protection researchers and practitioners must 

contend with: we must assume an all-powerful adversary who has full 

access to our software and hardware, and can examine, probe, and modify 

it at will. For this reason, no piece of software, however well protected, is 

expected to survive unscathed in the wild for an extended period of time. 

Thus, we can look forward to a situation in which we must continuously 

monitor the advances our adversaries make and invent new software 

protection techniques to counter these advances. Designing such 

renewable protection techniques is at the forefront of software protection 

research.  

Software protection algorithms fall into four basic categories: code 

obfuscation to make programs harder to reverse engineer, tamper-

proofing to make programs harder to modify, watermarking to allow 

programs to be tracked, and birthmarking to detect code that has been 

lifted from one program into another. Hardware-supported protection 

techniques can be used to augment software-based methods.  

Fred Cohen first discussed code obfuscation as a technique for 

automatically creating multiple versions of the same program, thereby 

making each version a more difficult target for malware to analyze and 

modify. 6 Ironically, today's viruses use such code diversity to deter 

analysis by virus scanners. Typical code obfuscation techniques include 



splitting code into smaller pieces, merging pieces of unrelated code, 

randomizing code placement, randomizing instruction selection, breaking 

abstraction boundaries, mapping original data structures to cloaked ones, 

and flattening or introducing bogus control flow. 7 Obfuscating code 

transformations can be either static (done at compile time) or dynamic 

(performed continuously during runtime). 8  

Tamper-proofing techniques fall into three basic categories. Introspection 

techniques check the integrity of executable code, often by computing a 

checksum over the code and comparing to an expected value. Higher 

levels of protection can be achieved by including a large number of 

redundant and overlapping checkers. 9 Oblivious techniques indirectly 

verify code integrity by checking that the data values the code computes, 

along with paths taken through the code, are correct. 10 Finally, 

environment-checking techniques verify that the program is running on 

an operating system and hardware that are unadulterated and won't 

violate code integrity. Tamper-proofing is often combined with 

obfuscation. This not only makes the program hard to understand (and 

hence modify!) but also helps hide any inserted tamper-proofing code 

from the adversary.  

Other works have introduced a trusted server to provide remote 

attestation of client integrity, by extending these tamper-proofing 

techniques for distributed systems 11 or by detecting anomalous execution 

times. 12 Watermarking techniques embed an identifier, known as the 

fingerprint, into every distributed copy of a program. This fingerprint 

uniquely identifies who originally bought a particular copy of the 

program, allowing a pirated copy to be traced back to the original 

customer. Popular watermarking algorithms use a few simple program 

structures in which to encode the fingerprint: parts of the program can be 

reordered, nonfunctional code can be inserted, particular instruction 

sequences can be selected, and bogus data structures encoding the 

fingerprint can be built at runtime. Watermarking is often combined with 



tamper-proofing to make the fingerprint difficult to remove, as well as 

with obfuscation to make it difficult to locate.  

 

In This Issue 

The first article, "CodeBender: A Tool for Remote Software Protection 

Using Orthogonal Replacement" by Mariano Ceccato and Paolo Tonella, 

presents a tool that makes it possible for a remote trusted server to 

protect from tampering the client code running on a potentially malicious 

host. The approach consists of frequent replacement of the client code 

with code that's orthogonal in the sense that any analysis of the previous 

one would be of no benefit in attacking the new one (even though they 

have the same functionality). The adversary is prevented from 

circumventing such replacements by strongly coupling the client version 

with the trusted server, thereby making the replacement effectively 

mandatory.  

The second article, "The Trusted Platform Agent" by Giovanni Cabiddu, 

Emanuele Cesena, Roberto Sassu, Davide Vernizzi, Gianluca Ramunno, 

and Antonio Lioy, presents an open source library for writing applications 

that make effective use of tamper-resistant Trusted Platform Module 

chips, which are increasingly available on computers.  

The third article, "Guilty or Not Guilty: Using Clone Metrics to Determine 

Open Source Licensing Violations" by Akito Monden, Satoshi Okahara, 

Yuki Manabe, and Kenichi Matsumoto, explores various metrics for 

detecting whether commercial software contains open source software 

(thereby violating the open source license). This not only protects open 

source developers but also the commercial companies that are often 

unaware that their products contain such unauthorized use of software 

(outsourced production of software might be implicated). The metrics 

quantify the amount of cloning—the duplication of code fragments—that 

exists between two given software products.  



The fourth article, "Managing Copyrights and Moral Rights of Service-

Based Software" by G.R. Gangadharan and Vincenzo D'Andrea, deals with 

copyright issues arising in the software-as-a-service framework, 

particularly the facet involving the expression of usage and access rights 

via a service license based on ODRL-S, an extension of the ODRL open 

standard that's gaining wide acceptance.  

Finally, the Point/Counterpoint features Jean-Daniel Aussel and Reiner 

Sailer discussing the efficacy of hardware-assisted protections, and Yuan 

Xiang Gu, Bart Preneel, and Brecht Wyseur sharing their vision of the 

future of software-based protections.  

 

Conclusions 

Like many indispensable technologies, software protection can be a 

double-edged sword, particularly with malware increasingly resistant 

against reverse engineering and eradication. However, this only 

underscores the importance of software protection research—we must 

understand both black- and white-hat techniques for analysis of threats 

and protection of assets. We hope this issue educates and inspires both 

researchers and practitioners to push software protection forward, 

creating a more secure, stable foundation for the computing systems of 

today and tomorrow.  
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