Supporting Requirements Engineers in
Recognising Security Issues

Eric Knauss', Siv Houmb?, Kurt Schneider?!,
Shareeful Islam?®, and Jan Jiirjens**

! Software Engineering Group, Leibniz Universitdit Hannover, Germany
{eric.knauss,kurt.schneider}@inf.uni-hannover.de
2 SecureNOK Ltd., Norway sivhoumb@securenok.com
3 Institut fiir Informatik, Technische Universitit Miinchen, Germany
islam@in.tum.de
4 Software Engineering, Technische Universitdt Dortmund and Fraunhofer ISST,
Germany, http://jan.jurjens.de

Abstract. Context & motivation: More and more software projects
today are security-related in one way or the other. Many environments
are initially not considered security-related and no security experts are
assigned. Requirements engineers often fail to recognise indicators for
security problems. Question/problem: Ignoring security issues early
in a project is a major source of recurring security problems in prac-
tice. Identifying security-relevant requirements is labour-intensive and
error-prone. Security may be neglected in order to finish on time and in
budget. Principal ideas/results: In this paper, we address this prob-
lem by presenting a tool-supported method that provides assistance for
requirements engineering, with an emphasis on security requirements.
We investigate whether security-relevant requirements can be automat-
ically identified with help of a Bayesian classifier. Our results indicate
that this is feasible, in particular if the classifier is trained with domain
specific data and documents from previous projects. Contribution: We
show how the ability to identify security-relevant requirements can be in-
tegrated in a workflow of requirements analysis and reuse of experience.
In practice, this can increase security awareness within the software de-
velopment process. We discuss limitations and potential of this approach.

Key words: secure software engineering, requirements analysis, natural
language processing, empirical study

1 Introduction

IT security requirements increasingly pervade all kinds of software systems,
sometimes unexpectedly. Security requirements are often not identified during
requirements analysis. Thus, security issues are neglected and can cause sub-
stantial security problems later. There are standards and best practices avail-
able aimed at guiding developers in building secure systems [1]. Nevertheless,

* The work is partly supported by the EU project Secure Change (ICT-FET-231101).

2 Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and Jan Jiirjens

identifying requirements with security implications requires security expertise
and experience. Unfortunately, security experts are not always available. Miss-
ing security expertise early in a project is one of the main reasons for security
problems.

Security requirements may be implicit, hidden, and spread out over different
parts of mostly textual requirements specifications. Any bug in the systems
might lead to a security weakness. It is tedious and error-prone to search a
document manually or evaluate requirements during elicitation. Resources are
usually limited for security analysis.

Therefore, fast and efficient identification of security-relevant statements and
requirements is a key skill. Ideally, the identification should follow objective
rules and be reproducible (e.g. by being automated or supported by a semi-
automatic tool). In this paper, we present a tool-supported approach for identi-
fying security-relevant requirements. It uses experience extracted from previously
classified requirements documents. We show that Bayesian classifiers can be used
to identify security-relevant requirements (with recall > 0.9 and precision > 0.8
in our evaluation setting). Despite the need for domain specific training these
classifiers can support security awareness in software evolution scenarios.

Such a classifier can be integrated into a requirements elicitation tool. It then
points out security-relevant issues during interviews. In SecReq [2], this task has
been supported by the Heuristic Requirements Assistant (HeRA) [3], based on
simple keyword-lists. In comparison, Bayesian classifiers are easier to train with
new experiences and generate more true findings and fewer false positives.

Section 2 provides an overview of the SecReq approach and how it can be used
to simulate the presence of a security expert in requirements elicitation. Section
3 outlines how Bayesian classifiers can improve security awareness. Section 4
presents the evaluation for our technical solution. Results are discussed in Section
5. Section 6 outlines related work, and Section 7 concludes the paper by summing
up the main results and outlining further directions of work from here.

2 Simulating the Presence of a Security Expert

Our SecReq approach assists in security requirements elicitation. It provides
mechanisms to trace security requirements from high-level security statements,
such as security goals and objectives, to secure design [2]. We aim at making
security best practices and experiences available to developers and designers
with no or limited experience with security. SecReq integrates three distinctive
techniques (see Figure 1): (1) Common Criteria and its underlying security re-
quirements elicitation and refinement process [1], (2) the HeRA tool with its
security-related heuristic rules [3], and (3) the UMLsec appraoch for security
analysis and design [4].

Unfortunately, there are not many security experts, and most security guide-
lines or "best practices” are written by and for security experts. Also, security
best practices such as standards ISO 14508 (Common Criteria), ISO 17799 are
static documents that do not account for new and emerging security threats. Se-

Supporting Requirements Engineers in Recognising Security Issues 3

From:

Previous
projects&versions
Used in:

training set

CC-based Method

for -

N) Construct H
Security System H
Re.q.ulr?ments Improved Secure

Elicitation Security System

Bayesian
filtering

/security
/ Engineer

Applying other
HeRA heuristics

H Interactive Requirements ,_ Discussed

"1 riting & Editing | & marked

R Regs.
Security

Instructor H Security Requirements Elicitation

UMLsec

HeRA Elicitation Tool Steps 1-5 experience-enriched RE L Step 6: Construction

Fig. 1. Overview of SecReq approach. Flow of requirements (black) and experience
(grey) is modelled in the FLOW information flow notation [5]. Document symbols and
solid arrows indicate documented requirements, experiences, and their flows. Faces
symbolise people or groups; direct communication is denoted by dashed lines. Boxes
represent activities. The focus of this paper is the activity highlighted by a shadow:
Security Requirements Elicitation is refined by applying Bayesian filters. They are
trained by reusing documents from earlier projects.

curity issues can be characterized as known or hidden, generic or domain-specific.
Normally, a security expert is absolutely necessary to identify hidden security
issues, while known issues can be identified using security best practices.

SecReq - and the HeRA tool in particular - guide the translation of these best
practices into heuristic rules. They try to make better use of the few security
experts around. Rather than having experts do the identification and refinement
of all security issues, SecReq reuses their expertise and makes their security
knowledge available to non-security experts.

In this paper we describe an improved version of the SecReq approach. We
intended to reduce the amount of manual work by making better use of doc-
uments and experience from previous projects. As Figure 1 indicates, there is
now a solid arrow from improved security requirements from previous projects
back to the early security requirements elicitation activity (shaded box). We use
them to continually train a Bayesian filter. Growing numbers of pre-classified re-
quirements from previous projects will increase the classification ability of that
filter. In the augmented HeRA tool and SecReq approach, Bayesian filters im-
prove effectiveness and efficiency of the security requirements elicitation. This
enables HeRA to address both generic and domain-specific security aspects and
to classify experts’ tacit knowledge better. Based on this knowledge, heuristic
computer-based feedback can simulate the presence of a security expert dur-
ing security requirements elicitation. In order to train the Bayesian classifier,
we need pre-classified requirements. To create a stable pre-classification, experts
need to agree on the nature of security-relevant requirements. We define:

4 Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and Jan Jiirjens

Security requirement: (i) A (quality) requirement describing that a part
of the system shall be secure, or (ii) a property which, if violated, may
threaten the security of a system.

In our context, security requirements are the result of refining security-
relevant aspects. Our goal is to support this process.

Security-relevant requirement: (i) A requirement that should be refined
into one or more security requirement(s), or (i) a property that is po-
tentially important for assessing the security of the system.

During pre-classification, we encountered another type of requirements:

Security-related requirement: (i) A requirement that gives (functional)
details of security requirements, or (ii) a requirement which arises in the
context of security considerations.

To support the identification of hidden security aspects, we need to iden-
tify security-relevant requirements. It took our experts some training to avoid
false classification (e.g. classifying a security requirement or security-related re-
quirement as being security-relevant). Furthermore, each and every functional
requirement could be regarded to be somewhat security-relevant: Safety and
Confidentiality of data should always be ensured. Hence, we needed a good clas-
sification strategy for manual classification. The classification question was very
instrumental when classifying a requirement:

Classification Question: Are you willing to spend money to ensure that
the system is secure with respect to this requirement? Assume there is
only a limited budget for refining requirements to security requirements.

3 Using Bayesian Classification to Enhance Security
Awareness

Machine learning plays an important role in many fields of computer science, es-
pecially in practical applications for software engineering [6, 7]. It allows for using
machines to analyze huge amounts of data. A prominent example is Bayesian
classification which proved to be valuable in classifying spam mails [8]. Spam fil-
ters help to find the few important mails between all that annoying spam mails.
We think that the technology in these Spam filters is applicable for identify-
ing among all requirements those that need refinement since they are security-
relevant. Our rationale is:

— Bayesian classifiers are superior to simple keyword lists, as they do not only
consider keywords indicating security relevance, but also keywords that in-
dicate innocence (i.e., security irrelevance) of a requirement.

— For Spam filtering, good results could be reached with only small training
sets. A part of a single specification may be sufficient for training.

Supporting Requirements Engineers in Recognising Security Issues 5

— Bayesian classifiers can be trained while being used (e.g. by re-classifying
false positives). This immediate feedback can support elicitation of tacit
security experience.

Bayesian classifiers use statistical methods for classification. In our case, we
want to compute the probability P(sec,) that a requirement r is security rele-
vant. A classic technique to do this is the Naive Bayesian Classification, a mix
of stochastic methods and pragmatic assumptions. Our approach is based on
Paul Grahams seminal article, one of the most popular descriptions of such a
classifier [8]. Basically, we need to compute weights for distinctive features of
our requirements (i.e. the words they are composed of), combine the weights of
all features, and finally compare this value with a threshold.

Naive Bayesian Classification has some drawbacks and limitations. Rennie
et al. discuss technical limitations as well as strategies to overcome them [9].
Accordingly, Naive Bayesian Classifiers are widespread because they are easy to
implement and efficient. This makes them a good choice for our evaluation, de-
spite the known drawbacks. Bayesian classifiers are only as good as their training.
It is considerably more difficult for humans to identify security-relevant require-
ments than identifying spam-mail. In this paper, we evaluate whether machine
learning could be used for identification of security-related requirements.

3.1 Assessing the Security-Relatedness of a Single Word

In order to compute the weights of the distinctive features of a requirement
r, we need to compute P(sec,.|w): The probability of r being security-relevant
under the condition that it contains the word w. The Bayesian rule allows us to
compute this as follows [10]:

P(wlsecy) - P(sec)

P(sec,|w) = Plw) 1)

P(sec) is the probability of encountering security-relevant requirements in
real-world specifications. We do not know this value. Therefore, we assume
P(sec) = 0.5 as suggested by Graham [8]. P(wlsec,) is the probability that
we encounter the word w under the condition that r is security-relevant. We
can compute this value based on the training set of classified requirements. Let
secy, be the number of security-relevant requirements that contain w and seciotq;
the number of all security-relevant requirements in the training set. Then the
following equation gives us an approximation of P(w|sec;):

SeCuw

P(wlsec,) = (2)

S€Ctotal

P(w) is the probability to encounter the word w in a requirement. Based on
our training set and the theorem of total probability, this value is computed by
the following equation (P(nonsec) and P(w|nonsec,) are computed analogues to
the sec variants):

P(w) = P(sec) - P(w]|sec,) + P(nonsec) - P(w|nonsec;,)

6 Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and Jan Jiirjens

With the assumption of P(sec) = P(nonsec) = 0.5 the equations (1) and (2)
result in the following equation for P(sec,|w):

SeCqy
— S€Ctotal
P(SeCT‘w) — T seCy NONSECy, (3)
S€Ctotal nonseCtotal

3.2 Weight Combination: All words of a Requirement

P(sec,|w) gives the probability of a requirement r being security-relevant under
the condition that it contains the word w. Thus, every word in a requirement is
a witness for r being security-relevant. Now, we need to combine the evidence
given by each witness. Again, we have only limited knowledge and borrow some
“naive” assumptions from Bayesian spam filtering:

a) P(sec,|w) is pairwise independent for each word w.
b) There is a symmetry between the results P(sec,|w) and P(nonsec,|w):
P(nonsec,|w) = 1 — P(sec,|w).

In English, the probability of finding an adjective is affected by the probabil-
ity of finding a noun. Assumption (a) does not hold for natural languages. Nev-
ertheless, Spam-filters work under these assumptions, which allow us to derive
the following equation from Bayes’ theorem: Let P(sec,|w;) be the probability
of r being security-relevant under the condition that it contains the word w;. Let
w;, 1 <7 < n be the n words contained in 7.

11 P(secr|w;)

P(sec,) = [T P(sec,ws) + [J(1 — P(sec, [w:))

(4)

For classification, we compare P(sec,) with a threshold. Based on Graham’s
article, we classify the requirement r as being security-relevant, if P(sec,) >
0.9 [8]. The approach we described is called Naive Bayesian Classification, due
to its simplifying assumptions. This technique works in spam filters. Although
improved solutions exist, we chose the classic variant to investigate whether even
this simple variant would work in security requirements identification.

4 Evaluation of Bayesian Classifiers

This section discusses the quality of classifiers and how they can be used to
assist in security requirements elicitation. First, we define our evaluation goals.
Then we describe our strategy to reach these goals and the general process of
evaluation. Finally, we show and discuss the results for each evaluation goal.

4.1 Evaluation Goals

In order to evaluate our Bayesian classifiers, we define three research goals:

(G1) Evaluate accuracy of classifiers for security-relevant requirements.

Supporting Requirements Engineers in Recognising Security Issues 7

(G2) Evaluate if trained filters can be transferred to other domains.
(G3) Evaluate how useful practitioners consider automatically identifying se-
curity requirements.

For the goals (G1) and (G2) we used expert evaluation and data mining
to create meaningful test data, as described in Section 2. Subsets of this test
data were used to train and evaluate the Bayesian Classifiers. Our evaluation
strategy had to ensure that training and evaluation sets were kept disjoint. In
the context of this paper, goal (G3) is informally evaluated by asking experts
for their opinions about classification results.

4.2 Evaluation Strategy
Assessing the quality of machine learning algorithms is not trivial:

— Use disjoint training and evaluation data. We must not use the same re-
quirements for training and evaluation.

— Select training data systematically. For reproducable and representative re-
sults, we need to systematically choose the requirements we use for training.

— Awoid overfitting. We need to show that our approach is not limited to the
specific test data used. Overfitting happens when the Bayesian classifier ad-
justs to the specific training data.

Typically, k-fold cross validation is used to deal with these concerns [6,11].
This validation method ensures that statistics are not biased for a small set of
data [12]. The dataset is randomly sorted and then split into k parts of equal size.
k — 1 of the parts are concatenated and used for training. The trained classifier
is then run on the remaining part for evaluation. This procedure is carried out
iteratively with a different part being held back for classification each time. The
classification performances averaged over all k parts characterizes the classifier.
According to [6], we used k = 10: With larger k, the parts would be too small
and might not even contain a single security-relevant requirement.

We used standard metrics from information retrieval to measure the perfor-
mance of Bayesian classifiers: precision, recall, and f-measure [13]. Based on the
data reported in [11], we consider f-measures over 0.7 to be good. For our pur-
pose, high recall is considered more important than high precision. A classifier
is regarded useful in our SecReq approach if precision is at least 0.6, and recall
is at least 0.7.

We used three industrial requirements documents for evaluation; the Com-
mon Elecronic Purse Specification (ePurse) [14], the Customer Premises Network
specification (CPN) [15], and the Global Platform Specification (GP) [16]. As
described in detail below, we experimented with various different training sets
applied to each of the three real-world specifications.

Table 1 provides an overview of the three specifications we used for evaluation
of our classifiers: For each specification (left column), we list the total number
of requirements they ccontain (2nd. column) and the number of requirements
considered security-relevant (3rd. column). We used either experts (see Sect. 2)
or existing databases for identifying security-relevant requirements (last column).

8 Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and Jan Jiirjens

Table 1. Industrial requirements specifications used for evaluation.

Document total reqs. security- security-relevance
relevant determined by
regs.

Common Electronic Purse (ePurse) 124 83 expert

Customer Premises Network (CPN) 210 41 database

Global Platform Spec. (GP) 176 63 expert

4.3 Accuracy of Security Classifiers: G1

To test the accuracy of the Bayesian classifier, we use 10-fold cross validation
on each of our classified specifications. In Figure 2 we also show the results for
smaller training sets. Training size gives the number of parts in the 10-fold cross
evaluation considered for training. The trend shown in Figure 2 helps to eval-
uate whether the training set is sufficient. Results exceed the above-mentioned
thresholds for recall and precision. Hence, we consider the classifier useful.

ePurse CPN GPS
——Recall -=Precision F-Measure —=<Baseline

1

—t——o o3 ! = 1 e _e—0—b—0
=== == M= e s 2 s
0,6 , 7~

) 0,6 06 +——
04 0,4 J! 0,4 >
02 02 02 +¥
0 0 0
12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9
training size training size training size

Fig. 2. Results of 10-fold cross validation using only one specification. Baseline is the
precision we get when classifying all req. to be security-relevant.

4.4 Transferability of Classifiers Trained in a Single Domain: G2.b

Classifying industrial specifications manually was very time-consuming. It was
needed for training the classifiers. Reuse of trained classifiers could reduce that
effort. Therefore, we evaluated the quality of classification when we applied a
trained classifier to specifications from different projects - without additional
training. In order to produce comparative results, we used 10-fold cross validation
in all cases, but varied the specifications used for training and for applying the
classifiers.

Table 2 shows our results. The first column indicates which specification was
used for training. We list the quality criteria (recall, precision, and f-m.) when

Supporting Requirements Engineers in Recognising Security Issues 9

applying the respective classifier to each of the three industrial specifications
in the last three columns. Values on the main diagonal are set in italics: they
represent the special case of (G1) reported above, where the same specification
was used for training and for testing. Even in those cases, the 10-fold cross
validation ensured that we never used the same requirements for training and
evaluation.

Table 2. Training classifier with one specification, applying it to another.

Training Applying to: ePurse CPN GP

ePurse recall 0.93 0.54 0.85
precis 0.83 0.23 0.43
f-measure 0.88 0.33 0.57
CPN recall 0.33 0.95 0.19
precis 0.99 0.98 0.29
f-measure 0.47 0.96 0.23
GP recall 0.48 0.65 0.92
precis 0.72 0.29 0.81
f-measure 0.58 0.4 0.86

The results in Table 2 are surprisingly clear: f-measures on the diagonal are
0.86 and higher (same specification for training and test). All other f-measures
are far below 0.7: whenever we used different specifications for training and
evaluation, transferability is very limited. A filter cannot easily be used in a
different context.

In order to create a domain-independent classifier for security-relevant re-
quirements, we carried out a third evaluation run where the filter was trained
with values from a mix of specifications.

4.5 Transferability of Classifiers Trained in Multiple Domains: G2.b

This time, we join the requirements from two or three specifications as input for
the 10-fold cross validation. The results in Table 3 show: When we used more
than one specification for training, the filter became more generally applicable.
If we used two specifications in training, the evaluation for the third specification
delivered better results than after a single-specification training (G2.a).

Combination of different specifications in training made the classifier more
generally applicable. Obviously, classification quality is not only based on domain-
specific terms - which would not occur in the second training specification. Thus,
a good domain-independent classifier can be created with a sufficiently large
training set.

The bottom entry in Table 3 shows the results when we combined all three
specifications for training. Now we got good results for all three specifications
included in the evaluation. Figure 3 shows the learning curve, by giving the

10 Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and Jan Jiirjens

Table 3. Training with more than one specification.

Training Applied to: cross-eval ePurse CPN GP ePurse + CPN + GPS
—o—Recall —#-Precision

ePurse + CPN recall 0.93 0.95 0.85 0.56 F-Measure —<Baseline

precis 0.81 0.80 1 0.51

f-m. 0.87 0.87 0.92 0.53
ePurse + GP recall 0.96 0.98 0.85 0.85

precis 0.80 0.78 0.26 0.8

f-m. 0.87 0.87 040 0.82 o —
CPN + GP recall 0.87 0.31 0.75 0.88 123 frain?ngs?1e7 8 9

precis 0.82 0.84 0.88 0.81

f-m. 0.85 0.46 081 0.84 . .
ePurse + CPN recall 0.91 0.95 0.85 0.88¥1g-3. 10-fold cross valida-
+ GP precis 0.79 0.80 0.94 0.78 tion, multiple training

f-m. 0.84 0.87 0.89 0.83

results when using less than 9 parts for training. The learning curve grows not
as fast as in the Figure 2, probably because the classifier cannot leverage the
domain specific concepts. Nevertheless, we get a recall of 91 %, a precision of 79
%, and a f-measure of 84 % - results that clearly show that the trained classifier
is suitable to support security requirements elicitation in all of the three domains
used for training,.

5 Discussion and Implications on Industrial Practice

In Section 4 we described the process of evaluating our concepts. It is important
to note that for evaluation purposes we did not use the Bayesian classifier in the
way it was designed for (compare Section 3):

— For evaluation we used a complete specification. Parts of the specifications
were used for training, other parts were used for evaluation of recall and
precision.

— In practice we suggest to use the Bayesian Classifier in an Elicitation tool.
Each requirement is classified immediately after it has been written down.

This feedback can be used during an elicitation meeting for immediate clar-
ification on how to proceed with security-relevant requirements. Later, it could
be used to generate a list of security-relevant requirements to discuss with secu-
rity experts. In our SecReq approach, we trigger a refinement wizard that allows
laymen to start with the refinement themselves.

In this section we discuss whether the observed results are sufficient for em-
ploying the filter in practice at its current status. Then we take a look at the
validity of our evaluation of the Bayesian classifier filter. Finally, we summarise
the discussion with practitioners and describe how they perceive the implications
of the filter in practice, meaning their development projects.

Supporting Requirements Engineers in Recognising Security Issues 11

5.1 Interpretation of Evaluation Results

As shown in Section 4 we achieved very good results in cases where the classifier
is applied to the requirements from the same source as it was trained with.
We also observed poor results in cases where the classifier was applied to a
different requirements specification than the one it was trained with. We also
observed that the combination of training sets from different sources produces a
classifier that works well with requirements from all sources. This shows that a
general classifier for security relevance can be created with larger training sets
and specifications from more domains.

To summarise, in its current status the classifier is indeed a very valuable
addition for example in the context of software evolution or product lines. L.e., the
classifier could be trained using the last version of the requirements specification
and than offer precious help in developing the new software version. Typically,
subsequent specifications resemble their predecessor in large parts and add only
small new parts. Evaluation of this situation is covered by k-fold cross validation,
as large (k — 1) parts of a specification are used for training and applied to a
small held-out part. Therefore, the results in Figure 2 apply to this situation. In
other situations, the learning curve in Figure 3 and tests with systematic training
with falsely classified requirements show that the classifier quickly adopts to new
domains.

5.2 Discussion on Validity

Wohlin et al. define types of threats to validity for empirical studies [17]. We
consider threats to construct, internal, external, and conclusion validity to be
relevant to our evaluation.

Construct Validity. In our case, the assumptions made on the classification
question and our interpretation of what comprises a good result is critical to
determining the goodness of the evaluation. When it comes to the classification
question there are many alternative ways to define security-relevance. However,
our classification was an effective choice in practice as it helped us to adjust our
classification in a way that our security experts could agree on the majority of
requirements. Next it is important to consider whether it was sound to apply the
classifier on final versions of requirements during the evaluation. This depends
on the level of abstraction on which the functional information is presented.
In practice the requirements are regularly refined from high level functional
requirements to low-level descriptions of security-related aspects.

Internal Validity. We used k-fold cross validation and avoided using iden-
tical requirements in training and evaluation, as well as overfitting. Randomly
choosing requirements for training is not the best way to produce a good filter.
Ideally, we would train the filter systematically with false positives and false
negatives, until it produces good results. Preliminary tests show that this even
increases the performance of the classifier with very small training sets.

External Validity. External validity addresses the level of generalisability
of the results observed. We used three real-world requirement specifications from

12 Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and Jan Jiirjens

different domains and authors. We have no reason to doubt the applicability of
our approach on different specifications.

Conclusion Validity. We used specifications from two different domains in
our evaluation. Therefore, we cannot guarantee that our results would hold for
a third domain. To leverage this threat, we share our evaluation tool, classified
data sets, and databases of learned words at http://www.se.uni-hannover.de/
en/re/secreq. We invite others to replicate our experiment, or use our results.

5.3 Implications on industrial practice

In practice, there will rarely be budget to tackle all relevant security aspects.
Some of them may even conflict. Hence, developers need to get the right secu-
rity. For this reason, the classification question (see Section 2) focuses on money
(which includes costs, schedule, effort, resources, etc.), where money covers both
development costs but also the cost associated with the lack of a critical security
feature in the end-product. When it comes to techniques and tools for secu-
rity elicitation support, such a tool needs to help a developer getting security
right, including being able to separate out the important and prioritised secu-
rity aspects and hidden security requirements that are somehow concerned with
potential business and money consequences (loss and gain). Furthermore, such
support must be integrated in a natural way such that the tool supports the way
the developer work in the security requirements elicitation process and not the
other way around. In practice, spending money on something that is not going
to end up in the final system is considered a waste of time and effort. This is a
sad reality in industrial development.

The Bayesian classification as an addition to SecReq not only contributes to
a more effective and focused security elicitation process, but also in separating
important from not so important security-relevant aspects. In particular, the
Bayesian classification and security expert simulation in HeRA, with its ability
to train the classification to be system and project specific, directly enables ef-
fective reuse of earlier experience, as well as prioritising and company specific
security-related focus areas or policies. The ability to first train the classification
engine to understand how to separate important security-relevant aspects from
not so important, and then use this newly gained knowledge to traverse func-
tional descriptions and already specified security requirements have a promising
potential to contribute in a better control of security spending in development
projects.

6 Related Work

Security Requirements. A significant amount of work has been carried out on
security requirements engineering in particular relating to tools support in secu-
rity requirement engineering process, cf. e.g. [18-22]. However, this work does not
usually employ techniques from natural language processing to detect security
requirements, as we do here.

Supporting Requirements Engineers in Recognising Security Issues 13

Processing of Natural Language in Requirements. Requirements are often spec-
ified using natural language, if only as an intermediate solution before formal
modelling. As natural language is inherently ambiguous [23], several approaches
have been proposed to automatically analyse natural language requirements in
order to support requirements engineers in creating good requirements specifi-
cations [24, 25, 6,26]. Kof, Lee et al. work on extracting semantics from natural
language texts [24,25] by focusing on the semi automatic extraction of an on-
tology from a requirements document. Their focus is on identifying ambiguities
in requirements specifications. It would be interesting to compare our results to
the performance of security specific adoptions of these approaches. A comparable
methodical approach is proposed by Kiyavitskaya et al. [26] for extracting re-
quirements from regulations. These methodical and semi-automatic approaches
resemble our SecReq approach, the results in this paper describe a supportive
technique needed in such a method. Chantree et al. describe how to detect nocu-
ous ambiguities in natural language requirements [6] by using word distribution
in requirements to train heuristic classifiers (i.e. how to interpret the conjunc-
tions and/or in natural language). The process of creating the dataset is very
similar to our work: collection and classification of realistic samples based on the
judge of multiple experts to enhance the quality of the dataset. The reported
results (recall = 0.587, precision = 0.71) are useful in the described context, but
are too low for the SecReq approach.

7 Conclusion

In this paper, we addressed the problem that security becomes increasingly im-
portant in environments where there may not be any security experts avail-
able to assist in requirements activities. This situation leads to the risk that
requirements engineers may fail to identify, or otherwise neglect, early indica-
tors for security problems. We presented a tool-supported method that provides
assistance for the labour-intensive and error-prone first round of security re-
quirements identification and analysis. The tool support makes use of a trained
Bayesian classifier in order to heuristically categorise requirements statements
as security-relevant resp. less security-relevant. We also showed how HeRA, our
heuristic requirements assistant tool can be used to integrate that filter mecha-
nism into a secure software development process. Note, that the approach is not
restricted to HeRA, and can be used in other elicitation tools.

We evaluated this approach using several industrial requirements documents;
ePurse, CPN, and GP. Our experiences with this ”real-life” validation was overall
positive: According to the numerical results, the approach succeeds in assisting
requirements engineers in their task of identifying security-relevant requirements,
in that it reliably identifies the majority of the security-relevant requirements
(recall > 0.9) with only few false positives (precision > 0.8) in software evolution
scenarios. Our evaluation of different training strategies shows that the classifier
can quickly be adopted to a new domain when no previous versions of require-

14 Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and Jan Jiirjens

ments specifications are available for training. This could be done by a security
expert during a first interview.

Our approach does not aim at completeness in a strict logical sense. There
is no 100% guarantee that all security-relevant requirements are found, nor that
no non-security-relevant requirements are falsely reported. This is, however, a
limitation that is directly imposed by the current limitations from computa-
tional linguistics (essentially, the fact that a true automated text understanding
is currently not available). In general, security experts cannot give such a guar-
antee, either. Therefore, we believe that the approach provides useful assistance
in that it supports requirements engineers to identify security-relevant require-
ments, when no security expert is present. Even if security experts are present,
our approach helps them to focus on already identified requirements and thereby
efficiently use their limited time. Moreover, since this selection process is sup-
ported by automated tools, its execution is easy to document and it is repeatable
and thus well auditable. This adds another level of trustworthiness to the pro-
cess, compared to an entirely manual assessment.

References

1. International Standardization Organization: ISO 15408:2007 Common Criteria for
Information Technology Security Evaluation, Version 3.1, Revision 2, CCMB-2007-
09-001, CCMB-2007-09-002 and CCMB-2007-09-003 (September 2007)

2. Houmb, S.H., Islam, S., Knauss, E., Jiirjens, J., Schneider, K.: Eliciting Security
Requirements and Tracing them to Design: An Integration of Common Criteria,
Heuristics, and UMLsec. Requirements Engineering Journal 15(1) (March 2010)
63-93

3. Knauss, E., Liibke, D., Meyer, S.: Feedback-Driven Requirements Engineering: The
Heuristic Requirements Assistant. In: International Conference on Software En-
gineering (ICSE’09), Formal Research Demonstrations Track, Vancouver, Canada
(2009) 587 — 590

4. Jirjens, J.: Secure Systems Development with UML. Springer (2004)

5. Schneider, K., Stapel, K., Knauss, E.: Beyond Documents: Visualizing Informal
Communication. In: Proceedings of Third International Workshop on Require-
ments Engineering Visualization (REV 08), Barcelona, Spain (2008)

6. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying Nocuous Ambigui-
ties in Natural Language Requirements. In: Proceedings of the 14th IEEE Interna-
tional Requirements Engineering Conference, Minneapolis, USA, IEEE Computer
Society (2006) 56—65

7. Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for
ambiguity identification and measurement in natural language requirements spec-
ifications. Requirements Engineering Journal 13(3) (September 2008) 207-239

8. Graham, P.: A Plan for Spam (2002)

9. Rennie, J.D.M., Shih, L., Teevan, J., Karger, D.R.: Tackling the Poor Assumptions
of Naive Bayes Text Classifiers. In: Proceedings of the Twentieth International
Conference on Machine Learning (ICML-2003), Washington DC (2003)

10. Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach. Prentice Hall,
New Jersey (1995)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Supporting Requirements Engineers in Recognising Security Issues 15

Ireson, N., Ciravegna, F., Califf, M.E., Freitag, D., Kushmerick, N., Lavelli, A.:
Evaluating machine learning for information extraction. In: ICML ’05: Proceedings
of the 22nd international conference on Machine learning, Bonn, Germany, ACM
(2005) 345-352

Weiss, S.M., Kulikowski, C.A.: Computer systems that learn : classification and
prediction methods from statistics, neural nets, machine learning, and expert sys-
tems. M. Kaufmann Publishers, San Mateo, Calif. (1991)

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press,
Addison Wesley (1999)

CEPSCO: Common Electronic Purse Specification (ePurse)
http://web.archive.org/web/* /http: //www.cepsco.com, accessed Apr 2007.
TISPAN, ETSI: Telecommunications and Internet converged Services and Proto-
cols for Advanced Networking (TISPAN); Services requirements and capabilities
for customer networks connected to TISPAN NGN. Technical report, European
Telecommunications Standards Institute

GlobalPlatform: Global Platform Specification (GPS)
http://www.globalplatform.org, accessed Aug 2010.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C.: Experimentation In Software
Engineering: An Introduction. first edn. Springer-Verlag GmbH (November 1999)
Chung, L.: Dealing with Security Requirements During the Development of Infor-
mation Systems. In Rolland, C., Bodart, F., Cauvet, C., eds.: CAiSE. Volume 685
of Lecture Notes in Computer Science., Springer (1993) 234-251

Dubois, E., Wu, S.: A framework for dealing with and specifying security re-
quirements in information systems. In Katsikas, S.K., Gritzalis, D., eds.: SEC.
Volume 54 of IFIP Conference Proceedings., Chapman & Hall (1996) 88-99

Lin, L., Nuseibeh, B., Ince, D.C., Jackson, M., Moffett, J.D.: Introducing Abuse
Frames for Analysing Security Requirements. In: RE, IEEE Computer Society
(2003) 371-372

Giorgini, P., Massacci, F., Mylopoulos, J.: Requirement Engineering Meets Se-
curity: A Case Study on Modelling Secure Electronic Transactions by VISA and
Mastercard. In Song, 1.Y., Liddle, S.W., Ling, T.W., Scheuermann, P., eds.: ER.
Volume 2813 of Lecture Notes in Computer Science., Springer (2003) 263-276
Heitmeyer, C.L., Archer, M., Leonard, E.I., McLean, J.: Applying Formal Methods
to a Certifiably Secure Software System. IEEE Trans. Software Eng. 34(1) (2008)
82-98

Berry, D., Kamsties, E.: 2. Ambiguity in Requirements Specification. In: Perspec-
tives on Requirements Engineering. Kluwer (2004) 7-44

Kof, L.: Text Analysis for Requirements Engineering. PhD thesis, Technische
Universitdt Miinchen, Miinchen (2005)

Lee, S.W., Muthurajan, D., Gandhi, R.A., Yavagal, D.S., Ahn, G.J.: Building Deci-
sion Support Problem Domain Ontology from Natural Language Requirements for
Software Assurance. International Journal of Software Engineering and Knowledge
Engineering 16(6) (2006) 851-884

Kiyavitskaya, N., Zeni, N., Breaux, T.D., Antén, A.L., Cordy, J.R., Mich, L., My-
lopoulos, J.: Automating the Extraction of Rights and Obligations for Regulatory
Compliance. In Li, Q., Spaccapietra, S., Yu, E., Olivé, A., eds.: Proceedings of
27th International Conference on Conceptual Modeling. Lecture Notes in Com-
puter Science, Barcelona, Spain, Springer (2008) 154-168

