

ROAR, the University of East London Institutional Repository: http://roar.uel.ac.uk

This article is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Paolo Falcarin, Christian Collberg, Mikhail Atallah and Mariusz
Jakubowski
Title: Software protection
Year of publication: 2011
Citation: Falcarin, P., Collberg, C., Atallah, M. and Jakubowski, M. (2011) 'Software
protection'. IEEE Software, 28(2), pp. 24-27

Link to published version:
http://www.computer.org/portal/web/csdl/abs/html/mags/so/2011/02/mso2011020024
.htm

Publisher statement:
“© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other users, including reprinting/ republishing this material for
advertising or promotional purposes, creating new collective works for resale or
redistribution to servers or lists, or reuse of any copyrighted components of this work
in other works.”

Information on how to cite items within roar@uel:
http://www.uel.ac.uk/roar/openaccess.htm#Citing

http://roar.uel.ac.uk/�
http://www.computer.org/portal/web/csdl/abs/html/mags/so/2011/02/mso2011020024.htm�
http://www.computer.org/portal/web/csdl/abs/html/mags/so/2011/02/mso2011020024.htm�
http://www.uel.ac.uk/roar/openaccess.htm#Citing�

IEEE Software - March/April 2011 (Vol. 28, No. 2) pp. 24-27

Software Protection

Paolo Falcarin , University of East London

Christian Collberg , University of Arizona

Mikhail Atallah , Purdue University

Mariusz Jakubowski , Microsoft Research

A computer system's security can be compromised in many ways—a

denial-of-service attack can make a server inoperable, a worm can destroy

a user's private data, or an eavesdropper can reap financial rewards by

inserting himself in the communication link between a customer and her

bank through a man-in-the-middle (MITM) attack. What all these

scenarios have in common is that the adversary is an untrusted entity that

attacks a system from the outside—we assume that the computers under

attack are operated by benign and trusted users. But if we remove this

assumption, if we allow anyone operating a computer system—from

system administrators down to ordinary users—to compromise that

system's security, we find ourselves in a scenario that has received

comparatively little attention.

Attacks by a trusted user on a computer system, called a man-at-the-end

(MATE) scenario, can take many forms. In a tampering attack, an

adversary violates the integrity of a piece of software under his control,

perhaps by modifying it in ways the software vendor didn't intend. In a

malicious reverse-engineering attack, he violates the vendor's

confidentiality rights by extracting intellectual property from the

software, such as algorithms, designs, or implementations. Finally, in a

cloning attack, he violates copyright laws by making and distributing

illegal copies of the software.

Methods for protecting against MATE attacks are variously known as anti-

tamper techniques, digital asset protection, or, more commonly, software

protection. 1 To protect against tampering attacks, tamper-proofing

techniques look for modifications to a program, and when they find them,

take offensive or defensive measures. For example, a tamper-proof

program can repair itself, refuse to run, run but produce erroneous

results, destroy objects in its environment, or "phone home" to alert the

vendor that an integrity violation has taken place. To protect against

reverse-engineering attacks, obfuscation techniques modify a program

(once at compile-time or continuously at runtime) to make it harder for

the adversary to analyze or comprehend. To protect against cloning

attacks, software watermarking techniques modify a program to tie it

uniquely to its legitimate user. Some software protection techniques are

software-only, whereas others augment software-based protection

techniques with various forms of tamper-resistant hardware, such as

smart cards, trusted platform modules (TPMs), or crypto-processors.

Software protection is increasingly becoming an important requirement

for industrial software development, especially when building systems for

military defense, national infrastructure, and medical informatics. Every

software vendor should be aware of the potential for MATE-style attacks

against its products and the techniques available to mitigate these attacks.

Employing software protection techniques can mean the difference

between business survival and failure. We're therefore pleased to present

this special issue on new tools and techniques for software protection.

Applications of Software Protection

At its core, a MATE attack occurs when an adversary gains physical access

to a device and compromises it by inspecting or tampering with the

hardware itself or the software it contains. Historically, software

protection first appeared as (often feeble) attempts at adding license-

checking code to computer games, followed by algorithms for white-box

cryptography 2 used for digital-media piracy protection. Today, however,

we see an increasing number of application areas susceptible to MATE

attacks, along with a need for comprehensive software protection

techniques that provide a nontrivial level of security against concerted

attacks by accomplished adversaries.

More and more, our national infrastructure relies on distributed software

systems. An example is the Advanced Metering Infrastructure (AMI) that

lets utility companies collect electricity usage information from users' so-

called smart meters. It also allows them, among other things, to shut

down or limit services to a group of customers in response to power

shortages. A MATE attack against a smart meter could not only help a

user avoid paying electricity bills, but may also have more far-reaching

consequences—for example, a terrorist who can compromise a smart

meter could conceivably cause nationwide blackouts. 3 Likewise, with

wireless sensor networks increasingly in use by the military to monitor

combat zones, an adversary who can compromise a sensor node can insert

false data into the system or refuse to forward data received from other

sensors.

Computer and video games now form a significant part of the US and

world economies: in 2009, US retail sales of such games added $4.9

billion to the US gross domestic product, 4 and in 2011, the US virtual-

goods market will reach $2.1 billion (www.insidevirtualgoods.com/us-

virtual-goods). Thus, in the past, cheating in massively multiplayer online

games was only a problem for game vendors concerned with losing

revenue, but rampant counterfeiting of virtual goods could now devalue

online currencies and by extension impact the global economy.

Finally, our most private information, including our medical and financial

records, is stored in electronic form. On the surface, it might seem that

standard practices, such as encrypting transmitted documents, would be

enough to guarantee the confidentiality and integrity of such records.

However, this ignores MATE-style attacks that target the endpoints of

data transmission. For example, in a medical record scenario, an

adversary could bypass the two-factor authentication used to protect

documents downloaded to a PC in a doctor's office (say, smart card plus

password) by compromising the smart-card reader or the password-

checking software. This problem is exacerbated when documents are

stored on mobile devices, such as laptops and PDAs, outside a physically

secured environment. Similar issues arise for classified military

documents or documents containing confidential intellectual property.

Techniques for Software Protection

The software protection problem is fundamentally harder (and, under

very general circumstances, impossible to solve 5) than other, more

commonly studied security problems. The reason is the very liberal attack

model that software protection researchers and practitioners must

contend with: we must assume an all-powerful adversary who has full

access to our software and hardware, and can examine, probe, and modify

it at will. For this reason, no piece of software, however well protected, is

expected to survive unscathed in the wild for an extended period of time.

Thus, we can look forward to a situation in which we must continuously

monitor the advances our adversaries make and invent new software

protection techniques to counter these advances. Designing such

renewable protection techniques is at the forefront of software protection

research.

Software protection algorithms fall into four basic categories: code

obfuscation to make programs harder to reverse engineer, tamper-

proofing to make programs harder to modify, watermarking to allow

programs to be tracked, and birthmarking to detect code that has been

lifted from one program into another. Hardware-supported protection

techniques can be used to augment software-based methods.

Fred Cohen first discussed code obfuscation as a technique for

automatically creating multiple versions of the same program, thereby

making each version a more difficult target for malware to analyze and

modify. 6 Ironically, today's viruses use such code diversity to deter

analysis by virus scanners. Typical code obfuscation techniques include

splitting code into smaller pieces, merging pieces of unrelated code,

randomizing code placement, randomizing instruction selection, breaking

abstraction boundaries, mapping original data structures to cloaked ones,

and flattening or introducing bogus control flow. 7 Obfuscating code

transformations can be either static (done at compile time) or dynamic

(performed continuously during runtime). 8

Tamper-proofing techniques fall into three basic categories. Introspection

techniques check the integrity of executable code, often by computing a

checksum over the code and comparing to an expected value. Higher

levels of protection can be achieved by including a large number of

redundant and overlapping checkers. 9 Oblivious techniques indirectly

verify code integrity by checking that the data values the code computes,

along with paths taken through the code, are correct. 10 Finally,

environment-checking techniques verify that the program is running on

an operating system and hardware that are unadulterated and won't

violate code integrity. Tamper-proofing is often combined with

obfuscation. This not only makes the program hard to understand (and

hence modify!) but also helps hide any inserted tamper-proofing code

from the adversary.

Other works have introduced a trusted server to provide remote

attestation of client integrity, by extending these tamper-proofing

techniques for distributed systems 11 or by detecting anomalous execution

times. 12 Watermarking techniques embed an identifier, known as the

fingerprint, into every distributed copy of a program. This fingerprint

uniquely identifies who originally bought a particular copy of the

program, allowing a pirated copy to be traced back to the original

customer. Popular watermarking algorithms use a few simple program

structures in which to encode the fingerprint: parts of the program can be

reordered, nonfunctional code can be inserted, particular instruction

sequences can be selected, and bogus data structures encoding the

fingerprint can be built at runtime. Watermarking is often combined with

tamper-proofing to make the fingerprint difficult to remove, as well as

with obfuscation to make it difficult to locate.

In This Issue

The first article, "CodeBender: A Tool for Remote Software Protection

Using Orthogonal Replacement" by Mariano Ceccato and Paolo Tonella,

presents a tool that makes it possible for a remote trusted server to

protect from tampering the client code running on a potentially malicious

host. The approach consists of frequent replacement of the client code

with code that's orthogonal in the sense that any analysis of the previous

one would be of no benefit in attacking the new one (even though they

have the same functionality). The adversary is prevented from

circumventing such replacements by strongly coupling the client version

with the trusted server, thereby making the replacement effectively

mandatory.

The second article, "The Trusted Platform Agent" by Giovanni Cabiddu,

Emanuele Cesena, Roberto Sassu, Davide Vernizzi, Gianluca Ramunno,

and Antonio Lioy, presents an open source library for writing applications

that make effective use of tamper-resistant Trusted Platform Module

chips, which are increasingly available on computers.

The third article, "Guilty or Not Guilty: Using Clone Metrics to Determine

Open Source Licensing Violations" by Akito Monden, Satoshi Okahara,

Yuki Manabe, and Kenichi Matsumoto, explores various metrics for

detecting whether commercial software contains open source software

(thereby violating the open source license). This not only protects open

source developers but also the commercial companies that are often

unaware that their products contain such unauthorized use of software

(outsourced production of software might be implicated). The metrics

quantify the amount of cloning—the duplication of code fragments—that

exists between two given software products.

The fourth article, "Managing Copyrights and Moral Rights of Service-

Based Software" by G.R. Gangadharan and Vincenzo D'Andrea, deals with

copyright issues arising in the software-as-a-service framework,

particularly the facet involving the expression of usage and access rights

via a service license based on ODRL-S, an extension of the ODRL open

standard that's gaining wide acceptance.

Finally, the Point/Counterpoint features Jean-Daniel Aussel and Reiner

Sailer discussing the efficacy of hardware-assisted protections, and Yuan

Xiang Gu, Bart Preneel, and Brecht Wyseur sharing their vision of the

future of software-based protections.

Conclusions

Like many indispensable technologies, software protection can be a

double-edged sword, particularly with malware increasingly resistant

against reverse engineering and eradication. However, this only

underscores the importance of software protection research—we must

understand both black- and white-hat techniques for analysis of threats

and protection of assets. We hope this issue educates and inspires both

researchers and practitioners to push software protection forward,

creating a more secure, stable foundation for the computing systems of

today and tomorrow.

References

1. C. Collberg and J Nagra, Surreptitious Software: Obfuscation, Watermarking,
and Tamperproofing for Software Protection, Addison-Wesley, 2009.
2. B. Wyseur, "White-Box Cryptography," PhD thesis, Computer Security and
Industrial Cryptography (COSIC), Dept. of Electrical Engineering, Katholieke
Universiteit Leuven, 2009.
3. T. Claburn, "Smart Grid Lacks Smart Security," InformationWeek,24 Mar.
2009; www.informationweek.com/news/infrastructure/
managementshowArticle.jhtml?articleID=216200240 .
4. S.E. Siwek, "Video Games in the 21st Century: The 2010 Report,"
Entertainment Software Assoc., 2010;
www.theesa.com/facts/pdfsVideoGames21stCentury_2010.pdf .
5. B. Barak et al., "On the (Im)possibility of Obfuscating Programs," Advances
in Cryptology (CRYPTO 01), LNCS 2139, Springer Verlag, 2001, pp. 1–18.
6. F.B. Cohen, "Operating System Protection through Program Evolution,"
Computer Security, vol. 12, no. 6, 1993, pp. 565–584.
7. C. Wang, "A Security Architecture for Survivability Mechanisms," PhD thesis,
Dept. of Computer Science, Univ. Virginia, 2000.

http://www.informationweek.com/news/infrastructure/management/showArticle.jhtml?articleID=216200240
http://www.informationweek.com/news/infrastructure/management/showArticle.jhtml?articleID=216200240
http://www.theesa.com/facts/pdfs/VideoGames21stCentury_2010.pdf

8. P. Falcarin et al., "Exploiting Code Mobility for Dynamic Binary Obfuscation,"
to be published in Proc. IEEE World Conf. Internet Security (WorldCIS), Feb.
2011.
9. H. Chang and M.J. Atallah, "Protecting Software Code by Guards," ACM
Workshop Security and Privacy in Digital Rights Management, ACM Press, 2001,
pp. 160–175.
10. M. Jacob, M.H. Jakubowski, and R. Venkatesan, "Towards Integral Binary
Execution: Implementing Oblivious Hashing Using Overlapped Instruction
Encodings," Proc. 9th ACM Workshop on Multimedia & Security, ACM Press,
2007, pp. 129–140.
11. R. Scandariato et al., "Application-Oriented Trust in Distributed Computing,"
Proc. IEEE Int'l Conf. Availability, Reliability and Security (ARES), IEEE Press,
2008, pp. 434–439. 12. R. Kennel and L.H. Jamieson, "Establishing the
Genuinity of Remote Computer Systems," Proc. 12th Usenix Security Symp.,
Usenix Assoc., 2003, pp. 295–310.

PAOLO FALCARIN is a senior lecturer of software engineering at the

University of East London, UK. His research interests are in software

modeling and protection for distributed systems. Falcarin has a PhD in

computer engineering from Politecnico di Torino (Italy). Contact him at

falcarin@uel.ac.uk.

CHRISTIAN COLLBERG is an associate professor of computer

science at the University of Arizona in Tucson. He is the author of the

first comprehensive textbook on software protection, Surreptitious

Software: Obfuscation, Watermarking, and Tamperproofing for

Software Protection (Addison-Wesley, 2009). Contact him at

collberg@cs.arizona.edu

MIKHAIL ATALLAH is a distinguished professor of computer science

at Purdue University. He is a Fellow of both the ACM and IEEE, and was

a speaker nine times in the Distinguished Lecture Series of top computer

science departments. Contact him at mja@cs.purdue.edu.

MARIUSZ JAKUBOWSKI is a senior researcher in the eXtreme

Computing Group at Microsoft Research. Since 1997, he has worked on

applied and theoretical software protection, security, and cryptography.

Contact him at mariuszj@microsoft.com.

mailto:collberg@cs.arizona.edu
mailto:mariuszj@microsoft.com
http://www.computer.org/cms/Computer.org/dl/mags/so/2011/02/figures/mso2011020024x1.gif
http://www.computer.org/cms/Computer.org/dl/mags/so/2011/02/figures/mso2011020024x1.gif

http://www.computer.org/cms/Computer.org/dl/mags/so/2011/02/figures/mso2011020024x3.gif
http://www.computer.org/cms/Computer.org/dl/mags/so/2011/02/figures/mso2011020024x3.gif

	cover sheet with citation
	software protection - authors-copy

