
Enhancing Smart Contract Security: Static 
Heuristics and CodeBERT Embeddings

Salma Soofiyan
Department of Computer Science

and Digital Technologies
University of East London

E16 2RD London, UK
s.soofiyan@uel.ac.uk

Amin Karami
Department of Computer Science

and Digital Technologies
University of East London

E16 2RD London, UK
a.karami@uel.ac.uk

Formal verification methods offer a more rigorous approach
by employing mathematical models to formally prove con-
tract correctness. Nevertheless, these methods typically de-
mand considerable manual effort and are often challenging
to apply effectively to large and intricate codebases.

In recent years, machine learning-based approaches have
emerged as a promising avenue for enhancing smart contract
security analysis [5], [6]. These methods have demonstrated
the potential to outperform traditional static analysis tools
in terms of accuracy and recall in certain scenarios. How-
ever, many existing ML-based solutions face their own
set of challenges [7], [8]. These include the limitations
of oversimplified multi-class classification frameworks, dif-
ficulties in effectively processing and understanding long
code sequences, and the constraint of assigning a single
vulnerability category to a contract that may exhibit mul-
tiple issues. Furthermore, adequately incorporating the rich
semantic features embedded within smart contract code,
essential for capturing subtle behavioral patterns indicative
of vulnerabilities, remains a significant hurdle for many
current ML models.

To overcome these limitations and advance the state
of smart contract vulnerability detection, this paper intro-
duces a novel binary classification framework. Our ap-
proach uniquely combines static heuristic features, capturing
explicit structural and syntactic patterns, with deep con-
textual semantic embeddings derived from CodeBERT, a
transformer model pre-trained on source code. This multi-
modal analysis framework is designed to use both expert-
driven code metrics and the nuanced semantic understanding
provided by CodeBERT. The proposed system is imple-
mented within a practical analysis pipeline that also in-
tegrates dynamic metrics and runtime behavioral insights.
We validate the effectiveness of our methodology through
extensive evaluation on two widely recognized benchmark
datasets, SolidiFI and SmartBugs. Our results demonstrate
that this hybrid strategy significantly enhances detection per-
formance, with various machine learning models, including
Logistic XGBoost and ensemble configurations, achieving
high levels of accuracy, precision, and recall in identifying
vulnerable contracts. As a tangible outcome of this research,
we present the development of a scalable, extensible web-
based tool for real-time smart contract auditing, seamlessly
integrated with the Ethereum Virtual Machine (EVM). The
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I. INTRODUCTION

Smart contracts, serving as autonomous, self-executing
protocols on blockchain platforms, have become fundamen-
tal components of decentralized applications, enabling the
automated and immutable management of digital assets [1],
[2]. However, this inherent immutability, while crucial for
trust and transparency, simultaneously introduces signifi-
cant security challenges [3]. Once deployed, vulnerabilities
within smart contracts cannot be easily patched, poten-
tially leading to substantial and irreversible financial losses.
Addressing these security concerns necessitates robust and
effective vulnerability detection mechanisms. Traditionally,
static analysis tools, such as Slither and Mythril, have been
employed to identify common vulnerability patterns [4].
While these tools provide a baseline level of detection,
they frequently encounter limitations concerning scalability
and can exhibit high false-positive rates, particularly when
confronted with increasingly complex contract architectures.



principal contributions of this research are manifold:
• The development of a multi-modal analysis framework

that synergistically combines syntactic patterns, struc-
tural heuristics, and semantic embeddings for compre-
hensive vulnerability detection.

• The successful integration of dynamic metrics, such as
gas consumption and execution behavior, into the smart
contract analysis workflow.

• A rigorous demonstration of the approach’s superior
effectiveness and generalizability through extensive
evaluation on the SolidiFI and SmartBugs datasets,
showcasing high accuracy across various models.

• The creation of a scalable and extensible web-based
tool designed for real-time smart contract auditing, pro-
viding a practical deployment avenue for our proposed
framework.

II. RELATED WORK

The detection of vulnerabilities in Ethereum smart con-
tracts has garnered significant attention, leading to the de-
velopment of various tools and methodologies. These ap-
proaches can be broadly categorized into traditional analysis
tools and machine learning-based methods. Early founda-
tional tools such as Oyente, Securify, and Mythril utilize
symbolic execution to identify known vulnerability pat-
terns [9]. Slither and SmartCheck perform static analysis
by examining the code structure without execution [10],
while Manticore offers dynamic analysis capabilities. Formal
verification tools like DefectChecker employ mathematical
models to prove the correctness of smart contracts [11].
While effective in certain scenarios, these tools often strug-
gle with scalability and may produce high false-positive rates
due to their reliance on predefined patterns.

Machine learning (ML) approaches have emerged as
promising alternatives. Classical ML techniques, including
K-Nearest Neighbors (KNN), Random Forests (RF), Deci-
sion Trees (DT), XGBoost, and Support Vector Machines
(SVM), have been employed to detect vulnerabilities, often
outperforming static tools in terms of accuracy and recall.
Hybrid frameworks such as RTMS [6] and SmartGuard
[12] combine symbolic analysis, dynamic monitoring, and
machine learning, demonstrating notable improvements in
detection precision and robustness compared to purely static
or purely ML-based methods. However, these systems often
focus on single-label or binary classifications, lacking ex-
plicit support for multi-label vulnerability detection, which
is critical given that many smart contracts exhibit multiple
vulnerability types simultaneously.

Recent advancements include the use of large language
models (LLMs) for vulnerability detection. For instance,
Smart-LLaMA employs a two-stage post-training approach,
integrating smart contract-specific data to enhance detection
and provide explanations for identified vulnerabilities [13].
Contrastive learning has also been explored to improve
detection performance by capturing fine-grained correlations
among contracts. The Clear model, for example, utilizes
contrastive learning to enhance the recognition of smart
contract vulnerabilities, achieving significant improvements
over traditional deep learning methods [14].

Despite these advancements, challenges remain, including
limited dataset quality, inadequate explanation capabilities,
and the need for models that can generalize across diverse
contract types. Our work addresses these gaps through a
novel binary classification framework that integrates static
heuristic features with contextual semantic embeddings de-
rived from CodeBERT, aiming to enhance detection perfor-
mance and provide a scalable solution for smart contract
vulnerability classification. This approach, which also incor-
porates dynamic metrics and runtime insights, demonstrates
the potential for improved accuracy and scalability in smart
contract vulnerability detection. Additionally, by acknowl-
edging the current gap in multi-label classification, our work
lays the foundation for future extensions toward more fine-
grained, multi-vulnerability detection frameworks.

III. METHODOLOGY

Our proposed framework employs a multi-stage pipeline
that combines static heuristics, semantic embeddings, and
runtime insights to detect vulnerabilities in smart contracts.
Figure 1 illustrates the proposed method for smart contract
vulnerability detection.

Fig. 1. Overview of the proposed smart contract vulnerability detection
system.

A. Datasets and Evaluation

• SmartBugs-Wild: The SmartBugs-Wild dataset is a
large-scale collection of real-world smart contracts col-
lected from public Ethereum sources such as Etherscan.
It contains over 47,000 contracts, organized according
to the output of several static analysis tools includ-
ing Mythril, Slither, and Manticore. Each
contract is labeled with known vulnerabilities such
as reentrancy, timestamp dependency, integer over-
flows/underflows, and access control issues. Due to the
reliance on automated tools, some labels may be noisy
or imprecise, making this dataset a valuable benchmark
for evaluating the robustness of classifiers in real-world
and imperfect scenarios [12].



• SolidiFI Benchmark: The SolidiFI benchmark dataset
is a curated and labeled collection of smart contract
pairs—each containing a buggy and a corrected ver-
sion. It is specifically designed for vulnerability detec-
tion benchmarking. Each pair is annotated with high-
confidence binary labels indicating the presence or ab-
sence of specific vulnerabilities, including reentrancy,
infinite loops (DoS), transaction-ordering dependence
(TOD), arithmetic overflows, and unauthorized access
[15].

B. Data Extraction from Smart Contracts

To enable machine learning models to analyze smart
contracts and predict potential vulnerabilities, each contract
is transformed into a comprehensive feature vector X that
combines syntactic, semantic, and structural information. For
the input matrix X , we fused deep semantic representations
with succinct, expert-driven code metrics into a single vector
of dimension 768 + 13 = 781. Concretely, each contract i
is represented by

xi = ei︸︷︷︸
768-dim CodeBERT

embedding

∥ fi︸︷︷︸
13 hand-crafted

features

∈ R781,

where: - CodeBERT embedding ei: the mean-pooled,
768-dimensional output of a pre-trained CodeBERT model,
capturing rich syntactic and semantic patterns in the con-
tract’s token sequence.

- Distinct Features fi ∈ R13: standardized counts of
structural metrics (contract length, number of functions,
modifiers, events, state variables, external calls, loops) and
vulnerability pattern occurrences (REGEX-based counts for
the six target vulnerability types). By concatenating these
two complementary representations, X leverages both the
transfer-learned context of large code corpora and the in-
terpretability and domain knowledge encoded in concise,
manually engineered features yielding a robust, expressive
input for all downstream classifiers. Table I presents a com-
prehensive analysis of a smart contract example from which
we extracted 13 distinct features. The analysis encompasses
both static code metrics and security vulnerability indicators.
The contract is classified as vulnerable if it contains at least
one vulnerability from any of them.

Each Solidity contract was preprocessed by removing
comments, normalizing whitespace, and tokenized using the
standard CodeBERT-compatible tokenizer for source code,
preserving identifiers, keywords, and structural delimiters.

These 13 features were selected based on prior literature
and an internal correlation analysis showing significant rela-
tionships (p < 0.05) with the presence of vulnerabilities in
the training set.

Dynamic metrics such as gas usage behavior under test
inputs were also integrated as additional features, provid-
ing insight into operational characteristics that may signal
vulnerabilities.

C. Contextual Semantic Embeddings with CodeBERT

To move beyond surface-level syntax and capture deeper
contextual understanding, we use CodeBERT, a transformer

TABLE I
SUMMARY OF STATIC CODE METRICS AND IDENTIFIED VULNERABILITY

PATTERNS IN A SMART CONTRACT.

Metric Value

Contract Features
Contract Length (characters) 17,862
Number of Functions 97
Number of Modifiers 2
Number of Events 3
Number of State Variables 0
Number of External Calls 53
Number of Loops 1

Vulnerability Metrics using REGEX patterns
Reentrancy Issues 0
Integer Overflows 1
Infinite Loops 0
Transaction-Ordering Dependence (TOD)
Bugs

0

Denial of Service (DoS) 2
Unauthorized Access Locations 19

model pre-trained extensively on source code corpora. Code-
BERT excels at understanding programming language se-
mantics and structure. Each smart contract’s source code
is tokenized and fed into CodeBERT. We derive a fixed-
length vector representation by averaging the hidden states
of CodeBERT’s final layer. This process yields a 768-
dimensional embedding for each contract, encapsulating rich
semantic information about its potential behavior and latent
structures relevant to vulnerability detection.

As part of preprocessing, particularly addressing the
variance observed in datasets like SmartBugs, these em-
beddings undergo normalization using StandardScaler.
This transformation scales the embeddings to have zero
mean and unit variance, ensuring feature dimensions con-
tribute equitably during model training and mitigating the
impact of outliers. An example snippet of a generated
CodeBERT embedding for a contract is shown below:

{
"contract_name": "buggy_34.sol",
"embedding": [
-0.364, 0.166, 0.409, -0.165, -0.254,
-0.093, -0.067, 0.197, 0.296, 0.284,
0.073, 0.979, -0.163, -0.413, 0.867,
0.127, 0.383, 0.230, 0.011, -0.061,
...
0.256, -0.201, 0.470, 0.812, -0.098
],
"model": "CodeBERT",
"generated_on": "2025-04-20T14:30:00Z"
}

D. Evaluation Metrics

All models are evaluated using standard binary classifica-
tion metrics. The metrics employed are:

• Confusion Matrix: A table summarizing the model
performance by showing the counts of true positives
(TP), true negatives (TN), false positives (FP) and
false negatives (FN). This provides an overview of the
model’s classification capabilities.



• Accuracy: The proportion of total correct predictions,
calculated as TP+TN

TP+TN+FP+FN .
• Precision: The proportion of correctly predicted posi-

tive instances among all instances predicted as positive,
given by TP

TP+FP .
• Recall (Sensitivity): The proportion of actual positive

instances that were correctly identified, calculated as
TP

TP+FN .
• F1-Score: The harmonic mean of Precision and Recall,

providing a single score that balances both metrics,
computed as 2× Precision×Recall

Precision+Recall =
2TP

2TP+FP+FN .
• AUC-ROC: The Area Under the Receiver Operating

Characteristic Curve, which measures the model’s abil-
ity to distinguish between positive and negative classes
across various threshold settings. It represents the trade-
off between the True Positive Rate (Recall) and the
False Positive Rate ( FP

FP+TN ).

To ensure robust performance assessment and mitigate po-
tential biases from data distribution, a stratified 80/20 train-
test split is utilized. Furthermore, cross-validation techniques
are applied during the training phase to validate model
generalization capabilities.

a) Machine Learning Models: Our approach employs
a binary classification framework to identify potentially
vulnerable smart contracts based on their source code repre-
sentations. As detailed previously, each contract ci is repre-
sented by a unified feature vector xi ∈ Rd, concatenating f
static heuristic features with a 768-dimensional CodeBERT
embedding (d = 768 + f ). The classification task assigns a
label yi ∈ {0, 1}, where yi = 0 indicates the presence of
at least one critical vulnerability (e.g., reentrancy, overflow,
ToD, unauthorized access, DoS) and yi = 1 signifies the con-
tract is deemed secure (normal). This dataset {(xi, yi)}ni=1

forms the basis for training and evaluating various machine
learning classifiers.

We investigate several machine learning models, ranging
from established ensemble methods to hybrid architectures
incorporating deep learning, selected for their suitability
in handling complex, high-dimensional data derived from
source code.

• Random Forest (RF): An ensemble method construct-
ing K decision trees hk. It uses bootstrap aggre-
gating (bagging) and feature randomness to mitigate
overfitting. The final prediction for an input xi is
typically the majority vote (mode) across all trees:
ŷ = mode{hk(xi)}Kk=1. RF is robust to feature scaling
and effective with heterogeneous data types.

• Gradient Boosting (GB) / XGBoost: These are it-
erative ensemble techniques building models sequen-
tially. Each new model hm focuses on correcting the
errors (residuals) of the previous ensemble Fm−1. The
final model is an additive combination: FM (x) =∑M

m=1 γmhm(x). XGBoost (Extreme Gradient Boost-
ing) enhances standard GB with regularization terms
(L1 and L2) to prevent overfitting and incorporates opti-
mizations for efficiency and parallel processing, making
it highly effective for classification tasks. Our Logistic
XGBoost variant specifically uses logistic regression
principles within the boosting framework, optimizing

the logistic loss function.
• Hybrid Deep Learning Models: We explore architec-

tures combining deep learning feature extraction with
traditional classifiers:

– RF-CNN: Utilizes Convolutional Neural Networks
(CNNs) to automatically learn hierarchical features
from the input (potentially applied to embeddings
or structured heuristic data), followed by a Random
Forest classifier for the final prediction. This uses
CNNs’ pattern recognition capabilities.

– RNN-FC: Employs Recurrent Neural Networks
(RNNs), specifically Long Short-Term Memory
(LSTM) units, suitable for capturing sequential
patterns within the code structure (if applicable
to the input representation), followed by Fully
Connected (FC) layers for classification.

• Ensemble Classifier (Soft Voting): To enhance overall
robustness and performance, we implement an ensem-
ble model that aggregates predictions from multiple
base classifiers (e.g., RF, XGBoost, RF-CNN). Using a
soft voting strategy, the final prediction is based on the
average of the predicted probabilities pm(xi) from each
base model m: p̂ = 1

M

∑M
m=1 wmpm(xi) (where wm

are optional weights, typically uniform). The class with
the highest average probability is chosen. This approach
typically yields more stable and accurate predictions
by reducing variance and using the diverse strengths of
individual models.

The integration of CodeBERT embeddings is pivotal,
providing deep semantic understanding that complements the
explicit patterns captured by heuristics. The use of ensemble
methods, particularly soft voting, further bolsters prediction
reliability and generalization, crucial for deploying depend-
able security auditing tools. Techniques like cross-validation
and class weighting are also employed during training to
handle potential class imbalance and ensure model robust-
ness. This multi-faceted modeling strategy aims to create a
scalable and effective solution for real-time smart contract
vulnerability assessment.

Fig. 2. F1 score improvement from feature combination across models.

IV. RESULTS AND EVALUATION

This section presents the results of our binary vulnera-
bility classification framework on the SolidiFI-Correct and



SmartBugs-Correct datasets, highlighting the standalone per-
formance of heuristic, semantic, and dynamic models. As
shown in Fig. 2, combining heuristic features with semantic
features leads to clear F1 score improvements across the
models. This integration enhances the model’s ability to cap-
ture both structural patterns and contextual code meaning,
with advanced models like RF-CNN and Logistic XGBoost
demonstrating the greatest gains.

A. SolidiFI Results
The SolidiFI-Correct dataset demonstrates excellent sep-

arability across multiple classifiers. Table II presents the
results for SolidiFI. Logistic XGBoost, when applied to
heuristic features, achieved perfect performance across all
metrics (Accuracy = 100%, Precision = 100%, Recall =
100%, F1 = 100%). Classical machine learning classifiers
such as Random Forest also achieved near-perfect accuracy
(98–99%). Models trained on semantic embeddings from
CodeBERT showed consistent performance, with CNN and
RNN-based architectures reaching over 95% F1-score. Dy-
namic analysis models, while slightly behind, maintained
accuracy above 90%, confirming their complementary nature
in assessing runtime behavior. The ROC curves in Figure 3
illustrates the excellent discriminative power of the models
on the SolidiFI-Correct dataset.

TABLE II
PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS ON

SOLIDIFI

Model Accuracy Precision Recall F1 Score AUC-ROC
Basic Models
Random Forest 0.986 0.986 1.000 0.993 1.000
Gradient Boosting 0.971 0.986 0.986 0.986 0.493
Advanced Models
Logistic XGBoost 1.000 1.000 1.000 1.000 1.000
RF-CNN 0.986 0.986 1.000 0.993 1.000
RNN-FC 0.986 0.986 1.000 0.993 0.464
Ensemble Model
Ensemble 0.986 0.986 1.000 0.993 1.000

Fig. 3. ROC curves on SolidiFI-Correct dataset.

B. SmartBugs-Correct Results
SmartBugs-Correct, being more diverse and realistic,

yielded lower but still strong results. Heuristic-based mod-
els such as Random Forest and XGBoost performed well,

averaging around 96-97% across metrics. Embedding-based
models also showed high precision and recall, particularly
CNNs using CodeBERT representations, with an F1-score
above 94%. Dynamic models showed moderate success
due to increased variance in contract execution patterns
but remained competitive. Table III presents the results for
SmartBugs. Figure 4 shows the ROC curves, highlighting
strong classifier performance despite the dataset’s greater
complexity.

TABLE III
PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS ON

SMARTBUGS-CORRECT

Model Accuracy Precision Recall F1 Score AUC-ROC
Basic Models
Random Forest 0.949 0.967 0.977 0.972 0.971
Gradient Boosting 0.941 0.949 0.988 0.968 0.950
Advanced Models
Logistic XGBoost 0.950 0.981 0.963 0.972 0.968
RF-CNN 0.951 0.955 0.991 0.973 0.974
RNN-FC 0.899 0.900 0.999 0.947 0.830
Ensemble Model
Ensemble 0.950 0.961 0.984 0.973 0.971

Fig. 4. ROC curves on SmartBugs-Correct dataset.

C. Runtime Deployment and Execution Log

After successful deployment and execution via our Quart-
powered asynchronous web interface, the selected Solidity
smart contract was compiled using solc version 0.8.0 and
deployed within a locally simulated Ethereum Virtual Ma-
chine (EVM) using Web3.py. The analysis returned a risk
score of 40 percent, indicating moderate security concerns,
yet no definitive vulnerabilities were flagged—aligning with
a classification of ”Not Vulnerable.” Additionally, the frame-
work computed a gas usage estimate of 1100 units and a
complexity score of 2, suggesting a relatively simple control-
flow structure. These results confirm the effectiveness of our
risk scoring logic and gas estimation module. The end-to-end
deployment and analysis demonstrate the practical capability
of our framework to perform secure, runtime-aware smart
contract assessment in a production-ready environment.

The log represented in Figure 5 represents the live exe-
cution environment for our analysis framework. The smart
contract was processed using Quart (an asynchronous Python



Fig. 5. Terminal output demonstrating successful deployment and analysis
using the Quart-based mediator

framework) and executed locally on port 5000. Compilation
was conducted using solc version 0.8.0. The analysis end-
point /api/analyze/single was successfully called
twice, confirming full end-to-end functionality. This deploy-
ment confirms the seamless integration of our system with
the Solidity compiler, Web3 interface, and EVM emulator.
It also validates the scalability of our web-based interface
for repeated secure contract analysis in a real-time audit
scenario.

V. CONCLUSION

This paper introduced a comprehensive framework for the
security assessment of smart contracts, integrating semantic,
structural, and static analysis techniques within a machine
learning-based pipeline. The current approach employs a bi-
nary classification mechanism that uses CodeBERT embed-
dings alongside distinct vulnerability features to determine
the safety of smart contracts prior to deployment. The frame-
work supports both static heuristics and dynamic behavioral
insights, enabling pre-deployment evaluation directly in an
EVM-compatible environment via a custom-built WebUI
interface. Future work will focus on extending this binary
classification framework to a multi-label setting, allowing
for precise identification of specific vulnerability types and
improving contextual risk interpretation. Moreover, enhanc-
ing the integration of dynamic metrics, such as detailed gas
usage patterns and runtime behavior traces, could further
strengthen the system’s detection capabilities. Empirical
evaluation of the tool’s scalability and performance in real-
world scenarios will also be explored to support practical
deployment.
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