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Abstract 
The main aim of this thesis was to explore the neural and behavioural responses 

underpinning upper-limb motor control in a novel (force-field) robot-mediated reaching 

task using a non-invasive brain stimulation method known as transcranial magnetic 

stimulation (TMS). A new TMS-based network mapping technique was used to target 

different regions of the motor circuit (i.e. network nodes) using a ‘virtual disruption’ 

approach.  

Seven cortical regions including the left and right primary motor cortex (M1), the 

supplementary motor area (SMA), the left and right posterior parietal cortex (PPC) and 

the left and right dorsal pre-motor cortex (PMC) were targeted with TMS at nine 

different time points during the preparation phase of upper-limb reaching towards a 

north-west target (i.e. reaching away from the body). Both neural mechanisms 

(corticospinal excitability with left M1 stimulation) and kinematic (behavioural) 

responses such as, movement onset, movement offset, maximum velocity, movement 

duration, summed error (reaching errors quantified by the calculating the difference 

between the subject’s reaching trajectory and the ideal reaching trajectory) and 

maximum force were explored offline. When exploring the impact of TMS on each 

cortical region individually, the results demonstrated a behavioural effect on reaching 

responses because 1) TMS caused a significant disruption in reaching trajectories during 

motor adaptation compared to normal reaching (no force-field) at most time points and 

2) TMS caused a significant delay in movement onset, particularly during motor 

adaptation. As well as exploring the effect of TMS on each region separately, it was 

important to determine the network of regions that may play a more functional role in 

novel reaching. Therefore a comparative analysis was performed between all stimulated 

regions for each kinematic parameter. The comparative analysis revealed a region 

specific relative influence on summed error. More specifically, the left M1 and left PPC 

were the principle structures that were involved in novel reaching because TMS to these 

structures resulted in significantly greater reaching trajectory errors. Based on this 

finding, it can be concluded that the left M1 and left PPC play a pivotal role in the 

preparation phase of upper-limb novel reaching compared to other regions in the motor 

network, including the right M1, SMA, left and right dPMC and right PPC.  

Overall, the findings from this project can not only help 1) refine our understanding of 

the mechanistic elements that operate during reaching and 2) gain an insight into the 
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functional role of the different regions that are involved in novel reaching, but they also 

have a wide range of applications, ranging from brain machine interfaces (BMI) to 

neurocomputational models where data-based virtual lesions have been introduced into 

models of stroke patients.  
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Chapter 1: Introduction 

1.1 Brief overview 
The main aim of this thesis was to explore neural mechanisms and behaviours 

underpinning upper-limb motor control in a novel (force-field) robot-mediated reaching 

task using transcranial magnetic stimulation (TMS). A TMS-based network mapping 

technique was used to target different regions of the motor circuit (i.e. network nodes) 

using a ‘virtual disruption’ approach.  

In order to study the neural mechanisms and behavioural responses of upper-limb 

reaching a laboratory-based set up was developed. A robot-mediated task was used for 

the reaching paradigm (i.e. to explore reaching performance), and a single-pulse TMS 

protocol was used to explore whether a disruption in neural activity can affect reaching 

performance. Generally, the neural mechanisms of reaching were investigated by 

acquiring electromyography (EMG) signals and the behavioural performance of 

reaching were investigated by acquiring kinematic data. The use of TMS and robotic 

reaching in an open-based environment in this project overcomes the general challenges 

when exploring reaching behaviours with other imaging modalities. For example, 

techniques such as functional magnetic resonance imaging (fMRI) and positron 

emission tomography (PET) have been confined to exploring reaching-to-point tasks 

and reaching-to-grasp tasks (as explored further on in this thesis). 

Overall, this project will aim to provide novel findings into the effects of single-pulse 

TMS during preparation for novel reaching, which can help; 1) refine our understanding 

of the mechanistic elements that operate during reaching, and 2) gain an insight into the 

functional role of the different regions that are involved in novel reaching (i.e. whether 

one region in the motor circuit plays a greater functional role in novel reaching 

compared to another region). Findings from this project have a wide range of 

applications, ranging brain machine interfaces (BMI) to neurocomputational models 

where data-based virtual lesions have been introduced into patient models.  

 

Literature Review 

1.2 History of neuroimaging  
Neuroimaging has been defined as ‘methods of brain imaging that help answer 

questions about brain structure and function’ (Bandettini, 2009). Neuroimaging methods 

have developed over the last century from invasive methods such as ventriculography 

and pneumoencephalography (PEG) (Hoeffner et al., 2012) to non-invasive methods, 

such as magnetic resonance imaging (functional [fMRI] and structural), magnetic 
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resonance spectroscopy (MRS), positron emission tomography (PET), 

electroencephalography (EEG) and transcranial magnetic stimulation (TMS - which was 

employed in this thesis).  

1.2.1 Invasive methods 

1.2.1.2 Ventriculography and PEG 
The discovery of X-rays by Roentgen in the mid 1890s (Sansare, Khanna and 

Karjodkar, 2011) which were first used to explore bone structure led to the development 

of invasive imaging methods, including ventriculography and pneumoencephalography 

(PEG) to explore brain structure (Tubiana, 1996; Hoeffner et al., 2012). Although X-

rays successfully illustrate bone deterioration, as an imaging method it is poor in terms 

of demonstrating changes in intracranial tissue (Schuller, 1912). However, the invention 

of air ventriculography by Dandy during the 1910s enabled scientists to overcome this 

limitation. The technique was based on injecting air (via lumbar puncture) into the 

ventricles in order to outline intracranial pathologies on an X-ray image (Hoeffner et al., 

2012) (figure 1.1A & B – Dandy, 1918). Although ventriculography methods increased 

the rate of tumour diagnosis, its invasiveness was associated with various after-effects, 

ranging from headaches to nausea (Hoeffner et al., 2012).  

Similar to ventriculography in terms of its invasiveness, PEG was a method that drained 

cerebrospinal fluid (CSF) via lumbar puncture and replaced it with air for structural 

diagnostic purposes (Tondreau, 1985). The technique enabled an early diagnoses of 

hydrocephalous but could be fatal in terms of the various complications it could lead to 

(Bohn, 1937; Moseley, Loh and du Boulay, 1977; Tondreau, 1985). Figure 1.1C 

demonstrates the various types of symptoms that were reported in over 40 patients who 

had undergone PEG (White, Bell and Mellick, 1973). Although effective in terms of 

their diagnosis of structural pathology, the detrimental after-effects of ventriculography 

and PEG discouraged both patients and neurosurgeons and as a result both methods 

were abandoned. Nonetheless, its invasive nature helped improved radiographic 

techniques and build the foundations for non-invasive neuroimaging methods, including 

computerised tomography (CT).  
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Figure 1.1: Previous imaging methods 

(A) Drill used for puncture creation (Dandy, 1918), (B) Air ventriculography needle (Dandy, 
1918) and (C) Symptoms reported following PEG procedures in over 40 patients (based on data 
from White, Bell and Mellick, 1973). 

             Ventriculogaphy includes:  
(A) Lumbar puncture with a drill (Dandy, 1918) 
(B) Followed by the use of a needle to remove CSF in the anterior fontanelle and replace it 

with air (Dandy, 1918).  
(C) The various symptoms exhibited following PEG is demonstrated, whilst headaches and 

irregular heart rates were the most common symptoms reported, other symptoms 
included fevers, stiff neck, vomiting, neurological symptoms and changes in 
consciousness (based on data from White, Bell and Mellick, 1973). 
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1.2.2 Non-invasive methods 

1.2.2.1 Computed tomography (CT) imaging 
CT was developed by Hounsfield during the early 1970s, the method collects readings 

from the skull at multiple angles via a rotating X-ray tube (Hounsfield, 1973; 

Hounsfield 1980; Wellington and Vinegar, 1987; Kotwaliwale et al., 2011). Image 

slices of the cranium are then generated from these readings via a back-projection 

formula (Cunningham and Judy, 2000; Wellington and Vinegar, 1987). The main 

advantage of CT compared to conventional X-rays is its ability to explore anatomy 

through different angles as opposed to only one (conventional X-ray) (Wellington and 

Vinegar, 1987).  

Despite CT scans being less physically invasive (compared to PEG) as no incisions are 

made during scanning, researchers have nonetheless argued that the method poses a 

radiation risk (Brenner and Hall, 2007; Berrington De Gonzalez et al., 2009). 

Berrington De Gonzalez et al., (2009) explored the adverse effects of CT radiation, 

including the risk of cancer and concluded that roughly 2% of future cancer diagnoses 

could be a result of radiation from CT scanning. Despite these concerns, it should be 

taken into account that such findings are general and not specific enough, i.e. they do 

not report the quantity of doses that can lead to the risk of cancer (McCollough, 

Guimarães and Fletcher, 2009). Additionally, radiographers as well as equipment 

manufacturers have employed different strategies, including ALARA (as low as 

reasonably achievable) to keep radiation doses low (McCollough, Guimarães and 

Fletcher, 2009; Mayo-Smith et al., 2014) and by following such principles, participant 

radiation exposure during CT scans can be reduced (Mayo-Smith et al., 2014).  

The overall positive impact that CT scanning has had within the neuroimaging field has 

helped increase the rates of clinical diagnoses (McCollough, Guimarães and Fletcher, 

2009). It has also helped pave the way for other imaging methods, including PET as 

both are usually combined (Townsend, 2008; Papathanasiou et al., 2011). 

1.2.2.2 PET imaging 
PET is a non-invasive imaging technique and was first used in humans during the mid-

1970s to explore physiological functioning (Hoffman et al., 1976; Berger, 2003). The 

first stage of PET scanning involves the injection of radio-tracers into the participant’s 

peripheral vein (Berger, 2003; National Health Service, 2018). The tracer that is used 

depends on what is being studied. For example, 18F-fluorodeoxyglucose (FDG) is 
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commonly used to diagnose brain tumours (Kosaka et al., 2008). The pronounced 

glucose metabolism of tumor cells can result in an increase of FDG uptake during PET 

scanning and thus help diagnose and characterise tumours (Shukla and Kumar, 2006).  

PET imaging studies have also helped demonstrate regions of the brain associated with 

upper-limb reaching. For example, during visually guided arm-reaching in non-human 

primates, Picard and Strick (2003) found significantly increased 2-deoxyglucose (2DG) 

uptake in the supplementary motor area (SMA) and the primary motor cortex (M1), but 

not in dorsal and ventral regions of the cingulate motor area. PET studies exploring the 

reaching preparation phase have revealed increased metabolic activity in the prefrontal 

cortex and areas of the parietal lobe (Decety et al., 1992). PET techniques during novel 

reaching (i.e. force-field paradigms) have also illustrated greater regional cerebral blood 

flow (an indicator of metabolic activity) in the cerebellum during the initial stages of 

reaching adaptation, however this was reduced following repeated reaching exposure 

(i.e. as reaching errors reduced, activity in the cerebellum also reduced; Nezafat, 

Shadmehr and Holcomb, 2001).  

Despite PETs clinical efficacy and use in the research setting, there are some limitations 

to the technique. For instance, those who do undergo PET imaging should avoid contact 

with pregnant women as well as children as they can still remain radioactive for up to a 

couple of hours following scanning (National Health Service, 2018). The expensiveness 

of the technique also makes it difficult for some patients to have access to (Griffeth, 

2005; Bateman, 2012; Akbari Sari et al., 2013). Nonetheless, PET remains to be 

effective in terms of 1) high quality imaging, 2) increasing the precision of diagnoses 

and 3) having shorter experimental protocols, thus making it a more patient friendly 

method (Bateman, 2012).  

1.2.2.3 MRI imaging (structural and functional) 
MRI brain imaging (both structural and functional [fMRI]) is a common non-invasive 

method used in both research and clinical fields. MRI functions by using the body’s 

magnetic elements to create in depth images of organs, including the brain (Berger, 

2002). MRI machines employ a magnetic field which can alter the ways in which the 

body’s protons react (specifically hydrogen nuclei protons). The powerful MRI magnet 

leads to the alignment of protons, which in turn creates a magnetic vector along the axis 

of an MRI scanner (Berger, 2002). When additional radio-wave energy is added to the 

machine, the aligned magnetic vector gets deflected and the protons resonate, i.e. they 
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spin out of an equilibrium state. When the radiofrequency is turned off a signal is 

released and the protons return back to a resting state, MR images are then created from 

this emitted signal (Berger, 2002).  

Structural MRIs have helped enhance the anatomical understanding of brain matter and 

regions and have been used as a form of clinical assessment among patients (Frisoni et 

al., 2010; Chen, Jiao and Herskovits, 2011). For example, diagnostic markers such as 

reduced hippocampal volume and medial-temporal atrophy have been consistently 

shown in structural MRIs and have been hypothesised to be the initial structural 

indicators of first stage Alzheimer’s disease (AD) (Kantarci and Jack, 2003; de Leon et 

al., 2004; Devanand et al., 2012; Vijayakumar and Vijayakumar, 2013). Such imaging 

used for a clinical purpose can help delay the onset of diseases at an early stage, for 

example, through pharmacological interventions (e.g. balancing out the neurochemical 

disruption with drugs for AD; Yiannopoulou and Papageorgiuo, 2012).  

As opposed to structural MRI, fMRI places greater emphasis on exploring brain 

function and activation patterns. Functional MRI methods have been used in cognitive, 

behavioural and motor and clinical studies (to observe changes in brain function in 

neurological diseases) (Glover, 2011). With regards to its clinical applications, surgeons 

have used the technique to map out and determine eloquent brain locations (e.g. lingual 

and motor regions) that may reside next to brain tumours or lesions in order to preserve 

their functions during neurosurgery (Beers and Federico, 2012; Mahdavi et al., 2015; 

Nadkarni et al., 2015).  

When a brain region is activated by a particular task, it results in greater neuronal 

activity and blood flow to the region that is facilitating the activity (Buxton, 2013), and 

this can be demonstrated online and offline with fMRI. Therefore, fMRI methods are 

used to explore changes in blood oxygen level-dependent (BOLD) signals that occur 

when the brain state is altered e.g. from rest to a task (Gore, 2003; Glover, 2011). For 

example, in an fMRI motor observation task conducted by Buccino et al., (2001) 

participants were instructed to observe motor behaviours performed by other 

individuals, including arm reaching, hand grasping and mouth motions. Their findings 

revealed varied neural activity (i.e. cerebral blood blow) in different regions of the 

premotor cortex (PMC) depending on the movement that was performed. For instance, 

arm reaching and hand grasping movement led to greater neural activity in the dorsal 

regions of the PMC, whereas mouth actions resulted in increased neural activity in the 
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ventral PMC. Other activated regions during reaching includes the M1. For instance, in 

an fMRI reaching-outward task using non-ferromagnetic equipment, Eisenberg et al., 

(2011) reported increased BOLD related-activity in the M1. Increased M1 activity 

during reaching has been argued to be related to its functional role in encoding 

movement parameters, such as the direction of movement, arm position and movement 

speed (Ashe and Georgopoulous, 1994; Fu et al., 1995; Moran and Schwartz, 1999; 

Teka et al., 2017). fMRI studies have also helped identify cortical regions that are 

involved in other aspects of reaching, such as planning and preparing movements. For 

instance, Andersen and Buneo (2002) reported increased posterior parietal cortex (PPC) 

neural activity that was associated with movement planning of a reach during a 

memory-guided reaching task. Increased BOLD activity has also been noted in parietal 

regions during reaching: 1) observation, 2) imagery and 3) execution (Filimon et al., 

2015).  

Both fMRI and PET studies have illustrated that a large network of regions are involved 

in reaching preparation, planning and execution, with neural connections ranging from 

the parietal lobe (e.g. the PPC) to the frontal lobe (e.g. M1, PMC and SMA) (Rizzolatti 

and Luppino, 2001; Begliomini et al., 2014). Although fMRI and PET techniques have 

been useful in identifying cortical regions that are involved in reaching, there are 

limitations to consider. For instance, signal dropouts may occur during scanning which 

can affect the degree of BOLD signal found in fMRI studies (Glover, 2011). 

Furthermore, the confined parameters of an MRI scanner can cause set-backs in 

studying reaching behaviours, and can also result in movement artefacts (Culham, 

Cavina-Pratesi and Singhal, 2006). As a result, reaching fMRI and PET studies have 

mainly focused on ‘point’ reaching and ‘grasp’ reaching paradigms compared to arm-

reaching paradigms (Culham, Cavina-Pratesi and Singhal, 2006). It can be argued that 

upper-limb reaching tasks may lead to novel findings in terms of identifying areas of 

cortex that are functionally related to reaching. This thesis will therefore introduce a 

new TMS mapping technique by targeting different regions of the motor circuit via a 

‘virtual disruption’ approach during upper-limb reaching. The high temporal resolution 

of TMS and it use in disrupting regional functioning sets it apart from other non-

invasive imaging methods, including fMRI and PET which are more correlation based 

and lack temporal resolution (Hallett, 2000).  
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In this thesis, TMS was used to explore neural behavioural responses during upper limb 

reaching. Section 1.3 below outlines the method in depth, in terms of: 1) its principles, 

2) types of TMS coils, 3) types of TMS protocols, 4) how it has been used in both the 

clinical and research field, and 5) how it will be employed in this thesis.  

1.3 TMS 

1.3.1 Principles of TMS and its advantages of TMS compared to other 
imaging modalities 

The non-invasive brain imaging method that this thesis is based on is TMS. TMS 

hardware includes a coil(s) which is connected to a stimulator. The stimulator contains; 

1) capacitors that produce pulses, 2) voltage sources that produce the magnetic field, 3) 

switches to turn currents on and off, and 4) a pulse circuit to determine the type of TMS 

pulse shape that is administered (e.g. monophasic [employed in this thesis] or biphasic) 

(Wagner, Valero-Cabre and Pascual-Leone, 2007; Farzan et al., 2016) (these 

components are illustrated in Figure 1.2A - Farzan et al., 2016).  

The key component of TMS is the coil that is used for stimulation, which operates on 

the principle of Faraday’s law of electromagnetic induction (Eldaief, Press and Pascual-

Leone 2013; Farzan et al., 2016).The principle is based on the notion that the pulse of 

the current which passes through copper wires in a TMS coil results in a magnetic field 

that is perpendicular to the plane of the coil and as a result this causes a secondary 

induced electrical current in cortical regions that are parallel to the orientation of the 

coil (Hallett, 2000; Hallett, 2007; Ridding and Rothwell, 2007; Bolognini and Ro, 2010; 

Eldaief, Press and Pascual-Leone, 2013; Farzan et al., 2016) (see figure 1.2B - Hallett 

2000; Hallett, 2007). This induced TMS-current can briefly modulate neuronal activity 

in structures that generate action potentials and can result in either enhancing or 

inhibiting neural excitability (Kobayashi and Pascual-Leone, 2003; Eldaief, Press and 

Pascual-Leone, 2013; Farzan et al., 2016). Section 1.5.2.1 highlights specific details 

with regards to how TMS works and the cortical components activated during 

stimulation.  

It should be noted that the effect of the induced secondary current does not only rely on 

the TMS coil and the stimulation intensity, but also other factors including cerebral 

matter (Hallett, 2000; Lefaucheur et al., 2014; Klomjai, Katz and Lackmy-Vallée, 

2015). For example, it has been suggested that grey matter has greater levels of TMS 

resistance/impedance compared to white matter (Lefaucheur et al., 2014; Klomjai, Katz 
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and Lackmy-Vallée, 2015). Based on this notion, the electrical currents that are induced 

in grey matter structures are weaker and as a result TMS does not activate deep-cortical 

grey matter structures including the thalamus, but on the other hand activates superficial 

cerebral white matter layers of the cortex, such as the primary motor cortex (M1) 

(Lefaucheur et al., 2014; Klomjai, Katz and Lackmy-Vallée, 2015). There are also 

action at distance limitations to consider with TMS, which is based on the notion that 

the strength of the electrical field induced with TMS differs depending on the distance 

between the coil and the area being targeted (Deng, Lisanby and Peterchev, 2013). 

Action to distance limitations can however be overcome through the use of different 

coil types. For example, more recently designed TMS coils can be used to target deeper 

cortical structures. The round and figure-8 shaped coil (used in this thesis) provides a 

focal and localized current flow to explore regions on the surface of the cortex such as 

the M1. This coil has been used in different single pulse TMS protocols to investigate 

motor function in reaching (e.g. Hunter, Sacco and Turner, 2011; Orban de Xivry et al., 

2013). The double cone coil on the other hand is able to penetrate into deeper cortical 

structures and has been used to target structures including the anterior cingulate, the 

cerebellum and the middle cingulate cortex (Ueno, Tashiro and Harada, 1988; Ugawa et 

al., 1995; Hallet, 2007; Deng, Lisanby and Peterchev, 2013; Hardwick, Lesage and 

Miall, 2014; D'Agata et al., 2015). Additional TMS coils includes the batwing coil. Due 

to its geometric features, it has been employed in a similar way to the double cone coil 

for the stimulation of areas deep within the cortex (Cai et al., 2011). Researchers have 

used this coil to target deeper muscle representations in Penfield's homunculus, such as 

lower limb areas including the leg (Roy and Gorassini, 2008). The H-coil has also been 

used in TMS experiments, namely repetitive (r) TMS (rTMS) protocols to stimulate 

areas that are deep within the temporal lobe (Gersner et al., 2016; Tendler et al., 2017). 

The “depth-focality trade off” described by Deng, Lisanby and Peterchev (2013) is a 

limitation that should be considered when using deeper coils to study neural responses. 

Deng, Lisanby and Peterchev (2013) argued that different coils have different electrical 

field features, and coils used to target deeper structures have limited focality. The 

figure-8 shaped coil, has greater focality and the electrical field induced with this coil is 

confined to targeting superficial areas (Deng, Lisanby and Peterchev, 2013). In this 

thesis, the depth-focality trade off is less of a concern considering that only superficial 

targets were explored with a figure-8 coil. The availability and development of various 
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TMS coils has helped researchers gain a deeper understanding into the depth-focality 

trade off, which has led to the design of novel coils to study human behaviour (Deng, 

Lisanby and Peterchev, 2013).  

As well as the availability of various TMS coils, an additional advantage of TMS as 

method is based on its safety principles which has been noted in studies among healthy 

subjects. For example, Machii et al., (2006) applied rTMS to a range of cortical regions, 

such as the cerebellum, dorsolateral prefrontal cortex, the occipital lobe and areas of the 

parietal cortex in 200 healthy subjects. Their findings revealed that the most common 

negative effect of TMS included headaches, with the pain being very mild (as quantified 

by ratings on a questionnaire). Neck pains were also common, however this depended 

on the region that was stimulated (the cerebellum was associated with greater neck pain 

compared to areas such as the parietal cortex). In addition to this, they reported no 

siezures in the subjects that were tested (Machii et al., 2006). The thermal impact of 

TMS is also a factor to consider as some protocols may cause tissue heating (Rossi et 

al., 2009; Sabouni, Honrath and Khamechi, 2017). Tissue heating can become a cause 

for concern among individuals who have implanted electrodes (Roth et al., 1992; Rossi 

et al., 2009). It should be noted that in this thesis, only SP-TMS was delivered and 

studies have revealed that tissue heating with such protocols are minimal (Ruohonen 

and Ilmoniemi, 2002 cited in Pascual-Leone et al., 2002; Rossi et al., 2009). TMS has 

also been reported to be a pain-free method, particularly when compared to other 

stimulation methods, such as transcranial electric stimulation (TES) (Rossi et al., 2009). 

During TES the electrical charge projects to the scalp and flows through the skull (Rossi 

et al., 2009) and due to the the skull having low levels of conductivity, TES currents are 

commonly set to a high density level to stimulate neurons, which can therefore cause 

pain (Rossi et al., 2009). With TMS however, current density in the scalp to- current 

density brain is lower, which results in less pain during stimulation (Rossi et al., 2009).  

Ethical and safety principles are consistently growing in the field of TMS research in 

order to identify the possible side effects of the method and factors to consider during 

stimulation, whether this be in healthy controls or clinical populations. Generally, the 

non-invasive nature of TMS compared to other methods such as TES, and its safety 

record has made it a popular technique to use in research and in the treatment of 

psychiatric conditions (Padberg et al., 2002; Rossi et al., 2009).  
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Figure 1.2: TMS components 

(A) The different components in a stimulation unit includes; a coil (L), a voltage device (V) 
as well as a switch (S) and a capacitor (C). Other elements include a Thyristor (T) and a 
resistor (R) (figure from Farzan et al., 2016) 

(B) During stimulation, a pulse is created in copper wires that are located in the magnetic 
coil, this produces a magnetic field with lines of a magnetic flux that pass 
perpendicularly to the coil. Following this, an electrical field is produced which is 
perpendicular to the magnetic field (figure from Hallett, 2000).  
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1.3.2 TMS protocols 
When TMS is delivered to one hemisphere of the M1 (e.g. left), a corticospinal neural 

volley is elicited and this can be recorded as a motor evoked potential (MEPs) (Hallett, 

2007) in muscles in the contralateral limb (e.g. right) (section 1.5.2.1 outlines the 

procedure in full – figure 1.6: Klomjai, Katz and Lackmy-Vallée, 2015). When MEPs 

are elicited by TMS, corticospinal excitability can be explored. Corticospinal 

excitability (CSE) is based on the affects that different excitatory and inhibitory 

mechanisms have on the corticospinal tract (CST) (Hallett, 2007; Cirillo, Todd and 

Semmler, 2011; Hunter, Sacco and Turner, 2011; Rossini et al., 2015). Such 

mechanisms include, short-interval intracortical inhibition (SICI), short intracortical 

facilitation (SICF) and IHI (interhemispheric inhibition [short latency - SIHI; and long 

latency LIHI]) and these can be studied with different TMS protocols. TMS protocols 

include single-pulse TMS (SP-TMS), paired-pulse TMS (PP-TMS) and repetitive TMS 

(rTMS). Whilst SP stimulation denotes a type of TMS that is not repetitive, during 

rTMS stimulation a train of single pulses are administered to a specific brain region at a 

specific frequency (Mishra et al., 2011). Low frequency rTMS stimulation inhibits 

neuronal firing, whereas high frequency rTMS stimulation facilitates neuronal firing 

(Mishra et al., 2011). rTMS protocols have been used in the treatment of psychiatric 

conditions, ranging from depression to schizophrenia (Padberg et al., 2002; Aleman, 

Sommer and Kahn, 2007; Rossi et al., 2009; Farzan et al.,  2012; George, Taylor and 

Short, 2013).  

PP-TMS can function either through the same coil at one cortical location or 

alternatively through two coils at two cerebral loci. PP-TMS protocols have enabled 

researchers to examine cortical networks in the brain, such as SICI, SICF and IHI 

(Rossini et al., 2015). There is a greater understanding of SICI, ICF and SIHI compared 

to LIHI. SICI suppresses cortical cell firing in the M1 (i.e. cortical inhibition; Wagle-

Shukla et al., 2009; Rossini et al., 2015) and has also been linked to neurotransmitters 

in the M1 such as gamma-aminobutyric acid-A (GABAA) (Di Lazzaro et al., 2006). ICF 

on the other hand, is based on excitatory cortical processes and has been linked to 

glutamate receptors with excitatory functions (Noda et al., 2017). For example, 

increases in glutaminergic activity has been associated with an increase in SICF (Smith 

et al., 1999; Kapogiannis and Wassermann, 2009; Wagle-Shukla et al., 2009). 
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With regards to IHI, one hemisphere of the brain suppresses the functioning of the other 

hemisphere (Ni et al., 2009) and this can also be studied with a PP-TMS protocol. 

Ferbert et al., (1992) were the first researchers to report IHI. They found that TMS 

applied to the ipsilateral M1, results in a reduced MEP in the contralateral M1 (i.e. 

inhibited). IHI has also been reported between different cortical regions. For instance, 

Mochizuki, Huang and Rothwell (2004) demonstrated that a conditioning pulse over the 

dorsal premotor cortex (dPMC) led to a reduced MEP response in the contralateral M1. 

This illustrates that IHI is not region specific, but rather a widely distributed phenomena 

found in different cortical structures (Ni et al., 2009). There are two IHI phases; short 

latency IHI (SIHI) and long latency IHI (LIHI), which occur when using different 

interstimulus intevals (ISIs). An ISI of approximately 10 milliseconds between the 

conditioning pulse and test pulse results in SIHI, whereas an ISI of 40-50 milliseconds 

between the conditioning pulse and the test pulse leads to LIHI (Ni et al., 2009). 

Although the mechanistic elements of SIHI are understood, for example, it has been 

reported to inhibit unwanted reflex actions, the role of LIHI is yet to be determined 

(Hubers, Orekhov and Ziemann, 2008; Morishita et al., 2014).  

These neural mechanisms have also been studied with TMS during motor tasks, i.e. 

upper limb reaching and motor adaptation. Before considering how these mechanisms 

respond to motor tasks, it is important to define what is meant by motor reaching and 

motor adaptation.  

1.4 Motor behaviours 

1.4.1 Upper limb reaching 
Motor behaviours fall into one of two categories; discrete or continuous. Upper limb 

reaching has been classed within the discrete category as it has a defined beginning and 

end point (Muratori et al., 2013). The concept of 'fine' and 'gross' motor skills should 

also be considered when defining reaching. While fine motor skills refer to actions that 

use small muscles (i.e. hands), gross motor skills are actions that use larger muscles (i.e. 

upper arm and the trunk of the body; Muratori et al., 2013). Motor reaching can involve 

both fine and gross motor skills. For instance, if someone is reaching for a cup whilst 

standing, both small (e.g. hand and fingers) and large muscles (e.g. torso and upper 

limb) will be used to carry out the action (Muratori et al., 2013). Carr and Shepherd 

(2000) noted that the environment in which motor skills are performed can be classed as 



14 
 

 

 

either open-based or closed-based. They defined skills in the closed-based category as 

actions that can begin and stop at any given time, whilst the environment remains 

constant. During open-based motor performance however, it is essential for the 

individual carrying out the task to adapt to the changes in their environment to be 

successful. Such skills can be seen when someone is catching a ball, i.e. they must 

adjust their body to the time at which the ball is arriving (Carr and Shephard, 2000; 

Muratori et al., 2013). 

In this thesis, upper limb reaching will involve both gross and fine muscles as the hand 

will be used to grasp the joystick on the robotic manipulandum and upper limb muscles 

will be used to carry out the reaching motion. Also, the environment reflects open-based 

motor reaching, as the participant will have to adjust their reaching speed to avoid 'late' 

and 'early' reaching responses (see general methodology, section 3.4.1). The role of the 

corticospinal tract (CST) is vital during reaching. This has been shown in both human 

studies (such as stroke patients) and animal models, whereby damage to the CST 

resulted in impaired motor function and poor reaching accuracy (Martin and Ghez 199; 

Maraka et al., 2014). 

The act of upper limb reaching begins with preparatory neural activity within pre-motor 

and motor cortices before actual movement of the arm (Jones, 2012). These regions (i.e. 

M1 and premotor cortices) help regulate timing and outputs of motor behaviour 

(Halsband et al., 1993; Overduin, Richardson and Bizzi, 2009; Chang et al., 2015; 

Panouilleres et al., 2015). Motor output during reaching takes place due to neural 

communication between different brain regions (Figure 1.4B demonstrates the different 

projections and neural connections between regions of the motor circuitry - adapted 

from Briggs et al., 2018). The extent of projections from different motor areas to 

faciliciate motor functions were highlighted by Dum and Strick (1991). They reported 

that the M1 receives projections from 3 main regions: the SMA, the premotor cortices 

(specifically the arcuate sulcus) and the frontal lobe, particularly the cingulate motor 

areas. Different regional projections contribute to distinct motor behaviours and this has 

been shown in non-human primate lesion studies. For example, Pavlides, Miyashita and 

Asanuma (1993) noted that damage to somatosensory cortex in monkeys impaired the 

acquisition of novel motor skills but not previously learned motor skills. It was 

therefore concluded that cortical projections between the somatosensory cortex and the 

M1 facilitates the learning of a novel motor skill (Pavlides, Miyashita and Asanuma, 
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1993). As well as complex interactions and projections between different motor regions, 

there are also complex mechanisms that underlie motor responses elicited by SP-TMS 

during reaching, and these are explained below.  

1.4.1.1 TMS during reaching preparation and reaching execution  
TMS protocols have been used to explore whether changes in CST function occur 

during reaching. TMS motor responses during reaching have been consistently 

demonstrated with surface electrodes placed on the muscles of interest (Hunter, Sacco 

and Turner 2011; Groppa et al., 2012; Orban de Xivry et al., 2013). Responses 

investigated during the preparation phase and execution phase of motor reaching 

include both physiological changes (e.g. MEPs) as well as movement parameter 

changes (e.g. movement velocity and reaction time).   

SP-TMS delivered to the M1 in reaching paradigms have shown changes in MEP 

amplitude. For example, during the preparation phase of right-arm reaching (towards 

the body), Hunter, Sacco and Turner (2011) revealed that the biceps brachii (BB) 

exhibited larger MEP responses compared to the triceps brachii (TB). However, 

reaching away from the body resulted in no differences in MEP amplitude between the 

BB and TB. Time specific differences related to MEP amplitude have also been found. 

For example, MEP responses in the BB was larger compared to the TB when TMS was 

delivered closer to movement onset. PP-TMS studies have also shown changes in 

physiological responses during preparation for reaching, including a reduction in SICI 

and an increase in ICF prior to movement onset (Floeter and Rothwell, 1999; Reynolds 

and Ashby, 1999; Nikolova et al., 2006; Koch, et al., 2008a; Hunter, Sacco and Turner, 

2011). Therefore, changes in the balance of SICI and ICF mechanisms in the M1 can 

occur before the onset of movement, even if the MEP amplitude appears not to 

significantly change. rTMS protocols targeting the left and right M1 during motor 

preparation have also demonstrated increased motor cortical excitability and decreased 

inhibition at approximately 140ms before movement execution (Gilio et al., 2008; 

Massie et al., 2014).  

Other physiological changes that have been explored with TMS protocols during 

reaching preparation includes the cortical silent-period. As previously mentioned, TMS 

to the M1 results in muscle contraction and MEPs occur (Klomjai, Katz and Lackmy-

Vallée, 2015). However it should be noted that following the MEP there is a pause in 

EMG activity which is known as the cortical silent-period (Ahonen et al., 1998). 
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Therefore, whilst MEPs are based on excitatory responses, the cortical silent-period is 

based on inhibitory responses facilitated by GABAb interneurons synapsing on 

pyramidal neurons (Inghilleri et al., 1996; Ahonen et al., 1998; Poston et al., 2012). 

Studies have shown that TMS delivered during cue presentation in reaction time tasks 

can delay contralateral arm responses (Day et al., 1989; Hannah et al., 2018). 

Additionally, Ibanez et al., (2018) reported that TMS delivered 30ms, 60ms and 200ms 

before a subject’s average movement led to a delayed response, and researchers have 

attributed such delays to the silent-period phenomenon (Day et al., 1989; Hannah et al., 

2018; Ibanez et al., 2018). Based on such findings, it can be argued that TMS can cause 

a disruption to movement preparation in the studies conducted in this thesis by 

generating the cortical silent-period. 

Whilst the physiological changes associated with upper-limb reaching have mainly 

focused on motor preparation responses, behavioural changes have focused on 

execution of motor responses involving reaction time, peak velocity and errors made 

during reaching (e.g. trajectory errors). Reaction time has been reported to be affected 

with TMS stimulation delivered during movement preparation. For example, Busan et 

al., (2012) found that TMS to the parietal lobe led to an increase in reaction time when 

TMS was delivered at the starting phase of reaching preparation, but a decrease in 

reaction time when TMS was delivered mid-way through the preparation phase of a 

reach. Similar findings have been noted when stimulating parietal regions near the 

intraparietal sulcus. For instance, Busan et al., (2009) found a decrease in reaction time 

when TMS was administered at approximately half of the mean reaction time among 

subjects. With regards to motor execution, Hunter, Sacco and Turner (2011) found that 

TMS to the M1 during reaching towards different targets (135° and 270° on a visually 

displayed “dart-board”) did not lead to any significant changes in normal reaching 

trajectories. Studies that have targeted other regions with TMS have also demonstrated 

similar results. For example, Della-Maggiore et al., (2004) revealed no significant 

changes in reaching trajectories during normal reaching when TMS was delivered to 

both the posterior parietal cortex (PPC) and the occipital lobe following movement 

onset. However, it is not known if using TMS to target other regions of the wider motor 

network during reaching preparation and execution may lead to different behavioural 

findings.  
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1.4.2 Motor adaptation 
TMS protocols have been used in both motor skill learning and motor adaptation 

studies. However, before exploring this it is important to consider the differences 

between ‘motor skill learning’ and ‘motor adaptation’ because the two often fall under 

the general term ‘motor learning’, and this project concerns motor adaptation only.  

Motor adaptation is based on modifying a motor skill through an error driven process 

(Martin et al., 1996; Malone, Vasudevan and Bastian, 2011) compared to motor skill 

learning which is based on learning new information to acquire a new motor skill (Luft 

and Buitrago, 2005). Motor adaptation is also studied with force-field paradigms where 

individuals gradually learn to adjust their motor behaviours towards forces administered 

by a robotic device (Stockinger, Focke and Stein, 2014). On the other hand, motor skill 

learning has been investigated with motor sequence paradigms, which are tasks 

associated with learning motor information in a particular arrangement (Morin et al., 

2008; Weiermann, Cock and Meier, 2010). During motor adaptation, behaviour can be 

unlearned (i.e. disappears when the perturbation disappears) and therefore has short-

term effects (Reisman, Block and Bastian, 2005; Krakauer and Mazzoni, 2011) whereas 

motor skill learning has long term-effects (Luft and Buitrago, 2005). 

1.4.2.1 TMS during motor adaptation  
Corticospinal excitability has been investigated with TMS protocols (SP and PP) in 

motor adaptation paradigms. Studies have mainly explored differences in MEP 

amplitude in force-field reaching compared to normal reaching. For example, the BB 

muscle has been found to exhibit larger MEP responses during motor adaptation 

compared to normal reaching (Hunter, Sacco and Turner, 2011). Similarly, Orban de 

Xivry et al., (2013) revealed significant increases in peak-to-peak MEP amplitudes 

during force-field reaching in the BB compared to the TB.  

The direction of a reach in force-field paradigms has also been shown to have an impact 

on physiological responses in different muscles. For example, the results from Orban de 

Xivry et al., (2013) concluded that reaching towards a south-east direction led to 

increased MEPs in BB, whereas reaching towards a north-west direction (135° target) 

increased activity in the TB and deltoid muscles. Therefore, there is direction-specific 

tuning of the corticospinal excitability (Orban de Xivry et al., 2013). PP-TMS 

paradigms of motor adaptation have also illustrated changes in physiological 

mechanisms. For example, SICI has been found to be reduced in the BB and TB nearer 
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to movement onset following motor adaptation (Hunter, Sacco and Turner, 2011). This 

finding suggests that SICI focuses the excitatory drive to specific muscles before 

movement in the force. SICI and ICF have also been found to be modified with regards 

to the factor of time. For instance, following motor adaptation in a north-west direction 

(135° target) a significant reduction in SICI was found at 190ms, whereas ICF was 

significantly increased at 160ms during reaching preparation  (Hunter, Sacco and 

Turner, 2011).  

Behavioural changes have also been noted during motor adaptation. For example, errors 

during reaching are increased during the initial stages of motor adaptation, however this 

gradually reduces trial by trial following additional blocks of force-field reaching 

(Hunter, Sacco and Turner, 2011; Pizzamiglio et al., 2017a; Pizzamiglio et al., 2017b). 

Errors made in motor adaptation when TMS has been delivered to regions of the motor 

network have also been studied. For example, Della-Maggiore et al., (2004) found 

significant errors in reaching trajectories during motor adaptation when SP-TMS was 

delivered to the left posterior parietal cortex (PPC). They also reported no errors in 

reaching trajectories when an area of the visual cortex was stimulated during motor 

adaptation. This was important as it suggested that the PPC had a specific role in motor 

adaptation but not in normal un-perturbed reaching (see earlier). Other kinematic 

measures such as movement onset and offset of reaching, movement velocity and 

movement duration have not been studied extensively with TMS paradigms.  

A key aim of this thesis is to not only to explore neural mechanisms of reaching during 

motor adaptation, but to also investigate how TMS delivered to different cortical 

regions affects the kinematic behavioural responses of simple reaching and motor 

adaptation. Several cortical regions play a role in both reaching and motor adaptation. 

These regions include areas surrounding the M1 (e.g. the PPC, the SMA and the PMC) 

(Halsband et al., 1993; Krebs et al., 1998; Baizer, Kralj-Hans and Glickstein, 1999; 

Landi, Baguear, and Della-Maggiore, 2011; Shum et al., 2011; D’Angelo and Casali, 

2012; Panouilleres et al., 2015; Borich et al., 2015; Chang et al., 2015). Other nodes in 

the motor network include associative cortical and subcortical regions (e.g. prefrontal 

cortex, basal ganglia and the cerebellum) (Goldman-Rakic 1987; Shima et al., 2007; 

Overduin, Richardson and Bizzi, 2009; D’Angelo and Casali, 2012). Before addressing 

the roles of specific cortical areas, it is important to outline the structure of the cortex 

(e.g. different cortical layers) and the ways in which the motor system governs motor 
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output. Section 1.5 therefore outlines the 1) human motor system, 2) other motor-related 

cortical regions that contribute to reaching behaviours, 3) the effects of TMS to these 

regions, and 4) the ways in which responses are altered when the motor network is 

impaired. 

1.5 The human motor system  
Numerous cortical regions make up the human motor system, including the posterior 

parietal cortices (PPC), the supplementary motor area (SMA), the pre-motor cortices 

(PMC), the cerebellum as well as the pre-frontal cortex, and regions of the basal ganglia 

(Dum, Levinthal and Strick, 2016). However, the key pivotal structure within the motor 

system is the primary motor cortex (M1) which is situated in the dorsal region of the 

frontal lobe (Miyachi et al., 2005). To move voluntarily, the M1 sends complex 

descending signals via the CST to motor neurons that innervate skeletal muscles (Drew, 

Prentice and Schepens, 2004). The corticospinal pathway crosses at the brainstem level 

of the neuraxis as it descends, so that the right side of our brain is responsible for 

moving the left side of our body and vice versa (Sun and Walsh, 2006) (figure 1.3 – 

adapted from Welniarz et al., 2017).  

The human cortex contains different cortical layers, including layer I (the molecular 

layer), II (the external granular layer), III (external pyramidal layer), IV (internal 

granular layer), V (internal pyramidal layer) and VI (multiform later) (figure 1.4A - 

figure adapted from Mitchell and Patterson 1954 cited in, Crossman and Neary, 2015). 

These layers contain different types of neurons that have different projections (e.g. 

afferent and efferent) and different functions (e.g. excitatory and inhibitory) (Briggs, 

2010). Layer I is made up of axonal projections (from local regions), dendrites and 

fusiform cells. Layers II and III on the other hand contain pyramidal neurons (with the 

majority being found in layer III). Pyramidal neurons are glutamatergic, have an 

excitatory function, and communicate with other cortical structures via axonal 

projections (DeFelipe and Fariñas, 1992; Spruston, 2008; Tjia et al., 2017). Pyramidal 

neurons in layer II and III enable both local and distant communication between 

different cortical regions via long axonal projections (Fame, MacDonald and Macklis, 

2010; Tjia et al., 2017). For example, it has been found that pyramidal neurons in layer 

III contain axons that project to regions such as the parietal cortices and the temporal 

gyrus (Goldman-Rakic, 1987; Pierri et al., 2001). Axonal projections in layer III end at 

the thalamic nucleus. It has been suggested that the thalamic nucleus facilitates the 
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excitatory functions of pyramidal neurons in layer III (Giguere and Goldman-Rakic, 

1998; Pierri et al., 2001). Axons from regions such as the somatosensory and premotor 

areas also contribute to CST functions, more specifically their projections facilitate 

different phases of motor behaviours (Ueno et al., 2018). For example, Ueno et al., 

(2018) reported that both sensory and motor responses are combined to enable grasping 

and retrieving during reaching, as outlined in section 1.4.1 and figure 1.4B (adapted 

from Briggs et al., 2018).  

Layer IV contains pyramidal and stellate cells (stellate cells are also excitatory) which 

are similarly distributed within the layer (Meyer et al., 1992; Schubert et al., 2003). The 

two cells do however have different properties with regards to their connecting 

pathways (Alonso and Klink, 1993; Alexander and Hasselmo, 2018). For example, 

stellate cells have been reported to have direct connections with various sub-

hippocampal regions, however the same has not been noted regarding pyramidal cells 

(Alexander and Hasselmo, 2018).  Studies have also revealed that while the excitatory 

functions of stellate neurons rely on monosynaptic excitatory inputs within the same 

layer, pyramidal neurons receive further excitatory inputs from other layers of the 

cortex (Schubert et al., 2003). Layer V contains large pyramidal neurons and the most 

extending axonal projections to different cortical regions, including the pons (Harris and 

Shepherd, 2015; Tjia et al., 2017). Studies have revealed that pyramidal neuronal 

dendrites in layer V extend to the pia matter, however this is not the case for pyramidal 

neurons in other layers, such as II and III (Spruston, 2008; Tjia et al., 2017). The 

pyramidal neurons in layer V also have higher action potential firing thresholds  

compared to other layers of the cortex and obtain strong monosynaptic inputs from 

stellate neurons in layer IV (Feldmeyer, Roth and Sakmann, 2005; Petersen and 

Crochet, 2013; Tjia et al., 2017).  

Layer VI contains pyramidal neurons and non-pyramidal neurons, including stellate 

cells and fusiform neurons (Briggs, 2010). These neurons play different roles in 

receiving and transmitting signals, for instance pyramidal neurons project to other 

layers of the cortex (e.g. layer IV and V), whereas non-pyramidal neurons such as 

stellate and fusiform cells mainly have local projections that are confined to layer IV 

(Briggs, 2010). Inhibitory cells are present in layer VI, and these are also found in layer 

IV. The neurons found in layer VI have distinct functions, all of which play an 
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important role in regulating and enabling cortical processing between different 

structures (Briggs, 2010).  

In the M1, cortical layers differ in terms of 1) cell distribution, and 2) axonal projections 

(see section 1.5.1 below). As this thesis is concerned with the motor network, it is 

important to highlight the ways in which the different cortical layers of the M1 enable 

motor output (specifically reaching) to take place.  

1.5.1 Cortical layers of the M1  
Excitatory responses in the M1 are a result of pyramidal neurons that project onto 

various cortical structures which enable the processing of 1) sensori-motor information 

(via cortico-cortical projections), 2) cerebellar information (via thalamo-cortical 

projections) and 3) modulatory information (via neuro-modulatory projections) 

(Donoghue and Wise, 1982; Weiler et al., 2008). Cortical layers in the M1 have varied 

cell distribution levels (Weiler et al., 2008; Castro-Alamancos, 2013; Harris and 

Shepherd, 2015; Tjia et al., 2017). Layer I of the M1 does not contain many pyramidal 

neurons, however it does have a horizontal axonal system which has resulted in the 

formation of dense synapses within its layer (Douglas and Martin, 2004; Harms et al., 

2008; Weiler et al., 2008). The connecting inputs from other regions into layer I 

facilitates neural communication between different cortical regions, and also aids the 

learning process (Cauller, 1995; Sanes and Donoghue, 2000; Harms et al., 2008). For 

example, Harms et al., (2008) found that 7 days of repetitive motor learning in rats 

resulted in significantly greater synaptic strength in layer I of the forelimb motor cortex 

representation, as measured by slice recordings (Harms et al., 2008). Synaptic 

connections in the M1 rely on descending pathways in layers II and III, which converge 

onto both corticospinal neurons and pyramidal neurons in layer V (Kaneko et al., 2000; 

Weiler et al., 2008).  

Additionally, layers II and III in the M1 have both efferent and afferent projections 

which facilitate neural communication in the motor circuitry (Kim et al., 2016a). The 

existence of layer IV in the M1 has been questioned because staining methods have 

only illustrated small sets of neurons in its layer (García-Cabezas and Barbas, 2014). 
However, it has been suggested that densely packed neurons in layers III and V has 

resulted in the hidden visibility of layer IV (García-Cabezas and Barbas, 2014). 

Labelling neuronal tracers (via markers) in layers III and V in primates has provided 
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evidence for the existence of M1 layer IV (García-Cabezas and Barbas, 2014). 

Moreover, studies have shown that the connecting neural pathways from the thalamus 

(which facilitates thalamic motor output) extend to layer IV, and this has provided 

further evidence for its presence (McFarland and Haber, 2002; García-Cabezas and 

Barbas, 2014).  
Furthermore, layer V in the M1 has been argued to contain normal pyramidal neurons, 

and Betz cells (large pyramidal neurons) that extend into layer I (Betz, 1874; Castro-

Alamancos, 2013). Electrical stimulation studies have shown that M1 current flow 

oscillations are facilitated by cells in layer V, with the strongest oscillation propagations 

found in its cellular dendrites (Castro-Alamancos and Rigas, 2002; Castro-Alamancos 

2013). Layer VI in the M1 contains efferent neurons (Swadlow, 1994; Beloozerova, 

Sirota and Swadlow, 2003) that project into the sub-regions of the thalamus and this 

aids different types of motor activity including locomotion (Beloozerova, Sirota and 

Swadlow, 2003; Marlinski et al., 2012). Overall, the neuronal differences between these 

layers have led to specialised M1 functions which facilitate motor output (Castro-

Alamancos, 2013).  
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Figure 1.3: The corticospinal tract   

(A) A schematic presentation demonstrating the crossing of the corticospinal tract (as 
labelled in blue) in healthy controls which enables movement execution (i.e. the right-
cortex controls left-sided motor execution, and the left-cortex controls right-sided motor 
execution) (figure adapted from Welniarz et al., 2017).  

(B) Diffusion MRI tractography illustrating the fibres of the corticospinal tract (figure 
adapted from Dalamagka et al., 2019).  
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Figure 1.4: Layers of the cortex and motor network projections: 

(A) The ways in which cells are presented within and across cortical layers (I, III, IV, V and 
VI) are shown (figure adapted from Mitchell and Patterson 1954 cited in, Crossman and 
Neary, 2014) 

(B) Projections in the motor network are illustrated with diffusion tensor images - various 
interconnections can be seen between regions such as the M1, SMA, PMC, the insula, 
the anterior cingulate cortex as well as the middle frontal gyri (I [sagittal plane] and II 
[coronal plane]). Additional projections of sub-regions in the SMA (III) (e.g. the 
supplementary cingulate eyefield [SCEF], 6MA and 6MP) and ventral PMC (IV) (e.g. 
3a, 3b, 4 and 6v) are also shown (figure adapted from Briggs et al., 2018). 
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1.5.2 The primary motor cortex (M1) 
Cortical and electrical stimulation studies led to the discovery of the homunculus which 

is a map of the body’s muscle representations that is contained in the M1 (Catani, 2017; 

Penfield and Rasmussen, 1950) (see figure 1.5B – Murphy et al., 2008). Penfield’s 

homunculus has however been questioned because although studies have shown that 

muscles can be stimulated individually, they have also shown that muscle responses are 

not only restricted to the M1 (Purves et al., 2001; Catani, 2017). For example, responses 

have also been evoked in the postcentral and precentral gyrus (Catani, 2017). 

Stimulation studies have also found that muscle representations can overlap (see figure 

1.5C – Catani, 2017; Penfield and Boldrey, 1937). Despite the controversies 

surrounding the homunculus, its discovery played a key role in the field of cortical 

stimulation and has aided surgical mapping procedures (Catani, 2017). TMS studies use 

specific coil positionings in order to target muscle(s) of interest and record their activity 

with surface electromyography (EMG) (figure 1.7B and 1.7C - Davidson, Bolic and 

Tremblay, 2016 and Abdalla, 2011). Recordings can therefore be visualised and 

quantified in order to accurately identify the muscle(s) (region of the homunculus) that 

has been stimulated.   

As well as containing muscle representations, the main role of the M1 is to regulate the 

control and output of movements (Sanes and Donoghue 2000; Chang et al., 2015). It 

does this by directing movement signals (related to movement timing) towards the 

spinal cord which leads to an interaction with neuronal motor circuits, resulting in 

motor output (Alexander and Crutcher, 1990; Desmurget and Grafton, 2000; Scott, 

2004; Teka et al., 2017). This is important in motor reaching paradigms that have time 

requirements to reach a specific target (Hunter, Sacco and Turner, 2011; Pizzamiglio et 

al., 2017a; Pizzamiglio, et al., 2017b) Therefore, simple movements already require a 

complex interaction between different systems including the nervous and 

musculoskeletal systems (Teka et al., 2017). Furthermore, the role of the M1 in motor 

execution has been attributed to its connections to various motor related regions, 

including the SMA, PPC, PMC and the cerebellum (Tanji, 1994; Lotze et al., 1999; 

Whitlock, 2017). Different neural responses can be facilitated with M1 stimulation, and 

this is outlined below.   
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1.5.2.1 TMS delivered to the human M1  
When TMS is delivered to the M1 of one hemisphere, a resulting corticospinal neural 

volley can be recorded as an MEP (Hallet, 2007) in muscles in the contralateral limb. 

The human motor cortex contains some of the largest pyramidal neurons which have 

numerous inputs and multiple functions (Kaas, 2000; Young, Collins and Kaas, 2013). 

Pyramidal neurons have excitatory functions in the cerebral cortex and are known as 

projection neurons (Bekkers, 2011). In layer V of the M1, these neurons transmit axons 

along the spinal cord for muscle function.  

When TMS is delivered to the M1 (i.e. to a specific muscle representation in Penfield’s 

Homunculus) it causes neuronal activity in a plane that is parallel to the coil and the 

surface area of the brain (Klomjai, Katz and Lackmy-Vallée, 2015). M1 TMS results in 

the transynaptic activation of pyramidal neurons, leading to the production of 

descending volleys (from pyramidal axons) which project onto the CST (Klomjai, Katz 

and Lackmy-Vallée, 2015). This causes an activation of motor neurons, leading to a 

contraction in the muscle of interest - i.e. an MEP is produced (Klomjai, Katz and 

Lackmy-Vallée, 2015). The MEP can be recorded using surface electromyographic 

(EMG) electrodes and corticospinal excitability can be quantified by measuring the 

peak-to-peak MEP amplitude (Summers, Chen, Kimberley, 2017). This process is 

graphically illustrated in figure 1.6 (Klomjai, Katz and Lackmy-Vallée, 2015). The 

degree of corticospinal excitability that one exhibits depends on a range of 

physiological factors. For example, glutamate transmittors have been argued to have an 

excitatory influence on connections between cortico-cortical axons and corticospinal 

neurons, and have been reported to play an important role in enabling rapid cortical 

synaptic transmission (Douglas and Martin 1998 cited in, Shepherd, 2004; Klomjai, 

Katz and Lackmy-Vallée, 2015). On the other hand, transmittors ranging from GABA 

and serotonin have been associated with inhibitory functions and have been found to 

reduce peak-to-peak MEP responses (Klomjai, Katz and Lackmy-Vallée, 2015).  

The physiological activity evoked with TMS differs from TES activity (Klomjai, Katz 

and Lackmy-Vallée, 2015). TMS causes an indirect activation of corticospinal neurons 

via synaptic inputs. This has been illustrated by the different types of waves that are 

induced when a corticospinal volley is evoked with TMS, by which indirect waves (I-

waves) as opposed to direct waves (D-waves) are first observed with stimulation (Di 

Lazzaro et al., 1998; Hallett, 2000). D-waves are based on direct responses from 
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stimulated axons, whereas I-waves occur due to stimulated corticospinal neurons 

(Rossini et al., 2015) and are more indicative of TMS evoked activity (Terao and 

Ugawa, 2002). Contrastingly with TES, the corticospinal volleys observed include D-

waves, followed by late I-waves, and early I-waves. Based on this observation it has 

been argued that TES activates neurons in a plane vertical to the brains surface area, 

which differs from TMS which activates neurons in a plane that is parallel to the surface 

area (Klomjai, Katz and Lackmy-Vallée, 2015). Different factors can effect the types of 

waves that are recruited, for instance in some participants TMS at a high intensity can 

result in D-waves being observed prior to the I-waves (Klomjai, Katz and Lackmy-

Vallée, 2015). However, in most participants, the I1 wave is recruited first, followed by 

the I2 and I3 wave (Klomjai, Katz and Lackmy-Vallée, 2015). Furthermore, there are 

various types of TMS coil orientations that can induce different electrical currents in the 

brain and can lead to different physiological mechanisms being observed (see figure 

1.7C – Abdalla, 2011). For example, a lateral-medial (LM) induced current delivered to 

M1 results in late I-waves, whereas a posterior-anterior (PA) induced current first elicits 

an I1 wave, followed by late I-waves when stimulation intensity is increased (Di 

Lazzaro and Ziemann, 2013). On the other hand, an anterior-posterior (AP) induced 

current results in smaller and postponed I-waves (see figure 1.7A - Di Lazzaro and 

Ziemann, 2013). Figure 1.7A illustrates extrapyramidal recordings, although not usually 

elicited during surface EMG recording of MEPs, they have helped demonstrate the 

extent of indirect presynaptic activity and direct cortical axonal activity (i.e. I-waves 

and D-waves) (Di Lazzaro and Ziemann, 2013). 

Differences in physiological responses such as the peak-to-peak MEP amplitude have 

also been observed with varying coil directionalities (Mills, Boniface and Schubert, 

1992; Abdalla, 2011; Hallett, 2007). For example, Mills, Boniface and Schubert (1992) 

and Abdalla (2011) found that the largest MEP amplitude from the M1 (for the FDI 

muscle – Mills et al., 1992, and for the BB muscle - Abdalla, 2001) was evoked with 

PA direction and the coil oriented 45° away from the midline (figure 1.7B – Figure 

adapted from Abdalla, 2011). Other cortical regions targeted with TMS do not have the 

same experimental output as the M1 (i.e. an MEP; Janssen, Oostendorp and Stegeman, 

2015). Sections 4.1, 5.1 and 8.1 describe the neural mechanisms and behavioural 

responses that have been observed when TMS is delivered to the M1 (left and right) 

during both normal (experiment 1) and novel (experiment 2) reaching.  
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Figure 1.5: The primary motor cortex 

(A) The first image in the panel is a canonical figure of the M1 and its location in the rostral 
segment of the frontal lobe (green) is demonstrated (figures adapted from the Florida 
Institute for Neurologic Rehabilitation, Inc: Atlas of Brain Injury and Anatomy: 
http://www.finr.net/).  

(B) Penfield’s homunculus is shown and the arrangement of the different muscles within 
the motor cortex can be seen ranging from the leg to the hip and trunk muscles (from 
Murphy et al., 2018).  

(C) The motor responses elicited in different areas of the M1 are shown, demonstrating that 
muscle representations are not confined to one particular segment of the M1 (i.e. there 
are overlapping muscle representation responses during stimulation (data based on 
Penfield and Boldrey, 1937, figure adapted from Catani, 2017).  
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Figure 1.6: TMS to the human motor cortex  

The mechanisms involved in producing MEPs with TMS to the human motor cortex is shown - 
when TMS is applied to the M1, pyramidal neurons are activated and this produces descending 
volleys that project onto the corticospinal tract. This activates motor neurons and leads to an 
MEP which can be quantified by measuring its peak-to-peak amplitude (figure adapted from 
Klomjai, Katz and Lackmy-Vallée, 2015).  
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Figure 1.7: The effect of coil directionality on responses  

(A) As previously mentioned in section 1.5.2.1, these extrapyramidal recordings 
demonstrate the different I-wave responses with varying coil orientations (figure 
adapted from Di Lazzaro and Ziemann, 2013). An LM induced current leads to late I-
waves, compared to a PA current which can result in later I-waves when stimulation 
intensity is increased. The AP induced current on the other hand leads to both smaller 
and delayed I-waves (Di Lazzaro and Ziemann, 2013).  

(B) Different types of coil orientations are demonstrated (figure adapted from Davidson, 
Bolic and Tremblay, 2016) (Canonical brain figures adapted from an MRIcron template 
– Rorden and Brett, 2000).  

(C) Changes in the BB muscle MEP responses with different coil orientations are illustrated 
- the largest MEP from the BB was obtained with PA inducted current compared to an 
LM induced current, with the coil positioned 45° away from the midline (figure adapted 
from Abdalla, 2011). 

A. 

B. C. 
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1.5.2.2 Factors effecting MEP responses 
There are different factors that can influence the output of MEP responses which are 

important to take into account. These include brain injury (either traumatic or caused by 

neurological impairments), age and gender (Chistyakov et al., 2001; McAllister, 2011; 

Prins et al., 2013).  

1.5.2.2.1 Traumatic brain injury (TBI) 
Brain injury can either be caused by external factors or by damage that has occurred due 

to neurological disease (McAllister, 2011; Prins et al., 2013). An example of brain 

injury caused by external factors includes traumatic brain injury (TBI) (McAllister, 

2011). In cases of TBI, contact occurs between cortices and the bony ridges of the skull 

(McAllister, 2011). In severe cases, TBI can lead to permanent irreversible damage and 

its neurological impairments include white matter atrophy, demyelination and apoptosis 

(Newcombe et al., 2011; Stocchetti and Zanier, 2016).  

Abnormal MEP responses have been reported among TBI patients. For example, 

researchers have demonstrated that TBI causes less excitatory MEP responses, 

particularly among patients with extreme brain trauma compared to minor head trauma 

(Chistyakov et al., 2001; Bernabeu et al., 2009). The reduced MEP amplitude has been 

suggested to be a result of neuronal and axonal damage which effects both motor 

excitability and motor conduction (Chistyakov et al., 2001). Changes in corticospinal 

excitability as a result of brain injury depend on the extent of the injury (Bernabeu et 

al., 2009). Although synaptic re-organisation can occur following TBI, this may not be 

the case for patients with extreme TBI because cortical damage can lead to impaired 

surrounding neural networks which can halt the recovery process (Blumbergs, Jones 

and North, 1989; Povlishock and Katz, 2005; Bernabeu et al., 2009; Castellanos et al., 

2011). Figure 1.8A (Bernabeu et al., 2009) illustrates varying MEP amplitudes among 

TBI patients with different levels of diffused axonal injury (DAI). Other types of brain 

injury that can also impair physiological functioning and effect inhibitory and excitatory 

mechanisms, include those that arise from neurological conditions, such as multiple 

sclerosis (MS), and stroke.  

1.5.2.2.2  Multiple sclerosis (MS)  
MS is an inflammatory condition which effects the central nervous system (CNS) and 

results in de-myelinated plaques (Calabresi, 2004; Goldenberg, 2012). These plaques 

have been found in both white and grey matter and have been characterised by impaired 
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myelin sheaths and degenerated axons (Brück et al., 1996). The demyelination that 

occurs is caused by impaired immunological cellular responses, as well as glial cell 

death (glial cells are the primary cells responsible for myelin formation) (Brück et al., 

1996; Ghasemi, Razavi and Nikzad, 2017). The condition results in slower impulse 

transmission between neural networks (Ghasemi, Razavi and Nikzad 2017). 

Researchers have demonstrated white matter structural impairments in MS patients, 

particularly in the corticospinal tract (Raz et al., 2010; Han et al., 2017). 

MEP responses have been reported to be disrupted among MS patients. For example, 

Brum, Cabib and Valls-Solé (2016) noted that MS patients had a longer MEP duration 

at rest (FDI muscle) compared to healthy controls. Researchers have also reported a 

decrease in peak-to-peak MEP amplitude, whereas others have noted no MEP response 

during cortical stimulation in MS patients (see figure 1.8B - Fernandez et al., 2013) 

(Fernandez et al., 2013; Kale et al., 2014).  

The different types of MEP responses that have been found in MS patients, have been 

suggested to correspond to the different types of disruption caused by MS. For instance 

decreased MEP amplitude has been associated with axonal damage, whereas increased 

MEP conduction time has been linked to de-myelination (Fernandez et al., 2013). 

Overall, the damage caused to white matter structures in MS detrimentally affects the 

corticospinal tract and its projections which facilitate healthy MEP responses (Diehl et 

al., 2004). 

1.5.2.2.3  Stroke 
Stroke patients demonstrate abnormal responses to cortical stimulation (Pennisi et al., 

1999; Chae et al., 2002), however the degree of abnormality exhibited does depend on 

the nature of the lesion caused by the stroke. The main types of stroke include ischaemic 

stroke and haemorrhagic stroke (intracerebral or subarachnoid), with ischaemic stroke 

being the most common of the two (Musuka et al., 2015; Hui, Taddi and Patti, 2019). In 

an ischaemic stroke, there is a sudden reduced blood flow in the brain which causes 

destruction to various neurons and glial cells, resulting in focal damage and cellular 

death (Xing et al., 2012). The stages of a haemorrhagic stroke initially begin with 

clotted blood tissues, followed by oedema and cellular death (Kitago and Ratan, 2017). 

An intracerebral haemorrhagic stroke causes bleeding within the brain, whilst a 

subarachnoid haemorrhagic stroke causes bleeding between the pia mater and arachnoid 

space (Naidech, 2011). Physical impairments caused by a stroke include weakened 
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and/or loss of motor function (Tatemichi et al., 1994; Raghavan, 2015). Whishaw, 

Alaverdashvili and Kolb (2008) reported that limb dysfunction caused by a stroke can 

result in either; a) learned non-use of the limb, b) learned bad-use of the limb, whereby 

participants learn to use the paralysed limb in a non-typical way, which can result in 

poor movement accuracy, and c) failure to remember motor behaviours.  

The damage caused to the motor network due to a stroke is vital when exploring cortical 

stimulation responses among stroke patients (Darling, Pizzimenti and Morecraft, 2011). 

The effects of lesions within surrounding motor regions can result in an inhibition in 

signal transmission from the M1 to the spinal cord which is involved in motor output 

behaviour (Raghavan, 2015). The impaired communication between the M1 and spinal 

cord can lead to delayed responses, which has been shown experimentally with cortical 

stimulation to the M1 (Pennisi et al., 1999; Chae et al., 2002). For example, Pennisi et 

al., (1999) investigated MEP responses in patients following an ischaemic stroke; 48 

hours post-stroke, and 1 year post-stroke. Their findings revealed an absence in MEP 

responses after the 48 hour period, however the 1-year follow up did reveal MEP 

responses in patients, although the responses were both delayed and small in amplitude.  

MEPs have been used as a measure of functional recovery post-stroke (Pennisi et al., 

1999) (figure 1.8C – Stinear, 2017 based on data from Byblow et al., 2015). For 

instance, larger MEP amplitudes have been illustrated among patients with improved 

recovery post-stroke (Escudero et al., 1998; Kim et al., 2015; Kim et al., 2016b). 

Network re-organisation following a stroke can contribute to the recovery process, 

which can lead to improved MEP responses during cortical stimulation (Nudo and Friel, 

1999; Byrnes et al., 1999; Thickbroom, et al., 2002). More specifically, plasticity can 

occur in motor regions other than the motor cortex, ranging from the SMA to the PMC, 

which can facilitate corticospinal projection among patients and thus aid the 

rehabilitation process (Dum and Strick, 1991; Thickbroom et al., 2002; Thickbroom et 

al., 2004).  

1.5.2.2.4 Age and gender 
Demographic factors have an effect on physiological responses during stimulation. 

During healthy aging, atrophy occurs due to diminished synaptic development which 

leads to cell death (Scahill et al., 2003; Peters, 2006; Pascual-Leone et al., 2011). This 

can lead to a general decline in cognitive and physical functions, including poor motor 

skills (Buchman and Bennett, 2011). For example, in a go-task, Bedard et al., (2002) 
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found slower reaction times in older adults compared to younger adults. Similar results 

were obtained in a PEG-board task (a paradigm designed to assess fine motor control), 

whereby older-aged participants performed more slowly than middle-aged participants 

(Hamilton et al., 2017).  

Paired pulse TMS protocols have been used to explore the impact of age on 

corticospinal excitability (McGinley et al., 2010; Opie and Semmler, 2014) For 

example, Opie and Semmler (2014) found that during muscle activation, short-interval 

intracortical inhibition (SICI) was reduced in older-aged subjects compared to younger 

subjects. They also found a decrease in long-interval intracortical inhibition (LICI) 

responses during rest among the older subjects. The decrease in LICI has been linked to 

age-related changes that occur in neurotransmitters (namely GABAb) which can 

influence inhibition processes (Werhahn et al., 1999). On the other hand, McGinley et 

al., (2010) noted an increase in LICI among older subjects compared to younger 

subjects. Therefore mixed findings have been noted, but this can be attributed to 

different factors, including the intervals used in the paired pulse TMS protocols and the 

muscles explored (Opie and Semmler, 2014). Individual subject differences could also 

be a reason for the inconsistency in findings (Opie and Semmler, 2014).  

TMS studies exploring gender differences in MEP responses have also reported mixed 

findings between males and females. For example, Livingston, Goodkin and Ingersoll 

(2010) found that gender did not have an influence on three key MEP features; motor 

threshold, peak-to-peak amplitude and motor conduction time.  On the other hand, 

Tobimatsu et al., (1998) reported a difference between males and females with regards 

to MEP latency and motor conduction time, but only in specific muscles (leg as opposed 

to hand). Surgical experiments which require motor cortex mapping have similarly 

demonstrated this difference - with females exhibiting shorter latencies than males 

(Picht, et al., 2012). These findings have been argued to be a result of physical 

differences between males and females, such as height (Säisänen et al., 2008; Sollmann 

et al., 2017). For example, Sollmann et al., (2017) found that matching physical features 

such as, height and upper limb length, led to no significant differences in MEP 

responses between males and females. 
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Figure 1.8: Patient MEP responses  

(A) MEP responses from TBI patients with varying levels of DAI: 1) healthy controls, 2) 
patients with mild DAI, without motor function impairment, 3) patients with severe 
DAI without motor function impairment, and 4) patients with severe DAI with motor 
function impairment. The MEP responses are less excitatory in severe TBI cases (4), 
compared to mild and healthy cases - (figure adapted from Bernabeu et al., 2009).  

(B) Peak to peak MEPs responses from the lower limb in MS patients are shown (outlined 
in red). A smaller MEP amplitude was found in the right lower limb compared to the 
left lower limb whereby no MEP was elicited during stimulation (figure adapted from 
Fernandez, et al., 2013).   

(C) The association between upper-limb recovery and MEP responses in patients 6 months 
following a stroke is shown. Recovery was quantified as ‘change in upper-extremity 
Fugl-Meyer score’. A relationship was found between available improvement and 
actual improvement in MEP-positive patients, whereas this was not the case for MEP-
negative patients. MEP responses therefore provide an important indication of the 
recovery process in stroke patients (figure from Stinear, 2017, based on data from 
Byblow et al., 2015).  
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1.6 The posterior parietal cortex (PPC) 
The PPC resides posterior to the somatosensory cortex (figure 1.9A - figure adapted 

from the Florida Institute for Neurologic Rehabilitation, Inc: Atlas of Brain Injury and 

Anatomy: http://www.finr.net/), and throughout history it has evolved in terms of its 

structure and function. For example, studies in early placental mammals revealed that 

the PPC did not contain many multisensory segments, whereas studies in developed 

mammals have revealed that various PPC multi-sensory segments exist, which can be 

probed with TMS to elicit different behavioural responses, ranging from reaching to 

grasping (Kaas and Stepniewska, 2016). In human subjects compared to non-human 

primates (such as the macaque) the PPC differs in its morphology and functionality 

(Hill et al., 2010; Kaas and Stepniewska, 2016). For example, in humans the region is 

extended (i.e. morphology) and it has also been suggested to have additional functional 

areas related to gesturing behaviours (Frey 2008; Konen et al., 2013; Kaas and 

Stepniewska, 2016). 

The various motor related functions of the PPC include novel reaching, movement 

planning, motor intent, navigation and spatial awareness (Batista et al., 1999; Connolly, 

Andersen and Goodale, 2003; Della-Maggiore et al., 2004; Kaas and Stepniewska, 

2016; Whitlock, 2017). The PPC has a vast range of connections with other structures 

(such as the SMA, M1 and the pre-frontal cortex) and this has resulted in its multiple 

motor and cognitive functions (Kass and Stepniewska 2016; Whitlock, 2017). Kaas and 

Stepniewska (2016) suggested that the neural communication between the PPC and 

other motor related regions enables successful motor responses. This has been further 

supported in clinical studies among patients with PPC impairments. For example, 

patients with optic apraxia (caused by PPC lesions) have disrupted movement control 

during reaching and grasping (Andersen et al., 2014). This has been argued to be due to 

the disruption of communication between the PPC and other motor related domains 

associated with movement control, such as the M1, PMC and the frontal cortex 

(Andersen et al., 2014). Figure 1.9B (Kaas and Stepniewska 2016) illustrates the neural 

communication between the PPC and other motor regions to facilitate motor output. 

Further evidence for the role of the PPC in motor behaviour comes from neuroimaging 

studies. For example, fMRI research has revealed significantly increased neural activity 

in the PPC during different types of motor tasks, including motor execution (typing 

http://www.finr.net/
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task) (Gordon et al., 1998), motor planning (virtual driving task among taxi drivers) 

(Maguire, Woollett and Spiers, 2006) and spatial navigation and memory (navigation 

memory task in patients with PPC lesions) (Ciaramelli et al., 2010; Whitlock, 2017). 

Studies have also revealed the role of the PPC in motor reaching, for example evidence 

has illustrated that a posterior parietal reach (PPR) region exists in humans which is 

activated during pointing tasks (Batista et al., 1999; Connolly, Andersen and Goodale, 

2003). Researchers have also found that the neurons located in the PPR region encode 

hand movement goals during a task, thus providing evidence for the functional role of 

the PPC with regards to motor intent (Batista et al., 1999; Whitlock, 2017).  

Although studies have demonstrated that the left PPC is involved in motor adaptation 

there have been some controversies regarding its role. For example, researchers have 

argued that it is unclear as to whether it is the left or the right PPC that plays a more 

important role in learning (Bedard and Sanes, 2014). Bedard and Sanes (2014) explored 

bilateral activation patterns of parietal structures when participants were performing 

reaching outward movements using an MRI compatible joystick. Their findings 

concluded that during visuo-motor adaptation learning, both the right inferior parietal 

lobe and the left superior parietal lobe had similar levels of activation, therefore making 

it hard to decifer specific roles for different parietal structures. Perfetti et al., (2011) on 

the other hand concluded that learning during a visuo-motor task was accompanied with 

greater changes in the right compared to the left PPC, as quantified with EEG methods. 

However, Della-Maggiore et al., (2004) found greater changes in the left PPC during 

TMS whilst participants were performing a motor adaptation task. Based on these 

mixed findings it can be argued that the functional differences between the right and left 

PPC remain unclear. In addition to this, previous findings have not fully investigated the 

role of a number of regions during the different phases of motor adaptation (Bedard and 

Sanes, 2014). In this thesis, both the left and right PPC will be targeted and the findings 

will aim to elucidate the functional differences between the two hemispheres during 

preparation for motor reaching.  

1.6.1 TMS to the PPC 
Targeting other cortical regions, such as the PPC with TMS, does not have the same 

experimental output as the M1 (i.e. an elicited MEP; Janssen, Oostendorp and Stegeman 

2015). However, comparable columnar arrangements exist across the cerebral cortex 

(Von Bonin and Mehler, 1971; Janssen, Oostendorp and Stegeman, 2015) and similar 
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coil principles and models (to the M1) have been developed to determine the best 

orientation for stimulating other regions. Several imaging studies (e.g. PET) have been 

conducted to create new TMS protocols for stimulating areas such as the occipital lobe, 

pre-motor cortex, supplementary motor area, parietal cortices and inferior frontal gyrus 

(Janssen, Oostendorp and Stegeman, 2015; Cona, Marino and Semenza, 2017). 

TMS protocols targeting the left and right PPC include single pulse, paired pulse and 

repetitive pulse paradigms (Della-Maggiore et al., 2004; Busan et al., 2009). Studies 

have demonstrated that the left PPC plays an important role in motor adaptation. For 

example, Della-Maggiore et al., (2004) TMS delivered to the left PPC following 

movement onset resulted in disrupted reaching trajectories, however this was not the 

case when TMS was delivered to a control region such as the occipital lobe. Repetitive 

TMS protocols targeting the left PPC was found to have an impact on motor 

synchronisation patterns in the right hand and also delayed responses during a finger 

tapping task, however this was not the case with right PPC rTMS (Krause et al., 2012). 

Based on these studies it can be argued the left PPC has important networking pathways 

with the M1, and TMS to the PPC could disrupt neural connections, resulting in delayed 

motor activity (Krause et al., 2012). Similarly Vesia et al., (2007) explored the role of 

the left and right PPC, however they employed a reaching and pointing task. They 

found that left PPC TMS disrupted the end-point of reaching whereas right PPC TMS 

caused a shift in movement trajectories and affected subject’s gaze during the task. The 

left and right PPC therefore play separate roles in motor activity.  

 

Paired pulse TMS studies have shown that TMS to the right PPC had impacted reaching 

only when targets were presented on the left-hand side rather than the right-hand side 

(Koch et al., 2008b). Most studies, have explored the effect of TMS on the PPC either 

1) following the presentation of an auditory cue (Koch et al., 2008b) or 2) when 

movement onset had occurred (Della-Maggiore et al., 2004). Therefore, it is unknown 

whether TMS delivered a range of different time points during the preparation phase of 

motor adaptation results in the same findings. This will be addressed in this thesis when 

targeting regions such as the PPC. This paragraph aimed to briefly outline details 

regarding the action of TMS on the PPC during motor reaching. Sections 6.1 and 10.1 

further describe the behavioural responses that have been observed when the PPC (left 
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and right) has been targeted with TMS protocols during both normal and novel 

reaching.  
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Figure 1.9: PPC location and a schematic presentation of neural pathways between motor 
regions and their contribution to motor behaviours 

(A) The parietal lobe is shown in green, as is the PPC which is presented by the red dotted 
line (figure adapted from the Florida Institute for Neurologic Rehabilitation, Inc: Atlas 
of Brain Injury and Anatomy: http://www.finr.net/) 

(B) The interaction between the M1, PMC and rostral region of the PPC (rPPC) is shown 
with regards to three types of domains: reaching, grasping and defence. The different 
domains of the rPPC become activated via commands that are received from different 
regions. For example, the reaching domain is activated due to 1) cerebellar and 
thalamus excitatory inputs (+) to the M1 and 2) basal ganglia excitatory inputs to the 
PMC. Overall, these connections facilitate specific rPPC domain activation (figure from 
Kaas and Stepniewska, 2016). 

A. 

B. 

http://www.finr.net/
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=4689678_nihms702116f3.jpg
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1.7 The supplementary motor area (SMA) 
The SMA is located in the frontal cortex and lies between the prefrontal cortex and M1 

cortices (Nachev et al., 2007) (figure 1.10A - figure adapted from the Florida Institute 

for Neurologic Rehabilitation, Inc: Atlas of Brain Injury and Anatomy: 

http://www.finr.net/). The functions of the SMA include; regulating posture, facilitating 

complex/demanding motor tasks, and also planning and executing movements 

(Goldberg, 1985; Tanji, 1994; Akkal, Dum and Strick, 2007; Hiroshima et al., 2014). 

Although previously thought of as one cortical structure, studies have shown that the 

SMA in fact consists of a different sub-regions (Akkal, Dum and Strick, 2007; Tanji, 

1994). For example, the rostral part of the SMA is known as the pre-SMA, and the 

caudal part is known as the SMA proper, an additional part of the SMA forms what is 

known as the supplementary eye-field (SEF) (Akkal, Dum and Strick, 2007; Tanji, 

1994).  

Evidence for the SMA sub-regions has been illustrated in neuroimaging studies which 

have confirmed distinct functions of the pre-SMA and SMA-proper (Tanji, 1994; 

Akkal, Dum and Strick, 2007). For instance, in a motor sequence learning task (button 

pressing) using fMRI methods, Hikosaka et al., (1996) concluded that the pre-SMA had 

significantly greater neural activity only during the learning procedure but not when 

movements were performed. However, the SMA-proper was significantly active during 

movement performance but not during learning. Similarly, PET scanning techniques 

have revealed less activity in the pre-SMA compared to the SMA proper in tasks that 

involved movement control (Picard and Strick, 1996; Akkal, Dum and Strick, 2007). 

The pre-SMA has been associated with motor tasks such as, motor sequencing and 

retrieving motor memories, whereas the SMA-proper has been associated with 

movement execution (Halsband et al., 1993; He, Dum and Strick, 1995; Hikosaka et al., 

1996; Alario et al., 2006). The SEF SMA sub-region plays a role in producing eye 

movements (Tehovnik et al., 2000; Fujii, Mushiake and Tanji, 2002; Nachev et al., 

2007) and evidence for both its existence and function comes from patient models 

(Nachev et al., 2007; Husain et al., 2003). For example, Husain et al., (2003) reported a 

case study of a patient with a lesion to the SEF, who had impaired eye control 

movements.  

The sub-regions communicate with each other and other areas of the motor circuit to 

facilitate motor output (Tanji, 1994). For example, the SMA-proper has direct 

http://www.finr.net/
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projections with the spinal cord (Tanji, 1994; Wang et al., 2001; Akkal, Dum and 

Strick, 2007). Furthermore, the pre-SMA is not densely connected with the M1, but 

rather with the prefrontal regions and the cerebellum which it receives input from 

(Wiesendanger and Wiesendanger, 1985; Tanji, 1994; Wang et al., 2001; Akkal, Dum 

and Strick, 2007). Furthermore, Akkal, Dum and Strick, (2007) revealed that the SMA-

proper and pre-SMA inputs arise from separate regions in the globus pallidus which has 

resulted in the distinct motor functions of these two sub-regions. Despite studies 

demonstrating differences between SMA sub-regions during motor tasks (Picard and 

Strick, 1996; Akkal, Dum and Strick, 2007) there have been controversies surrounding 

pre-SMA and SMA proper functioning. For instance, researchers have found that the 

pre-SMA and SMA-proper are similarly activated in different types of motor states 

(Wang et al., 2010). With regards to movement control, Chen, Scangos and Stuphorn 

(2010) reported that the signals originating from the pre-SMA could have an impact on 

SMA proper activity (Wardak, 2011). Similarly, Vergani (2015) reported that SMA 

motor activity is influenced by the anatomical connectivity between the pre-SMA and 

SMA proper (Lima, Krishnan and Scott, 2016). Based on such findings it could be 

argued that the connectivity between the pre-SMA and SMA proper has made it 

difficult to determine the precise functional role of SMA subregions (Wardak, 2011; 

Lima, Krishnan and Scott, 2016). This thesis will both address and consider these 

findings by using specific coil orientations to target specific sub-regions of the SMA, 

and this is further outlined below in section 1.7.1. 

1.7.1 TMS to the SMA 
Different coil positions have been used to target different regions of the SMA. For 

example, a coil handle positioned to the right has previously been used to target the pre-

SMA (Cona, Marino and Semenza, 2017), whereas a coil position which induces a 

posterior-anterior current has been used to target the SMA-proper (Terao et al., 2001).  

Repetitive TMS paradigms have mainly been implemented to explore SMA activity 

during motor related tasks. For instance, Kim et al., (2014) applied rTMS to the M1 and 

the SMA during a motor sequence task and their results showed that rTMS to the SMA 

compared to the M1 caused a significant increase in movement time. The impact of 

SMA function on other regions has also been demonstrated. For example, Oliveri et al., 

(2003) found an increase in M1 excitability (quantified by MEPs) following pre-SMA 

stimulation (Chouinard and Paus, 2010). Matsunaga et al., (2005) similarly reported 
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heightened MEP responses after the SMA had been stimulated in an rTMS paradigm 

(Makoshi, Kroliczak and Van Donkelaar, 2011).  

Differences have been found when comparing the results of pre-SMA stimulation to 

SMA-proper stimulation (Chouinard and Paus, 2010). While pre-SMA stimulation has 

been found to cause a greater disruption to tasks that have cognitive requirements 

ranging from switching to inhibition (Rushworth et al., 2002), SMA-proper stimulation 

has resulted in a disruption to 1) motor sequencing, 2) complex motor tasks and 3) 

bimanual tasks (Gerloff et al., 1997; Obhi et al., 2002; Steyvers et al., 2003) (Chouinard 

and Paus, 2010). Furthermore, Makoshi, Kroliczak and Van Donkelaar (2011) found 

that TMS to the SMA caused a disruption in movement onset responses in a load-

holding task, whereas this was not the case when an area of the visual cortex was 

stimulated. This was also noted to be time-dependent (at approximately 400ms before 

motor activity). Makoshi, Kroliczak and Van Donkelaar (2011) therefore inferred that 

the SMA plays a key role in planning and predicting behaviours prior to the movement 

occurring. Studies exploring the role of the SMA during motor adaptation have 

primarily focused on non-human primate responses (Padoa-Schioppa, Li and Bizzi, 

2004). In addition to this, SMA functioning has commonly been investigated using 

motor sequence paradigms compared to motor reaching paradigms (Gerloff et al., 1997; 

Kim et al., 2014). This thesis will address this by targeting the SMA using a novel 

reaching paradigm. Further details regarding the behavioural and neural responses that 

have been found with TMS delivered to the SMA during normal and novel reaching are 

described in section 7.1, as this section outlined experiment 4 whereby a virtual 

disruption approach was used to explore the role of the SMA in a motor control and 

motor reaching.  
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Figure 1.10: SMA location and coil position for targeting this region  

(A) The red dotted line represents the location of the SMA (figure adapted from the Florida 
Institute for Neurologic Rehabilitation, Inc: Atlas of Brain Injury and Anatomy: 
http://www.finr.net/). 

(B) Different coil positions have been used to target the sub-regions of the SMA. To target 
the pre-SMA, a coil position with the handle pointing to the right has been used (first 
image on panel B), however, to target the SMA-proper, a coil position inducing a 
posterior-anterior current has been used (second image on panel B) (positions based on 
Cona, Marino and Semenza, 2017; Terao et al., 2001) (canonical brain figures adapted 
from an MRIcron template – Rorden and Brett, 2000).  

 

Pre-SMA SMA-proper 

A. 

B. 
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1.8 The Pre-Motor cortex  
The Pre-Motor cortex (PMC) is located between the dorsolateral prefrontal cortex and 

the M1 (Kantak et al., 2012). The PMC has axonal signals that project to 1) the M1, 2) 

the corticobulbar pathway and 3) the corticospinal pathway, thus the region has a direct 

effect on motor-neurons in the brainstem and spinal cord (Purves et al., 2001). The 

PMC is an important structure that forms part of the motor circuit and one of its key 

functions is to facilitate movement selection and preparation (Beck et al., 2009; Chang 

et al., 2010). Evidence for its role in movement selection comes from studies in non-

human primates. For example, Kurata and Hoffman (1994) found that PMC lesions in 

monkeys resulted in significantly greater choice-selection errors during a reaction time 

task.  

A key feature of the PMC is that it contains two structures, the dorsal PMC (dPMC) and 

the ventral PMC (vPMC) both of which have different functions. For example, the 

dPMC has been found to be involved in sequential motor learning, visually guided 

movements and also controlling kinematic responses (Johnson et al., 1996; Davare et 

al., 2015; Ohbayashi, Picard and Strick, 2016; Solopchuk, Alamia and Zénon, 2016). 

The functions of the ventral PMC range from speech control and production, to goal-

directed behaviours (Binkofski and Buccino 2006; Meister et al., 2007). For example, 

neuronal firing in the vPMC was found to be increased during goal-directed behaviours, 

including grasping and holding (Sakata et al., 1995 Binkofski et al., 2000; Binkofski 

and Buccino, 2006). Imaging studies have also revealed additional functions of the 

vPMC including its role in motor imagery and its importance in motor tasks with 

increased levels of difficulty. For instance, Winstein, Grafton and Pohl (1997) found 

that the vPMC forms part of an important cortical loop in the motor circuit. They 

reported increased regional cerebral blood flow (rCBF) in the vPMC which was 

associated with greater levels of precision during motor performance.  

Functional asymmetries exist between PMC sub-regions (Schluter et al., 1998; Schluter 

et al., 2001; Beck et al., 2009). For example, fMRI studies have revealed that the left 

dPMC has greater levels of neural activity when subjects performed motor tasks with 

both their right- and left-hand. However, the right dPMC was found to be more 

activated when subjects performed motor tasks with their left-hand (Schluter et al., 

2001). Although researchers have illustrated that PMC subregions contribute to motor-

related activity, Freund and Hummelsheim (1985) reported that uncertainties still exist 
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regarding the specific functional role of the PMC and they studied this notion through 

lesion studies.  For example, Kennard, Viets and Fulton (1934) reported that PMC 

damage can result in skilled movement deficits, forced motions during grasping tasks 

and muscle stiffness (Freund and Hummelsheim, 1985). On the other hand, Derousne 

(1973) reported that PMC lesions were associated with a lost of rhythmic motion and 

uncoordinated movement (Freund and Hummelsheim, 1985). Therefore controversies 

exist with regards to specific PMC functions because different behavioural observations 

have been reported in lesion studies (Freund and Hummelsheim, 1985). In this thesis, 

motor control and adaptation will be explored, therefore specific PMC functions only 

related to this type of motor activity will be investigated. Additionally, participants will 

have similar age ranges and no history of neurological conditions that could effect PMC 

functioning and cause varied results. This thesis will thus help answer questions relating 

to the specific role of the PMC during preparation for motor control and novel motor 

reaching.   

1.8.1 TMS to the PMC 
TMS studies targeting the PMC have explored differences between its subregions (e.g. 

vPMC vs. dPMC) during motor tasks. For instance, paired pulse TMS protocols have 

revealed that the vPMC influences M1 activity during grasp-to-hold tasks (Buch et al., 

2010). More specifically, Buch et al., (2010) reported that the impact of the vPMC on 

the M1 depended on the type of activity that was being performed. For example, their 

physiological measurements of corticospinal excitability revealed that during movement 

planning and execution the vPMC had a facilitatory effect on M1 activity compared to 

tasks in which movements had to be updated in which the vPMC had an inhibitory 

effect on M1 activity. Buch et al., (2010) also demonstrated behavioural effects of 

vPMC stimulation as their findings showed that subjects had a delay in adapting their 

grasping when their movements had to be updated (target switching from grasping a 

small cylinder to a large cylinder).  

Furthermore, rTMS paradigms have been used in virtual lesion studies to provide a 

distinction between dPMC vs. vPMC functions. For example, Davare et al., (2006) 

applied rTMS to the left and right dPMC and vPMC during a grasp-lifting task. They 

found that: 1) rTMS to the left vPMC interrupted sequential hand movement activity, 2) 

rTMS to both the left and right vPMC similarly resulted in disrupted finger positioning 

during grasping and, 3) rTMS to the left dPMC interrupted the phase between grasping 
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and lifting, and thus caused a delay in motor related activity. Davare et al., (2006) 

therefore concluded that whilst the vPMC plays a role in finger positioning and 

grasping, the dPMC plays a role in managing the timing of sequential movements, e.g. 

from grasping to lifting, which is in line with studies in non-human primates (Murata et 

al., 1997; Marconi et al., 2001).  

Furthermore, Schluter et al., (1998) explored functional hemispheric differences with 

regards to the role of the dPMC, and found that targeting the left dPMC with TMS 

protocols led to greater motor performance disruptions during bilateral tasks, whereas 

right dPMC TMS only affected motor tasks performed with the left-hand. As well as 

grasping tasks, PMC activity during reaching have also been investigated. For example, 

Ma et al., (2017) found that neural activity in the dPMC differed depending on the type 

of reaching being performed. They reported that whilst some neurons were only 

modulated by the location of the reaching target, other neurons in the dPMC were 

heightened and modulated during path switching of reaching trials. It should be noted 

that most studies exploring the role of the dPMC have implemented rTMS and paired-

pulse TMS compared to SP-TMS paradigms and have mainly used grip/grasping and 

visuo-motor adaptation tasks as opposed to novel motor reaching tasks (Davare et al., 

2006; Lee and Van Donkelaar, 2006; Buch et al., 2010). Chapter 9 and 11 therefore aim 

to provide novel findings regarding left and right dPMC functioning during preparation 

for normal and novel reaching with SP-TMS (virtual disruption approach). Sections 9.1 

and 11.1 further describe the behavioural responses that have been observed with TMS 

protocols that have targeted the dPMC (left and right).  
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Figure 1.11: PMC location  

The location of the PMC is demonstrated (purple) as are its two key structures: the dPMC (solid 
red line) and the vPMC (dotted red line) (figure adapted from the Florida Institute for 
Neurologic Rehabilitation, Inc: Atlas of Brain Injury and Anatomy: http://www.finr.net/).  
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1.9 Other regions of the motor network (the prefrontal cortex 
[dorsolateral] and the cerebellum) targeted with TMS 

The prefrontal cortex has various neural connections with different regions of the motor 

network and therefore has a direct impact on motor behaviour (Goldman-Rakic, 1987). 

The functions of the prefrontal cortex range from executive functioning to organisation 

and planning (Tanji and Hoshi, 2001; Curtis and D'Esposito, 2003; Ball et al., 2011). 

An area of the prefrontal cortex involved in both movement control and motor output 

behaviour is the dorsolateral prefrontal cortex (DLPFC) (Hasan et al., 2012) (figure 

1.12A - figure adapted from the Florida Institute for Neurologic Rehabilitation, Inc: 

Atlas of Brain Injury and Anatomy: http://www.finr.net). The DLPFC contains 

representations of motor sequences which is important in tasks where repetitive 

rhythmic motions are required (Shima et al., 2007). The DLPFC is also fundamental for 

motor learning due to its role in spatial attention, storing memories of sensory 

information and selecting appropriate motor responses (Badoud et al., 2017). 

Neuroimaging studies provide support for the role of the DLPFC in movement 

selection. For example, fMRI studies have found greater activity in the DLPFC when 

subjects were instructed to carry out an action selection task (Rowe et al., 2005). 

Similar findings have been illustrated with PET imaging techniques (Deiber et 

al.,1996). The DLPFC also plays a role in directing motor attention in a task which 

enables learning to take place (Shallice, 1982). This notion has been supported with 

repetitive TMS (rTMS) protocols. For example, Kantak et al., (2010) revealed that 

suppressing neuronal activity of the DLPFC with an rTMS paradigm during motor-skill 

learning had a detrimental effect on the motor learning process. Similarly, Robertson et 

al., (2001) found that rTMS delivered to the DLPFC disrupted spatial-sequential 

learning in a reaction time task.  

The cerebellum is also a key structure in the motor network that is vital for motor 

control (Manto et al., 2012) (see figure 1.12B - figure adapted from the Florida Institute 

for Neurologic Rehabilitation, Inc: Atlas of Brain Injury and Anatomy: 

http://www.finr.net). Research has found that this region regulates the timings of 

movements, assists in accurate motor output (particularly during reaching) and it is 

involved in motor learning and motor memory (Albus, 1971; Attwell, Cooke and Yeo et 

al., 2002; D'Angelo and Casali, 2012; Koziol et al., 2014). During motor adaptation (i.e. 

force-field [FF] learning), the cerebellum encodes the kinematic elements of movement 
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and stores them as motor memories (Overduin, Richardson and Bizzi, 2009). This can 

explain the overshooting phenomena that occurs in normal reaching trajectories (i.e. no 

FF) after motor adaptation has occurred (Hunter et al., 2009; Hunter, Sacco and Turner, 

2011; Pizzamiglio et al., 2017b). The role of the cerebellum in motor functioning has 

been highlighted in patients with cerebellar damage, whereby poor performance has 

been reported (Landi, Baguear and Della-Maggiore, 2011). This is because the damage 

leads to patients no longer being able to store and recall the kinematic memories for 

motor adaptation (Criscimagna-Hemminger et al., 2010; Landi, Baguear, and Della-

Maggiore, 2011). Similarly, Bastian (2011) reported that impairments to the cerebellum 

resulted in movement control deficits (measured by trajectory reaching errors), as 

patients were not able to sustain accurate kinematics of movement control.  

Studies using TMS have helped investigate the connectivity between different cortical 

regions, and how a region with deficits could impair motor function and physiological 

responses (Spampinato, Block and Celnik, 2017). For instance, in patients with 

cerebellar deterioration, MEP responses elicited during pre-movement were reduced 

when TMS was delivered to the M1 (Nomura, Takeshima, Nakashima, 2001). TMS 

studies during motor tasks have further elucidated the functional role of the cerebellum 

in the motor network. For example, rTMS of the medial cerebellum in a tapping task 

significantly affected the variability of tapping intervals during performance, however 

this was not the case during sham stimulation and also when targeting other regions, 

such as the M1 (Théoret, Haque and Pascual-Leone, 2001).  

In summary, a variety of regions are involved and contribute to both upper limb 

reaching and adaptation. These regions range from the M1 to the PPC (Day, Rothwell 

and Marsden, 1983; Meyer and Voss, 2000) and other areas include the pre-motor 

cortex, as well as specific structures within it, such as the dPMC (Kantak et al., 2012; 

Hardwick et al., 2015). The role of the SMA should also be considered when noting its 

role in the planning of motor movements (Padoa-Schioppa, Li and Bizzi, 2004). Most 

TMS studies targeting these regions have implemented different TMS protocols, such as 

rTMS (Overduin, Richardson, and Bizzi, 2009; Ma, et al., 2017). Therefore, the studies 

conducted within this thesis employed a standardised SP-TMS protocol to examine the 

role of several cortical regions during motor adaptation (MA). Additionally, very few 

studies have explored the effect of stimulation given at different preparatory time points 

on novel motor behaviour (i.e. during motor adaptation). Experiments in this thesis aim 
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to provide novel behavioural biomarkers of region-specific mechanisms operating 

during motor adaptation. 
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Figure 1.12: DLPFC and cerebellum location 

The location of: (A) the DLPFC (green) and (B) the cerebellum (blue) is shown (figure adapted 
from the Florida Institute for Neurologic Rehabilitation, Inc: Atlas of Brain Injury and 
Anatomy: http://www.finr.net/).  
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Chapter 2 

2 Purpose and aims of this thesis 

2.1 Purpose and impact  
This thesis aims to explore cortical region-specific mechanisms mediating functional 

reaching tasks using TMS. This knowledge could help bridge the gap between 

neural/cellular function and motor behaviour. Through exploring detailed limb 

kinematics, our understanding of how the brain interacts with muscles in a reaching task 

could be enhanced. Furthermore, by investigating how TMS induced disruption of 

cortical regions impacts on reaching behaviour we would gain an insight into how 

different cortical regions play a role in enabling us to learn new skills (i.e. notion of 

neuroplasticity) and how a change in neural activity can affect the ability to tackle new 

environmental demands.  

The general questions that arise include:  

 What neural cortical mechanisms are involved in both upper limb reaching and 

motor adaptation? 

 Does delivering TMS at different times during the preparation of a reach alter 

MEP responses in different muscles?  

 How does SP-TMS delivered at different times to different brain regions affect 

kinematics of reaching (i.e. behavioural responses) (in both normal reaching and 

motor adaptation)?  

 How do MEP responses change in a novel motor reaching task (motor 

adaptation task vs. simple motor reaching task)?  

 

The specific aims of the project are: 

 To explore basic neural mechanisms of right arm reaching with single pulse 

TMS delivered to both the contralateral M1 and ipsilateral M1 (Experiment 1). 

 To examine neural mechanisms (experiment 1 and 2) and behavioural responses 

(i.e. kinematics) (experiment 1 -8) during right arm reaching in a robot-

mediated force-field with single pulse TMS delivered to the: 

1) Left primary motor cortex (experiment 2) 

2) Left posterior parietal cortex (experiment 3) 

3) Supplementary motor area (experiment 4) 
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4) Right primary motor cortex (experiment 5) 

5) Left dorsal premotor cortex (experiment 6) 

6) Right posterior parietal cortex (experiment 7) 

7) Right dorsal premotor cortex (experiment 8) 

 To compare region-specific roles in motor control and motor adaptation 

2.2 Specific hypotheses 

Experiment 1 – Exploration of 1) contralateral and 2) ipsilateral neural mechanisms of 

right arm reaching using single pulse TMS: 

 Hypothesis I: TMS pulses delivered in the preparation phase of a reach will have 

a significant disruptive impact on the kinematic behaviour of the subsequent reach. This 

is interesting because if true, the impact of disruption of M1 neurotransmission to the 

CST (i.e. by the TMS pulse) can be directly linked to disruption of motor behaviour. In 

other words, TMS is used as a tool for a virtual disruption in the M1/CST pathway.  

 

Experiment 2 – Exploration of neural mechanisms of right arm reaching in a force field 

using single pulse TMS applied to the left M1: 

 Hypothesis I: There will be an increase in the MEP measured in the biceps 

brachii (BB) and flexor carpi radialis (FCR) (flexor) muscles because the force field is a 

clockwise velocity-dependent field, but not in the triceps brachii and extensor carpi 

radialis (extensor) muscles (see Pizzamiglio et al., [2017b] for comparisons of muscle 

responses to clockwise and counter clockwise force fields). 

 Hypothesis II.   TMS will delay the movement onset by inhibiting a group of 

neurons in the brain (as previously demonstrated by Day, Rothwell and Marsden, 1983). 

The virtual disruption approach using TMS experimentally here can be compared to 

neurocomputational models where similar “data-based virtual lesions” are introduced 

into models of stroke (Small, Buccino and Solodkin, 2013).  

 

Experiment 3 – Exploring the impact of SP-TMS to the left posterior parietal cortex 
(PPC) during right arm reaching in a motor adaptation protocol: 

 Hypothesis I. The disruption of PPC function using TMS will impair novel 

motor performance (as demonstrated by Della-Maggiore et al., 2004). This is because 
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the PPC feeds into other motor related cortical structures, signalling commands for 

successful motor output.  

 Hypothesis II. Different TMS timings will affect kinematic behaviour of the 

subsequent reach. These effects are not yet known and this is the first attempt to 

describe such behavioural data during motor adaptation. 

 

Experiment 4 – Exploring the impact of SP-TMS to the supplementary motor area 
(SMA) during right arm reaching in a novel motor learning protocol: 

 Hypothesis I. TMS applied to the SMA would have a disruptive effect on novel 

motor performance. This is because the SMA is known to be involved in fast-learning 

which is required for motor adaptation to take place (King et al., 2013).  

Hypothesis II. Different TMS timings will affect the kinematic behaviour of the 

subsequent reach, as the SMA is involved in motor planning and preparation (Padoa-

Schioppa, Li and Bizzi, 2004).  

 

Experiment 5 – The impact of SP-TMS to the right primary motor cortex (M1) during 
right arm reaching in a novel motor learning protocol  

 Hypothesis I. The ipsilateral motor cortex will be modulated during movement 

preparation, because it has been shown that the ipsilateral M1 can too undergo task-

related modulations of activity (Van den Berg, Swinnen and Wenderoth, 2011).  

 Hypothesis II. TMS will delay the movement onset by inhibiting a group of 

neurons in the brain (Day, Rothwell and Marsden, 1983).  

 

Experiment 6 – Exploring the impact of SP-TMS to the left dorsal pre-motor cortex 
(dPMC) during right arm reaching in a novel motor learning protocol: 

 Hypothesis I: TMS applied to the left dPMC during force-field reaching will 

have an effect on behavioural responses, demonstrating that this region is also actively 

involved in movement planning and preparation.  

 Hypothesis II: In simple reaching different TMS timings will have an effect on 

kinematic behaviours. This is because TMS can pre-activate the stimulated region 

before its typical activation begins, which as a result may speed up the onset of 

movements (Silvanto and Muggleton, 2008). It is unknown whether this is the case for 

motor adaptation, this will be therefore be explored.  
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Experiment 7 – Exploring the impact of SP-TMS to the right posterior parietal cortex 
(PPC) during right arm reaching in a novel motor learning protocol: 

 Hypothesis I: TMS applied to the right PPC during force-field reaching will 

have an effect on behavioural responses, demonstrating that this region is actively 

involved in movement preparation.  

Hypothesis II: Although TMS may have an impact on reaching trajectories, the 

impact of TMS may not be detrimental at all time points of when TMS is delivered. 

This is because studies have shown that the right PPC is involved only in planning left 

handed, and not right handed reaching movements (Schluter et al., 2001; Oliveira et al., 

2010).  

 
Experiment 8 – Exploration of behavioural mechanisms of right arm reaching in a force 

field using single pulse TMS applied to the right dPMC: 

 Hypothesis I: TMS applied to the right dPMC during force-field reaching will 

have an effect on behavioural responses, because studies have shown that the region is 

densely connected to different structures in the motor circuitry (such as the prefrontal 

cortex and PPC) (Genon et al., 2017), and is therefore involved in motor reaching and 

planning. This study is the first attempt to describe the effect of TMS delivered to the 

right dPMC (at different time points) during preparation for novel reaching. 

 

Experiment 9 – Comparing region-specific roles in the motor network during motor 

control and motor adaptation: 

Hypothesis I: Statistical comparisons may reveal different levels of influence 

across different regions (quantified by summed error) thereby indicating the relative 

importance of specific regions in motor control and adaptation. This chapter builds a 

novel model for studying the motor network to demonstrate the different functional 

properties of cortical structures.    

 

The general methodology implemented to study the aims and hypotheses’ in this thesis 

are described in section 3.  
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Chapter 3 

3 General methodology 

This chapter describes the general procedures that were employed in this thesis and 

illustrates the apparatus used in each experiment. Although all studies employ similar 

apparatus (i.e. use of TMS, robotics and EMG), some experimental paradigms differ in 

terms of the task being carried out (e.g. force-field [FF] reaching vs. null FF reaching 

[FAM]) and the region of interest being stimulated with TMS. Each experimental 

chapter contains the methodological protocol that was specifically designed for the 

different tested hypotheses.  

3.1 Ethics 
All the procedures in this thesis were approved by the University Research Ethics 

Committee (UREC 1516_108, Appendix 1) and conducted according to the Declaration 

of Helsinki (World Medical Association, 2013).  The approval of the research was 

issued to the researcher (Pegah Mohajer Shojaii), the principle investigator (Professor 

Duncan Turner) and the research site (University of East London - NeuroRehabilitation 

Unit). Before each experiment was conducted, participants were verbally instructed 

regarding the aims of the project.  

In all experiments, the participants also received: 

1) A participant information sheet outlining the details of the experimental protocol 

(Appendix 2) 

2) A consent form to participate in a study involving the use of human participants 

(Appendix 2). 

3) A medical questionnaire to complete – in order to ensure that TMS is a safe 

procedure for them to undergo (i.e. they do not have any metal or electrical 

implants) (Appendix 3). 

4) The researchers’ contact details, including an e-mail address – if they wish to 

obtain further details about the study, their performance, or their data/results 

(Appendix 1).  

Participants were also made aware that they were free to withdraw from the experiment 

at any given time and were also welcome to discuss their thoughts and feelings with 

regards to their participation in the research.  
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3.2 Participants  
Participant recruitment took place through online advertising (call for participants 

recruitment website – https://www.callforparticipants.com/), through emails and leaflets 

and 12-15 healthy young adults were recruited per experiment. The sample size selected 

was based on, 1) established methods used in the NeuroRehabilitation Unit, 2) similar 

studies that have been published (Hunter et al., 2009; Hunter, Sacco and Turner, 2011), 

3) taking into account the variation of M1 excitability in healthy young adults, and 4) 

non-learning which can occur in motor adaptation paradigms (Pizzamiglio et al., 

2017b). For example, we anticipated that one or two subjects per hypothesis will: 

a) Not perform reaching correctly (i.e. their reaching movements would either be 

too fast or too slow) 

b) They would not learn very well (i.e. more than 2 standard deviations away from 

the average learning rate) 

c) They may not exhibit significant MEPs in the muscles of interest (biceps 

brachii).  

 

Furthermore, only right handed participants were recruited and only the dominant hand 

was investigated. This is due to different brain responses in the dominant and non-

dominant brain hemispheres (Haaland and Harington, 1996). The inclusion and 

exclusion criteria for participant recruitment are further illustrated in table 3.1.  

Throughout this thesis TMS was used to target seven regions in the motor network, and 

the participant demographics with regards to each experiment is outlined in table 3.2. It 

should be noted that once all of the experiments were complete, the next experimental 

approach that was taken aimed to explore the importance and contribution of different 

cortical regions in motor control and motor adaptation. In order to investigate this, all of 

the experimental data (chapters 4 – 11) were pooled together and synthesised. This then 

formed the outline for chapter 12 in this thesis.  

 

 

 

https://www.callforparticipants.com/
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 Table 3.1: Inclusion and exclusion criteria for participation 

 

 

 

 

 

 

 

 

 

 

Category: Inclusion criteria: Exclusion criteria: 
Participant health: Healthy participants History of neurological or psychiatric 

conditions 
Neuromuscular disease 

Age range: Young adults aged > 18 Aged <18 and >40 

Handedness: Right handed Left handed 

TMS safety guidelines: No metal or electrical implants Metal or electrical implants 
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 Experiment 
1 (Chapter 
4): 

Experiment 2 
(Chapter 5): 

Experiment 3 
(Chapter 6): 

Experiment 4 
(Chapter 7): 

Experiment 5 
(Chapter 8): 

Experiment 6 
(Chapter 9): 

Experiment 7 
(Chapter 10): 

Experiment 8 
(Chapter 11): 
 

Chapter 12:  

Ethical approval/ 
participants 
health: 

Following ethical approval from the University of East London Research Ethics Committee (Appendix 1), all of the participants for each study met the 
inclusion criteria and had no personal or family history of neurological/psychiatric conditions, no neuromuscular disease and no metal/electrical implants 
(based on Appendix 3) and gave their written consent to participate (Appendix 2).  All aspects of each study were conducted in accordance with the 
Declaration of Helsinki (World Medical Association, 2013). 

Age range (mean, 
+/- SEM): 

21 - 32 
(26, +/- 1) 

18 – 37 
(26, +/- 1) 

20 – 32 
(26, +/- 1) 

20 – 32 
(26, +/- 1) 

18 – 32 
(24, +/- 1) 

18 – 32 
(24, +/- 1) 

18 – 32 
(23, +/- 1) 

18 – 32 
(23, +/- 1) 

18 – 37 
(25, +/- 1) 

Gender: 5 male; 8 
female 

Prior to data 
exclusion: 
9 male: 7 female 
Following data 
exclusion: 8 
male: 6 female 

5 male: 9 
female 

5 male: 9 
female 

3 male: 10 
female 

3 male: 10 
female 

3 male: 10 
female 

3 male: 10 
female 

30 male: 64 
female 

Number of 
participants 
excluded and 
reasons for 
exclusion: 

N/A 
(no 
participants 
were 
excluded) 

Data from two 
subjects were 
excluded due to 
non-learning in 
the motor 
adaptation 
paradigm. 

N/A 
(no 
participants 
were excluded) 

N/A 
(no 
participants 
were excluded) 

N/A 
(no 
participants 
were excluded) 

N/A 
(no 
participants 
were excluded) 

N/A 
(no 
participants 
were 
excluded) 

N/A 
(no 
participants 
were 
excluded) 

N/A 
(no participants 
were excluded) 

Number of 
participants (N): 

13 14 following data 
exclusion 

14 14 13 13 13 13 94 

Mean stimulus 
intensity (i.e. at  

110% RMT) 

56% 56% 57% 57% 56% 
 

57% 55% 56% 

Table 3.2: Participant demographics and experimental details for each region targeted in this thesis 
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3.3 Transcranial magnetic stimulation 

3.3.1 Electromyography (EMG) recordings for MEPs: 

Overall electrical signal and activity that is generated from muscles can be recorded 

either invasively or non-invasively using EMG (Mills, 2005; Chowdhury et al., 2013). 

Invasive methods require the use of needle electrodes that are fit into the muscle(s) to 

capture the activity of muscle-fibres from a single unit (Chowdhury et al., 2013). Non-

invasive methods on the other hand, employ the use of surface electrodes that are 

positioned onto the muscle(s) of interest and the signal recorded is based on overall 

motor-unit activity (Chowdhury et al., 2013). MEP responses in TMS research have 

commonly been recorded as a signal with surface EMG electrodes (Hunter, Sacco and 

Turner, 2011; Orban de Xivry et al., 2013; Summers, Chen, Kimberley, 2017).  

The use of surface EMG to record MEPs have helped demonstrate patho-physiological 

responses in clinical populations, which have been found to differ when compared to 

responses from healthy controls. For example, Brum, Cabib and Valls-Sole (2015) 

recorded MEPs from the first dorsal interosseous (FDI) muscle with EMG surface 

electrodes in stroke patients and they found a significant decrease in peak-to-peak MEP 

amplitude among patients compared to healthy subjects. Additionally, MEPs from the 

FDI muscle in patients with multiple sclerosis (MS) were found to have a longer 

duration compared to a healthy control group (Kukowski, 1993; Brum, Cabib and Valls-

Sole, 2015). Therefore, surface EMG recordings have been used to characterise 

differences in MEP responses and this has helped provide further information regarding 

patho-physiological mechanisms in different clinical populations (Chowdhury et al., 

2013; Fernandez et al., 2013).   

In this thesis, surface EMG was used to record MEP signals (EMG, mV) using Signal 

Software Version 6 (Cambridge Electronic Design LTD, Cambridge UK). For 

experiments 1 and 2, MEPs were only recorded as a signal for the duration of the 

experiment when TMS was delivered to the contralateral M1 in order to explore 

corticospinal excitability (CSE) responses during right arm reaching. For experiments 3 

(left PPC TMS), 4 (SMA TMS), 6 (left dPMC TMS), 7 (right PPC TMS) and 8 (right 

dPMC TMS), MEPs were not elicited during stimulation. For experiment 5, MEPs were 

not collected as kinematics of right arm reaching was of interest. However, one of the 
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steps of the TMS protocol was to identify the participants resting motor threshold 

(RMT) (left M1) to deliver TMS to the region of interest at 110% of their RMT. 

Therefore, MEP responses were only acquired and recorded during the assessment of 

RMT for those studies. With regards to experiment 5, the right M1 was targeted to 

identify resting motor threshold (RMT) by measuring MEPs from the left arm. The 

TMS protocol for this experimental set-up was different compared to the other 

experiments within this thesis (except for experiment 1 and experiment 2) whereby the 

left M1 was targeted and MEPs were elicited from the right arm to identify RMT. 

Targeting the right M1 in experiment 5 helped ensure that an appropriate stimulation 

intensity was used for each participant during TMS when considering that motor 

thresholds can fluctuate and differences in RMT have been identified between the left 

M1 and right M1 (Alm et al., 2013; Karabanov, Raffin and Siebner, 2015). Paired-pulse 

TMS studies that have targeted both the right and left M1 have also used similar 

protocols to separately identify hemispheric motor thresholds between the two regions 

prior to stimulation (Morishita et al., 2014). Overall, the data for experiment 3 – 8 were 

based on kinematics only and not MEPs. 

Where MEPs were obtained, the EMG signal was amplified (1000x; 1902 amplifier; 

Power 1401, CED LTD, UK), band-pass filtered (45 Hz high pass, 1kHz low pass) and 

a notch filter was applied (50Hz). The data were digitised at 5kHz (Micro 1401; 

Cambridge Electronic Design LTD, Cambridge UK). MEPs were always recorded with 

two disposable solid gel surface electrodes (Unimed Electrode Supplies LTD, Surrey, 

UK) positioned 1.5 centimetres apart (SENIAM [Surface Electromyography for the 

Non-invasive Assessment of Muscles] guidelines; Hermens et al., 2000) along the 

muscle fibre direction of the right-sided biceps brachii (BB), triceps brachii (TB), 

extensor carpi radialis (ECR) and flexor carpi radialis (FCR) muscles. A ground 

electrode was also placed over the ulna styloid process bone (where the ulna joins the 

wrist) on the left arm.  

These muscles have been studied in motor reaching paradigms, as they have been 

reported to be involved in horizontal planar reaching (Hunter, Sacco  and Turner, 2011; 

Orban de Xivry et al., 2013). For example, the BB is not only a rotator of the forearm 

muscles, but it is also an elbow flexor (which is essential for reaching outwards) (de 

Bruin et al., 2011; Landin, Thompson and Jackson, 2017) and the TB is known to be 

involved in elbow extension and straightening the arm (O’Driscoll, 1992; Singh and 
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Pooley, 2002). The FCR plays a role in opposing a clockwise force (i.e. during motor 

adaptation) (Pizzamiglio et al., 2017b) and is a wrist flexor muscle, while the ECR is 

known to be a wrist extension muscle.  

These muscles are graphically illustrated in figure 3.1 (figure adapted from Learn 

Muscles: https://learnmuscles.com/wp-content/uploads/2016/12/Wrist-Sp-St-Blog-Post-

Photo-1.jpg).  
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Figure 3.1: Muscles of interest chosen for electrode placement (outlined in red) 

Muscles including those involved in extension (TB and ECR) and flexion (BB and FCR) are 
illustrated. The BB consists of a short head and long head within the shoulder region, which 
both connect at the elbow, the BB also connects to the ECR. The TB is comprised of different 
structures, including a long head and medial head which originate at the mid-section of the 
humerus (Watson and Wilson, 2007; Landin, Thompson and Jackson, 2017). These were the 
four muscles of interest in this thesis. Figure adapted from Learn Muscles: 
https://learnmuscles.com/wp-content/uploads/2016/12/Wrist-Sp-St-Blog-Post-Photo-1.jpg.  
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Figure 3.2: Visualisation of surface EMG recordings of MEPs 

TMS applied to the left M1 during motor reaching (top panel) and data collected in Signal 
Version 6 and CED data acquisition software (Cambridge Electronic Design LTD, Cambridge 
UK) (second panel). Examples of MEP data from one specific TMS pulse time (250ms) are 
shown in the coloured traces. Each channel on the left-hand side of the bottom panel is 
associated with one muscle (blue for BB, black for TB, pink for ECR and green for FCR). The 
grey activity in the background represents overall EMG from each reaching trial and has been 
overlapped to illustrate the degree of muscle activity during a reaching trial. This raw data trace 
also illustrates the formal description of the preparation phase of reaching and the chosen timing 
at which TMS was delivered. Zero on X-axis represents the time (sec) of the visual cue to reach 
and the Y-axis represents elicited (by TMS) and ongoing muscle activity (mV) during the trial. 
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3.3.2 TMS Protocol: 
 

In all experiments, TMS was delivered with a figure of eight coil connected to a 

Magstim Stimulator 200² (Magstim Company, Whitland, UK). The stimulator was 

triggered by a custom-built programme using Signal Version 6 and CED data 

acquisition software (Cambridge Electronic Design LTD, Cambridge, UK). Participants 

also wore a washable flat cap for the duration of the experiment, to mark the regions of 

interest that were stimulated, depending on the hypothesis being studied (left or right 

M1; left or right posterior parietal cortex, PPC; the supplementary motor area, SMA; 

left or right dorsolateral premotor cortex, PMC).  

The TMS testing procedure always began with the coil being positioned above the scalp 

on the participant’s left M1 to locate their motor ‘hotspot’ for the right-sided BB 

muscle. The area of the M1 stimulated for this was the upper arm representation which 

is approximately 4cm lateral to the top of head (vertex). To determine the optimal coil 

position for evoking MEPs in the right BB muscle, TMS was applied in 1cm steps 

around the upper limb region, with the coil handle positioned backwards and angled 45° 

away from the midsagittal line. The direction of the TMS induced current was posterior-

anterior (PA).  This coil position, and current flow has consistently been identified as 

the optimal position when targeting the BB, as well as other muscles, such as the first 

dorsal interossei (FDI) (Abdalla, 2011; Mills, Boniface and Schubert, 1992).  

Once the hotspot was located and coil position was determined, it was marked with a 

washable pen on the participant’s cap. This was to ensure consistent coil position for the 

duration of the experiment. In all experiments, resting motor threshold (RMT) was 

defined as the minimum intensity that induced MEPs ≥ to 50 μV peak to peak in the BB 

muscle (hotspot) in 5/10 trials (Hunter, Sacco and Turner, 2011; Rossi et al., 2009).  

It should be noted that in all experiments, single pulse TMS (SP-TMS) was applied at 

110% of RMT in all TMS reaching blocks (FAM, FF and WO) at a range of specific 

times after the visual cue (10ms, 100ms, 130ms, 160ms, 190ms, 220ms, 250ms, 280ms 

and 310ms) during the preparation phase of a reach - this is at a time after the visual cue 

to reach and before the actual onset of the physical reach. It should also be noted that for 

each experiment, 20 single pulses at rest (with the right arm relaxed in the robotic arm) 

was obtained from each participant before they began the motor reaching tasks. For all 

experiments, the time points at which a TMS pulse was delivered during a trial of 
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reaching was randomly selected through a custom built program using Signal Version 6 

and CED data acquisition software (Cambridge Electronic Design LTD, Cambridge, 

UK). 

3.3.2.1 Cortical targeting with TMS: 
The participants in this experiment did not have individual structural MRI scans, 

therefore an electroencephalography (EEG) cap was used to locate the different regions 

that were targeted with TMS. An EEG cap contains various electrodes which 

correspond to different cortical regions (Herwig, Satrapi and Schönfeldt-Lecuona, 

2003). The use of EEG to locate cortical regions for brain stimulation with TMS 

methods have consistently been employed (Herwig, Satrapi and Schönfeldt-Lecuona, 

2003; Schutter and van Honk, 2006; Beam et al., 2009).  

For the experiments in this thesis that had no physiological experimental output (i.e. an 

MEP) (experiment 3, 4, 6, 7 and 8) a 10-20 systems EEG cap (64 channels) (ANT 

Neuro, Enschede, Netherlands) was fitted on top of a washable flat cap that participants 

wore. Following cap placement two measurements were taken with the Cz electrode 

(which overlies the vertex) as the common reference point to locate the mid-sagittal 

plane of the skull. The first measurement that was marked was 50% of the distance 

between the nasion and the inion (this corresponded to the Cz electrode). A second 

measurement was then taken to confirm the location of the Cz electrode and this was 

taken from the left ear, to the right area (two pre-auricular points - 50% of the distance 

between the two). These landmark measurements individualised the electrode positions 

for each participant. The electrode position of interest (depending on the experiment 

that was being conducted at the time) was then marked with a pen through the EEG cap 

to the flat cap that the participants wore. The EEG cap was then removed and the inner 

markings of the electrode position for stimulation remained on the flat cap that the 

participants wore. It should be noted that when EEG cap was removed, the flat cap was 

not adjusted or shifted as it was tightly fitted on the subjects head and this helped 

further ensure the accuracy of cortical targeting during stimulation.  

3.3.2.2 Cortical targeting of regions without an experimental output and coil 
positions employed: 

Regions of interest that had no measured output (i.e. an MEP; left PPC, SMA, left 

dPMC, right PPC and left dPMC) were located using an EEG cap (10-20 system; ANT 
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Neuro, Enschede, Netherlands) once measurements were taken with the Cz electrode as 

the reference point for the mid-sagittal plane of the skull (section 3.3.2.1). It is also 

important to consider the different types of coil positions and orientations that can be 

used to assure that the behavioural responses that occur is due to the stimulation of the 

targeted area, rather than its surrounding cortical regions. It has been argued that 

employing one stimulation intensity across participants could result in differences in 

task responses, this is because the effects of stimulation could either be too much, or too 

little for each participant (Bolognini and Ro, 2010). Researchers have therefore reported 

that when targeting regions with no experimental output TMS intensity should be set 

individually for each participant through functional measures, such as resting motor 

threshold for an MEP obtained in left M1 (Bolognini and Ro, 2010). The following 

paragraphs below outline: 1) the electrode position selected for the different regions of 

interest and 2) the optimal TMS coil position that was used across stimulated sites. 

3.3.2.2.1 Left PPC location and coil position: 
For experiment 3, the P3 electrode location was used for left PPC stimulation. It has 

been reported that P3 corresponds to the left PPC with very little variation across 

participants (< 2cm) (Herwig, Satrapi and Schönfeldt-Lecuona, 2003). Various TMS 

studies that have employed EEG methods for location purposes have also used the P3 

electrode for left PPC stimulation (Pourtois et al., 2001; Salatino et al., 2014; Parks et 

al., 2015). Additionally, the coil was positioned at an angle that was tangential and 

perpendicular to the midline, with the handle pointing sideways. Therefore, the current 

flow was in a lateral-medial direction. The coil position and orientation used for left 

PPC stimulation was based on the protocol of Della-Maggiore et al., (2004).  

3.3.2.2.2 SMA location and coil position: 
With regards to experiment 4, it has been reported that the SMA is located 3cm anterior 

to the vertex and 0.5cm to the left, which corresponds to the FCz EEG electrode 

(Cunnington et al., 1996; Oliveri et al., 2003). This area was therefore marked for 

stimulation and the coil was positioned tangentially to the skull with the handle pointing 

to the right (based on Cona et al., 2017 protocol for SMA stimulation).  

3.3.2.2.3 Left dPMC location and coil position: 
The left dPMC was targeted in experiment 6 and was located as 2cm anterior and 1cm 

medial to the left M1 motor hotspot with the coil angled at 45° with respect to the 
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interhemispheric fissure (handle backwards) as this has commonly been used in TMS 

paradigms (Fink et al., 1997; Münchau et al., 2002; Lee and Van Donkelaar, 2006; 

Zanon et al., 2013; Lega et al., 2016).  

3.3.2.2.4 Right PPC location and coil position: 
For experiment 7 in this thesis, the P4 electrode was marked for stimulation because it 

has been argued to correspond to the right PPC (Herwig, Satrapi and Schönfeldt-

Lecuona, 2003; Prime, Versia and Crawford, 2008; Koch et al., 2009; Vernet, Yang and 

Kapoula, 2011). Additionally, the coil handle was positioned backwards (angled 45° to 

the midline) to induce a posterior-anterior current (Prime, Versia and Crawford, 2008; 

Koch et al., 2009; Vernet, Yang and Kapoula 2011; Salatino et al., 2014).  

3.3.2.2.5 Right dPMC location and coil position: 
The final experiment in this thesis was based on targeting the right dPMC, this region 

was located as 2 - 2.5cm anterior and 1cm medial to the motor hotspot and the coil was 

angled 45° from the midline (handle backwards and downwards) (Cincotta et al., 2004; 

Bestmann et al., 2005; Murase et al., 2005; Ruitenberg et al., 2014).  

Figure 3.3 illustrates specific EEG locations for the stimulated regions and the different 

coil positions that were used (and electrical current that was induced) for each 

stimulated site (canonical brain figures adapted from an MRIcron template – Rorden 

and Brett, 2000).  

3.3.2.3 Ensuring accurate targeting: 
Researchers have reported the importance of accurate coil positioning during 

stimulation and different methods have been employed to ensure this, including TMS 

coil holders and neuronavigation (Chronicle, Pearson and Matthews, 2005; de Goede, 

Braack and van Putten, 2018). With regards to coil holders, Chronicle, Pearson and 

Matthews (2005) explored the precision, stability and durability of this method during 

M1 stimulation and their findings illustrated accuracy across different testing sessions. 

Automated robotic coil holders have also been used during stimulation and they have 

been argued to provide increased stability which has been reported to be particularly 

useful for longer experimental protocols and rTMS paradigms (Goetz et al., 2019). Coil 

apparatus for positioning purposes have also been useful during multimodal MRI-TMS 

imaging studies and have provided clinicians with a compatible way to accurately 

explore human behaviour (Navarro de Lara et al., 2015). On the other hand, there are 
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limitations to consider. For example, Goetz et al., (2019) reported the absence of 

manual adjustments, as well as the lack of coil pressure feedback during stimulation. 

Despite these shortfalls, coil holders have been reported to be both an effective and 

reliable method for improving TMS coil accuracy (Sparing et al., 2008; Rodseth, 

WashaBaugh and Krishnan 2017), 

Neuronavigation methods have also been implemented in TMS protocols for: 1) 

marking anatomical regions and, 2) to ensure accurate coil positioning during 

stimulation. Neuronavigation functions via mapping out various physical landmarks on 

the subject, such as their cranium, ears and nasion. Following this, the system registers 

the TMS coil for the navigation of cortical structures (Sparing, Hesse and Fink, 2010). 

Neuronavigation methods take coil orientation in both space and time into account, 

which helps minimise any structural inaccuracies that may occur during stimulation 

(Sparing, Hesse and Fink, 2010). However, de Geode et al., (2018) argued that research 

is yet to confirm the significant impact of neuronavigation with regards to coil 

orientation for SP and PP TMS protocols.  

For each experiment in this thesis, the coil was positioned and held manually on the 

region of interest on the participants scalp. This free-hand method does have limitations 

that should be considered, particularly when taking into account that increased accuracy 

has been reported with the use of coil positioning equipment, and that manual coil 

holding has been associated with operator fatigue (Goetz et al., 2019). For location 

marking, an EEG 10/20 system method was used rather than neuronavigation and this is 

because the participants in each study did not have a structural MRI scan that could 

have been imported into the neuronavigation system. Furthermore, the use of 

neuronavigation for accurate coil positioning would have increased the duration of the 

reaching protocol (from 2 hours 30 minutes, to three hours) (this was tested in a pilot 

study) which could have been arduous for the participant during motor reaching. 

Despite coil position being determined manually, it should be considered that 

participant’s head movements were minimised because the reaching protocol only 

required arm motions, additionally seatbelt straps were attached to the participants 

(section 3.4.1) to avoid trunk movements that may have occurred during reaching. 

Furthermore, there was manual control of the TMS coil, therefore, compensations for 

any head motions that did take place were taken into account. In addition to this, 

continuous attention was given to the coil position during the experimental protocol to 
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ensure precise coil placement and orientation, which has been argued to be important 

for TMS protocols that use manual methods for stimulation (Goetz et al., 2019). 

Nonetheless, the use of manual methods still remains a limitation that should be 

considered, and if this experiment was to be replicated it would be important to 

implement techniques that aid coil accuracy, including neuronavigation or automated 

coil holders (Sparing, Hesse and Fink, 2010; Goetz et al., 2019).    
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          Left dPMC                   Right PPC                          Right dPMC 

   Left M1            Left PPC           SMA        Right M1 

Figure 3.1: EEG locations for stimulated regions and optimal coil positions for the different locations targeted with TMS  

 (A) The different locations of the stimulated areas with reference to a 64-channel EEG cap is demonstrated (ANT Neuro, Entschede, Netherlands) (figure adapted from 
www.ant-neuro.com). The outlined figure below figure 3.3A illustrates a canonical model of all of the regions targeted with TMS (canonical brain figure adapted from 
an MRIcron template – Rorden and Brett, 2000). 

(B) The coil positions for the various cortical regions targeted with TMS are illustrated. This includes an induced posterior-anterior current flow for the M1 and dPMC (both 
left and right hemispheres). For the left PPC, but not for right PPC stimulation, a lateral-medial current flow was induced. For SMA stimulation, the coil was positioned 
tangentially to the skull (handle to the right) (canonical brain figures adapted from an MRIcron template – Rorden and Brett, 2000). 
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3.4 Robotics 
In all experiments, an interactive robot was used for motor reaching (MIT - Manus, 

Interactive Motion Technologies, Cambridge, MA, USA). The robot functioned via 

Linux software and also contained encoders which recorded different angular positions 

of the robotic manipulandum. There are different modes in which the robot could be 

used, this includes: 

1. Assistive mode - this has been employed is rehabilitation programmes whereby the 

robot assists movements for motor output and different degrees of assistance can be 

provided (Patton et al., 2006).  

2. Resistive mode - this has been used in motor adaptation paradigms, where subjects 

are required to counter a force-produced in order to perform a reach with an ideal 

trajectory (Pizzamiglio et al., 2017a; Pizzamiglio et al., 2017b).  

3. Non-assistive mode - In this mode there is no assistance or resistance elicited by the 

robot during reaching.  

The use of robotics in assistive and resistive forms has commonly been employed in 

motor reaching and adaptation in both healthy and clinical populations (Patton et al., 

2006; Hunter, Sacco and Turner, 2011; Orban de Xivry et al., 2013). Clinically, Patton 

et al., (2006) noted that a resistive, rather than assistive mode led to enhanced 

therapeutic outcomes among stroke patients. They reported that in contrast to assistive 

reaching, reaching in a resistive mode, resulted in larger errors by which the patients 

were able to make significant improvements on. This demonstrates the importance of 

error-induced reaching through FF paradigms as a key model for motor recovery 

(Patton et al., 2006).  

3.4.1 Reaching task: motor reaching and motor adaptation: 
In this thesis the reaching task that subjects performed differed between experimental 

protocols: 

1) Experiment 1 (chapter 3):  

This motor task was performed in the non-assistive mode of robot operation as 

unperturbed (no force field present) reaching was explored. Therefore no robotic 

assistance or resistance was elicited during reaching. Participants were instructed to 

make outward arm reaching movements towards a north-west target (135°) from a 
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central starting position (15cm reach) within a target time of 1.0 - 1.2 seconds following 

the onset of a visual cue. Visual feedback for the timing of the reaches was shown on 

the screen (Section 3.4.2 describes further details regarding feedback). When 

participants reached towards the target and held their arm position, the robotic arm re-

positioned the participants arm into the central starting point for the next reaching trial. 

The reaching protocol for this experiment contained two blocks of unperturbed reaching 

with no TMS (N = 24 trials per block), followed by 3 blocks of unperturbed reaching 

with TMS trials to the contralateral M1 (N = 48 x 3 trials total). Participants then had a 

break (5 minutes). The same protocol was then followed, however the ipsilateral M1 

was stimulated. In all stimulation trials, SP-TMS was delivered at nine different time 

points (10 - 310ms) (randomly) during the preparation phase of motor reaching, at 

110% resting motor threshold.  

A graphical illustration of the paradigm for experiment 1 is demonstrated in figure 3.4.  

2) Experiments 2-8 (chapters 4 -11):  

Motor adaptation was introduced into the reaching protocols for experiments 2-8 and 

the robot was used in a resistive mode. In these experiments familiarisation (FAM), 

force field (FF) and washout (WO) reaching conditions were explored. The robot was 

set to a non-assistive mode (i.e. unperturbed reaching) for FAM and WO reaching, and 

a resistive mode for FF reaching. During resistive FF reaching, the robot administered a 

velocity dependent clockwise force field (25 N ms-1).  In all reaching trials, participants 

were instructed to make outward arm reaching movements (away from the body) 

towards a north-west target (135°), from a central starting position (15cm reach) 

following the onset of a visual cue.  

The experimental paradigm that was implemented for experiment 2 - 8 is shown in 

figure 3.5.  
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 Figure 3.4: Graphical illustration of the paradigm implemented for experiment 1

 

 

 These two blocks 
contained 48 reaches 
overall   

 3 blocks of unperturbed reaching with TMS delivered to the 
left M1 (contralateral to the reaching arm) 

 48 of reaching trials in each block  
 Overall from the three blocks: 14-15 MEPs were collected for 

each time point that TMS was delivered.  

The protocol for experiment 1 included two blocks of unperturbed reaching with no TMS, this was for the participants to familiarise themselves with the 
reaching task. TMS was then introduced (three blocks of unperturbed reaching) and single-pulses were delivered on the participant's left M1at a range of 
different times (10-310ms) to capture changes in M1 cortical excitability during the preparation of a reach. Following this, participants took a 5 minute 
break. The same protocol was undertaken, however with TMS delivered to the right M1 (canonical brain figures adapted from an MRIcron template – 
Rorden and Brett, 2000). 
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 3 blocks of unperturbed reaching with TMS delivered to the 
right M1 (ipsilateral to the reaching arm) 

 48 of reaching trials in each block  
 

 These two blocks 
contained 48 reaches 
overall   

 

5 minute rest 

Unperturbed reaching only Unperturbed reaching only 
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 These 2 contained a 
total of 48 reaching 
trials.  

 2 blocks of FAM reaching with 
TMS delivered 

 48 of reaching trials in each block  
 

 24 reaching trials each block 
 Overall 96 reaches completed 

 4 blocks of FF reaching with 
TMS delivered 

 24 reaching trials in each block 

 48 reaching trials in each 
of these two blocks 
 

 2 blocks of WO reaching with 
TMS delivered 

 48 of reaching trials in each block  

Figure 3.5: Graphical illustration of the reaching paradigm implemented for experiments 2 – 8: 

The paradigm for experiments 2 – 8 included single-pulse TMS delivered to specific regions of the motor network. The area that was targeted with TMS depended on the 
experiment that was being conducted at the time (e.g. experiment 2, left m1 TMS; experiment 3, left PPC TMS; experiment 4, SMA TMS; experiment 5, right M1 TMS; 
experiment 6; left dPMC TMS; experiment 7; right PPC TMS and experiment 8, right dPMC TMS). TMS was delivered at a range of specific times to explore cortical 
excitability (specifically for experiment 2) and behavioural factors (for all experiments) during movement preparation. The motor paradigm consisted of different phases of 
reaching including, FAM reaching - firstly without TMS [2 blocks], and then with TMS delivery [2 blocks]. Following FAM blocks of reaching, motor adaptation was 
introduced, with FF blocks of reaching, firstly without TMS [4 blocks], and then with TMS [4 blocks]. The final 4 blocks at the end of the protocol acted as WO blocks, with 2 
blocks of without TMS and a further 2 blocks with TMS (Canonical brain figures adapted from an MRIcron template – Rorden and Brett, 2000). 
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FAM reaching Motor adaptation: FF reaching WO reaching 

Note: In the motor adaptation paradigm, MEPs were collected during TMS stimulation only for experiment 2. Overall from the two FAM TMS blocks, 8-12 MEPs were 
collected, from the four FF TMS blocks, between 9 - 12 MEPs were collected and for the final two WO TMS blocks 8-12 MEPs were collected for each time point that 
TMS was delivered.  
 
 

TMS TMS TMS TMS TMS TMS TMS TMS 
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3.4.2 Reaching task set up and instructions: 
Although experimental protocols differed for location of TMS (as outlined in section 

3.3.2) the experimental set up was the same and instructions were only different when 

explaining the motor adaptation protocol. In all experiments, participants were seated in 

a customised chair in front of the robotic visual screen with their right arm rested in the 

robotic arm for support against gravity during reaching. The robotic arm contained an 

end-effector handle that the participants were asked to hold during reaching. Shoulder 

straps connected to the customised chair were attached to the participant to restrict trunk 

movement, particularly during motor adaptation (a common factor implemented in 

robotic motor adaptation paradigms - Hunter, Sacco and Turner, 2011; Pizzamiglio et 

al., 2017b).  

A number of measurements were also made to ensure that the arm was semi-pronated at 

a 70° shoulder extension and with 120° elbow flexion (Hunter, Sacco and Turner, 

2011). Additional measurements included making sure that the participants shoulder 

and end-effector handle were at an equal height. A vertical screen was attached to the 

robot and positioned at the participant’s eye-level. This presented both: a) visual cues 

for the reach, and b) online feedback of their arm position during each reach 

(Pizzamiglio et al., 2017b). In all motor tasks, participants made outward arm reaching 

movements from the central starting point towards a north-west direction target (135°) 

within a 1.0 – 1.2 second time frame, following the onset of a visual cue (target was 

highlighted in an orange colour). After each single reaching trial, the robotic arm was 

automatically re-positioned into the central starting target, for the next reaching trial to 

take place.  

A graphical illustration of the lab set up and robot reaching task is shown in figure 3.6A 

and 3.6B.  
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 Figure 3.6: Experimental set up and reaching task 

 

 
A)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) 

Robotic arm    

Robotic screen presenting the 
reaching task to the participant 

Muscle data (i.e. MEPs) are 
presented on this screen 

CED data acquisition system  

A TTL pulse was sent 
to the CED system 
from the robotic 
computer (via a BNC 
cable) which 
triggered TMS pulse 
delivery for reaching 
trials 

TMS machine 
for single pulse 
delivery   

EMG channel electrode adaptor used to 
collect data from the BB, TB, ECR and 
FCR during reaching trials. This was 
connected to the CED system for data 
acquisition.  

The experimental set up is demonstrated with the main equipment outlined in yellow (EMG channel electrode adaptor, CED data acquisition 
system, the TMS machine and the robotic system [screen and robotic arm]. The different connections between systems are shown in the red 
dotted line, including the links between the TMS machine, robotic computer and CED system, and the EMG adaptor box and the CED system. 
(B) The motor reaching task has a number of continuous components; B1. The reach begins at the central starting point; B2. An orange visual cue 
for a reach appears in the 135º NW target; B3. The participant reaches towards the NW target, and then remains in this target until the robotic 
arm automatically places their arm in the central starting position for the next reaching trial (B4-B5).  
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These were the oral instructions given to the participants before the start of the 

experiment: 

1. I would like you to make linear “straight-line” reaching movements from the 

central starting position, to the north-west target (135º). 

2. You will only have to make the reach when the target lights up in an orange 

colour. 

3. You have a time frame of 1.0 -1.2 seconds to reach towards the target and will 

receive feedback for each reach you make from the screen, i.e. if you are too fast 

(> 1.2 seconds) or too slow (< 1.0 seconds). If you are on time (1.0 - 1.2 

seconds), the feedback will be shown as "Good".   

4. Once you have reached towards the north-west target, hold the position, until the 

robotic arm guides you back to the central starting position for the next reach to 

begin.  

5. You may have short breaks after each reaching block if you wish to.  

6. Are these instructions clear and are there any questions that you would like to 

ask before we begin. 

When motor adaptation was introduced into the reaching paradigm, the additional 

instruction that the participant received was:  

1. The robot will now administer a clock-wise force-field during each reaching 

trial. All other aspects of the reaching task will remain the same, as well as the 

target that you will be reaching towards (135º NW).  

The reaching protocol implemented for the experiments included FAM, FF and WO 

blocks. When motor adaptation was not explored (experiment 1), only FAM and WO 

reaching was performed. However, when motor adaptation was introduced into the 

reaching protocol (experiments 2 – 8) a velocity dependent FF (25 N sm-1) was applied 

during reaching. The aim of the FAM blocks was for the participants to become 

familiarised with the task, while the WO blocks intended to “wash-out” the effects of 

the FF. Each experimental chapter in this thesis describes the reaching blocks (FAM, FF 

and WO), and number of trials in each block for the different experiments that were 

undertaken.  
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3.5 Synchronisation 
In all experiments, kinematics (from robotics) and physiological signals were 

synchronised via a BNC cable connected from the robot to the CED system. Before 

each reach (at the time of visual cue to reach at 0 seconds), the robot sent a TTL pulse to 

the CED system which triggered the start of a reaching trial in the Signal Software 

(Version 6, CED LTD, UK) for data acquisition. 

3.6 Data acquisition and analysis 
The data that was acquired and analysed in this thesis focused on the effects of TMS 

pulse administration timings (10ms, 100ms, 130ms, 160ms, 190ms, 220ms, 250ms, 

280ms and 310ms) on kinematics of reaching and MEPS where expected (i.e. 

stimulating the left M1). Therefore the main outcome measures reported in this thesis 

included kinematics and MEPs.  

3.6.1 Kinematics  
Kinematics are different types of motion measurements that give an insight into the 

performance functions of limbs in different conditions (An and Chao, 1984). 

Kinematics of the upper limb emphasises the joint angles and position of the arm in 

relation to reaching in a specific direction (Soechting and Ross, 1984; Soechting, 

Lacquaniti and Terzuolo, 1986; Borghese, Bianchi and Lacquaniti, 1996). In this thesis, 

we used an end-effector robot which does not measure individual joint angles. 

Kinematic measures of the upper limb were investigated in this thesis to explore 

whether changes occurred in reaching movements during motor adaptation and also 

subsequent to TMS delivery.  

Kinematic data was acquired by 16-bit encoders located in the robot armature (sampled 

at 200hz) which recorded the position of reaches made. Various kinematic parameters 

were measured during each reaching trial, including movement onset, movement offset, 

movement duration, maximum velocity, maximum force and summed error.  

Kinematic parameters were all analysed offline in MatLab 2017b (The MathWorks Inc, 

Natick MA, USA), and were quantified as: 

1. Movement onset (ms): This represents the starting time of movement and was 

quantified as a speed profile exceeding 0.03 ms–1 

2. Movement offset (ms): This represents the end movement time point and was 

quantified as a speed profile that was lower than 0.03 ms–1  
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3. Movement duration (ms): This reflected the time-span of the movement (movement 

offset minus movement onset)   

4. Maximum velocity (m.s-1): The maximum velocity during each reach 

5. Maximum force (N): The maximum amount of force produced in each reaching trial 

6. Summed error: The cumulative perpendicular distance between the participant's 

reaching trajectory and the ideal reaching trajectory (Hunter, Sacco, Nitsche and Turner, 

2009; Pizzamiglio et al., 2017a; Pizzamiglio et al., 2017b) (figure 3.7).  

Summed error has been used as a measure of error in a number of motor reaching 

protocols (Hunter et al., 2009; Pizzamiglio et al., 2017a; Pizzamiglio et al., 2017b). In 

the reaching protocol there was an ideal linear reaching trajectory from the central 

starting point towards the north-west 135° target (figure 3.4). Summed error captured 

changes in reaching throughout the movement duration, i.e. from the start of the reach 

(onset) to the end of the reach (offset) (Pizzamiglio et al., 2017b). This measure was of 

particular interest in the final chapter of this thesis as the impact of TMS on different 

cortical regions (left and right M1, left and right PPC, the SMA, and left and right 

dPMC) during novel reaching was compared.  

It should be noted that prior to statistical analysis, online data cleaning procedures took 

place automatically during reaching (via the robotic encoders). This was based on the 

kinematic criteria for movement onset and movement offset. For example, for single 

reaching trials, if movement onset values fell below 0.03 ms–1 and movement offset 

values exceeded 0.03 ms–1 this was noted as a missed trial. Additionally, if participants 

failed to reach the target this was also calculated as a missed trial. Following automated 

data cleaning, single trial-by-trial kinematic measures were collected and averaged for 

each participant in each TMS reaching block. This data was used in statistical analysis 

(see section 3.7) to explore whether: 1) TMS time pulses affected kinematic measures, 

and 2) whether the effects of TMS were condition specific.  
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Figure 3.7: Calculation for summed error 

The reach produced by one participant is shown (solid red line), as is the ideal linear reaching 
trajectory (solid blue line). The deviation between the two (i.e. ideal reach [blue] vs. 
participant's reach [red]) was calculated by summing the distance at each time point from 
movement onset to movement offset (Hunter et al., 2009; Pizzamiglio et al., 2017a; Pizzamiglio 
et al., 2017b). 
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 ToR 

CP 

The grey arrows 
present distance of 
the participants 
reach and the ideal 
reach: the sum of 
this was 
calculated. 
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3.6.2 MEPs 
MEPs were obtained as a measure of corticospinal excitability (CSE) (Summers, Chen, 

and Kimberley, 2017) in experiment 1 and 2 (chapter 3 and 4) where TMS was 

delivered to the left M1. In these experiments, the MEPs evoked in muscles (BB, TB, 

ECR and FCR) during each reaching trial were recorded with EMG electrodes.  It 

should be noted that quality control took place before the reaching protocol began to 

avoid the risk of artefacts during data collection. For example, prior to electrode 

placement, the muscles of interest were cleaned with alcohol wipes. This procedure has 

commonly been employed in TMS paradigms to reduce impendences that may arise 

during EMG/MEP recordings (Jubeau et al., 2014; Cantone et al., 2019).  

Once MEPs were collected They were then quantified by calculating the peak-to-peak 

amplitude as this has been reported as the most common measure of CSE (Talelli, 

Greenwood and Rothwell 2006; Taube et al., 2006; Summers, Chen, Kimberley, 2017). 

A custom built sampling configuration toolbox in Signal Version 6 and CED data 

acquisition software (Cambridge Electronic Design LTD, Cambridge, UK) was used to 

deliver TMS randomly at nine different time points (10ms, 100ms, 130ms, 160ms, 

190ms, 220ms, 250ms, 280ms, and 310ms) during the preparation phase of reaching.  

In the experiments were MEPs were elicited, a number of steps were taken to quantify 

the peak-to-peak amplitude. Firstly MEPs were assessed to ensure that they fell within 

the +15ms to +55ms time frame. The time window chosen for peak-to-peak analysis 

was +15ms to +55ms after the TMS pulse as this was when MEPs typically occurred 

(see figure 3.8). This time window has previously been used when measuring BB MEP 

amplitudes in motor reaching protocols (Harris-Love et al., 2011). If MEPs did not fall 

within this range, they were discarded from the analysis. Therefore, there was quality 

control against experimenter bias because the same protocol was used to discard data 

for participants. Following data cleaning procedures, an average waveform was firstly 

created for each time point (i.e. >5 separate MEPs from each time point were averaged 

to form one MEP waveform). The peak-to-peak MEP amplitude was then calculated 

from the resulting average waveform. All MEP analysis was performed in Signal 

Software version 6 (CED LTD, Cambridge, UK). The steps taken are visually presented 

in figure 3.8.  

Individual subject differences in cortical physiology and structure can cause MEP 

amplitudes to vary (Kiers et al., 1993; Burke et al., 1995; Thickbroom, Byrnes and 
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Mastaglia, 1999; Darling, Wolf and Butler, 2013; Okamoto et al., 2015). Therefore, 

MEPs were normalised to adjust for the possible variability in peak-to-peak responses 

across participants. The MEPs of each TMS pulse time were normalised to the 10ms 

TMS pulse time. This was performed by dividing each averaged MEP at time x, by the 

10ms MEP average. The 10ms pulse time was chosen as a baseline value for 

comparison, because it represents an active internal control for illustrating changes in 

MEP responses (from a fully relaxed state with arms resting on table during hotspot 

evaluation to a quiet resting state with the arm in the robot trough) and occurs at a time 

before any preparatory brain activity has been recorded (Klein-Flügge et al., 2013). 

MEPs ratios were represented as percentages rather than raw values.  

In experiments where cortical regions did not have a measured output (left and right 

PPC, left and right dPMC and the SMA) TMS intensity was always set individually for 

each participant through functional measures – i.e. left M1 TMS (hotspot for the right-

sided BB muscle – at 110% RMT). Considering that all of the participants were right 

handed and performed a right hand reaching task, the left M1 rather than the right M1 

was chosen for BB “hotspotting” because of the neural correlates of handedness (i.e. the 

contralateral (left) hemisphere controls the right hand) (Gut et al., 2007). Left M1 TMS 

as a functional measure ensured that stimulation intensity was individually set for each 

participant to avoid possible under- or over- stimulation of the targeted cortical regions. 

Similar functional measures have been used in TMS experiments (Della-Maggiore et 

al., 2004; Bolognini and Ro, 2010). 
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Averaged window for peak-to-peak analysis: 

 

 

 

Figure 3.8: Protocol for MEP analysis 

The MEP evoked in the BB for each TMS pulse for example delivered at 250ms after the visual cue to reach for one participant. 
An average MEP waveform based on data from the five individual MEPs at 250ms is shown in the last window (black outline). In the red outlined box, 
the horizontal cursors display the peak-to-peak amplitude of the MEP trace, and the vertical cursors show the time that was chosen to quantify the peak-
to-peak amplitude (0.265ms and 0.305ms - i.e. +15 to +55 ms after the TMS pulse).  
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1st 250ms pulse: 

2nd 250ms pulse: 

3rd 250ms pulse: 

4th 250ms pulse: 

5th 250ms pulse: 

Averaged 250ms pulse: 
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3.7 Statistical analysis 
Statistical analysis was performed in the Statistical Package for the Social Sciences 

(SPSS) 23 (IBM). Block by block statistics were gathered for all measures (kinematics 

and MEPs). Generally, the paradigm of all experiments carried out was designed to 

compare the results of whole reach kinematics (experiments 1 - 8) and MEPs (in 

experiments were MEPs were collected; experiments 1 and 2) at different TMS pulse 

times (time: 10ms, 100ms, 130ms, 160ms, 190ms, 220ms, 250ms, 280ms and 310ms). 

In each experimental chapter, a within-subjects analysis design was undertaken as all 

participants were exposed to the same conditions in reaching (i.e. same TMS pulse 

times, and same reaching conditions). Therefore, the analysis for the kinematic data, and 

MEP data was performed using well established tests and this is further described 

below.  

3.7.1 Kinematic data (experiments 1-8):   
Kinematic data were collected in all of the experiments carried out in this thesis. A 

number of steps were taken for the statistical testing of kinematic data. For example, in 

the first step of statistical testing, a two-way repeated measures analysis of variance 

(ANOVA) (repeated measures; RMANOVA) was performed using two factors:  

1. Factor 1: TMS pulse time (10ms, 100ms, 130ms, 160ms, 190ms, 220ms, 250ms, 

280ms and 310ms)  

2. Factor 2: Condition (FAM, FF and WO) 

Kinematic measures of movement onset, movement offset, movement duration, 

maximum velocity, maximum force and summed error were tested for statistical 

significance, with TIME and CONDITION as the main within subjects factors. The 

significance level for RMANOVA testing was set at p < 0.05. Interaction effects were 

also noted in the outputs (TIME*CONDITION). For RMANOVA testing, sphericity 

assumptions were tested for with Maulchy’s Test of Sphericity. If sphericity was 

violated (i.e. p < 0.05), degrees of freedom were adjusted for using the Greenhouse 

Geisser correction, as this has been reported to reduce the risk of type 1 error rates by 

producing a more effective F-value (Winer, Brown and Michels 1991 cited in, Smith, 

2017). Once sphericity assumptions were tested for and subsequent adjustments were 

made to the degrees of freedom, where statistical significance was found in the 
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RMANOVA (i.e. p < 0.05), post-hoc testing performed in order to confirm where the 

specific differences in results occurred. Post-hoc testing was conducted using paired 

Student's t-test and corrections for multiple comparisons for post-hoc testing were 

performed with the Bonferroni method, whereby the p value was set to 0.05/number of 

comparisons performed. For example, where TIME was found to be a significant factor 

in kinematic variables following RMANOVA testing, the 10ms pulse was taken as a 

baseline value for comparison in post-hoc statistical testing. Therefore, the significance 

value for was set as p < 0.006, as:  

    

 
       

For the factor of CONDITION where the RMANOVA revealed significance, 3 paired 

comparisons were made between the different conditions (i.e. FAM vs. FF, FAM vs. 

WO and FF vs. WO), with the p value set as < 0.016 as: 

    

 
       

The Bonferroni method used helps control for the family-wise error rate by avoiding 

false positives occurring in the results (Armstrong, 2014) and it has been implemented 

in previous motor adaptation protocols (Pizzamiglio et al., 2017a; Pizzamiglio et al., 

2017b). 

3.7.2 MEP data (experiment 1 and 2)  

There were three factors to consider when exploring MEP data; TIME, MUSCLE and 

CONDITION. Therefore, each TMS pulse time, and individual muscle response was 

tested for statistical significance with an RMANOVA with TIME (10ms, 100ms, 

130ms, 160ms, 190ms, 220ms, 250ms, 280ms, and 310ms), MUSCLE (BB, TB, ECR 

and FCR) and CONDITION (FAM, FF and WO) as the within-subject factors. 

Statistical outputs included main effects of TIME and CONDITION for muscles as well 

as interaction effects. 

As with kinematic data, the RMANOVA significance value for MEP data was set as p < 

0.05 and sphericity assumptions were tested for using Maulchy’s Test of Sphericity. 

Greenhouse Geisser correction was used if sphericity assumptions were violated to 

adjust for the degrees of freedom. Following this, where main effects revealed 

significance, post-hoc testing performed (paired Student’s t-test, with Bonferroni 

methods). If RMANOVA testing for the factor of TIME was found have a significant 
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effect on MEP responses in muscles, the p-value for post-hoc testing was set as p < 

0.006. In post-hoc testing for the factor of CONDITION, significance was set as p < 

0.016, and for the factor of MUSCLE significance was set as p < 0.0125. 

All data in the results section for kinematics are presented as mean values ± the standard 

error mean (SEM). 

3.7.3 Additional statistical testing: 
TMS can have a disruptive effect on subsequent motor reaching, depending on the 

region that is stimulated. For example, stimulating the left PPC was found to result in 

greater disruption in novel learning compared to FAM reaching (Della-Maggiore et al., 

2004). However, the effect of stimulating other regions have mainly been studied with 

repetitive TMS protocols and whilst observing non-human primates. Therefore, in the 

penultimate chapter of this thesis (chapter 12), there was an aim to explore the impact of 

TMS delivered to different cortical regions during 1) motor control and 2) motor 

adaptation. In order to investigate this, performance during TMS FAM, FF and WO 

reaching were compared between all of the cortical regions with a three-factorial mixed 

ANOVA. Therefore, analysis consisted of a between-subjects factor (cortical region 

stimulated - REGION) and within-subject factors (TIME and CONDITION). For each 

kinematic variable, statistical outputs included main effects for region, condition and 

time. Various interaction effects were also produced from the ANOVA including, 

REGION*CONDITION, REGION*TIME, CONDITION*TIME and 

TIME*REGION*CONDITION. Individual ANOVA tests were then carried out for the 

significant mixed ANOVA findings (p < 0.05). Where significance was revealed in the 

individual ANOVA tests (p < 0.05), post-hoc testing with Bonferroni methods to correct 

for multiple comparisons were performed (paired Student's t-test for CONDITION 

[FAM, FF and WO comparisons, p-value set at 0.016] and TIME [vs. T10, p value set at 

0.006] comparisons, and Independent t-test for REGION comparisons [p value set at 

0.002]). 
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Chapter 4 

4 Experiment 1 

The neural and behavioural mechanisms mediating right arm reaching probed 
with TMS delivered to the contralateral (left) and ipsilateral (right) primary motor 

cortex 
 

4.1 Introduction 

Motor behaviours fall into one of two categories; discrete or continuous. Reaching with 

the upper limb has been classed within the discrete category, because it is a motion that 

has a defined beginning and end point (Muratori et al., 2013). The concept of 'fine' and 

'gross' motor skills should also be considered when defining reaching. While fine motor 

skills refer to actions that use small muscles (i.e. hands), gross motor skills are actions 

that use larger muscles (i.e. upper arm and the trunk of the body; Muratori et al., 2013). 

In this experiment, reaching involved both gross and fine muscles. This is because the 

hand was used to grasp the joystick on the robotic arm, and the upper limb muscles 

were used to carry out the reaching motion. The role of the corticospinal tract (CST) is 

vital during reaching. This has been shown in both human studies (such as stroke 

patients) and animal models, whereby a damaged CST resulted in impaired motor 

function and poor reaching accuracy (Martin and Ghez 1991; Maraka et al., 2014). 

The act of reaching begins with preparatory neural activity within pre-motor and motor 

cortices before actual movement of the arm (Jones, 2012). These regions help regulate 

timing and outputs of motor behaviour (Halsband et al., 1993; Overduin, Richardson, 

and Bizzi, 2009; Chang et al., 2015; Panouilleres et al., 2015). Reaching also involves 

complex information flows between different brain regions. For example, the 

dorsolateral prefrontal cortex (DLPFC) transmits organisation and planning information 

to the pre-motor cortex (PMC) to transfer to the primary motor cortex (M1). The PMC 

also receives information from the posterior parietal cortices (PPC) for preparation and 

spatial navigation of movements (Kantak et al., 2012). Section 1.5 provides further 

specific details with regards to how motor output occurs.  

Although unilateral movements rely on recruiting contralateral brain regions for motor 

output, lateralisation exists between the contralateral and ipsilateral M1, therefore the 

two hemispheres may not exhibit the same functions (Hayashi et al., 2008; Barber et al., 
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2011). For example, TMS and functional magnetic resonance imaging (fMRI) during 

thumb abduction and finger dexterity tasks illustrated that the contralateral (left) M1 in 

right handed participants showed a greater recruitment of activity in both right and left 

hand motor tasks compared to the ipsilateral (right) M1 which was only recruited during 

left hand motor tasks (Kim et al., 1993; Ghacibeh et al., 2007; Muellbacher et al., 

2000). Therefore, exploring the role of both the contralateral and ipsilateral M1 can be 

important in investigating how these two regions differ with regards to their 

contribution to reaching behaviours.  

TMS protocols have used surface electromyography (EMG) electrodes on different 

upper-limb arm muscles to capture physiological responses (e.g. motor evoked 

potentials [MEPs]) during the preparation and execution phases of reaching (Groppa et 

al., 2012; Hunter, Sacco and Turner, 2011; Orban de Xivry et al., 2013). Single-pulse 

TMS (SP-TMS) delivered to the M1 in reaching paradigms has shown dynamic changes 

in MEP amplitude. For example, during the preparation phase of right arm reaching 

towards the body (270° target on a visually presented dart-board), Hunter, Sacco and 

Turner (2011) found that the biceps brachii (BB) exhibited larger MEP responses than 

the triceps brachii (TB). However reaching away from the body (135° target) resulted in 

no differences in MEPs measured in the two muscles. Hunter, Sacco and Turner (2011) 

also demonstrated time-specific differences with regards to physiological responses 

between the BB and TB. For example, when TMS was delivered closer to movement 

onset (during 135° reaching) MEP amplitudes were significantly increased at 190ms 

and 220ms in the BB as opposed to the TB.  

These physiological changes are important to consider because they show that there are 

complex mechanisms that underlie the time- and direction-tuning of an MEP. However, 

there is little literature on the time-dependent changes in MEPs comparing the 

contralateral and ipsilateral M1 and capturing the whole preparation phase of reaching. 

This new evidence might be important in revealing whether hemispheric-specific 

cortical excitability changes enable effective reaching.  

As well as physiological changes being illustrated in both reaching preparation and 

reaching execution tasks, researchers have also explored how TMS affects behaviour. 

Behavioural changes as a consequence of TMS include errors made during reaching 

(e.g. trajectory errors) and altered maximum velocity and reaction time. With regards to 

errors made during reaching, Hunter, Sacco and Turner (2011) found that TMS to the 
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left M1 during reaching with the right hand towards different targets (135° and 270°) 

did not lead to any significant changes in trajectory errors made. However, studies have 

shown that TMS application to the contralateral M1 during movement preparation for 

unperturbed reaching delayed reaction time (Day, Rothwell and Marsden, 1983). Meyer 

and Voss (2000) also found similar results and reported a delay of up to 40ms during 

contralateral M1 stimulation during right-limb finger movement. Whether reaching 

errors and delays are affected by TMS delivered to the ipsilateral M1 during upper-limb 

robotic reaching are yet to be confirmed. Identifying differences between the two 

hemispheres is important in revealing whether there are specific reaching processes 

(determined by kinematics) that the contralateral M1 contributes to during right arm 

reaching, that the ipsilateral M1 does not, and vice versa. For example, the left 

hemisphere has been reported to be more specialised in motor sequence learning 

compared to the right hemisphere (Mutha, Haaland and Sainburg, 2012). This notion 

has support from studies on stroke patients with left-hemispheric lesions who performed 

poorly in sequential hand movement tasks (involving the ipsi-lesional arm and contra-

lesional arm) compared to stroke patients with right-hemispheric lesions (Kimura, 

1977). Motor planning, action and attention in finger and hand selection are also 

specific to functions of the left hemisphere (Schluter et al., 2001; Mutha, Haaland and 

Sainburg, 2012; Oliveira et al., 2010) and therefore the role of the contralateral 

hemisphere has been noted to have a greater prominence in motor tasks than the 

ipsilateral hemisphere.   

This experiment set out to investigate whether TMS delivered at different time points, 

to either the contralateral or ipsilateral M1 during the preparation of a reach has an 

effect on distinct reaching kinematic parameters (movement onset, movement offset, 

maximum velocity, summed error and movement duration), and whether changes are 

common to stimulation of both hemispheres or selective to one hemisphere only. This is 

important in showing how reaching behaviours are modulated between hemispheres.  

4.2 Methodology 
Table 3.2 outlines participant’s specific details for this experiment (e.g. N, age and 

gender). The ways in which the left and right M1 was located for this study is also 

described in section 3.3.2 and demonstrated in figure 3.3. The experimental paradigm 
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for this experiment is shown in figure 3.4. Section 3.41 and 3.4.2 outlines specific 

details regarding the instructions given to the participants in this experiment. 

4.3 Data acquisition 

4.3.1 MEPS recorded with EMG: 
It should be noted that in this experiment MEPs were only recorded when TMS was 

delivered to the contralateral M1 to explore corticospinal excitability (CSE) responses 

during right arm reaching. The muscles that were explored and the filtering protocols 

used for signal acquisition are identified in section 3.3.1. Furthermore, section 3.6.2 

describes the steps taken for MEP analysis (such as MEP normalisation) and figure 3.8 

demonstrates the protocol for MEP quantification (i.e. calculating the peak to peak 

amplitude).   

4.3.2 Kinematics recorded with the robot: 
The kinematic variables that were recorded and the ways in which they were quantified 

and analysed (Matlab 2017b - The MathWorks Inc, Natick MA, USA) are explained in 

section 3.6.1. 

4.4 Statistical analysis 
Generally, the paradigm of this experiment was designed to compare the results of 

MEPs and kinematics during different TMS pulse times (TIME factor) and muscles 

(MUSCLE Factor for MEP data) and to compare contra-lateral and ipsi-lateral 

hemisphere stimulation (HEMISPHERE factor for kinematic data only).  

4.4.1 MEPs: 
Peak-to-peak MEP amplitudes for each TMS pulse time (TIME factor) and individual 

muscles (MUSCLE factor; BB, TB, ECR and FCR) were tested for significance with a 

two-way RMANOVA with TIME and MUSCLE as within-subjects factors in SPSS 23 

(IBM). The ways in which sphericity assumptions were tested for are outlined in section 

3.7.2. Post-hoc testing was performed (where significance was found (RMANOVA, p < 

0.05) with a paired Student's t-test for TIME (p < 0.006) and MUSCLE (p < 0.0125; 

both corrected for multiple comparisons using Bonferroni methods).  

4.4.2 Kinematics: 
Kinematic responses for each TMS pulse time was calculated trial by trial and averaged 

across participants for each hemisphere. Overall, the aim of the analysis was to identify 
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significant differences for TIME and HEMISPHERE factors between the contralateral 

and ipsilateral M1 for kinematic variables. Section 3.6.1 describes the ways in which 

kinematic parameters were explored and analysed in SPSS 23 (IBM) (including how 

sphericity assumptions were tested and how post-hoc testing was carried out). 

4.5 Results 

4.5.1 MEP results: Contralateral M1 stimulation only: 
The results of average peak-to-peak MEP amplitudes during reaching (values as ratio of 

TMS 10ms) are shown in table 4.1. TIME factor had a significant main effect on peak-

to-peak MEP amplitude (RMANOVA p < 0.05). However, there was no significant 

effect of MUSCLE factor and no MUSCLE*TIME interaction was found (RMANOVA 

p > 0.05) (table 4.1).   

4.5.2 Kinematics: contralateral and ipsilateral stimulation: 
The results of the two-way RMANOVA revealed a significant difference for TIME for 

movement onset, offset and maximum velocity (all F > 4.558, all p < 0.05) (table 4.2), 

but not for maximum force, movement duration and summed error (all F < 0.593, all p > 

0.05). Kinematic conditions were not significantly different between the contralateral 

and ipsilateral M1 (HEMISPHERE factor; all F < 0.022, all p > 0.05) (therefore post 

hoc testing was not performed for this factor). A significant interaction was only found 

for movement onset (F = 3.61, p < 0.05) (see table 4.2).  

Post hoc testing for time with regards to movement onset revealed a significant increase 

in all pulse times during contralateral and ipsilateral M1 stimulation when compared to 

10ms (all p < 0.006). This was also the case for movement offset (all p < 0.006) for 

contralateral M1 stimulation. During ipsilateral M1 stimulation however, TMS 

delivered at 100ms was not significantly different from 10ms (p > 0.006). Maximum 

velocity was significantly increased when TMS was delivered at 280ms and 310ms 

when compared to 10ms during contralateral reaching (p < 0.006), whereas maximum 

velocity responses did not differ between 10ms and all other time points of TMS 

delivery during ipsilateral stimulation (p > 0.006). Table 4.3 and figure 4.1 further 

demonstrates post-hoc testing results.  
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Table 4.1: Average peak-to-peak MEP amplitudes during FAM reaching at different time points, and results of RMANOVA testing: 

 TMS Pulse Time 
10ms 

Mean [SE] 
100ms 

Mean [SE] 
130ms 

Mean [SE] 
160ms 

Mean [SE] 
190ms 

Mean [SE] 
220ms 

Mean [SE] 
250ms 

Mean [SE] 
280ms 

Mean [SE] 
310ms 

Mean [SE] 
Biceps brachii (BB) 1.00 [0.00] 1.05 [0.13] 1.32 [0.17] 1.20 [0.08] 1.29 [0.13] 1.31 [0.10] 1.42 [0.17] 1.31 [0.17] 1.40 [0.18] 
Triceps brachii (TB) 1.00 [0.00] 1.17 [0.17] 1.32 [0.25] 1.20 [0.12] 1.22 [0.11] 1.33 [0.14] 1.30 [0.11] 1.25 [0.09] 1.30 [0.11] 
Extensor carpi radialis (ECR) 1.00 [0.00] 0.89 [0.06] 1.13 [0.06] 1.06 [0.06] 1.01 [0.05] 1.03 [0.07] 1.02 [0.09] 0.96 [0.05] 0.99 [0.05] 
Flexor carpi radialis (FCR) 1.00 [0.00] 0.91[0.08] 0.99 [0.07] 0.93 [0.06] 1.02 [0.07] 1.05 [0.06] 1.07 [0.08] 1.02 [0.07] 1.12[0.09] 

ANOVA TESTING 
 Time (10-310ms) Muscle (BB, TB, ECR, FCR) Time*Muscle 

Statistical output Df (Errors) F Sig Df (Errors) F Sig Df (Errors) F Sig 
Results: 3.7 (44.2) 3.631 0.014 1.6 (18.1) 2.737 0.103 24 *288) 0.899 0.604 

 

 

 

 

 

 

 

 



95 
 

 

 

Table 4.2. Two-way RMANOVA results for kinematic variables during contralateral and ipsilateral M1 stimulation  

 

 

 

 

 

 

 

 

 

 

 Two-way ANOVA 
 TIME factor: 

10ms - 310ms 
HEMISPHERE factor  

(Contralateral and Ipsilateral M1) 
Interaction effects 

TIME * HEMISPHERE 
 df(Error) F Sig. df(Error) F Sig. df(Error) F Sig. 
Movement Onset (ms) 2.9[34.5] 76.65   < 0.001 1 [12] 0.547 0.474 3.3 [39.4] 3.608 0.019 
Movement Offset (ms) 8[96] 23.27   < 0.001 1 [12] 0.461 0.510 8 [96] 1.928 0.064 
Maximum Velocity (m.sˉ¹) 8[96] 4.558   < 0.001 1 [12] 0.022 0.883 8 [96] 1.554 0.149 
Duration (ms) 8[96] 1.935 0.063 1 [12] 2.231 0.154 8 [96] 1.346 0.230 
Summed Error (distance: cm) 8[96] 1.457 0.183 1 [12] 0.976 0.343 8 [96] 0.734 0.661 
Maximum Force (N) 8[96] 0.593 0.781 1 [12] 0.208 0.656 8 [96] 0.874 0.541 
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Table 4.3. Post-hoc testing following significant RMANOVA findings: 

 TIME  
10ms 

Mean [SEM] 
100ms 

Mean [SEM] 
130ms 

Mean [SEM] 
160ms 

Mean [SEM] 
190ms 

Mean [SEM] 
220ms 

Mean [SEM] 
250ms 

Mean [SEM] 
280ms 

Mean [SEM] 
310ms 

Mean [SEM] 
 Contralateral M1 
Movement Onset (ms) 298 [12] 351 [10] * 386 [12]* 395 [11]* 403 [9]* 428 [12]* 440 [12]* 433 [12]* 494 [18]* 
Movement Offset (ms) 1167 [18] 1242 [16]* 1244 [24]* 1265 [22]* 1258 [21]* 1282 [21]* 1282 [22]* 1303 [23]* 1323 [26]* 
Maximum Velocity (m.sˉ¹) 0.27 [0.01] 0.27 [0.01] 0.28 [0.01] 0.28 [0.01] 0.28 [0.01] 0.28 [0.01] 0.28 [0.01]* 0.29 [0.01]* 0.29 [0.01]* 
Duration (ms)  868 [17] 827 [62] 856 [23] 823 [65] 856 [23] 854 [19] 841 [19] 842 [19] 843 [21] 
Summed Error (distance: cm) 2.51 [0.23] 2.50 [0.24] 2.31[0.18] 2.81[0.29] 2.67 [0.22] 2.67 [0.23] 2.65 [0.20] 2.96 [0.36] 2.82 [0.27] 

Force (N) 4.5 [0.10] 4.6 [0.20] 4.6 [0.20] 4.5 [0.10] 4.6 [0.10] 4.5 [0.20] 4.6 [0.20] 4.6 [0.20] 4.6 [0.20] 
 Ipsilateral M1 
Movement Onset (ms) 325 [13] 367 [10] * 401 [12] * 414 [12] * 430 [12] * 423 [9] * 437 [13] * 469 [18] * 466 [16] * 
Movement Offset (ms) 1195 [20] 1224 [20] 1244 [20] * 1270 [24] * 1294 [21] * 1267 [19] * 1273 [22] * 1321 [21] * 1310 [17] * 
Maximum Velocity (m.sˉ¹) 0.27 [0.01] 0.27[0.01] 0.27 [0.01] 0.27 [0.01] 0.27 [0.01] 0.28 [0.01] 0.28 [0.01] 0.27 [0.01] 0.28 [0.01] 
Duration (ms)  870 [17] 854 [13] 844 [26] 855 [27] 864 [21] 844 [76] 835 [25] 854 [21] 844 [15] 
Summed Error (distance: cm) 2.64 [0.24] 2.55 [0.18] 2.34 [0.15] 2.46 [0.19] 2.51 [0.17] 2.60 [0.22] 2.40 [0.19] 2.46 [0.16] 2.39 [0.12] 
Force (N) 4.4 [0.21] 4.5 [0.20] 4.5 [0.20] 4.5 [0.23] 4.5 [0.25] 4.5 [0.21] 4.5 [0.20] 4.5 [0.19] 4.5 [0.20] 

 

Significant findings (Student's t-tests) with Bonferroni correction for multiple comparisons are marked with an asterisk (*)  

Symbols represent significance following post hoc testing: 
* = significant difference vs 10ms for TIME factor  
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Figure 4.1[A-C]: Graphical presentation of the post-hoc testing results (based on table 
4.3) for the significant kinematic variables:  
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4.6 Discussion 

4.6.1 MEP responses: 
ANOVA results revealed a significant main effect for the TIME factor for MEP 

amplitude (p < 0.05) demonstrating that as TMS pulses became closer to the onset of 

movement, MEP amplitudes of all muscles increased, although this was a small effect 

size as no further significance was illustrated in post-hoc testing (all p > 0.006). 

Additionally, no significant effect of MUSCLE factor or MUSCLE*TIME interaction 

was found. These results are similar to findings illustrated by Hunter, Sacco and Turner 

(2011) as they reported that TMS delivered to the contralateral M1 when reaching 

towards the body (270° target) induced MEP changes between the BB and the TB, with 

the BB exhibiting larger MEP responses, however this was not case when reaching 

away from the body (135° target as in this study). Direction MEP changes were also 

noted by Kantak et al., (2013) in upper-limb arm robotic reaching demonstrating an 

increase in TB MEP amplitude when reaching away from the body. It could be argued 

that the reason as to why MEP responses were not significantly altered in this 

experiment was due to the nature of the reaching protocol (i.e. 135° unperturbed 

reaching). Implementing different motor reaching protocols with different directions can 

demonstrate the complex mechanisms that underlie the time- and direction-tuning of an 

MEP. This thesis does not address directional tuning however. Furthermore, the impact 

of TMS on corticospinal projections during unperturbed reaching relies on the extent of 

training that has been undertaken (Kantak et al., 2013). For example, TB MEP 

responses during elbow extension reaching significantly increased following repeated 

reaching trials (160 reaching trials x 3 blocks of reaching) (Kantak et al., 2013). With 

regards to MEP findings in experiment 1, it could be suggested that MEP amplitudes 

between muscles may have significantly differed if subjects were exposed to a greater 

number of reaching trials. This is because practice-related activity can induce 

neuroplasticity, which can in turn effect muscle representations in the M1 (even in 

unperturbed reaching) (Kantak et al., 2013). 

4.6.2 Kinematics:  
Overall, experiment 1 illustrated the behavioural effects of TMS on reaching 

kinematics. For example, it was found that both contralateral and ipsilateral M1 TMS 

(right arm reaching) prolonged the movement onset time (also commonly known as 
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reaction time; this addresses experiment 1, hypothesis 2) and movement offset. More 

specifically for both hemispheres, the later the TMS pulse was delivered during 

movement onset, the greater the delay in movement onset, which was found in robust 

multiple comparisons testing (p < 0.006 - table 4.3).   

The shift in movement onset reported in this experiment is in line with results from 

previous studies (Day, Rothwell and Marsden, 1983). Meyer and Voss (2000) noted that 

TMS can cause delays of up to 40ms in responses. However, it should be taken into 

account that previous experiments (e.g. Day, Rothwell and Marsden, 1983) reporting 

similar delays in movement onset have not explored upper limb reaching, but rather 

hand/finger pointing. Therefore experiment 1 demonstrated that similar delays can also 

be found during upper limb reaching (table 4.3).  

A mechanistic effect of TMS on the M1 is that it excites pyramidal neurons trans-

synaptically (via depolarised interneurons) (Rothwell et al., 1987; Terao and Ugawa, 

2002; Hallett, 2007; Farzan et al., 2016; Goss, Hoffman and Clark, 2012). The delay in 

movement onset found in this experiment can be explained mechanistically by the 

inhibitory effects of TMS. More specifically, TMS inhibits the ‘release channel’ of 

neurons that are responsible for movement preparation, making them unresponsive for a 

brief period, thus causing delays in signals that facilitate movement onset. The 

movement command can still be released for motor output because ‘pre-movement 

facilitation’ in the M1 was initiated (i.e. motor planning) (Day, Rothwell and Marsden, 

1983; Ziemann et al., 1997). Therefore, TMS can cause GABAb-like activity effects (a 

neurotransmitter that influences inhibition processes) (Werhahn et al., 1999; Auriat et 

al., 2015). 

An interesting finding from the RMANOVA was that maximum velocity during 

reaching was significantly increased during the latter time points of contralateral M1 

stimulation, which was not the case for ipsilateral M1 stimulation. The state dependency 

theory, specifically dispersed excitation to other connected brain regions can explain 

this finding. This theory suggests that TMS may not only directly impact synaptic 

activity in the targeted region, but it could also indirectly influence cortical activity by 

affecting its connected networks (Siebner et al., 2009). Numerous regions make up the 

motor network including, the dorsolateral prefrontal cortex (DLPFC), the premotor 

cortices (PMC), the supplementary motor area (SMA), and the posterior parietal cortex 

(PPC) (Kantak et al., 2012). Studies exploring the functional role of the left M1 have 
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shown that during reaching tasks it encodes kinematic parameters, including velocity, 

and the speed of movement via neural communication with connecting regions, such as 

the SMA (Hore and Flament, 1988; Aizawa and Tanji, 1994; Tanji and Mushiake, 1996; 

Moran and Schwartz, 1999; Tankus et al., 2009; Teka et al., 2017). Based on this 

theory, and findings from functional motor connectivity imaging studies (i.e. 

contralateral vs. ipsilateral M1 – see Kim et al., 1993; Guye et al., 2003) it can be 

argued that TMS caused a significant change in velocity measures only in the 

contralateral M1, because it had a greater ‘knock-on’ effect on its connecting nodes, 

which have been found to be more extensively connected in the left hemisphere as 

opposed to the right hemisphere (Kim et al., 1993; Guye et al., 2003; Siebner et al., 

2009).    

Hemispheric asymmetries can also explain why TMS had a greater effect on kinematic 

variables in one hemisphere compared to another hemisphere (e.g. maximum velocity 

and movement offset in the contralateral M1 compared to the ipsilateral M1), which has 

been noted in fMRI and structural voxel based morphometry (VBM) studies. For 

example, in a resting fMRI study where connectivity patterns were correlated with 

motor performance, Barber et al., (2011) found a link between enhanced motor 

performance and increased left-hemispheric M1 connectivity, compared to right-

hemispheric M1 activity in right handed participants. VBM imaging methods use 

volumetric measures to explore anatomical differences between structures in the left and 

right hemisphere (Ashburner and Friston, 2000; Watkins et al., 2001; Büchel et al., 

2004). Diffusion tensor imaging (DTI) VBM studies in right-handed subjects revealed 

that the contralateral M1 had a greater volume, and greater degrees of dendrites and 

axons than the ipsilateral M1 (Amunts et al., 1996). Such hemispheric asymmetries help 

explain the concept of lateralisation which was found in this study when considering 

that movement preparation was effected differently between the ipsilateral and 

contralateral M1. Although the left M1 has been found to be more prominently active 

than the right M1 in right handed subjects during arm-reaching and pointing tasks (Kim 

et al., 1993; Muellbacher et al., 2000; Barber et al., 2011) it should be taken into 

account that in this study using TMS to disrupt ipsilateral M1 functioning also resulted 

in delays in reaction time, which is in line with previous research that has found the 

ipsilateral M1 to undergo task related changes to the moving body side (Van den Berg, 

Swinnen and Wenderoth, 2011). This indicates that the ipsilateral cortex is also 
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involved and interacts with movement preparation processes, even during unilateral 

reaching. Summed error values were not significantly affected with TMS to either the 

contralateral or ipsilateral M1. This result can be due to unperturbed reaching that was 

performed, as similar studies have also not demonstrated any changes in this variable 

during unperturbed reaching (Hunter, Sacco and Turner, 2011).  

4.7 Chapter conclusions: 
In this study, TMS stimulation was found to delay movement onset and movement 

offset responses during both contralateral and ipsilateral M1 stimulation which can be 

due to the inhibitory effects of SP-TMS. Significant changes were not observed in MEP 

responses between muscles which could have been be due to the nature of the task (e.g. 

direction of reaching), and the number of reaching trials that participants were exposed 

to, when considering that continuous repeated practice can influence MEP responses 

through inducing plasticity. The differences between the two hemispheres with regards 

to the degree of delay as well as other kinematic parameters (e.g. movement velocity) 

can be attributed to 1) hemispheric asymmetries noted in VBM studies, 2) lateralisation 

of motor function between the left and right M1, and 3) differences in functional 

connectivity which have been studied with resting state fMRI studies. Overall this 

chapter highlighted reaching processes that the contralateral and ipsilateral M1 

contribute to (planning and preparation of reaching) and the kinematic behaviours that 

may be more distinct for one hemisphere only (e.g. velocity; left M1). In the upcoming 

chapters, motor adaptation will be studied in order to investigate whether such 

hemispheric differences are also evident with TMS during a force-field reaching 

paradigm.  
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Chapter 5 

5 Experiment 2 

The neural and behavioural mechanisms mediating right arm reaching in a force-
field studied with single-pulse TMS to the left primary motor cortex (M1) 

 

In the previous chapter, neural mechanisms and kinematic behaviour of unperturbed 

reaching were explored with contralateral and ipsilateral M1 TMS delivery. The 

purpose of this experiment was to introduce motor adaptation within the protocol. 

Therefore, this experiment aimed to investigate whether motor adaptation (i.e. force-

field [FF] reaching) was accompanied by changes in corticospinal excitability (CSE) 

and in subsequent kinematic responses studied with TMS delivered to the left M1.  

5.1 Introduction 
Motor adaptation places emphasis on the brain’s flexibility in meeting the demands of a 

changing environment compared to motor skill learning (Bastian, 2008). Motor 

adaptation is vital in the field of rehabilitation because repeated adaptation can lead to 

individuals learning a new motor skill (Bastian, 2008; Hunter et al., 2009). For 

example, in the study of Reisman (2005) stroke patients who had an impaired leg, were 

asked to adapt the affected leg to walk faster than the unaffected leg on a split-belt 

treadmill. Following motor adaptation trials, the patients gradually learned to walk with 

both legs at the same speed. It can thus be argued that motor adaptation can facilitate the 

re-learning of motor skills and aid neurological recovery. The motor adaptation process 

can be explored in robotic training with the robot in ‘resistive mode’ (see Section 3.4) 

(Patton et al., 2006). In this mode, the robot administers a force that opposes 

movements made by the patient. Forces can be applied in different directions and 

magnitude and aim to strengthen weakened muscles (Poli et al., 2013; Eiammanussakul 

and Sangveraphunsiri, 2018). Studies have shown that resistive robotic cycling training 

in stroke patients resulted in improved walking distance performance and an increase in 

comfortable speed – as quantified by walking assessments (both practical sessions and 

mobility scales) (Kamps and Schüle 2005; Eiammanussakul and Sangveraphunsiri, 

2018). Therefore, the ‘resistive mode’ in robotic motor adaptation protocols can be used 

as an effective tool in assisting the recovery process in clinical populations (i.e. stroke 

patients). 
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Changes in corticospinal excitability have previously been investigated with TMS in 

motor adaptation paradigms. For example, an increase in BB compared to TB peak-to-

peak MEP amplitude was demonstrated in the preparatory phase of reaching during 

motor adaptation (Orban de Xivry et al., 2013). More specifically, BB MEP increased 

when measured more closely to movement onset (Hunter, Sacco and Turner, 2011; 

Orban de Xivry et al., 2013). However, it should be considered that TMS to the left M1 

has not been delivered during the whole preparation phase prior to FF reaching onset. 

This could be interesting to explore, as it is currently not known whether different 

kinematic parameters have specific time-related effects with TMS. 

Errors during reaching are greater during the initial stages of motor adaptation, however 

they gradually reduce trial by trial following additional blocks of force-field reaching 

(Hunter et al., 2009; Hunter, Sacco and Turner 2011; Pizzamiglio et al., 2017a; 

Pizzamiglio et al., 2017b).  Interestingly, studies with non-human primates have found 

that major changes within the M1 do not occur at the earlier stages of adaptation when 

errors are amplified, but rather at the latter stages when errors are reduced (Paz et al., 

2003). However, this has not been established with TMS protocols in man.  

The motor adaptation protocol implemented in this experiment, contains 8 blocks of 

force-field reaching (i.e. approximately 200 reaches in a force-field) which should allow 

a fuller degree adaptation and consolidate a robust change in left M1 function. Thus, we 

tested the hypothesis that the left M1 is functionally altered by motor adaptation. 

Secondarily, as TMS appears to alter subsequent movement kinematics in normal 

reaching (see chapter 4), this experiment also addresses whether the impact of TMS 

disrupts subsequent reaching in a different fashion in motor adaptation. This would 

further suggest an alteration in left M1 function occurs during adaptation. 

5.2 Methodology  
Table 3.2 outlines participant demographics for this experiment, as well as the number 

of participants excluded and the reasons why. The TMS protocol for this experiment 

including how RMT was identified as well as TMS coil position for left M1 location is 

described in section 3.3.2. This protocol differs from experiment 1, as motor adaptation 

was explored. The experimental set up and the full details of the instructions given to 

the participants is outlined in Section 3.4.1 and 3.4.2. Furthermore, figure 3.5 
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graphically demonstrates the protocol with regards to the different blocks of reaching 

(FAM, FF and WO). 

5.3 Data acquisition: MEPs and Kinematics 
When TMS was delivered to the left M1, MEPs were recorded from four muscles (BB, 

TB, ECR and FCR) with two disposable surface electrodes. The specific guidelines 

(SENIAM) that were used for electrode positioning are outlined in Section 3.3.1. The 

ways in which MEP responses were recorded and quantified for this experiment is 

described section 3.6.2 and illustrated in figure 3.8. The kinematic variables recorded 

and their quantification and analysis process (Matlab 2017b - The MathWorks Inc, 

Natick MA, USA) is explained in section 3.6.1. 

5.4 Statistical analysis: MEPs and Kinematics 
Section 3.7.2 describes the ways in which statistical testing was performed for this 

experiment using a three-factorial RMANOVA (RMANOVA) with TIME (T10 to 

T310), CONDITION (FAM, FF, WO) and MUSCLE (BB, TB, ECR and FCR) as main 

factors in SPSS 23 (IBM). The statistical analysis that was undertaken for kinematic 

parameters is described in section 3.7.1. Section 3.7.2 also outlines the procedure for 

sphericity testing and how post hoc testing was performed (i.e. Student’s t-tests and 

correcting for multiple comparisons using Bonferroni methods). 

5.5 Results 

5.5.1 MEPs: 
The results of the RMANOVA (table 5.1) revealed a significant main effect for TIME 

(F: 9.86, p < 0.05) and CONDITION (F: 10.67, p < 0.05). However, MEP responses did 

not significantly differ between MUSCLES (F: 1.00, p > 0.05). A significant interaction 

was found for TIME*CONDITION (F: 6.00, p < 0.05), but not for TIME*MUSCLE, 

MUSCLE*CONDITION and TIME*MUSCLE*CONDITION (F < 2.22, p > 0.05).  

Post hoc testing for TIME (table 5.1) showed no significant differences in MEP 

amplitude for FAM reaching between T10 and all other TMS pulse times in the BB, TB, 

ECR and FCR (all p > 0.006). However, there was a significant increase in MEP 

amplitude in the BB at 220ms and 250ms compared to T10 in FF reaching (p < 0.006). 

There were no significant differences in MEP amplitude during FF reaching between 

T10 and all other TMS pulse times in the TB, ECR and FCR (p > 0.006). No significant 

differences in MEP amplitude were found during WO reaching between T10 and all 
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other TMS pulse times in the BB, TB and ECR (all p > 0.006), but there was a 

significant increase in MEP amplitude in the FCR at 130ms compared to T10 (p < 

0.006). 

Post hoc testing for CONDITION (table 5.1) for the BB showed a significant increase in 

MEP amplitude in FF reaching compared to FAM reaching (at 220ms, 250ms and 

310ms p < 0.016). MEP amplitude in FF reaching compared to WO reaching was also 

significantly increased (at 160ms, 220ms, 250ms and 310ms p < 0.016). No significant 

differences in MEP amplitude were found for WO vs. FAM reaching. TB MEP 

amplitude was significantly increased in FF reaching compared to FAM reaching at 

220ms (p < 0.016). No significant differences were found for FF vs. WO reaching in the 

TB. However, there was a significant increase in MEP amplitude in the TB during WO 

reaching compared to FAM reaching (only at 310ms p < 0.016). With regards to the 

ECR and FCR, there were no significant differences in MEP amplitude during FF vs. 

FAM reaching, FF vs. WO reaching, and FAM vs. WO reaching (all p > 0.016).  

5.5.2 Kinematics: 
Patterns of reaching were as follows: during TMS FAM reaching, participant’s 

successfully familiarised themselves with the task. Motor adaptation introduced with FF 

reaching (no TMS) initially caused deviations in reaching trajectories. However, 

following blocks of repeated trials, participant's learned to adapt to the FF and optimise 

their reaching – which is indicative of successful motor adaptation. TMS FF reaching 

however disrupted reaching trajectories (see ANOVA, table – 5.2). When unperturbed 

reaching was re-introduced into the protocol (WO blocks), ‘overshoot errors’ were 

visible whereby participants reached in the direction of the expected force (clockwise) 

which resulted in a deviation in the opposite direction (counter-clockwise). The errors 

however faded quickly and reaching became ideal (indicative of a successful de-

adaptation).  

The results of the two-way repeated measures ANOVA (table 5.2) revealed a significant 

main effect of TIME for movement onset and offset (all F > 30.71, all p < 0.05), but not 

for summed error, maximum velocity, duration and maximum force (all F < 0.778 p > 

0.05; table 4.2). A significant effect of CONDITION (FAM, FF and WO) was found for 

movement onset, maximum velocity, movement duration, summed error and maximum 

force (all F > 9.066, all p < 0.05) but not movement offset (F: 1.862, p > 0.05). With 
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regards to all kinematic variables explored, no significant interaction effects were found 

(all F < 1.084, < all p > 0.05).  

Post hoc testing for TIME (table 5.3, figure 5.3[A-F]) revealed that during both FAM 

reaching and FF reaching, movement onset responses were significantly increased at all 

time points compared to T10 (p < 0.006). During WO reaching, movement onset was 

significantly increased at 190ms, 220ms, 250ms, 280ms and 310ms compared to T10 (p 

< 0.006). Movement offset was significantly increased at all time points compared to 

T10 during FAM reaching and FF reaching (p < 0.006), but not WO reaching (at all 

time points p > 0.006).  

Post hoc testing for CONDITION (table 5.3, figure 5.3[A-F]) for movement onset 

showed no significant differences between FF and FAM reaching. However, movement 

onset in FF reaching was significantly increased compared to WO reaching (at 10ms, 

190ms, 220ms, 250ms, 280ms and 310ms p < 0.016). No significant differences were 

revealed for movement onset during WO vs. FAM reaching (p > 0.016). Maximum 

velocity was significantly increased in FF reaching compared to FAM reaching (at 

100ms, 130ms, 190ms, 220ms, 250ms, 280ms and 310ms p < 0.016). Maximum 

velocity was also significantly increased in FF reaching compared to WO reaching (at 

250ms, p < 0.016). No significant difference in maximum velocity was found between 

WO vs. FAM reaching. Movement duration did not significantly differ between FF vs. 

FAM reaching. However, duration was significantly increased in FF reaching compared 

to WO reaching (at 100ms, 130ms, 160ms, 190ms, 220ms and 280ms, p < 0.016). 

Movement duration in FAM reaching was significantly increased compared to WO 

reaching (at 160ms and 280ms p < 0.016). Summed error was significantly increased in 

FF reaching compared to FAM reaching (at all time points, p < 0.016). Summed error 

was also significantly increased in FF reaching in contrast to WO reaching at all time 

points except for 100ms and 130ms (p > 0.016). There were no significant differences 

in summed error for FAM vs. WO reaching (all p > 0.016). Maximum force was 

significantly increased in FF reaching (p < 0.016) compared to both FAM and WO 

reaching which were not significantly different (p > 0.016).   

All post-hoc testing results are shown in table 5.3 and figure 5.3[A-F]. 
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Table 5.1. Results of three-factorial RMANOVA for peak-to-peak MEP responses, followed by post hoc testing:  

Three-factorial RMANOVA   Post hoc testing 

TIME  TIME 
df(Error) F Sig.  10ms 

Mean 
[SEM] 

100ms 
Mean 
[SEM] 

130ms 
Mean 
[SEM] 

160ms 
Mean 
[SEM] 

190ms 
Mean 
[SEM] 

220ms 
 Mean 
[SEM] 

250ms  
Mean 
[SEM] 

280ms 
Mean 
[SEM] 

310ms  
Mean 
[SEM] 

3.0(38.2) 9.86 0.001 CONDITION                                                                                      BB 
FAM 

FF 
WO 

1.0 [0.0] 
1.0 [0.0] 
1.0 [0.0] 

1.03 [.05] 
1.19 [.11] 
1.05 [.06] 

1.09 [.07] 
1.37 [.14] 
1.07 [.04] 

1.07 [.07] 
1.39 [.13] 
1.07 [.05] 

1.02 [.05] 
1.55 [.19] 
1.13 [.06] 

1.03 [.07]  
   1.98 [.26] *  
    1.13 [.11] 

1.09 [.08]  
1.65 [.22]  
1.07 [.05] 

1.15 [.11] 
1.89 [.36] 
1.12 [.09] 

1.09 [.12]  
   2.49 [.42] *  
   1.18 [.12] 

CONDITION 
df(Error) F Sig. 
1.4(17.4) 10.67 0.002 TB 

MUSCLE FAM 
FF 

WO 

1.0 [0.0] 
1.0 [0.0] 
1.0 [0.0] 

1.02 [.05] 
1.24 [.08] 
1.25 [.26] 

1.00 [.06] 
1.04 [.06] 
1.21 [.13] 

1.01 [.03] 
1.22 [.08] 
1.16 [.13] 

1.05 [.04] 
1.17 [.09] 
1.24 [.25] 

1.06 [.06]  
1.30 [.10]  
1.20 [.18] 

1.07 [.08] 
1.27 [.11] 
1.28 [.19] 

1.07 [.08] 
1.29 [.18] 
1.21 [.17] 

   1.09 [.08]▲ 
1.29 [.13]  
1.28 [.11] 

df(Error) F Sig. 
3(39) 1.00 0.400 

TIME*CONDITION ECR 
df(Error) F Sig. FAM 

FF 
WO 

1.0 [0.0] 
1.0 [0.0] 
1.0 [0.0] 

1.11 [.06] 
1.04 [.05] 
1.11 [.06] 

1.04 [.07] 
1.08 [.04] 
1.06 [.07] 

1.14 [.05] 
1.13 [.07] 
1.09 [.06] 

1.09 [.05] 
1.28[.17] 
1.08 [.05] 

1.13 [.07] 
1.20 [.08] 
1.06 [.05] 

1.18 [.11] 
1.23 [.09] 
1.13 [.05] 

1.06 [.08] 
1.16 [.07] 
1.18 [.08] 

1.14 [.05] 
1.50 [.22] 
1.14 [.11] 

5.5 (70.9) 6.00 0.001 
TIME*MUSCLE 

df(Error) F Sig. FCR 
9.0(116.9) 1.20 0.305 FAM 

FF 
WO 

1.0 [0.0] 
1.0 [0.0] 
1.0 [0.0] 

0.99 [.06] 
1.09 [.05] 
1.14 [.08] 

0.99 [.07] 
1.24 [.10] 

1.15 [.04] * 

1.03 [.05] 
1.24 [.09] 
1.13 [.06] 

0.97 [.05] 
1.41 [.24] 
1.08 [.05] 

1.00 [.07] 
1.27 [.14] 
1.06 [.04] 

1.13 [.11] 
1.57 [.38] 
1.08 [.04] 

1.06 [.08] 
1.70 [.37] 
1.06 [.04] 

1.97 [.05] 
1.98 [.52] 
1.07 [.05] 

MUSCLE*CONDITION 
df(Error) F Sig. 
2.9(36.7) 2.22 0.106 
TIME*MUSCLE*CONDITION 
df(Error) F Sig. 
7.7(99.4) 1.52 0.165 
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Table 5.2. Results of the two-way RMANOVA for kinematics: 

 TIME: CONDITION TIME * CONDITION 
df(Error) F Sig. df(Error) F Sig. df(Error) F Sig. 

Movement Onset (ms) 3.0 [38.4] 30.71 < 0.001 2 [26] 10.25 0.002 16[208] 0.496 0.948 
Movement Offset (ms) 8[2] 22.50 < 0.001 2[26] 1.862 0.175 16[208] 1.084 0.372 
Maximum Velocity (m.sˉ¹) 3.4[44.1] 0.932 0.442 1.4 [18.2] 9.066 0.004 16[208] 0.837 0.643 
Duration (ms) 8 [104] 0.778 0.569 2[26] 13.14 0.001 16[208] 0.973 0.487 
Summed Error (distance: cm) 3.9 [49.5] 2.295 0.075 1.4 [18.1] 31.37  < 0.001 16[208] 1.358 0.165 
Maximum Force (N) 8 [104] 1.443 0.187 1.3 [15.7] 313.06  < 0.001 16[208] 0.871 0.603 

 

 

 

 

 

 

 

 

 

 

 



109 
 

 

 

Table 5.3. Results of the two-way RMANOVA for kinematics: 

The table shows kinematic responses during FAM, FF and WO blocks of reaching when TMS was applied to the left M1 at different time points during 
movement preparation. Values represent means and standard errors.  

TIME TMS: 10ms 
Mean [SEM] 

TMS: 100ms 
Mean [SEM] 

TMS: 130ms 
Mean [SEM] 

TMS: 160ms 
Mean [SEM] 

TMS: 190ms 
Mean [SEM] 

TMS: 220ms 
Mean [SEM] 

TMS: 250ms 
Mean [SEM] 

TMS: 280ms 
Mean [SEM] 

TMS: 310ms 
Mean [SEM] 

CONDITION Movement Onset (ms): 
FAM 

FF 
WO 

337 [15] 
310 [15] 
365 [20] 

384 [15]*   
365 [16]* 
397 [17] 

407 [17]*   
385 [17]* 
411 [15] 

408[14]*   
393 [21]* 
419 [16] 

416 [11]*   
395 [17]* 
440 [18]* 

417 [13]*   
392 [16]* 
437 [18]* 

436 [12]*   
404 [16]* 
451 [16]* 

447 [14]*   
425 [21]* 
457 [17]* 

448 [13]*   
420 [16]* 
468 [13]* 

 Movement Offset (ms): 
FAM 

FF 
WO 

1185 [16] 
1166 [20] 
1185 [17] 

1241 [15]*   
1247 [14]* 
1220 [17] 

1278 [17]*   
1254 [16]* 
1239 [14] 

1271 [14]*   
1278[16]* 
1233 [12] 

1277 [13]*   
1291 [15]* 
1257 [17] 

1263 [22]*   
1283 [12]* 
1236 [15] 

1300 [21]*   
1268 [20]* 

1276 [9] 

1301 [19]*   
1295 [21]* 
1266 [20] 

1303 [18]*   
1284 [16]* 
1293 [17] 

 Maximum Velocity (m.sˉ¹): 
FAM 

FF 
WO 

0.28 [0.01] 
0.32 [0.02] 
0.29 [0.01] 

0.28 [0.01] 
0.31 [0.01] 
0.29 [0.01] 

0.28 [0.01] 
0.31 [0.01] 
0.29 [0.01] 

0.28 [0.01] 
0.31 [0.01] 
0.29 [0.01] 

0.28 [0.01] 
0.31 [0.02] 
0.29 [0.01] 

0.28 [0.01] 
0.31 [0.01] 
0.30 [0.01] 

0.28 [0.01] 
0.32 [0.01] 

0.29 [0.01] 

0.28 [0.01] 
0.31 [0.01] 
0.30 [0.01] 

0.28 [0.01] 
0.32 [0.01] 
0.30 [0.01] 

 Movement Duration (ms): 
FAM 

FF 
WO 

848 [23] 
862 [20] 
816 [17] 

858 [22] 
882 [15] 
818 [16] 

871 [27] 
869 [22] 
823 [17] 

863 [20]▲ 
885 [23] 
814 [18] 

861 [16] 
895 [18] 
819 [22] 

847 [26] 
894 [17] 
796 [17] 

862 [22] 
864 [21] 
824 [17] 

854 [18]▲ 
870 [23] 
803 [15] 

855 [22] 
865 [14] 
821 [15] 

 Summed Error (distance: cm) 
FAM 

FF 
WO 

2.48[0.17] 
4.17 [0.29] 

3.12 [0.32] 

2.46[0.21] 
4.94 [0.71] 
3.07 [0.41] 

2.51[0.21] 
3.98 [0.29] 
3.07 [0.37] 

2.78[0.19] 
4.25 [0.21] 

3.28 [0.26] 

2.61[0.15] 
4.69 [0.34] 

3.05 [0.35] 

2.50[0.18] 
5.20 [0.47] 

3.10 [0.49] 

2.72[0.21] 
5.23 [0.43] 

3.05 [0.33] 

2.63[0.21] 
4.59 [0.25] 

3.02 [0.35] 

2.75[0.26] 
5.35 [0.41] 

3.81 [0.56] 
 Force (N): 

FAM 
FF 

WO 

4.6[0.3] 
10.6[0.3] 

4.8[0.2] 

4.7[0.3] 
10.5[0.3] 

4.9[0.2] 

4.7[0.3] 
10.5[0.3] 

4.9[0.2] 

4.7[0.3] 
10.4[0.3] 

4.9[0.2] 

4.8[0.3] 
10.6[0.3] 

4.9[0.2] 

4.6[0.3] 
10.3[0.3] 

4.9[0.2] 

4.7[0.3] 
10.5[0.3] 

4.9[0.2] 

4.7[0.3] 
10.5[0.3] 

4.9[0.2] 

4.7[0.3] 
10.8 [0.3] 

5.0[0.2] 

 Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in FAM blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, ▲ = significant difference between FAM and WO, = significant difference between FF and WO 
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Figure 5.1[A-F]: Graphical presentation of the post-hoc testing results (based on table 5.3) for the significant kinematic variables: 

A) Movement onset (ms) B) Movement offset (ms) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

C) Maximum Velocity (m.sˉ¹): D) Movement Duration (ms): 
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A) Summed error  B) Maximum force (N) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in FAM blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, ▲ = significant difference between FAM and WO, = significant difference between FF and WO 
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5.6 Discussion 
The purpose of this chapter was to explore the effects of TMS delivered to the left M1 

during reaching preparation in motor adaptation. Previous experiments investigating the 

role of the left M1 regarding motor function have implemented different TMS protocols 

and delivered TMS at different time points to target the M1 (Hunter, Sacco and Turner, 

2011; Orban de Xivry et al., 2013). Studies have also been conducted in non-human 

primates to explore neuronal changes in the left M1 during the early stages of motor 

adaptation (Paz et al., 2003). This experiment aimed to provide novel findings regarding 

left M1 function in human subjects with single pulse TMS in a robotic-mediated upper-

limb reaching FF paradigm. 

5.6.1 MEP responses: 
This study demonstrated significantly larger MEP responses in the BB muscle during 

FF reaching compared to both FAM and WO reaching, whereas MEP amplitude in the 

TB was significantly larger when comparing FF reaching to FAM reaching only. No 

other muscles (ECR and FCR) were significantly affected by CONDITION. The 

results from this study showed a significant increase in BB MEP amplitude as TMS 

pulses became closer to movement onset, and this trend for the increase in CSE during 

the latter stages of movement preparation is in line with previous studies (Leocani et 

al., 2000; Orban de Xivry et al., 2013). 

Furthermore, the changes in peak-to-peak MEP responses that were greater in the BB 

muscle (compared to the TB muscle – whereby only FF reaching responses at 220ms 

differed from FAM reaching; see table 5.1) can be explained by the distribution of 

corticospinal projections (Richardson et al., 2006). For instance, studies in both human 

subjects and non-human primates have shown that significantly greater numbers of 

corticomotor neuronal cells project to the BB motor neurons compared to the TB motor 

neurons (Palmer and Ashby 1992; Richardson et al., 2006). Further evidence for this 

notion comes from patients with M1 lesions resulting in arm paresis, whereby weakness 

in the limbs have been found to be more prominent in elbow flexors as opposed to 

elbow extensors (Andrews and Bohannon, 2000; Richardson et al., 2006). Therefore 

MEP findings in this study provided evidence for the notion that adaptive changes are 
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affected differently in muscles, resulting in their varying CSE, possibly driven by 

different neural pathways (Hunter, Sacco and Turner, 2011). 

5.6.2 Kinematics: 
The results of this experiment demonstrated that TMS to the left M1 had a behavioural 

effect by prolonging the movement onset time. This addresses hypothesis two for this 

experiment. The findings showed that the later the TMS pulse was delivered during 

movement preparation, the greater the delay in movement onset. TMS to the left M1 

during movement preparation had both time and condition effects, which was not the 

case for the other kinematic variables explored (movement offset, duration, maximum 

velocity, summed error and maximum force). These results with regards to the delay in 

movement onset have been similarly highlighted by Day, Rothwell and Marsden 

(1983) and Meyer and Voss (2000). Day, Rothwell and Marsden (1983) proposed that 

TMS stimulation leads to neuronal inhibition, which results in neurons becoming 

unresponsive for a brief moment, therefore delaying the signals that facilitate 

movement onset. Kimura, Haggard and Gomi (2006) similarly reported that the effect 

of TMS during perturbed reaching significantly postponed movement onset. The cause 

of the delay following stimulation that were found can thus be attributed to the 

inhibitory effects of SP-TMS (see Section 4.6.2).  

The delay that occurred in movement onset and offset can also be explained by the 

‘waiting period’ phenomena as described by Hasegawa et al., (2017). Prior to motor 

output there is a waiting period (i.e. the wait when preparing for action). Movement 

preparation has been argued to be a result of cortical changes that occur during the 

waiting period (Wise, 1985; Hasegawa et al., 2017). Using calcium imaging methods to 

explore motor cortical neuronal activity in mice during preparation for reaching, 

Hasegawa et al., (2017) found that motor preparation was accompanied by a selective 

inhibition of neural networks mediated by interneurons (Pfeffer et al., 2013) which 

resulted in delays in movement responses due to the waiting period. This finding was 

therefore important because it highlighted the link between motor behaviours and the 

M1 circuitry, specifically how the neural networks can influence reaching preparation.   

An additional behavioural finding from this study was the significant increase in 

maximum velocity during FF TMS reaching compared to TMS FAM reaching. Motor 

adaptation paradigms without TMS have also demonstrated that FF reaching increases 
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the speed of movements during a reach (Pizzamiglio et al., 2017a). Researchers have 

argued that when there is a sudden change in the environment (e.g. a perturbation), 

velocity shifts occur (i.e. larger peaks in movement) to allow more time for 

participants to reach a target (Izawa et al., 2008).  

Furthermore, in this study TMS interfered with novel reaching, as summed error was 

significantly larger during FF reaching compared to both FAM and WO reaching. This 

result could be due to TMS disrupting neural communication processes between the 

M1 and other motor regions. For example, the cerebellum plays a key role in 

transmitting signals to the M1 to enable accurate motor reaching (i.e. straight and 

smooth trajectories) (Bastian, 2011).  However it has been argued that following 

neuroplasticity, cells in the M1 become altered and motor responses in reaching occur 

as a result of input from other cortical structures, such as the pre-motor cortex and 

parietal cortex (rather than the cerebellum), which can cause errors in reaching (Tseng 

et al., 2007; Orban de Xivry et al., 2013). Errors in FF reaching could have also been a 

result of the recruitment of other brain regions (e.g. pre-motor cortex, posterior parietal 

regions, and the cerebellum) (Lee, et al., 2003). For example, stimulation could have 

effected related motor cortical structures via trans-synaptic transmission (Chouinard et 

al., 2003; Richardson et al., 2006).  

Overall, although various behaviours (neural and kinematics) were investigated in this 

experiment there are a number of factors to consider. For example, only individuals 

aged between 18 - 37 were tested, therefore these findings may not be generalisable to 

other age groups (e.g. older adults). Furthermore, motor adaptation learning without 

TMS was confined to four blocks only. It could be argued that these four blocks of 

reaching may not have been enough to fully explore the learning process and adding 

additional blocks may have warranted different results with TMS to the left M1. 

However, this would have been too demanding and fatiguing for the participant, 

particularly with TMS stimulation delivered after FF blocks of reaching. Therefore, 

there was a trade-off between participants completing the full motor adaptation and 

avoiding fatigue.   

5.7 Chapter conclusions: 
The purpose of this chapter was to illustrate the neural and behavioural effects of TMS 

to the left M1 during right arm novel reaching. Behavioural changes that were observed 
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such as delays in movement onset and offset can be attributed to the inhibitory effects of 

SP-TMS to the motor cortex. Additionally the effects of TMS on trajectory errors 

(summed error) were significantly larger during FF reaching as opposed to FAM and 

WO reaching, showing the specific disruptive effect of stimulation during novel TMS 

reaching only. This can be a result of various factors, including 1) neuroplasticity 

affecting communication between different cortical motor structures, and 2) the possible 

trans-synaptic effect of TMS to related cortical regions. Furthermore, MEP findings 

were also in line with previous studies, showing an increase in BB amplitude as 

opposed to TB amplitude when reaching away from the body (135° target) during FF 

reaching. MEPs were also found to be time- and condition-tuned, with significantly 

larger responses when TMS pulses became closer to movement onset, and mainly in FF 

blocks of reaching (see table 5.1). The differences in CSE muscles responses (i.e. 

flexors vs. extensors) in adaptive reaching in this study can be attributed to a possible 

difference in neural pathways between muscles, a notion that has been further supported 

by patients with M1 lesions. The next experimental chapter in this thesis explores 

whether TMS to the left PPC results in similar behavioural findings, especially when 

considering that the left PPC plays a vital role along with the M1 in novel reaching. 
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Chapter 6 

6 Experiment 3 

The impact of SP-TMS to the left posterior parietal cortex (PPC) during right arm 
reaching in a motor adaptation protocol - A virtual disruption study 

 

6.1 Introduction 
TMS has been used as a virtual disruption tool to gain an insight into the functional role 

of different brain regions (Della-Maggiore et al., 2004; Sliwinska, Vitello and Devlin, 

2014). The current that is induced in the brain when TMS is delivered to a specific site 

can have an impact on local brain activity and functional connectivity with other more 

remote regions such that disruptions in behavioural responses can result (Bolognini and 

Ro, 2010). Therefore, TMS can explore whether a cortical region is necessary for a 

particular function and this makes it different from other imaging modalities, such as 

functional magnetic resonance imaging (fMRI), which is more correlation-oriented, 

rather than casual-oriented in studying brain-behaviour functions (Bolognini and Ro 

2010; Sliwinska, Vitello and Devlin, 2014).  

Virtual disruption effects can be explored when TMS is delivered before and during a 

behavioural task. The changes that can occur in behavioural responses range from 

changes in the behavioural reaction time in response selection (this can be either 

increased or decreased) to enhanced errors rates in performance (Della-Maggiore et al., 

2004; Paus 2005; Sack, 2006; Sliwinska, Vitello and Devlin, 2014). For example, 

repetitive TMS (rTMS) to the left inferior frontal cortex has been found to induce errors 

in speech production (Pascual-Leone, Gates and Dhuna, 1991; Sliwinska, Vitello and 

Devlin, 2014), whereas single-pulse to the visual cortex has been reported to disturb 

processes of visual perception (Corthout et al., 1999; Bolognini and Ro 2010).  

Throughout this thesis, a robot-mediated force-field learning paradigm was used to 

explore novel motor learning. Although various regions in the neural motor circuit are 

involved in motor skill learning and aid the motor adaptation process, the left posterior 

parietal cortex (PPC) has been reported to be a key region that facilitates novel motor 

learning. The left PPC contributes to movement preparation and motor planning, as well 

as navigation and spatial awareness (Kaas and Stepniewska, 2016; Whitlock, 2017). For 

example, in a functional magnetic resonance imaging study (fMRI) study in which taxi 



117 
 

 

 

drivers carried out a virtual driving task by imagining driving passengers through a 

route, findings showed an increase in cortical activity within the parietal regions, 

particularly during the planning stage of the virtual journey (Maguire, Woollett and 

Spiers, 2006). The left PPC also has specific functions related to motor reaching, with 

evidence pointing to a posterior parietal reach region (PPR) in both macaques and 

human subjects (Connolly, Andersen and Goodale, 2003; Kaas and Stepniewska, 2016). 

In non-human primates, reaching and pointing tasks showed maximum neuronal firing 

in the PPR region, and in human imaging studies an area, homologous to where it was 

found in monkeys was activated (Batista et al., 1999; Connolly, Andersen and Goodale, 

2003; Whitlock, 2017). 

The PPC is also involved in motor sequence learning (Jenkins et al., 1994; Catalan et 

al., 1998). Positron emission tomography (PET) studies exploring regional cerebral 

blood flow (rCBF) during sequential finger and thumb tapping have demonstrated that 

rCBF in parietal regions is specific to the length and complexity of the motor sequence; 

the longer and more complex the sequence, the greater the rCBF (Jenkins et al., 1994; 

Catalan et al., 1998). This activation has been explained by the link between the 

prefrontal cortex and the PPC which enables sustained attention during complex 

sequencing task (Friston et al., 1991; Catalan et al., 1998). As well as sequential motor 

learning, the function of the left PPC in novel motor learning was demonstrated by 

Della-Maggiore et al., (2004). In a robotic reaching task, they delivered single-pulse 

TMS to both the left PPC and an area of the occipital lobe (as a control) following 

movement onset and explored differences in reaching trajectories between the two 

regions during FAM and FF reaching. They found that FAM reaching with TMS did not 

affect kinematics of reaching and similar reaching performance was noted between the 

two regions when stimulated. During FF TMS reaching however, although performance 

was similar between the two regions in the initial stages of reaching, this was not the 

case in the final stages of FF reaching. Reaching deviated from the ideal path only with 

left PPC stimulation and not with occipital stimulation, demonstrating the importance of 

the left PPC in signalling the correct motor responses for regulating reaching 

trajectories during novel motor learning (Della-Maggiore et al., 2004).  

The left PPC was targeted in this experiment (with TMS) due to its functions in motor 

reaching and purported importance in novel motor learning. This experiment provides a 

novel insight into kinematic parameters related to reaching that have not previously 
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been explored with left PPC stimulation such as movement onset, movement offset and 

maximum velocity. However, in line with other experiments (i.e. Della-Maggiore et al., 

2004) errors in reaching will also be explored (summed error). 

TMS has been noted to disrupt behaviours when delivered at specific times. For 

example, single-pulse TMS to the visual cortex between 80ms to 140ms impaired visual 

perception processes (Amassian et al., 1989; Bolognini and Ro, 2010). In this 

experiment TMS was administered at a range of different time points during reaching 

preparation. This is because it is currently unknown whether TMS during motor 

preparation impacts behavioural responses, as time-related disruptions of the left PPC 

have only been studied following movement onset (Della-Maggiore et al., 2004). This 

experiment therefore set out to provide a novel insight into left PPC function with 

regards to its role in motor planning during a novel form of motor adaptation.  

6.2 Methodology  
Table 3.2 illustrates participant demographics for this experiment. Section 3.3.2.2 

highlights how regions with no visible experimental output (i.e. an MEP) were 

identified (with an EEG cap) and how TMS intensity was set using functional measures. 

Section 3.3.2.2.1 specifically describes the location that was used for left PPC 

stimulation (P3 electrode) and the coil position employed. This is also graphically 

illustrated in figure 3.3. Furthermore, the reaching task used for motor adaptation is 

described in section 3.4.1 and 3.4.2, and is shown in figure 3.5. 

6.3 Data acquisition: MEPs and Kinematics 
MEP responses were only obtained and recorded when locating the motor hotspot for 

the BB. This was carried out in order to identify the participant’s resting motor 

threshold (RMT) (left M1) to deliver TMS to the left PPC at 110% of their RMT. MEPs 

were not elicited during left PPC stimulation. The main data from this experiment were 

kinematics; section 3.6.1 describes how kinematic parameters were all analysed and 

quantified offline in MatLab 2017b (The MathWorks Inc, Natick MA, USA). 

6.4 Statistical analysis: Kinematics 
The analysis performed for the kinematic variables, including the statisitical tests 

carried out (RMANOVA), how sphericity assumptions were met and the steps taken for 

post-hoc testing (Student’s t-test) for the main factors of TIME and CONDITION, and 

for TIME*CONDITION interactions is described in section 3.7.1. 
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6.5 Results 

6.5.1 Kinematics - parameters and trajectories of reaching: 
When TMS was introduced in FF reaching, trajectory deviations were visible (even 

during the final block of reaching), which was not the case for FAM and WO reaching 

(see figure 6.1). This demonstrated that TMS had a specific disruptive effect only 

during novel motor learning.  

The RMANOVA (table 6.1) revealed a significant main effect for TIME on movement 

onset and movement offset (p < 0.05), but not for maximum velocity, movement 

duration, summed error and maximum force (p > 0.05). There was also a significant 

main effect of CONDITION for movement onset, maximum velocity, movement 

duration, summed error and maximum force (p < 0.05) but not for movement offset (p > 

0.05). There were no significant interaction effects found for any of the kinematic 

variables (p > 0.05) (see table 6.1).  

Post hoc testing for TIME (table 6.2, figure 6.2[A-F]) demonstrated that during FAM 

reaching with TMS, movement onset was significantly increased compared to T10 at all 

time points apart from T100. Movement offset was significantly increased from T10 

during 190ms, 220ms, 250ms, 280ms and 310ms. During FF reaching with TMS, 

movement onset was increased at all time points compared to T10 (all p < 0.006). 

Movement offset was significantly increased at all time points apart from 100ms and 

250ms compared to the T10. During WO reaching, movement onset was significantly 

increased compared to the T10 response at 190ms, 220ms, 280ms and 310ms (p < 

0.006), whilst movement offset was only significantly increased at 280ms compared to 

T10.  

Post hoc testing for CONDITION (table 6.2, figure [6.2A-F]) comparing FF vs. FAM 

found no significant differences between responses for movement onset (p > 0.016). 

Maximum velocity was greater in FF reaching compared to FAM reaching (all time 

points; p < 0.016). Movement duration was greater in FF reaching although only at 

130ms (p < 0.016). Summed error and maximum force were both increased in FF 

reaching compared to FAM reaching (at all time points all p < 0.016). Generally, 

kinematics values returned to or towards FAM values in WO reaching. 

Post hoc testing results are shown in table 6.2 and figure 6.2[A-F]. 
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TMS to the left PPC during FAM reaching only resulted in a slight deviation from the ideal reaching 
trajectory in the first few trials (red coloured traces - A). FF reaching trajectories are shown in figures 
6.2B and 6.2C. Figure 6.2B illustrates reaching trajectories in the final block of FF reaching without 
TMS, and figure 6.2C shows reaching trajectories in the final block of FF reaching with TMS.  It can be 
seen that in the final block of FF reaching with no TMS delivered, the participant was able to adapt to the 
force-field because reaching became closer to the ideal, however, when TMS was introduced into the FF 
reaching, this resulted in major deviations from the ideal reaching trajectory (C). During WO, reaching 
trajectories returned to FAM values with or without TMS (D).

A. 

B. 

C. D. 

Figure 6.1: Reaching block trajectories with TMS delivered to the left PPC in a single-participant  
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Table 6.1. Results of the two-way RMANOVA: 

 

   

 

 

 

 

 

 

 

 

 TIME: 
 

CONDITION TIME * CONDITION INTERACTION  

df(Error) F Sig. df(Error) F Sig. df(Error) F Sig. 
Movement Onset (ms) 3.0 [38.1] 17.15   < 0.001 2 [26] 9.11  < 0.001 16[208] 0.568 0.906 
Movement Offset (ms) 8[104] 8.511   < 0.001 2[26] 0.176 0.840 16[208] 1.285 0.209 
Maximum Velocity (m.sˉ¹) 8[104] 0.257 0.916 2 [26] 10.15 0.001 16[208]   0.935 0.530 
Duration (ms) 4.6 [58.7] 0.538 0.729 2[26] 5.159 0.019 16[208] 1.233 0.245 
Summed Error (distance: cm) 3.3 [42.5] 1.374 0.263 1.2 [14.8] 13.34  < 0.001 16[208] 1.363 0.162 
Maximum Force (N) 3.1 [40.2] 1.362 0.268 1.2 [14.4] 243.01  < 0.001 16[208] 1.119 0.339 
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The table shows kinematic responses during FAM, FF and WO blocks of reaching when TMS was applied to the left PPC at different time points. Values 
represent means and standard error means (SEM).  

TIME TMS: 10ms 
Mean [SEM] 

TMS: 100ms 
Mean [SEM] 

TMS: 130ms 
Mean [SEM] 

TMS: 160ms 
Mean [SEM] 

TMS: 190ms 
Mean [SEM] 

TMS: 220ms 
Mean [SEM] 

TMS: 250ms 
Mean [SEM] 

TMS: 280ms 
Mean [SEM] 

TMS: 310ms 
Mean [SEM] 

CONDITION Movement Onset (ms): 
FAM 

FF 
WO 

362 [20] 
350 [20] 
384 [22] 

396 [20] 
383 [18]* 
418 [24] 

412 [21]* 
395 [20]* 
425 [29] 

362 [17]* 
350 [23]* 
384 [23] 

427 [23]*▲ 
393 [17]* 
437 [20]* 

428 [22]* 
402 [23]* 
453 [28]* 

428 [21]* 
406 [20]* 
443 [26] 

434 [26]* 
408 [22]* 
470 [32]* 

438 [21]* 
403 [21]* 
454 [39]* 

 Movement Offset (ms): 
FAM 

FF 
WO 

1204 [21] 
1220 [26] 
1210 [27] 

1223 [26] 
1244 [30] 
1227 [27] 

1226 [16] 
1270 [27] 
1252 [33] 

1245 [24] 
1281 [35]* 
1237 [20] 

1274 [21]* 
1261 [30]* 
1253 [22] 

1259 [26]* 
1264 [32]* 
1271 [34] 

1270 [28]* 
1263 [31]  
1258 [34] 

1272 [31]* 
1265 [30]* 
1305 [39]* 

1276 [29]* 
1263 [28]* 
1275 [38] 

 Maximum Velocity (m.sˉ¹): 
FAM 

FF 
WO 

0.28 [0.01]  
0.32 [0.02]  

0.28 [0.01] 

0.28 [0.01]  
0.31 [0.02]  
0.29 [0.01] 

0.29 [0.01]  
0.31 [0.02]  

0.29 [0.01] 

0.28 [0.01]  
0.31 [0.02]  

0.29 [0.01] 

0.28 [0.01]  
0.32 [0.02] 

0.29 [0.01] 

0.28 [0.01]  
0.31 [0.02]  

0.28 [0.01] 

0.28 [0.01]  
0.32 [0.02]  

0.28 [0.01] 

0.28 [0.01]  
0.31 [0.01]  

0.29 [0.01] 

0.28 [0.01] 
0.33 [0.02]  

0.29 [0.01] 
 Movement Duration (ms): 

FAM 
FF 

WO 

842 [19] 
870 [18]  

826 [23] 

827 [21] 
861 [21] 
809 [15] 

814 [18]  
876 [22]  
827 [17] 

836 [24] 
884 [25]  

806 [16] 

849 [22] 
868 [24] 
816 [18] 

832 [17] 
862 [24] 
817 [20] 

843 [21] 
857 [27] 
815 [19] 

838 [19] 
857 [18] 
835 [19] 

839 [19] 
864 [20] 
821 [21] 

 Summed Error (distance: cm): 
FAM 

FF 
WO 

2.83[0.18] ▲ 
4.41[0.46]  

2.29[0.11] 

2.71 [0.21] 
4.40[0.42]  

2.43[0.21] 

2.49[0.21] 
4.71[0.50]  

2.72[0.27] 

2.61[0.22] 
4.89[0.56]  

2.59[0.13] 

2.77[0.22] 
4.92[0.69]  

2.36[0.20] 

2.92[0.20] 
4.39[0.51]  

2.65[0.26] 

2.98[0.31] 
5.23[0.86]  

2.53[0.19] 

2.62[0.22] 
4.27[0.42]  

2.67[0.16] 

2.67[0.15] 
4.21[0.38]  

2.48[0.26] 
 Force (N): 

FAM 
FF 

WO 

4.6[0.1] 
10.0[0.4]  

4.6[0.1] 

4.7[0.2] 
10.5[0.4]  

4.6[0.1] 

4.7[0.1] 
10.4[0.4] 

4.8[0.1] 

4.7[0.2] 
10.2[0.4] 

4.6[0.1] 

4.7[0.1] 
10.5[0.4]  

4.6[0.13] 

4.7 [0.2] 
10.3[0.3]  

4.6[0.1] 

4.7[0.1] 
10.5[0.4]  

4.6[0.2] 

4.7[0.1] 
10.4[0.4]  

4.6[0.1] 

4.6[0.2] 
10.3[0.4]  

4.6[0.1] 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 

 

 

Table 6.2. Post-hoc testing results  
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A) Movement onset (ms) B) Movement offset (ms) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

C) Maximum Velocity (m.sˉ¹): D) Movement Duration (ms): 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2[A-F]: Graphical presentation of the post-hoc testing results (based on table 6.2) for the significant kinematic variables: 
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E) Summed error  F) Maximum force (N) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 0.3 A- F. Graphical presentation of the post-hoc testing results (based on table 5.2) for the significant kinematic variables:  

 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 



125 
 

 

 

 

6.6 Discussion 
The results of this experiment demonstrated the effects of single-pulse TMS to the left 

PPC during a novel motor task. Previous research of left PPC stimulation have not 

examined whether TMS at various of different time points during the preparation of a 

reach affects specific kinematic variables, such as movement onset and movement 

offset, but have rather placed emphasis on trajectory errors of reaching that occur after 

movement onset (Della-Maggiore et al., 2004). This experiment therefore provided a 

novel insight into how TMS delivered to the left PPC during motor preparation can 

have an impact on different kinematic variables. 

6.6.1 Kinematics - The shift in movement onset: 
Stimulation the left PPC with TMS during motor preparation for reaching delayed the 

movement onset time, in FAM and FF reaching (this addresses hypothesis 2 - 

experiment 3). Similar delays also occurred in movement offset.  

This delay in movement onset and offset can be explained in terms of the state-

dependency TMS theory (Silvanto and Muggleton, 2008). This theory proposes that 

the impact of TMS depends on the degree of excitability that the stimulated region 

exhibits. In this study, the subjects were already involved in the task, i.e. preparing 

themselves for action (in this case reaching), the region was therefore pre-activated.  It 

has been suggested that the effects of stimulation on an area that has been pre-activated 

can result in neuronal noise, which can interrupt the region’s functioning, therefore 

resulting in delayed responses (Miniussi, Ruzzoli and Walsh, 2010; Busan et al., 

2012). Although previous studies have used other quantification techniques to 

determine when motor preparation occurred (e.g. participant’s mean reaction time) for 

TMS to be delivered, the results regarding movement onset are similar. For example, it 

has been found that stimulating mid-point through the preparation phase leads to a 

delay in movement onset, which is not the case when stimulating prior to movement 

preparation (Busan et al., 2009; Busan et al., 2012). In this experiment, TMS was 

administered during reaching preparation, and not prior preparation (i.e.  before visual 

cue), therefore the delayed responses that occurred regarding reaction times are in line 

with previous studies.   
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6.6.2 Kinematics - Impact of TMS on trajectories of reaching (summed error) 
and reaching velocity: 

Another key finding in this experiment was that disrupting the left PPC with TMS 

during preparation for novel reaching impaired reaching performance as  revealed by 

greater trajectory errors (this addresses hypothesis 1 - experiment 3). Left PPC 

stimulation significantly impaired reaching only during motor adaptation (FF reaching). 

The fact that TMS did not cause disruption during FAM and WO reaching suggests that 

the left PPC has specific functions related to novel motor learning per se. These findings 

are in line with what has previously been reported by Della-Maggiore et al., (2004) who 

suggested that during FF reaching, different brain regions, including the PPC feed into 

other cortical structures, signalling commands for successful motor output. Disrupting 

PPC function with TMS may lead to error signal processing in visuo-motor 

transformations, thus causing trajectory errors in FF reaching (Chouinard et al., 2003; 

Della-Maggiore, Malfait and Ostry, 2004). Experiment 3 therefore provided further 

evidence for the importance of the PPC in adjusting arm position to meet the 

requirements of a novel task.  

The role of the left PPC in error signal processing has been further identified by 

researchers (Oliveira et al., 2010), who have argued that the specific network 

connecting the left PPC with other cortical structures enables the formation of an 

internal model of error-driven responses for motor output (Oliveira et al., 2010; Smith 

and Shadmehr, 2005). These regions therefore store movement dynamic information 

(Kawato 1999; ; Della-Maggiore et al., 2004; Malfait and Ostry, 2004; Oliveira et al., 

2010;). In this experiment, TMS to the left PPC over repeated trials led to errors in 

responses, which based on the error-signal processing theory, could have been due to a 

disruption of movement dynamics (i.e. deviated reaching responses) being stored as an 

internal model for novel reaching.  

It can be argued TMS to the left PPC creates a virtual disruption model of optic ataxia. 

Optic ataxia is a neurological condition that causes impairments in visually guided 

behaviour, and in many patient cases, lesions to the PPC contributes to the condition 

(Cavina-Pratesi, Connolly and Milner, 2013; Andersen et al., 2014). Using similar 

reaching paradigms, increased trajectory errors have also been found among patients 

with optic ataxia (Pisella et al., 2000) who were not able produce an ideal reach to a 

target of interest during novel reaching.  
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Furthermore, TMS stimulation to the left PPC increased maximum velocity responses 

during FF reaching compared to FAM and WO reaching. It could be argued that 

participant’s increase their speed because they require more time to reach towards the 

target (due to the robotic perturbation). Specific structures in the motor network system 

connected to the left PPC have also been found to facilitate this action. For example, the 

cerebellum and the premotor cortices have been suggested to provide the appropriate 

strategies to respond to movements, through eliciting fast responses or slow responses 

depending on the task (Desmurget and Grafton, 2000). Based on this notion, various 

networks in the M1 enable individuals to adjust their speed of movements which can 

help explain why velocity responses differ between reaching blocks. 

6.7  Chapter conclusions: 
The purpose of this chapter was to explore the effects of left PPC stimulation during 

novel motor learning. TMS only had a significant disruptive impact on summed error 

during novel reaching, which is in line with conclusions drawn from previous research 

and can be explained by disrupted error-signal processing. Considering that TMS did 

not disrupt reaching processes in null-field reaching (FAM and WO) implies that the 

left PPC has a specific function related to novel motor learning. Overall, this 

experiment demonstrated that TMS to the left PPC caused a virtual disruption in 

learning. The mechanism may be via disruption of local processing or disrupted 

pathways involving the PPC and more remote nodes of the motor network circuit. 

Investigating whether novel motor learning is also disrupted during stimulation of 

other motor regions could help in developing a model of cortical regions that are 

specific only for novel motor reaching. 
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Chapter 7 

7 Experiment 4 

Exploring the impact of SP-TMS to the supplementary motor area (SMA) during 
right arm reaching in a novel motor learning protocol  

 

7.1 Introduction 
The supplementary motor area (SMA) is located in the frontal lobe of the brain and is 

situated near motor regions, such as the pre-motor cortex (PMC) and M1 (Nachev et al., 

2007). It consists of two regions; the pre-SMA and the SMA proper, and their functions 

differ regarding neural input and output underpinning motor behaviours. For example, 

the pre-SMA receives input from the prefrontal cortex, whereas the SMA-proper 

projects the input to the M1 for motor output (Tanji, 1994).  

The SMA is known to have multiple functions which facilitate motor learning. For 

example, it assists skilled motor performance, plans movements for execution, helps 

retrieve motor memories and is also involved in sequential motor learning (i.e. learning 

patterns of movements; Tanji, 1994; Borich et al., 2015). Early imaging studies, 

including positron emission tomography (PET) scans have illustrated the role of the 

SMA in motor behaviours. For example, Roland et al., (1980) reported an increase in 

SMA neural activity when subjects imagined producing finger sequencing movements. 

Functional MRI neuro-feedback studies have also demonstrated the active role of the 

SMA in motor imagery. For instance, Mehler et al., (2019) found increased blood 

oxygenation level dependent (BOLD) responses in the SMA compared to the M1 

(which was de-activated) during a hand motor imagery task.  

Other PET imaging studies have explored SMA patterns of cortical activity during 

motor skill learning and have found increased levels of practise induced activity in the 

SMA, but not in other cortical regions, such as the cerebellum and right PMC (van 

Mier, Perlmutter and Petersen, 2004). Functional magnetic resonance imaging (fMRI) 

studies have compared differences in neural activity between the SMA and the pre-

SMA with results illustrating that fast motor learning is accompanied with greater SMA 

activity but decreased pre-SMA activity (Grafton, Hazeltine and Ivry, 1995; Sakai et al., 

1999; Floyer-Lea and Matthews, 2005).  
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Although neuroimaging studies have enabled researchers to explore the role of the SMA 

in motor skill learning, the specific functions of the SMA in relation to novel motor 

learning (i.e. motor adaptation) have primarily been investigated in non-human 

primates. Animal studies have provided an insight into how neuronal activity is changed 

in the SMA during motor adaptation compared to null-field reaching. For example, in a 

motor adaptation paradigm, Padoa-Schioppa, Li and Bizzi (2004) found that SMA 

neurons exhibited plasticity following a novel motor task and cells became differently 

tuned. Therefore it can be argued that induced plasticity in the SMA facilitates novel 

motor learning (Padoa-Schioppa, Li and Bizzi 2004).  

Studies applying TMS to disrupt the functioning of the SMA have mainly been 

investigated during motor sequencing tasks and motor tasks performed with both hands 

(bimanual). For example, Gerloff et al., (1997) used repetitive TMS (rTMS) to target 

the SMA during complex and simple finger motor sequencing tasks. They found that 

rTMS only reduced motor accuracy in the complex sequencing task. With regards to 

bimanual motor paradigms, rTMS delivered to the SMA had a detrimental impact in 

performance during anti-phase (asymmetrical movements) bimanual hand movements 

compared to in-phase (synchronised movements) hand movements (Serrien et al., 2002; 

Steyvers et al., 2003). Therefore, the disruption of the SMA with TMS depends on the 

complexity of the task (Gerloff et al., 1997; Hallett, 2007; Kim and Shin, 2014). Paired 

pulse TMS (PP-TMS) protocols targeting the SMA, specifically the pre-SMA have 

shown its involvement in higher cognitive functions (Nachev, Kennard and Husain, 

2008). For instance, in a motor response selection paradigm, the pre-SMA was reported 

to influence selection responses and only effected the excitability of the M1 when motor 

selection responses were switched in trials (Mars et al., 2009; Chouinard and Paus, 

2010).  

Although studies have been conducted with TMS to demonstrate the functional role of 

the SMA for motor behaviours, these experiments have mostly been conducted with: 

1. rTMS and paired-pulse TMS protocols as opposed to single-pulse TMS protocols.  

2. Motor sequencing and bimanual tasks compared to motor adaptation tasks. 

3. Non-human primates (in studies concerning motor adaptation) in contrast to human 

subjects.  
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Therefore, it is currently unknown whether single-pulse TMS to the SMA during motor 

preparation disrupts novel motor reaching (i.e. motor adaptation protocol) in human 

subjects and it is for this reason that this experiment was conducted. The experiment 

specifically investigated whether trajectory errors or other kinematic measures of 

reaching (such as movement onset, movement offset, maximum velocity, and 

movement duration) were affected by applying TMS to the SMA.  

7.2 Methodology  
Table 3.2 demonstrates the participant demographics for SMA stimulation. TMS 

intensity was set using functional measures for each participant (section 3.2.2.2). The 

location of the SMA and coil orientation that was used for stimulation is described in 

section 3.3.2.2 and graphically demonstrated in figure 3.3 (the orientation and position 

used was based on Cona, Marino and Semenza, 2017 protocol). Furthermore, the 

reaching task for this experiment is outlined in section 3.4.1 and figure 3.5.  

7.3 Data acquisition: MEPs and Kinematics 
MEPs were only acquired during assessment of RMT for each participant at the start of 

the experiment (see section 3.3.1). Therefore, MEPs were not elicited or collected 

during SMA stimulation. Kinematic data were collected in this experiment and were 

analysed and quantified offline in MatLab 2017b (The MathWorks Inc, Natick MA, 

USA) (section 3.6.1).  

7.4 Statistical analysis: Kinematics 
A two-way RMANOVA was performed to explore whether different kinematic 

variables in different reaching blocks (FAM, FF and WO) were affected by TMS to the 

SMA during reaching preparation. Main effects for TIME, CONDITION and 

interactions (TIME*CONDITION) were obtained. Section 3.7.1 outlines how sphericity 

assumptions were tested and the steps taken for post-hoc testing with regards 

statistically significant findings. 

7.5 Results 

7.5.1 Kinematics - Repeated measures ANOVA and post-hoc testing: 
The RMANOVA (table 7.1) revealed a significant effect of TIME for movement onset 

and movement offset (F > 8.102, p < 0.05), but not for maximum velocity, movement 

duration, summed error and maximum force (all F < 0.351, all p > 0.05). The 

RMANOVA showed that TMS to the SMA had a significant effect on CONDITION, 
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for kinematic variables including movement onset, maximum velocity, summed error 

and maximum force (all F > 3.989, all p < 0.019), but not movement offset and duration 

(all F < 0.16, all p > 0.05). No interaction effects were found with SMA stimulation (all 

F > 0.378, all p > 0.05).  

Post hoc testing for TIME (table 7.2, figure 7.1[A-E]) demonstrated a significant 

increase in all time points except 280ms in FAM reaching for movement onset (p < 

0.006). For FF reaching, movement onset was significantly increased at all time points 

compared to T10 (p < 0.006). In WO reaching, movement onset only at 220ms and 

280ms were significantly increased compared to T10 (p < 0.006). Movement offset 

significantly increased only at 130ms compared to T10 during FAM reaching (p < 

0.006). During FF reaching, all time points for movement offset were significantly 

increased compared to T10 (p < 0.006). In WO reaching, no significant differences were 

found at any time points compared to T10 (p < 0.006).  

Post hoc testing for movement onset for CONDITION (table 7.2, figure 7.1[A-E]) for 

movement onset demonstrated a significant reduction in the FF condition compared to 

FAM reaching (only at 190ms; p < 0.016). A significant increase in movement onset 

was found in WO reaching compared to FF reaching (only 220ms; p < 0.016). There 

were no significant differences in WO vs. FAM reaching (all p > 0.016). Maximum 

velocity was significantly increased in FF reaching compared to FAM reaching (only 

280ms; p < 0.016). There was a significant decrease in maximum velocity in WO 

compared to FF reaching (only 280ms and 10ms; p < 0.016). There were no significant 

differences in WO vs. FAM reaching (all p > 0.016). Summed error (SE) was 

significantly increased in FF compared to FAM reaching (100ms and 130ms; p < 

0.016). SE was significantly increased in FF reaching compared to WO reaching 

(100ms, 130ms, 160ms, p < 0.016). There were no significant differences in WO vs. 

FAM SE responses (p > 0.016). Maximum force was significantly increased in FF 

compared to FAM and WO reaching as expected (all time points; p < 0.016). There 

were no significant differences in WO vs. FAM reaching. 
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Table 7.1. Results of the two-way RMANOVA: 

   

 

 

 

 

 

 

 

 

 

 TIME CONDITION TIME*CONDITION INTERACTION 

df(Error) F Sig. df(Error) F Sig. df(Error) F Sig. 
Movement Onset (ms) 8[104] 13.26   < 0.001 2 [26] 3.989 0.031 16[208] 0.722 0.770 
Movement Offset (ms) 8[104] 8.102   < 0.001 2[26] 0.157 0.856 16[208] 0.378 0.903 
Maximum Velocity (m.sˉ¹) 8[104] 0.351 0.857 2 [26]   4.079 0.033 16[208] 0.636 0.852 
Duration (ms) 8 [104] 1.127 0.352   2[26] 1.953 0.162 16[208] 0.494 0.948 
Summed Error (distance: cm) 8 [104] 0.837 0.572 1.3[16.0]  6.597 0.016 16[208] 1.387 0.150 
Maximum Force (N) 8 [104] 0.80 0.608 1.1 [13.4] 223.72  < 0.001 16[208] 1.163 0.301 
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The kinematic data shown in this table is based on FAM, FF and WO blocks of reaching when TMS was delivered to the SMA. Means, ± the standard error 

mean (SEM) are shown.   

TIME TMS: 10ms 
Mean [SEM] 

TMS: 100ms 
Mean [SEM] 

TMS: 130ms 
Mean [SEM] 

TMS: 160ms 
Mean [SEM] 

TMS: 190ms 
Mean [SEM] 

TMS: 220ms 
Mean [SEM] 

TMS: 250ms 
Mean [SEM] 

TMS: 280ms 
Mean [SEM] 

TMS: 310ms 
Mean [SEM] 

CONDITION Movement Onset (ms): 
FAM 

FF 
WO 

371 [19] 
361 [22] 
382 [25] 

412 [18] * 
391 [19] * 
409 [24] 

425 [18] * 
403 [18] * 
421 [22] 

423 [18] * 
398 [16] * 
423 [23] 

429 [17] * 
409 [19] * 

430 [23] 

429 [19] * 
412 [16] * 
440 [20] * 

432 [17] * 
427 [24] * 
427 [21] 

433 [18] 
420 [22] * 
436 [24] * 

442 [24] * 
411 [20] * 
420 [21] 

 Movement Offset (ms): 
FAM 

FF 
WO 

1197 [33] 
1187 [26] 
1203 [27] 

1223 [35] 
1233 [28] * 
1230 [24] 

1250 [35] * 
1265 [31] * 
1251 [26] 

1246 [30] 
1251 [27] * 
1244 [24] 

1249 [33] 
1259 [28] * 
1232 [23] 

1255 [26] 
1262 [22] * 
1261 [27] 

1254 [40] 
1273 [29] * 
1249 [24] 

1246 [31] 
1262 [29] * 
1262 [32] 

1264 [41] 
1257 [28] * 
1247 [16] 

 Maximum Velocity (m.sˉ¹): 
FAM 

FF 
WO 

0.29[0.02] 
0.31[0.01] 
0.29[0.01] 

0.29[0.02] 
0.31[0.02]  

0.29[0.01] 

0.29[0.02] 
0.31[0.01] 
0.28[0.01] 

0.29[0.02] 
0.31[0.01] 
0.28[0.01] 

0.29[0.02] 
0.31[0.01] 
0.29[0.01] 

0.29[0.02] 
0.31[0.01] 
0.29[0.01] 

0.29[0.02] 
0.30[0.01] 
0.29[0.01] 

0.29[0.01] 
0.31[0.01]  

0.29[0.01] 

0.29[0.02] 
0.31[0.02] 
0.29[0.01] 

 Movement Duration (ms): 
FAM 

FF 
WO 

826 [31] 
826 [24] 
821 [22] 

813 [31] 
842 [22] 
820 [20] 

825 [30] 
862 [21] 
830 [25] 

823 [28] 
853 [21] 
824 [25] 

820 [29] 
850 [20] 
803 [21] 

823 [28] 
851 [17] 
820 [24] 

822 [34] 
847 [25] 
822 [20] 

813 [25] 
843 [19] 
825 [28] 

822 [32] 
848 [21] 
827 [21] 

 Summed Error (distance: cm): 
FAM 

FF 
WO 

2.53[0.20] 
3.26[0.25] 
2.69[0.21] 

2.31 [0.19] 
3.33[0.21]  

2.56[0.21] 

2.38[0.19] 
3.61[0.24]  

2.43[0.23] 

2.56[0.27] 
3.36[0.20]  

2.56[0.17] 

2.64[0.22] 
3.30[0.22] 
2.57[0.16] 

2.48[0.24] 
3.35[0.26] 
2.92[0.27] 

2.58[0.27] 
3.17[0.20] 
2.67[0.21] 

2.44[0.23] 
3.13[0.17] 
2.68[0.19] 

2.71[0.24] 
3.26[0.27] 
2.90[0.27] 

 Force (N): 
FAM 

FF 
WO 

4.6 [0.2] 
10.0[0.4]  

4.5[0.1] 

4.5[0.2] 
9.9[0.4]  

4.5[0.1] 

4.5 [0.2] 
9.8 [0.3]  

4.5 [0.1] 

4.5[0.2] 
9.8[0.4]  

4.4[0.1] 

4.6 [0.2] 
9.9 [0.4]  

4.5 [0.2] 

4.6[0.2] 
9.9[0.3]  

4.4[0.1] 

4.5[0.1] 
9.8[0.4]  

4.5[0.1] 

4.6 [0.2] 
10.0[0.4]  

4.5 [0.1] 

4.6 [0.2] 
9.9 [0.4]  

4.5 [0.1] 
 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 
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Table 7.2. Results following post-hoc testing 
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A) Movement onset (ms) B) Movement offset (ms) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

C) Maximum Velocity (m.sˉ¹): D) Summed error: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.1 [A-E]. Graphical presentation of the post-hoc testing results (based on table 7.2) for the significant kinematic variables: 
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E) Maximum force (N) 

 

 
 

Figure 0.2 A-E: Graphical presentation of the post-hoc testing results (based on table 6.2) for the significant kinematic variables:  

 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 
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7.6 Discussion 
This main purpose of this chapter was to investigate whether TMS delivered to the 

SMA during preparation for novel motor reaching impairs performance and whether 

TMS delivered at different time points had an impact on different kinematic variables. 

This experiment provided a novel approach in exploring behavioural mechanisms 

operating in the SMA during preparation for novel reaching. It employed a single-pulse 

TMS approach and used human subjects in a robot-mediated FF paradigm, as opposed 

to previous studies that have used rTMS protocols, motor sequencing tasks and focused 

mainly on non-human primate responses (Padoa-Schioppa, Li and Bizzi 2004; Serrien 

et al., 2002; Steyvers et al., 2003).  

7.6.1 Kinematics  

7.6.1.2 Shift in movement onset and offset: 
TMS delivered to the SMA had time specific effects for movement onset and movement 

offset. As with previous experiments conducted (left M1 and left PPC stimulation), in 

this study a significant delay in movement onset was noted (this addresses hypothesis 2, 

experiment 4), when TMS was applied during FAM and FF reaching, whereas in WO 

reaching significant delays were minimal. Similar shifts in responses were found for 

movement offset in FAM and FF reaching, but not during WO reaching. This study 

therefore provided a novel insight into time-specific differences that can occur during 

SMA stimulation. The shift that occurred in movement onset can be explained by the 

‘functional overlap’ in motor regions (Alexander and Crutcher, 1990; Scott and 

Kalaska, 1997). Interactions exist between motor networks during planning and 

reaching execution (He, Dum and Strick, 1995; Padoa-Schioppa, Li and Bizzi, 2004). 

For example, corticospinal projections from the SMA feed to the premotor cortices and 

the M1, which project onto the spinal cord for movement execution (Padoa-Schioppa, 

Li and Bizzi, 2004). This neural communication enables the movement dynamic 

processing which can influence kinematic behaviours (He, Dum and Strick, 1995).  

7.6.1.3 Impact of SMA stimulation on reaching trajectories (SE): 
RMANOVA testing revealed a significant effect of condition on SE induced by TMS 

with significantly greater trajectory errors in FF reaching compared to FAM and WO 

reaching. Therefore it can be argued that TMS to the SMA disrupted novel reaching 

performance. However, robust multiple comparisons testing (table 7.2) showed that SE 
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errors induced by TMS in FF reaching as opposed to other conditions (FAM and WO) 

were not as prominent as the deviations noted in TMS FF reaching in other experiments 

(e.g. left M1 and left PPC).  

The SMA consists of two sub-regions; the pre-SMA and the SMA-proper and imaging 

studies (namely fMRI) have aimed to provide functional distinctions between these two 

sub-structures. For example increased neural activations have been revealed in the pre-

SMA in complex motor tasks, whereas the SMA-proper has been found to be activated 

more so during motor planning and execution (Bates and Goldman-Rakic, 1993; Picard 

and Strick 2003; Shen and Alexander, 1997; Moran and Schwartz, 1999; Padoa-

Schioppa, Li and Bizzi, 2004). In this study it could be argued that the pre-SMA was 

more likely stimulated because SMA-proper stimulation may have resulted in greater 

disruptions in reaching considering that it is more involved in motor preparation than 

the pre-SMA. Furthermore, stimulation of the SMA-proper can cause an indirect 

activation of the motor cortex and elicit MEPs which is not the case for pre-SMA 

stimulation (Narayana et al., 2012; Cona, Marino and Semenza, 2017). In this study no 

MEPs were elicited (as inspected with EMG signals recorded throughout the 

experiment) and this provides further evidence supporting the notion that the pre-SMA 

was stimulated here.   

However, there are challenges when trying to distinctively define activation patterns 

between sub-regions of the SMA because both the pre-SMA and SMA-proper are 

similarly activated in various types of motor states (Wang et al., 2010; Courson, Macoir 

and Tremblay, 2017). This is supported by fMRI studies that have illustrated similar 

neural activation patterns in SMA sub-regions during motor learning (Hardwick et al., 

2013). Different co-ordinate systems including Montreal Neurological Institute (MNI) 

templates have been used to locate SMA sub-regions (Chau and McIntosh, 2005; Bracht 

et al., 2012; Chung et al., 2005). In this experiment, using individual subject structural-

MRI scans to locate different SMA sub-regions (with an MNI co-ordinate system) could 

have been a solution in determining the region of the SMA that was stimulated. 

Nonetheless, based on previous SMA TMS protocols (Cona, Marino and Semenza, 

2017), it could be speculated that the pre-SMA was stimulated in this experiment 

because no visible physiological responses were noted in EMG signals which has been 

found with SMA-proper stimulation. Pre-SMA stimulation can also explain why 

trajectory errors did not occur at all time points of SMA stimulation in FAM and FF 
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reaching blocks (only significant for 100ms, 130ms and 160ms), in other words  motor 

planning has not been as associated with the pre-SMA, whereas it has been with the 

SMA-proper.  

7.7 Chapter conclusions: 
The purpose of this chapter was to provide a novel insight into how delivering SP-TMS 

at different times to the SMA during the preparation of a reaching affected kinematic 

measures of reaching. TMS was found to delay movement onset and offset, particularly 

during preparation for FF reaching, which can be explained in terms of the functional 

overlap that has been found between different motor regions. Time specific differences 

of SMA TMS were also found in this study which can be due to the transient nature of 

TMS. TMS to the SMA during novel reaching did not have as much of a disruptive 

impact on reaching trajectories when compared to other regions explored in this thesis 

(such as the left M1 and left PPC) which could have been be due to the pre-SMA being 

stimulated as opposed to the SMA-proper. This finding could be further determined by 

employing structural MRI scans for subjects and locating sub-regions of the SMA for 

stimulation which have previously been conducted using different MRI co-ordinate 

systems. Exploring whether TMS delivered to other regions in the motor circuitry result 

in similar outcomes can be important in developing a cortical network model of brain 

structures that are specific for novel reaching.  
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Chapter 8 

8 Experiment 5 

The impact of SP-TMS to the right primary motor cortex (M1) during right arm 
reaching in a novel motor learning protocol  

8.1 Introduction 

To move voluntarily, a region of the brain called the primary motor cortex (M1) sends 

complex descending signals via the corticospinal tract to motor neurons that innervate 

skeletal muscles (Drew, Prentice and Schepens, 2004). The crossing of the corticospinal 

pathway has resulted the right side of our brain being responsible for moving the left 

side of our body and vice versa (Sun and Walsh, 2006). This has been demonstrated 

experimentally with TMS to the M1 of one hemisphere and by recording MEPs (Hallett, 

2007).   

Although contralateral motor activation patterns occur during unilateral movements, 

(shown both experimentally with TMS and in imaging studies) (Barber et al., 2011; 

Hardwick et al., 2013), researchers have shown lateralisation between the two 

hemispheres (Barber et al., 2011). For example, findings from Kim et al., (1993) 

concluded that although right handed and left handed finger movements resulted in 

similar left M1 cortical activation patterns, cortical activity in the right M1 was only 

noted during left-handed finger movement. Further hemispheric asymmetries were 

noted by Verstynen et al., (2005) who reported greater cortical activity in the left 

hemisphere during left hand movements compared to the right hemisphere during right 

hand movements.  

Motor network connectivity enables the transfer of information between different 

cortical areas and this facilitates synaptic plasticity during motor adaptation (Shannon et 

al., 2016). Resting-MRI studies have found an association between enhanced motor 

performance and increased left-hemispheric motor network connectivity, as opposed to 

right-hemispheric motor connectivity in right handed subjects (Barber et al., 2012). 

Voxel based connectivity techniques have been used to further illustrate hemispheric 

connectivity differences. For example Buckner et al., (2011) reported a greater number 

of voxels in the right-cerebellar hemisphere which were connected to the left M1, in 

contrast to the quantity of voxels that were found in the left cerebellar-hemisphere 

which were connected to the right M1 (Schlerf et al., 2014). Generally, the right M1 has 



140 
 

 

 

been found to exhibit less motor network connectivity than the left M1 (Guye et al., 

2003). Considering that hemispheric connectivity differences have been established 

between the right and left M1, this experiment employed SP-TMS as a virtual 

disruption tool to test the hypothesis that that TMS to the right M1 may not have a 

detrimental impact on reaching trajectories, because less network communication 

processes may be interrupted.  

Furthermore, this experiment employed a motor adaptation paradigm and a single-pulse 

TMS protocol to explore the functional role of right M1 in novel reaching. This differs 

from previous studies that have implemented visuo-motor adaptation tasks and paired-

pulse TMS protocols (Schlerf et al., 2014). In this theses, in experiment 2, TMS to the 

left M1 was found to have a disruptive impact on right arm reaching, however, whether 

this is the case for TMS delivered to the right M1 is yet to be established. Considering 

that asymmetries between the two hemispheres have been found, and the connectivity of 

right motor regions are not as prominent as the left M1, particularly during right hand 

movements (Cramer et al., 1999; Verstynen et al., 2005; Schlerf et al., 2014), it can be 

argued that TMS to the right M1 may not have as much of a disruptive impact that was 

noted in the left M1 during motor adaptation. This study therefore set out to explore 

whether the asymmetries that have been noted in the literature, effect the process of 

motor adaptation, and whether TMS has a disruptive effect on the right M1 during 

ipsilateral reaching.  

8.2 Methodology  
Participant demographics for this experiment are shown in table 3.2. The ways in which 

RMT was identified for right M1 stimulation is described in section 3.3.1 of the general 

methodology chapter. The location for right M1 TMS and the coil orientation is 

highlighted in figure 3.3. Additionally, the reaching paradigm for this experiment is 

outlined in section 3.4.1 and figure 3.5. 

8.3 Data acquisition: MEPs and Kinematics 

No MEPs were measured from the right arm in this experiment and data acquisition was 

based on kinematics only. Kinematic data were analysed and quantified offline in 

MatLab 2017b (The MathWorks Inc, Natick MA, USA) (section 3.6.1).  
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8.4 Statistical analysis: Kinematics 

A two-way RMANOVA for each kinematic variable was performed in SPSS 23 (IBM). 

The main factors (TIME and CONDITION) and interactions explored 

(TIME*CONDITION), as well as the ways in which sphericity assumptions were 

tested, and how post-hoc testing was were carried out are explained in section 3.7.1.  

8.5 Results 

8.5.1 Kinematics: Repeated measures ANOVA and post-hoc testing: 
The RMANOVA revealed a significant effect for TIME on movement onset and offset 

(all F > 4.342, all p < 0.05) but not for maximum velocity, movement duration, summed 

error and maximum force (all F < 0.849, all p > 0.05) (table 8.1). There was also a 

significant main effect of CONDITION for movement duration, summed error and 

maximum force (all F > 5.635, all p < 0.05), but not for movement onset, movement 

offset and maximum velocity (all F < 0.802, p > 0.05) (table 8.1). No significant 

interaction effects were found for any of the kinematic variables (all F < 0.517, all p < 

0.05, table 8.1).  

Post-hoc testing for TIME (see table 8.2, figure 8.2[A-E]) for movement onset showed 

that during FAM reaching all time points, apart from 100ms were significantly 

increased compared to T10. During FF reaching all time points were significantly 

increased compared to T10 (all p < 0.006), but in WO reaching only responses during 

280ms and 310ms were significantly increased from T10 (p < 0.006). For movement 

offset, all time points apart from 190ms and 220ms were significantly increased 

compared to T10 during FF reaching (p < 0.006). However, there were no significant 

differences from T10 in movement offset during FAM and WO reaching (all p > 0.006).  

Post-hoc testing for CONDITION (see table 8.2, figure 8.1[A-E]) showed that 

movement duration was significantly increased in FF reaching compared to FAM 

reaching (only at 130ms p < 0.016). Movement duration during FF reaching was 

significantly longer compared to WO reaching (at 130ms, 160ms, 250ms, 280ms and 

310ms, p < 0.016). There were no significant differences regarding FAM vs. WO 

reaching (all p > 0.016). Summed error was significantly increased in FF vs. FAM 

reaching at all time points (p < 0.016). Trajectory errors were significantly increased 

(160ms, 190ms, 20ms, 280ms and 310ms) during FF vs. WO reaching. There were no 

significant differences in FAM vs. WO reaching. Maximum force was significantly 
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increased in FF reaching at all time points compared to both FAM and WO reaching as 

expected.  

All post-hoc testing results are illustrated in table 8.2 and figure 8.1[A-E]. 
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Table 8.1. Results of the two-way RMANOVA: 

   

 

 

 

 

 

 

 

 

 

 

 TIME CONDITION TIME *CONDITION INTERACTION 

df(Error) F Sig. df(Error) F Sig. df(Error) F Sig. 
Movement Onset (ms) 8[96] 12.27   < 0.001 2 [24] 1.696 0.213 16[192] 1.010 0.447 
Movement Offset (ms) 8[96] 4.342   < 0.001 2 [24] 2.200 0.133 16[192] 0.834 0.645 
Maximum Velocity (m.sˉ¹) 8[96] 1.526 0.158 2 [24] 0.802 0.460 16[192] 1.179 0.288 
Duration (ms) 8[96] 0.873 0.542 2 [24] 5.635 0.010 16[192] 1.093 0.364 
Summed Error (distance: cm) 3.2 [38.1] 0.849 0.481 1.2 [13.4] 12.92 0.003 16[192] 0.944 0.520 
Maximum Force (N) 8[96] 0.972 0.463 1.1 [12.6] 176.78  < 0.001 16[192] 0.517 0.936 
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TIME TMS: 10ms 
Mean [SEM] 

TMS: 100ms 
Mean [SEM] 

TMS: 130ms 
Mean [SEM] 

TMS: 160ms 
Mean [SEM] 

TMS: 190ms 
Mean [SEM] 

TMS: 220ms 
Mean [SEM] 

TMS: 250ms 
Mean [SEM] 

TMS: 280ms 
Mean [SEM] 

TMS: 310ms 
Mean [SEM] 

CONDITION Movement Onset (ms): 

FAM 

FF 

WO 

387 [19] 

381 [15] 

405 [20] 

413 [16] 

417[15] * 

423 [21] 

416 [19] * 

430 [18] * 

441 [16] 

429 [14] * 

424 [13] * 

445 [26] 

445 [23] * 

423 [14] * 

434 [21] 

445 [22] * 

430 [18] * 

443 [20] 

   445 [22] * 

   431 [17] * 

443 [19] 

444 [23] * 

437 [14] * 

464 [25] * 

444 [23] * 

439 [16] * 

464[24] * 

 Movement Offset (ms): 

FAM 

FF 

WO 

1215 [26] 

1216 [17] 

1225 [25] 

1223 [30]  

1272 [22] * 

1223 [25] 

1228 [33]  

1278 [25] * 

1228 [24] 

1249 [37]  

1272 [22] * 

1245 [31] 

1239 [33] 

1263 [21] 

1238 [24] 

1254 [33] 

1269 [19] 

1246 [29] 

1251 [36]  

1274 [24] * 

1233 [24] 

1243 [36]  

1291 [24] * 

1249 [28] 

1250 [37]  

1296 [23] * 

1263 [28] 

 Maximum Velocity (m.sˉ¹): 

FAM 

FF 

WO 

0.29 [0.01] 

0.30 [0.01] 

0.28 [0.01] 

0.29 [0.02] 

0.30 [0.01] 

0.29 [0.01] 

0.29 [0.02] 

0.30 [0.02]  

0.29 [0.01] 

0.28 [0.02] 

0.30 [0.01]  

0.29 [0.01] 

0.30 [0.02] 

0.30 [0.02] 

0.29 [0.01] 

0.29 [0.02] 

0.30 [0.01] 

0.29 [0.01] 

0.29 [0.02] 

0.30 [0.02]  

0.30 [0.01] 

0.29 [0.02] 

0.29 [0.01]  

0.29 [0.01] 

0.29 [0.02] 

0.30 [0.01]  

0.29 [0.01] 

 Movement Duration (ms): 

FAM 

FF 

WO 

827 [27] 

835 [21] 

820 [20] 

810 [27] 

855 [24] 

800 [19] 

812 [33] 

849 [24]  

787 [19] 

820 [36] 

848 [21]  

800 [21] 

804 [31] 

841 [20] 

803 [16] 

809 [30] 

840 [16] 

803 [22] 

805 [31] 

843 [22]  

791 [17] 

799 [26] 

855 [23]  

785 [19] 

806 [26] 

858 [16]  

800 [21] 

 Summed Error (distance: cm): 
FAM 

FF 

WO 

2.17 [0.19] 

3.44 [0.44]  

2.24 [0.18] 

2.35 [0.27] 

3.86 [0.59]  

2.22 [0.17] 

2.15 [0.21] 

3.44 [0.44]  

2.21[0.12] 

1.91 [0.18] 

3.99 [0.69]  

1.99 [0.09] 

1.93[0.14] 

3.06 [0.34]  

2.20 [0.14] 

2.13[0.15] 

3.79 [0.47]  

2.08 [0.10] 

2.02 [0.16] 

3.81 [0.60]  

2.26[0.13] 

1.90 [0.18] 

3.83 [0.63]  

2.14[0.14] 

2.00 [0.16] 

3.59 [0.41]  

2.21[0.12] 

 Force (N): 

FAM 

FF 

WO 

4.7 [0.1] 

9.9 [0.4]  

4.7 [0.1] 

4.7 [0.2] 

9.8 [0.4]  

4.8 [0.2] 

4.8 [0.2] 

9.9 [0.4]  

4.8 [0.2] 

4.7 [0.2] 

9.8 [0.3]  

4.8 [0.2] 

4.8 [0.2] 

10.0 [0.4]  

4.8 [0.2] 

4.8 [0.2] 

9.9 [0.3]  

4.8 [0.2] 

4.8 [0.2] 

10.0 [0.4]  

4.8 [0.2] 

4.8 [0.2] 

9.9 [0.4]  

4.7 [0.1] 

4.8 [0.2] 

9.9 [0.3]  

4.8 [0.2] 

 

A) Movement onset (ms) B) Movement offset (ms) 
A C)  

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 

 

146 

Table 8.2. Post-hoc testing results: The table below shows kinematic responses during FAM, FF and WO reaching when TMS was delivered to the 
right M1 at different time points during reaching preparation. Values represent means, ± the standard error mean (SEM).  
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A) Movement onset (ms) B) movement offset (ms) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D) Movement duration (ms) E) Summed error 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1 [A-E]: Graphical presentation of the post-hoc testing results (based on table 8.2) for the significant kinematic variables: 
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A) Maximum force (N) 
 
 
 
 
 
 
 
 
 
 
 
 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 

Figure 0.2 A-E. Graphical presentation of the post-hoc testing results (based on table 7.2) for the significant kinematic variables:  

 



147 
 

 

 

8.6 Discussion 
As the left M1 was stimulated in chapter 5 of this thesis, the main aim of this chapter 

was to explore the effects of TMS delivered to the right M1 during right arm reaching 

preparation. Previous experiments investigating left and right hemispheric differences 

have implemented visuo-adaptation reaching protocols as opposed to robotic adaptation 

protocols and have explored other kinematic variables such as reach amplitude and the 

travel distance time to reach a target (Schlerf et al., 2014). This study therefore aimed to 

provide novel findings regarding right M1 function using a robot-mediated FF paradigm 

and a single-pulse TMS protocol.  

8.6.1 Kinematics 

8.6.1.2 The shift in movement onset and offset: 
Results from this experiment revealed a significant delay in movement onset (FAM, FF 

and WO) and offset (FF only) responses (see table 8.2). This finding therefore suggests 

a functional role of the ipsilateral M1 during motor preparation for unilateral reaching. 

This result is in line with findings from non-human primates, where for example 

neuronal unit activity recordings via implanted electrodes in the motor cortex of Rhesus 

monkeys have illustrated correlations between neuronal activity in the ipsilateral M1, 

and movement preparation and motor output (Ganguly et al., 2009).  

The delay that occurred in movement onset and offset can be explained by the ‘waiting 

period’ phenomena which results in cortical changes (see section 5.6.2) as described by 

Hasegawa et al., (2017). More specifically, motor preparation resulted in inhibition of 

neural networks which was accompanied by a selective inhibition of neural networks 

mediated by interneurons (Pfeffer et al., 2013). This result demonstrated that there may 

be similar mechanisms occurring in the right and left M1 because the shifts that 

occurred with regards to movement onset in relation to the ‘waiting period’ theory was 

also noted during left M1 stimulation. This finding was important because it highlighted 

the link between motor behaviours and the M1 circuitry, in particular how the neural 

networks can have an influence reaching preparation.  

8.6.1.3 Right M1 connectivity in facilitating novel reaching: 
TMS delivered to the right M1 had a significantly disruptive effect on reaching 

trajectories during FF reaching, compared to FAM and WO reaching. 
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TMS virtual lesion studies have mainly reported that in right handed subjects, there are 

greater disruptions in motor output when TMS is delivered to the left M1 compared to 

when it is delivered to the right M1 (Van den Berg, Swinnen and Wenderoth, 2011). 

However, in this study we demonstrated that disruptions are also caused when TMS is 

administered to the right M1, thus illustrating that the ipsilateral M1 also undergoes 

modulations of activity during right arm reaching. This view has been supported with 

studies in stroke patients. For example, it has been reported that following lesions to one 

hemisphere, the contra-lesional hemisphere becomes important in aiding ipsilateral 

movements (Dancause et al., 2006; Hummel and Cohen, 2006; Ganguly et al., 2009). 

Findings from an fMRI study conducted by Grefkes et al., (2008) showed that when 

stroke patients made hand movements (the affected hand), the contra-lesional 

hemisphere (unaffected) influenced neural activity of the ipsi-lesional motor cortex. The 

left M1 is not the only region that facilitates neuronal activity of the right M1, and other 

areas such as the posterior parietal cortices also play a role. For example, using a twin-

coil TMS protocol, Koch et al., (2008b) reported that the right PPC influences the right 

M1 when participants performed a leftward reach. Similarly in this study, participants 

were instructed to reach towards a target that was presented on the left side of the screen 

(north-west - 135°). Based on these findings, it could be argued that TMS to the right 

M1 caused a disruption in neural network communication (i.e. between the PPC and 

right M1, or left M1 and right M1) which affected the final output of reaching (i.e. 

increase in summed error). 

Brain machine/computer interfaces (BMI/BCI) are based on measuring activity (i.e. 

neural) and converting it to an artificial output to replace or restore behaviours, this can 

be done either invasively (i.e. via implants) or non-invasively (i.e. via neural signals) 

(Wolpaw et al., 2002; Daly and Huggins, 2015). Therefore, signals can be used to 

control functions in patients (McFarland and Vaughan, 2016) and can provide the brain 

with channels that depend on cortical activity to perform actions (Ranjangam et al., 

2016). The use of BMIs has been successful in assisting cortical recovery in stroke 

patients (Carmena et al., 2003; Daly et al., 2009; Ang et al., 2010; Daly and Huggins 

2015). For example in motor learning following stroke, physical therapy training 

combined with EEG-BMI training vs. physical therapy training alone resulted in 

enhanced motor performance (quantified with Fugl-Meyer scores) (Ramos-Murguialday 

et al., 2013). In this experiment, summed error results demonstrated the importance of 
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ipsilateral arm-reaching neural responses in novel motor learning. The data in this study 

could be important in brain machine interfaces and restoring “functional cortical 

reorganisation” in patients who have had a severe stoke (Carmena et al., 2003). In other 

words, the right M1 can be used as a site for extracting signals to use for BMIs (as 

previously emphasised with the motor cortex – Schroeder and Chestek, 2016; 

Hatsopoulos and Suminksi, 2011) because signals from this region may be better suited 

for assisting novel reaching compared to signals from other regions that are damaged 

(Friehs et al., 2004).  

In this study, maximum force was greater in FF reaching as expected (table 8.2). 

However, maximum velocity was not modulated, which was not the case in experiment 

2 with TMS to the left M1 (maximum velocity was significantly increased in FF 

reaching). This can be because of the lateralisation of function between the left and right 

M1, which has been illustrated in both human subjects, and non-human primates. For 

example, Ganguly et al., (2009) carried out invasive motor unit recordings (electrode 

implantation) in macaque monkeys and found that the contralateral M1 is more directly 

associated with movement velocity and has a greater influence in coding velocity 

parameters during reaching compared to the ipsilateral M1. 

No right or left upper limb MEPs were collected were collected in this experiment. It 

would be interesting in future studies to collect MEPs to provide a more detailed insight 

into the role of ipsilateral corticospinal projections to the right arm during motor 

adaptation. This might also have impact for future design of contralesional BMI design 

(see above).  Furthermore, testing left handed participants during right M1 stimulation 

may be warranted because studies have reported the importance of hand dominance in 

effecting M1 hemispheric asymmetries during ipsilateral movement (Van den Berg, 

Swinnen and Wenderoth, 2011). Given the possible role of right M1 in right arm 

reaching, it would be interesting to study IHI between left-right and right-left M1s 

during preparation for reaching in motor adaptation as this “balance” of inhibition is 

thought to be important in recovery from stroke. 

8.7 Chapter conclusions: 
This chapter demonstrated that TMS delivered to the right M1 at different time points 

during reaching preparation had a significant impact on movement onset and movement 

offset, particularly during novel reaching. This finding can be attributed to the ‘waiting 
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period’ phenomena, which was similarly noted during left M1 stimulation. Based on 

this finding, it could be argued that the right and left M1 undergo similar mechanistic 

processes when TMS is delivered during the preparation of a novel reach, and this could 

have been a result of the contralateral M1 exerting an influence on the ipsilateral M1 

(which has been shown in stroke patient studies). The data in this study demonstrated 

the possible role of the ipsilateral M1 in novel right-arm reaching, whether it be direct 

or indirect via the left M1 connections, which can be important finding in the field of 

BMIs in terms of assisting functional recovery in stroke patients. Overall this 

experiment highlighted the functional role of right M1 in motor preparation and the 

importance of motor connectivity in facilitating preparation for novel reaching. Due to 

the interesting findings that were illustrated between the right and left M1 (chapter 5), 

additional right and left hemispheric regions were targeted with TMS in the final 

chapters of this thesis (e.g. the right and left dPMC, and the right and left PPC) to 

explore hemispheric asymmetries and similarities between regions during novel 

reaching.   
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Chapter 9 

9 Experiment 6 

Exploring impact of SP-TMS to the left dorsal pre-motor cortex (dPMC) during 
right arm reaching in a novel motor learning protocol  

 

9.1 Introduction 

The premotor cortex (PMC) is situated between the dorsal prefrontal cortex and the 

primary motor cortex (Kantak et al., 2012) and has a vast range of functions that 

contribute to motor performance including movement control, skilled performance and 

reaching (Halsband et al., 1993; Cao et al., 2013; Kantak et al., 2012). The PMC is key 

for sequential motor learning, as lesions to this region has led to poor performance in 

motor sequencing tasks (Tranel et al., 2003; Gross and Grossman 2008; Ohbayashi, 

Picard and Strick, 2016; Solopchuk, Alamia and Zenon 2016).   

The PMC has two sub-structures; the ventral PMC (vPMC) and the dorsal PMC 

(dPMC). As well as its role in language production and comprehension, the vPMC is 

also involved in spatial perception and motor imagery (Rizzolatti, Fogassi and Gallese, 

2002; Binkofski and Buccino, 2006). For example, Binkofski et al., (2000) conducted 

an fMRI study which illustrated neural activations of ventral regions of the PMC when 

participants were asked to imagine making finger movements. The dPMC on the other 

hand, plays a role in cued response selection and goal directed behaviour which may be 

important for motor adaptation (Beck et al., 2009; Yamagata et al., 2012). For example, 

dPMC neuronal activity was tuned with target location and arm use during the 

preparation phase of a reaching action (Tanji and Hoshi, 2001).  

Generally, movements are prepared via the use of cues and waiting for information 

before preparing an action (Dekleva, Kording and Miller, 2018). Visual cues are vital in 

aiding dPMC motor functions and this has been noted in studies of non-human primates 

whereby dPMC resection resulted in the inability to use cues to initiate or suppress 

movements (Petrides 1982; Halsband and Passingham, 1985; Chouinard, Leonard and 

Paus, 2005). With regards to motor output behaviour, the dPMC has also been noted to 

be involved in encoding kinematic parameters that help in the formation of motor 

memories (Overduin, Richardson, and Bizzi, 2009; Meehan et al., 2011; Meehan et al., 

2013).  
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Considering that this thesis will focus on the dPMC, and target both the left and right 

dPMC, it is important to take into account whether differences have been demonstrated 

between the two during reaching and adaptation. In motor paradigms where there is a 

change in the motor task, action-reprogramming is necessary and the left dPMC in 

particular has been noted to be involved in this (Hartwigsen et al., 2012). For example, 

experiments have shown that the left dPMC plays a role in immediately abandoning 

previously prepared motor action behaviours and replacing them with new ones, in 

order to accurately meet the demands of a task (Hartwigsen et al., 2012). The left dPMC 

contributes to reaching behaviours because cells within its region transmit signals that 

are associated with the visual control of reaching (Cisek and Kalaska, 2002; Lee and 

Van Donkelaar, 2006), therefore using TMS to target the dPMC could be important in 

further demonstrating its functional role during motor reaching adaptation (Clower et 

al., 1996; Lee and Van Donkelaar, 2006).  

Thus far, different TMS protocols have been used to explore dPMC function. For 

example, paired pulse TMS to the left dPMC led to an increase in the decision making 

time of movement onsets (Mochizuki et al., 2005). However, this was not the case when 

the right dPMC was stimulated (Mochizuki et al., 2005). In a visual perturbation prism 

adaptation task, Lee and Van Donkelaar (2006) targeted the left dPMC and found that it 

did not significantly contribute in trial-to-trail learning. On the other hand, TMS to the 

left dPMC could disrupt adaptation performance depending on the time point at which it 

is delivered. For example, slower adaptation rates were found when TMS was 

administered at movement onset, compared to when it was delivered at movement offset 

(Lee and Van Donkelaar, 2006). An additional important factor to consider is that 

dPMC function could depend upon handedness. For example, neuron activation 

recordings from non-human primates in bimanual and unimanual tasks demonstrated 

greater left dPMC activation when actions were performed with one hand, whereas 

greater right dPMC activation was found when actions and tasks were performed with 

two hands (Kermadi, Liu and Roullier, 2000).  

Currently the impact of single pulse TMS to the left dPMC during right arm reaching in 

a motor adaptation task is unknown as most research has focused on: 

1) Studies in non-human primates rather than human subjects (Overduin, 

Richardson, and Bizzi, 2009). 
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2) Visuo-motor adaptation paradigms compared to robot induced perturbations 

(Lee and Van Donkelaar, 2006). 

Based on findings that have illustrated the role of the left dPMC in motor memory and 

response selection it can be argued that in this study TMS could disrupt the left dPMC 

functions in a motor adaptation task.  

9.2 Methodology  

The details for participant demographics regarding left dPMC stimulation are shown in 

table 3.2. Prior to stimulation during reaching, functional measures were implemented 

to identify RMT for each participant (section 3.2.2.2 details this). Section 3.3.2.2.3 and 

figure 3.3 outlines the location and coil orientation chosen for left dPMC stimulation 

(based on protocols from Fink et al., 1997, Münchau et al., 2002, Lee and Van 

Donkelaar, 2006; Zanon et al., 2013 and Lega et al., 2016). The reaching task for this 

experiment is explained in section 3.4.1 and graphically shown in figure 3.5.  

9.3 Data acquisition: MEPs and Kinematics 
MEPs were only elicited when identifying the participants RMT (section 3.6.2). No 

MEPs were collected during left dPMC stimulation. Kinematics were of main interest in 

this study, and section 3.6.1 provides details with regards to how kinematic data were 

analysed and quantified offline in MatLab 2017b (The MathWorks Inc, Natick MA, 

USA).  

9.4 Statistical analysis: Kinematics 
A two-way RMANOVA was performed in SPSS 23 (IBM) for each kinematic variable. 

Factors such as TIME, CONDITION and TIME*CONDITION were investigated. 

Section 3.7.1 describes the ways in which sphericity assumptions were tested and how 

post-hoc testing was performed (paired Student’s t-test with Bonferroni correction for 

multiple comparisons).  

9.5 Results 

9.5.1 Kinematics: 
The RMANOVA revealed a significant main effect for TIME on movement onset and 

movement offset (p < 0.05), but not for maximum velocity, movement duration, 

summed error and maximum force (p > 0.05) (see table 9.1). There was also a 

significant main effect of CONDITION on summed error and maximum force (p < 

0.05), but not for movement onset, movement offset, maximum velocity and movement 
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duration (p > 0.05) (table 9.1). A significant interaction was found for movement onset 

(p < 0.05), but this was not the case for movement offset, maximum velocity, summed 

error, movement duration and maximum force (p > 0.05) (table 9.1).  

Post hoc testing for TIME (table 9.2, figure 9.1[A-D]) for movement onset showed that 

during FAM reaching responses were significantly increased at all time points (p < 

0.006) apart from 160ms (p > 0.006) compared to T10. In FF reaching, responses at 

100ms, 190ms, 220ms, 250ms, 280ms and 310ms were significantly increased 

compared to T10 (p < 0.006). Movement onset during WO reaching was significantly 

increased at 100ms, 160ms, 190ms, 220ms, 250ms, 280 and 310ms compared to T10 (p 

< 0.006). Movement offset was significantly increased at all time points compared to 

T10 during FAM reaching (p < 0.006). During FF reaching, only TMS delivered at 

100ms, 190ms, 220ms and 310ms was significantly increased compared to T10. WO 

reaching responses were significantly increased at 160ms and 280ms in contrast to T10 

(p < 0.006). 

Post-hoc testing for CONDITION (table 9.2, figure 9.1[A-D]) regarding summed error 

revealed that errors in reaching were significantly increased in FF reaching vs. FAM 

reaching (at all time points p < 0.016). Summed error in FF reaching was significantly 

increased compared to WO reaching (at 100ms, 160ms, 190ms, 220ms, 280ms and 

310ms p < 0.016). Summed error was significantly increased in WO vs. FAM reaching 

(only at 160ms p < 0.016). Maximum force was significantly increased in FF reaching 

as expected (p < 0.016), compared to FAM and WO reaching, which in turn were 

similar.  

 

Table 9.2 and figure 9.1[A-D] illustrates the results from post-hoc testing. 
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Table 9.1. Results of the two-way RMANOVA: 

 TIME CONDITION TIME*CONDITION INTERACTION 

df(Error) F Sig. df(Error) F Sig. df(Error) F Sig. 
Movement Onset (ms) 8 [96] 17.20    < 0.001 1.4 [16.2] 0.606 0.554   16 [192] 2.032 0.013 

Movement Offset (ms) 8 [96] 10.64    < 0.001 2 [24] 1.543 0.234   16 [192] 1.675 0.054 

Maximum Velocity (m.sˉ¹) 2.9 [34.7] 0.247 0.856 2 [24] 1.129 0.340   16 [192] 0.358 0.990 

Duration (ms) 4.4 [52.2] 1.27 0.293 2 [24] 3.070 0.065   16 [192] 0.887 0.585 

Summed Error (distance: cm) 8 [96] 0.478 0.869 2 [24] 24.80  < 0.001   16 [192] 0.936  0.529 

Maximum Force (N) 1.4 [15.8] 0.124 0.769 1.2 [13.3] 280.50  < 0.001   16 [192] 0.179 0.100 
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TIME TMS: 10ms 
Mean [SEM] 

TMS: 100ms 
Mean [SEM] 

TMS: 130ms 
Mean [SEM] 

TMS: 160ms 
Mean [SEM] 

TMS: 190ms 
Mean [SEM] 

TMS: 220ms 
Mean [SEM] 

TMS: 250ms 
Mean [SEM] 

TMS: 280ms 
Mean [SEM] 

TMS: 310ms 
Mean [SEM] 

CONDITION Movement Onset (ms): 
FAM 

FF 
WO 

379 [17] 
383 [12] 
382 [15] 

419 [21] * 
411 [12] * 
410 [12] * 

418 [17] * 
420 [12] 
413 [16] 

431 [21] 
410 [11] 

436 [19] * 

434 [20] * 
425 [12] * 
442 [16] * 

436 [20] * 
443 [16] * 
436 [13] * 

449 [24] * 
443 [15] * 
439 [16] * 

446 [23] * 
419 [14] 

472 [17] * 

458 [25] * 
436 [15] * 
442 [17] * 

 Movement Offset (ms): 
FAM 

FF 
WO 

1188 [29] 
1219 [18] 
1188 [24] 

1236 [23] * 
1259 [19] * 
1223 [19] 

1244 [33] * 
1276 [18] 
1222 [25] 

1255 [33] * 
1250 [16] 

1249 [29] * 

1254 [29] * 
1282 [23] * 
1262 [27] 

1254 [30] * 
1294 [21] * 
1235 [22] 

1270 [29] * 
1275 [24] 
1254 [32] 

1272 [31] * 
1248 [19] 

1273 [26] * 

1263 [37] * 
1289 [21] * 
1241 [17] 

 Maximum Velocity (m.sˉ¹): 
FAM 

FF 
WO 

0.29 [0.02] 
0.30 [0.01] 
0.29 [0.01] 

0.29 [0.02] 
0.30 [0.01] 
0.29 [0.01] 

0.29 [0.02] 
0.30 [0.01] 
0.30 [0.02] 

0.29 [0.02] 
0.30 [0.01] 
0.29 [0.01] 

0.29 [0.02] 
0.30 [0.02] 
0.29 [0.01] 

0.29 [0.02] 
0.30 [0.01] 
0.29 [0.01] 

0.29 [0.02] 
0.30 [0.01] 
0.29 [0.02] 

0.29 [0.01] 
0.30 [0.01] 
0.30 [0.01] 

0.29 [0.02] 
0.30 [0.01] 
0.29 [0.01] 

 Movement Duration (ms): 
FAM 

FF 
WO 

809 [28] 
835 [21] 
805 [25] 

818 [26] 
848 [22] 
813 [21] 

826 [32] 
856 [18] 
809 [28] 

824 [28] 
840 [15] 
813 [27] 

816 [29] 
858 [25] 
819 [31] 

818 [29] 
851 [15] 
799 [27] 

820 [27] 
833 [20] 
815 [29] 

825 [26] 
829 [21] 
800 [24] 

804 [29] 
853 [20] 
803 [23] 

 Summed Error (distance: cm): 
FAM 

FF 
WO 

1.99 [0.09] 
3.04 [0.26]  
2.25 [0.29] 

1.86 [0.12] 
3.55 [0.39]  

2.25 [0.24] 

1.91 [0.16] 
3.41 [0.33]  

2.29 [0.16] 

1.92 [0.10] ▲ 
3.41 [0.35]  

2.50 [0.22] 

2.13 [0.12] 
3.40 [0.26]  

2.22 [0.29] 

2.06 [0.16 ] 
3.38 [0.30]  

2.13 [0.17] 

1.82 [0.09] 
3.13 [0.25]  

2.59 [0.32] 

2.01 [0.12] 
3.24 [0.36]  

2.15 [0.21] 

2.05 [0.16] 
3.23 [0.31]  

2.19 [0.23] 
 Force (N): 

FAM 
FF 

WO 

4.7 [0.2] 
9.9 [0.4]  

4.7 [0.1] 

4.7 [0.2] 
10.0 [0.4]  

4.7 [0.1] 

4.7 [0.2] 
9.9 [0.3]  

4.8 [0.1] 

4.7 [0.2] 
10.0 [0.4]  

4.7 [0.1] 

4.7 [0.2] 
10.0 [0.4]  

4.7 [0.1] 

4.7 [0.2] 
9.9 [0.4]  

4.7 [0.1] 

4.8 [0.2] 
9.9 [0.3]  

4.7 [0.1] 

4.8 [0.2] 
9.9 [0.4]  

4.7 [0.1] 

4.7 [0.2] 
9.8 [0.3]  

4.7 [0.1] 

Table 9.2. Post-hoc testing results: 

The table shows kinematic responses during FAM, FF and WO blocks of reaching when TMS was applied to the left dPMC at different time points. Values represent 
means and standard error means.  
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A) Movement onset (ms) B) Movement offset (ms) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

C) Summed error: D) Maximum force (N) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 9.1 [A-D]. Graphical presentation of the post-hoc testing results (based on table 9.2) for the significant kinematic variables: 

 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 
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9.6 Discussion: 

The purpose of this chapter was to explore the effects of TMS delivered to the left 

dPMC during reaching preparation. Previous experiments investigating the role of the 

dPMC regarding motor function have implemented visuo-adaptation pointing 

paradigms (Lee and Van Donkelaar, 2006) and have also explored non-human primate 

neural responses of reaching compared to human subjects (Kermadi, Liu and Roullier 

2000; Overduin, Richardson and Bizzi, 2009). This experiment therefore aimed to 

provide novel findings regarding left dPMC function in human subjects with single 

pulse TMS in a robotic-mediated upper-limb reaching FF paradigm. 

9.6.1 Kinematics 

9.6.1 The role of the dPMC in reaching preparation: 

The findings from this experiment revealed that TMS caused a significant shift in 

movement onset and offset responses (FAM, FF and WO) at different time points (see 

table 9.2). Similarly, repetitive TMS studies have illustrated delayed responses during 

finger action-selection tasks when the left dPMC was targeted (Hartwigsen et al., 2012). 

This particular result is important because it illustrates the role of the left dPMC in 

reaching preparation. For example, studies have demonstrated heightened neural 

responses in the dPMC during motor preparation when selecting actions for execution 

(Boussaoud and Wise, 1993; Hoshi and Tanji, 2006; Hartwigsen et al., 2012).  

The nature of the reaching task in this experiment can be a reason as to why preparatory 

action was affected during left dPMC stimulation. This is because activity in dPMC 

neurons have been noted when reaching tasks were based on target-location and arm-

use (Hoshi and Tanji, 2000; Hoshi and Tanji, 2006) (which were two factors in this 

experiment; i.e. reaching towards a 135° target and using the upper-limb right arm to do 

so). Studies that have explored functional differences between the dPMC and vPMC 

have also noted greater dPMC neuronal activity during movement execution towards 

targets compared to greater vPMC neuronal activity during visual processing of 

information when reaching towards targets (Boussaoud and Wise, 1993; Hoshi and 

Tanji, 2002).  

The neural functions of the dPMC facilitates its role in reaching preparation. For 

example, neurons in the dPMC exhibit sustained activity during what is known as a 

‘motor-set period’ (Hoshi and Tanji, 2002). The motor-set period is a phase in which 
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subjects prepare themselves for a movement-trigger in order to begin arm-reaching in 

time (Hoshi and Tanji, 2002). This sustained neuronal activity enables the dPMC to 

respond to upcoming movements (Johnson et al., 1996; Hoshi and Tanji 2002; Messier 

and Kalaska, 2000). In this experiment it could be argued that TMS disrupted the 

motor-set period which resulted in delayed movement responses (onset and offset) 

during reaching preparation. The findings obtained from this experiment are important 

because they describe behavioural left dPMC functions related to reaching preparation 

which have not previously explored with these protocols.  

9.6.2 Disrupted novel reaching with dPMC stimulation: 

A key finding from this experiment was that disrupting the left dPMC with SP-TMS 

during preparation for novel reaching, impaired performance which was revealed by 

increased summed error trajectory responses. Left dPMC TMS during FF reaching 

compared to FAM and WO reaching significantly induced trajectory errors in reaching 

(see table 9.2). Considering that TMS did not cause major disruptions during FAM and 

WO reaching suggests that the left dPMC has a specific function in novel reaching.  

Similar trajectory errors have been noted in prism-adaptation finger-movement 

paradigms whereby TMS delivered to the left dPMC slowed down adaptation rates and 

subjects were not able to correct movement trajectories to facilitate successful motor 

adaptation (Lee and Van Donkelaar, 2006). It has been suggested that corrections in 

reaching and adaptation depend upon 1) knowing that the error has occurred and 2) the 

extent of visual feedback is available in a task (Lee and Van Donkelaar, 2006). By 

remapping the visual representation of the arm, errors induced by perturbations can be 

minimised (Lee and Van Donkelaar, 2006). The dPMC is involved in reaching because 

its neurons have been found to transmit signals that are linked to the visual control of 

movements to the M1 (Cisek and Kalaska 2002; Lee and Van Donkelaar, 2006). The 

role of other regions that facilitate left dPMC motor functions are also important to take 

into account. For example, MRI studies have demonstrated a stronger functional link 

between the left dPMC and the submarginal gyrus following rTMS which was 

associated with decreases in error rates during a visuo-spatial task (Ward et al., 2010; 

Hartwigsen et al., 2012). Based on these findings it could be argued that errors in 

trajectories occurred because TMS disrupted and impaired neural communication 

between the left dPMC and other cortical regions (e.g. the visual cortex and 
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submarginal gyrus) that contribute to successful reaching and motor learning 

Hartwigsen et al., 2012).    

For motor output to occur, planning and preparation takes place. However, when there 

is a change in the environment (e.g. a perturbation) re-programming is essential in order 

to replace old plans with new plans, and this is known as action re-programming 

(Chambers et al., 2007; Neubert et al., 2010; Hartwigsen et al., 2012). Although the 

parietal cortex plays a role in action re-programming (Chambers et al., 2007) other 

cortical regions are also involved, particularly the left dPMC. The left dPMC has been 

reported to carry out prompt response mapping in order to provide the appropriate 

motor output for a task (Christensen et al., 2007; Hartwigsen et al., 2012). Studies have 

also supported this notion, for example rTMS delivered to the left dPMC resulted in a 

significant delays in action re-programming (Hartwigsen et al., 2012). When 

considering this, it could be suggested that in this experiment TMS caused disruptions 

in novel reaching because it impaired left dPMC action re-programming functions (i.e. 

the left dPMC was not able to map out new planning actions during perturbed reaching). 

This study was therefore important in illustrating the ways in which the left dPMC 

contributes to different motor function processing, in this case – action re-programming.   

9.7 Chapter conclusions: 

This chapter demonstrated that TMS delivered to the left dPMC at different time points 

during reaching preparation had a significant impact on movement onset and movement 

offset during FAM, FF and WO reaching. This finding can be attributed to the 

functional role of the left dPMC in the planning and preparation of reaching, as well as 

the type of motor task that was undertaken in this experiment. TMS disrupted the 

motor-set period whereby the left dPMC could not sustain its motor activity in order to 

begin arm reaching promptly – thus causing a delay in responses. Interestingly, FF 

reaching resulted in larger trajectory errors as opposed to FAM and WO reaching, and 

this could be due to TMS impairing neural communication between the left dPMC and 

key cortical areas that it is highly connected with that facilitate successful motor 

adaptation, such as the visual cortex and the submarginal gyrus. As opposed to the other 

experiments in this thesis whereby movement duration and maximum velocity were 

affected with TMS, this was not the case for the left dPMC.  Therefore, this experiment 

was able to highlight specific neural processes of the left dPMC using behavioural 
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output measures. Whether the right dPMC also exhibits similar behavioural outputs can 

be important to explore as it could help provide explanations into possible asymmetries 

between the two hemispheres (this region was therefore targeted in experiment 8). 

Whether similar responses are demonstrated with right PPC stimulation would also be 

interesting to explore, and this was therefore investigated in the next chapter.  
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Chapter 10 

10 Experiment 7 

Exploring the impact of SP-TMS to the right posterior parietal cortex (PPC) 
during right arm reaching in a novel motor learning protocol  

10.1 Introduction 
In chapter 6 of this thesis, the left PPC was targeted and findings from the experiment 

revealed that left PPC function was significantly disrupted with TMS during novel 

force-field reaching, compared to FAM and WO reaching (see Section 6.6.1). The 

purpose of this chapter was to explore the functional role of the right PPC and whether 

the same behavioural findings could be established, or whether the left and right PPC 

have distinct functions related to novel reaching.  

As opposed to the left PPC which has been linked to functions including movement 

preparation and planning, as well as navigation (Kaas and Stepniewska, 2016; 

Whitlock, 2017), the right PPC has been associated with functions such as maintaining 

alertness and spatial attention during a task (Posner and Peterson, 1990; Malhotra, 

Coulthard and Husain, 2009). Support for the role of the right PPC in spatial-attention 

comes from patients with right PPC lesions who exhibit spatial neglect (Vallar and 

Perani, 1986; Husain and Nachev, 2007). Patients with impaired right PPC function are 

often unaware of contra-lesional stimuli (i.e. objects in the left hemi-field) (Husain and 

Nachev, 2007) and this differs from patients with left PPC damage who have 

impairments in action control (i.e. ideomotor apraxia) (Husain and Nachev, 2007). This 

provides evidence that the two hemispheres do have separate behavioural roles because 

damage to the left- and right-PPC results in distinct functional impairments. Based on 

this it could be argued that TMS may have a different impact when it is delivered to the 

right PPC compared to what was found in the left PPC.  

Asymmetries in motor behaviours do exist and can be due to left and right hemispheric 

differences between cortical regions, including the PPC (Schluter et al., 2001). For 

example in a visuospatial motor paradigm which was based on cues specifying which 

finger patients should use to respond to trials in a task, Rushworth et al., (1997) 

demonstrated that patients with left hemispheric parietal impairments as opposed to 

those with right hemispheric parietal impairments had slower responses. In this study, 

TMS will be applied during the preparation phase of a reach and neuroimaging studies 
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including positron emission tomography (PET) scans have provided an insight into the 

role of the right PPC with regards to movement preparation. For example, Coull and 

Nobre (1998) found less neural activity in the right PPC compared to the left 

intraparietal cortex when participants were required to prepare and execute finger 

movements during specific times in a task. Coull and Nobre (1998) did however find 

that the right PPC exhibited increased activity in spatial orientation tasks. Similarly, 

PET scans during finger-movement reaction time tasks have revealed greater activity in 

the left PPC during the preparation phase of movement, and this was found in finger-

movements of both the left and right hand (Deiber et al., 1996). This shows that the left 

PPC as opposed to the right PPC is involved in the motor preparation tasks involving 

both hands (Krams et al., 1998; Rushworth, Krams and Passingham, 2001; Schluter et 

al., 2001). Furthermore, with regards to reaching tasks, less reaching-activity has been 

noted in the right PPC compared to the left PPC (Diedrichsen et al., 2006; Oliveira et 

al., 2010). Such findings therefore illustrate that the left hemisphere has a greater role 

and is more dominant than the right hemisphere during reaching tasks, specifically 

during motor preparation for movement execution (Schluter et al., 2001), therefore it 

could be argued that right PPC stimulation may not cause significant impairments when 

delivered during reaching preparation.  

TMS studies targeting the right PPC have mainly explored its functions in saccadic 

visual memory tasks as well as visuo-spatial attention task. For example, SP-TMS 

protocols targeting the right PPC as opposed to the left PPC resulted in impaired visual-

memory performance, thus demonstrating its role in visual spatial processing (Prime, 

Vesia and Crawford, 2008). TMS to the right PPC resulted in a ‘virtual disruption’ 

during a visuo-spatial attention task, more specifically TMS impaired neural activity in 

the task and caused delays in performance (Chambers et al., 2004; Woo, Kim and Lee, 

2009). With regards to reaching tasks, twin-coil TMS studies targeting the right PPC 

and the ipsilateral M1 have found TMS to the right PPC had a facilitatory effect on the 

ipsilateral M1 during movement planning, and these were also found to be time specific 

(Koch et al., 2008b) therefore the relationship between different cortical regions is 

important in facilitating reaching preparation.  

Although studies have previously explored the role of the left PPC (Della-Maggiore et 

al., 2004) and have highlighted its importance in the motor network in terms of 

facilitating motor preparation for novel reaching (including experiment 6 in this thesis), 



164 
 

 

 

the functional role of the right PPC with regards to this is unknown. This is because 

studies have mainly explored its role in spatial attention using rTMS protocols (as 

emphasised by Woo, Kim and Lee, 2009). This experiment is therefore the first 

experimental attempt to provide behavioural findings regarding novel reaching 

functions of the right PPC with SP-TMS using a robot-mediated upper-limb (right arm) 

reaching paradigm.  

10.2 Methodology  
Participant demographic details for this experiment are highlighted in table 3.2. Once 

RMT was identified for each participant (section 3.2.2.2 and 3.6.2 and details this), right 

PPC location and coil orientation for was chosen for stimulation, and this is outlined in 

section 3.3.2.2.4, and illustrated in figure 3.3. Figure 3.5 demonstrates the reaching 

paradigm for this experiment.  

 

10.3 Data acquisition: MEPs and Kinematics 
MEPs were only collected to identify participants RMT (section 3.6.2). Throughout the 

duration of the reaching experiment, no MEPs were elicited during stimulation. Only 

kinematic data were acquired and analysed. Section 3.6.1 outlines the ways in which 

kinematic data were analysed and quantified offline in MatLab 2017b (The MathWorks 

Inc, Natick MA, USA).  

10.4 Statistical analysis: Kinematics 
A two-way RMANOVA was performed for each kinematic parameter. Factors 

including TIME, CONDITION and TIME*CONDITION interactions were investigated. 

Sphericity assumptions were tested and post-hoc testing with paired Student’s t-tests 

was carried out for the significant findings (see section 3.7.1 for further detail).  

10.5 Results 

10.5.1 Kinematics 
Findings from the RMANOVA revealed a significant main effect for TIME on 

movement onset and movement offset (p < 0.05), but not for maximum velocity, 

summed error, movement duration and maximum force (p > 0.05) (see table 10.1). A 

significant main effect of CONDITION was found for movement offset, summed error, 

movement duration and maximum force (p < 0.05), but not for movement onset and 
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maximum velocity (p > 0.05) (see table 10.1). No significant interaction effects were 

found for any of the kinematic parameters (p > 0.05).  

Post hoc testing for TIME (table 10.2, figure 10.1[A-E]) for movement onset showed 

that during FAM reaching, all time points were significantly increased compared to T10 

(p < 0.006). During FF reaching, only TMS delivered at 160ms, 250ms, 280ms and 

310ms were significantly increased compared to T10 (p < 0.006). In WO reaching 

responses at 160ms, 250ms and 280ms were significantly increased compared to T10 (p 

< 0.006). Movement offset during FAM reaching was only significantly increased at 

220ms and 280ms when compared to T10. During FF reaching, movement offset was 

only significantly increased at 190ms compared to T10. There were no significant 

changes in WO reaching for movement offset (p > 0.006). 

Post hoc testing for CONDITION (table 10.2, figure 10.1[A-E]) showed that movement 

offset was significantly increased during FF reaching compared to FAM reaching (at 

10ms, 100ms, 190ms and 310ms, all p < 0.016). Movement offset during FF reaching 

was significantly increased compared to WO reaching (at 160ms and 190ms p < 0.016). 

There were no significant differences regarding FAM vs. WO reaching (p > 0.016). 

Summed error was significantly increased in FF reaching compared to FAM reaching 

(but only at 130ms, 250ms and 280ms; p < 0.016). FF summed error was also 

significantly increased compared to WO summed error (at 100ms, 160ms and 280ms; p 

< 0.016). There were no significant differences in post hoc testing for FAM vs. WO 

reaching. Movement duration was significantly increased in FF reaching compared to 

FAM reaching (at 10ms, 100ms, 220ms and 280ms p < 0.016). Movement duration was 

also significantly increased in FF reaching compared to WO reaching (at 10ms, 100ms, 

160ms, 220ms and 280ms p < 0.016). There were no significant differences in 

movement duration for FAM vs. WO reaching (p > 0.016). Maximum force was 

significantly increased in FF reaching (p < 0.016) compared to FAM and WO reaching, 

which did not significantly differ (p > 0.016).  

 

Post hoc testing results are shown in table 10.2 and figure 10.1[A-E]. 
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Table 10.1. Results of the two-way RMANOVA: 

 TIME CONDITION TIME*CONDITION INTERACTION 

df(Error) F Sig. df(Error) F Sig. df(Error) F Sig. 
Movement Onset (ms) 4.0 [47.3] 7.876   < 0.001 2 [24] 1.397 0.267 16 [192] 0.467 0.960 
Movement Offset (ms) 3.7 [43.5] 3.825 0.012 2 [24] 8.27 0.003 16 [192] 0.475 0.956 
Maximum Velocity (m.sˉ¹)   2.1 [25.6] 0.152 0.864 2 [24] 0.471 0.630 16 [192] 0.260 0.998 
Duration (ms) 3.0 [35.6] 0.359 0.780 2 [24] 11.11  < 0.001 16 [192] 0.404 0.980 
Summed Error (distance: cm) 8 [96] 1.042 0.410 1.3 [14.5] 7.557 0.012 16 [192] 1.570 0.080 
Maximum Force (N) 1.7 [19.8] 0.245 0.743 1.2 [13.6] 213.87  < 0.001 16 [192] 0.190 0.100 
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The table shows kinematic responses during FAM, FF and WO blocks of reaching when TMS was applied to the right PPC at different time points. Values 
represent means and standard errors means.  

TIME TMS: 10ms 
Mean [SEM] 

TMS: 100ms 
Mean [SEM] 

TMS: 130ms 
Mean [SEM] 

TMS: 160ms 
Mean [SEM] 

TMS: 190ms 
Mean [SEM] 

TMS: 220ms 
Mean [SEM] 

TMS: 250ms 
Mean [SEM] 

TMS: 280ms 
Mean [SEM] 

TMS: 310ms 
Mean [SEM] 

CONDITION  Movement Onset (ms): 
FAM 

FF 
WO 

385 [16]  
393 [21] 
401 [21] 

409 [17] * 
418 [17] 
427 [19] 

415 [14] * 
419 [16] 
428 [19] 

429 [18] * 
440 [20] * 
434 [24] * 

420 [19] * 
439 [20] 
441 [22] 

432 [19] * 
438 [21] 
431 [23] 

435 [19] * 
426 [17] * 
445 [26] * 

440 [23] * 
434 [22] * 
454 [20] * 

439 [18] * 
438 [18] * 
450 [25] 

 Movement Offset (ms): 
FAM 

FF 
WO 

1158 [30] 
1209 [29]  

1160 [36] 

1173 [27] 
1250 [25]  
1175 [40] 

1202 [29] 
1238 [22] 
1185 [39] 

1193 [27] 
1267 [28]  

1190 [38] 

1193 [28] 
1270 [28] * 

1196 [36] 

1197 [29] * 
1248 [29]  
1193 [35] 

1197 [32] 
1239 [24] 
1204 [40] 

1201 [32] * 
1262 [29] 
1220 [38] 

1199 [34] 
1245 [29]  
1211 [38] 

 Maximum Velocity (m.sˉ¹): 
FAM 

FF 
WO 

0.31 [0.02] 
0.32 [0.02] 
0.32 [0.02] 

0.31 [0.02] 
0.31 [0.02] 
0.32 [0.02] 

0.31 [0.02] 
0.32 [0.02] 
0.32 [0.02] 

0.32 [0.02] 
0.30 [0.02] 
0.32 [0.02] 

0.32 [0.02] 
0.31 [0.02] 
0.32 [0.02] 

0.32 [0.02] 
0.31 [0.02] 
0.32 [0.02] 

0.32 [0.02] 
0.32 [0.02] 
0.32 [0.02] 

0.32 [0.02] 
0.31 [0.02] 
0.32 [0.02] 

0.32 [0.02] 
0.31 [0.02] 
0.32 [0.02] 

 Movement Duration (ms): 
FAM 

FF 
WO 

773 [27] 
816 [23]  

759 [29] 

764 [25] 
832 [24]  

749 [34] 

787 [29] 
819 [24] 
757 [34] 

764 [25] 
827 [27]  

755 [29] 

774 [29] 
831 [22] 
755 [32] 

765 [26] 
810 [26]  

762 [27] 

762 [28] 
812 [21] 
759 [35] 

762 [26] 
829 [18]  

766 [31] 

760 [28] 
807 [26] 
760 [27] 

 Summed Error (distance: cm): 
FAM 

FF 
WO 

2.36 [0.22] 
3.05 [0.35] 
2.33 [0.22] 

2.38 [0.19] 
3.11 [0.32]  

2.11 [0.13] 

2.17 [0.14] 
3.23 [0.38]  

2.31 [0.15] 

2.47 [0.18] 
3.00 [0.29]  

2.16 [0.14] 

2.30 [0.19] 
2.84 [0.30] 
2.26 [0.13] 

2.49 [0.23] 
2.84 [0.34] 
2.19 [0.18] 

2.13 [0.21] 
3.01 [0.28]  
2.31 [0.15] 

2.32 [0.22] 
3.28 [0.34]  

2.31 [0.15] 

2.19 [0.22] 
2.99 [0.30]  

2.16 [0.17] 
 Force (N): 

FAM 
FF 

WO 

4.8 [0.1] 
10.6 [0.5]  

5.0 [0.2] 

4.8 [0.1] 
10.5 [0.5]  

5.0 [0.2] 

4.8 [0.1] 
10.7 [0.5]  

5.0 [0.2] 

4.8 [0.1] 
10.4 [0.5]  

5.0 [0.2] 

4.8 [0.1] 
10.6 [0.5]  

4.9 [0.2] 

4.8 [0.1] 
10.6 [0.5]  

4.9 [0.2] 

4.8 [0.1] 
10.7 [0.4]  

5.0 [0.2] 

4.8 [0.1] 
10.6 [0.4]  

4.9 [0.2] 

4.9 [0.1] 
10.6 [0.5]  

4.8 [0.2] 
 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 
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A) Movement onset (ms) B) Movement offset (ms) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

C) Movement duration (ms) D) Summed error 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.1 [A-E]. Graphical presentation of the post-hoc testing results (based on table 10.2) for the significant kinematic variables: 
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E) Maximum force (N) 
 
 
 
 
 
 
 
 
 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 
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10.6 Discussion 
This results of this experiment demonstrated the effects of single-pulse TMS to the 

right PPC during novel reaching preparation. Although studies have revealed that the 

left PPC is involved in novel reaching (Della-Maggiore et al., 2004) which was also 

illustrated in chapter 6 within this thesis, researchers have not targeted the right PPC 

with SP-TMS during reaching preparation. This study therefore provided a novel 

insight into the ways in which TMS can disrupt right PPC function in a motor 

adaptation paradigm via exploring different kinematic parameters as behavioural 

measures.  

10.6.1 Kinematics 

10.6.1.2 The shift in movement onset and movement offset: 
The findings of this experiment illustrated that stimulation to the right PPC during 

motor preparation for reaching delayed the movement onset responses during FAM, 

FF and WO reaching and movement offset responses during FAM and FF reaching. 

The results regarding the shift were similar to what was found when the left PPC was 

stimulated with TMS (see chapter 6, table 6.2).  

The delays that were noted in the preparation of reaching have similarly been 

demonstrated in rTMS protocols of visuo-spatial attention tasks (Xu et al., 2016) as 

well as SP-TMS FAM reaching tasks (Busan et al., 2009). For example, Busan et al., 

(2009) reported that a specific network in the motor circuit including areas in the 

posterior parietal cortex enables the preparation of reaching. They specifically found 

that TMS delivered to regions of the right PPC during reaching preparation resulted in 

delayed responses (similar to findings in this experiment), however when TMS was 

delivered prior to the reaching preparation phase there was an effect of facilitation (i.e. 

faster movement onset responses). The results regarding the shift that was found can 

be explained by the TMS state-dependent theory which was proposed by Silvanto and 

Muggleton (2008) (Busan et al., 2009). This theory poses the notion that because the 

PPC is already involved (i.e. pre-activated) in planning motor behaviours for execution 

(via corticospinal projections to areas of the premotor cortex and primary motor 

cortex), TMS delivered to its region can cause ‘neural noise’. This then interferes with 

the region’s functioning and as a result leads to slower responses in a task (Busan et 
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al., 2009; Miniussi, Ruzzoli and Walsh, 2010). 

It can be argued that the behavioural responses of both hemispheres for movement 

onset are alike (as TMS similarly affected the right and left PPC; chapter 6, table 6.2), 

and this poses questions regarding possible asymmetries that have been noted between 

the two hemispheres which have been suggested to contribute to their distinct 

functions. This notion is supported by patient lesion studies. For example, although 

apraxia has been linked to being caused by lesions in the left PPC, as opposed to the 

right PPC (Vallar and Perani, 1986; Husain and Nachev, 2007), studies have 

demonstrated that some forms of apraxia are in fact associated with right posterior 

lesions (as reported by Hamser, 1998). Neural activation studies have also 

demonstrated that both hemispheres can be similarly activated during motor tasks 

(Calton, Dickinson and Snyder, 2002; Busan et al., 2012). On the other hand, it should 

be taken into account that in this experiment TMS did not have a significant main 

effect on the condition of reaching for movement onset, whereas TMS to the left PPC 

significantly affected movement onset responses between different reaching conditions 

(FAM, FF and WO; see chapter 6, table 6.2). This finding thus does in fact offer 

evidence for different functional roles between the two hemispheres which is in line 

with evidence proposed by researchers such as Husain and Nachev (2007) and Vallar 

and Perani (1986). In summary, TMS-induced shifts in timing is present in both PPCs, 

whereas simulating the left PPC appears to preferentially be involved in modulation of 

timing during novel reaching adaptation. These findings were important in showing the 

ways in which some behavioural functions between the two hemispheres are 

specialised and how some are not (e.g. TMS effects for time vs. condition). The 

differences and similarities regarding behavioural functions between the two 

hemispheres can be explained by the functional connections in the motor network 

(Gharbawie et al., 2010). For example, the two hemispheres may be connected to 

similar functional zones in the motor circuit which as a result facilitates similar 

behavioural responses, however some regions in one hemisphere may share greater 

connections with sub-structures in the motor network, and therefore cause differences 

in behavioural responses (Gharbawi et al., 2010).  
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10.6.1.3 Errors in reaching with right PPC TMS: 
Another key finding from this experiment was that disrupting the right PPC with TMS 

during preparation for FF reaching compared to FAM and WO reaching impaired 

performance, therefore demonstrating that the right PPC also plays a functional role in 

novel reaching, which was similarly shown with left PPC stimulation (Della-Maggiore 

et al., 2004). Although post-hoc testing revealed that FF reaching trajectories were 

significantly impaired during right PPC stimulation, this was not illustrated at all time 

points of stimulation. However, during left PPC stimulation, FF reaching was 

significantly disrupted at all time of TMS delivery (10ms-310ms) (see chapter 6, table 

6.2). Studies have shown the left hemisphere to be the dominant hemisphere in right-

handed subjects (Busan et al., 2012; Vingerhoets et al., 2013). The left hemisphere as 

opposed to the right hemisphere has also been reported to play a role in facilitating 

motor actions for movement execution, particularly in visually-guided reaching 

(Goodale 1988; Busan et al., 2012). Studies have also illustrated that the right PPC is 

involved only in planning left hand reaches compared to the left PPC which is activated 

during both left and right hand reaching motions (Schluter et al., 2001; Oliveira et al., 

2010). Therefore, based on these studies, the less robust reaching disruptions in the right 

PPC (based on post-hoc testing results in this chapter) can be attributed to its less 

important functional role in reaching preparation of the right arm. 

 It could be argued that the nature of the motor task in this experiment could have also 

contributed to the lack of reaching deviations that were found during right PPC 

stimulation. For example, the experimental task was associated with reaching towards 

one target (135°), however if the motor task was based on random reaching targets, 

right PPC neural activity may have been heightened due to the region’s involvement in 

attention selection-response behaviours (Posner and Peterson, 1990; Malhotra, 

Coulthard and Husain, 2009), and as a result trajectories in reaching may have been 

severely impaired.  Nonetheless in this experiment TMS did have significant 

detrimental impact (albeit a smaller impact than what was found in the left PPC) on 

right PPC function. Considering that the right PPC plays a key role in enabling 

individuals to uphold an alert state during a task (Malhotra, Coulthard and Husain, 

2009), it could be suggested that TMS interfered with this particular specialised right 

PPC function, thus impacting reaching. 
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10.7 Chapter conclusions: 
The purpose of this chapter was to explore the effects of right PPC stimulation during 

novel reaching and to investigate whether TMS administered at different times of 

motor preparation had an effect on motor output. TMS only had a significant time-

related impact on movement onset, and no significant effect of condition for 

movement onset was found – which was not the case for left PPC stimulation. This 

shows that the two hemispheres exhibit distinct functions, which is in line with most 

lesion studies that have illustrated different symptomologies associated with left and 

right hemispheric PPC lesions. Although findings illustrated that TMS significantly 

increased summed error during FF reaching compared to FAM and WO reaching, 

summed error responses were not as significantly impaired in this experiment 

compared to what was found during left PPC stimulation (chapter 6, table 6.2). This 

study was important in establishing distinct hemispheric PPC functions (left vs. right) 

related to the preparation for novel reaching. Whether other cortical regions in 

different hemispheres exhibit distinct differences were investigated, for example in the 

next experimental chapter in this thesis the right dPMC was targeted with TMS to 

investigate whether it plays a similar functional role when compared to the left dPMC 

(chapter 9) with regards to novel reaching.  
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Chapter 11 

11 Experiment 8 

Exploring the impact of SP-TMS to right dorsal pre-motor cortex (dPMC) during 
right arm reaching in a novel motor learning protocol  

 

11.1 Introduction 
In Chapter 9, the left dPMC was stimulated during preparation for reaching and findings 

revealed that trajectory errors were significantly impaired with TMS during FF 

reaching, but not during FAM or WO reaching at all time points in which TMS was 

delivered. Other kinematic measures however were not significantly affected with TMS. 

The aim of this study was to investigate whether the right dPMC also exhibited similar 

behavioural responses with TMS, or whether it has separate functions with regards to 

reaching preparation.  

Premotor structures are important for upper limb movement particularly during complex 

tasks (Pollok et al., 2017). The left dPMC, but not the right dPMC has been reported to 

be involved in response selection and goal directed behaviour (Hoshi and Tanji, 2002; 

Beck et al., 2009; Yamagata et al., 2012). Studies have also demonstrated functional 

hemispheric differences between the right and left dPMC (Genon et al., 2017) 

particularly during motor sequence tasks.  For example, when motor sequences 

performed with either the dominant or non-dominant hand, the left dPMC was reported 

to have a greater neural activation during the earlier learning phase of a motor sequence, 

whereas the right dPMC has been found to have greater activity in the advanced 

learning phase and when the sequences had greater degrees of complexity (Sadato et al., 

1996; Grafton, Hazeltine and Ivry, 2002; Schubotz and von Cramon, 2003). The right 

dPMC has also been noted to have a greater involvement in spatial tasks compared to 

the left dPMC. For instance, functional MRI studies have highlighted increased neural 

activity in the right dPMC during spatial attention tasks (Gitelman et al., 1999; 

Schubotz and von Cramon, 2003). The role of the right dPMC in spatial tasks has also 

been demonstrated in the cognitive domain (Jonides et al., 1993; Schubotz and von 

Cramon, 2003; Genon et al., 2017). For example, positron emission tomography (PET) 

scans have revealed enhanced right hemispheric dPMC activity during spatial working 

memory tasks (Jonides et al., 1993). Further evidence for functional hemispheric 
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differences between the right and left dPMC comes from patients with PMC lesions 

who exhibit different symptoms. For example, left dPMC lesions have been associated 

with dystonia (Ceballos-Baumann and Brooks, 1998; Beck et al., 2009) which is a 

condition of abnormal muscle activity that results in impaired muscle function, and its 

symptoms range from tremors to jerked muscle movement (Fahn 1984; Elble 2013; 

Jinnah and Factor 2015). On the other hand, right dPMC lesions have been associated 

with symptoms of ideomotor apraxia; which demonstrates the role of the right 

hemisphere in skilled motor functions (Schnider et al., 1997; Gross and Grossman, 

2008; Wheaton et al., 2008). Previous studies that have implemented TMS protocols 

have mainly explored functional differences between the two regions with precision 

hand grasping and lifting tasks. For example, with an rTMS protocol, Davare et al., 

(2006) revealed a disruption in left dPMC function regarding a shift and delay in muscle 

response lifting times, whereas right dPMC rTMS did not cause such disruptions and 

did not significantly impair dominant hand movements during the task. It is important to 

explore whether reaching preparation during motor adaptation is affected when TMS is 

applied to the right dPMC, because most studies exploring reaching have mainly 

targeted the left dPMC rather than the right dPMC. For example, a visual perturbation 

prism adaptation task with SP-TMS to the left dPMC revealed slower rates of motor 

adaptation when TMS was delivered during movement onset in contrast to when it was 

delivered at movement offset (Lee and Van Donkelaar, 2006). However, the right 

dPMC has been found to be associated with motor planning, as demonstrated in visuo-

motor learning tasks. For example, Praeg et al., (2005) targeted the right dPMC and a 

control region with TMS in a visuo-motor task and their findings revealed that TMS to 

the right dPMC caused a disruption in responses during preparation for learning, which 

was not the case when the control region was stimulated.  

On the other hand, the functional role of the right dPMC has not been explored with 1) a 

reaching motor adaptation paradigm and 2) TMS applied at different time points during 

the preparation of a reach. Additionally, studies with right dPMC stimulation have also 

not explored whether TMS causes a virtual disruption of trajectory errors in reaching 

and have mostly focused on reaction time responses (Praeg et al., 2005). Considering 

that hemispheric differences have been found between the two regions, it could be 

argued that TMS to the right dPMC would result in different behavioural effects when 

compared to the findings that were illustrated for the left dPMC (chapter 8, experiment 
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6) which can be due to different subdivisions that have been noted within the left and 

right dPMC (Genon et al., 2017). This study is the first attempt to explore this.  

11.2 Methodology 
Participant details (e.g. N, age, gender, handedness) for this experiment is shown in 

table 3.2. Following RMT identification with functional measures (see section 3.2.2.2 

and 3.6.2), the right dPMC was stimulated. Right dPMC location and the coil 

orientation used for stimulation is described in section 3.3.2.2.5 and also shown 

graphically in figure 3.3. The reaching paradigm is demonstrated in figure 3.5.  

11.3 Data acquisition: MEPs and Kinematics 
MEPs were only collected to identify RMT (section 3.6.2) and no MEPs were elicited 

or collected during right dPMC stimulation. Kinematic data were acquired throughout 

the experiment and analysed and quantified offline in MatLab 2017b (The MathWorks 

Inc, Natick MA, USA) (see section 3.6.1).  

11.4 Statistical analysis: Kinematics 
A two-way RMANOVA was performed for the kinematic variables whereby TIME, 

CONDITION and TIME*CONDITION interactions were explored. Sphericity 

assumptions were tested and post-hoc analysis was performed for the significant 

findings (section 3.7.1 describes this in further detail).  

11.5 Results 

11.5.1 Kinematics: 

The RMANOVA revealed a significant main effect for TIME on movement onset and 

movement offset (p < 0.05) but not for maximum velocity, movement duration, summed 

error and maximum force (p > 0.05) (see table 11.1). A significant main effect of 

CONDITION was found for movement offset, summed error, movement duration and 

maximum force (p < 0.05) but not for movement onset and maximum velocity and 

(table 10.1). No significant interactions were found (p > 0.05) (table 11.1).  

Post-hoc testing for TIME (table 11.2, figure 11.1[A-E]) revealed that movement onset 

significantly increased compared to T10 in both FAM reaching and FF reaching 

conditions (p < 0.006) but not during the WO condition. Movement offset was 

significantly increased at 250ms, 280ms and 310ms compared to T10 in the FAM 

condition (p < 0.006). Movement offset significantly increased at 130ms, 160ms, 
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220ms, 250ms and 310ms compared to T10 during the FF condition. Movement offset 

was not significantly changed in the WO condition compared to T10 (all p > 0.006). 

Post hoc testing for CONDITION (table 11.2, figure 11.1[A-E]) with regards to 

movement offset showed that FF reaching was significantly increased compared to 

FAM reaching (at 130ms and 220ms p < 0.016). Movement offset in FF reaching was 

significantly increased compared to WO (at 100ms, 130ms, 160ms, 220ms, 280ms and 

310ms p < 0.016). No significant differences were found for FAM vs. WO (p > 0.016). 

Summed error was significantly increased in FF reaching compared to FAM reaching 

only at 190ms (p < 0.016). No differences in summed error were revealed for WO vs. 

FF reaching, and WO vs. FAM reaching (all p < 0.016). Movement duration 

significantly increased in FF reaching compared to both FAM reaching (at 160ms and 

220ms p < 0.016) and WO reaching (at 100ms, 100ms, 130ms, 160ms, 190ms, 220ms, 

280ms and 310ms p < 0.016). There were no significant differences in movement 

duration when comparing FAM vs. WO responses (all p > 0.016). Maximum force was 

significantly increased in FF reaching (p < 0.016) compared to FAM and WO reaching 

which were not significantly different (p > 0.016).   

Post-hoc testing results are further demonstrated in table 11.2 and figure 11.1[A-E].  
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Table 11.1. Results of the two-way RMANOVA: 

 TIME CONDITION TIME*CONDITION INTERACTION 

df(Error) F Sig. df(Error) F Sig. df(Error) F Sig. 
Movement Onset (ms) 8 [96] 12.22    < 0.001 2 [24] 0.602 0.556 16 [192] 1.206 0.266 

Movement Offset (ms) 8 [96] 4.531    < 0.001 2 [24] 10.37 0.001 16 [192] 1.411 0.140 

Maximum Velocity (m.sˉ¹) 8 [96] 0.695 0.695 1.4 [16.1] 0.140 0.785 16 [192] 1.631 0.064 

Duration (ms)   8 [96] 0.598 0.777 2 [24] 11.01  < 0.001 16 [192] 1.196 0.274 

Summed Error (distance: cm) 2.6 [30.7] 1.11 0.355 2 [24] 3.554 0.044 16 [192] 0.838 0.642 

Maximum Force (N) 8 [96]  0.822 0.585 1.1 [12.5] 135.60  < 0.001 16 [192] 0.535 0.926 
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Table 11.2. Post-hoc testing results: The table shows kinematic responses during FAM, FF and WO blocks of reaching when TMS was applied to the right 

dPMC at different time points. Values represent means and standard errors of the mean.  

 

TIME TMS: 10ms 
Mean [SEM] 

TMS: 100ms 
Mean [SEM] 

TMS: 130ms 
Mean [SEM] 

TMS: 160ms 
Mean [SEM] 

TMS: 190ms 
Mean [SEM] 

TMS: 220ms 
Mean [SEM] 

TMS: 250ms 
Mean [SEM] 

TMS: 280ms 
Mean [SEM] 

TMS: 310ms 
Mean [SEM] 

CONDITION Movement Onset (ms): 

FAM 

FF 

WO 

389 [17] 

384 [18] 

396 [24] 

419 [19] * 

420 [14] * 

418 [18] 

418 [15] * 

432 [16] * 

423 [19] 

431 [18] * 

418 [13] * 

434 [19] 

434 [22] * 

424 [12] * 

442 [20] * 

437 [14] * 

440 [16] * 

443 [19] 

457 [18] * 

442 [16] * 

445 [23] 

458 [26] * 

434 [16] * 

440 [24] 

461 [24] * 

438 [19] * 

444 [21] 

 Movement Offset (ms): 

FAM 

FF 

WO 

1164 [32] 

1198 [38] 

1184 [32] 

1194  [29] 

1242 [38] 

1174 [32] 

1185 [28] 

1266 [37] * 

1194 [34] 

1204 [28] 

1248 [35] * 

1201 [37] 

1198 [30] 

1250 [39] 

1200 [32] 

1204 [31] 

1264 [33] * 

1197 [36] 

1227 [32] * 

1261 [46] * 

1216 [35] 

1228 [33] * 

1257 [38] 

1194 [41] 

1242 [35] * 

1257 [41] * 

1202 [29] 

 Maximum Velocity (m.sˉ¹): 

FAM 

FF 

WO 

0.31 [0.02] 

0.32 [0.02] 

0.31 [0.02] 

0.31 [0.01] 

0.32 [0.02] 

0.32 [0.02] 

0.32 [0.02] 

0.32 [0.02] 

0.32 [0.02] 

0.31 [0.02] 

0.31 [0.02] 

0.32 [0.02] 

0.31 [0.02] 

0.32 [0.02] 

0.32 [0.02] 

0.32 [0.02] 

0.31 [0.02] 

0.32 [0.02] 

0.32 [0.02] 

0.31 [0.02] 

0.32 [0.02] 

0.31 [0.02] 

0.31 [0.02] 

0.32 [0.02] 

0.31 [0.02] 

0.32 [0.02] 

0.32 [0.02] 

 Movement Duration (ms): 

FAM 

FF 

WO 

775 [29] 

814 [31] 

788 [22] 

775 [25] 

822 [32]  

756 [26] 

768 [27] 

834 [33]  

771 [28] 

773 [24] 

829 [31]  

766 [29] 

765 [24] 

826 [36]  

758 [25] 

767 [28] 

825 [27]  

754 [28] 

770 [29] 

819 [36] 

771 [26] 

771 [25] 

823 [32]  

754 [31] 

784 [24] 

818 [31]  

758 [22] 

 Summed Error (distance: cm): 
FAM 

FF 

WO 

2.31 [0.30] 

2.70 [0.21] 

2.35 [0.31] 

2.14 [0.33] 

2.73 [0.15] 

2.31 [0.27] 

2.25 [0.32] 

3.44 [0.61] 

2.35 [0.29] 

2.23 [0.27] 

2.95 [0.21] 

2.04 [0.21] 

2.30 [0.39] 

2.81 [0.17]  

2.33 [0.28] 

2.12 [0.28] 

2.88 [0.20] 

2.33 [0.28] 

2.21 [0.31] 

2.90 [0.23] 

2.30 [0.26] 

2.26 [0.30] 

2.75 [0.16] 

2.12 [0.21] 

2.38 [0.34] 

2.89 [0.20] 

2.32 [0.27] 

 Force (N): 

FAM 

FF 

WO 

4.9 [0.2] 

10.6 [0.5]  

4.9 [0.2] 

4.9 [0.1] 

10.6 [0.5]  

4.9 [0.2] 

4.9 [0.1] 

10.5 [0.5]  

4.9 [0.2] 

4.9 [0.1] 

10.4 [0.5]  

4.9 [0.2] 

4.8 [0.1] 

10.5 [0.5]  

4.8 [0.2] 

4.8 [0.1] 

10.4 [0.5]  

4.9 [0.2] 

4.9 [0.1] 

10.4 [0.5]  

4.8 [0.2] 

4.8 [0.1] 

10.5 [0.5]  

4.8 [0.2] 

4.9 [0.1] 

10.6 [0.6]  

4.9 [0.2] 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 
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A) Movement onset (ms) B) Movement offset (ms) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

C) Movement duration (ms) D) Summed error 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.1 [A-E]: Graphical presentation of the post-hoc testing results (based on table 11.2) for the significant kinematic variables: 
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E) Maximum force (N) 
 
 
 
 
 
 
 
 
 

Symbols represent significance following post hoc testing: 

*  = significant difference vs T10 for time in familiarisation blocks,  * =  significant difference vs T10 for time for FF blocks, * =  significant difference vs T10 for time for WO blocks, 
 = significant difference between FAM and FF, = significant difference between FF and WO, ▲ = significant difference between FAM and WO 
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11.6 Discussion 

The findings from this experiment demonstrated the ways in which SP-TMS to the 

right dPMC had an impact of right-arm reaching preparation behaviour. Although 

studies have shown that motor planning is affected when the right dPMC is targeted 

(Praeg, et al., 2005), other factors such as performance (e.g. summed error) during 

novel reaching preparation have not been extensively studied. This study therefore 

aimed to provide a novel insight into whether a virtual disruption (via TMS) to the 

right dPMC can have an impact on its function and impair kinematic behaviour during 

reaching preparation.  

11.6.1 Kinematics 

11.6.1.2 The role of the right dPMC regarding motor preparation: 

The findings from this experiment demonstrated that TMS to the right dPMC 

significantly shifted movement onset responses in FAM and FF reaching. Shifts in 

responses were also noted in WO reaching but not to the extent as FAM and FF 

reaching (table 11.2). Movement offset was also found to be significantly affected with 

TMS as delays in responses were found during FAM and FF reaching, but not during 

WO reaching (table 10.2).  

These findings are in line with results that have been obtained with SP-TMS protocols 

during visuo-spatial motor learning tasks. For example, Praeg et al., (2005) found that 

TMS to the right dPMC significantly impacted and delayed reaction times during motor 

learning which was not the case when a control region was stimulated. Although most 

studies have illustrated that the left dPMC plays an important role in motor preparation 

(Rushworth et al., 2003; Davare et al., 2006), this experiment revealed that the right 

dPMC also plays a role in motor preparation because TMS delayed reaching responses. 

Therefore it could be argued that preparation behaviours for reaching may not be 

restricted to only one hemisphere. A possible reason as to why TMS delayed responses 

can be attributed to distinct right dPMC sub-regions that have been reported to have 

specific functions and connections with other cortical structures that facilitate motor 

planning and preparation (Genon et al., 2017).  For example, using structural-, resting- 

and functional-connectivity measures, Genon et al., (2017) found 5 right dPMC sub-

regions that were connected to different cortical structures, including: 
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1) A rostral region connected to the prefrontal cortex 

2) A central region connected to parietal structures 

3) A caudal region linked to the motor circuitry 

4) A dorsal region associated with cognitive and motor structures 

5) A ventral region that was linked to visuo-motor structures  

Genon et al., (2017) argued that different right dPMC connections assist different 

functional behaviours. For example, rostral connections with the prefrontal cortex aid 

cognitive functions such as memory (Jonides et al., 1993; Genon et al., 2017). On the 

other hand, dorsal and caudal right dPMC sub-regions and connections (with motor 

structures) have been suggested to facilitate motor planning and preparation (Genon et 

al., 2017). This is in line with fMRI studies that have found greater neural activity 

within this particular sub-region in motor planning and execution tasks (Picard and 

Strick, 2001; Genon et al., 2017). Studies in non-human primates have also supported 

this notion, with greater cellular activity noted in the caudal right dPMC sub-region 

during motor preparation (Boussaoud, 2001; Genon et al., 2017). The findings obtained 

for movement onset and offset were important in demonstrating the functional role of 

the right dPMC in movement preparation which have not previously been studied with 

motor adaptation protocols.   

11.6.1.3 The impact of right dPMC TMS on reaching trajectories: 

Although RMANOVA statistical testing revealed that TMS to the right dPMC had a 

significant effect on reaching trajectories (table 11.1), post-hoc testing did not reveal 

major significant differences between FF and FAM reaching conditions. There were 

also no significant differences in summed error regarding 1) FAM vs. WO reaching, and 

2) FF vs. WO reaching (table 11.2).  

This finding is in line with previous studies that have used TMS as a virtual disruption 

tool to explore right dPMC functioning. For instance, studies ranging from finger 

movement tasks to hand grip and lifting tasks have found that TMS to the right dPMC 

did not have a significant detrimental impact on motor performance (Schluter et al., 

1998; Schluter et al., 2001; Davare et al., 2006). The reason as to why summed error 

was not significantly affected with right dPMC stimulation during preparation for novel 

reaching can be explained in terms of hemispheric functions relating to handedness 

(Schluter et al., 1998; Beck et al., 2009). For instance, Schluter et al., (1998) 
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implemented a TMS protocol during a hand motor task and their results showed that 

when the right dPMC was stimulated only left hand functions were disrupted, whereas 

left dPMC stimulation caused a disruption in both the left and right hand performance 

during the task. Functional MRI studies have also demonstrated similar results in a 

finger movement tasks of both hands, whereby neural activity in the right dPMC was 

heightened during left handed finger movement as opposed to left dPMC activity which 

was increased when finger movements were performed with either hand (Schluter et al., 

2001).   

Neuroimaging cerebral blood flow experiments have found enhanced right dPMC 

activity during complex sequential finger tasks (Sadato et al.,1996) and have therefore 

provided evidence for the role of the right dPMC in maintaining selective attention in 

complex tasks (Sarter, Givens and Bruno, 2001; Schubotz and von Cramon, 2003). It 

could be argued that if the reaching task in this experiment was based on reaching 

towards different targets, right dPMC activity would have been heightened (because 

participants may have had to sustain greater attention during reaching) and as a result 

TMS may have caused greater disruptions in reaching. Based on this assumption, the 

nature of the reaching task may have contributed to the lower impact on trajectory 

errors that were found in this study.   

11.7 Conclusion: 

Previous studies have mainly explored right dPMC function with TMS during 

sequential finger movement tasks as well as hand grip and lifting tasks, however this 

experiment provided novel findings into how TMS to the right dPMC has an impact on 

reaching preparation which has not previously been explored. The study revealed that 

TMS to the right dPMC shifted both movement onset and offset responses, and this is in 

line with findings from visuo-adaptation tasks. The study therefore provided an insight 

into the functional role of the right dPMC with regards to reaching preparation, which is 

a function that has been argued to be facilitated via right dPMC sub-regional 

connections with other cortical structures. The findings for summed error in this 

experiment were different in comparison to what was revealed when the left dPMC was 

stimulated (chapter 9, table 9.2). Summed error findings thus provided evidence for 

dPMC hemispheric differences in preparation for novel reaching. Considering that 

various regions in this thesis were impaired differently with TMS stimulation during 
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novel reaching, the final chapter of this thesis incorporates a systematic comparative 

analysis to compare novel reaching performance between all of the regions that were 

stimulated (left and right M1, SMA, left and right PPC, and left and right dPMC) to 

explore how they statistically differ in terms of the disruption caused. The final 

experimental chapter therefore highlights a model of the motor network, illustrating the 

relative influence of several cortical regions involved in novel motor performance.  
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Chapter 12 

The comparative importance of different cortical regions in motor control and 
motor adaptation 

12.1 Introduction 
 

The purpose of this chapter was to compare the relative importance of cortical motor 

regions that were involved in motor control and motor adaptation. The main disruptive 

impact of TMS on reaching preparation were quantified by measuring the summed error 

of reaching trajectories and timing of reaching; both of which have been shown to be 

disrupted by TMS in previous chapters. Summed error, in particular has been reported 

to represent successful motor adaptation; with less errors indicating enhanced 

performance (Pizzamiglio et al., 2017a; Pizzamiglio et al., 2017b).  

By exploring the impact of TMS on kinematics during upper-limb reaching, the 

functional role of different cortical areas in the motor network can be quantified. This 

has been supported by previous studies that have also used TMS protocols to explore 

the functional purpose of a region. For example, Della-Maggiore et al., (2004) found 

that TMS delivered to the left PPC during upper-limb novel reaching following 

movement onset impaired reaching trajectories. Other studies have illustrated that rTMS 

to the SMA had a negative effect on bimanual motor co-ordination performance, 

however this was not the case when the M1 was stimulated (Obhi et al., 2002). TMS 

protocols targeting the cerebellum during a finger reaching-to-point task resulted in 

distance-to-point estimation errors, therefore demonstrating the role of the cerebellum in 

planning and preparing movements (Miall et al., 2007).  

Studies have reported increased neuronal firing in the dPMC during the encoding of 

kinematic parameters in a motor task (Alexander and Crutcher, 1990; Fu, Suarez and 

Ebner, 1993; Ward et al., 2007). However, the type of kinematic parameter encoded by 

the dPMC is currently unclear. Therefore, investigating kinematic factors separately 

between regions can help reveal the structures in the motor network that may play a 

more distinctive role in encoding a specific type of kinematic parameter. Additionally, 

researchers have demonstrated an insight into the cortical networks that underpin motor 

control in grasping and reaching behaviours. As well as PPC, SMA and PMC 

projections to the M1, there are a large range of connections which feed into these 
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structures to facilitate motor activity. For example, the DLPFC has been reported to be 

involved in motor related behaviours, ranging from movement selection to performance 

attentiveness and researchers have noted that it transmits organisation and planning 

information to the PMC to transfer to the M1 (Ehrsson et al., 2000; Kantak et al., 2012; 

Badoud et al., 2017). Network projections between the DLPFC and the pre-SMA have 

also been illustrated (Wang et al., 2005; Silva Moreira, Marques and Magalhaes, 2016; 

Kim et al., 2018). Additionally, areas such as the visual cortex (V1), somatosensory 

cortex (S1), basal ganglia (BG) all interact with the M1. The projections from the M1 

also feed into regions such as the red nucleus (RN), and the vestibular network (VN) 

which in turn interact with the cortical signals descending towards the spinal cord, 

enabling motor behaviours such as reaching to take place (Scott, 2004). The role of 

these regions in reaching and grasping has been supported by lesion studies. For 

example, Whishaw, Gorny and Sarna (1998) found that RN lesions in mice disrupted 

both limb aiming behaviours and paw rotation during a skilled reaching task, thus 

providing evidence for RN function with regards to limb motor control (Whishaw and 

Gorny, 1996). Similarly, with regards to Huntington’s Diseases (HD) which is a 

condition that arises from basal ganglia impairments (Reiner, Dragatsis and Dietrich, 

2011), researchers have found that reaching performance during both normal and novel 

(force-field) reaching was accompanied by muscle jerks and error-feedback processing 

in HD patients compared to healthy controls (Smith, Brandt and Shadmehr, 2000). 

Figure 1.4B (adapted from Briggs et al., 2018) also provides a graphical demonstration 

of the various projections from different regions that facilitate motor execution for goal 

directed behaviour.  

Furthermore, the fact that the same upper-limb arm reaching paradigm and TMS 

protocol (SP-TMS delivered at 110% RMT) was used across participants, direct 

hemispheric asymmetries between regions could be explored in this chapter. 

Hemispheric asymmetries have been previously reported by researchers, for example 

when participants performed hand movements Verstynen et al., (2005) noted greater 

neural activity in the left M1 during right hand movements compared to the right M1. 

Other studies have similarly found that right handed movement result in much greater 

neural activity in the left hemisphere compared to the right hemisphere (Cramer et al., 

1999; Schlerf et al., 2014). Lesion studies also provide further evidence for hemispheric 

asymmetries between structures of the left and right hemisphere. For instance, damage 
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to the right dPMC has been associated with symptoms of ideomotor apraxia whereas 

damage to the left dPMC has been linked to dystonia (Schnider et al., 1997; Ceballos-

Baumann and Brooks, 1998; Gross and Grossman, 2008; Wheaton et al., 2008; Beck et 

al., 2009). Asymmetries have been reported between different regions of the left and 

right hemisphere, but this has not been explored during a TMS robotic reaching 

paradigm, which is a novel element in this thesis.  

In order to explore the comparative impact of TMS during upper-limb reaching, a three 

factorial mixed ANOVA was performed. A novel canonical model was then built based 

on the differential effects of TMS across regions. The overall purpose of this chapter 

was to demonstrate the relative importance of the role played by each region in motor 

control and motor adaptation.   

12.2 Methodology  
All of the experimental data from chapters 4 – 11 were pooled together for this chapter, 

and this is further explained in section 3.2. Participant demographics for this chapter are 

outlined in table 3.2. As previously mentioned throughout the chapters, TMS intensity 

was set for each region individually for the participant’s via functional measures (i.e. 

left M1, right sided BB MEP – and set at 110% RMT). Figure 3.3 demonstrates the coil 

orientation and location used for the stimulation of the different regions (canonical brain 

figures adapted from an MRIcron template – Rorden and Brett, 2000). TMS was always 

delivered at 110% of RMT. The reaching task that was explored in this chapter was 

based on the motor adaptation protocol outlined in experimental chapters 5 – 11 and is 

shown in figure 3.5.  

12.3 Data acquisition: Kinematics 
The only type of data analysed in this chapter were kinematic parameters which were 

quantified in Matlab 2017b (The MathWorks Inc, Natick MA, USA) (see section 3.6.1).  

12.4 Statistical analysis: Kinematics 
Section 3.7.3 describes the statistical analysis that was undertaken for this chapter. 

Following the three-factorial mixed ANOVA (SPSS 23, IBM) that was undertaken for 

each kinematic variable, the following statistical tests were performed: 

1) A one-way between-subjects ANOVA was performed for significant REGION 

kinematic variables (p < 0.05) (collapsed for TIME factor [by averaging TMS 

pulse times across participants]). Post hoc testing included Independent t-tests 
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for: Left M1 vs. left PPC, SMA, right M1, left dPMC, right dPMC and right 

PPC; Left PPC vs. SMA, right M1, left dPMC, right PPC and right dPMC; SMA 

vs. left PPC, right M1, left dPMC, right PPC and right dPMC; Right M1 vs. left 

PPC, left dPMC, right PPC and right dPMC; Right PPC vs. left dPMC, right 

dPMC; Left dPMC vs. right dPMC; (significance set at p < 0.002).  

2) A one-way repeated measures ANOVA was performed for significant 

CONDITION kinematic variables, with maximum velocity, movement duration, 

summed error and maximum force collapsed for TIME factor by averaging TMS 

pulse times across participants. Post hoc testing included paired Student’s t-test: 

FF vs. FAM, FF vs. WO and FAM vs. WO (significance set at p < 0.016). 

3) A one-way repeated measures ANOVA was performed for significant TIME 

kinematic variables, followed by paired Student’s t-test (vs. T10) (significance 

set at p < 0.006). 

4) Significant interactions found in the mixed ANOVA are graphically presented in 

the results section.  

Overall, data are presented as mean values, ± the standard error of the mean (SEM) 

(REGION, CONDITION and TIME).   

12.5 Results 

12.5.1 Kinematics 

12.5.1.1 Mixed ANOVA findings: 
The results of the three-factorial mixed ANOVA (table 12.1) revealed a significant 

effect for REGION on summed error (p < 0.05) but not movement onset, movement 

offset, maximum velocity, movement duration and maximum force (p > 0.05). There 

was a significant effect for CONDITION on movement onset, movement offset, 

maximum velocity, movement duration, summed error and maximum force (p < 0.05). 

A significant effect was found for TIME on movement onset and movement offset (p < 

0.05) but not maximum velocity, movement duration, summed error and maximum 

force (p > 0.05). A significant interaction for REGION*CONDITION was found for 

movement onset, maximum velocity and summed error (p < 0.05) but not movement 

offset, movement duration and maximum force (p > 0.05). The findings also revealed a 

significant REGION*TIME interaction for movement onset and movement offset (p < 

0.05) but not maximum velocity, movement duration, summed error and maximum 
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force. No significant interactions for CONDITION*TIME and 

REGION*CONDITION*TIME were found (for all kinematic variables p > 0.05).  

12.5.1.2 One way ANOVA and post-hoc testing findings for REGION: 
The one-way between-subjects ANOVA (table 12.2A) revealed a significant effect for 

summed error for FF, FAM and WO reaching between regions stimulated (all p < 0.05) 

(TMS blocks).  

Post-hoc testing (table 12.2B and figure 12.2[C-E]) for summed error (REGION factor) 

during FAM reaching was significantly greater for  left M1 stimulation compared to 

right M1, left dPMC, right PPC and right dPMC stimulation (p < 0.002) but not left 

PPC and SMA stimulation (p > 0.002). With regards to FF reaching, summed error was 

significantly greater during left M1 stimulation compared to SMA, right M1, left 

dPMC, right PPC and right dPMC stimulation (p < 0.002) but not when compared to 

left PPC stimulation (p > 0.002). Summed error during WO reaching was significantly 

greater with left M1 stimulation when compared to all other regions (p < 0.002). With 

regards to FAM reaching summed errors, there was no significant difference between 

left PPC stimulation compared to SMA stimulation (p > 0.002), however summed error 

was significantly greater during left PPC stimulation compared to right M1, left dPMC, 

right PPC and right dPMC stimulation (all p < 0.002). Summed error during FF 

reaching was significantly greater with left PPC stimulation compared to SMA, right 

M1, left dPMC, right PPC and right dPMC stimulation. WO reaching summed errors 

with left PPC stimulation was significantly greater when compared to right M1, right 

PPC and right dPMC stimulation (p < 0.002) but not when compared to SMA and left 

dPMC stimulation responses (p > 0.002). FAM summed error responses with SMA 

stimulation was significantly greater compared to right M1, left dPMC and right dPMC 

responses (p < 0.002) but not compared to the right PPC (p > 0.002).  

Summed error during FF reaching with SMA stimulation was significantly greater 

compared right PPC and right dPMC stimulation (p < 0.002). However, there were no 

significant differences in FF summed error when comparing the SMA to the right M1 

and left dPMC (p > 0.002). With regards to WO responses, summed error was 

significantly greater during SMA stimulation compared to right M1, left dPMC, right 

PPC and right dPMC stimulation. Summed error FAM responses during right M1 

stimulation was significant greater compared to right PPC stimulation (p < 0.002), but 
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not when compared to the left dPMC and right dPMC (p > 0.002). FF summed error 

responses were only significantly greater with right M1 stimulation when compared to 

right PPC and right dPMC stimulation (p < 0.002), but not when compared to the left 

dPMC. WO responses were not significantly different between the right M1 and the left 

dPMC, right PPC and right dPMC (p > 0.002).  Summed error during FAM and FF 

reaching with left dPMC stimulation was significantly greater compared to right PPC 

and right dPMC stimulation (p < 0.002), but this was not the case with WO reaching (p 

> 0.002). No significant differences were found in FAM, FF and WO reaching when 

comparing right PPC and right dPMC summed error responses (p > 0.002).  

12.5.1.3  One way ANOVA and post-hoc testing findings for CONDITION: 
Although the overall N (94) was larger in this analysis, the results obtained for 

CONDITION corroborate the results that were found in the previous experimental 

chapters. See section 5.5.2 (left M1), section 6.6.1 (left PPC), section 7.5.1 (SMA), 

section 8.5.1 (right M1), section 9.5.1 (left dPMC), 10.5.1 (right PPC) and section 

11.5.1 (right dPMC) for results. A summary of the significant findings are illustrated in 

table 12.3A. 

12.5.1.4 One way ANOVA and post-hoc testing findings for TIME: 
The results obtained for TIME reflect what was found in the previous experimental 

chapters (5 – 11). See section 5.5.2 (left M1), section 6.6.1 (left PPC), section 7.5.1 

(SMA), section 8.5.1 (right M1), section 9.5.1 (left dPMC), 10.5.1 (right PPC) and 

section 11.5.1 (right dPMC) for results. The summative results for TIME are illustrated 

in table 12.3B.  

12.5.1.5 Significant interaction effects: 
A significant REGION*CONDITION interaction was found for movement onset, 

maximum velocity and summed error (p < 0.05) but not movement offset, movement 

duration and maximum force (p > 0.05). Therefore, significant parameters were not 

collapsed for time, and these results are graphically demonstrated in figures 12.4[A-C]. 

A significant REGION*TIME interaction was found for movement onset and 

movement offset (p < 0.05) but not for maximum velocity, movement duration, summed 

error and maximum force (p > 0.05). These were not collapsed for time because of the 

significant TIME factor within the interaction.  

REGION*TIME interactions are demonstrated in figures 12.5[A-B].
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Table 12.1. Results of the three-factorial mixed ANOVA for TMS blocks of reaching:   

 

 

 

 

 

 

 Movement onset (ms) Movement offset (ms) Maximum velocity (m.s-1) Movement duration (ms) Summed error  Maximum force (N) 
Df 

(Error) 
F Sig. Df 

(Error) 
F Sig. Df 

(Error) 
F Sig. Df 

(Error) 
F Sig. Df 

(Error) 
F Sig. Df 

(Error) 
F Sig. 

R 6  
[87] 

0.290 0.940 6  
[87] 

0.632 0.704 6  
[87] 

0.591 0.736 6  
[87] 

1.506 0.186 6  
[87] 

5.883 < 0.001 6  
[87] 

0.983 0.442 

C 1.9 
[163.0] 

18.81 < 0.001 2  
[12] 

13.80 < 0.001 2  
[12] 

13.43 < 0.001 2  
[12] 

42.30 < 0.001 1.5 
[124.0] 

78.85 < 0.001 1.2 
[96.4] 

1491.6 < 0.001 

T 4.8 
[416.7] 

104.61 < 0.001 6.5 
[558.2] 

52.91 < 0.001 5.3 
[453.2] 

0.689 0.638 6.7 
[578.4] 

1.169 0.320 6.0 
[517.6] 

1.126 0.346 4.9 
[420.2] 

1.107 0.355 

R*C 11.3 
[163.0] 

1.865 0.046 11.5 
[165.6] 

1.457 0.149 11.3 
[163.2] 

2.225 0.015 11.8 
[171.0] 

0.888 0.558 8.6 
[124.0] 

2.685 0.008 6.7 
[96.4] 

0.499 0.825 

R*T 28.8 
[416.7] 

1.613 0.025 38.5 
[558.2] 

1.456 0.040 31.3  
[453.2] 

0.475 0.994 38.9 
[578.4] 

0.650 0.954 35.7 
[517.6] 

1.430 0.054 29.0 
[420.11] 

0.524 0.982 

C*T 11.6 
[1002.0] 

1.579 0.095 12.2 
[1057.6] 

1.632 0.076 6.7 
[579.3] 

0.847 0.544 11.8 
[1020.3] 

1.285 0.223 9.1 
[784.7] 

0.980 0.455 5.3 
[457.6] 

0.820 0.541 

R*C*T 69.2 
[1002.0] 

0.756 0.930 73.0 
[1057.6] 

0.842 0.823 49.0 
[579.3] 

0.563 0.987 70.4 
[1020.3] 

0.738 0.947 52.2 
[784.7] 

1.211 0.147 31.6 
[457.6] 

0.417 0.998 
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 Summed error - TMS 
REGION FAM FF WO 

Left M1 2.60 [0.20] 4.71 [0.38] 3.17 [0.38] 
Left PPC 2.73 [0.21] 4.60 [0.53] 2.53 [0.20] 

Left dPMC 1.97 [0.12] 3.31 [0.30] 2.29 [0.23] 
SMA 2.52 [0.23] 3.31 [0.22] 2.66 [0.21] 

Right M1 2.06 [0.17] 3.64 [0.49] 2.17 [0.13] 
Right PPC 2.31 [0.18] 3.04 [0.30]  2.24 [0.13] 

Right dPMC 2.24 [0.30] 2.89 [0.17] 2.27 [0.24] 

 One-way ANOVA (between subjects design) 
TMS (collapsed for TIME)  

 Df [Error] F Sig. 
FAM 6 [87] 2.25 0.046 

FF 6 [87] 5.50         < 0.001 
WO 6 [87] 3.04 0.009 

Table 12.2A. REGION specific summed error values (mean [± SEM]) for the different reaching conditions, followed by a one-way between subjects 

ANOVA for summed error (collapsed for TIME): 
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REGION 
 Summed error – TMS  

Comparisons FAM 
(Sig.) 

FF 
(Sig.) 

WO 
(Sig.) 

Left M1 Vs. Left PPC 0.071 0.609 0.071 
 SMA 0.150      < 0.001 0.150 
 Right M1         < 0.001      < 0.001               < 0.001 
 Left dPMC         < 0.001      < 0.001               < 0.001 
 Right PPC         < 0.001      < 0.001               < 0.001 
 Right dPMC         < 0.001      < 0.001               < 0.001 

Left PPC Vs. SMA 0.005      < 0.001 0.005 
 Right M1         < 0.001      < 0.001               < 0.001 
 Left dPMC         < 0.001      < 0.001               < 0.001 
 Right PPC         < 0.001      < 0.001               < 0.001 
 Right dPMC         < 0.001      < 0.001               < 0.001 

Left dPMC Vs. Right PPC         < 0.001 0.002               < 0.001 
 Right dPMC         < 0.001      < 0.001               < 0.001 

SMA Vs. Right M1         < 0.001 0.009               < 0.001 
 Left dPMC         < 0.001 0.975               < 0.001 
 Right PPC 0.004 0.001 0.004 
 Right dPMC         < 0.001      < 0.001               < 0.001 

Right M1 Vs. Left dPMC 0.173 0.008 0.173 
 Right PPC 0.002      < 0.001 0.002 
 Right dPMC 0.005      < 0.001 0.005 

Right PPC Vs. Right dPMC 0.211 0.132 0.211 

Table 12.3B: Post hoc testing results for summed error TMS (collapsed for TIME) (REGION main factor): 

 



195 
 

 

 

 

 

 

 

 

 

 

C. FAM D. FF E. WO 
 
 

  
 
 
 
 
 
 

 

Figure 12.1 [C-E]: A graphical illustration of post-hoc testing results for summed error TMS responses between regions for different reaching conditions  

Symbols represent: 
 

Significant difference between left M1 and other cortical regions stimulated = * 
Significant difference between left PPC and other cortical regions stimulated = * 
Significant difference between left dPMC and other cortical regions stimulated = * 
Significant difference between SMA and other cortical regions stimulated = * 
Significant difference between right M1 and other cortical regions stimulated = * 
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 CONDITION 

 Movement onset (ms) Movement offset (ms) Maximum velocity (m.s-1) Movement duration (ms) Summed error (distance: cm) Maximum force (N) 

Left M1       
Left PPC       

Left dPMC       
SMA       

Right M1       
Right PPC          

Right dPMC       

 

 

 

 

 

 

 

 

 

 TIME 

 Movement onset (ms) Movement offset (ms) 

Left M1   
Left PPC   

Left dPMC     
SMA   

Right M1   
Right PPC   

Right dPMC   

Table 12.3A. One-way ANOVA findings for CONDITION main factor in TMS blocks: 

Symbols represent: 

 = Significant ANOVA results (p < 0.05)  

 = Non-significant ANOVA results (p > 0.05) 

 

Table 12.2B. One-way ANOVA findings for TIME main factor in TMS blocks: 
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REGION*CONDITION 
A) Movement Onset (ms) B) Maximum velocity (m.s-1) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C) Summed error (cm) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    
 

Figure 12.4 [A-C].   Graphical illustration of REGION*CONDITION interaction effects in TMS blocks: 

 Regions colour coded as: 
 Left M1, left PPC, left dPMC, SMA, right M1, right PPC and right dPMC 
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REGION*TIME 
A) Movement onset (ms) 

FAM FF WO 
 
 
 
 
 
 
 
 
 
 

  

B) Movement offset (ms) 
FAM FF WO 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12.5 [A-B]. Graphical illustration of REGION*TIME interaction effects in TMS blocks: 

Regions colour coded as: 
 Left M1, left PPC, left dPMC, SMA, right M1, right PPC and right dPMC 
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12.6 Discussion: 
Previous studies exploring the impact of TMS on preparation for upper-limb reaching 

have not targeted a variety of regions using robotic methods but have rather targeted 

one or two regions using different types of reaching paradigms (such as pointing-to-

reach tasks) and TMS protocols (rTMS and twin-coil methods). Throughout the motor 

adaptation paradigms in this thesis (chapters 5 – 11) the same reaching task and TMS 

protocol (SP TMS, 110% RMT, and TMS delivered randomly at different time points 

of reaching preparation) was undertaken. The use of consistent paradigms enabled 

direct kinematic comparisons between different cortical regions in this chapter. 

Overall, this final chapter provided a novel insight into the different levels of influence 

across regions of the motor network and demonstrated that TMS-based disruption to 

different cortical structures had a varied impact on motor control (FAM) and motor 

adaptation (FF) as measured by summed error and some interactions for timing of 

reaching.  

12.6.1 Kinematics: 

12.6.1.2 Region specific relative influence defined by summed error 
  

The main finding from this experimental chapter was that TMS had a region-specific 

impact on motor control and motor adaptation because summed error was significantly 

different between regions across the different reaching conditions (FAM, FF and WO). 

Post hoc testing revealed the relative importance of a regions role in preparation for 

reaching, for example, TMS to the left M1 and the left PPC resulted in greater summed 

error responses during FF reaching when compared to all other regions. Based on this 

finding, it could therefore be inferred that based on this comparative chapter that the left 

M1 and left PPC play a greater role in the preparation for motor adaptation during 

upper-limb reaching compared to other regions in the motor network, such as the SMA, 

left and right dPMC and right PPC. These findings are in line with studies that have 

similarly demonstrated the important role of left M1 and left PPC in reaching 

behaviours. For example, Cavina-Pratesi, Connolly and Milner (2013) found that 

patients with optic ataxia due to left PPC lesions had arm reaching deficits, but not 

reaching-to-grasp deficits. TMS studies have also shown that virtual disruptions to the 
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left PPC compared to a control area (e.g. the occipital lobe) following movement onset 

resulted in impaired reaching trajectories (Della-Maggiore, et al., 2004). This 

experiment provided a novel finding because it demonstrated that the left PPC is not 

only involved in reaching execution (as previously demonstrated by Della-Maggiore, et 

al., 2004) but also reaching preparation and TMS to the left PPC during reaching 

preparation can result in reaching trajectories that resemble a model of optic ataxia. Left 

M1 stimulation also had a significant detrimental impact on reaching during motor 

adaptation. As well as suggesting an obvious direct role of left M1 in right arm 

reaching, this could have been due to TMS affecting other cortical structures (such as 

the cerebellum) (via trans-synaptic transmission) that facilitate M1 functioning for 

motor output (Chouinard et al., 2003; Richardson et al., 2006). Direct TMS disruption 

of cerebellar regions and their possible roles in motor adaptation would support this 

avenue of future work and the use of double-coil TMS induced disruption of cerebello-

M1 connection function during motor adaptation. 

Although TMS to the left M1 and left PPC resulted in a greater disruption to reaching 

preparation compared to other regions (e.g. the SMA), we should be cautious and not 

de-emphasise the role of the SMA particularly when experimental findings from 

previous chapters in this thesis (chapter 7) demonstrated its given role in movement 

preparation. This is supported by studies that have undertaken different motor protocols. 

For instance, in an fMRI motor imagery and execution task, Kasess et al., (2008) found 

that the SMA caused a suppression in movement planning and preparation which 

resulted in inhibited M1 activity (Kim et al., 2018). Studies in PD patients have also 

provided evidence for the importance of the SMA in motor preparation and execution 

(Chung et al., 2018). The SMA is strongly connected with the basal ganglia and has 

been found to be disrupted in PD patients (Jenkins et al., 1992; Haslinger et al., 2001; 

Chung et al., 2018). For instance, imaging studies have revealed reduced cerebral blood 

flow in the SMA of PD patients whilst they were performing a motor task with a 

joystick (Playford et al., 1992; Chung et al., 2018). Patients with PD also have 

increased neuronal desynchronisation during movement preparation, before movement 

onset (Rowland et al., 2015; Chung et al., 2018). Based on this notion, it can be argued 

that TMS effected reaching preparation because it disrupted communication between 

cortical networks that are connected with the SMA including the basal ganglia. 
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Furthermore, the role of the SMA and left dPMC should not be disregarded because this 

comparative chapter revealed that TMS to these two regions during motor adaptation 

resulted in significantly greater summed error responses compared to other regions, 

such as the right PPC during preparation for FF reaching. Researchers have argued that 

that the SMA and PMC play an important role in facilitating the ‘Bereitschaft 

(readiness) potential’ in a motor task during movement preparation (Deecke and 

Kornhuber, 1987; Di Russo et al., 2005; Nguyen, Breakspear and Cunnington, 2014; 

Verleger et al., 2016). For example, by using a dipole EEG analysis method in a finger 

flexion task, Di Russo et al., (2005) revealed that the SMA and PMC produce these 

potentials prior to movement onset. Lesion studies have also shown that patients with 

SMA lesions have impaired Bereitschaft potential features (Deecke et al., 1978; Di 

Russo et al., 2005) thus providing further evidence for the role of the SMA in “pre-

movement potential” generation. Therefore, it can be suggested that in this study TMS 

disrupted the Bereitschaft potential process, thereby causing increased SMA and left 

dPMC-based summed error responses. However, it has been argued that the impact of 

the SMA in facilitating the Bereitschaft potential depends on the type of motor task 

being performed (Praamstra et al., 1996). For example, when subjects performed fixed 

vs. freely selected movements with a joystick, Praamstra et al., (1996) reported that the 

movement potentials eliciting the Bereitschaft potential in the SMA were less affected 

when subjects performed fixed movements compared to freely selected movements. 

Furthermore, the complexity of a motor task has also been found to influence the 

Bereitschaft potential (Shibasaki and Hallett, 2006), a notion supported by Simonetta et 

al., (1991) who concluded that sequential movements compared to simple movements 

led to both larger and earlier Bereitschaft potential onset (Shibasaki and Hallett, 2006). 

Similar findings were illustrated by Benecke et al., (1985). Shibasaki and Hallett (2006) 

also noted that the speed of a movement, specifically faster motions were associated 

with a later Bereitschaft potential onset. Based on such studies, it could be argued that 

the reason as to why TMS did not severely affect SMA functioning was due to the 

nature of the task, i.e. simple, fixed reaching movements took place compared to 

complex sequential movements. Furthermore, studies have also shown that the 

Bereitschaft potential can arise from other regions depending on the task performed. For 

example, Wheaton, Shibasaki and Hallett (2005) explored how movement related 

cortical potentials are affected during everyday motor tasks in right handed participants. 
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Their findings revealed that the Bereitschaft potential developed from the left parietal 

cortex during movement planning and preparation (Shibasaki and Hallett, 2006). 

Considering this, it could be suggested that in this thesis TMS had a greater impact on 

the left PPC because the Bereitschaft potential firstly developed from the parietal cortex 

and then the medial-frontal areas (Wheaton, Shibasaki and Hallett, 2005; Shibasaki and 

Hallett, 2006). Therefore, a number of factors ranging from task complexity to 

physiological features (e.g. the Bereitschaft potential) can help explain why some 

regions were more severely impacted with TMS compared to others.  

Furthermore, resting-state fMRI studies have demonstrated the importance of different 

connecting pathways in the motor circuit that facilitate motor function. For instance, 

studies in stroke patients with upper-limb impairment have shown that increased 

functional connectivity between the affected M1 (i.e. ipsilesional hemisphere) and areas 

such as the SMA and frontal lobe resulted in enhanced motor recovery (Park et al., 

2011; Auriat et al., 2015). Other important connecting pathways include the ipsilesional 

M1 and the contralesional dPMC (Bestmann et al., 2010; Auriat et al., 2015). For 

instance, a TMS-fMRI (dual-coil) study conducted by Bestmann et al., (2010) in stroke 

patients revealed that a decrease in inhibition from the affected dPMC to the unaffected 

dPMC was associated with greater motor deficits. Based on these studies, it could be 

argued that TMS to one specific region had a distinct effect on the networks associated 

with that region, which provides an explanation for the varied region-specific impact of 

TMS.  

The fact that TMS had differential effects in motor control and motor adaptation 

provides evidence for the task specific properties of different nodes in the motor 

network (Buchel, Coull and Friston, 1999; Wei et al., 2018) which has been supported 

by neuroimaging studies. For example, in an fMRI motor task where participants were 

instructed to perform: 1) right ankle movement, 2) agonist muscle movement and 3) 

movement with pressure-stimulation, Wei et al., (2018) found that agonist muscle 

movement compared to both right ankle movement and pressure-stimulation resulted in 

the greatest and most dispersed activity in in areas ranging from the thalamus to the left 

M1. Agonist muscle activity also takes place in motor adaptation protocols (Pizzamiglio 

et al., 2017b). It can therefore be argued that in this experiment TMS may have 

disrupted the spread of cortical activity related to agonist muscle movement, thereby 

resulting in increased trajectory reaching errors. 
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12.6.1.3  Evidence for hemispheric asymmetries during motor adaptation   

Post hoc testing results for summed error (table 12.2B) provides evidence for 

hemispheric asymmetries because some cortical structures between the left and right 

hemisphere responded differently during motor adaptation. This was particularly 

evident for the left PPC vs. the right PPC. These results are in line with lesion-studies 

that have also demonstrated asymmetries between regions. For example, researchers 

have reported that damage to the right PPC can result in spatial neglect whereas damage 

to the left PPC can result in right-handed defects during reaching (Perenin and Vighetto, 

1988; Husain and Nachev, 2007; Koch et al., 2011; Andersen et al., 2014). Such studies 

have therefore highlighted separate functional roles of the two regions, with the right 

PPC involved in visual/spatial attention and the left PPC involved in visually guided 

reaching (Della-Maggiore et al., 2004; Koch et al., 2011). The results for summed error 

support literature findings regarding the greater functional role of the left PPC 

(compared to the right PPC) in 1) visually guided-reaching and 2) novel reaching 

behaviours.  

12.6.1.4  Regions and conditions impacted for maximum velocity 

(REGION*CONDITION) 

As well as the region-specific impact on summed error, a significant 

REGION*CONDITION interaction was found for maximum velocity (table 12.1 and 

figure 12.4[A-C]. The findings revealed that regions such as the right dPMC and right 

PPC were highly impacted with TMS for maximum velocity during motor control 

[FAM and WO reaching] but not so much during motor adaptation [FF reaching]. This 

was not the case for other regions such as the left PPC, left M1, SMA, right M1 and left 

dPMC. Studies in non-human primates have revealed that the dPMC plays a critical role 

in encoding kinematic parameters of a movement (Alexander and Crutcher, 1990; Fu, 

Suarez and Ebner, 1993; Ward et al., 2007), based on this it can be suggested that when 

TMS is delivered to the dPMC, it will have an impact on parameters such as velocity. 

However, it is important to note that TMS to the left dPMC did not impact on motor 

control, but rather during motor adaptation and this can be due to the functional 

asymmetries that have been reported between the left and right dPMC. For example, 

greater neural activity has been noted in the left dPMC compared to the right dPMC 

during the learning phase of a motor task (Hardwick et al., 2013). Furthermore, it has 
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been argued that the left dPMC in contrast to the right dPMC facilitates movement 

selection, this has been supported by both left dPMC virtual disruption studies and 

clinical population studies as subjects were found to perform poorly during response 

selection tasks (Halsband et al., 1993; Mochizuki et al., 2005; Kantak et al., 2012; 

Hardwick et al., 2013). Considering these studies, it could be argued that TMS will 

have a greater impact in regions that play a more functional role in the learning of a new 

motor task, which is in line with what was found in this experiment (e.g. left dPMC was 

impacted more with TMS during MA compared to FAM and WO reaching).    

12.6.1.5 Limitations to consider 

This chapter revealed a region-specific influence for summed error particularly for the 

left M1 and left PPC compared to other regions that were targeted. However, this can be 

considered as a limitation of the experimental approach that was undertaken to disrupt 

normal processing during the preparation phase of reaching.  For example, it could be 

argued that if partipants had performed complex tasks, including sequential movements 

towards different reaching targets compared to fixed movements towards one target, 

TMS to areas such as the SMA and dPMC may have had a more detrimental impact on 

summed error responses during reaching preparation (based on findings from Simonetta 

et al., 1991 and Praamstra et al., 1996). This notion has also been supported by 

Shibasaki et al., (1993). In a finger movement protocol using PET imaging methods, 

they revealed that task complexity increased cerebral blood flow in the SMA and M1 

because the demanding nature of the task affected the components associated with 

movement-related cortical potentials (Shibasaki and Hallett, 2006). Therefore, if this 

study were to be replicated, altering the nature of the reaching task would be an 

important factor to take into account, i.e. making the task more demanding for the 

subject. However, there is a trade off between making the task more difficult and 

avoiding fatigue. Nonetheless, shortening the reaching paradigm could provide a 

solution in ensuring subject comfort during a complex and fatiguing motor task. 

Nonetheless, it important to not under emphasise the role of other regions that were 

targeted with TMS because 1) previous chapters revealed that TMS did have an impact 

on other structures targeted during preparation for novel reaching and, 2) table 12.2A 

revealed larger summed error responses during FF vs. FAM reaching for all regions, 

thus demonstating each regions’ important functional role in movement preparation. 



205 
 

 

 

Furthermore, using a combination of methods could have led to more in depth findings 

regarding the neurophysiological impact of TMS during reaching preparation. For 

instance, if TMS-EEG or TMS-fMRI was employed, observing cortical potentials (with 

EEG) or cerebral blood flow (with fMRI) could have helped establish the network 

effects of TMS across different structures, particularly when considering that TMS does 

not only have a direct affect on the area that is being stimulated, but it also has an 

impact on regions connected with the stimulated area (Ruff, Driver and Bestmann, 

2009). If this study was repeated it would be useful to employ additional imaging 

methodologies in conjuction with TMS. Mixed methodologies would enable different 

statistical analysis to be carried out. For example, neural activation patterns could be 

correlated with different performance measures (e.g. summed error) during preparation 

for novel reaching (Ruff, Driver and Bestmann, 2009), therefore both causal and 

correlational inferences could be drawn with regards to the results obtained (Ruff, 

Driver and Bestmann, 2009).  

Moreover, it is important to consider the sample population that was studied in this 

thesis; individuals aged 18 – 40. A future consideration would be to develop the study 

by recruiting other groups of participants, including middle aged and older aged adults 

(e.g 55+ years). This would be interesting to explore because studies employing TMS 

protocols have demonstrated that neuroplasiticity in the M1 is reduced in older adults 

(Fathi et al., 2010; Porto et al., 2015). This notion is supported by Fathi et al., (2010) as 

their findings concluded reduced MEP amplitude responses in older aged subjects 

compared to both younger and middle-aged subjects. They argued that the reduced 

plasticity in older adults could be attributed to impaired cortical networks between the 

basal-ganglia and motor circuits (e.g. the M1, SMA and sensorimotor regions). In 

addition to recruiting older adults, recuiting patients with neurological impairments 

could also help expand the findings of this study. For example, the comparative chapter 

in thesis revealed the importance of the left PPC, and chapter 6 also demonstrated that a 

patient-like model of optic ataxia was created with the virtual lesion TMS approach (as 

the results were similar to  clinical findings from Pisella et al., 2000). Therefore, 

directly studying motor adaptation in patients (such as those with optic ataxia) could 

help: 1) provide a comparison group for analysis purposes (i.e. healthy group vs. patient 

group), 2) explore the strength of TMS as a virtual lesion tool, and 3) further investigate 

the hypothesis regarding the role of the left PPC for the preparation of novel reaching.  
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Overall, if the studies in this thesis were to be replicated a number of factors would be 

considered, ranging from implementing a more complex motor reaching paradigm to 

employing other imaging methods in conjuction with TMS. In addition to this, it would 

also be interesting to explore other sample-populations, such as older-aged adults or 

clinical patients with neurological impairments. Despite these limitations, novel 

findings were illustrated, and the relevance of these findings with regards to future 

directions (e.g. in the field of neurorehabilitation and neurocompuational models) are 

discussed in chapter 13. 

12.7 Conclusion: 
This experiment provided novel findings by demonstrating the comparative impact of 

TMS to various nodes of the motor network. The main findings revealed a statistical 

difference in summed error between different cortical regions. More specifically, areas 

such as the left M1 and left PPC were found to play a significant role in motor 

adaptation compared to other regions such as the SMA, right M1, left dPMC, right PPC 

and right dPMC. Based on these findings it can be argued that damage to areas 

including the left M1 and left PPC may result in greater impairments during upper-limb 

reaching during motor adaptation, which is line with patient studies (e.g. stroke and 

traumatic brain injury patients). Furthermore, the fact that TMS had a varied impact on 

different regions provides evidence for the notion that different areas of the motor 

network play a different functional role in motor control and adaptation. This was 

illustrated by the interactions that were found, whereby the right dPMC and right PPC 

were highly impacted for maximum velocity during motor control and motor adaptation 

whereas other regions were only highly impacted during motor adaptation. Functional 

asymmetries that have been found between regions of the two hemispheres explains 

why TMS affected some regions more than others. Overall, this final chapter begins to 

build a unique and novel model for studying the motor network during a range of tasks 

including reaching and as a function of healthy ageing or disease whereby the regions 

may operate in compensatory roles resulting in a different pattern or signature of region-

specific importance. 
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Chapter 13 

Final conclusion and Future directions 
  

This thesis outlined a novel approach in studying the network nodes in the motor circuit 

during an upper-limb robot-mediated reaching tasks. The approach taken to explore 

behavioural responses using TMS protocols in this thesis was novel because it was the 

first attempt to describe the different behavioural effects (kinematic responses) of SP-

TMS delivered to a number of cortical structures at nine different time points during the 

preparation phase of a reach with a robot-mediated force-field paradigm. The overall 

results that were obtained in this thesis were also novel as the findings identified regions 

of the motor circuit that play a more functional role in novel reaching. For instance, 

both individual chapters (chapter 5 and 6) and the final comparative chapter revealed 

that the left M1 and left PPC were similarly and most significantly disrupted with TMS 

during novel reaching.  

These findings have a wide range of future implications, one of which includes its 

application in brain machine interfaces (BMI) in the field of neurorehabilitation. BMI’s 

are based on obtaining brain signals, interpreting them into commands which are then 

transferred to devices to perform actions (Shih, Krusienski and Wolpaw, 2012). BMIs 

have therefore been used to control functions in patients with impairments (McFarland 

and Vaughan. 2016) by providing the brain with channels based on cortical activity 

(Ranjangam et al., 2016; Shih, Krusienski and Wolpaw, 2012). BMI applications have 

been used to help assist functional recovery among clinical populations, ranging from 

patients with stroke to those with multiple sclerosis (Shih, Krusienski and Wolpaw, 

2012; Ramos-Murguialday et al., 2019). Ramos-Murguialday et al., (2019) reported that 

BMI training in stroke patients to assist upper-limb movement (i.e. the paretic arm) with 

a robotic device resulted in an increase in a clinical outcome measure, Fugl-Meyer 

score, therefore demonstrating its effectiveness in the field of neurorehabilitation and 

aiding functional recovery. The use of TMS with a virtual disruption approach has 

helped researchers identify regions that are important for particular functions (Bolognini 

and Ro, 2010; Carmena and Cohen, 2012) and due to this stimulation methods have 

been implemented in the BMI field (Reis et al., 2009; Carmena and Cohen, 2012). The 

final chapter of this study demonstrated the functional role of the left M1 compared to 
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other regions of the motor network (e.g. right PPC and right dPMC) in novel motor 

behaviours. The role of the ipsilateral M1 should also not be ignored, as findings from 

this thesis demonstrated its importance in novel reaching. Therefore, the data from both 

the left M1 and right M1 can be used as a BMI signal source to aid functional recovery 

in stroke patients (Carmena, et al., 2003; Schroeder and Chestek, 2016; Hatsopoulos 

and Suminksi, 2011).  

BMI approaches are not only confined to assisting motor recovery but also cognitive 

recovery (Hauschild et al., 2012) and this is important in terms of the left PPC findings 

in this thesis. For instance, studies in non-human primates have shown that extracted 

PPC signals increase performance rates, specifically reaching trajectories and this can 

be important in helping assist patients with left PPC lesions such as those with optic 

apraxia (Hauschild et al., 2012). Overall this thesis has demonstrated regions that are 

involved in novel reaching that can be used as a site for signal extraction for BMI 

approaches (Ranjangam et al., 2016; Andersen et al., 2014).  

The findings from this thesis also revealed that although the SMA, right M1, left dPMC 

and were not as disrupted as the left M1 and left PPC, their roles in preparation for 

novel reaching should not be de-emphasised, as the individual experimental chapters 

revealed their role in novel reaching too. For instance, with regards to the SMA, the 

findings from chapter 7 demonstrated that reaching trajectories were significantly 

impaired in FF reaching compared to FAM and WO reaching (albeit, not at all time 

time points). Additionally, the results from chapter 9 illustrated significant disruptions 

at all time points when TMS was delivered to the left dPMC. These findings are 

relevant within the neurorehabilitation field because they have helped provide further 

evidence regarding the importance of left dPMC- and SMA- M1 connectivity in aiding 

functional recovery among stroke patients. For example, studies have shown that rTMS 

delivered to the intact hemisphere of stroke patients enhanced neural communication 

between the affected SMA and M1, which led to improved motor performance when 

patients performed paretic hand movements (Grefkes et al., 2010; Liew et al., 2014). 

Therefore, the results from this thesis demonstrated the critical role of regions in the 

motor circuit (other than the M1 and left PPC) that facilitate motor preparation and 

execution.  

Moreover, Huang and Krakauer (2009) reported that the use of robotic protocols in 

healthy participants have helped researchers gain an understanding into the mechanisms 
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of motor control and motor learning. Based on this notion, it could be argued that this 

thesis demonstrated an insight into methodological factors that are important in the field 

of neurorehabilitation. For example, the findings highlighted that subjects were able to 

optimise their reaching following four blocks of no-TMS motor adaptation reaching 

trials (which is in line with motor adaptation research - Pizzamiglio et al, 2017a; 

Pizzamiglio et al., 2017b). Therefore, implementing and expanding such motor 

protocols in the field of neurorehabilitation can be considered, particularly when taking 

into account that researchers such as Patton et al., (2006) have demonstrated that 

resistive robotic tasks compared to assistive tasks resulted in better therapeutic 

outcomes in stroke patients. However, the principles of neuroplasticity during motor 

adaptation remain under-researched and some have argued that demanding and complex 

motor learning tasks facilitate neuroplasticity compared to repetitive motor adaptation 

tasks (Turner et al., 2013). Therefore, whether this particular model can be used for 

motor recovery among patients can be questioned. Nonetheless, further investigations 

into methodological factors in motor protocols (such as, the type of motor task 

undertaken, the duration of the task and number of sessions) can help build the 

foundations for new research within the field neurorehabilitation (Huang and Krakauer, 

2009). 

Furthermore, the main findings from the right M1 revealed that TMS had an disruptive 

impact on reaching trajectories particularly during force-field reaching compared to 

normal reaching (FAM and WO) (figure 12.2D and table 12.2A). This finding 

confirmed what previous researchers have noted regarding right M1 function during 

ipsilateral reaching (right arm) and that the right M1 also undergoes modulations of 

activity during right arm reaching (Van den Berg, Swinnen and Wenderoth, 2011). This 

result is not only useful for BMI neurorehabilitation applications (i.e. in stroke patients 

where the contra-lesional hemisphere becomes important in guiding ipsilateral functions 

- Dancause et al., 2006; Ganguly et al., 2009) but the finding can also be applied within 

neuro-computational models regarding data-based virtual lesions that have been 

incorporated into patient models (for example, stroke patients). Using TMS to create 

patient models via a virtual disruption can help researchers overcome many of the 

challenges faced when investigating the effects of lesions on functional connectivity in 

clinical populations (Sliwinska, Vitello and Devlin, 2014). For example, Sliwinska, 

Vitello and Devlin (2014) reported that the use of TMS: 1) has greater degrees of 
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accuracy and specific structures can be explored compared to patients lesions studies 

whereby the damage affects a wide range of structures, and 2) the same subjects can be 

used to explore the effects of TMS in different regions (i.e. greater degree of control vs. 

heterogeneous stroke lesion patients). Based on these notions, the data in this thesis can 

help gain a deeper understanding into how neural networks operate following disrupted 

functional activity. 

It is important to note that findings from this thesis also revealed that TMS to some 

regions, such as the right PPC and the right dPMC was not so impactful. This could 

have been due to the methodology that was undertaken. For example, in this thesis only 

right handed subjects were recruited and studies have shown that TMS to the right 

dPMC effects left handed functions compared to right handed functions (Schluter et al., 

1998). Similarly, the right PPC has been found to be involved in planning left handed 

reaching movements only compared to the left PPC which has been involved in 

planning both right and left handed movements (Schluter et al., 2001; Oliveira et al., 

2010). In addition to this, imaging studies have revealed that 1) sequential motor tasks 

and 2) complex motor tasks affect the right dPMC and right PPC as both regions play a 

role in maintaining selective attention (Poster and Peterson, 1990; Sadato et al.,  1996; 

Malhotra, Coultard and Husain, 2009) whereas a simple motor adaptation task was used 

in this thesis. Therefore, the future directions of this research would include providing a 

deeper insight on the function of the right dPMC and right PPC by refining 

methodological factors, including the motor task undertaken (i.e. using a complex task 

rather than simple task) and recruiting a different sample population (i.e. both right and 

left handed subjects). Such research findings can help demonstrate how handedness 

contributes to motor preparation and execution, and the differences with regards to how 

cortical regions interact in both left- and right-handed subjects during novel reaching.  

Nonetheless, the studies in this thesis were novel as previous researchers that have 

explored the behavioural effects of TMS have mainly investigated behavioural 

responses following movement onset compared to exploring responses prior to 

movement onset (i.e. motor preparation) (Della-Maggiore et al., 2004). In addition to 

this, most researchers have employed; 1) paired-pulse TMS and rTMS paradigms to 

explore the functional role of cortical regions in motor tasks (Gerloff et al., 1997; 

Serrienet et al., 2002; Steyvers et al., 2003; Nachev, Kennard and Husain, 2008; Mars 

et al., 2009; Chouinard and Paus, 2010) and 2) different motor paradigms such as visuo-
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motor adaptation tasks, finger sequencing tasks, ‘point’ reaching and ‘grasp’ reaching 

tasks (Gerloff et al., 1997; Culham, Cavina-Pratesi and Singhal, 2006; Lee and Van 

Donkelaar, 2006; Miall et al., 2007) compared to a novel SP-TMS, robotic induced arm 

reaching perturbation paradigm which was used in this thesis. 

Overall, in this thesis a novel TMS mapping method was introduced to create virtual 

disruptions of different regions in the motor network in order to explore the functional 

role of different structures in upper-limb motor control and motor adaptation. Despite 

novel findings illustrating the pivotal role of regions such as the left and right M1, left 

PPC, SMA and left dPMC which can be implemented in the field of neurorehabilitation 

(e.g. BMIs) and also in neurocomputational patient models, there are future 

considerations to take into account. For example, other regions of the motor network 

can also be targeted such as the cerebellum and the DLPFC as these two structures have 

been argued to play a key role in encoding kinematic parameters and facilitating motor 

responses (Overduin, Richardson and Bizzi 2009; Badoud et al., 2017). In addition to 

this, it would be important to perform a “control” protocol of a NO-TMS paradigm in 

order to make direct comparisons of TMS virtual-disruption during reaching vs. no 

TMS during reaching over the course of the same number of trials. Moreover, 

developing a more demanding motor protocol could also help reveal the importance of 

regions such as the right PPC and right dPMC in motor control and motor adaptation, as 

the functioning of these two regions were not as effected with TMS compared to other 

regions that were targeted. Therefore: 1) stimulating further putative cortical regions in 

the motor circuit, 2) obtaining control findings with a NO-TMS protocol, and 3) 

modifying the adaptation protocol could help further refine our understanding of the 

regions involved in motor control and adaptation.  
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Appendix 2. Participant information sheet and consent form: 

 

 

University of East London 

Stratford Campus: School of Sport, Health and Bioscience, 
London, 
E15 4LZ 

 

University Research Ethics Committee 

If you have any queries regarding the conduct of the programme in which you are being asked 
to participate, please contact:  

Catherine Fieulleteau, Research Integrity and Ethics Manager, Graduate School, EB 1.43 
University of East London, Docklands Campus, London E16 2RD 
(Telephone: 020 8223 6683, Email: researchethics@uel.ac.uk). 

 

The Principal Investigator(s) 

1) Director of studies: 
Professor Duncan Turner, 

Address:   

AE5.23, School of Health, Sport and Bioscience, 
University of East London, 

Stratford Campus, 
Romford Road, 

London, 
E15 4LZ, 

(Telephone:  020 8223 4514, Email: d.l.turner@uel.ac.uk) 

 

2) Investigator/PhD student: 
Pegah Mohajer Shojaii 

(Email address: p.shojaii@uel.ac.uk) 

Consent to Participate in a Research Study 

The purpose of this letter is to provide you with the information that you need to consider in 
deciding whether to participate in this study. 

Project Title 

The Neural Mechanisms of Motor Learning in Healthy Adults Using Neuroimaging Technologies  

Project Description 

Research aim: This research project will aim to explore the neural mechanisms of motor 
adaptation through a motor learning task with a computerized robot. 

 

mailto:researchethics@uel.ac.uk
mailto:d.l.turner@uel.ac.uk
mailto:p.shojaii@uel.ac.uk
http://www.uel.ac.uk/
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Procedure: 

The motor learning task will require you to sit in a customised chair, facing a screen. Here, you 
will be asked to make arm reaching movements in a particular direction, with your arm placed 
in a device connected to the robot. The robot will then apply force-fields which can influence 
the output of your arm reaching movement. 

Whilst you carry out this task, your muscle activity (EMG) and motor evoked potentials (MEPs) 
will be recorded through surface electrodes placed on your arm muscles, and also through a 
safe neuroimaging method, known as transcranial magnetic stimulation (TMS).  

Risks: 

There are no medical risks involved in the study: 

All the methods that will be used in this research have already been established in the 
Neurorehabilitation Unit over the last 10 years and we do not foresee any technical or health 
and safety issues. We have tested over 200 subjects over 10 years with no adverse events in all 
studies. 

Study length: 

The experiment will take approximately two hours and a half to complete. 

Confidentiality of the Data 

As this project will have 12-15 participants, the risk of your data being identified is increased, 
however anonymity steps will be taken in order to ensure your privacy. For example, you will 
be given a participant number, and your data will be stored under that number. Your consent 
form and medical questionnaire will be stored separately. After the PhD project has been 
complete, your data will be stored in the research lab for >10 years.  

Location 

The research will be carried out in a Neurorehabilitation Unit (NRU), located in the Stratford 
campus of the University of East London, within the School of Health, Sport and Bioscience 
(HSB).  

Remuneration 

You will receive a £20 Amazon voucher after completing the experiment.  

Disclaimer 

You are not obliged to take part in this study, and are free to withdraw at any time during 
tests. Should you choose to withdraw from the programme you may do so without 
disadvantage to yourself and without any obligation to give a reason. 
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UNIVERSITY OF EAST LONDON 

Consent to Participate in a Programme Involving the Use of Human Participants. 

The Neural Mechanisms of Motor Learning in Healthy Adults Using Neuroimaging 

Technologies 

Researchers: 

The principle investigator: Professor Duncan Turner (BSc, PhD) 

Investigator/PhD student: Pegah Mohajer Shojaii (BSc, MSc)  

Please tick as 

appropriate: 

 YES NO 

I have the read the information leaflet relating to the above programme of 

research in which I have been asked to participate and have been given a copy 

to keep. The nature and purposes of the research have been explained to me, 

and I have had the opportunity to discuss the details and ask questions about 

this information. I understand what is being proposed and the procedures in 

which I will be involved have been explained to me. 

 

  

I understand that my involvement in this study, and particular data from this 

research, will remain strictly confidential as far as possible. Only the 

researchers involved in the study will have access to the data. (Please see 

below) 

 

  

I understand that maintaining strict confidentiality is subject to the following 

limitations: 

 

If the sample size is small, or focus groups are used state that that this may 

have implications for confidentiality / anonymity. 

 

My confidentiality will be maintained unless a disclosure is made that indicates 

that I or someone else is at serious risk of harm. Such disclosures may be 

reported to the relevant authority.  

 

  

I will be pseudo-anonymised in publications that will arise from the research. 

 

  

http://www.uel.ac.uk/
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I am aware that the proposed methods of publication dissemination of 

research findings, includes: 

- Peer reviewed journals 

- Non-peer reviewed journals 

- Peer reviewed books 

- Publication in media or website 

- Conference presentation 

- Internal report 

- Promotional report and materials 

- Dissertation/Thesis  

- Presentation to participants or relevant community group 

  

I give permission for your team to use the data in future research.  

 

  

I give permission to be to be contacted for future research studies by your 

team.  

  

It has been explained to me what will happen once the programme has been 

completed. 

 

  

I understand that my participation in this study is entirely voluntary, and I am 

free to withdraw at any time during the research without disadvantage to 

myself and without being obliged to give any reason. I understand that my data 

can be withdrawn up to the point of data analysis and that after this point it 

may not be possible. 

 

  

I hereby freely and fully consent to participate in the study which has been fully 

explained to me and for the information obtained to be used in relevant 

research publications. 

 

  

 

 

Participant’s Name (BLOCK CAPITALS) ……………………………………………………………………. 

Participant’s Signature ……………………………………………………………………………………….. 

Investigator’s Name (BLOCK CAPITALS) ………………………………………………………………….. 

Investigator’s Signature ……………………………………………………………………………………… 

Date: …………………………. 
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Appendix 3. Medical questionnaire:   

 

Project title: The Neural Mechanisms of Motor Learning in Healthy Adults Using 

Neuroimaging Technologies 

Medical Questionnaire  

This questionnaire is designed for the purpose of understanding if you have any conditions 

that may result in excluding you from the research being conducted. All the data supplied in 

this questionnaire will remain private and confidential.  

Date:  
Participant Number:  
 
 
Date of birth:  
Gender: M / F  
Handedness: Right / Left 
 
 
Do you take any medication or recreational drugs? Y / N  
If yes, state below:  
 
 

 

 

 
 
How many units of alcohol do you consume per week on average:  
 

 

 

 
 
 
Have you had any surgeries in the past?  
If yes, state below: 
 

 

 

http://www.uel.ac.uk/
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Do you have a history of head or spinal injury (e.g concussion, car crash whiplash): 
 

 

 

 
 
 
Do you have any chronic illness? Y / N  
If Yes, state below:  
 

 

 

 
 
 
 
Do you have any neurological disorders (e.g. stroke, spinal cord injury, colour blindness, 
dyslexia, Parkinson’s or Alzheimer’s disease, epilepsy/seizures, family history of these)? 
Y / N  
If Yes, state below:  
 
 

 

 

 
 
 
 
Do you have a psychiatric history (e.g. schizophrenia, bipolar disorder, depression, obsessive 
compulsive disorders, panic disorder, family history of these)? Y / N  
If Yes, state below 
 

 

 
_____________________________________________________________________________ 
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Do you have a cardio-respiratory Disease (asthma, angina, high blood pressure, respiratory 
distress)?  
Y / N  
If yes, state below:  
 

 

 

 
 
 
Do you have a musculoskeletal condition: (bone fracture, muscle or ligament tear)? Y / N  
If yes, state below:  

 

 

 

 
 
 
Do you have any metal or electrical implants (e.g. pacemakers, intracranial plates, skeletal 
pins, vascular clips)? Y / N  
If yes, state below:  
 

 

 

 
 
 
If you are a woman are you pregnant or experiencing altered menstrual cycles? Y / N  
If yes, state below:  
 

 

 

 

END OF QUESTIONNAIRE 


