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Abstract. Semantic technologies aim to represent information or models in formats
that are not just machine-readable but also machine-understandable. To this effect, this
paper shows how the semantic concepts can be layered on top of the derived models to
provide a more contextual analysis of the models through the conceptualization method.
Technically, the method involves augmentation of informative value of the resulting mod-
els by semantically annotating the process elements with concepts that they represent in
real-time settings, and then linking them to an ontology in order to allow for a more
abstract analysis of the extracted logs or models. The work illustrates the method using
the case study of a learning process domain. Consequently, the results show that a system
which is formally encoded with semantic labelling (annotation), semantic representation
(ontology) and semantic reasoning (reasoner) has the capacity to lift the process mining
and analysis from the syntactic to a more conceptual level.
Keywords: Semantic annotation, Ontologies, Reasoner, Process mining, Process mod-
elling, Learning process, Event logs

1. Introduction. Today, process mining (PM) [1] has become a valuable technique used
to discover meaningful information or models from the readily available events log stored
in many IT systems. The PM combines techniques from the computational intelligence
which has been lately considered to encompass artificial intelligence (AI) or even the latter,
augmented intelligence systems, and data mining (DM) to process modelling as well as
several other disciplines in order to analyze event data logs. Nonetheless, a common
challenge with most of the existing process mining and analysis techniques is that they
depend on tags (e.g., labels) in event logs information about the processes they represent,
and therefore, to a certain extent are limited because they lack the abstraction level
required from real-world perspectives. This means that the techniques do not technically
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gain from real knowledge (semantics) that describe the tags in the events log of the domain
processes in question.
For this purpose, this paper explores the technological potentials and prospects of

using the semantic-based tools or method to manage perspectives of the process mining
and the resultant process models – using a case study of the learning process. In essence,
the paper addresses the challenges posed by the traditional process mining and analysis
techniques by providing a method that considers and focuses on integrating semantic
technologies within the existing process knowledge-bases. Thus, the proposed method
allows for analysis of the readily available events log about the domain processes based
on concepts rather than the tags or labels in the events log of the process. Besides, [1-4]
note that an accurate exploration and analysis of the extracted events log is capable of
providing useful information with regards to the quality of support being offered for the
so-called organizations or the process owners as well as the information systems at large.
Nowadays, a greater number of derived models in many information systems tend to

support just machine-readable systems rather than machine-understandable systems at
large. Perhaps, by machine-understandable systems, we refer to methods that are devel-
oped not just for representing information in formats that can be easily understood by
humans, but also for creating applications and/or systems that trail to inclusively process
the information that they contain or support. Moreover, an adequate knowledge-base
system is one which is (i) understandable by humans, and (ii) understandable by ma-
chines. This means that the process models are either semantically labelled (annotated)
to ease the analysis process, or represented in a formal structure (ontology) which allows a
computer (e.g., the reasoner) to infer new facts by making use of the underlying relations.
Technically, the method of this paper is realized by defining formats (semantic view-

points) on the level of systems performance (i.e., domain processes in view) and the sets
activities executions in relation to how the processes have been performed (process work
flows) [5]. In turn, the semantic modelling process provides us with the opportunity to
develop intelligent methods/algorithms that are capable of analyzing the resulting models
through explicit specifications of the different process elements otherwise referred to as
conceptualization [6-9]. Specifically, [8,9] show the significance of such an ontology-based
approach. According to the results [8,9], the ontology-based method involves semantic
descriptions and/or reformulation of the meanings of the labels/attributes in the events
logs and models as well as their comparisons for the purpose of improving the usefulness
and performance of the domain processes in general.
Moreover, there have been some existing gaps in the literature that motivate the work

done in this paper, for example, the problems which are associated with information re-
trieval and extraction from large growing databases [21]. According to [21], a vast number
of such systems constructing large knowledge-bases continuously grow, and most often,
they do not contain all of the facts for each process element (instance) representation,
thereby, resulting in some kind of missing value datasets. In other words, a well-designed
information retrieval (mining) system perhaps should present the results and/or discov-
ered patterns in a formal and structured format with the capacity of being interpreted as
domain knowledge or to further enhance the existing knowledge-base [2]. Basically, one
of the main challenges with the methods which are used to perform information retrieval
and extraction is that they rely exclusively on the syntax of labels in the databases, and
are very sensitive to data heterogeneity, label name variation and frequent changes [22].
As a result, a number of the resultant process models are discovered without some kind of
hierarchy or structuring. Nonetheless, to address the aforementioned problems, [22] links
labels in event logs to the underlying semantics that describes the discovered models,
in order to provide a more accurate mining and compact analysis of the said processes
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at different levels of abstraction. Moreover, [22] proposes a semi-automatic procedure
used to associate semantics to training labels through the extraction of process models
annotated with semantic information. In the experiment, [22] uses the Ontology Abstract
Filter plug-in in ProM [23] as input to a semantically annotated log to produce as output
an event log where the names of tasks in the training labels are replaced by the names of
a set of chosen concepts. The produced log is then exported as semantically annotated
mining extensible markup language (SA-MXML) [3] file format that consequently allows
for performing a control-flow mining. In addition, the control-flow mining is done by using
the heuristic miner algorithm [24,25] to extract and interpret the process models based
on the concepts that have been defined.

Equally, there are problems associated with the methods such as the semantic web
search technologies (that trail to combine the information extraction (IE) [36] and in-
formation retrieval (IR) [37] methods to find meaningful information or files from large
collections of databases, and then present the output/results to the users based on some
pre-specified information need). For example, [39] notes that semantic web technologies
(e.g., knowledge and information management system (KIM) [39,41], SemTag system [42]
and Magpie [43]) are not only useful to add machine tractable or repurposable layer of
annotations that are relative to ontologies, but are at the same time required to match
or complement the overwhelming (omnipresence) web of natural language hypertext [40].
Perhaps, this is done by creating semantically annotated terms and then linking the result-
ing pages to ontologies. Moreover, the web ontology language (OWL) [10,27] has emerged
as the standard format for defining the semantic web ontologies, and has since in recent
years, widely been accepted and particularly utilized towards advanced structuring of in-
formation or process engineering/modelling. Indeed, the combined idea of IE and IR is
the mechanism upon which the semantic web search methods such as the semantic-based
approach proposed in this paper are built.

This paper applies the method (i.e., semantic-based annotation and modelling of the
domain processes) on a case study of the learning process domain in order to demonstrate
the usefulness of the proposed approach. Essentially, the method takes account of the
different stages of the process mining and models analysis (i.e., from the initial phase
of collecting and transformation of the readily available events data log to discovering of
useful process models) and then carries out semantical annotation of the extracted models
for further analysis and querying at a more abstraction level. By the abstraction levels
of analysis, the work shows that the semantic-based approach is able to provide an easy
and accurate way to analyze the datasets (i.e., the event logs and models) by allowing the
meaning of the process elements to be enhanced through the use of property descriptions
languages and schema, such as the web ontology language (OWL) [10], semantic web rule
language (SWRL) [11], and description logic (DL) queries [12]. This is done in order to
make available inference knowledge which is then utilized to determine useful patterns by
means of the semantic reasoning aptitudes.

The rest of the paper is structured as follows. In Section 2, the work provides back-
ground information and discusses appropriate related works within the field of semantic
technologies and its main application areas. Section 3 describes the main method and pro-
poses sets of algorithms used for ample implementation of the semantic-based approach in
this paper. In Section 4, the study describes how the semantic-based approach is applied
in real-world settings to show the usefulness of the method. Also, the work shows how it
utilized the case study of the learning process to illustrate the proposed method. Section
5 discusses the overall results and experimentation outcomes of this paper – particularly
by weighing the results of the method against other benchmark algorithms/approaches
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used for process mining. Finally, the paper concludes and highlights the limitations to
study and directions for future works in Section 6.

2. Background Information. The work discusses in this section, the different tech-
nologies or methods that have been dedicated to modelling/analysis of the events logs
and process models especially as it concerns the semantic-based approaches and process
mining techniques.

2.1. Semantic annotation and data labelling. One of the biggest challenges when
performing process mining and analysis task is to discover the correct information and to
comprehend (understand) what they mean [13-15]. According to Rozinat [13], it could
be anything between really easy or very complicated to figure out the semantics (meta-
data) information from existing logs in many IT systems. Besides, the outcomes of such
a method often depend on how distant the logs are from the actual data labels or tags
(annotation). The works in [16-19] show that the annotated logs or models are necessary
for the semantic-based process analysis, and consequently, model enhancement to follow.
Specifically, [16] notes that the semantic annotations or yet still, data labelling is an
essential component in realizing such methods that support the semantic-based process
mining approach by automatically conveying the formal structures of the derived models
or extracted logs. In theory, Lautenbacher et al. [17,18] state that semantic annotation
is defined formally as a function that returns a set of concepts from the ontology for
each node or edge in the resultant graph/models. Whereas Born et al. [19] note that
the semantic annotation process could be carried out either manually, or automatically
computed bearing in mind the similarity of words to generalize the individual entities
within the domain processes in view. Recently, Jonquet et al. [20] have studied ontology
metadata practices by analyzing metadata annotations of different ontologies and review-
ing the most standard and relevant vocabularies. [20] systematically compares different
metadata implementation in various ontology repositories (reference libraries) in order to
build a new descriptive model that can be used to describe ontologies.
Likewise, the work in this paper introduces a semantic-based method that transforms

the extracted datasets and models into minable executable formats (through the use of
property description languages) to support the discovery of improved or enhanced process
models. In other words, the proposed technique for annotating the unlabelled activity
sequences of this paper uses the ontology schema/vocabularies (e.g., OWL, SWRL, DL
queries, restriction properties) to provide metadata or object property assertions that
allows for the discovering of useful information or class expressions in existing knowledge-
bases through the semantic reasoning aptitudes.

2.2. Semantic-based process analysis and knowledge engineering. Indeed, exist-
ing works in the literature show that effective methods for semantic-based process min-
ing and analysis should focus on information about resources hidden within the process
knowledge-base, and how they are related [3,4,9,21,22]. Typically, the techniques for the
semantic-based analysis allow the meaning of the domain entities and object properties to
be enhanced through the use of property characteristics and classification of discoverable
entities. Essentially, the method is applied in order to permit for analysis of the extract-
ed event logs and models based on concepts rather than the event tags or labels about
the process. Currently, there are not too many algorithms that support such semantic
analysis and there are few existing applications that demonstrate the capabilities of the
semantic-based approach [3,4,8,16,21,23]. The works in [16,23] show how semantic anno-
tations and reasoning can be used to provide a more improved analysis (enhancements) to
process models and event logs through concept matching (e.g., ontology population and
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classifications). Specifically, the work in [23] shows how to perform the semantic modelling
and integration of the resulting process mappings (ontology graphs) with annotated terms
and then present the domain knowledge for the activity workflows and concepts defined
in the underlying ontology by using process description languages such as the OWL [10]
and SWRL [11]. Indeed, reasoning on the ontological knowledge plays an important role
in the semantic representation of processes [24]. Besides, semantic reasoning allows for
the extraction and conversion of explicit information into some implicit information, for
example, the intersection or union of classes, description of relationships and concepts or
role assertions.

In short, any ontology-based systems should not only contain the information about
the specific domains which they represent but should also provide information about the
identified instances (process elements) as well as their individual properties. In other
words, an effective ontology-based system must contain a set of well-defined components
(e.g., classes) with their full semantic descriptions [9].

3. Method. Typically, this work shows that much of the effort in developing a semantic-
based process mining and analysis method relies mainly on constructing an effective sys-
tem that integrates the three main building blocks, namely: annotated logs or models,
ontologies and semantic reasoning. In fact, the thematic focus and targeted goal of the
method described in this paper and its main application come in well-defined stages as
described in Figure 1 and are subsequently illustrated in detail in the next subsection of
the paper.

Figure 1. Main aspects of implementing the semantic-based annotation
and ontological modelling technique

As gathered in Figure 1, the semantic model which forms the basis of analysis in this pa-
per consists of ontologies or class hierarchies (taxonomies/OntoGraphs) which are loaded
into the system using the OWL application programming interface (API). Moreover, the
underlying process is a recursive process that can be performed as many times (infinite)
based on the predefined users’ queries or analysis questions.

Furthermore, whilst the proposed semantic-based annotation and ontological modelling
process (Figure 1) and sets of semantically motivated algorithms (see Algorithms 1, 2
and 3) are focused on describing the meaning of the process models and the underlying
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relations (Algorithm 1), the events log attributes and assertions (Algorithm 2), and the
process description and analysis (Algorithm 3) which are all devoted to binding together
the different concepts (classes) that make up the defined model. Moreover, the semantic
approach focuses on ways that maximize the use, effect, and outcomes of the method
particularly from a real-world process point of view by making use of case study of the
learning process to demonstrate the method.
In summary, the main components realized as a result of implementing the proposed

method as described in Figure 1 are as follows:
(i) Event Logs and Models – show how process mining is applied to improving the

informative value of real-time process data.
(ii) Process Mapping (modelling) – describes how improved process models can be

derived from the large volumes of event data logs found within the different process
domains.
(iii) Semantic Annotation – describes how semantic descriptions (annotation) of the

deployed models can help enrich the result of the process mining and outcomes through
discovering of new knowledge about the process elements and the underlying relations.
(iv) Ontology – use of ontologies with effective semantic reasoning to lift process mining

analysis from the syntactic level to a more conceptual level.
(v) Sets of semantically motivated algorithms – reveal how references to the ontologies

can help address the problem of analyzing the events logs or models based on concepts and
to answer questions about relationships the process instances share amongst themselves
within the knowledge-base.

3.1. Method for semantic annotation and modelling of process models. The
purpose of semantical annotation of the process models is to provide metadata (process
descriptions) that can help represent the events data logs and the discovered models in a
formal and structured manner (ontology). The primary aim is to construct a semantic-
based reference library (i.e., metadata) for the different process elements (entities), which
are then used to support the modelling and analysis of the processes in question. This
is done in order to provide domain knowledge (inferences) that can help provide a more
conceptual understanding and/or further enrichment of the derived models. Technically,
the semantic depiction/representation of the discovered models in an ontological form
is a very important step in the method of this paper. In fact, the method is primarily
aimed at unlocking the information value of the event data logs (EDL), and the derived
process models, M (as described in Algorithm 1) by way of finding useful and previously
unknown links between the process elements and the deployed models. Moreover, the
use of reasoner to infer the various process instances relies exclusively on the ability to
represent such information in a formal way (ontology) in order to create a platform for
an enhanced (conceptual) analysis of the individual process elements or knowledge-base.
Algorithm 1 describes how the work generates ontologies from the process models and
event logs.
From Algorithm 1, we note that ontologies (Ont) are a formal explicit specification of

shared conceptualization that can be applied in any context [25]. Indeed, the semantic
annotated logs and models are very fitting for further steps of semantically enhancing and
carrying out accurate analysis of the process models. This is owing to the fact that at
this stage, the input data are represented in a formal and structured format (taxonomies)
that can connect to referenced concepts within the ontologies. Interestingly, from the
algorithm (Algorithm 1), the work shows that ontologies can be defined as a quadruple,
i.e.,

Ont = (C,R, I,A)
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Algorithm 1: Procedure for developing ontologies from process models & event logs
1: For all defined models M and event log EDL
2: Input: C – different classes for all process domain

R – relations between classes
I – sets of instantiated process individuals
A – sets of axioms which state facts

3: Output: semantically annotated graphs or semantic model
4: Procedure: create a semantic model with defined process descriptions and assertions
5: Begin
6: For all process models M and event log EDL
7: Extract classes C ← from M and EDL
8: while no more process element is left do
9: Analyze classes C to obtain process instances, class hierarchies, and relations
10: If C ← Null then
11: obtain the occurring process instances (I) from M and EDL
12: Else If C ← 1 then
13: create the relations (R) between objects and data types // i.e., between classes

C and individuals (I)
14: If relations R exist then
15: For each class C ← semantically classify or populate extracted relationships

(R) to state facts, i.e., Axioms (A)
16: create the class structures by adding the extracted relationships and individuals

to the ontology
17: Return: taxonomy
18: End If statements
19: End while
20: End For

which consists of different classes, C, and relations, R, between the classes [17,25,26].
Perhaps, a relation, R, trails to connect a set of class(es) with either another class (or
fixed-literal) and is capable of also describing the sub-assumption hierarchies (taxonomy)
that exists between the various classes. In essence, the class(es) are instantiated with a
set(s) of individuals, I, and can likewise contain a set(s) of axioms, A, which states facts
(e.g., what is true and fitting within the model, or what is true and not fitting within the
model). In other words, ontologies can be defined as connected sets of taxonomies (RDF
+ Axioms), or yet, structuring in a formal way (Triple + Facts) where the subject includes
the defined classes and predicate representation of the relations, whereas the object in-
cludes the individuals (process instances) and sets of axioms which states facts. Petrenko
and Petrenko [26] are even more specific about the importance of the ontological concepts
(particularly classes) in semantic representation of process models. [26] notes that “class-
es are the central item of the ontology” and further states that a well-defined class may
represent all types of procedures, e.g., running tasks, data transmission, data flow control,
and activity workflows. In theory, the ontological concepts, process descriptions, relations,
etc. as shown in Algorithm 1 show that semantic annotation is an essential way of re-
alizing the ontology-based system (that supports semantic-based process modelling and
analysis) by automatically conveying the formal semantics of the derived models and/or
extracted logs [17,18]. In other words, the annotated logs or models are necessary for
concrete implementation of the semantic-based process mining and analysis [8,9,16]. In
principle, semantic annotation of the process models is defined formally as [17]:

SemAn :: N ∪ E→ COnt
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where SemAn describes all kinds of annotations which can be input, output, meta-model
annotation, etc. Besides, semantic annotations can be carried out in different ways (either
manually, semi-automatically or automatically) [19] depending on the domain process in
question, or the authoring tool/method the process analyst/developers choose. In fact,
semantically planning of any ontology-based system such as the method of this paper
requires that all process modelling, and definition of the ontologies must include some
form of semantic annotation. Moreover, by taking account of the definition in [17] if we
let A be the set of all process actions. A process action a ∈ A is characterized by a set of
input parameters Ina ∈ P , which is required for the execution of a and a set of output
parameters Outa ⊆ P , which is provided by a after execution. All elements a ∈ A are
stored as a triple (namea, Ina, Outa) in a process library libA.
To do this, at first, the extracted logs/models from the standard process mining tech-

niques are represented as a set of annotated terms which links or relates to defined terms
within an ontology as illustrated in detail in the following figure (Figure 2). Indeed, the
method makes it straightforward to represent the extracted information in an easy and
yet accurate manner.

Figure 2. Incremental procedure used for implementing the process de-
scribed in Algorithm 1

Secondly, the resulting ontologies provide means to represent the annotated terms or
process in a formal and structured way by defining the associations (relationships) between
the different process elements as observed in the model. Perhaps, the method also ensures
that the various range of tasks (activities) conforms naturally to the event logs as well
as the model representations. This is achieved by encoding the deployed models in a
formal structure of ontologies (i.e., semantic modelling), and even more, supports further
expansion (or improvement) of the existing model.
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Finally, the reasoner (the inference engine) is designed to perform semantic reasoning
and ontology classification of the different process elements in order to validate the re-
sulting model and clean out inconsistent outputs, and consequently, presents the inferred
(underlying) semantic associations in a structured manner.

Moreover, the work highlights in Figure 2 the incremental contributions and/or main
functions of Algorithm 1.

In theory, as gathered in the aforementioned process, the work shows that the first step
towards achieving semantic annotation of the derived models should aim at making use of
process description languages/assertions (e.g., OWL, SWRL, DL Queries) [10-12] to link
elements in the models with concepts that they represent in well-defined ontologies. Prac-
tically, the purpose of the method (semantic annotation) is to seek equivalence between
the concepts of the derived models with concepts of the defined ontologies.

The following Figure 3 is an exemplary model for the learning process (research do-
main) which the work uses to illustrate the practical implementation of the method and
experimental setup. The process as represented in Figure 3 has been modelled using the
business process modelling notation (BPMN). The resulting output (semantic-based an-
notation of the models) is an ontological model (OntoGraph) which consists of semantic
assertions (labelled concepts) as shown in Figure 4. Consequently, in Figure 4 (which is
described in detail in Section 4.1), the work makes use of the process description languages
such as OWL and SWRL to create the semantic model that represents the model shown
in Figure 3.

Figure 3. Research learning process (input process model)

3.2. Automated generation of process instances, and class concepts. According-
ly, Algorithm 2 describes how the work determines the correlation between concepts of
the process models and concepts of the defined domain ontologies. This is done using
the case study of the learning process. Theoretically, the work shows in the algorithm
(Algorithm 2) how by constructing semantic-based models (i.e., with a description of the
process elements and concepts), it becomes easy to accurately determine the different
patterns or behaviours that can be found within the learning knowledge-base. Moreover,
the semantic-based learning process mining (SLPM) algorithm (Algorithm 3) explains
the basis for the semantical modelling, integration, and analysis of the different concepts.
Although the works have used the case study of the learning process to demonstrate the
implementation of the approach, the proposed steps can be applied to any given process
domain provided the variables as described in the algorithms (Algorithms 2 and 3) are
present in the readily available events logs or models.
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Algorithm 2: Generating process instances, classes, and learning activity concepts (AC)
1: For all definite classes and process descriptions
2: Input: AC, learners prior activity list ACL List
3: Output: AC’s learning activity sequence set LS
4: Procedure: Generate learning activity classes and subsets
5: Begin
6: LS = Null
7: AC ProcessInstance List = Null
8: AC LearningActivity = 0
9: For all LearningActivity AC within the knowledge-base
10: Extract LS ← LS +AC
11: while no more AC is left do
12: For each Ci ∈ LS
13: Ci Precondition List ← Get Precondition (OWL xml Ci)
14: For each Cj ∈ Ci Precondition List
15: Cj CorrespondingSubSet List = Null
16: Cj ProcessInstance List = Null
17: If Cj /∈ ACL List AND Cj /∈ LS then
18: LS ← LS +Cj
19: Cj CorrespondingSubclassSet List ← Cj CorrespondingSub-

classSet List + Ci
20: Cj ProcessInstance List ← Cj ProcessInstance List + Ci +

Ci ProcessInstance List
21: Cj LearningActivity = Ci LearningActivity + 1
22: Else If Cj /∈ ACL List AND Cj /∈ LS AND Cj /∈ Ci Process-

Instance List then
23: Cj CorrespondingSubclassSet List ← Cj Corresponding-

SubclassSet List + Ci
24: Cj ProcessInstance List ← Cj ProcessInstance List +

Ci + Ci ProcessInstance List
25: If Cj LearningActivity < Ci LearningActivity + 1
26: For each Ck ∈ LS SubsequentTo Cj
27: Ck LearningActivity = All (Ck CorrespondingSubclass-

Set LearningActivity) + 1
28: Return LS
29: End For
30: End If
31: End For
32: End For
33: End while
34: End For

In principle, the work refers to the learning process as a workflow (sequence of steps)
or set(s) of activities through which the learners have to perform in order to complete
the research process [27]. To this effect, it was necessary to provide pre-defined activity
concepts, Ci, (e.g., classes) to be able to identify and/or monitor the entire process flow,
and in turn, help in classification of the sets of individual entities (process instances) that
make up the defined class.
Therefore, the learning activity concepts and class generation method (Algorithm 2)

outline the procedures that take place when generating the lists of process instances and/or
defined concepts, Ci, within the learning knowledge-base. Henceforth, for each concept
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(or class) Ci, within the knowledge-base, we first extract the preconditional (prerequisite)
list from its OWL file descriptions OWL xml Ci as shown in line 13. Then for each
concept Cj within the class list (e.g., the individual process instances) if it does not
belong to an activity list and the corresponding subclass sets, add it into the learning
activity sets and revise the Cj’s corresponding SubclassSet list, process instance list, and
number of steps to the targeted learning concepts as described in lines 14 to 21. Moreover,
if Cj already exists in the learning class list, but does not belong to the activity list and
individual (process instance) list of Ci, end the process, but also update its corresponding
subclasses, process instance list, and number of steps to the target learning concepts as
described in lines 22 to 27 (Algorithm 2).

Furthermore, if we use the following standard notation, R, to refer to the research learn-
ing process, and a, b, c, d for the activity concepts (see Algorithm 3). Then a, b, c,d ∈ R
is a function with domainR and learning process milestones or attributes a, b, c, d, where:

Domain R is a SuperClass of the SubClasses a, b, c, d as described in line 2.

Algorithm 3: Semantic-based learning process mining (SLPM) and analysis procedure
1: For all defined classes or subsets
2: Input: L – process log for Person, P , over Researchprocess, R

a – DefineTopicArea Milestone or SubClass
b – ReviewLiterature Milestone or SubClass
c – AddressProblem Milestone or SubClass
d – DefendSolution Milestone or SubClass

3: Output: Structured (superClass -> subClass hierarchies) representation and analysis of
the research process.

4: Procedure: create activities sets that make up research process, R
5: Begin
6: For all Learning Activity concepts a, b, c,d ∈ R
7: If P . . .n is a measure of the number of times a, b, c,d occurs in R for Person, P ,

then
P . . .n = |n ⊆ L ∈ R| where, P . . .n = |n ⊆ La| ± |n ⊆ Lb| ± |n ⊆ Lc|
± |n ⊆ Ld|

8: while no more process element is left do
9: Run Reasoner to infer classes and obtain formal structures
10: If PSL = |SL ⊆ L ∈ R| where, PSL = |SL ⊆ La|+ |SL ⊆ Lb|+ |SL ⊆ Lc| +

|SL ⊆ Ld| then
11: Person P , is SuccessfulLearner
12: Else If PUL = |UL ⊆ L ∈ R− 1| where, PUL = |UL ⊆ L ∈ R− a| or |UL ⊆ L

∈ R− b| or |UL ⊆ L ∈ R− c| or |UL ⊆ L ∈ R− d| then
13: Person P , is UnCompleteLearner
14: For each learner class or subsets
15: update the class hierarchies (taxonomy) by adding the extracted relationships/

individuals to the ontologies
16: Return: taxonomy
17: End If statements
18: End while
19: End For

Perhaps, we note that the Subclasses (also referred to as subsets) is a set where each
of the individual learning activity occurs and sometimes may occur multiple times.

For example, the following activities a1, a2, a3, a4, a2, a5 could be seen as a sequence
set of learning activities for Person, P . . .n over a (the DefineTopicArea Milestone).
Thus,

P . . .n(a) = |n ⊆ La| (Line 7).
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Table 1. Class expressions (process descriptions) for the process instances

Learner Category Class
Necessary condition Necessary and sufficient condition

SuccesfulLearners
class

Every SuccessfulLearner
is a LearnerCategory

Every SuccessfulLearner
isPerformerOfs an Activ-
ityConcept

Every SuccessfulLearner is something
that hasCompleteMilestone an Ad-
dressProblem
And that hasCompleteMilestone a De-
fendSolution
And that hasCompleteMilestone a De-
fineTopicArea
And that hasCompleteMilestone a Re-
viewLiterature

Necessary condition Necessary and sufficient condition

UncompleteLearners
class

Every UncompleteLearn-
er is a LearnerCategory

Every UncompleteLearn-
er isPerformerOfs an Ac-
tivityConcept

Every UncompleteLearner is something
that hasOnlyCompleteMilestone an Ad-
dressProblem
Or that hasOnlyCompleteMilestone a
DefineTopicArea
Or that hasOnlyCompleteMilestone a
ReviewLiterature

So therefore, if a1 = Define Topic, a2 = Approval Activity, a3 = Topic Decline, a4 =
Refine Topic, a5 = End Topic Proposal. Then, the sequence set of activities for P . . .n(a)
= {Define Topic, Approval Activity, Topic Decline, Refine Topic, Approval Activity, End
Topic Proposal}.
On the one hand, the learning problem which this work trails to resolve is on computing

the set(s) of individual process instances that have completed (successful learners) or not
completed (uncomplete leaners) the learning process, R. Essentially, as described in line
7 of the algorithm (Algorithm 3), the work notes that to complete a process, R (i.e., the
superClass) one must complete a set(s) of given milestones (i.e., the subClasses a, b, c, d)
and must perform the set (or perhaps a subset) of the activities that comprise it. Thus,
the sum or difference in process logs or activities for any named Person, P , is defined as
follows:

P . . .n = |n ⊆ La| ± |n ⊆ Lb| ± |n ⊆ Lc| ± |n ⊆ Ld|.

Thus, P . . .n is a finite set |n ⊆ L ∈ R|. (Line 7)
For instance, the work defines in line 10 of Algorithm 3 and as explicated in Table

1 that “Every Person that hasCompleteMilestone a DefineTopicArea and that hasCom-
pleteMilestone a ReviewLiterature and that hasCompleteMilestone an AddressProblem
and that hasCompleteMilestone a DefendSolution is a SuccessfulLearner”.
Hence, for any individual to become a member of the Class SuccessfulLearners, PSL,

the sum of a set of activities log, L, that the learner has completed must be equal to a,
and b, and c, and d. Thus,
If PSL is the Class that consist of the set |SL ⊆ La|+ |SL ⊆ Lb|+ |SL ⊆ Lc|+ |SL ⊆

Ld|.
Then PSL is the set |SL ⊆ L ∈ R|. (Lines 10 and 11).
Likewise, the work establishes in lines 12 and 13 and Table 1 that “Every Person

that hasOnlyCompleteMilestone a DefineTopicArea or that hasOnlyCompleteMilestone a
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ReviewLiterature or that hasOnlyCompleteMilestone an AddressProblem is an Uncom-
pleteLearner”.

Therefore, UncompleteLearners, PUL, is the class of learners whereby some set(s) of
activities for the milestones a, or b, or c, or d is missing over a finite set |n ⊆ L ∈ R|.
Thus,

If PUL is a Class that consist of the set |UL ⊆ L ∈ R − a| or |UL ⊆ L ∈ R − b| or
|UL ⊆ L ∈ R− c| or |UL ⊆ L ∈ R− d|,

Then PUL is the set |UL ⊆ L ∈ R− 1|. (Lines 12 and 13).
Nonetheless, Table 1 is the class expressions (i.e., properties description or assertions)

for the Successful and Uncomplete Learners class as defined within the resultant model
used for the experimentations in this paper. The table (Table 1) shows the different
attributes for the defined category of learners or concepts as a result of applying the
semantic-based method.

4. Experimental Setup and Case Study Implementation. In this paper, the case
study example of the learning process is used to show the usefulness of the proposed
method and the sets of algorithms formalization. For instance, the method is implemented
to determine what attributes or paths the learners (e.g., process instances) follow or have
in common, or what attributes distinguish the successful learners from the uncomplete
ones (as described in Table 1). The purpose is not only to answer the specified learning
questions (e.g., as defined in Algorithm 3 and Table 1) by using the semantic-based
approach, but to show how by referring to the attributes or concepts (Algorithms 1 and
2) it becomes easy to refer to a particular case (e.g., the learners categories). Interestingly,
the procedures described in Algorithms 1, 2 and 3 can be applied to any given process
domain or model, as long as there is some form of available events logs and derived models
from the processes in question.

4.1. Semantic modelling and representation of the learning process. To demon-
strate the method for semantic annotation of process models as described in this paper
(Section 3), the work defines the four milestones: Establish Context→ Learning Stage→
Assessment Stage → Validation of Learning Outcome (see Figure 3) in order to explain
the steps taken during the research process [4,8,27]. Technically, those milestones consist
of a sequence(s) of learning activities, and the order in which the individual activities are
carried out has the capability of determining the research outcome. Consequently, Fig-
ure 4 represents the Class diagram (taxonomy) for the different milestones (subclasses)
of the research process with semantic descriptions (annotations) of the different activity
concepts mappings (OntoGraph) and relationship (links) between the process instances.
The drive for the semantic mapping of the learning activity concepts is that the method
allows the meaning of the learning objects (properties) to be enhanced through the use
of property descriptions to populate the ontologies (taxonomy) and classification of the
discoverable entities.

For example, as highlighted in Figure 4, the following is the metadata description
(object or dataType property) of the DefineTopicArea (Class) concepts and assertions
within the research process domain ontology.

As described in the given example (DefineTopicArea Class), the work shows that for
any individual entity to complete the milestone or sub-process (DefineTopicArea) it must
have some set of descriptive properties (or activities) such as StartResearchProcess, De-
fineTopic, ApproveResearchProposal, or NotifiyProposalAmmendement, RefineTopicPro-
posal, and then EndDefineTopic, etc.
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Figure 4. Class diagram (taxonomies) for research process domain with
description of the concepts and assertions

DefineTopicArea Class
1: ontology ResearchProcess
2: concept DefineTopicArea
3: metadata (process descriptions):

hasBeginning someValue DefineTopic
hasEndOfProcess someValue EndDefineTopic
hasStartOfProcess someValue StartResearchProcess
hasActivityType someValue ApproveResearchProposal
hasActivityType someValue NotifyProposalAmmenment
hasActivityType someValue RefineTopicProposal

4: axiom: DefinitionOfDefineTopicAreaMilestone

In fact, regardless of the domain in view or process that one may be analyzing (e.g.,
case study of the learning process in this paper) we show how the various entities and/or
ontological classifications (taxonomies) for any given process are effectively designed, se-
mantically modelled, and developed.
In short definition, property restrictions otherwise referred to as semantic labelling

of data or models structuring, stand as a good practice for representation of any given
process. This is done by providing a formal way of determining the individual process in-
stances and the relationship they share within the knowledge-base. Moreover, the method
can be applied to any given domain as shown in this paper using the case study of the
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learning process. On the one hand, not only does this kind of ontology-based represen-
tation (formal structuring or taxonomies) support the application of rules such as the
SWRL [11] and DL queries [12] and/or re-use of an ontology by another ontology, but on
the other hand, it minimalizes the level of human-errors which are every now and again
present especially when managing the manifold existence of entities (concepts) within
domain processes.

5. Results and Discussion. The use of semantic labelling (annotations) and ontologies
(Ont ∈ Onts) including the defined relations (R) between concepts (COnts) and inferred
axioms (A) for process modelling have proved beneficial to aggregate tasks and compute
the structure (formal) of the derived models and their analysis particularly at the abstrac-
tion levels [8,9,25]. The main discussion pertinent to the work in this paper is that for the
semantic-based process mining and analysis method, those aspects of aggregating the task
[28] or computing the hierarchy of the process models [29,30] should not only be designed
to be machine-readable. However, also the methods must, on the other hand, focus on
providing a system that is equally machine-understandable [31,32]. In essence, through
the semantically annotated logs or use of the process description languages, the method
helps to provide metadata as well as integration of the underlying ontologies. Moreover,
not only does ontologies allow the creation of the annotations and shared understanding
of the domain (process), but it also provides conceptual knowledge that is used to au-
tomatize the task within the knowledge-base. Besides, if machines (e.g., computers) can
understand the contents of the processes which they support (machine-understandable)
then they can also perform more meaningful and intelligent queries and/or analysis.

In principle, the purpose of the semantic annotation as presented in this paper is to
seek the equivalence between the different concepts that can be found within the process
base or models and concepts of the defined domain ontologies. Moreover, ontology is one,
if not only widely accepted tool currently in the literature that is capable of enabling the
modelling of uncertainty and imprecisions [33] that often characterizes the human repre-
sentations of knowledge [25]. Perhaps, we note that by semantically integrating [32,34-36]
the process knowledge-bases or datasets with concepts within a well-defined (semantic)
model, the resulting systems can make decisions like humans do [32]. For instance, the
learning questions addressed in this paper that allows one to determine which entities
within the learning process model are classified as successful learners or not. Interest-
ingly, such a method often allied to the ontology-based information extraction systems
(OBIE) [2,37] proves to offer solutions that bear the characteristics of “intelligence” which
are in many settings usually attributed to humans only. Besides, those characteristics have
been considered broadly as a specific feature of computational intelligence rather than just
an area of the artificial intelligence (AI).

On the one hand, this paper has utilized the ontology-based method to represent in-
formation about the different models in a formal structure by making use of the essential
building blocks, namely: semantic labelling (annotation), semantic representation (ontolo-
gy), and semantic reasoning (reasoner). Therefore, the study provides the semantic-based
method as a tool which can be exploited by the process analysts or system developers
to construct models that are accurate and easy to understand through the provision of
implicit as well as explicit information on the extensible sets of parameters (concepts) for
analysis of the process models at a more conceptual level.

On the other hand, the proposed method references a number of different OWL ontolo-
gies, e.g., as shown in Figure 4. Practically in the experimentations described in detail in
[9]; for each ontology, all concepts in their turn are all considered by the reasoner (e.g.,
Pellet) [38] and are checked for consistency by referencing the process parameters within



914 K. OKOYE, S. ISLAM, U. NAEEM AND M. S. SHARIF

the underlying ontologies. For instance, based on the behavioural characteristics of the
analyzed datasets in [9] which can be found in [14], a cross-validation method was adopted
to describe the variability in the composition of the training and test datasets. Moreover,
the individual cases (i.e., traces) were computed and recorded according to the reasoner
response, and the classification process and evaluations were tested on the resulting out-
comes by quantitatively assessing its performance with respect to the correctly classified
traces. Thus, for each result of the classification process, the replayable (e.g., true posi-
tives – TP) and non-replayable (true negatives – TN) traces were learned. Consequently,
the results of the method prove to be more accurate and robust than the conventional
process mining and analysis techniques because the method also takes account of the
semantic perspectives of the available datasets and models. Moreover, owing to the fact
that those models are automatically generated from the actual event logs of the processes
in question and carefully integrated with the semantic metrics, the method tends not to
unnecessarily lose or leave out important information or missing data.
In general, the main discussion of the results is that as a collection of concepts and

predicates, the method has the ability to perform logic reasoning and bridge underlying
relations beneath the event logs and the process models with rich semantics. In essence,
whenever an inference (semantic reasoning) is made, a generalized association of the
process elements is created. Thus, providing consistency checking and analysis of those
predicates by tuning the unlabelled apriori models into one (semantic model) that have
the best consistency or formal structure. Thus, the term conceptualization.
In theory, the main benefits of the semantic-based annotation and ontological modelling

method as described in this paper can be summarized in two forms:
(i) encoding knowledge about specific process domains, and
(ii) contextual analysis and reasoning of the processes at a more abstraction (concep-

tual) level.
Table 2 is a thematic summary of the main components and supporting tools utilized

to demonstrate the real-time implementation of the proposed method of this paper. The
different tools were used for annotation and modelling (analysis) of the processes, which
can also be applied to any given dataset(s) irrespective of the process domain as long as
there is available events log from the process in question, and the extracted event data
logs contain the basic minimum requirement for any process mining and analysis task [1].
Besides, the work in this paper shows that the techniques and tools can be utilized by the
process analysts or IT experts as a way of performing useful information retrieval and/or
query answering in a more efficient, yet effective way compared to other standard logical
procedures.
Furthermore, the work has shown that the performance of the semantic-based approach

is not only comparable to the outcome of just the process modelling tools and techniques

Table 2. Main tools used for implementation of the semantic-based pro-
cess mining approach

Main tools
Events Log Process Logs, e.g., Training Log, Test Log

Process Models OntoGraph, Fuzzy Models, BPMN Models
Semantic Annotation Process Description Languages, e.g., OWL, SWRL Rules

OWL Ontology Protégé Editor, OWLGriD
Reasoning Pellet, OWL API

Fuzzy-BPMN Mining ProM, Disco
Semantic Model Analysis DL Queries, Classification.
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but also presents a machine-understandable system that is able to induce new knowledge
based on previously unobserved behaviours. Moreover, the technique can be exploited for
any form of data analysis (or procedures for prediction and discovery of missing informa-
tion) especially when analyzing large ontology-based systems.

Therefore, in order to evaluate the performance of the proposed semantic-based ap-
proach being able to correctly classify and analyze the individual traces within the resul-
tant models, for instance,

(i) given a trace (t) representing the process behaviour (i.e., true positives or allowed
traces) or

(ii) trace (t) representing a behaviour not related to the process (true negatives or dis-
allowed traces) in a given set of data [14],
the work evaluates the results of the experimentations as carried out in [9] using the pro-
posed method of this paper. Characteristics of the datasets which were used to discover
the models (from a training event log representing 10 different real-time business process
executions, and a set of test event logs provided for evaluation of the employed process
mining approach) are as explained in [14]. The test event logs represent part of the origi-
nal model with a complete total of 20 traces for each of the test logs and are characterized
by having 10 traces that can be replayed (allowed) and 10 traces that cannot be replayed
(disallowed) by the model. Therefore, a wide variety of problems and analysis are rep-
resented. The work has used the test event logs with a complete total of 200 traces to
validate the semantic-based method.

Accordingly, the outcomes of the experimentation and cross-validation method were
carried out and evaluated alongside other existing benchmark algorithms namely, Induc-
tive Miner and Decomposition [39], DrFurby Classifier [40], Heuristic Alpha+ Miner [41]
Fuzzy-BPMN miner [42] that use the same event logs in [14] to discover the process models
and replaying semantics of the traces within the event logs.

To do this, the work makes use of the standard Percent of Correct Classification (%PCC)
[43] to assess the performance of the different methods. Henceforth, the standard Percent
of Correct Classification [43] for the different methods and comparison between the other
benchmark algorithms is defined as follows:

Log PCC = (number of correctly classified traces)/(total number of traces) × 100

For example, using the discovered models in the existing Fuzzy-BPMN miner [42], and
the proposed Semantic Fuzzy Miner, Table 3 represents an example of how the standard

Table 3. Standard Percent of Correct Classification (%PCC) for the test
logs and training logs

Model
Fuzzy-BPMN Miner

(%PCC)
Semantic-Fuzzy Miner

(%PCC)
Training Model 1 (20)/(20) × 100 (20)/(20) × 100

= 1 × 100 = 1 × 100
= 100% = 100%

Training Model 2 (16)/(20) × 100 (20)/(20) × 100
= 0.80 × 100 = 1 × 100

= 80% = 100%
Training Model 3 (12)/(20) × 100 (20)/(20) × 100

= 0.60 × 100 = 1 × 100
= 60% = 100%
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Percent of Correct Classification (%PCC) for the events logs and models were calculated
as follows.
Therefore, by using the calculations as shown in Table 3 (standard Percent of Correct

Classification (%PCC)) [43] the work outlines in Table 4, the outcome of the semantic-
based method against the other existing benchmark algorithms [39-42] in order to weigh
up the proposed method and the experimental results. The outcome of the experiments
and classification results are as shown in Table 4 and Figure 5.
Consequently, from the evaluation results (see Table 4 and Figure 5), the work notes

that the semantic-based annotation and ontological modelling method (Semantic Fuzzy

Table 4. The experimental results of the semantic-based method
(Semantic-Fuzzy Miner) and other benchmark approaches

Inductive
Miner

Decom-
position

DrFurby
Fuzzy-
BPMN

Semantic-
Fuzzy

Model 1 100 100 100 100 100
Model 2 100 100 100 80 100
Model 3 60 95 100 60 100
Model 4 100 100 100 85 100
Model 5 95 100 100 100 100
Model 6 85 95 100 55 100
Model 7 100 100 100 95 100
Model 8 75 70 95 85 100
Model 9 100 100 100 100 100
Model 10 100 100 100 95 100

Ave. Mean –
PCC (%)

91.5 96 99.5 85.5 100

No. of correctly
classified traces

183 192 199 171 200

Figure 5. Total number of traces correctly classified by each algorithm
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Miner) considerably outperforms respectively the Inductive miner [39] and Fuzzy-BPMN
miner [42], although the algorithms Decomposition [39] and DrFurby [40] stand for the
state-of-the-art classifiers amongst the existing process mining techniques especially when
compared to analysis of the results and outcome of the classification process. Additionally,
the semantic fuzzy miner has shown an error-free performance when measured using the
following classifier formula [1]. Thus,

Error = (fp + fn)/N

where fp = 0 and fn = 0, such that,

Error = (0 + 0)/200 = 0.

Also, the method has shown a high level of accuracy and performance through the fol-
lowing formula:

Accuracy = (tp + tn)/N

where tp = 100 and tn = 100, such that:

Accuracy = (100 + 100)/200 = 1.

In summary, going by the experimental results and validation scores, the precision and
recall of the semantic-based method and the classifications process are evidently efficient
when compared to the other methods for process mining and analysis.

6. Conclusion and Future Work. This paper applies semantic technologies (e.g., se-
mantic annotation, ontologies, and reasoner) to providing formal structures on how to
perform and represent the process mining and modelling of any given process domain in a
more efficient and accurate manner. The method is proposed to abstract key information
that is used to model the relationships that exist between the different process instances
that can be found within the knowledge-bases or models. This is done to show how to
resolve the different challenges as it concerns semantics aspects that most of the process
mining techniques lack. In essence, this paper provides a method that focuses on finding
useful structures for the process models and an effective way to analyze and/or determine
the relationships that exist within the process knowledge-base.

In theory, the work provides an ontology-based system that is capable of semantically
analyzing the different components of the discovered process models. This is owing to the
fact that the method is capable of accurately classifying in a formal way (taxonomies)
the individual components (classes, objects, and data types) to predict behaviours of
unobserved instances (or individual elements) that can be found within the models. This
is achieved as a result of making use of the reasoner to carry out the consistency checking,
thereby increasing predictive accuracy and automation of the classifications process, and
even more, provides an error-free process analysis and performance.

The early studies have shown that semantic technologies (as described in this paper)
can be utilized not only to determine the presence of different patterns within the existing
models but are also useful towards automatic classification/analysis of the models [44-48].
For example, Wang and Wang [44] provide a method for detecting patterns within the
existing knowledge-bases by training a support vector machine (SVM) classifier based
on behavioural features of the process instances. Whereas, Janicki et al. [45] propose a
framework for the representation of relational structures within the models by identifying
traces that are behaviourally equivalent to the observed action sequences. Buhmann et
al. [46] propose a novel approach for optimization under uncertainty that proves useful
for measuring similarities between the process instances in a given domain, while Tan et
al. [47] define a control system that allows for sufficient conditions to be derived in order
to guarantee stability and output of the variables. The method described in Zhang et
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al. [48] supports a stable approximation approach that is capable of converting the ap-
proximation problems to a convex optimization one. Thus, such automated approach to
solving the several complex problems and processes is allied to the hybrid intelligent sys-
tems (HIS). Interestingly, in the context of the work done in this paper, Jindal and Shweta
[49] introduce a modified lexical-semantics based knowledge discovery process that con-
sists of text document collection, data preprocessing, lexical analysis or scanner, semantic
analysis, classification, ranking of labels and knowledge discovery. Whereas, Li et al. [50]
propose a recurrent neural network model that automatically detects semantic similarity
between concepts by supporting a fine-grained reasoning over equivalence or contradiction
of pairs of words and phrases. In fact, the aforementioned works/affirmations target one
thing in common which is the need for intelligent data/process mining systems or algo-
rithms that are capable of automatically recognizing patterns from the different processes
or knowledge-base which they are used to support [51]. Moreover, a typical example
of the practical implementation of such a method is the work done by Koga et al. [52]
that proposes a new approach for edge-preserving smoothing filter which reconstructs
the resulting image locally from the gradient-domain based on a direct method. Besides,
this work shows that by understanding and leveraging the real meaning (semantics) of
the different process elements which are stored in different variable forms in the datasets
or models, the results can be used to identify patterns that can be transliterated into
actionable plans and/or process-related decision making in general [53,54].
Moreover, this work proposes the sets of semantically motivated algorithms to realize

the following aforementioned contribution which focuses on semantical modelling of the
process models, and yet, supports the development of a semantic process mining technique
that exhibits a high level of semantic reasoning and capabilities.
Practically, the work makes use of the case study of the learning process to illustrate the

capabilities of the proposed technique and its usefulness/application in real time. Indeed,
the purpose of designing such an intelligent system is to support (conceptual) analysis of
the captured datasets and discovered models capable of providing real-world answers that
are closer to human understanding. In other words, the paper focused on the provision
of a machine-understandable system rather than just a machine-readable system.
In summary, in addition to the aforementioned contributions and goals of this paper,

the work assumes to have presented the main components of such a semantic-based infor-
mation retrieval, extraction and processing system by not only showing how it integrates
the main building blocks (i.e., the use of semantic annotation, ontology, and reasoner) for
the semantic-based process mining and analysis but also supports the development and
implementation of the methods through the sets of semantically motivated algorithms
and series of experimentations.
Nonetheless, one of the limitations of this study is that whilst the paper has present-

ed a set of descriptive algorithms and a conceptual method of analysis to resolve the
aforementioned challenges with process mining, there could be potentially many ways to
address those problems, or even, bigger areas that have not been yet addressed. This is
owing to the fact that the semantic-based process mining is a new area within the process
mining field, and there are not too many tools or algorithms that support such an ap-
proach currently in the literature. Moreover, there are no current tools capable of directly
converting the fuzzy models into some other process modelling formats or notation. As
a consequence, the work leverages a varied range of events log conversion such as the
BPMN in order to achieve the different viewpoints about the domain processes.
Future works could focus on extending the method through the provision of tools or

method capable of automatically integrating the metrics/conversions of the fuzzy models
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to other notations in order to support their analysis as well as guarantee the resulting
outcomes.
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2016.

[24] D. Calvanese, T. E. Kalayci, M. Montali and S. Tinella, Ontology-based data access for extracting
event logs from legacy data: The onprom tool and methodology, in Business Information Systems,
W. Abramowicz (ed.), Cham, Springer, 2017.

[25] T. R. Gruber, Toward principles for the design of ontologies used for knowledge sharing, Int. J. of
Human-Computer Studies, vol.43, nos.5-6, pp.907-928, 1995.

[26] O. O. Petrenko and A. I. Petrenko, A model-driven ontology approach for developing service system
applications, Journal of Computer Science Application Information Technology, vol.2, no.4, pp.1-7,
2017.

[27] K. Okoye, A. R. H. Tawil, U. Naeem, S. Islam and E. Lamine, Using semantic-based approach
to manage perspectives of process mining: Application on improving learning process domain da-
ta, Proc. of the 2016 IEEE International Conference on Big Data (BigData), Washington, D.C.,
pp.3529-3538, 2016.

[28] C. d’Amato, N. Fanizzi and F. Esposito, Query answering and ontology population: An inductive
approach, in Proc. of the 5th Euro. Semantic Web Conference, S. Bechhofer, M. Hauswirth, J.
Hoffmann and M. Koubarakis (eds.), Berlin, Heidelberg, Springer, 2008.

[29] G. Antoniou, P. Groth, F. van Harmelen and R. Hoekstra, A Semantic Web Primer, 3rd Edi-
tion, The MIT Press, Cambridge, Massachusetts London, England, 2012, www.aryabarzan.info/
slides/a semantic web primer.pdf, Accessed in February 2019.

[30] J. Lehmann and P. Hitzler, Concept learning in description logics using refinement operators, Ma-
chine Learning, vol.78, nos.1-2, pp.203-250, 2010.

[31] M. M. Rahman and T. W. Finin, Understanding the logical and semantic structure of large docu-
ments, CoRR, abs/1709.00770, 2017.

[32] M. Sabou, L. Aroyo, K. Bontcheva, A. Bozzon and R. K. Qarout, Semantic web and human compu-
tation: The status of an emerging field, Semantic Web (SWJ), vol.9, pp.291-302, 2018.

[33] L. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, pp.3-28, 1978.
[34] L. Zhao and R. Ichise, Ontology integration for linked data, Journal on Data Semantics, vol.3, no.4,

pp.237-254, 2014.
[35] M. Pfaff, S. Neubig and H. Krcmar, Ontology for semantic data integration in the domain of IT

benchmarking, Journal on Data Semantics, vol.7, no.1, pp.29-46, 2018.
[36] G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi and R. Rosati, Using ontologies for semantic

data integration, in A Comprehensive Guide Through the Italian Database Research Over the Last
25 Years. Studies in Big Data, S. Flesca, S. Greco, E. Masciari and D. Saccà (eds.), Cham, Springer,
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