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ABSTRACT

Speech enhancement is the process of improving speech quality and intelligibility

by suppressing noise. Inspired by the outstanding performance of the deep learning ap-

proach for speech enhancement, this thesis aims to add to this research area through the

following contributions. The thesis presents an experimental analysis of different deep

neural networks for speech enhancement, to compare their performance and investigate

factors and approaches that improve the performance. The outcomes of this analysis

facilitate the development of better speech enhancement networks in this work.

Moreover, this thesis proposes a new deep convolutional denoising autoencoder-

based speech enhancement architecture, in which strided and dilated convolutions were

applied to improve the performance while keeping network complexity to a minimum.

Furthermore, a two-stage speech enhancement approach is proposed that reduces dis-

tortion, by performing a speech denoising first stage in the frequency domain, followed

by a second speech reconstruction stage in the time domain. This approach was proven

to reduce speech distortion, leading to better overall quality of the processed speech in

comparison to state-of-the-art speech enhancement models.

Finally, the work presents two deep neural network speech enhancement architec-

tures for hearing aids and automatic speech recognition, as two real-world speech en-

hancement applications. A smart speech enhancement architecture was proposed for

hearing aids, which is an integrated hearing aid and alert system. This architecture

enhances both speech and important emergency noise, and only eliminates undesired

noise. The results show that this idea is applicable to improve the performance of hear-

ing aids. On the other hand, the architecture proposed for automatic speech recognition

solves the mismatch issue between speech enhancement automatic speech recognition

systems, leading to significant reduction in the word error rate of a baseline automatic

speech recognition system, provided by Intelligent Voice for research purposes. In

conclusion, the results presented in this thesis show promising performance for the pro-

posed architectures for real time speech enhancement applications.

Keywords: automatic speech recognition, deep learning, hearing aids, speech distor-

tion, speech enhancement.
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CHAPTER 1

Introduction

Speech is a sound wave generated by the vibration of the vocal cords, and it is the most
common way of communication among human beings, either face to face or remotely,
such as on the phone. These sound waves are then sent through the air to our ear, to
be first processed by the middle and inner ear and then converted into electrical signals
to be sent to the brain for sound interpretation (Hudspeth, 1989). Our brain can easily
interpret speech signals if they are received in isolation. However, the speech signal is
typically accompanied by other sounds due to the fact that we are surrounded by many
environmental sounds, such as nature sounds, animal sounds, urban noise, etc. Whether
these other sounds are of interest or not, they negatively affect the interpretation of the
speech signal, especially when they are extremely high in intensity (Houtgast, 1981;
Sarsenbayeva et al., 2018).

Speech enhancement is a signal processing technique that aims to improve speech
quality and intelligibility by removing any other signals propagating with it. There are
many applications for speech enhancement, for example, it is an essential process in
hearing aids, mobile communication systems, Automatic Speech Recognition (ASR),
headphones, and VoIP communication (Loizou, 2013).

The process of speech enhancement may sound simple; however, it is a longstand-
ing issue that has attracted the attention of signal processing researchers for decades,
and still has not yet been solved (Loizou, 2013; Wang and Chen, 2018). Many tech-
niques have been proposed to tackle this challenging task, starting from the classical
techniques proposed in the 70s (Boll, 1979; Loizou, 2013), which are mainly based on
the statistical analysis of the relationship between speech and noise. These techniques
were not very effective in removing background noise, especially intrusive noise en-
vironments, resulting in unintelligible processed speech (Loizou and Kim, 2010). A
published statistic shows that noise levels are very high in places like transportation
and on the street (Musa et al., 2022; Neitzel et al., 2009; McAlexander et al., 2015).
With the advances in technology and the pervasiveness of speech processing in many
devices, especially smart phones, speech enhancement becomes a more challenging
process nowadays. As a result, more advanced and efficient techniques are needed to
operate in noisy, adverse environments.
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In the last decade, researchers have reached more advanced techniques to perform
speech enhancement that are based on deep learning, which is a subset of machine
learning and artificial intelligence (LeCun et al., 2015; Deng et al., 2014). Deep learning
is a data driven approach in which an algorithm is fed with a huge amount of data to
gain knowledge about how to perform a specific task, similar to the way our brain
works (Schmidhuber, 2015). For deep learning-based speech enhancement, pairs of
noisy and clean speech data are needed, in order to learn the mapping function that
maps noisy speech to clean speech. With the recent massive availability of speech
and noise data, deep learning-based speech enhancement has made a breakthrough in
the research area, showing promising performance in eliminating many background
noise types and dealing with challenging and intrusive noise environments. This results
in generating speech with much better quality and intelligibility in comparison to the
classical techniques (Yuliani et al., 2021; Wang and Chen, 2018; Saleem and Khattak,
2019).

A general drawback of any speech enhancement approach is the distortion that oc-
curs during the noise elimination process, especially when processing a speech signal
corrupted with intrusive noise environments. This distortion negatively affects the over-
all quality of the processed speech, more specifically speech intelligibility (Iwamoto
et al., 2022). Considering the reported powerful noise suppression ability of most deep
learning-based speech enhancement, the speech distortion issue becomes more signif-
icant, a fact that makes the unprocessed noisy speech sometimes preferable to human
listeners than the distorted processed speech by a speech enhancement approach (Xia
et al., 2020b). Moreover, speech distortion also affects the performance of the systems
where speech enhancement is applied as a preprocessing stage, such as in ASR, as the
distorted speech signal may not be understandable by the system (Wang et al., 2019).
Consequently, dealing with speech distortion is a current research question in the speech
enhancement field.

This thesis aims to contribute to the presented research work in the literature by
proposing a new speech enhancement architecture and approach that reduces speech
distortion, leading to better overall performance.

1.1 Aims and Objectives of the Thesis

The work in this thesis aims to investigate the deep learning approach for speech en-
hancement in noisy and adverse environments, and contribute to this research area. This
is achieved through the following objectives.

• The thesis first reviews different Deep Neural Network (DNN) architectures in
the literature, to understand the advantages and disadvantages of each network
type. Moreover, it reviews different deep learning-based speech enhancement
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approaches, and how these approaches affect the performance of each architecture
type.

• The thesis then covers the full procedure that should be followed to develop a
DNN for speech enhancement, including the evaluation metrics used to test the
overall quality and intelligibility of the processed speech by the DNN.

• Afterwards, the work focuses on experimenting with different DNN architectures
and deep learning-based supervised speech enhancement approaches. These ex-
periments aim to validate the results and conclusions reported in the literature for
some speech enhancement architectures using numerical analysis. Furthermore,
they fill a gap in the literature by adding more comparisons, critical analysis, and
discussions to the newly obtained results from experiments conducted to answer
questions that were not investigated in the literature using numerical analysis and
visual spectrogram analysis of the processed speech.

• The conclusions of the literature review and the performed comprehensive analy-
sis, discussed above, were then used to develop a new deep learning-based speech
enhancement architecture that outperforms State-of-the-Art (SOTA) speech en-
hancement models in the literature. The plan was to take advantage of the best
DNN architectures and speech enhancement approaches proposed in the literature
and validated in this thesis, in order to develop a new better speech enhancement
model that minimizes speech distortion as the current research question. The
proposed architecture should also compromise between performance and com-
plexity, so as to facilitate its applicability for real time applications.

• The work in this thesis also seeks to test and improve the performance of the
proposed architecture, to develop another two speech enhancement architectures.
These two architectures were designed specifically for two main speech enhance-
ment applications, hearing aids and ASR, which is the application of interest to
Intelligent Voice, the sponsoring company of this PhD. The development of these
optimized architectures considers improving a specific speech quality evaluation
metric that highly affects the performance of the architecture for each application.
Additionally, it takes into account limitations regarding network complexity and
processing time that differ based on the speech enhancement application.

• The final objective of this thesis is to present a detailed critical analysis of deep
learning-based supervised speech enhancement. This analysis highlights the ad-
vantages and disadvantages of this approach; moreover, it covers current chal-
lenges and issues that warrant further investigation by future research work.
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1.2 Thesis Contributions

The contribution of this thesis can be divided into two parts: theoretical and practical.
Theoretically, when investigating different proposed DNN based speech enhancement
research in the literature, it is clear that most of the research focuses more on analyzing
the quality of the output speech, and not enough work was found to compare between
the processing done internally in different speech enhancement architectures. Conse-
quently, this thesis fills the above-mentioned theoretical gap by looking deeper into the
operations done inside different architectures, so as to come up with an interpretation of
how each architecture deals with the speech enhancement task. This interpretation will
help in understanding why certain architectures perform better than others; moreover,
it will lead to defining the factors that affect the quality of the output, and then finally
make some conclusions on how to improve the performance. The research area also
lacks the work that show the significance of the signal preprocessing techniques used
to prepare the data before the training process. For this reason, the work in this thesis
also reveals the importance of these signal processing techniques and how they impact
the performance of DNNs for speech enhancement.

From the practical aspect, this work presents a new deep learning-based speech en-
hancement architecture that outperforms SOTA speech enhancement models in the liter-
ature. Additionally, it proposes a two-stage speech enhancement approach that focuses
on minimizing speech distortion by applying speech enhancement in the frequency and
time domains, to take advantage of different speech features. Furthermore, the archi-
tecture was tested, modified, and optimized to be applied to two speech enhancement
applications, hearing aids and ASR, where speech enhancement is applied in two dif-
ferent ways. In hearing aids, speech enhancement is the main process; while in ASR,
speech enhancement is a preprocessing technique to the main ASR process. For hearing
aids, the target is to output speech with high quality and intelligibility by evaluating the
output using the well-known speech quality metrics for normal and hearing-impaired
listeners. The developed architecture introduces a new speech enhancement technique,
named smart speech enhancement. This technique enhances both speech and emer-
gency noise, such as fire alarm, while mitigating undesired noise, to act as an integrated
speech enhancement and alert system.

On the other hand, when applying speech enhancement as a preprocessing technique
to ASR, as the main process, the performance of the speech enhancement model should
also be evaluated when combined with the main process using the evaluation metric of
the main process, which is Word Error Rate (WER) for ASR systems. This is due to the
fact that DNNs for speech enhancement were proven to perform well on their own but
unexpectedly, performance degradation for ASR systems was detected after adding the
speech enhancement network. The devolved architecture solves this mismatch problem
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and improves the performance of an ASR system, provided by Intelligent Voice for
research purposes.

Consequently, the work in this thesis performs a fair evaluation of the proposed
architecture by testing it using two different real time applications of speech enhance-
ment.

In conclusion, the contributions of this thesis can be summarized as below:

• investigating and comparing different DNN architectures for speech enhancement
using numerical analysis,

• interpreting how DNNs perform the speech enhancement task by spectrogram
visualization,

• showing the effect of network hyperparameters on different DNNs for speech
enhancement,

• showing the effect of the signal processing techniques used to manipulate the
training data,

• comparing different training targets by showing their effect on the performance
of DNNs for speech enhancement,

• comparing time and frequency domain approaches for speech enhancement using
different DNN architectures,

• proposing a new deep learning-based speech enhancement architecture that out-
performs SOTA speech enhancement models in the literature,

• proposing a two-stage deep learning approach for speech enhancement to mini-
mize speech distortion,

• presenting an optimized speech enhancement architecture for ASR that solves the
mismatch issue between speech enhancement models and ASR model, and

• presenting an optimized smart speech enhancement architecture for hearing aids
that acts as an integrated speech enhancement and alert system.

1.3 Outline of the Thesis

The thesis is organized as follows:

Chapter 1 provides introduction to the thesis, and defines thesis aims, objectives, and
contributions.
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Chapter 2 reviews the classical and modern speech enhancement approaches, focus-
ing on supervised deep learning-based speech enhancement. It provides a description
and illustration of the different DNN architectures that were employed to perform
speech enhancement in the literature. Moreover, it highlights the advantages and dis-
advantages of each architecture type. The chapter also summarizes the evolution of
deep learning-based speech enhancement by showing the proposed techniques and
approaches in the literature to improve the performance, including the most recently
developed DNNs for speech enhancement and the current research gaps.

Chapter 3 presents the full procedure that should be followed to develop a deep
learning-based architecture for speech enhancement. The procedure can be described
using five sub-processes: data collection, data preprocessing, feature extraction, ar-
tificial neural network implementation, training target choice, and evaluation of the
processed speech. The chapter explains each sub-process by covering different tech-
niques that can be applied to perform each sub-process.

Chapter 4 compares the performance of seven different DNNs for speech enhance-
ment, belonging to three well-established DNN categories. The comparison is based
on processed speech quality, the performance of each network in challenging noise
environments, network generalization, complexity, and processing time. The chap-
ter covers a research gap by providing answers to some research questions, such as
the factors affecting the choice of learning domain, the effect of signal processing
techniques and network hyperparameters on the performance.

Chapter 5 presents a newly developed speech enhancement architecture and pro-
poses a two-stage speech enhancement approach, to deal with speech distortion. The
architecture is designed to compromise between performance and complexity by ad-
justing the hyperparameters of the developed DNN. The two-stage approach mini-
mizes speech distortion, leading to further improvement in speech enhancement per-
formance.

Chapter 6 investigates two speech enhancement main applications, hearing aids and
ASR. In this chapter, the developed architecture in Chapter 5 was modified and im-
proved to be applied to each application, to finally show the applicability of the pre-
sented work from a real world perspective.

Chapter 7 concludes the thesis using critical analysis of the deep learning-based
speech enhancement approach. This analysis highlights the strengths, weaknesses,
opportunities, and challenges of the approach. Finally, the chapter gives recommen-
dations for future research.
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1.4 Conclusion

This chapter introduced the work presented in this thesis. It included thesis objectives,
contributions, and outline. The next chapter will review classical and modern speech
enhancement approach, and demonstrates different DNN architectures for speech en-
hancement.
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CHAPTER 2

A Literature Review of Deep Learning-based Speech Enhancement
and its Applications

2.1 Introduction

Speech enhancement has two main approaches: the classical and the modern. The clas-
sical approach is based on statistical assumptions of the noise presented in the speech
signal, and the analysis of the relationship between speech and noise. While the mod-
ern approach is based on more advanced techniques using artificial intelligence, or more
specifically deep learning algorithms. This chapter mainly reviews the deep learning ap-
proach for speech enhancement. However, a brief discussion will be first presented on
classical speech enhancement techniques. Afterwards, the deep learning-based speech
enhancement approach will be illustrated, followed by a review of the different DNN
architectures in the literature that have been employed for speech enhancement. Finally,
a discussion will be presented about the evolution of the deep learning-based speech en-
hancement field, including current challenges and research points under investigation
by recent research.

2.2 Classical Speech Enhancement Approach

Classical techniques have been widely used in the field of speech enhancement. These
techniques are based on statistical assumptions and models for the speech and noise
signals (Loizou, 2013). The challenging part of this approach is how successful these
models and assumptions are at describing the relationship between speech and noise.
Although some of these techniques were reported to mitigate the noise that exists in
the speech signal (Uemura et al., 2009), the way they work is not a generalized way
of removing different noise types, because these statistical assumptions are not always
fulfilled in some intrusive noise environments. Consequently, these methods are more
effective when being applied to environments with a relatively high Signal to Noise
Ratio (SNR), or in the case of stationary noise conditions (Hu and Loizou, 2007b). Al-
though classical multichannel approaches showed improvement in speech intelligibility
(Ortega-Garcı́a and González-Rodrı́guez, 1996), it was reported that the classical tech-
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niques performance is not satisfactory (Drullman, 1995; Loizou and Kim, 2010). In the
following subsections, a brief overview is presented for three different classical speech
enhancement techniques.

2.2.1 Spectral Subtraction

Spectral subtraction is one of the first techniques used to remove noise from speech.
Here, noise removal is achieved by estimating the magnitude spectrum of the noise, and
then subtracting it from the noisy speech magnitude spectrum (Boll, 1979). This tech-
nique is based on two assumptions: the first is that the noise is additive so as to be able
to do the subtraction procedure; while the second is that the first few frames of the noisy
signal have only noise, which is essential to estimate the noise spectrum that is not sup-
posed to vary between frames. Based on these assumptions, the estimation of the clean
speech spectrum is obtained by subtracting noise regions (speech pauses) from each
frame of the noisy signal, as speech pauses are considered as noise in this technique.
However, there are two major drawbacks for spectral subtraction (Malca and Wulich,
1996). The first is that in the case of non-perfect estimation of the noise spectrum, the
speech signal will be significantly distorted by the subtraction process (Verteletskaya
and Simak, 2011). The second drawback is the presence of unpleasant, unnatural, mu-
sical, remnant noise, which accompanies the enhanced output speech signal (Goh et al.,
1998). As a result, researchers thought about developing many modified versions of the
spectral subtraction technique in order to present solutions to these issues (Kamath and
Loizou, 2002; Upadhyay and Karmakar, 2015).

2.2.2 Wiener Filter

Wiener filter aims to obtain an estimate of the clean speech signal by minimizing the
mean square error between the estimated and real clean speech. It is assumed in this
approach that the noise is additive and its power spectrum is uncorrelated to that of the
speech signal (Upadhyay and Jaiswal, 2016). The Adaptive Wiener filter is an example
of this technique that reduces the noise estimation error by attenuating each frequency
component of the noisy speech by a certain amount that depends on the power of the
noise at this particular frequency. It consists of a digital filter stage and an adaptive
algorithm stage. The noisy signal first passes through the digital filter to output an es-
timate of the desired clean speech signal. Afterwards, the error is calculated between
the real and estimated clean speech signal generated by the digital filter, to be fed to the
adaptive algorithm. The adaptive algorithm is responsible for decreasing this error value
by adjusting the coefficients of the digital filter (Abd El-Fattah et al., 2008). Although
Wiener filter-based techniques lead to better clean speech estimation than spectral sub-
traction (Vihari et al., 2016), musical noise still exists in this approach (Amehraye et al.,
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2008; Alam and O’Shaughnessy, 2011).

2.2.3 Signal Subspace

The Signal Subspace speech enhancement method is based on the transformation of the
noisy speech signal into two uncorrelated and orthogonal subspaces, known as signal
and noise subspaces (Ephraim and Van Trees, 1995). This technique is based on two
assumptions: the first is that the speech signal follows a specific model and has certain
characteristics, and the second is that the interfering noise is uncorrelated additive white
noise, which is a very specific noise type. However, other studies conducted some
analysis to modify this approach to deal with colored noise as well (Hu and Loizou,
2003; Lev-Ari and Ephraim, 2003). The decomposition of speech and noise subspaces
is done through estimators, in which nulling of the noise subspace is performed. An
advantage of this approach is that in some estimators the residual musical noise in the
signal subspace is also mitigated, taking into consideration speech distortion (Hansen
et al., 1998). This approach was also proven to be effective in noise reduction; however,
it is characterized by high computations, which restricts its applicability. Additionally,
total removal of musical noise using this approach results in high speech distortion
(Hermus et al., 2006; Hansen et al., 1998).

2.3 Modern Speech Enhancement Approach

Modern speech enhancement approach is based on Artificial Neural Network (ANN)s,
which are networks that mimic the way our brain works. These networks generate the
target output, by learning a mapping function that maps the input to the target output
using computational nodes similar to the neurons in our brain (Jain et al., 1996). This
biological analogy between the neurons in our brain and the nodes in ANNs is due to the
fact that the inputs are gathered and processed in the computational nodes using linear
and nonlinear operations that generate another form of the inputs. Afterwards, these
processed data are sent to another connected node for further computation. This models
the way that the dendrites in the neuron receive inputs to be integrated and combined by
the cell body to generate spikes, and now these spikes are sent to another neuron via the
axon. Despite the fact that this analogy is loose because biological neurons do much
more complex computations than nodes, all neuroscientists believe that the nodes in an
ANN approximate biological neurons in a crude way (Eluyode and Akomolafe, 2013).

There are three basic components for any ANN: input features, hidden layers, and an
output layer (Jain et al., 1996). The ANN is fed by a series of input features, which are
the variables that could be used to predict the output. The importance of these features
is that they carry more relevant and meaningful information about the input data, such
as harmonics for audio data, that helps in directing the network towards the needed
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functionality. Any ANN consists of at least one hidden layer with a number of hidden
nodes, which apply some nonlinearity to the input in order to learn more advanced
features, so as to be able to give a good estimate of the required output. The final layer
of any ANN is called the output layer and this layer is responsible for producing the
final estimated output of the network by integrating and scaling the output from the
hidden layers to the desired target range (LeCun et al., 2015). The network maps an
input to a specific target output by adjusting its parameters through a procedure known
as the learning process.

The learning procedure of ANNs is based on two fundamental processes: forward
propagation and backward propagation. In forward propagation, the input features are
fed to the nodes of the hidden layers that learn more advanced features of the input to
better predict the output. At the end of the forward propagation process, the error, or
what is called the loss function, is computed, which is a function that measures the dif-
ference between the estimated output and real output (Glorot and Bengio, 2010). The
loss function measures how well the network parameters are doing on learning the map-
ping function, and then based on its value the network adjusts its parameters through the
back propagation step. During back propagation, the network updates the values of its
parameter so as to minimize the loss function, and this is done by calculating the gradi-
ent of the loss function with respect to the network’s weights. The network goes through
forward and backward propagation recursively, until learning the mapping function that
gives the best prediction of the target output (LeCun et al., 2015).

ANNs have parameters and hyperparameters that should be tuned to obtain a correct
prediction. The weight (W) and bias (b) are called the network parameters, and we must
initialize them at the beginning of the learning process, then the network fine tunes these
parameters during the backward propagation process. These parameters are randomly
initialized, and it is preferred to set these random values to very small values using a
normalization technique, as large value initialization has been proven to slow down the
learning process (Ioffe and Szegedy, 2015). Besides the network parameters W and b,
there are also hyperparameters, such as the learning rate α, which controls the speed of
the training process; the number of iterations, which is the value that defines how many
times the network will go through the forward/backward propagation process; and the
number of hidden layers and hidden units in the network, which affect the network
performance and measure its complexity (LeCun et al., 2015).

The choice of activation functions, which are the non-linear functions applied in
the hidden layers of the network, is another hyperparameter of the network. The non-
linearity of those functions helps the network to learn complex features of the input
data, and hence be able to better predict the output (Karlik and Olgac, 2011). There
are many types of activation function used in ANNs, Linear, Sigmoid, TanH, Rectified
Linear Unit (ReLU) and its edited versions: Leaky Rectified Linear Unit (LReLU), Ex-
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ponential Linear Unit (ELU), and Parametric Rectified Linear Unit (PReLU) are the
most popular ones. Linear is a function that simply produces an output proportional to
the input, and it is normally used in the output layer as it does not add any nonlinearity.
Sigmoid is an always positive function between 0 and 1, while TanH gives an output
between -1 and 1. ReLU outputs zero if the input is negative and gives the same value
for a non-negative input. LReLU, ELU, and PReLU are edited versions of ReLU that
give a small value output for a negative input instead of zero, so as to overcome the
dying ReLU problem (Pedamonti, 2018), which will be discussed later in Chapter 4.
It should be noted that ReLU and its edited versions are the most common activation
functions used in today’s research because they are found to be the most similar func-
tions to the non-linear computations done in biological neurons and proven to produce
better performance (Grossberg, 1988; Maas et al., 2013), while Sigmoid and TanH are
less commonly used. Moreover, ReLU is proven to solve the vanishing and exploding
gradient problem for DNNs (Glorot and Bengio, 2010) that will be explained later.

All these hyperparameters and many others not mentioned, should be set to a value
that depends on the problem the network is trying to solve. Many architectures have
been reported in the literature, however, selecting between different deep learning mod-
els has been mainly empirical. This is because the difficulty of predicting the best
values for these hyper parameters, so it is most common for researchers to get these
values using practical trials (Arel et al., 2010). A comprehensive experimental analysis
and discussion about these hyperparameters will presented in Chapter 4, to fill this gap
in the literature.

In order to obtain a significant improvement in the performance of ANNs, a suf-
ficient training data is required for the learning procedure. There are two common
problems that may arise when training an ANN, known as the variance and bias prob-
lem (Schmidhuber, 2015). Variance is the problem of overfitting to the training dataset,
which means the network is performing very well on the training data, but unable to
generalize this good performance on unseen test data. A technique called regulariza-
tion is used to overcome this problem, and the most common one used nowadays is
called dropout regularization (Srivastava et al., 2014). In dropout, the network ran-
domly drops a certain percentage of the hidden units in the hidden layers during the
training process. In this way, the learning process becomes more efficient, because
dropout prevents network dependence on only some specific features during the train-
ing, and in turn makes the network more robust to the changes in the test set. Although
this technique negatively affects network performance on the training set, it improves
the network generalization capability (Park and Kwak, 2016).

On the other hand, bias is the problem of underfitting to the training dataset, which
means the network is unable to perform the task it is required to do. This problem
could happen when the network architecture is not appropriate to the task the network
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is doing, or because of the insufficient input data to the network (Schmidhuber, 2015).
Increasing the size of the input dataset is proven to have a positive impact on network
performance; however, this solution works better for networks with many hidden layers,
i.e. DNNs (LeCun et al., 2015).

A DNN is simply a neural network with more than one hidden layer. By increas-
ing the number of layers, the network is expected to give better performance, as each
layer will give more information to the network that would help through the learning
process (Deng et al., 2014). Deep networks were not used widely due to the vanishing
and exploding gradient issue, which arise in deep architectures, as the mathematical
derivative terms that are less than 1 become smaller and smaller when going deeper
into the network due to the multiplication operations, until the gradient tends towards
zero, and hence vanishes. On the other hand, values bigger than 1 become bigger and
bigger until they tend to infinity, leading to the gradient exploding (Ioffe and Szegedy,
2015). In order to solve this problem, all gradient values should be limited to 1 or 0,
so as to not be affected by the multiplication process through the hidden layers; this
is exactly what the activation function ReLU and its edited versions do (Pedamonti,
2018). Deep learning is the most common technique used in today’s research, and this
is because of two main reasons: the first is the huge amount of data available nowadays
(Dytman-Stasienko and Weglinska, 2018), the second is the complexity of the problems
the network is presented with, which require a deeper neural network to solve (Deng
et al., 2014).

Considering the speech enhancement task as a problem of mapping noisy speech
to clean speech, this problem could be solved by training a neural network to learn
this mapping function, and due to the fact that this mapping function is very complex
and highly nonlinear, using a deep neural network will be a better choice than shallow
neural networks (Wang and Chen, 2018). Recently, DNN-based speech enhancement
has made a breakthrough in the speech de-noising process, and many architectures have
been proposed (Saleem and Khattak, 2019). In the following subsections, a review on
these architectures will be presented.

2.3.1 Multi-Layer Perceptron (MLP)

The Multilayer Perceptron (MLP) is one of the most basic types of neural network, in
which the nodes of the hidden layers are fully connected, that is why it is sometimes
called a fully connected DNN. Supervised deep learning-based speech enhancement
research was first based on the MLP, as it achieved a significant improvement in noisy
speech quality and intelligibility, compared to the classical approaches.

An MLP with three hidden layers for speech enhancement was first proposed by
(Xu et al., 2014b); afterwards, the work presented in (Zhao et al., 2016) added one
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more hidden layer and considered training the architecture using reverberant speech as
well as noisy speech, which led to further improvement in speech intelligibility in both
noisy and reverberant conditions. Another learning approach for the MLP is proposed
in (Wang, 2017), which is based on 84 speech features used as an input to the MLP.
The initialization of the network’s weights was performed through an unsupervised
learning scheme; while the speech enhancement training process was performed using
supervised learning. The use of this approach results in better speech enhancement
performance for the MLP. The effect of large-scale training on network generalization
ability was investigated by (Chen et al., 2016), where an MLP was trained using a huge
number of noise environments, in comparison to the number of noises used in previous
speech enhancement research. The outcome of this investigation showed that increasing
the number of noise environments used in the training process will significantly improve
the generalization of the MLP for mismatched noise conditions. Many other speech
enhancement research were also found to be based on the MLP architecture (Kumar
and Florencio, 2016; Tu and Zhang, 2017).

One of the main advantages of the MLP is its powerful ability to learn speech fea-
tures through the fully connected hidden layers, which use a huge number of connec-
tions between their nodes. However, this fully connected architecture results in in-
creased network complexity due to the large number of computations inside the hidden
layers, which in turn increase the computational cost and processing time of the net-
work (Liu et al., 2022). Consequently, the use of Graphical Processing Unit (GPU)s
is essential when training MLPs, to speed up processing time. GPUs are freely avail-
able on the cloud, such as Google Colab (Nair and Kumar, 2021), and they generally
improve the training process of DNNs (Pal et al., 2019).

Model size is another aspect that should be considered when implementing an MLP
for real time applications. Most MLPs have a large number of parameters, leading
to a big model size, which may not fit onto the hardware of some speech enhancement
applications, such as hearing aids and mobile communication (Sze et al., 2017). Finally,
the performance of MLPs was proven to be highly affected by the representation of the
input noisy speech. Speech signal is originally represented as a time series data, which
is known as time domain speech features. Another representation of the speech signal
is when being decomposed into harmonics, to give more coherent structure using Time-
Frequency (T-F) representation, which is known as frequency domain speech features.
The performance of MLP was shown to be significantly degraded when using time
domain-based speech features. This limits the application of MLPs, especially in time
domain-based speech enhancement (Fu et al., 2017).
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2.3.2 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is another architecture used to solve the com-
putation problem of MLPs by using the convolution operation in both forward and back-
ward propagation steps, so as to reduce the network parameters. CNNs were first made
for image related tasks in order to be able to work with the huge amount of the im-
ages’ parameters, but then it is proven to be very effective in audio processing as well
(Deng et al., 2014). The advantage of the CNN is its dependence on the idea of con-
volution, which results in fewer network parameters because of two reasons: parameter
sharing and the sparsity of connections. Parameter sharing means that units within a
convolution layer take advantage of a feature map generated from each unit within the
same layer plane through weight sharing, while sparsity of connections means that the
output value in each layer does not depend on all the inputs of the previous layer (Gon-
zalez, 2018). Most CNN architectures consist of three main layers: convolution layer,
pooling layer, and fully connected layer. The convolution layer is the layer in which
the convolution operation is done by sliding a matrix called the kernel over the input
features matrix, so as to finally output a feature map matrix. Equation 2.1 defines the
convolution operation:

S(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (2.1)

where S is the feature map matrix, I is the input matrix, and K is the kernel, while (i, j)
represents the pixel position in the feature map, and (m, n) is the position of the input
matrix. It should be mentioned here that CNN-based networks use multiple kernels.

The pooling layer is responsible for reducing the dimensionality of the convolution
layer output by only keeping the speech features with important information and dis-
carding the rest. There are two types of pooling: max pooling and average pooling, the
difference is that max pooling takes the maximum value of the selected speech features,
while average pooling takes the average value (Boureau et al., 2010). A CNN typically
has one or more fully connected layers at the end. Here, the neurons are fully connected
to all activations of the previous layer, as in the case of the MLP. The function of this
layer is to adjust the size of the output, by integrating all the learned features from the
previous layers, so as to generate the final prediction of the network (Schmidhuber,
2015).

The above discussed convolution type, expressed in Equation 2.1, is the traditional
type of convolution performed in the past, known as a two dimensional (2D) convolu-
tion. Another type of convolution that is used nowadays is the one dimensional (1D)
convolution, in which the convolution operation works along one axis (Kiranyaz et al.,
2021). The same concept of 2D convolution is applied to 1D, but the difference is in
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the kernel used and the structure of the input data. The kernel in 1D convolution is
applied horizontally across one feature axis, not along two axes as in the case of 2D
convolution. At the same time, 1D convolution takes a 1D vector, unlike 2D convolu-
tion which accepts a 2D matrix. These differences make 1D convolution more suitable
for sequence data, such as audio processing. Moreover, 1D convolution results in a
lower computational cost, which helps in developing architectures suitable for real time
applications (Kiranyaz et al., 2019).

The convolution operation also has many hyperparameters, such as padding size,
stride size, and dilation rate. Changing these hyperparameters will lead to different
types of convolution that impact the performance of the CNN (Li et al., 2021).

Padding is the process of stacking zero vectors to the borders of each feature matrix
before performing the convolution operation, and padding size defines how many zero
vectors should be added to the input feature matrix. This technique overcomes a draw-
back of the convolution operation, which is that the features along the borders of the
input feature matrix are not highly considered compared to the features in the center of
the matrix, because they contribute to the resulting feature map one time only. This is-
sue results in ignoring important features as the processing proceeds into deeper layers,
which negatively affects the network performance (Simard et al., 2003). Consequently,
this zero-padding process will help in preserving important information by increasing
the size of the input feature matrix to center the features in the borders without any
other change in the input characteristics. Moreover, this size increase allows for using
kernels with larger size, which enhances CNN learning. Furthermore, zero padding
keeps the size of the input the same as the output after the convolution operation, which
also improves the training process (Li et al., 2021). However, it has been proven with
some practical experiments that in some applications zero padding may result in a slight
enhancement in the performance of CNNs (Lecun, 2012).

Stride size is another hyperparameter for the convolution operation, which defines
another type of convolution, the strided convolution. This hyperparameter identifies the
length of column and row step for the kernel used in the convolution operation. In-
creasing the stride size will lead to a process similar to the downsampling operation to
the output by foregoing some of the information, which will also decrease the amount
of computations and the processing time. However, using a large stride size may neg-
atively affect the network performance in reconstructing the input back to its original
size correctly, so there is a tradeoff here between resource consumption and network
efficiency (He and Sun, 2015).

Dilated convolution is a type of convolution that compromises between kernel size
and the number of network parameters. In this type of convolution, a hyperparameter
called the dilation rate is defined that introduces spacing between the kernel used, in
order to increase the receptive field, which is defined as the region in the input space that
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a particular CNN’s feature is affected by, while keeping the total number of network’s
parameters the same, and hence have the same computational cost (Wei et al., 2018).

CNNs have been widely used in speech enhancement. The work in (Kounovsky
and Malek, 2017) used a CNN-based speech enhancement architecture of two convo-
lution layers and two fully connected layers to predict the log power spectra of the
clean speech. Another work, Chakrabarty et al. (2018), proposes an improved CNN
architecture trained using a masking-based training target (Wang et al., 2014); masking
and mapping targets explanation will be provided in Chapter 3. While in (Fu et al.,
2017), another version of CNN is proposed, named Fully Convolutional Neural Net-
work (FCNN), in which the fully connected layers are replaced with convolution layers
in an attempt to decrease the computational cost added by the fully connected layers. A
comparison was also conducted in the same work between the basic CNN architecture
and the FCNN for speech enhancement, and the results showed that FCNNs perform
better and faster than CNNs. Recently, the work shown in (Ouyang et al., 2019) and
(Pirhosseinloo and Brumberg, 2019) used a combination of 1D and 2D dilated convo-
lutions in order to implement a FCNN and reported a further improvement.

2.3.3 Denoising Autoencoders (DAE)

The autoencoder is a special type of DNN, which aims to output a similar representation
to the input using two separate networks: an encoder and decoder. The encoder com-
presses an input, X, by removing any unimportant information so as to finally generate a
compact form of the input data, Z, and then the decoder reconstructs an estimated form
of the input, X̃ (Schmidhuber, 2015). Based on this fact, the autoencoder is considered
as an unsupervised learning scheme, because it relies only on the input data, with no
target. This type of architecture has many applications, such as data compression (Hin-
ton and Salakhutdinov, 2006) and visualization (Hosseini-Asl et al., 2015; Petridis and
Pantic, 2016). In order to compute the loss function of the whole network, suppose that
Z and X̃ are functions of their inputs, as given in Equations 2.2 and 2.3, respectively:

Zi = f1(W1X
i + b1), (2.2)

X̃ i = f2(W2Z
i + b2), (2.3)

where W1 and b1 are the weight and bias parameters of the encoder network, respec-
tively, while W2 and b2 are the weight and bias parameters of the decoder network,
respectively. f1 and f2 are the nonlinear functions applied in the encoder and decoder
networks, respectively, and i is the input index. If the Minimum Mean Square Error
(MMSE) is the loss function used in the training process, then the cost function, J, that
the network is trying to minimize in this case can be expressed as a function of the in-
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put, X, and the encoder and decoder parameters, W and b, as given below in Equations
2.4 to 2.6:

J =
m∑
i=1

(X̃(i) −X(i))2, (2.4)

=
m∑
i=1

(f2(W2Z
(i) + b2)−X(i))2, (2.5)

=
m∑
i=1

(f2(W2f1(W1X
(i) + b1) + b2)−X(i))2. (2.6)

Taking advantage of the compression process on the input data in the encoder net-
work, Denoising Autoencoder (DAE)s have been widely used most recently in speech
enhancement. The idea of DAEs is based on the fact that noise is considered as unim-
portant information when trying to map from noisy to clean speech, so it is reduced
significantly during the compression process to produce clean speech bottleneck fea-
tures, which are compact form of the input data, and then the decoder reconstructs the
clean audio (Vincent et al., 2010). Based on this, training DAEs for speech enhancement
can be considered as supervised learning for DNNs with a target output Y, represent-
ing the real clean speech. Bottleneck features lead to significant improvement in many
research areas, such as speech recognition (Yu and Seltzer, 2011; Sainath et al., 2012;
Grézl et al., 2007), audio classification (Zhang et al., 2016; Mun et al., 2016), speech
synthesis (Wu and King, 2016) and speaker recognition (Yaman et al., 2012).

DAEs can be implemented using an MLP network, known as Deep Denoising Au-
toencoder (DDAE), and this is achieved by reducing the number of the hidden nodes
through the hidden layers. Another type of DAE is the Convolutional Denoising Au-
toencoder (CDAE), based on the use of convolution layers in both the encoder and
the decoder. DAEs are widely used for speech enhancement; for example, the work
done in (Lu et al., 2013) presents a DDAE speech enhancement architecture, while a
CDAE architecture was proposed in (Grais and Plumbley, 2017). The CDAE is the
most commonly used speech enhancement architecture in recent research (Park and
Lee, 2016; Pandey and Wang, 2019; Ouyang et al., 2019), because of its lower number
of parameters. However, autoencoders in general cannot perfectly construct a similar
representation of the input, which means the output will experience a loss, and this is
the main issue of this type of DNN architecture (Coşkun et al., 2017).

2.3.4 Recurrent Neural Network (RNN)

The previously discussed DNNs belong to a category called feedforward (FF) neural
networks, as the signal flows in one direction from the input to output. Another category
of neural networks is known as the Recurrent Neural Network (RNN), in which the
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output of the hidden node is fed back to the same node while also being an input to
the next node. When making a prediction, these feedback nodes makes this architecture
takes into consideration the current input and also what was learned from the previously
received inputs (LeCun et al., 2015). These feedback connections are also useful when
working with sequence data that change over time, and in the case of sequence-to-
sequence mapping as in the speech enhancement task (El Hihi and Bengio, 1996).

Some speech enhancement architectures in the literature are based on RNNs, such as
the work in (Sun et al., 2017) that used an RNN architecture with multiple mapping tar-
gets, and then a comparison was made to a basic MLP architecture. The work in (Huang
et al., 2014) also compared RNNs with an MLP architecture after adding an extra time
frequency masking layer that enforces some reconstruction constraints when converting
from the frequency domain back to the time domain. According to the reported results,
the RNN proved to be a powerful architecture for speech enhancement; however, the
disadvantage of the RNN is its instability when the ReLU activation function is used, so
the training of this network is difficult because it may suffer from the gradient vanishing
and exploding problems (Bengio et al., 1994; Pascanu et al., 2013). Recently, the use
of other activation functions facilitates the training of RNNs for speech enhancement
(Strake et al., 2019); moreover, RNN-based architectures such as Long Short-Term
Memory (LSTM)s and Gated Recurrent Unit (GRU) have shown good performance for
real-time speech enhancement (Braun and Tashev, 2020; Weninger et al., 2015).

2.3.5 Generative Adversarial Network (GAN)

The Generative Adversarial Network (GAN) is another DNN architecture for speech
enhancement. This architecture is a combination of two networks: the discriminator
network and the generator network. The generator network works in the same way as
an autoencoder, as its role is to generate a similar representation of the input data, while
the discriminator network acts as a binary classifier trained to discriminate between a
real and fake input representation. The generator output is fed to the discriminator as
an input, and then based on the decision of the discriminator, the generator network
adjusts its parameters to produce a better representation of the input data (Creswell
et al., 2018). The advantage of this network over DAEs is that it is not only trying to
remove the noise using a bottleneck representation, but also takes into consideration
another important parameter, which is the correlation between the input and the output,
and this improves the performance of DNNs for speech enhancement (Pascual et al.,
2017).

Much research in the literature employed GANs for speech enhancement. The work
in (Pascual et al., 2017) first proposes the development of a GAN network for speech en-
hancement using the Speech Enhancement Generative Adversarial Network (SEGAN)
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architecture and reported better performance in comparison to other speech enhance-
ment techniques available at the same time. Improved versions of SEGAN were then
developed to further improve the performance (Li et al., 2022; Baby, 2020; Donahue
et al., 2018). A GAN network was also presented in (Fu et al., 2019) that aims to max-
imize one of a two speech evaluation metric during the training process, based on the
target application. It can improve the Perceptual Evaluation of Speech Quality (PESQ)
score, which evaluates speech quality; or the Short Time Objective Intelligibility (STOI)
score, which assesses speech intelligibility, . Recently, the work in (Phan et al., 2020)
shows that cascaded GANs can significantly improves the performance of GANs for
speech enhancement.

A disadvantage of GANs is the difficulty of adjusting the hyperparamters of the
generator and discriminator to work successfully together, in order to finally generate
an estimate to the clean speech (Mao et al., 2017). Training DNNs, in general, is chal-
lenging; and here a two DNNs are trained simultaneously to learn the mapping function
that maps noisy speech to clean speech, which increases the difficulty of the training
process. It was also reported that GANs are sometimes not very effective for speech en-
hancement, and specific adjustments are needed in order to obtain good results (Pandey
and Wang, 2018b).

2.3.6 Other Speech Enhancement Architectures

Other speech enhancement approaches use a combination of two types of architecture,
such as combining a CNN with an RNN, as presented in (Zhao, Zarar, Tashev and Lee,
2018; Tan and Wang, 2018), this architecture is known as the Convolutional Recurrent
Network (CRN). The role of the CNN is to extract more advanced features from the in-
put data; these features are then concatenated and fed to the RNN for further processing
and to estimate the target clean speech. Moreover, other research are based on integrat-
ing deep learning-based speech enhancement techniques with the classical techniques
(Nicolson and Paliwal, 2019), or with other learning techniques such as reinforcement
learning (Koizumi et al., 2017). These approaches have been proven to be promising
as well (Yuliani et al., 2021); however, the complexity that may arise from integrat-
ing different techniques is a drawback, which may restrict some speech enhancement
real-time applications (Angelov and Sperduti, 2016).

Although strengths and weaknesses of different approaches are covered in various
publications, a critical analysis of using different deep learning based speech enhance-
ment approaches is not clearly reported in the literature. This analysis will be presented
in this thesis in Chapter 7.

20



2.4 Deep Learning Based Speech Enhancement Evolution

Deep learning-based speech enhancement has shown a massive progression over the
last decade. Many DNNs have been proposed for speech enhancement, starting from
the simple architectures with few hidden layers (Xu et al., 2013; Wang and Wang, 2015)
to the latest more complex and deeper networks (Wang, Wang and Wang, 2020; Nair
and Koishida, 2021). A summary of these architectures is presented in Tables 2.1 to 2.4
and discussed below.

In 2013, the use of MLPs for speech enhancement was the first proposed approach,
where an MLP network with few hidden layers was trained to map noisy speech to clean
speech (Xu et al., 2013; Narayanan and Wang, 2013; Xu et al., 2014b). The DAE-
based MLP (Yu and Seltzer, 2011) was then introduced in 2014, which was shown
to be promising for speech enhancement (Liu et al., 2014). Afterwards, the use of
masking-based targets was proven to improve the performance of DNNs for speech
enhancement, especially speech intelligibility (Wang et al., 2014), and MLP networks
for speech enhancement were trained using masking targets to generate better estimated
clean speech (Wang and Wang, 2015).

In 2016, more MLP-based architectures were proposed for speech enhancement,
aiming to improve the performance using different masking training targets (Chen et al.,
2016). Furthermore, the use of complex masking targets was proposed in (Williamson
et al., 2016) that enhances both the magnitude and phase spectrum, unlike previous
speech enhancement architectures that enhance only the magnitude spectrum, assuming
that the phase is less affected by the noise compared to the magnitude spectrum (Wang
and Lim, 1982). However, phase enhancement was proven to be essential, especially
in intrusive noise environments (Shi et al., 2006). A deeper MLP network was then
presented by (Tu and Zhang, 2017) in 2017, where the use of skip connections was
proven to be essential for deep architectures. The MLP was then shown to improve
speech intelligibility for hearing aids, as a speech enhancement application (Chen et al.,
2016; Wang, 2017; Goehring et al., 2017). In 2017, the use of CNNs (Kounovsky and
Malek, 2017) and RNNs (Chen et al., 2017; Sun et al., 2017) became more common,
and showed better performance than the MLP. Additionally, the first FCNN (Fu et al.,
2017) and GAN architecture for speech enhancement, SEGAN (Pascual et al., 2017),
were proposed in the same year, which process the noisy speech in the time domain,
unlike previous speech enhancement architectures that were operating in the frequency
domain.

In 2018, many time domain-based speech enhancement FCNN architectures were
proposed, leading to better performance (Fu et al., 2018; Rethage et al., 2018). More-
over, the implementation of the CRN was introduced, achieving further performance
improvement (Zhao, Zarar, Tashev and Lee, 2018; Tan and Wang, 2018). Furthermore,
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GAN architectures that perform in the frequency domain were presented (Soni et al.,
2018; Baby, 2020); at the same time, many CDAE-based architectures were proposed
showing outstanding speech enhancement performance in the time domain (Pandey and
Wang, 2018a; Macartney and Weyde, 2018). Additionally, the introduction of a two-
stage speech enhancement was presented in (Zhao, Wang and Wang, 2018), to perform
speech denoising and reverberation using two cascaded MLP architectures. In 2019,
improved FCNN and GAN-based architectures were proposed (Germain et al., 2019;
Ouyang et al., 2019; Fu et al., 2019). Finally, at the end of 2019, a hybrid two-stage
architecture was presented in Strake et al. (2019) that performs speech enhancement
and reconstruction in two separate stages, in order to minimize speech distortion, us-
ing a combination of RNN and CDAE architectures. Different models based on time
and frequency domain features are reported in the literature, however, limited work has
been reported in combining both features. Chapter 4 and 5 fill this research gap by com-
paring the time and frequency domain approaches, and developing a two-stage speech
enhancement model in the time and frequency domains.

In DNN-based speech enhancement, speech distortion is the main drawback of the
speech denoising process, especially at low SNR levels, in which the DNN removes
part of the speech spectrum while trying to remove the background noise. The signifi-
cance of this issue appears in subjective testing, where some of the listeners prefer the
noisy speech version rather than the clean one because of the distortion, which mainly
affects speech intelligibility (Xia et al., 2020b). Many of the proposed DNNs for speech
enhancement are very effective in improving the quality of noisy speech; however, it is
still very challenging to avoid the distortion that accompanies the noise removal process
(Wang et al., 2019; Strake et al., 2019). The generalization ability of DNNs is another
issue that becomes more significant when testing the network using a mismatched test
corpus (Pandey and Wang, 2020b), and poor network generalization also causes speech
distortion.

Consequently, recent research in 2020 and 2021 is giving more attention to this dis-
tortion issue by proposing different techniques and approaches to overcome it. This can
be achieved by applying a single stage architecture that is designed to minimize distor-
tion (Koizumi et al., 2020; Xia et al., 2020b; Pandey and Wang, 2020a; Défossez et al.,
2020). Another approach is to develop a two-stage architecture, with a second stage
dealing with this distortion issue (Nair and Koishida, 2021; Phan et al., 2020; Wang,
Wang and Wang, 2020). Chapter 5 will contribute to this research area by developing
a speech enhancement model that minimizes speech distortion. Finally, other work was
found to review and analyze DNNs for speech enhancement and investigate different
deep learning approaches (Saleem and Khattak, 2019; Wang et al., 2014; Yuliani et al.,
2021; Wang and Chen, 2018).
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Table 2.1 Best performing speech enhancement DNNs in years 2013 to 2015

Reference Representation Network Target Stages Year
Xu et al. (Xu

et al., 2013)

Time-Frequency MLP Mapping 1 2013

Narayanan and

Wang

(Narayanan and

Wang, 2013)

Time-Frequency MLP Masking 1 2013

Liu et al. (Liu

et al., 2014)

Time-Frequency DDAE Mapping 1 2014

Xu et al. (Xu

et al., 2014b)

Time-Frequency MLP Mapping 1 2014

Wang and Wang

(Wang and

Wang, 2015)

Time-Frequency MLP Masking 1 2015
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Table 2.2 Best performing speech enhancement DNNs in years 2016 to 2017

Reference Representation Network Target Stages Year
Williamson et al.

(Williamson

et al., 2016)

Time-Frequency MLP Masking 1 2016

Chen et al.

(Chen et al.,

2016)

Time-Frequency MLP Masking 1 2016

Tu and Zhang

(Tu and Zhang,

2017)

Time-Frequency MLP Masking 1 2017

Wang (Wang,

2017)

Time-Frequency MLP Masking 1 2017

Goehring et al.

(Goehring et al.,

2017).

Time-Frequency MLP Masking 1 2017

Chen et al.

(Chen et al.,

2017)

Time-Frequency RNN Masking 1 2017

Sun et al. (Sun

et al., 2017)

Time-Frequency RNN Mapping 1 2017

Kounovsky and

Malek

(Kounovsky and

Malek, 2017)

Time-Frequency CNN Mapping 1 2017

Fu et al. (Fu

et al., 2017)

Time-domain raw

waveform

FCNN Mapping 1 2017

Pascual et al.

(Pascual et al.,

2017)

Time-domain raw

waveform

GAN Mapping 1 2017
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Table 2.3 Best performing speech enhancement DNNs in years 2018 to 2019

Reference Representation Network Target Stages Year
Fu et al. (Fu

et al., 2018)

Time-domain raw

waveform

FCNN Mapping 1 2018

Rethage et al.

(Rethage et al.,

2018)

Time-domain raw

waveform

FCNN Mapping 1 2018

Zhao et al.

(Zhao, Zarar,

Tashev and Lee,

2018)

Time-Frequency CRN Mapping 1 2018

Tan and Wang

(Tan and Wang,

2018)

Time-Frequency CRN Mapping 1 2018

Soni et al. (Soni

et al., 2018)

Time-Frequency GAN Masking 1 2018

Macartney and

Weyde

(Macartney and

Weyde, 2018)

Time-domain raw

waveform

CDAE Mapping 1 2018

Pandey and

Wang (Pandey

and Wang,

2018a)

Time-domain raw

waveform

CDAE Mapping 1 2018

Zhao et al.

(Zhao, Wang and

Wang, 2018).

Time-Frequency

in both stages

MLP -

MLP

Masking -

Mapping

2 2018

Germain et al.

(Germain et al.,

2019)

Time-domain raw

waveform

FCNN Mapping 1 2019

Ouyang et al.

(Ouyang et al.,

2019)

Time-Frequency FCNN Mapping 1 2019

Fu et al. (Fu

et al., 2019)

Time-Frequency GAN Mapping 1 2019

Strake et al.

(Strake et al.,

2019)

Time-Frequency

in both stages

RNN -

CDAE

Masking -

Mapping

2 2019
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Table 2.4 Best performing speech enhancement DNNs in years 2020 to 2021

Reference Representation Network Target Stages Year
Koizumi et al.

(Koizumi et al.,

2020)

Time-Frequency CRN Masking 1 2020

Xia et al. (Xia

et al., 2020b)

Time-Frequency RNN Masking 1 2020

Pandey and

Wang (Pandey

and Wang,

2020a)

Time-domain raw

waveform

CDAE Mapping 1 2020

Defossez et al.

(Défossez et al.,

2020)

Time-domain raw

waveform

CDAE Mapping 1 2020

Phan et al. (Phan

et al., 2020)

Time-domain raw

waveform in both

stages

GAN -

GAN

Mapping -

Mapping

2 2020

Wang et al.

(Wang, Wang

and Wang, 2020)

Time-Frequency

in both stages

CDAE -

CDAE

Mapping -

Mapping

2 2020

Nair and

Koishida (Nair

and Koishida,

2021)

Time-domain raw

waveform -

Time-Frequency

CDAE -

CDAE

Mapping -

Mapping

2 2021

2.5 Speech Enhancement Applications

This section reviews two main speech enhancement applications: ASR and hearing aids.
Each application will be discussed in a separate subsection, and this discussion will
include how speech enhancement is used for these applications, the developed ideas
in the literature, and the current research issues related to these speech enhancement
applications.

2.5.1 Speech Enhancement for Automatic Speech Recognition (ASR)

ASR is a technique used to translate human speech into text, and it can be applied
to many applications, including conversational interactive voice response, dictations,
air traffic control, automated car environment, and biomedical applications (Raut and
Deoghare, 2016). Speech enhancement is an important stage for ASR, as system perfor-
mance is expected to be improved by removing noise from the speech signal (Blanchard
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et al., 2015; Gong, 1995). However, it has been found that the performance of an ASR
system, in some cases, is not enhanced when adding a denoising stage (Narayanan and
Wang, 2014; Du et al., 2014). The reason for this has motivated recent research to focus
on evaluating speech enhancement techniques when integrated into a whole system as
a preprocessing stage (Moore et al., 2017; Iwamoto et al., 2022; Donahue et al., 2018).
The results of the evaluations performed in most research mainly refer to the speech
distortion issue caused by the denoising process. A main drawback of speech enhance-
ment is the addition of artifacts by the speech enhancement technique after processing
the noisy speech signal (Iwamoto et al., 2022), leading to speech distortion (Wang et al.,
2019). This distortion makes changes to the speech characteristics, negatively affecting
the ability of the ASR system to interpret the speech signal, leading to higher WERs
(Wang et al., 2019; Heymann et al., 2016)

The first solution proposed to this distortion issue is that recent DNNs for speech
enhancement are giving more attention to speech distortion by using one of two ap-
proaches when implementing a DNN to be applied as an independent preprocessing
stage to ASR. The first approach is to design a single enhancement stage DNN, in
which distortion is kept as minimum as possible during the training process. This is
achieved by manipulating the loss function to consider speech distortion (Xia et al.,
2020b) or applying a feedback system including the ASR model, to ensure that the pro-
cessed speech reduces the WER of ASR (Shen et al., 2019). The second approach is to
develop a two-stage DNN for speech enhancement, in order to apply speech denoising
and reconstruction using two separate stages, leading to lower speech distortion (Strake
et al., 2019; Tang et al., 2021).

Another solution to this mismatch issue between the speech enhancement ASR
models is joint training of the two models, where the ASR model is trained using the
processed speech by the speech enhancement model (Wang et al., 2019; Wang and
Wang, 2016). However, the clear disadvantage of this solution is the need to retrain
a running ASR system to add the speech enhancement model and when applying any
changes to the speech enhancement network, which is not practical. In chapter 6, a
solution to this mismatch issue will be presented by developing a deep learning speech
enhancement architecture for ASR.

2.5.2 Speech Enhancement for Hearing Aids

Hearing is a complex process performed by the auditory system, which is divided into
two subsystems: the peripheral and central auditory systems (Bronzino, 2000). The
peripheral auditory system can be divided into three parts: the outer ear, the middle,
and the inner ear. The outer ear localizes and collects sound waves, which propagate
in the air in the form of mechanical vibrations. These sound waves first pass through
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the auditory canal of the outer ear, which amplifies a range of frequencies that can be
heard by the human ear. Moreover, the auditory canal filters out any tiny substances
and deals with changes in the temperature, to protect the tympanic membrane, known
also as the ear drum, which is the first component in the middle ear (Shaw, 1974). The
middle ear is a cavity filled with air, and it acts as a leverage system that amplifies the
incoming sound waves by a factor of over 30 decibels. It consists of three bones: the
malleus, the incus, and the stapes, which vibrate by the varying the air pressure of the
input sound waves (Shaw and Stinson, 1983). The inner ear then finally receives the
sound waves through a membrane to reach the cochlea, which is the main part of the
inner ear, responsible for converting the sound waves from mechanical vibrations into
electrical signals (Gan et al., 2007). These electrical signals are then transmitted to
the brain through the central auditory system through nerves for sound interpretation
(Bronzino, 2000).

The reduced ability to hear sounds is known as hearing loss, and it is one of the
most common sensory deficits affecting human beings, especially the elderly. Hearing
loss can be categorized into three types: Conductive hearing loss, Sensorineural hearing
loss, and Mixed hearing loss (Neumann and Stephens, 2011).

Conductive hearing loss is a hearing impairment that occurs when the sound can
not successfully reach the inner ear, so it is a malfunction of the outer or the middle
ear (Hartley and Moore, 2003). This hearing loss type is caused by a deficiency in the
outer ear, most commonly due to a blockage in the auditory canal; in the ear drum, for
example when suffering from a hole or a perforation in the eardrum (Mehta et al., 2006);
or in the middle ear, which happens when having a stiffness of the ear bones or a poor
connection between any of the three bones (Legouix and Tarab, 1959). Sensorineural
hearing loss is a hearing loss caused by a deficiency in the inner ear. This is mainly
caused due to damage to or the reduction of the cells in the inner ear that converts the
sound waves into electrical signals (Schreiber et al., 2010). The common causes of
Sensorineural hearing loss are aging (Johnsson and Hawkins Jr, 1972) and high level
noise exposure (Nelson et al., 2005). Finally, Mixed hearing loss is defined as damage
in the outer or middle ear and in the inner ear, which means having a combination of
Conductive and Sensorineural hearing loss (Zwartenkot et al., 2014).

Hearing loss can also be categorized by the degree of the hearing loss (Nadol Jr,
1993; Alshuaib et al., 2015). There are five hearing loss degrees (HL1-HL5) listed
below:

• HL1: Mild hearing loss, in which the person has difficulty hearing soft sounds in
noisy environments.

• HL2: Moderate hearing loss, in which the person has difficulty hearing conversa-
tional speech, especially in noisy environments.
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• HL3: Moderately Severe hearing loss, in which the person can hear only a raised
voice in a quiet environment, and has difficulty hearing it in a noisy environment.

• HL4: Severe hearing loss, in which the person has difficulty hearing a raised voice
in a quiet environment, and extreme difficulty hearing it in a noisy environment.

• HL5: Profound hearing loss, in which the person has extreme difficulty hearing a
raised voice in both quiet and noisy environments.

People suffering from any of these hearing loss types and degrees usually are ad-
vised to use a hearing aid, which is an electronic device that processes the sounds to
make them audible to the hearing-impaired person (Kim and Barrs, 2006). Hearing
aids are available in many styles, the most common two styles are the Behind The Ear
(BTE) and In The Ear (ITE) hearing aids. BTE hearing aids are more comfortable to
wear, usually suggested for young children, while ITE hearing aids are much smaller,
fit snugly in the ear, and can hardly be seen; so they are usually used by older children
and adults (Meredith and Stephens, 1993; Brooks, 1994). There are two technologies
for hearing aids: the old analog hearing aids, which only amplify the sounds and send
them to the human ear; and the recent digital hearing aids, which perform several signal
processing techniques on the collected sounds before conveying them to the human ear
(Levitt, 2007).

The main difference between analog and digital hearing aids is the microchip in the
digital hearing aids, which is responsible for sound processing. The processing applied
to the sounds are mainly divided into two techniques: analog to digital conversion and
noise reduction, hence speech enhancement (Hamacher et al., 2008). Digital hearing
aids are essential for people suffering from a severe degree of hearing loss, especially
for the Sensorineural hearing loss type, in which the human ear has less ability to dis-
tinguish between desired and undesired sounds, leading to significant hearing difficulty
in noisy environments (Johnson et al., 2016).

Speech enhancement is applied in digital hearing aids in order to improve speech
intelligibility and quality, which is essential for people with hearing disabilities (Loizou,
2013). Based on the fact that deep learning techniques have made a breakthrough in
eliminating background noise, current hearing aids utilize DNNs to perform speech
enhancement for hearing aids (Wang, 2017; Nossier et al., 2019; Schröter et al., 2020).

Currently developed DNNs for speech enhancement remove background noise re-
gardless of its type. Consequently, a hearing-impaired person has to rely on an external
alert system to ensure their safety in emergency conditions. These systems detect the
emergency sound, such as fire alarms, and use flashing lights or vibrating elements to
notify the user (Beritelli et al., 2006). With the spread of smart features in most elec-
tronic devices, techniques have been suggested for the development of smart hearing
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aids, which has the smart feature of detecting and amplifying emergency noise (Nossier
et al., 2019). However, further investigations are needed to this technique, in order to
improve performance. Chapter 6 will fill this gap in the literature.

2.6 Conclusion

In this chapter, a review was presented for deep learning-based supervised speech en-
hancement. Different DNN architectures were demonstrated, highlighting the advan-
tages and disadvantages of each architecture type. Afterwards, a discussion was pre-
sented for the evolution of speech enhancement DNN architectures, and the effect of
different approaches in solving deep learning-based speech enhancement issues. The
chapter ended with a review of two main speech enhancement applications: ASR and
hearing aids, covering the developed speech enhancement techniques for these applica-
tion and the current research work in this area. The discussions in this chapter identified
the gaps in the literature that will be covered in this thesis. These gaps include speech
distortion as the current DNN-based speech enhancement issue that most recent re-
search in the field are trying to solve, the mismatch issue between speech enhancement
and speech recognition systems, and the important emergency noise that must not be
eliminated by the speech enhancement system, especially for applications such as hear-
ing aids. In the next chapter, the procedure of developing a DNN to perform speech
enhancement will be demonstrated, covering the common techniques used to prepare
the training data and the well-known speech quality evaluation metrics used to assess
the performance of the DNN.
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CHAPTER 3

Methodology on Developing a Deep Neural Network for Speech
Enhancement

3.1 Introduction

This chapter presents all the necessary procedures to develop a DNN for speech en-
hancement. These procedures can be categorized into six steps: Data Collection, Data
Preprocessing, Feature Extraction, Artificial Neural Network Implementation, Training
Target Choice, and Evaluation of the Processed Speech. The following sections explain
these six steps in details.

3.2 Data Collection

In deep learning-based speech enhancement, the data used as an input to the DNN plays
an important role in the learning process, due to the fact that deep learning is a data
driven approach. In order to train a DNN for speech enhancement, the network must be
fed with a huge amount of data containing pairs of noisy and clean speech utterances.
There are many online available datasets that can be used in the learning process, Tables
3.1, 3.2, and 3.3 show the clean speech, noise, and noisy speech datasets, respectively,
that are commonly used in the literature. In order to generate the pairs of noisy and clean
speech utterances for training, clean speech and noise audio files from the datasets in
Tables 3.1 and 3.2 are randomly mixed to synthesize noisy speech. While in testing, real
noisy datasets in Table 3.3 are usually used to evaluate the performance of the DNN in
real noisy conditions.

When mixing speech and noise data to create a simulated noisy data for training,
two different types of simulation can be used: instantaneous addition and room acoustic
simulation. Instantaneous addition is used to generate additive background noise, which
is the main noise type that speech enhancement aims to eliminate; while room acoustic
simulation is used to create reverberate speech, which is another noise type that can be
eliminated using speech enhancement techniques or a technique called dereverberation.

The dataset used for training should also consider different microphone conditions,
such as close-talk microphones and distant microphones, which affect the intensity of
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the speech and background noise. In close-talk microphone condition, the sound is loud
and clear; while distant microphone sound is faint and more affected by background
noise. These two conditions can also be simulated using near-field and far-field speech
data.

Finally, the sound recorded by speakers can be collected from one microphone or
many microphones, which divides speech enhancement field into two categories: single
channel and multiple channel speech enhancement. As most of the data are recorded on
multiple channels, single channel speech enhancement is based on taking the average
of the sounds coming from different channels. It should be noted here that the work
done in this thesis contributes to the single channel speech enhancement field.
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Table 3.1 A review of the available clean speech datasets

Corpus Description

TIMIT English speech recording for 630 speakers, 10 sen-
tences for each speaker, sampled at 16 kHz (Zue
et al., 1990)

Voice Bank English speech recording for 500 speakers, 400 sen-
tences for each speaker, sampled at 48 kHz (Veaux
et al., 2013)

LibriSpeech 1,000 hours of read English speech, sampled at 16
kHz (Panayotov et al., 2015)

ATR 16 hours of English speech, sampled at 48 kHz (Ni
et al., 2007)

TED-LIUM 118 hours of English speech recorded from TED
talks, sampled at 16 kHz (Rousseau et al., 2012)

WSJCAM0 140 speakers each speaking about 110 British En-
glish utterances, all sampled at 16 kHz (Robinson
et al., 1995)

Free ST 350 English utterances for 10 speakers, sampled at
16 kHz (Surfingtech, 2015)

176 Spoken Languages 12,320 different Speech Files, each containing ap-
proximately 10 seconds of speech recorded in 1 of
the 176 Possible Languages Spoken, sampled at 16
kHz (Topcoder, 2017)

DNS A total of 562 hours of clean English read speech
utterances for 11,350 speakers (Xia et al., 2020a)

Lombard GRID A total of 5,400 utterances, 2,700 utterances with the
Lombard effect and 2,700 plain, clean speech utter-
ances, spoken by 54 native speakers of British En-
glish (Alghamdi et al., 2018)

33



Table 3.2 A review of the available noise datasets

Corpus Description

NOISEX-92 Recording of various noises, including babble, fac-
tory, HF channel, pink, white, and military noise
(Varga and Steeneken, 1993)

UrbanSound8K 8,732 recordings of 10 urban noises, including air
conditioner, car horn, children playing, dog bark,
drilling, engine idling, gunshot, jackhammer, siren,
and street music (Salamon et al., 2014)

Baby Cry 400 different recordings of different baby cry sounds
(Gveres, 2015)

Demand A collection of multi-channel recordings of acoustic
noise in diverse environments, including park, office,
cafe, and street (Thiemann et al., 2013)

ESC 50 A collection of 2,000 recordings for 50 environmental
noises, 40 for each, including: animal, nature, and
urban sounds (Piczak, 2015)

CHiME3 4 noise environments including, cafes, street junc-
tions, public transport (buses) and pedestrian areas
(Barker et al., 2015)

USTC 15 home noise types, including AWGN, babble, car,
and musical instrument sounds (Xu, 2013)

100 Noise 100 non speech environmental sounds, including
wind, bell, cough, yawn and crowd noise (Hu, 2014)

DNS 181 hours of noise for about 150 audio classes, for a
total of 60,000 audio clips (Xia et al., 2020a)

34



Table 3.3 A review of the available noisy speech datasets

Corpus Description

AMI 100 hours of real meeting recordings in three differ-
ent rooms with different acoustic properties. These
recordings include close-talking and far-field micro-
phones, individual and room-view video cameras
(Carletta et al., 2005)

Reverberant An artificial reverberant speech version of the Voice
Bank clean speech corpus (Valentini-Botinhao et al.,
2017a)

Voice bank Noisy version of the Voice Bank clean speech corpus,
created by artificially adding real noise to the speech
(Veaux et al., 2013)

3.3 Data Preprocessing

Before feeding the data to the DNN, some preprocessing techniques must be applied
in order to prepare the data for the training process. These operations are essential for
any DNN type, as they ensure that the input data is in a suitable form for the training
process; moreover, they facilitate the learning of the mapping function that maps noisy
speech to clean speech. The following subsections will discuss these techniques in
detail.

3.3.1 Speech and Noise Mixing

There are three main noise types to deal within the speech processing field: Random
noise, Interference noise, and Reverberation noise. These noises have different charac-
teristics, and they affect the target speech signal in different ways (Loizou, 2013).

Random noise is the common form of noise generated by sounds from the sur-
rounding environment, such as nature sounds, animal sounds, urban noise, etc. This
noise type is characterized by having an intensity spectrum similar to that of the speech
signal.

Interference noise is the collection of speech signals that interfere with the target
speech signal. Babble noise generated by the crowd is an example of this noise category,
and it is one of the most challenging noise environments, as it is similar to the target
speech signal, which makes it different for the network to detect and suppress this noise
type (Haykin and Chen, 2005). The presence of more than one speaker at the same time
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is another example of interference noise.
Reverberation noise is generated by the reflected speech signal from the walls, ceil-

ing, floor, tables, or any other hard surfaces when speaking inside a room (Loizou,
2013).

Speech enhancement research only considered random noise and interference noise
caused by babble noise. Handling inference noise caused by more than one speaker is
performed using a technique called Speaker Separation, which is different from speech
enhancement (Wang and Chen, 2018). On the other hand, dereverberation is a separate
technique from speech enhancement, used to eliminate room reverberation noise (Zhao,
Wang and Wang, 2018). Therefore, in order to create the noisy speech for speech
enhancement processing, random or babble noise environments are additively mixed
with the speech signal. This can be expressed by Equation 3.1:

y[k] = s[k] + n[k], (3.1)

where, y[k] is the noisy speech, while s[k] and n[k] represent the speech and noise
signals, respectively, and k is the time index.

3.3.2 Amplitude Scaling and Normalization

In real time, the intensity of the background noise varies, sometimes its level is lower
than the speech signal; while in other situations the noise is highly intrusive and of a
much higher level than the speech signal, where you can barely hear the spoken speech.
The metric that measures the ratio between the power of the desired speech and back-
ground noise is known as SNR, and it can be defined by Equation 3.2:

SNR(dB) = 20 log10(
sRMS

nRMS

), (3.2)

where, SNR is in dB, sRMS and nRMS are the speech and noise Root Mean Square
(RMS) levels, respectively, which can be calculated as in Equation 3.3 below:

xRMS =

√√√√ 1

K

K−1∑
k=0

x[k]2, (3.3)

where, xRMS is the RMS value of the signal, K is the signal length, and k is the time
index.

The SNR of the input audio to the DNN must be adjusted to match real time situa-
tions, so a wide range of SNRs are generally used during the training process, to ensure
that the network can deal with different noise levels.

Normalization is another important process in deep learning, in which the data is
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transformed to a common scale to facilitate the training process. In speech enhance-
ment, the noisy and the clean utterances are usually normalized to zero mean and unit
variance; otherwise, normalization can be performed using hidden layers during the
training process (Garbin et al., 2020).

3.3.3 Audio Resampling

In speech enhancement, the target output is speech, where the essential frequency bands
fall between 200 to 6 kHz; while our ear has the ability to hear sounds in the frequency
range of 20 to 20k Hz. The higher frequency bands usually contain noise or unimpor-
tant speech features; for this reason, limiting the frequency band of the input audio to
the DNN can help the network in the denoising process, as this will only keep the rele-
vant frequency bands for speech; this process is known as Audio Resampling, or more
specifically, Audio Downsampling.

In the literature, the use of 16 kHz sampling frequency was found to be suitable
for generating speech with good quality. However, it is preferable in some cases to
downsample the noisy speech to 8 kHz, which is used for some applications in less
challenging noise environments, such as in ASR, where the quality of the output speech
is not of high importance as long as the ASR system can interpret the speech and convert
it to text.

3.4 Feature Extraction

Although deep learning is a data driven approach, feature extraction was proven to
significantly help with the learning process of the DNN (Fu et al., 2017). In speech
enhancement, the learning process can be performed in the time or the frequency do-
main, so speech features can be categorized into time and frequency domain features
(Alı́as et al., 2016; van Hengel and Krijnders, 2013). The following subsections include
a discussion on the most common speech features in both domains.

3.4.1 Time Domain Features

Speech is originally represented in the time domain in the form of changes in the pres-
sure values of the input sound with time. This is known as Raw Waveform features,
where no feature extraction is applied and these values are fed directly to the DNN.
There are some speech enhancement research based on Raw Waveform features (Fu
et al., 2017; Pascual et al., 2017), the researchers here believe that it is better to leave
the DNN to decide the most useful features during the training process, so as not to
discard some features that may negatively impact the learning process.

Time frames are the second most commonly used feature for speech enhancement in
the time domain. In this process, the time domain raw waveform is cut into several small
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parts, known as frames, using a technique called windowing. This is performed due to
the fact that feeding the network with the whole utterance consumes a large amount of
memory, and the efficiency of the network to process the input data also decreases with
a large input size. Windowing is simply multiplying the signal with a window function
so as to divide it into many small time periods; these time periods should be as small
as 5 to 100 ms, for the frame to correctly represent important signal characteristics.
There are many types of windowing functions; the rectangular window is the simplest
function; however, as it ends abruptly, this sharp edge of the window will lead to the
appearance of frequencies that are not in the original signal, which cause the spectrum
to be smeared; a problem known as spectral leakage. Instead, there are another two
popular windowing functions, the Hann and Hamming windows, that could be used
to overcome this problem, as they ensure that the ends of the signal are close to zero
(Liang and Lauterbur, 1999).

There are two other well-known features that can be extracted from the time domain
utterances: Zero Crossing Rate (ZCR) and Energy Entropy. ZCR is the rate of sign-
changes of the signal during each time frame; while Energy Entropy is a measure to
the abrupt changes in the energy level of an audio signal. Both of these features extract
important information about the input time domain audio; however, their use is not very
common in the speech enhancement field, because they only provide very specific and
limited information about the speech signal (Alı́as et al., 2016).

3.4.2 Frequency Domain Features

The time domain speech signal can be converted to the frequency domain, in order
to get more meaningful information about the speech signal. This can be achieved
using a technique known as Fourier Transform, which gives the representation of the
input audio samples in the frequency domain. In speech enhancement, it is common
to use the Short Time Fourier Transform (STFT) technique to convert the time domain
signal to the frequency domain, which is the Fourier transform of a windowed signal
as it changes over time, and this generates a T-F representation of the signal (Xu et al.,
2014b; Xia et al., 2020b). Equation 3.4 defines the STFT operation:

Y (t, f) =
F−1∑
f=0

y(m+ t)h(m)e−j2πfm/F , (3.4)

where Y(t,f) is the STFT of the noisy signal, f is the frequency bin index; {f = 0, 1, ...,

F-1} and F is the total number of frequency bins, t is the time frame, {t = 0, 1, ..., T-1}
and T is the total number of frames, m is the input signal time sample, h denotes the
applied window function.

Chromagram is a logarithmic STFT-based feature that represents the spectrum of
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the audio mapped into one octave, to take into consideration the 12 pitch classes within
an octave (Bartsch and Wakefield, 2005), defined in musical theory (Shepard, 1964).
Based on the fact that this feature is suitable to represent musical and harmonic signals,
it is also useful in speech enhancement, because it helps the DNN in differentiating
speech from noise (Kumar et al., 2022), or dealing with singing voices and emotional
speech (Issa et al., 2020).

Mel Frequency Cepstral Coefficients (MFCC) is a frequency domain-based feature
that represents the signal in the Cepstral domain, which is achieved by applying a sec-
ond stage inverse Fourier transform, more specifically the Discrete Cosine Transform
(DCT), operation on the logarithmic of the magnitude of the Mel frequency spectrum.
The conversion of the Fast Fourier Transform (FFT) frequencies to the Mel scale aims
to achieve frequencies that follow a scale that resembles real human voice signals. The
MFCC feature extraction procedure is represented in Figure 3.1. MFCC was proven to
be very useful in speech processing, because it was proven to be robust to noisy signals;
consequently, it is used extensively in speech enhancement (Li et al., 2020; Wang, Li,
Siniscalchi and Lee, 2020).

Figure 3.1 MFCC feature extraction process, IFFT refers to the Inverse Fast Fourier
Transform

Another feature extraction method that represents the signal in the T-F domain is the
Wavelet Transform. A Wavelet is a mathematical procedure that also analyses the signal
time and frequency components, but unlike STFT, the audio here can be divided into
intervals of varied sized using a filter bank that decomposes the audio into sub-bands
over different regions of the frequency spectrum, without losing the time domain char-
acterization. This allows for more precise feature extraction of high and low frequency
components; moreover, it is more efficient dealing with signals that have discontinuities
and sharp peaks (Mallat, 1989). Wavelet-based features were also shown to be effective
in improving performance when applied in speech enhancement (Gutiérrez-Muñoz and
Coto-Jiménez, 2022; Vanithalakshmi et al., 2022).

Linear Prediction Coefficients (LPC) are a widely used frequency feature in speech
processing, derived from linear prediction analysis of the speech signal that accurately
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represents the speech signal using few parameters (Sambur and Jayant, 1976). This
feature imitates the human vocal tract as it captures the spectral envelope of the speech
by identifying the vocal resonances (Atal and Hanauer, 1971), which is difficult to
be determined using the FFT spectrum due to its highly varying harmonic structure.
This procedure is based on dividing the audio into segments using a framing process,
and then analysing the audio segments to determine voiced and unvoiced parts, the
pitch of the segment, and some other speech features, in order to finally create a filter
that models the vocal tract for each segment. This algorithm takes into consideration
resonances while performing the analysis, resulting in a smooth spectrum with well-
defined peaks corresponding to the resonances (Atal, 2003). Many speech enhancement
research shows the advantage of using LPC in improving the performance (Schröter
et al., 2022; Roy et al., 2021).

Another similar feature to LPC is Perceptual Linear Prediction (PLP), which is also
based on linear prediction analysis of the speech signal. This feature is based on the
psychophysics of human hearing, and it has an advantage over LPC as it tries to better
resemble the human perception of voice by discarding any irrelevant information (Her-
mansky, 1990). PLP was shown to outperform LPC in speech processing (Alı́as et al.,
2016; Mishra et al., 2010), and it is also used in speech enhancement research (Saleem
et al., 2019).

Another well-known frequency based feature is the Cochleagram, which is gener-
ated by time windowing responses of a filterbank representing the frequency analysis of
the cochlea. The noisy audio passes through a number of Gammatone filters to extract
speech features related to different frequencies, resulting in a T-F representation to the
noisy audio similar to the spectrogram. Equation 3.5 represents the impulse response
of the gammatone filter in the time domain:

g(t) = atn−1e−2πbt cos(2πfct+ ϕ), (3.5)

where the constant a is the amplitude that controls the gain, t is the time, n is the order
of the filter, fc is the central frequency of the filter, and ϕ is the phase. Equation 3.6
defines b, which is the decay factor determining the filter bandwidth:

b = 1.019 ∗ 24.7(4.73 fc
1000

+ 1). (3.6)

The gammatone filterbank is created by changing the center frequency fc of the filter in
the above equations. There are many features that can be extracted based on the Gam-
matone Frequency (GF) feature, such as Gammatone Frequency Cepstral Coefficients
(GFCC) (Shao and Wang, 2008), which is calculated by applying the DCT to the GF
feature. Gammatone Frequency Modulation Coefficients (GFMC) (Maganti and Matas-
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soni, 2010) is another feature based on GFCC. Multiresolution Cochleagram (MRCG)
(Chen et al., 2014) and Pitch-Based Feature (PITCH) (Wang and Chen, 2018) are other
features that can be created based on the cochleagram. Some features are also found to
integrate both cochleagram and spectrogram, such as Gabor Filterbank Feature (GFB)
(Schädler et al., 2012) and Power-Normalized Cepstral Coefficients (PNCC) (Kim and
Stern, 2016), to take advantage of both representations.

3.5 Artificial Neural Network Implementation

The implementation of DNN is the most important stage when developing a deep learn-
ing technique for speech enhancement. Due to the fact that this process is very complex
and has many internal techniques, it can be divided into two major main processes:
DNN Design and Loss Function Choice. This chapter briefly discusses DNN design, as
a more detailed discussion on this process will be presented in Chapter 4.

3.5.1 DNN Design

Any of the DNNs discussed in Chapter 2 can be employed for speech enhancement.
The choice of the network mainly depends on the required performance and complex-
ity, which is defined by the application where speech enhancement is performed. Im-
plementation of DNNs can be done using open-source frameworks, such as Keras and
PyTorch (Vasilev et al., 2019). These frameworks facilitate the development of deep
learning models by having built-in optimized functions to construct the network and
perform training and testing. The performance of these frameworks is nearly the same;
however, some frameworks were shown to be more stable when applied commercially
with real data. Moreover, some frameworks offer more features and functions that help
in making the training process faster and more efficient, and for this reason they are
preferable than other frameworks (Dinghofer and Hartung, 2020).

The implementation of a DNN requires the adjustment of many hyperparameters
that differ based on the type of the architecture. These hyperparameters highly affect
the performance of DNNs, so careful consideration should be taken when choosing
their values. Due to the importance and large number of these hyperparameters, a full
discussion and analysis of this process will be given in the next chapter, Chapter 4.

3.5.2 Loss Function Choice

The definition of the loss function is the second important step when implementing a
DNN for speech enhancement. This function defines the error that the DNN should
minimize during the learning process, so it has a great impact on the final performance.
MMSE is the most commonly used and default loss function for speech enhancement.
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This function is based on comparing the real and estimated clean speech signal, and it
can be defined in the time domain as below:

LMMSE =
1

T

T∑
t=0

[x̂2(t)− x(t)]2 , (3.7)

where LMMSE is the MMSE loss function, x(t) and x̂(t) is the real and estimated clean
speech, respectively. T is the total number of time frames, and t is the time index.

MMSE is the default loss function for deep learning-based speech enhancement;
however, other loss functions were found to be useful for specific applications when the
target is to improve a specific speech quality metric, these loss functions include: PESQ,
STOI, and Scale-Invariant Signal to Distortion Ratio (SI-SDR) (Fu et al., 2019). Each of
these speech quality scores is defined to measure a specific aspect of the speech quality.
PESQ gives an overall quality score for the processed speech, but it highly correlates
with the amount of background noise; while, STOI estimates the intelligibility of the
output speech from the DNN. SI-SDR is a measure for the amount of distortion caused
by the denoising process; further details about these evaluation metrics will be given
in Section 3.7. When using these evaluation metrics as a loss function, the DNN is
expected to generate speech that maximizes the evaluation metric used, which will be
beneficial for some applications. However, the loss function and the DNN should be
carefully designed in this case, in order to avoid vanishing or exploding gradient issues
(Kolbæk et al., 2020).

3.6 Training Target Choice

The training target is defined as the signal that the DNN learns to generate during the
training process. The deep learning-based supervised speech enhancement procedure
can be seen from two perspectives: a regression or classification problem (Wang and
Chen, 2018). When dealing with speech enhancement as a regression task, the network
is trying to map the input noisy speech audio to clean speech. This includes the raw
waveform, time frames, and T-F representation mapping, depending on the features
used during the training process. Alternatively, the speech enhancement task can be
processed by the DNN as a classification problem, where the network tries to generate
a mask that when multiplied by the input noisy speech, outputs the clean speech. This
mask works on the T-F representation of the noisy audio, and it classifies every portion
of the T-F diagram as either speech or noise. It should be mentioned here that the target
output is still the clean speech signal; however, the classification description is based
on the fact that the network performs binary classification on every portion of the T-F
representation. Consequently, training targets for supervised speech enhancement can
be categorized as: mapping and masking targets (Wang et al., 2014). In the following
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subsections, a discussion will be presented for these two training target types.

3.6.1 Mapping Targets

As mentioned previously, the mapping target is based on the learning domain of the
DNN, as raw waveform or time frames features represent the mapping target in the
time domain; while in the frequency, a spectrogram or cochleagram of the input signal
can be used as a training target.

In spectrogram mapping, the network performs some processing on the noisy speech
spectrogram, in order to finally predict the clean speech spectrogram. In most studies,
only the magnitude spectrogram is used during the training process, while the noisy
phase is retained, to be added to the output estimated clean speech spectrogram, assum-
ing that the phase is less affected by noise in comparison to the magnitude spectrum (Xu
et al., 2014b; Braun and Tashev, 2020). However, other studies show the importance
of enhancing the phase spectrogram, so some researchers develop a DNN to perform
complex spectrogram mapping, where both the magnitude and phase spectrogram are
enhanced during the training process. This can be achieved as a single stage speech en-
hancement processing (Ouyang et al., 2019), or a two-stage based processing to achieve
better performance (Wang, Wang and Wang, 2020). Phase enhancement can also be
performed using separate techniques that work on retrieving the clean phase, to avoid
increasing complexity that may result from developing a DNN to enhance the complex
spectrogram (Zhao, Wang and Wang, 2018). As discussed in Section 3.4, some other
features can be extracted from the audio spectrograms, such as MFCCs. When using
these features as an input to the DNN, the network will try to map the noisy speech
spectrogram-based features to the corresponding clean speech features.

In cochleagram mapping, the DNN performs speech enhancement processing on
the noisy speech cochleagram to estimate the clean speech cochleagram, also known
as Gammatone Frequency Target Power Spectrum (GF-TPS). However, this training
target is less common than spectrogram mapping, due to the absence of the inverse
procedure that converts this T-F representation back to the time domain to reconstruct
the estimated clean speech audio. In order to reconstruct the time domain estimated
clean speech signal from the cochleagram representation, an indirect method is used that
is taken from the Computational Auditory Scene Analysis (CASA) field, dating from
1983 (Lyon, 1983). In CASA, sound source separation was performed by segmenting
the cochleagram into regions belonging to each sound source. A binary matrix of 1
or 0 weights for different sound sources is then formed by grouping these regions into
streams. This generated binary matrix is then multiplied by the audio containing many
sounds, to finally output the target sound source, defined by the 1s weights in the binary
matrix (Weintraub, 1985). Using the same idea, this binary matrix can be calculated
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using the noisy and the estimated clean speech cochleagram; afterwards, this matrix
can be used to reconstruct the time domain estimated clean speech signal, by weighting
any T-F representation of the noisy speech with it. This matrix of weights is actually
the spectrographic or T-F mask, which will be discussed in the following subsection, so
when using cochleagram-based mapping targets, speech re-synthesis is done indirectly
through a spectrographic mask.

3.6.2 Masking Targets

As mentioned above, masking targets are used to predict the clean speech T-F represen-
tation by multiplying the noisy speech T-F signal with a matrix (mask) that suppresses
the noise regions in the noisy speech signal. When using T-F masking as a training
target, the DNN deals with speech enhancement as a binary classification task, where
the network learns to classify regions in the T-F representation as one of two classes:
speech or noise (Wang, 2017; Chakrabarty et al., 2018; Williamson et al., 2016).

T-F masks can be categorized into two basic types: Binary Masking and Soft Mask-
ing (Samui et al., 2019). Binary Masking assumes sparseness and disjointness of the
speech and noise. Sparseness means that most of the T-F bins have low energy, while
disjointness means that the T-F bins of the two signals in the audio mixture do not over-
lap (Alberti and Ammari, 2017). Based on these assumptions, frequency bins that are
likely to belong to the target signal are set to 1, while other frequency bins are set to 0,
and that’s why it is called binary masking. If the previously mentioned assumptions are
not fulfilled in the noisy speech signal, soft masking can be used instead, which avoids
the hard binary decision (1 or 0) of the binary mask, by setting each frequency bin of
the noisy speech signal to a probability value between 0 and 1, based on how much it is
likely to belong to the target clean speech signal.

In the following subsections, discussion and illustration will be given to the com-
monly used T-F masking targets in the speech enhancement field,

3.6.2.1 Ideal Binary Mask (IBM)

Ideal Binary Mask (IBM) belongs to the binary masks category, and it is considered
one of the first masking targets used in the field of speech enhancement and separation.
This mask generates a binary matrix with 0 values assigned to indices corresponding to
portions of the spectrogram that have a high noise intensity, while 1 values are assigned
to portions with higher speech amplitude (Wang, 2005). Equation 3.8 defines the IBM:

IBM(t, f) =

1, if SNR(t, f) > LC

0, otherwise
, (3.8)
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where t and f denote time and frequency, respectively. LC is the local criterion or
threshold that the classification to 1 or 0 is based on. This value should be chosen based
on practical trials; but in the literature, it is kept to 5 dB lower than the SNR of the noisy
speech mixture so as to preserve enough speech information (Wang et al., 2014).

Target Binary Mask (TBM) is an edited version of IBM, and it has been also em-
ployed in many speech enhancement research. This mask is defined using the target
speech energy in each T-F unit and the average spectral energy of a reference Speech-
Shaped Noise (SSN) instead of the local noise energy, defined in Equation 3.8, which
means that this mask type is independent of the noise in the mixture (Kjems et al.,
2009).

3.6.2.2 Ideal Ratio Mask (IRM)

Ideal Ratio Mask (IRM) belongs to the soft masking target category, which is used
when the binary masking assumptions, discussed previously, are not fulfilled. IRM was
proven to outperform IBM in speech enhancement research, because it outputs speech
with better intelligibility (Srinivasan et al., 2006). An explanation to this is that the
noise speech mixture is very complex, which makes it hard to define this noisy speech
signal using the assumptions of the IBM. The IRM is presented below in Equation 3.9:

IRM(t, f) =

(
S(t, f)2

S(t, f)2 +N(t, f)2

)β

, (3.9)

where S(t, f)2 and N(t, f)2 denote the speech and noise energy, respectively, in a particular
T-F unit. β is a tunable parameter to scale the mask.

3.6.2.3 Complex Ideal Ratio Mask (cIRM)

Complex Ideal Ratio Mask (cIRM) is another soft mask that was proposed after many
speech enhancement research pointed to the importance of enhancing the noisy phase
as well as the noisy magnitude spectrogram (Williamson et al., 2016). When using this
complex spectrogram-based mask, the DNN learns to give an estimate of both the clean
magnitude and phase spectrogram, which leads to better clean speech reconstruction.
However, this negatively affects the networkś ability to eliminate background noise in
comparison to using the normal IRM (Wang et al., 2016). The STFT in this masking
target type is expressed in Cartesian coordinates so as to give a meaningful phase repre-
sentation that can be used in the training process. Equation 3.10 defines the cIRM which
when applied to the noisy complex spectrum, produces a clean complex spectrum:

cIRM =
YrSr + YiSi

Y 2
r + Y 2

i

+ i
YrSi − YiSr

Y 2
r + Y 2

i

, (3.10)
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where Yr and Yi are the real and imaginary parts of the noisy speech, respectively, and
Sr and Si are the real and imaginary parts of the clean speech, respectively. In practice,
cIRM is expressed in a compressed format in order to be bounded to ensure training
stability, and the work in (Williamson et al., 2016) and (Wang et al., 2016) defined these
compression techniques. Afterwards, the estimated compressed mask is decompressed
and multiplied by the noisy spectrum to produce the clean complex spectrum.

3.6.2.4 Spectral Magnitude Mask (SMM)

Spectral Magnitude Mask (SMM) is a mask type that belongs to the soft masking cate-
gory; however, it takes advantage of the mapping-based targets approach as well. This
is achieved by dividing the STFT magnitude of the clean speech by the STFT mag-
nitude of the noisy speech, to generate a matrix that when multiplied with the noisy
speech signal, outputs an estimate to the clean speech. This mask is also known as a
Fast Fourier Transform Mask (FFT-Mask), and it is not bounded by 0 and 1, such as
cIRM, so high values that are present in the mask matrix are truncated, to guarantee
the stability of the training process (Wang and Chen, 2018; Wang et al., 2014). The
definition of SMM is expressed in Equation 3.11:

SMM(t, f) =
|S(t, f)|
|N(t, f)|

, (3.11)

where |S(t, f)| and |N(t, f)| are the magnitude spectrum of the clean and noisy speech,
respectively. There is another version of this type of mask named Phase-Sensitive Mask
(PSM) (Erdogan et al., 2015), in which the SMM mask is multiplied by the cosine of
the phase difference between the noisy and clean speech, and this was reported to have
a positive impact on the overall performance (Wang and Chen, 2018).

3.7 Evaluation of the Processed Speech

The last step in developing a deep learning-based speech enhancement DNN is to eval-
uate the quality of the output speech from the network. This evaluation can be per-
formed using real listeners or with the aid of computer algorithms. In other words,
this evaluation can be divided into two types: subjective and objective evaluation. The
following subsections discuss these two evaluation types, where the most common sub-
jective method, Mean Opinion Score (MOS), will be presented; while five well-known
objective evaluation metrics will be then demonstrated.

3.7.1 Mean Opinion Score (MOS)

MOS (Itu, 1996) is a subjective evaluation of the quality of the processed speech. This
method is performed using real listeners who are asked to give a score to the output
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speech that ranges between 1 to 5, where the higher the score the better the quality, this
score is known as the MOS. The listeners are also asked to score the intrusiveness of the
remaining background noise, this score also falls between 1 and 5. An illustration of the
speech quality and noise intrusiveness scores is given in Tables 3.4 and 3.5, respectively.

Table 3.4 Speech signal scale for MOS evaluation

Rating Description

5 Very natural, no degradation

4 Fairly natural, little degradation

3 Somewhat natural, somewhat degraded

2 Fairly unnatural, fairly degraded

1 Very unnatural, very degraded

Table 3.5 Noise intrusiveness scale for MOS evaluation

Rating Description

5 Not noticeable

4 Somewhat noticeable

3 Noticeable but not intrusive

2 Fairly conspicuous, somewhat intrusive

1 Very conspicuous, very intrusive

The MOS is finally taken based on the average scores of all listeners. Careful con-
sideration should be taken when performing the MOS evaluation, such as the environ-
ment where the test takes place and the device used to listen to the processed speech.
This is to ensure that the scores given by the listeners are as accurate as possible. This
judgment is often performed by experienced people from the speech analysis field; how-
ever, some research is based on conducting this evaluation in a survey-like manner using
a large number of general listeners, to indicate their opinion on the quality of the speech
processed by different speech enhancement techniques (Xu et al., 2014b).

3.7.2 Signal to Distortion Ratio Measures

There are many objective evaluations to measure the performance of DNNs for speech
enhancement, and Signal to Distortion Ratio (SDR) is one of the classical objective
measures for speech quality. As mentioned in Section 3.3.2, SNR is defined as the ratio
between the power of the desired speech and background noise. The same definition of
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SNR can also be used as an evaluation metric for the quality of the processed speech,
where Equation 3.2 is redefined and the enhanced speech is used to calculate the back-
ground noise. In this case, the metric is considered as the ratio between the power of
the real speech signal and the difference between the real and estimated clean speech
signal, known as SDR (Févotte et al., 2005) and it is illustrated by Equation 3.12.

SDR(dB) = 10 log10(

∑K
k=1 s

2(k)∑K
k=1{s(k)− ŝ(k)}2

), (3.12)

where, s(k) and ŝ(k) are the real and estimated clean speech signals, respectively. K is
the total number of samples and k is the time index.

However, SDR is not always an accurate metric for assessing the quality of the pro-
cessed speech due to the non-stationary nature of the speech signal, which fluctuates
over time, so calculating the power over the entire speech signal is not suitable. Seg-
mental Signal to Noise Ratio (SNRseg) (Hansen and Pellom, 1998) is an edited version
of the classical SNR that calculates the power of the speech signal over short frames,
and then the average is taken. This is expressed in Equation 3.13.

SNRseg(dB) =
10

M

M−1∑
m=0

log10(

∑Lm+L−1
k=Lm s2(k)∑Lm+L−1

k=Lm {s(k)− ŝ(k)}2
), (3.13)

Another measure that was formulated based on the SNR is the SI-SDR (Le Roux
et al., 2019). This metric differs from the common SDR as it is invariant to the scale
of the processed signal, which is useful for speech enhancement techniques that result
in improper scaling to the generated enhanced speech. The mathematical formula of
SI-SDR is expressed in Equation 3.14:

SI − SDR(dB) = 10 log10(
∥αs∥2

∥αs− ŝ∥2
), (3.14)

where the scaling factor α guarantees that the SI-SDR is invariant to the scale of ŝ, and
it is expressed as given below in Equation 3.15:

α =
ŝT s

∥s∥2
= argminα∥αs− ŝ∥2, (3.15)

SDR, SNRseg, and SI-SDR have no range, but higher values of these evaluation metrics
refer to better speech quality.

3.7.3 Log Spectral Distortion (LSD)

Log Spectral Distortion (LSD) (Du and Huo, 2008) is another objective speech quality
evaluation metric that measures the distortion caused by speech enhancement process-
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ing, and it is widely used in the research field (Xu et al., 2014b, 2015, 2013). The
calculation of the LSD is given in Equation 3.16:

LSD = 1
T

∑T−1
t=0

{
1

F/2+1

∑F/2
f=0

[
10log P (X(f))

P (X̂(f))

]2} 1
2

, (3.16)

where, P is the clipped power spectrum such that the dynamic range of the log-spectrum
is limited to about 50 dB. The function P for a signal z can be expressed as:

P (z(f)) = max
[
|z(f)|2, 10−50/10

]
. (3.17)

LSD measures speech distortion based on the frequency domain representation using
the power spectrum, and it has no range, but lower values indicate low distortion.

3.7.4 Perceptual Evaluation of Speech Quality (PESQ)

PESQ is one of the most commonly used objective speech quality metrics in the speech
enhancement field, as it is considered as the most accurate measure available nowa-
days (Rix et al., 2001). PESQ is an international speech quality objective measure that
was officially standardized by the International Union—Telecommunication Standard-
ization Sector (ITU-T) in February 2001. It gives an estimate to the subjective MOS
metric using the original clean speech signal and the predicted clean speech generated
by the DNN (Kondo, 2012). The algorithm is based on two models: a perceptual model
to generate a representation to the real and estimated clean speech, and a cognitive
model that estimates the MOS value based on the difference between the real and esti-
mated clean speech representations. An illustration of the PESQ algorithm is shown in
Figure 3.2. PESQ score ranges from 0.5 to 4.5, where the higher the score the better the
speech quality.

Figure 3.2 PESQ algorithm
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3.7.5 Short-Time Objective Intelligibility (STOI)

STOI (Taal et al., 2011) is an objective measure for speech intelligibility, and it is the
most commonly used speech intelligibility estimator in the speech enhancement field
as it highly correlates with the actual speech intelligibility of the enhanced speech gen-
erated by the DNN (Healy et al., 2017). The STOI metric can be calculated using the
approximation given in Equation 3.18, further details about the algorithm are demon-
strated in (Taal et al., 2011).

d =
1

J(M −N + 1)

j∑
j=1

M∑
m=N

L(aj,m, âj,m), (3.18)

where d is the STOI estimator, a and â are the clean and enhanced short-time temporal
envelope vectors, respectively; while, L represents the sample envelope linear correla-
tion. N denotes the length of the temporal envelope, J is the number of one-third octave
bands and (M - N +1) is the total number of short-time temporal envelope vectors. M

represents the total number of time frames, and m and j are the indices for the time
frames and octave bands, respectively. STOI is usually expressed as a percentage, and
the higher the percentage the better the speech intelligibility.

3.7.6 The Composite MOS Estimator

A recent and widely used objective speech quality measure is the composite MOS es-
timator proposed in (Hu and Loizou, 2007a). This evaluation metric consists of three
measures: Csig, Cbak, and Covl; where each score predicts the quality of the processed
speech from a certain aspect, and they are obtained by combining different objective
evaluation metrics that highly correlate with speech/noise distortions and the overall
quality of the processed speech. Csig is a measure for signal distortion, Cbak is a mea-
sure for noise intrusiveness, while Covl measures the overall speech quality. Based on
the fact that these metrics give an estimate for the MOS score, the value of each of them
falls between 1 and 5, and high scores refer to better speech quality.

3.8 Conclusion

This chapter demonstrated the necessary procedures to be performed when implement-
ing a DNN for supervised speech enhancement. A discussion was presented for the
different manipulation and prepossessing techniques applied to the noisy speech before
being processed by the DNN. Moreover, demonstration was given to different speech
features that help the network in the learning process. We also covered different speech
enhancement training targets that are essential for the supervised training procedure.
Highlights were given for DNN implementation and training, as detailed illustration
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with experiments will be presented in the next chapter, Chapter 4. Finally, the chapter
ended with a discussion on the well-known subjective and objective speech quality eval-
uation metrics used in this work. In the next chapter, an experimental analysis will be
given to different speech enhancement architectures. A comparison will be conducted
to evaluate the performance of each network type using subjective and objective speech
evaluation metrics. Moreover, the analysis will answer some questions, in order to fill
gaps in the literature, such as revealing the effect of some factors on the performance,
such as the training target type, the preprocessing techniques used, and the learning
domain.
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CHAPTER 4

An Experimental Analysis of Deep Learning Architectures for
Speech Enhancement

4.1 Introduction

In comparison to other speech enhancement approaches, DNN based speech enhance-
ment has made a breakthrough in the denoising process, and most of the proposed DNN
architectures were proven to generate speech with much better quality and intelligibil-
ity. However, the implementation and setup of DNNs have been mainly empirical, due
to the large number of factors affecting the learning process. In an attempt to facil-
itate the development of better DNNs for speech enhancement, this chapter presents
a detailed experimental analysis of three well-established DNNs major categories for
speech enhancement: MLP, CNN, and DAE. This analysis compares the performance
of seven DNNs belonging to these three categories, by evaluating them in terms of the
overall quality of the generated processed speech using five objective evaluation met-
rics and a subjective evaluation with 23 listeners. Moreover, this comparison covers the
performance of each network in challenging noise environments; evaluating network
generalization, complexity, and processing time. Afterwards, answers to some research
questions have been covered, such as how to choose the learning domain and mapping
target, and how network performance is impacted by changing network hyperparame-
ters and the composition of the data, including the Lombard effect. The investigation
carried out in this chapter depends on two different approaches. The first approach nu-
merically shows and compares the results; while, the second approach interprets the
results using spectrogram visualization, where the spectrograms are presented for the
generated speech from all the investigated architectures. Additionally, interpretation is
provided for the spectrograms of the hidden layers for CNN based models, to help in
understanding how CNNs perform speech enhancement.

4.1.1 Research Contributions

The work in this chapter makes the following research contributions:

• provides a comprehensive comparison of seven different DNNs for speech en-
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hancement,

• interprets the processing of DNNs to perform the denoising process,

• identifying factors that affect the performance of different DNNs for speech en-
hancement, and

• provides recommendations to improve the performance of DNNs for speech en-
hancement.

In the following sections, the general factors affecting the performance of DNNs for
speech enhancement will be first presented; afterwards, implementations of the seven
models will be discussed. Details about the experimental setup used to perform the
analysis will be then provided. Finally, discussion and analysis of the obtained results
will be given.

4.2 Factors Affecting the Learning of DNNs for Speech Enhancement

Training a DNN for speech enhancement is a complicated process that is affected by
many factors. These factors can be divided into three categories: the model setup,
data structure, and learning hyperparameters; this is summarized in Figure 4.1. The
following subsections will discuss these three factors in details.

4.2.1 Model Setup

Before training a DNN model for speech enhancement, there are two main points to
consider: the choice DNN architecture and the adjustment of the chosen architecture
hyperparameters. There are many DNNs that can be used to perform speech enhance-
ment, including the MLP, CNN, DAE, RNN, GAN, and hybrid architectures; as dis-
cussed in Chapter 2. Due to the fact that these architectures have a huge number of
hyperparamters to tune, it is hard to determine how the mathematical operations spe-
cific to each architecture contribute to the denoising process. These hyperparameters are
divided into: layer-specific parameters, network depth, and the used activation function.
There are many layer-specific parameters, such as the number of units, convolution type,
number of filters, kernel size, padding type, and dilation rate. Network depth is defined
as the number of layers used to implement the DNN, and it is a very important factor
that must be chosen in a way to compromise between performance and complexity. Fi-
nally, activation functions are responsible for the nonlinear operation performed by the
DNN, which is essential for the learning process. For speech enhancement, the most
commonly used activation functions in the DNN hidden layers are: ReLU, LReLU,
ELU, PReLU; while, Linear, TanH, and Sigmoid are common activation functions in
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the output layer. Therefore, model setup step must be done carefully, in order to achieve
good performance.

4.2.2 Data Structure

The size and structure of the dataset used in the training process are important factors
that impact the learning process, due to the fact that deep learning is a data driven ap-
proach. The quality of the speech audio files and the variety of noise environments are
crucial to guarantee a good training process, and to avoid network overfitting. More-
over, data preprocessing is mandatory before feeding the data to the DNNs. Preprocess-
ing techniques include: audio resampling; 8 kHz and 16 kHz are the commonly used
sampling frequency for speech, audio framing and windowing; which are important to
ensure the efficiency of the training process, and normalization; a preprocessing tech-
nique used to ensure the stability and generalization of the training process. The input
noisy audio should also be adjusted to be at specific SNR, which sets the intensity of
the background noise.

Another factor that was proven to highly impact the performance is the input fea-
tures to the DNN, which change the input signal representation and in turn have a great
impact on the ability of the network to differentiate between speech and noise. In the
time domain, it is common to use the original representation of the waveform, or to
use the short time frames and extract some features, such as energy, entropy, and the
ZCR (Alı́as et al., 2016). While, in the frequency domain, many more meaningful fea-
tures can be extracted, including STFT, MFCC (Pirhosseinloo and Brumberg, 2018),
Gammatone Filterbank (GF), GFCC (Shao and Wang, 2008), and PLP (Dave, 2013).

Training a DNN for speech enhancement is also greatly affected by the training tar-
get, which can be one of two types: mapping or masking (Wang et al., 2014; Odelowo
and Anderson, 2018). In the case of using a mapping target, the speech enhancement
problem is considered as a regression task, where the network is trying to map noisy
speech to clean speech time frames, spectrogram, or cochleagram; depending on the
used domain during training. While in the case of a masking target, the speech en-
hancement task is seen as a classification problem, where the network aims to output a
mask that classifies every portion of the signal as either speech or noise, and then the en-
hanced speech signal can be generated by multiplying the noisy speech with this mask.
There are many masking targets used in speech enhancement, such as IBM (Wang,
2005), IRM (Srinivasan et al., 2006), and SMM; also known as FFT-Mask (Wang et al.,
2014), cIRM (Williamson et al., 2016), and PSM (Erdogan et al., 2015), as mentioned
in Chapter 3.

Consequently, manipulation of the input data plays an important role in improving
the learning process and affects the overall perception of the processed speech.
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4.2.3 Learning Hyperparamters

The learning process of a DNN also has some hyperparameters, such as the learning
rate, loss function, optimization technique, regularization technique, batch size, number
of epochs, and the framework that was chosen for implementation (Bengio, 2012). The
setup of all these hyperparameters is the third factor that impacts the performance of
DNNs for speech enhancement.

4.3 The Seven Implemented DNNs

Implementation of seven DNNs has been carried out to perform the analysis presented
in this chapter. These networks belong to the three broad categories: MLP, CNN,
and DAE, and they are based on architectures existing in the literature. To ensure fair
comparison between the seven models, some modifications were applied to the DNNs
presented in literature, which lead to better performance; these modifications will be
discussed below. Figure 4.2 represents the seven implemented architectures and Table
4.1 describes their configuration.

From the first category, MLP, the basic MLP architecture with three fully connected
hidden layers was implemented (Xu et al., 2014b; Wang, 2017). Each hidden layer has
2,048 units with ReLU activation functions, followed by a batch normalization layer
in order to improve training performance and stability. Three dropout layers of 20%
dropout rate were used to prevent network overfitting. This network is shown in Figure
4.2(a), and its configuration is given in Table 4.1, Architecture (a).

From the second category, CNN, two architectures were implemented. The first is
the basic CNN architecture with three 2D convolutional layers (Kounovsky and Malek,
2017; Chakrabarty et al., 2018). Each convolution layer has ReLU activation, 64 filters,
and (3 × 3) kernel size. Max pooling layers were not added, to minimize information
loss that may happen because of the absence of a speech reconstruction step in this
configuration. Moreover, better performance was reported in the literature when re-
moving max pooling layers for the speech enhancement process (Fu et al., 2016). Two
fully connected layers were added after the convolution layers to generate the enhanced
speech. The first has 512 hidden units and ReLU activation functions; while the second
layer has one output unit with a linear activation function, to give the final prediction.
This architecture is shown in Figure 4.2(b), and its configuration is given in Table 4.1,
Architecture (b).

The second implemented CNN architecture is a FCNN model with six 1D convolu-
tion layers (Fu et al., 2017). Each convolution layer has a PReLU activation function, 64
filters, and kernel of size 20. The final convolution layer has a linear activation function
and one filter, which is used to generate the output processed speech. This architecture
is shown in Figure 4.2(c), and its configuration is given in Table 4.1, Architecture (c).
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Table 4.1 The configuration of the seven implemented DNNs. This table represents the
different types of layers used: Batch Normalization (BN), Fully Connected (FC), and
Convolution (Conv). It also represents the number of units (Units), activation function
(Act.), dropout ratio (D), kernel size (K), number of filters (F), and the sizes of max
pooling (MP), upsampling (US), and stride (S)

Architecture (a) Architecture (d)

Type Units Act. D BN Type Units Act. D BN
BN - - - - BN - - - -
FC 2,048 ReLU 0.2 yes FC 2,048 ReLU 0.2 yes
FC 2,048 ReLU 0.2 yes FC 500 ReLU - yes
FC 2,048 ReLU 0.2 yes FC 180 ReLU - yes

FC 500 ReLU - yes
FC 2,048 ReLU 0.2 yes

FC [o/p] 129 Linear - no FC [o/p] 129 Linear - no

Architecture (b) Architecture (c)

Type K Act. F Units Type K Act. F Units
2D-Conv (3x3) ReLU 64 - 1D-Conv 20 PReLU 64 -
2D-Conv (3x3) ReLU 64 - 1D-Conv 20 PReLU 64 -
2D-Conv (3x3) ReLU 64 - 1D-Conv 20 PReLU 64 -

FC - ReLU - 512 1D-Conv 20 PReLU 64 -
1D-Conv 20 PReLU 64 -
1D-Conv 20 PReLU 64 -

FC [o/p] - Linear - 129 1D-Conv [o/p] 20 Linear 1 -

Architecture (e) Architecture (f)

Type K Act. F MP/US Type K Act. F BN
2D-Conv (3x3) ReLU 64 MP(2x2) 2D-Conv (7x7) ReLU 64 yes
2D-Conv (3x3) ReLU 64 MP(2x2) 2D-Conv (5x5) ReLU 128 yes
2D-Conv (3x3) ReLU 64 MP(2x2) 2D-Conv (3x3) ReLU 256 yes
2D-Conv (3x3) ReLU 64 US(2x2) 2D-Conv (3x3) ReLU 256 yes
2D-Conv (3x3) ReLU 64 US(2x2) 2D-Conv (5x5) ReLU 128 yes
2D-Conv (3x3) ReLU 64 US(2x2) 2D-Conv (7x7) ReLU 64 yes

2D-Conv [o/p] (3x3) Linear 1 - 2D-Conv [o/p] (7x7) Linear 1 yes

Architecture (g)
Encoder Decoder

Type K Act. F S D Type K Act. F US D
1D-Conv (7x7) PReLU 64 2 - 1D-Conv (3x3) PReLU 256 2 -
1D-Conv (7x7) PReLU 64 2 - 1D-Conv (3x3) PReLU 256 2 -
1D-Conv (7x7) PReLU 64 2 0.2 1D-Conv (3x3) PReLU 256 2 0.2
1D-Conv (5x5) PReLU 128 2 - 1D-Conv (5x5) PReLU 128 2 -
1D-Conv (5x5) PReLU 128 2 - 1D-Conv (5x5) PReLU 128 2 -
1D-Conv (5x5) PReLU 128 2 0.2 1D-Conv (5x5) PReLU 128 2 0.2
1D-Conv (3x3) PReLU 256 2 - 1D-Conv (7x7) PReLU 64 2 -
1D-Conv (3x3) PReLU 256 2 - 1D-Conv (7x7) PReLU 64 2 -
1D-Conv (3x3) PReLU 256 2 0.2 1D-Conv (7x7) PReLU 64 2 0.2

1D-Conv [o/p] (7x7) TanH 1 - - - - - -
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From the third category, DAE, four architectures were implemented; one DDAE
architecture and three CDAE architectures. The first chosen architecture is a DDAE (Lu
et al., 2013) that has two fully connected layers in each of the encoder and the decoder
networks. One of these layers has 2,048 hidden units and the other has 500 hidden units.
Between the encoder and the decoder, a bottleneck fully-connected layer of 180 hidden
units was used. All layers apply ReLU activation functions and batch normalization;
moreover, a dropout of rate 20% was used in the first layer of the encoder and the last
layer of the decoder. This architecture is shown in Figure 4.2(d), and its configuration
is given in Table 4.1, Architecture (d).

The second architecture is the basic CDAE network (Grais and Plumbley, 2017).
Three 2D convolution layers were added to each of the encoder and decoder networks,
and ReLU activations were applied in each convolution layer, except the final convolu-
tion output layer, which has linear activation. In the encoder, (2 × 2) max pooling layer
was added after each convolution layer to compress the data; while in the decoder, (2
× 2) upsampling layers were used to reconstruct the data. Filters of size 64 and (3 × 3)
kernels were used in all convolution layers. This architecture is shown in Figure 4.2(e),
and its configuration is given in Table 4.1, Architecture (e).

The third architecture is a special type of CDAE (Park and Lee, 2016), which has
three 2D convolution layers in each of the encoder and decoder with no max pooling
and upsampling layers. Therefore, this architecture does not perform data compression,
but it belongs to the CDAE category as the filter size is increasing across the encoder
network, and decreasing across the decoder network. This process applies a different
feature extraction method than that performed by the max pooling layer, used in the pre-
vious architecture, as here feature extraction is based on changing the filter sizes across
the encoder and decoder without affecting data size. This is a unique process for this
architecture type, and will be the main factor affecting the performance in comparison
to other architectures. The filter sizes used are 64, 128, and 256; and kernels of sizes
seven, five, and three were used in both the encoder and the decoder. Batch normaliza-
tion is used in all layers for training stability, and the ReLU activation was applied in all
layers, except the output layer which has linear activation. This architecture is shown
in Figure 4.2(f), and its configuration is given in Table 4.1, Architecture (f).

The fourth architecture is a deep CDAE that uses strided convolution (Pandey and
Wang, 2019; Pascual et al., 2017). This architecture consists of nine 1D convolutional
layers with PReLU activation function in the encoder and decoder, and a final convo-
lution output layer of TanH activation. In the encoder network, strided convolution is
performed with stride size 2; while upsampling of size 2 is applied in the decoder net-
work. The filter and kernel sizes change after every three layers; 64, 128, and 256 filter
sizes were used, and seven, five, and three kernel sizes were used. Consequently, this
architecture combines the two feature extraction techniques: compression and increas-
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ing filter size, used in the second and third CDAE types discussed above. To avoid the
network overfitting to the training data, a dropout of rate 20% was applied after every
three convolution layers. As this architecture is deep, skip connections were added in
this implementation, to avoid information loss that might occur as the processing pro-
ceeds deeper through the network. This architecture is shown in Figure 4.2(g), and its
configuration is given in Table 4.1, Architecture (g).

The choice of these architectures is based on the fact that these are from the best
performing models belonging to the three main categories under investigation. More-
over, the setup used for these models, referring to Figure 4.2 and Table 4.1, was chosen
in order to fairly compare specific features that are unique to each architecture type.

For the fully connected architectures, a and d, it is clear that the configuration of
both architectures is the same, the difference in architecture d is a decrease in the num-
ber of hidden nodes and the addition of a decoder network for audio reconstruction.
Therefore, architecture d is an autoencoder version of architecture a, and it will show
the effect of autoencoder related operations when compared to architecture a. The same
applies to the convolution-based architectures, b and e. Architecture e is an autoencoder
version of b, by removing the fully-connected layers and using max pooling layers, for
dimensionality reduction, and a decoder network for audio reconstruction.

For the CNN architectures, b and c, architecture c is an FCNN version of b. The
main differences between these architectures are: replacing the fully connected layers
with convolutional layers, processing the audio while using 1D convolutions instead of
2D, and using PReLU activations instead of ReLU. The effect of these three factors will
be separately discussed in the Results section, Section 4.5.

Regarding the CDAE based architectures, the difference between architectures e and
f is the feature extraction method, because architecture e is based on max pooling layers,
while architecture f is based on increasing the number of filters through the hidden
layers without having max pooling layers. Consequently, feature extraction is the point
of comparison here. Finally, architecture g addresses the use of 1D strided convolutions
for DAEs and the effect of increasing the depth with the use of skip connections.

4.4 Experimental Setup

This section presents the speech and noise datasets used, and how this data was prepared
to conduct the experiments. Furthermore, details of the training setup and the chosen
networks’ hyperparamters will be discussed.

4.4.1 Dataset Selection

In the training process, five hours of clean English speech was randomly selected from
the online available Voice Bank corpus (Veaux et al., 2013). This speech data was
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corrupted with a total of 105 different noise environments, selected from two corpora:
90 from the 100 Environmental Noise corpus (Hu, 2014) and 15 from the NOISEX-
92 corpus (Varga and Steeneken, 1993). While when showing the effect of increasing
the number of noise environments on the performance, a total of 1,250 different noise
environments were used, taken from the Environmental Sound Classification (ESC)
50 dataset (Thiemann et al., 2013), Urban Sound dataset (Salamon et al., 2014), and
DEMAND Dataset (Thiemann et al., 2013). It should be mentioned that five hours of
noisy speech was found to be enough for all the architectures to converge, based on
practical trials.

In the testing process, different speech corpora were used to evaluate the perfor-
mance of the architectures under different conditions. First, the performance was tested
on matched dataset by using 30 minutes of clean speech from the Voice Bank corpus,
not seen in the training process; this will be denoted by matched test set. When testing
network generalization ability for mismatched dataset, 30 minutes of clean speech was
selected from the LibriSpeech corpus (Panayotov et al., 2015); denoted by mismatched

test set. While another 30 minutes of clean speech was taken from the 176 Possible
Languages corpus (Topcoder, 2017), where the selected audio files contain 90 different
languages; this will be denoted by Languages test set. The Lombard GRID corpus (Al-
ghamdi et al., 2018) was used while investigating the effect of the Lombard phenomena;
this will be denoted by Lombard test set.

In all cases, the speech data was corrupted with 20 noise environments, half-seen
and half-unseen in the training process. These noise environments are a mixture of
human-generated noise, such as crying, yawning, and human crowd sounds; and, other
non-human generated noise, such as Additive White Gaussian Noise (AWGN), phone
dialling, shower noise, tooth brushing, and wood creaks. Figure 4.3 represents the
spectrograms of the noise environments that were used in the testing process. This
figure shows how the seen noise environments are challenging, considering the fact that
they cover most of the spectrum; while the unseen noise environments are different
in nature to the seen noise environments, considering that they are varying across the
spectrum; moreover, they include human-generated noise, which is a very challenging
noise type for the network as it is similar in nature to the speech signal. This means that
the evaluation and obtained results in this work are non-biased.

To evaluate the performance of the network in challenging conditions, an online
noisy dataset for reverberant speech was used (Valentini-Botinhao et al., 2017a); this
will be denoted by reverberant test set. Finally, the speech audios of the matched test

set were corrupted with babble noise audio files taken from this online available noise
dataset (Reddy et al., 2019); denoted by babble noise test set. These test sets are sum-
marized in Table 4.2.
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Table 4.2 Testing datasets

Test set Description

Matched test set 30 minutes of clean speech from the Voice Bank corpus (Veaux

et al., 2013), not seen in the training process

Mismatched test set 30 minutes of clean speech was selected from the LibriSpeech

corpus (Panayotov et al., 2015).

Languages test set 30 minutes of clean speech was taken from the 176 Possible Lan-

guages corpus (Topcoder, 2017).

Lombard test set Data from The Lombard GRID corpus (Alghamdi et al., 2018).

Reverberant test set Data from reverberant speech dataset (Valentini-Botinhao et al.,

2017a).

Babble noise test set speech audios of the matched test set were corrupted with babble

noise, taken from (Reddy et al., 2019).

Figure 4.3 Spectrograms of the noise environments used in the testing process

4.4.2 Training Setup

The speech and noise data were mixed at the default 0 dB SNR to create the training
noisy speech data. The training data was then normalized to zero mean and unit variance
to improve the learning process. The sampling frequency was set to 8 kHz, to provide
the most relevant speech frequency band to the DNN. Framing and windowing were
applied to the data, a Hamming window was used of frame length 32 ms (256 samples)
with 50% overlap. The magnitude power spectrum of the signal was then extracted with
256 FFT size, and the noisy phase was kept to be added to the estimated clean speech,
assuming that the phase is less affected by the noise (Wang and Lim, 1982). In all
experiments, except for the comparison between different training targets and domains,
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magnitude spectrogram mapping is the training target used, in order to ensure a good
generalization for all architecture types (Nossier et al., 2020). In the case of comparing
mapping and masking approaches, different masking targets were used to perform the
comparison; while, in time versus frequency domain learning, time frames of 2,048
length were used as a training target.

The framework used to implement the seven DNN architectures is Keras library
with Tensorflow backend. MMSE is the default choice of loss function used in the
training process, because our goal here is to improve all of the evaluation metrics, not
a specific one (Kolbæk et al., 2020). The Adam optimizer was used; learning rate =
0.001, b1 = 0.1, b2 = 0.999. A batch size of 128 was used, and 10% of the training data
was used in validation in order to monitor the performance of the networks, to avoid
network overfitting. For all DNNs, no improvement in the performance was detected
after 40 epochs, so the training process of all architectures is based on 50 epochs.

4.5 Results and Discussion

In this section, the outcome of the performed comparison and analysis will be presented
and discussed. Subsections 4.5.1 to 4.5.5 presents the comparison between the seven
DNN architectures with respect to the overall quality of the output speech in matched
and challenging conditions, generalization to mismatched data, and network’s complex-
ity. While, Subsections 4.5.6 to 4.5.10 shows the effect of changing the training factors,
discussed in Section 4.2, on the performance of these architectures.

4.5.1 Objective Evaluation

The seven DNN models were evaluated using the five standard, commonly used speech
enhancement objective measures: PESQ (Rix et al., 2001), STOI (Taal et al., 2011),
LSD (Du and Huo, 2008), SDR (Hu and Loizou, 2007a), ∆Segmental Signal to Noise
Ratio (SSNR) (Hansen and Pellom, 1998). The DNNs were evaluated using the matched

test set on three high SNR levels: 20 dB, 15 dB, and 10 dB; and three low SNR levels:
5 dB, 0 dB, -5 dB. The average of high and low SNRs was then calculated, denoted as
high and low, respectively. This is shown in Table 4.3 and Figure 4.4.

At high SNR levels, the basic CNN network, b, shows better performance than the
MLP network, a. Conversely, at low SNR levels, the MLP network, a, performs better
than the CNN network in terms of all the evaluation metrics. Moreover, the DDAE, d,
which is the autoencoder version of the MLP network, results in further improvements
over the MLP network. This is due to the effect of bottleneck features, the unique char-
acteristic of this network type. However, the FCNN, c, generates speech with better
quality and intelligibility scores in comparison to the two fully-connected networks,
a and d. The basic CDAE model, e, generates speech with the poorest overall per-
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formance. However, a clear improvement in the performance is shown, when applying
modifications to this network type by increasing the number of filters through the hidden
layers and removing max pooling layers, to develop the CDAE network, f. Additionally,
increasing the depth of this network with the use of 1D strided convolutions results in
further improvement, and results in the network outperforming other models, as in the
case of the deep CDAE network,g.

It should be mentioned that minimal improvement is shown at high SNR levels for
most of the models, and some models generate speech with worse overall perception
in this case compared to the noisy version, such as networks a, b, e, and f. The reason
for this is the processing applied by the DNNs to perform the denoising process, which
negatively affects speech quality, and this negative effect overrides the positive effect of
the denoising process at high SNRs.

The spectrograms in Figure 4.5 show the clean, noisy, and estimated speech from
the seven DNNs when tested using noisy speech with unseen tooth brushing noise at 0
dB SNR. It is clear that most of the networks managed to eliminate most of the back-
ground noise; the remaining noise is highlighted with the dashed black line. However, a
main drawback of the denoising process is speech distortion, which is highlighted with
the solid black line. The amount of distortion and residual noise are the main factors
affecting the performance of each model, for example, network a and e suffer from very
high distortion, and this explains why they have poor performance. Moreover, the out-
put from network e experiences high-intensity noise and some distortion affecting the
fundamental frequencies; for this reason, it has the poorest performance compared to
other models. Network b, c, d, and f have some remaining high intensity noise affecting
the fundamental frequencies of speech; however, they have less distortion compared to
network a and e; consequently, they outperformed them. While network g is the only
one that managed to mitigate the noise affecting the fundamental frequencies with a
good reconstruction of the speech signal as well. Although network f managed to re-
move more noise compared to g, the fact that it has some residual high-intensity noise
affecting the fundamental speech frequencies makes it perform worse than g.

4.5.2 Subjective Evaluation

In order to validate the results from the subjective evaluation, a subjective speech qual-
ity test was performed using 23 volunteer listeners with no hearing issues. None of
the participants is in a dependent relationship with the researcher of this PhD or any
member of the supervision team. The evaluation was performed online using Google
form secured by a password, by sharing the form with the University of East London
Computer Science masters students through the University of East London Email plat-
form. The listeners were asked to listen in a quite environment to speech audios, and
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Table 4.3 Average PESQ, STOI, LSD, and, ∆SSNR results of high SNR levels: 20, 15,
and 10 dB; low SNR levels: -5, 0, 5 dB; and the average of high and low SNRs (ave)

Metric Noisy a b c d e f g

PESQ
high 2.620 2.334 2.540 2.828 2.706 1.923 2.392 2.804
low 1.818 1.959 1.869 2.178 2.142 1.647 1.886 2.282
ave 2.219 2.147 2.205 2.503 2.424 1.785 2.139 2.543

STOI
high 0.871 0.805 0.840 0.860 0.831 0.636 0.799 0.868
low 0.715 0.715 0.688 0.751 0.739 0.569 0.704 0.772
ave 0.793 0.760 0.764 0.805 0.785 0.602 0.751 0.820

LSD
high 1.633 1.115 1.564 1.236 1.277 1.918 1.305 1.408
low 2.430 1.408 2.142 1.676 1.597 2.125 1.586 1.650
ave 2.032 1.261 1.853 1.456 1.437 2.021 1.445 1.529

∆SSNR
high 0.000 7.041 5.519 7.609 7.340 2.955 7.036 7.689
low 0.000 7.483 5.273 7.474 7.503 4.181 7.146 6.888
ave 0.000 7.262 5.396 7.542 7.422 3.568 7.091 7.288

SDR
high 0.732 3.457 2.957 4.523 4.569 1.064 4.229 4.596
low -0.555 3.019 2.494 3.957 4.016 1.061 3.600 3.989
ave 0.089 3.238 2.726 4.240 4.293 1.062 3.914 4.292

Figure 4.4 Average PESQ and STOI results at six SNR levels for the seven DNNs (a:
MLP, b: CNN, c: FCNN, d: DDAE, e: shallow CDAE with max pooling, f: CDAE
without maxpooling, and g: deep CDAE with strided convolution)

then evaluate the quality of the processed speech in comparison to the noisy speech by
listening to the enhanced speech audios, generated by the the seven DNN models, and
the original noisy speech. They scored each speech audio file between 1 and 5, where
higher scores indicate better noise removal with understandable speech.

The speech used in this test was corrupted to consider a variety of challenging con-
ditions. The noisy audio is 6 seconds audio file, consists of two English speakers,
one male and then one female, with two different background noise, one seen and one
unseen by the networks during training. The noises used are human-generated non-
periodic crowd noise and then non-human generated periodic phone dialling noise. The
noise and speech intensity are kept the same, so this evaluation is based on 0 dB SNR.
All the listeners were instructed to listen to the noisy speech first, and then to the pro-
cessed speech by all networks in the same order as presented in the Google form. The
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listeners have no information about the type of the network that generated the processed
speech audio files, as the files were given a random character as a name.

The statistical analysis of the obtained results from the subjective evaluation is
shown in Table 4.4. The average (Ave) and the Standard Deviation (SD) were first
calculated. It is noticed that network c is the best performing based on the human lis-
teners’ opinion, not g as shown before by the objective evaluation. The reason for this
mismatch is the different preferences of listeners, because some listeners may prefer
the existence of some remaining noise with a clearer speech, such as in the case of
network c rather than removing most of the background noise with non-perfect speech
reconstruction as in the case of network g, while a computer algorithms output is neg-
atively affected by residual noise. As a result, although the compression process in
DAEs and the depth of the architecture help in removing the noise, it may have a neg-
ative impact on the quality of the heard speech. The listeners’ different preferences
are also proven by the high SD in the case of the noisy speech, some listeners seem
to find the noisy speech version better than the processed clean speech because the en-
hanced speech from any DNN experiences a level of distortion, which affects speech
intelligibility. The mode was then calculated to show the score value with the highest
occurrence among listeners for each architecture, and the percentage of occurrence of
this score was also calculated. This also shows that most of the listeners preferred the
processed speech by network c. Moreover, the original noisy speech and network e have
the lowest score, the same as reported by the objective evaluation. Finally, the P-value
was calculated to show the significance of the results compared to the noisy speech, the
two-tailed T-test was performed with 95% confidence level. It was found that there is
no significant difference between the average scores of network a and e when compared
to the noisy speech, and this is due to the high distortion of these networks, as shown in
Figure 5. The same test was also performed between all combinations of architectures,
and the results show that there is no significant difference between network d and g, and
network b and f.

Table 4.4 Subjective evaluation results

Metric Noisy a b c d e f g

Ave 2.13 2.57 2.70 3.70 3.09 2.09 2.78 2.96

SD 1.36 0.95 1.06 0.93 1.00 1.08 1.13 1.02

Mode 1 3 3 4 3 1 2 3

Mode% 43% 48% 35% 43% 43% 39% 39% 39%

P-value - 0.13 0.03 0.00 0.002 0.87 0.03 0.02
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4.5.3 Evaluation in Challenging Conditions

This experiment aims to show the effect of some very challenging noise environments
on the architectures’ performance. Although DNNs were proven to effectively elimi-
nate different noise environments, some types of noise are still known to be difficult
to separate from speech signals, such as speech babble noise (N1), having two noises
in the background instead of one (N2), and reverberation (N3). The evaluation of the
networks’ performance in the case of these three challenging noise conditions is given
in Table 4.5 and shown in Figure 4.6. The noisy speech audios used in this evaluation
to create the three conditions N1, N2, and N3 are generated using the babble noise test

set, matched test set after corrupting the speech with two noise environments from the
noises shown in Figure 4.3, and reverberant test set, respectively. The results are based
on testing the seven architectures at six SNRs from -5 to 20 with a step of 5, and then
the average was calculated.

The results show that there is a clear degradation in the performance of all the archi-
tectures for speech babble noise (N1) and having two noise environments (N2). How-
ever, the generated speech from all architectures is still of a good overall perception,
and architecture g remains the best performing. Architecture e is the only DNN that
fails to produce speech with acceptable quality and intelligibility in these conditions,
and the reason for this result is the original bad speech enhancement performance for
this network type, shown in Table 4.4, even for less challenging noise environments. It
should also be mentioned that architecture b shows good generalization in the case of
speech babble noise environment concerning all evaluation metrics, excluding STOI.
Another point is that all architectures have high ∆SSNR for two noise environments,
as the networks are removing more noise in this case, which increases the difference in
SSNR between the noisy and processed speech.

Regarding reverberant speech (N3), it was found that it causes a significant negative
impact on the overall performance of all architectures in terms of all evaluation metrics,
especially the intelligibility of the output speech (STOI). This proves that reverberation
is a very specific type of noise that the DNN fails to deal with using speech enhancement
processing; consequently, reverberation can be considered as a second task for the DNN
besides the de-noising task, which needs different processing or a second enhancement
stage to properly deal with (Zhao et al., 2016).

4.5.4 Evaluation of the Generalization Ability

Overfitting or variance is a common problem of the deep learning approach to speech
enhancement. As deep learning is a data driven approach, the network can overfit to the
training data during learning, which makes the network performs very well on this data
but fails to maintain the same good performance for unseen data after training. As a
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Table 4.5 Evaluation in challenging conditions

Metric a b c d e f g

PESQ
N1 2.145 2.337 2.428 2.402 1.566 2.166 2.479
N2 2.103 2.174 2.429 2.368 1.546 2.110 2.437
N3 1.907 2.162 2.198 2.184 1.522 1.999 2.180

STOI
N1 0.739 0.751 0.770 0.761 0.603 0.739 0.793
N2 0.744 0.749 0.780 0.767 0.583 0.737 0.794
N3 0.617 0.642 0.647 0.641 0.623 0.623 0.657

LSD
N1 1.471 1.772 1.604 1.582 2.186 1.503 1.665
N2 1.316 1.951 1.544 1.492 2.153 1.469 1.594
N3 1.578 1.818 1.708 1.674 2.066 1.545 1.702

∆SSNR
N1 6.453 5.605 6.523 6.563 3.262 6.536 7.301
N2 7.505 5.857 7.683 7.612 3.438 7.381 8.012
N3 5.938 6.021 5.534 5.704 2.876 5.584 6.208

result, testing the generalization ability using mismatched or unseen test data is crucial
to make a fair comparison between different network types.

The generalization ability of the seven implemented DNNs was evaluated by test-
ing the performance of the network under three mismatched conditions: unseen noise
environments (C1), the unseen LibriSpeech English speech dataset (C2), and unseen
90 different languages (C3). To create the test set for the unseen noise environments
condition (C1), the matched test set speech was used and it was corrupted with only the
unseen noise environments in Figure 4.3. Regarding the unseen dataset condition (C2),
the mismatched test set was used to perform this analysis. Finally, the Languages test

set was used to test the models’ generalization for the unseen languages condition (C3).
The results of this experiment are shown in Table 4.6 and Figure 4.7. These results were
generated by testing the DNNs on six SNRs ranging from -5 to 20 with a step of 5, and
then the average was calculated.

Most of the architectures maintained good performance in the case of unseen noise
and speech from the same training dataset, C1. However, a remarkable deterioration in
the performance happened for the other two mismatched conditions, unseen dataset, C2,
and unseen language, C3, concerning all the evaluation metrics, except STOI. However,
architecture f shows a very good generalization ability in the case of using different
languages (2.232 and 0.798 PESQ and STOI scores, respectively), and this proves the
power of extracting speech features by increasing the number of filters through the
convolutional layers, which is the specific property of this architecture. An explanation
of the increase in the STOI score in the case of these mismatched conditions is that
the network denoising ability decreases and it does not harshly remove noise, as shown
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in ∆ SSNR results, so this results in more intelligible speech. This shows a tradeoff
between noise removal and speech intelligibility and gives a reason why DNNs output
speech with lowerSTOI than the noisy version at high SNRs, as discussed in Subsection
4.5.1 and shown in Table 4.3.

Table 4.6 Evaluation of the generalization ability

Metric a b c d e f g

PESQ
C1 2.094 2.258 2.508 2.415 1.523 2.135 2.615
C2 1.887 1.927 2.334 2.215 1.259 1.986 2.352
C3 1.807 2.081 2.367 2.278 1.491 2.232 2.375

STOI
C1 0.760 0.775 0.815 0.786 0.618 0.753 0.836
C2 0.772 0.794 0.847 0.821 0.588 0.797 0.859
C3 0.764 0.797 0.844 0.822 0.551 0.798 0.854

LSD
C1 1.312 1.665 1.371 1.461 2.142 1.455 1.508
C2 1.302 1.702 1.358 1.378 2.615 1.461 1.443
C3 1.812 1.702 1.607 1.607 2.717 1.530 1.475

∆SSNR
C1 6.041 4.714 6.375 6.182 3.075 5.998 6.736
C2 3.098 4.202 3.184 3.186 1.523 4.585 3.388
C3 4.454 3.634 4.834 4.911 2.727 5.384 5.302

4.5.5 Complexity Comparison

In order to fairly compare different DNNs for speech enhancement, evaluating the com-
plexity of the network is crucial, because DNNs are generally complex and have huge
computational costs. Network complexity can affect its applicability in a real-time im-
plementation, because some devices in which speech enhancement is applied, such as
mobile devices and hearing aids, have hardware limitations, and the DNN architecture
might not fit onto the device hardware. Another issue related to network complexity is
the increased processing time, which also limits network applicability. Therefore, the
performance analysis of DNNs must include network complexity, and this is done by
showing three factors related to complexity: number of parameters, number of layers,
and inference processing time. This complexity comparison is shown in Table 4.7.

The results show that fully connected architectures (a and d) have the highest num-
ber of parameters. On the other hand, convolutional-based architectures: b, c, and e

have a much lower number of parameters. However, increasing the number of filters in
the hidden layers and network depth result in increased number of parameters for CNN
architectures, such as in the case of architectures f and g. The processing time was cal-
culated by processing 224 speech audio files of about 15 minutes duration in total. The
algorithm was running on an NVIDIA Quadro M3000M GPU with clock 1,050 MHz
and 160 GB/s memory bandwidth. The processing time is inversely proportional to the
depth of the architecture, which is represented by the number of layers. It also depends
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on the architecture type, as convolutional-based DNNs are faster. Overall, architecture
b is the least complex concerning the metrics in Table 4.7, since it is a CNN shallow
network.

The complexity of the network also affects the speed of the training process, and this
can be seen in Figure 4.8, which shows the loss curves of the training and validation data
for the seven architectures during the training process. It is clear that complex architec-
tures with the highest number of parameters, such as a and d, converge the fastest. The
dense connections between the hidden nodes of these architecture types allow for faster
learning of the mapping function that maps noisy speech to clean speech. Similarly,
the complex convolution-based architecture f has the same fast converging behaviour,
and this shows the advantage of increasing the number of filters through the hidden
layer on the learning process. The other convolution-based DNNs b, c, e, and g show
a more smoothly decreasing loss curve, and take longer time to converge. However,
some of these architectures, such as c and g, end up with better performance than other
more complex architectures, although their loss curves take a longer time to converge.
As a result, complexity mainly increases the speed of the learning process; however,
architecture type and design affect the performance.

Table 4.7 Comparing different networks’ parameters: number of network parameters
(Parm.) and layers (Layers), and testing processing time (time)

Metric a b c d e f g

Parm. 8,948,357 50,497 462,081 2,784,677 112,001 1,075,717 3,078,081

Layers 15 10 14 20 16 21 49

Time(s) 21.5 14.7 24 15.5 16.7 18.4 34.5

4.5.6 Network Hyperparameters Effect

In this subsection, the effect of changing some network related hyperparameters, shown
in Figure 4.1, will be investigated. Each of the three DNN main categories will be dis-
cussed separately, due to the presence of different hyperparameter for each architecture
type.

4.5.6.1 MLP Architectures

The MLP is one of the first DNN architectures employed for speech enhancement,
and many experiments were conducted in the literature to show the effect of different
hyperparameters on architecture performance. For this reason, the effect of these hy-
perparameters will be only discussed based on what is reported in the literature, without
repeating these experiments.
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One of the important hyperparameters to investigate is the effect of increasing the
network’s depth on the performance. This was investigated in (Xu et al., 2014b), where
the study show improvement in the performance when increasing the network’s depth.
However, this improvement is limited, because network’s overfitting to the training data
starts to happen when the architecture becomes too deep. In (Hunter et al., 2012), in-
creasing the number of hidden units was shown to enhance the quality of the output
speech; however, this highly increases the network’s complexity. Therefore, the num-
ber of hidden units should be selected in a way to decrease computational cost and
complexity whilst maintaining reasonable performance, and this can be achieved using
the trial-and-error approach.

4.5.6.2 CNN Architectures

Based on the fact that the layers of CNN architectures are sparsely connected rather than
fully connected as in the case of The MLP architecture, the activation function used has
a greater impact on the network’s performance. The effect of changing the activation
function from ReLU to its edited versions for the CNN architecture b is given in Table
4.8, resulting in PReLU being the best performing activation function concerning all
evaluation metrics.

Table 4.8 Effect of CNN related hyperparameters: activation functions,
ReLU(CNN(b)), LReLU, ELU, and PReLU; increasing filters and kernel sizes in
hidden layers; the use of 1D convolutions

Metric CNN(b) LReLU ELU PReLU filters K(5x5) CNN1D

PESQ 2.205 2.188 2.274 2.342 2.371 2.413 2.537
STOI 0.764 0.764 0.752 0.771 0.784 0.773 0.795
LSD 1.853 1.891 1.700 1.534 1.569 1.455 1.438

∆SSNR 5.396 6.071 6.043 6.649 6.698 6.917 7.388

To understand how CNNs deal with the speech enhancement problem and to show
the effect of changing the activation function, a visualization of the spectrograms from
the hidden layers is shown in Figures 4.9-4.12. Figure 4.10 represents 32 filters and their
activations for the first hidden layer of network b, where the ReLU was used. The figure
shows the output of the network tested using noisy speech (N) and its corresponding
clean one (C), to show the behaviour of the network in both cases. It was noticed that
CNNs manage to solve the speech enhancement task by applying a set of filters; these
filters are represented separately in Figure 4.9 and described in Table 4.9. Some of the
filters are responsible for the de-noising process, such as f1 which mitigates the noise
and outputs enhanced speech. f2 is also a de-noising filter; however, this filter attempts
to enhance the speech signal by smoothing the noise intensity to highlight speech and
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then outputs enhanced speech with the same noise intensity. Another interesting filter is
f3, which works the same way as f2; however, the output of this filter is noise, so it acts
as a noise detector. Other types of filters are responsible for extracting speech features,
such as f4 which acts as a bandpass filter that outputs high and low speech frequency
components. It was also found that there is a kind of filter that acts as a buffer, such
as f5, which does not affect the original input signal. It is suggested that this filter
helps the network in reconstructing the clean speech and to avoid the loss of essential
information. Figure 4.11 shows randomly selected filters and their activations from the
second and third hidden layers of the same network, it was noticed that the same set of
filters exists in these layers as well, with an extra filter f6 that acts as a high pass filter
that outputs the high-frequency speech components.

The dying ReLU problem is clear in Figures 4.11-4.12, as ReLU is turning off many
filters, producing empty (white) diagrams. However, this problem was not detected
when visualizing the network hidden layers when using PReLU, in Figure 4.12. This is
a reason why PReLU outperforms ReLU, it can be seen from this visualization that the
output after PReLU is either an enhanced speech signal or noise.

Referring to Table 4.8, ”filters” and ”K5x5” columns, the effect of increasing the
filters through the hidden layers is also addressed by using 64, 128, and 256 filters in
the first, second, and third layers, respectively, instead of fixing the number of filters to
64. This has a positive impact on the overall performance of the network. Moreover, a
kernel of size (5x5) was used instead of (3x3) to show the effect of increasing the kernel
size, and it can be seen that this also has a positive impact on the performance. Finally,
1D convolutions with PReLU were used, instead of 2D with ReLU, with a kernel size
of 20. A remarkable enhancement is shown in this case, compared to the original CNN
network, b. The implemented network after applying these modifications, (CNN1D)
shown in Table 4.8, reached a performance closer to network c and g. Moreover, this
network was included in the subjective testing, in subsection 4.5.2, and it got an average
score of 3.87, with 0.81 SD. Additionally, the output of the T-test shows that there is no
significant difference between the average of this model and network c.
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Figure 4.9 Six spectrograms randomly selected from the hidden layers of network b,
explaining the different CNN filters for speech enhancement, for a processed noisy
speech (N) and its clean version (C), f and a represent convolution filters and activation
functions, respectively

Table 4.9 Description of CNN filters for the speech enhancement task

Filter Description Activation Output

f1(Denoising) Mitigate the noise De-noised Speech

f2(Smoothing) Mitigate noise by
smoothing its intensity to
highlight speech

Speech with same inten-
sity noise

f3(Noise Detector) Smoothing noise inten-
sity and highlight speech

Noise

f4(Band Pass) Passes only high and low
frequency bands

High and low frequency
speech components

f5(Buffer) Gives output same as in-
put

Original noisy speech

f6(High Pass) Passes only high fre-
quency bands

High frequency speech
components

4.5.6.3 DAE Architecture

Table 4.10 shows the results of the experiments for DAEs. The effect of depth was
investigated; moreover, the function used for dimensionality reduction and the factors
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that affect CNN architectures, discussed above, were investigated. The results refer to
the DDAE (d), and a deeper version of it, ddeep, with two more layers in each of the
encoder and the decoder. The number of hidden nodes used are: 2,049, 1,024, 500,
250, and 180. Increasing the depth of DDAE was found to degrade the performance
due to network overfitting, as in the case of the MLP. However, another reason for this
degraded performance is the compression in the bottleneck layer, which may result in
a loss of information for deep networks. The use of skip connections is a solution to
this issue, although the effect of them was not investigated in our work for the DDAE,
it was proven to improve the performance in (Tu and Zhang, 2017).

The basic 2D CDAE network, e, was edited by using strided convolutions instead
of max pooling, estrided. It can be noticed that strided convolutions lead to better results.
Afterwards, the use of strided 1D convolutions with PReLU and increasing the number
of filters through the hidden layers were considered, network eedited, which results in
further enhancement in the performance as proved in the previous subsection. Finally,
one more layer was added to each of the encoder and the decoder to show the effect of
increasing the depth, shown in edeep. It can be concluded that increasing the depth of
CDAE models results in a significant gain in the performance.

Table 4.10 Effect of DAE related hyperparameters: increasing the depth ddeep and edeep;
the use of strided convolutions, estrided; and the use of 1D strided convolutions with
PReLU eedited

Metric d ddeep e estrided eedited edeep

PESQ 2.424 2.310 1.785 1.802 1.887 2.457

STOI 0.785 0.773 0.602 0.637 0.695 0.774

LSD 1.437 1.548 2.021 1.983 1.938 1.472

∆SSNR 7.422 7.335 3.568 3.549 3.779 7.310

4.5.7 Lombard Effect

It is essential to investigate how the performance of DNNs will be affected by the
change of the properties of the speech signal in real noisy conditions. It is normal
that people raise their voices to improve speech intelligibility in noisy environments,
the phenomenon known as the Lombard Effect (Garnier and Henrich, 2014). In this
experiment, all seven implemented architectures were tested using Lombard speech, to
address the effect of this phenomena. An audio-visual Lombard speech corpus was
used (Alghamdi et al., 2018), containing 5,400 utterances, 2,700 Lombard, and 2,700
plain reference utterances, spoken by 54 native speakers of British English. The results
shown in Table 4.11 are based on testing noisy speech utterances using the Lombard

test set, which is of 30 minutes duration, the same duration as the one used in the pre-
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vious evaluation. These utterances were randomly selected from each of the Lombard
and plain speech audios, and then corrupted by the same 10 unseen noisy environments
used before, shown in Figure 4.3, and at the same six SNR levels. The results shown in
Table 4.11 are the average scores of the used SNR levels.

The results show that the intelligibility of the processed speech is better in the case
of the Lombard effect simulated speech for all the tested DNNs; moreover, an improved
overall performance was found for most of the architectures. This behaviour is unex-
pected from DNNs, because normally DNNs have a worse performance for unseen data
during the training process, such as the Lombard effect simulated speech in this case.
Based on this outcome, it can be concluded that the learned features during the training
process made the network robust to the change in the speech features resulting from
this phenomenon. These results also support what was reported in (Michelsanti et al.,
2019); however, here the authors trained a DNN using Lombard simulated speech, and
it was proved to result in a better performance than training the network with normal
speech.

Table 4.11 Average results for PESQ, STOI, LSD, and ∆SSNR when testing the seven
DNNs using plain (P) and Lombard effect simulated speech (L) at six SNR levels, from
-5 to 20 with a step of 5

Metric a b c d e f g

PESQ
P 1.337 1.530 1.753 1.635 1.105 1.530 1.880

L 1.315 1.554 1.772 1.626 1.071 1.554 1.841

STOI
P 0.592 0.637 0.706 0.664 0.517 0.637 0.728

L 0.604 0.663 0.733 0.684 0.518 0.663 0.729

LSD
P 1.606 1.569 1.465 1.557 2.107 1.569 1.540

L 1.607 1.579 1.395 1.486 2.039 1.579 1.476

∆SSNR
P 6.686 5.709 5.442 5.623 4.171 5.709 6.066

L 8.552 7.882 8.174 7.997 5.183 7.882 8.394

4.5.8 Dataset Preprocessing Effect

Based on the fact that DNN-based speech enhancement is a data-driven approach, the
preprocessing and manipulation applied to the data before feeding it to the DNN is an
important factor to consider. The type and setup of the architecture together with the
properties of the used data highly affect the final network output. There are many tech-
niques that can be used to prepare the data for the training process; this experiment
investigates three commonly used techniques: sampling, amplitude scaling, and speech
and noise mixing. The effect of increasing the sampling frequency from 8 kHz to 16
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kHz is experimented, and how the intensity of the background noise affects the training
process using 0 dB, -5 dB, 5 dB, and a range of different SNR levels. Finally, an exper-
iment was conducted to show the effect of increasing the number of noise environments
to generate the speech and noise mixture for training. These factors were investigated
using the four best performing DNN speech enhancement networks: a, d, g, and the
modified better performing architecture CNN1D, discussed in subsection 4.5.6. The
results of these experiments are given in Table 4.12 and shown in Figure 4.13.

Regarding the effect of the training SNR, training the DNN at 0 dB SNR leads to
the best performance concerning all the evaluation metrics at the tested SNR levels (-
5 to 20 with a step of 5). However, architecture a shows a higher PESQ and STOI
score in the case of training the network with high SNR (5 dB), but the other metrics
are negatively affected. Therefore, the noise and speech intensity level is an important
feature that the DNN looks at in the training process, so it is recommended to work at 0
dB as the default training SNR, or try a range of SNRs and choose the best, depending
on the evaluation metric with the highest priority to improve, and the real-time testing
conditions.

Concerning the effect of the down-sampling operation, it can be noticed that all ar-
chitectures output speech with better quality and higher ∆SSNR when trained using 8
kHz audio. Furthermore, the fully-connected based DNNs (MLPa, DDAEd) perform
better when using the 8 kHz sampling frequency with respect to all metrics. How-
ever, convolution-based architectures (CNN1D, CDAEg) output speech with a slightly
higher intelligibility score and lower distortion when operating in the 16 kHz sampling
frequency. It should be mentioned that 8 kHz processing outperforms in terms of the
de-noising task; however, when listening to the enhanced audios, although the noise in
the enhanced 16 kHz speech is more audible, the quality of the speech signal is better.

In the final experiment, the DNNs were trained with 1,250 noise environments in-
stead of 105. Increasing the number of noise environments has a positive impact on
output speech quality and intelligibility. However, the results also show that exposing
the network to a larger number of noise environments during the training process may
have a negative impact on speech distortion (LSD) and the network’s ability to remove
noise (∆SSNR). This is due to increasing the network’s generalization ability to a large
range of noise environments, which decreases its ability to remove noise for matched
conditions. However, this helps the network to better learn clean speech features, and
hence output speech with better PESQ and STOI scores.

4.5.9 Effect of Training Target

In this section, several experiments will be presented to show the effect of the training
target used on the performance of the implemented architectures. As discussed in Chap-
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Table 4.12 Effect of dataset preprocessing when training the network at 0 dB, -5 dB, 5
dB, and a range of different SNR levels (SNRs column), when using 16 kHz sampling
frequency instead of 8 kHz (16 kHz column), and when increasing the number of noise
environments from 105 to 1,250 (1250 N column).

Metric 0 dB SNRs -5 dB 5 dB 16 kHz 1250 N

MLPa

PESQ 2.147 2.226 1.935 2.288 1.968 2.271
STOI 0.760 0.764 0.722 0.780 0.748 0.774
LSD 1.261 1.645 1.491 1.787 1.670 1.605

∆SSNR 7.262 6.931 6.750 6.854 4.728 5.854

CNN1D

PESQ 2.537 2.493 2.486 2.461 2.384 2.654
STOI 0.795 0.802 0.786 0.798 0.802 0.819
LSD 1.438 1.616 1.505 1.696 1.432 1.246

∆SSNR 7.388 7.391 7.382 7.110 5.119 6.347

DDAEd

PESQ 2.424 2.324 2.188 2.312 2.200 2.450
STOI 0.785 0.783 0.750 0.775 0.781 0.788
LSD 1.437 1.709 1.612 1.742 1.824 1.704

∆SSNR 7.422 7.124 6.860 7.014 4.984 5.838

CDAEg

PESQ 2.543 2.605 2.553 2.545 2.410 2.741
STOI 0.820 0.810 0.811 0.810 0.825 0.838
LSD 1.529 1.279 1.429 1.361 1.518 1.236

∆SSNR 7.814 7.755 7.502 7.626 6.764 6.530

ter 3, mapping or masking targets can be used in order to perform DNN-based speech
enhancement, as the process can be seen as a regression or a classification operation. A
comparison between these two training target types will be presented in the following
subsections, followed by showing the effect of improving both the phase and magnitude
spectrograms using the complex spectrogram-based versions of these training targets.

4.5.9.1 Mapping Versus Masking Targets

The results of the experiment that compare the mapping and masking targets are shown
in Table 4.13 to 4.16. The commonly used spectrogram mapping approach was used and
compared to two commonly used masking targets: IRM and SMM. The results show
that the masking-based approach generates speech with better quality (PESQ score) at
very high SNRs, 20 dB and 15 dB. Conversely, at low SNR the mapping-based ap-
proach outperforms, and this is significant in the DDAEd architecture. Furthermore,
the mapping approach has a lower standard deviation (SD) for the testing SNR levels,
which means that this approach is more sustainable.

A clear advantage of masking based targets over mapping targets is that they man-
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aged to output more intelligible speech (STOI score) for all architectures. Furthermore,
the SMM, specifically, generates enhanced speech with the least distortion; while, the
increase in SSNR is relatively high for both approaches.

When comparing the architectures’ output with the input noisy speech, the fully
connected networks (MLPa and DDAEd) failed to enhance speech quality at high SNRs
(20 dB and 15 dB) in the case of the mapping target. At the same time, both mapping
and masking approaches did not improve speech intelligibility at high SNRs for all
architectures, except the CDAEg. Finally, these results prove that no specific training
target outperforms with respect to all evaluation metrics, and this is due to the high
sensitivity of the speech quality evaluation metrics to any change.

Table 4.13 PESQ results for mapping and masking targets (The higher the score, the
better the speech quality)

SNR 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB AVG SD

Noisy 2.92 2.62 2.32 2.04 1.81 1.60 2.219 0.498

MLPa

MAP 2.41 2.34 2.25 2.16 2.02 1.70 2.147 0.258

SMM 3.04 2.79 2.57 2.35 2.09 1.75 2.433 0.469

IRM 2.97 2.75 2.54 2.33 2.05 1.70 2.388 0.465

CNN1D

MAP 3.09 2.90 2.68 2.46 2.21 1.87 2.537 0.449

SMM 3.12 2.92 2.71 2.47 2.19 1.87 2.546 0.469

IRM 3.15 2.94 2.72 2.48 2.21 1.88 2.564 0.470

DDAEd

MAP 2.82 2.72 2.58 2.41 2.19 1.83 2.424 0.368

SMM 3.03 2.78 2.55 2.32 2.05 1.73 2.411 0.477

IRM 3.06 2.80 2.56 2.34 2.08 1.75 2.430 0.478

CDAEg

MAP 2.93 2.81 2.68 2.52 2.32 2.01 2.543 0.339

SMM 3.19 3.01 2.83 2.62 2.38 2.04 2.680 0.422

IRM 3.19 3.00 2.80 2.61 2.38 2.03 2.667 0.424
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Table 4.14 STOI results for mapping and masking targets (The higher the score, the
better the speech intelligibility)

SNR 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB AVG SD

Noisy 0.91 0.88 0.83 0.78 0.71 0.64 0.790 0.101

MLPa

MAP 0.82 0.81 0.79 0.77 0.73 0.65 0.760 0.063

SMM 0.89 0.87 0.83 0.80 0.75 0.68 0.804 0.078

IRM 0.89 0.86 0.83 0.80 0.75 0.68 0.801 0.078

CNN1D

MAP 0.88 0.86 0.83 0.79 0.74 0.67 0.795 0.078

SMM 0.89 0.86 0.83 0.80 0.75 0.67 0.800 0.079

IRM 0.89 0.87 0.84 0.80 0.76 0.68 0.808 0.077

DDAEd

MAP 0.85 0.83 0.81 0.79 0.75 0.68 0.785 0.062

SMM 0.90 0.87 0.83 0.80 0.75 0.68 0.804 0.080

IRM 0.90 0.88 0.85 0.81 0.76 0.69 0.814 0.078

CDAEg

MAP 0.89 0.87 0.85 0.82 0.78 0.72 0.820 0.064

SMM 0.91 0.89 0.86 0.83 0.79 0.72 0.832 0.071

IRM 0.91 0.89 0.87 0.83 0.79 0.72 0.834 0.071

Table 4.15 LSD results for mapping and masking targets (Low value indicates low
distortion)

SNR 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB AVG SD

Noisy 1.36 1.62 1.92 2.21 2.46 2.62 2.032 0.489

MLPa

MAP 1.05 1.12 1.18 1.22 1.32 1.68 1.261 0.225

SMM 0.96 1.10 1.20 1.30 1.49 1.82 1.312 0.306

IRM 1.05 1.18 1.26 1.33 1.51 1.85 1.362 0.285

CNN1D

MAP 1.09 1.18 1.30 1.44 1.64 1.98 1.438 0.330

SMM 0.97 1.10 1.25 1.42 1.64 1.95 1.389 0.363

IRM 0.97 1.11 1.27 1.44 1.67 2.00 1.411 0.378

DDAEd

MAP 1.23 1.28 1.32 1.40 1.54 1.85 1.437 0.230

SMM 1.01 1.15 1.26 1.35 1.53 1.82 1.354 0.288

IRM 1.04 1.21 1.34 1.46 1.64 1.93 1.437 0.316

CDAEg

MAP 1.37 1.41 1.44 1.51 1.62 1.82 1.529 0.168

SMM 0.86 0.93 1.02 1.13 1.30 1.54 1.129 0.252

IRM 0.87 0.94 1.03 1.14 1.29 1.53 1.133 0.242
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Table 4.16 ∆SSNR results for mapping and masking targets (High values show better
noise removal ability)

SNR 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB AVG SD

MLPa

MAP 6.44 7.12 7.56 7.77 7.65 7.03 7.262 0.502

SMM 6.91 7.48 7.80 7.81 7.42 6.68 7.350 0.465

IRM 6.12 6.79 7.22 7.36 7.15 6.72 6.894 0.452

CNN1D

MAP 6.98 7.60 7.92 7.94 7.46 6.43 7.388 0.586

SMM 7.08 7.70 8.03 7.96 7.37 6.49 7.437 0.588

IRM 6.20 6.91 7.38 7.52 7.17 6.53 6.952 0.509

DDAEd

MAP 6.73 7.44 7.85 7.86 7.63 7.02 7.422 0.459

SMM 6.96 7.53 7.85 7.85 7.41 6.80 7.400 0.442

IRM 6.08 6.76 7.17 7.29 7.06 6.58 6.823 0.448

CDAEg

MAP 7.07 7.77 8.23 8.33 7.98 7.51 7.814 0.473

SMM 7.10 7.77 8.19 8.29 7.93 7.37 7.773 0.463

IRM 6.22 6.98 7.50 7.73 7.58 7.31 7.222 0.554

Figure 4.14 shows a visual comparison of the spectrograms from a noisy speech
signal and the output speech processed by the four implemented DNNs. Each row rep-
resents a different architecture, using the two approaches. For the two fully connected
architectures, MLPa and DDAEd shown in sub figures a and c, it is clear that the map-
ping approach results in higher denoising ability, but inefficient speech reconstruction,
especially with the high frequency components. On the other hand, masking based ap-
proaches are better at representing the clean speech signal at the expense of the ability
to remove the noise. This explains the reason for the more intelligible speech produced
by the masking approach. Consequently, the choice between a masking and mapping
target, in this case, is a speech denoising and speech intelligibility tradeoff.

It is also clear in Figure 4.14 that the convolutional based architectures, CNN1D and
CDAEg shown in sub figures b and d, give a nearly similar performance for the mask-
ing and mapping approaches, which means that the output speech from this architecture
type is not highly affected by the training target used. This introduces architecture de-
sign as a factor that when adjusted it can compensate the negative effects of the chosen
target. Overall, it can noticed that again the CDAEg architecture, sub figure (d), is the
best performing one, regardless the used training target.

Another important point to mention is that the intensity of the output speech is lower
compared to the original clean and noisy speech. This drawback is shown in Figure
4.14, and it is mainly due to the DNN processing applied to the speech in the frequency
domain, where the intensity of the speech is affected during the enhancement process,
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and does not return to the original intensity after transferring back to the time domain.

Figure 4.14 Spectrograms of the clean speech, noisy speech with tooth brushing noise
at 0dB, and output speech processed by the four DNNs using spectrogram mapping,
IRM, and SMM.

4.5.9.2 Targets Generalization Ability

In this experiment, the effect of the chosen training target on network generalization
was tested using the mismatched test set. 30 minutes of clean speech audios from the
LibriSpeech corpus were randomly selected, an unseen dataset during the training pro-
cess, and these audios were mixed with the same seen and unseen noise environments
used in the previous evaluations, shown in Figure 4.3. Table 4.17 and 4.18 show the re-
sults of the PESQ and STOI scores for the generated speech from the four architectures.
A graphical representation is also shown in Figure 4.15 that compares these results with
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the previous results obtained when using the matched test set.
Overall, there is a degradation in the overall performance for all architectures, which

is expected for this highly mismatched and challenging test data. The autoencoder
based architectures (DDAEd and CDAEg) output speech with better quality in the case
of a mapping target, although masking targets showed better performance previously
when the networks’ generalization ability was not considered. Additionally, there is a
significant negative effect on the performance of the CDAEg architecture when using
masking targets (SMM and IRM), and the output speech is unintelligible at low SNR.
These results show that architecture design and type restrict the choice of the training
targets, and that some architectures may fail to generalize when using a specific target,
such as the convolution autoencoder-based architectures.

4.5.9.3 Complex Training Targets

In the previous comparison, the noisy phase was used to reconstruct the time domain
signal, assuming that the phase is not highly affected by the noisy environment com-
pared to the magnitude spectrum (Wang and Lim, 1982). However, with the emergence
of research that show the importance of enhancing the phase in improving the perfor-
mance (Shi et al., 2006; Paliwal et al., 2011), some complex spectrogram-based training
targets were introduced, enhancing both the noisy magnitude and phase spectrogram
during the learning process of the DNN for speech enhancement (Williamson et al.,
2016; Ouyang et al., 2019). In this subsection, these complex training targets will be
investigated.
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Table 4.17 PESQ results considering generalization ability

SNR 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB AVG SD

Noisy 2.69 2.36 2.03 1.75 1.51 1.27 1.935 0.532

MLPa

MAP 2.16 2.09 2.02 1.93 1.75 1.37 1.887 0.293

SMM 2.79 2.54 2.33 2.11 1.80 1.42 2.166 0.501

IRM 2.74 2.52 2.30 2.07 1.73 1.36 2.119 0.513

CNN1D

MAP 2.36 2.34 2.28 2.16 1.89 1.43 2.074 0.361

SMM 3.01 2.80 2.57 2.30 1.95 1.55 2.364 0.545

IRM 3.03 2.80 2.56 2.28 1.94 1.56 2.361 0.548

DDAEd

MAP 2.68 2.57 2.42 2.22 1.91 1.48 2.215 0.451

SMM 2.85 2.60 2.34 2.08 1.76 1.40 2.172 0.539

IRM 2.89 2.63 2.38 2.12 1.79 1.41 2.201 0.545

CDAEg

MAP 2.81 2.68 2.54 2.34 2.06 1.68 2.352 0.424

SMM 1.64 1.62 1.60 1.54 1.45 1.30 1.526 0.130

IRM 1.65 1.62 1.59 1.53 1.45 1.29 1.523 0.133

Table 4.18 STOI results considering generalization ability

SNR 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB AVG SD

Noisy 0.95 0.92 0.87 0.81 0.73 0.65 0.823 0.117

MLPa

MAP 0.84 0.82 0.81 0.79 0.74 0.63 0.772 0.076

SMM 0.92 0.89 0.86 0.83 0.77 0.68 0.825 0.088

IRM 0.91 0.89 0.86 0.82 0.76 0.67 0.817 0.091

CNN1D

MAP 0.77 0.77 0.76 0.73 0.69 0.60 0.719 0.067

SMM 0.93 0.91 0.88 0.84 0.78 0.69 0.836 0.090

IRM 0.93 0.92 0.89 0.85 0.79 0.70 0.844 0.090

DDAEd

MAP 0.89 0.88 0.86 0.83 0.78 0.68 0.821 0.080

SMM 0.93 0.91 0.87 0.82 0.76 0.68 0.829 0.094

IRM 0.94 0.92 0.88 0.84 0.78 0.69 0.842 0.093

CDAEg

MAP 0.94 0.92 0.90 0.86 0.81 0.73 0.859 0.080

SMM 0.70 0.70 0.69 0.67 0.65 0.60 0.667 0.040

IRM 0.70 0.70 0.69 0.67 0.65 0.59 0.667 0.041

In order to first show the improvement that can be added by enhancing the phase,
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Table 4.19 shows how the overall performance of the best performing architecture,
CDAEg, will change if the clean phase is used in the reconstruction process. Here,
the phase of the original clean speech signal was added to the processed magnitude
spectrogram by the DNN at different SNR levels. Magnitude spectrogram mapping
was used in this experiment as the more generalized training target, based on the results
of previous experiments. It is clear that for all testing SNRs the use of a clean phase
has a considerable positive impact on the overall performance, and the improvement
becomes very remarkable as the SNR decreases.

Table 4.19 Comparing processed speech using noisy and clean phase

SNR
PESQ STOI LSD ∆SSNR

ΘNoisy ΘClean ΘNoisy ΘClean ΘNoisy ΘClean ΘNoisy ΘClean

20 dB 2.93 3.05 0.89 0.91 1.37 1.31 7.07 7.23

15 dB 2.81 2.94 0.87 0.90 1.41 1.34 7.77 8.01

10 dB 2.68 2.82 0.85 0.88 1.44 1.38 8.23 8.58

5 dB 2.52 2.67 0.82 0.85 1.51 1.44 8.33 8.86

0 dB 2.32 2.47 0.78 0.82 1.62 1.56 7.98 8.74

-5 dB 2.01 2.16 0.72 0.76 1.82 1.77 7.51 8.49

Ave 2.543 2.687 0.820 0.852 1.529 1.469 7.814 8.318

Based on the above results, Table 4.19, that show the importance of phase enhance-
ment, a similar comparison as in the previous subsection was conducted between map-
ping and masking approaches for the same four architectures used before; however,
the complex spectrum was used in the training process. Complex spectrogram (cSpec)
mapping is performed by concatenating both the real and imaginary parts of the spectro-
gram and feeding them to the DNNs. On the other hand, cIRM is the complex masking
target used in this comparison. Table 4.20 shows the average of the obtained results,
which is based on testing the DNNs at six SNRs, from -5 dB to 20 dB with step of 5
using the same matched test set used in the previous mapping and masking comparison.
Fully connected architectures (MLPa, DDAEd) were found to perform nearly the same
for both complex mapping and masking targets. MLPa shows a little improvement for
cSpec over cIRM; conversely, DDAEd performs better when cIRM is applied. However,
it can be noticed that the fully connected architectures (MLPa, DDAEd) perform nearly
the same for complex mapping and masking target. On the other hand, convolution-
based architectures, CNN1D and CDAEg, generated speech with much better overall
perception in the case of cSpec mapping.
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When comparing these results to the average results in Tables 4.13 to 4.16, where
the training is based only on the magnitude spectrogram, it can be concluded that all the
architectures give better performance when only the magnitude spectrogram is consid-
ered in the training process. An explanation to this is that the learning process becomes
more challenging for the DNN to estimate both the clean magnitude and phase, which
ends up with worse overall performance. As a conclusion, these results suggest that im-
proving the phase and magnitude should not be done simultaneously, in order to obtain
better performance.

Table 4.20 Comparing mapping and masking targets using a complex spectrogram

Metric
MLPa CNN1D DDAEd CDAEg

cSpec cIRM cSpec cIRM cSpec cIRM cSpec cIRM

PESQ 2.042 1.959 2.448 2.226 2.135 2.158 2.425 2.258

STOI 0.690 0.688 0.777 0.701 0.692 0.713 0.788 0.735

LSD 1.633 1.439 1.506 1.424 1.702 1.300 1.539 1.223

∆SSNR 6.753 6.316 7.201 6.461 6.495 6.531 7.506 6.598

4.5.10 Effect of Training Domain

This subsection investigates the effect of the chosen training domain on the performance
of DNNs for speech enhancement. The four best performing architectures were trained
again but in the time domain, to compare the performance with the previous frequency
domain based implementations. The architectures were then tested the using the same
matched test set of the previous experiments. The results of this experiment are given
in Tables 4.21 to 4.25.

The results show that fully connected architectures, MLPa and DDAE d, are unable
to perform speech enhancement in the time domain. The performance of these archi-
tectures is very poor when trying to learn the mapping function that maps from noisy to
clean speech using time domain speech features. The CNN-based architecture, CNN1D,
generates speech with an acceptable overall perception in the time domain; however,
the corresponding frequency domain based implementation performs better. While the
CNN-based autoencoder architecture, CDAE g, is the only network that outperforms in
the time domain in terms of all the evaluation metrics, except speech distortion. The
reason for this is the processing nature of this architecture type, which aims to output
a similar representation of the input, regardless of its domain, while removing unim-
portant background noise in the bottleneck layer. This working principle seems to be
more efficient in giving an estimate representation to clean speech in the time domain
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than the frequency domain. However, the high denoising ability of this implementation
results in higher distortion to the processed speech, in comparison to the frequency do-
main based implementation. Consequently, the choice of the working domain mainly
depends on the architecture type and the evaluation metric with the highest importance
to improve based on the speech enhancement application.

Another point that these results reveal is the importance of feature extraction in
achieving good performance. Although deep learning is a data driven approach, the
feature extraction stage plays a crucial role in learning the mapping function that maps
noisy to clean speech. That is why frequency domain based implementations always
manage to predict clean speech, regardless of the architecture type; while, time domain-
based learning is not successful for all architecture types. Regarding the CDAEg ar-
chitecture, in which the time domain implementation is better, this network performs
feature extraction implicitly during the training process. The compression performed
by the bottleneck layer results in a nonlinear transformation of the input to another
compact form, which acts as unique features that represent the input. For this reason,
this architecture type managed to efficiently perform speech enhancement in the time
domain, without the need for an additional feature extraction stage.

Table 4.21 PESQ scores for time and frequency domain-based learning (The higher the
score, the better the speech quality).

SNR Noisy
MLPa CNN1D DDAEd CDAEg

Freq. Time Freq. Time Freq. Time Freq. Time

20 dB 2.92 2.41 2.12 3.09 2.53 2.82 1.84 2.93 3.12

15 dB 2.62 2.34 2.12 2.90 2.44 2.72 1.82 2.81 2.97

10 dB 2.32 2.25 2.11 2.68 2.30 2.58 1.75 2.68 2.82

5 dB 2.04 2.16 2.08 2.46 2.13 2.41 1.63 2.52 2.67

0 dB 1.81 2.02 1.72 2.21 1.89 2.19 1.47 2.32 2.49

-5 dB 1.60 1.70 1.55 1.87 1.59 1.83 1.32 2.01 2.24

AVG 2.219 2.147 1.949 2.537 2.146 2.424 1.639 2.543 2.716

SD 0.498 0.258 0.250 0.449 0.355 0.368 0.207 0.339 0.322
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Table 4.22 STOI scores for time and frequency domain-based learning (The higher the
score, the better the speech intelligibility).

SNR Noisy
MLPa CNN1D DDAEd CDAEg

Freq. Time Freq. Time Freq. Time Freq. Time

20 dB 0.91 0.82 0.52 0.88 0.86 0.85 0.67 0.89 0.93

15 dB 0.88 0.81 0.52 0.86 0.84 0.83 0.67 0.87 0.92

10 dB 0.83 0.79 0.52 0.83 0.79 0.81 0.67 0.85 0.90

5 dB 0.78 0.77 0.52 0.79 0.75 0.79 0.62 0.82 0.87

0 dB 0.71 0.73 0.52 0.74 0.71 0.75 0.52 0.78 0.84

-5 dB 0.64 0.65 0.48 0.67 0.64 0.68 0.47 0.72 0.77

AVG 0.790 0.760 0.512 0.795 0.765 0.785 0.604 0.820 0.872

SD 0.101 0.063 0.017 0.078 0.084 0.062 0.088 0.064 0.059

Table 4.23 LSD scores for time and frequency domain-based learning (Low value indi-
cates low distortion).

SNR Noisy
MLPa CNN1D DDAEd CDAEg

Freq. Time Freq. Time Freq. Time Freq. Time

20 dB 1.36 1.05 1.74 1.09 2.01 1.23 2.39 1.37 1.87

15 dB 1.62 1.12 1.74 1.18 2.03 1.28 2.43 1.41 1.89

10 dB 1.92 1.18 1.76 1.30 2.06 1.32 2.51 1.44 1.91

5 dB 2.21 1.22 1.80 1.44 2.12 1.40 2.64 1.51 1.94

0 dB 2.46 1.32 1.88 1.64 2.25 1.54 2.83 1.62 1.96

-5 dB 2.62 1.68 2.01 1.98 2.45 1.85 2.99 1.82 1.99

AVG 2.032 1.261 1.823 1.438 2.155 1.437 2.631 1.529 1.926

SD 0.489 0.225 0.105 0.330 0.170 0.230 0.237 0.168 0.046
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Table 4.24 ∆SSNR scores for time and frequency domain-based learning (High values
show better noise removal ability)

SNR
MLPa CNN1D DDAEd CDAEg

Freq. Time Freq. Time Freq. Time Freq. Time

20 dB 6.44 0.59 6.98 3.67 6.73 1.98 7.07 6.82

15 dB 7.12 0.79 7.60 3.04 7.44 2.10 7.77 8.53

10 dB 7.56 0.73 7.92 2.53 7.85 2.36 8.23 8.91

5 dB 7.77 1.62 7.94 2.32 7.86 3.33 8.33 8.82

0 dB 7.65 1.41 7.46 2.50 7.63 3.75 7.98 8.25

-5 dB 7.03 1.52 6.43 2.51 7.02 3.07 7.51 7.94

AVG 7.262 1.110 7.388 2.762 7.422 2.764 7.814 8.212

SD 0.502 0.457 0.586 0.507 0.459 0.721 0.473 0.771

Table 4.25 Average PESQ, STOI, LSD, and ∆SSNR results for time and frequency
domain-based learning

Metric
MLPa CNN1D DDAEd CDAEg

Freq. Time Freq. Time Freq. Time Freq. Time

PESQ 2.147 1.949 2.537 2.146 2.424 1.639 2.543 2.716

STOI 0.760 0.512 0.795 0.765 0.785 0.604 0.820 0.872

LSD 1.261 1.823 1.438 2.155 1.437 2.631 1.529 1.926

∆SSNR 7.262 1.110 7.388 2.762 7.422 2.764 7.814 8.212

4.5.10.1 Networks’ Complexity Comparison

Table 4.26 shows the comparison between the used parameters in each implementa-
tion and the testing processing time. These results are based on running the algorithm
on an NVIDIA Quadro M3000M GPU with clock 1,050 MHz and 160 GB/s memory
bandwidth. It is clear that the number of parameters in all the time domain implemen-
tations is much higher, which leads to increased model size. Except for the CDAEg, as
zero padding is performed to the input frequency feature so as to keep the input size of
2,048, so the network is able to decrease the input through the 8 layers of the encoder.
Convolutional-based architectures also have a lower number of parameters than fully
connected architectures. This is because of the sparse connections of CNNs, and more
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specifically due to the use of 1D convolution in both time and frequency implementa-
tions, which leads to a decreased number of parameters.

The processing time is calculated based on processing 224 speech audio files of
about 15 minutes duration. The operation was done 6 times, then the average time was
taken so as to consider any error caused by processing freezing. All frequency domain
implementations take a longer time to process because of the transformation operation.
The number of layers is also shown in the Table 4.26. The CDAEg architecture is
the deepest architecture, 49 layers, so this is another possibility why this architecture
outperforms in the time domain. Very deep neural networks are proved to be better at
extracting more advanced features through the layers (Yu et al., 2013), especially in the
case of convolutional-based architectures (Zhang et al., 2017). It is also clear that the
depth of the architecture increases the processing time.

Table 4.26 Comparing different networks’ parameters: number of parameters (P), pro-
cessing time (T), and number of layers (L), for frequency (Freq.) and time (Time)
domain based implementation of the four best performing DNNs

Metric
MLPa CNN1D DDAEd CDAEg

Freq. Time Freq. Time Freq. Time Freq. Time

P(106) 8 16 0.2 0.4 2 3 3 3

T(s) 21.5 11.1 14.1 12.8 15.5 14.6 34.5 24

Layers 15 10 21 49

4.5.10.2 Factors Affecting Time Domain Learning

In the previous investigation, fully connected architectures were found to be unable to
perform speech enhancement in the time domain, as the output speech has unacceptable
overall perception. In this section, some experiments were conducted to show the effect
of three factors on the performance of these architectures in the time domain, in an
attempt to improve the training process. The three factors used in this investigation
are: time frame size, architecture depth, and training dataset size. The outcome of
these experiments is represented in Table 4.27, and shown in Figure 4.16. These are
the average results of the six SNR levels for the previously used matched test set. The
original output speech scores based on the first time domain experiment, Table 4.25, is
also shown in Figure 4.16 for comparison.

Time Frame Size
In this experiment, a smaller frame was used of size 256 instead of the previously used
2,048 frame size. In Table 4.27, the PESQ score was found to improve by using a
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smaller time frame for both the MLPa and the DDAEd architectures; however, they still
fail to give good performance for frequency-based implementations. Moreover, a signif-
icant degradation is shown in the intelligibility of the output speech (STOI score) from
the DDAEd network. This is due to the compression process applied in this architecture
type, which may result in severe distortion and inaccurate speech reconstruction when
using an input time frame with small size, especially as this implementation lacks the
use of skip connections that help in retaining the information as the processing proceeds
deeper from the encoder to the decoder network.

Architecture Depth
Due to the fact that the fully connected implementations are shallow compared to the
other implemented networks, an investigation was carried out to show the effect of
increasing the depth of these architectures, as this might help in improving the perfor-
mance in the time domain. Two more layers were added for the MLPa architecture, for
the network to have 5 layers instead of 3. Two more layers were also added to each of
the encoder and decoder networks for the DDAEd architecture in order to have 4 lay-
ers in each of them. The number of hidden units were decreased through the encoder
layers, 2,049, 1,024, 500, 250, and 150 units were used; and increased in reverse order
through the decoder layers.

The results in Table 4.27 show that increasing the depth of the architecture has a
positive impact on the overall network performance in the time domain, as both the
PESQ and STOI scores are higher for the deeper version of the networks (2.026 and
2.262 PESQ scores for MLPa and DDAEd, respectively, and 0.565 and 0.622 STOI
scores for MLPa and DDAEd, respectively. The improvement is very significant for
the DDAEd network, which shows the importance of the depth for this architecture
type; moreover, it is worth mentioning here that the addition of skip connections to the
DDAEd is proven to result in further performance improvement, because of their ability
to prevent information loss in deep architectures (Tu and Zhang, 2017).

Training Dataset Size
Due to the absence of the feature extraction stage in time domain learning, the dataset
size may play a more important role in the training process compared to the frequency
domain approach, as the learning process is mainly based on the training data in this
case. As a result, this subsection investigates the effect of doubling the dataset size on
the performance of fully connected architectures, MLPa and DDAEd, by retraining them
using 10 hours of speech instead of the previously used 5 hours. The outcome of this
experiment, given in Table 4.27, shows that speech intelligibility (STOI score) improves
for both networks when using more data in the training process; however, the MLPa

architecture generates speech with lower quality (PESQ score). An explanation of this
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lower PESQ score is that the network may overfit to the larger speech training data,
considering that the number of the noise environments used is not high, and this will
decrease the network denoising ability to unseen test data. This negative effect was not
detected in the DDAEd architecture, due to the compression performed in this network
type using decreased number of hidden units through the encoder hidden layers, which
help the network to overcome overfitting.

Although some of the investigated factors result in some improvement in the per-
formance of fully connected architectures in the time domain, the output speech from
these networks is still of relatively low overall quality in comparison to frequency do-
main based implementations. Consequently, there is a need for a remarkable change
in the architecture design, or the addition of techniques that will help in audio recon-
struction, for these architectures to be able to perform speech enhancement in the time
domain.

Figure 4.16 Factors affecting time domain-based learning: using smaller frame size of
256 instead of 2,048 (Frame Size column), increasing the depth of the networks (Depth
column), and doubling the size of the training dataset (Dataset size column)

Table 4.27 Factors affecting time domain-based learning: using smaller frame size of
256 instead of 2,048 (Frame Size column), increasing the depth of the networks (Depth
column), and doubling the size of the training dataset (Dataset size column)

Metric
MLPa DDAEd

Frame Size Depth Dataset size Frame Size Depth Dataset size

PESQ 1.956 2.026 1.831 2.040 2.262 1.871

STOI 0.557 0.565 0.556 0.560 0.622 0.614

4.6 Conclusion

In this chapter, an investigation has been carried out to evaluate the performance of
three well-established DNNs for speech enhancement: MLP, CNN, DAE. Seven best
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performing models were re-implemented, belonging to these three main categories, and
their performance was analysed using the well-known speech enhancement evaluation
metrics and through spectrogram representation. Based on the results of the conducted
experiments, the following conclusions were reached.

Concerning the objective and subjective evaluation of the seven architectures using
the speech quality measures, it was found that the deep CDAE is the best performing
architecture. However, due to the lossy nature of this architecture type, most of the
real listeners preferred the enhanced speech from the FCNN architecture, although it
is more noisy than the output from the deep CDAE. Moreover, both subjective and
objective evaluations show that the shallow versions of the CDAEs have less denoising
ability than the basic CNN and FCNN, which means that increasing the architecture
depth is essential for CDAE networks to be able to efficiently and effectively perform
speech enhancement. Similarly, the DDAE was proven to perform better than the basic
fully connected MLP. The output spectrograms from the seven model also supports the
objective and subjective scores.

Regarding the effect of network-related hyperparameters, activation functions com-
parison of CNN architectures shows that the PReLU is the best for speech enhancement
among ReLU, LReLU, and ELU activations. The application of 1D convolution in-
stead of 2D convolution was proven to remarkably improve the performance of CNN
networks for speech enhancement. Additionally, architecture depth was proven to be
the main factor affecting the performance of the CDAE for speech enhancement.

Spectrograms of the internal layers of the CNN architecture with ReLU activation
showed that CNNs deal with the speech enhancement task by applying filters with dif-
ferent functionalities. Some are de-noising, while others extract different speech fea-
tures, such as the high and low-frequency components. Additionally, some filters were
found to keep the original noisy speech, and they are supposed to help in the recon-
struction of the estimated clean speech and avoid the loss of important information.
However, the dying ReLU problem was detected in this case, which results in turning
off many of these filters, and the use of PReLU instead was shown to solve this issue.

In real scenarios, speakers raise their voice in noisy environments, this known as the
Lombard phenomenon. Analysis of the Lombard effect on the performance of DNNs
for speech enhancement shows that the DNNs not only managed to deal with this mis-
matched pattern, but also show improved performance in comparison to testing the
network using plain speech with no Lombard effect. Consequently, the learned speech
features enable the DNN to be robust to the Lombard speech.

Data manipulation through different preprocessing techniques was proven to im-
prove the learning process of DNNs for speech enhancement. Using noisy speech utter-
ances at 0 dB SNR during training was shown to be the default choice, because using
the same speech and noise power level makes them indistinguishable to the DNN by
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level during training, which force the DNN to learn something more fundamental and
guides it to learn the mapping function that maps noisy speech to clean speech. Au-
dio sampling was proven to affect the network’s denoising and reconstruction abilities,
as downsampling to 8 kHz improves the denoising process, because it keeps only the
essential speech frequency bands, resulting in more noise removal. However, this neg-
atively impacts the overall quality of the processed speech, as the 16 kHz enhanced
speech is of better quality, although more noise is present in the output speech.

A comparison of the training targets reveals that mapping targets are less affected by
SNR changes, as making targets show high variance. For fully connected architectures,
mapping targets show better denoising ability; while masking targets were proven to
have better reconstruction, leading to more intelligible processed speech. On the other
hand, convolution-based architectures proved to be less affected by the training target
when tested using unseen noise environments and unseen speech from the same training
dataset. However, when considering the generalization ability of the networks using a
different dataset from the one used in the training process, the results show that masking
targets are not recommended for autoencoder architectures, because there is a signifi-
cant performance degradation in the case of using masking targets, especially for the
CDAE architecture.

When investigating different learning domains, fully connected architectures expe-
rience a significant degradation in the performance when the learning process is per-
formed in the time domain, and the networks failed to output speech with acceptable
quality and intelligibility. Although changing the depth, frame size, and dataset size
was shown to improve the overall performance of fully connected architectures learn-
ing in the time domain, a careful design and extra techniques are needed for this type
of DNN when operating in the time domain, in order to achieve a good performance.
Conversely, convolution-based architectures managed to perform speech enhancement
in the time domain; moreover, the CDAE gives better performance in the time domain
than that of the frequency domain-based implementation.

The next chapter will present a new deep learning based speech enhancement DNN
that outperforms SOTA architectures in the literature. Additionally, the chapter pro-
poses a new two-stage deep learning speech enhancement approach, which was proven
to improve the performance.
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CHAPTER 5

A Two-Stage Speech Enhancement Architecture using Time and
Frequency Domain Approach

5.1 Introduction

This chapter presents a deep CDAE based speech enhancement architecture, which
aims to compromise between speech denoising and speech distortion. The developed
architecture is an asymmetric CDAE with several strided 1D convolution layers and
dilated convolution blocks. The encoder network is designed to be deeper than the
decoder network, in order to improve the performed feature extraction process through
the hidden layers of the encoder while minimizing architecture complexity by passing
this information to the decoder using skip connections, instead of adding more layers to
the decoder network. In order to improve speech reconstruction and minimize speech
distortion, a two-stage deep learning approach is proposed for speech enhancement
that takes advantage of both the frequency and time domain speech features. The first
stage applies speech denoising by running the developed architecture in the frequency
domain using magnitude spectrogram mapping as a training target. Due to the deep
nature of the architecture, the background noise is aggressively removed by the first
stage; however, the output speech experiences high distortion. The second stage deals
with this distortion issue by trying to reconstruct the removed speech from the first
stage using time domain speech features. Moreover, the noisy phase is enhanced in the
second stage, which leads to further denoising.

5.1.1 Relation to Prior Work

The developed architecture is an improved and deeper version of the U-Net (Ron-
neberger et al., 2015; Jansson et al., 2017) and its improved version Wave-U-Net (Stoller
et al., 2018), using asymmetric encoder/decoder design, which improves performance
while keeping complexity to a minimum. Compared to the U-Net and Wave-U-Net
that both have 20 million parameters, the proposed architecture has lower number of
parameters, only 6.3 million parameter. The developed architecture takes advantage
of strided and dilated convolution; moreover, connections were added between encoder
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layers to combine fine and cruse features, extracted during the training process. Further-
more, PReLU activations were used in both the encoder and decoder networks instead
of LReLU activations used in previous work, because PReLU was found to improve
the performance. The proposed architecture also uses shortcut between noisy input and
enhanced output, which was found to decrease speech distortion during training, com-
pared to previous work. The comparison between the performance of the developed
architecture in this PhD work and SOTA speech enhancement models, including the
Wave-U-Net, will be presented later in this chapter in Table 5.1.

5.1.2 Research Contributions

The work in this chapter makes the following research contributions:

• develops a new asymmetric CDAE based speech enhancement network that out-
performs other models in the literature, and

• proposes a two-stage deep learning approach for speech enhancement that applies
speech denoising while minimizing speech distortion.

In the following sections, details about the developed speech enhancement archi-
tecture will be presented in Section 5.2. Section 5.3 provides information about the
data used and the setup to train and test the architecture. In Section 5.4, a comparison
is presented between the frequency and time domain implementation of the proposed
architecture. The proposed two-stage speech enhancement approach will be discussed
in Section 5.5 and the results achieved and comparison to baselines will be presented in
Section 5.6. Finally, Section 5.7 concludes this chapter.

5.2 The Proposed Speech Enhancement Architecture

The developed architecture is a fully 1D CDAE-based implementation, see Figure 5.1.
The network accepts noisy speech time frame of size 2,048 as an input, which is de-
noised by the compression applied through the hidden layers of the encoder network,
until it reaches a size of 8 in the middle bottleneck layer. Signal reconstruction is then
performed by the decoder network, to decompress the enhanced speech to its original
size. Based on the fact that the developed architecture is very deep, the use of skip
connections between the encoder and decoder networks is essential, so as to prevent
information loss when processing the speech signal through the hidden layers (Rethage
et al., 2018). These connections are represented by the red lines in Figure 5.1, and they
send the features extracted by the encoder network to the decoder network. Addition-
ally, the unprocessed noisy speech input is fed to the last layer of the decoder, to help the
network in the reconstruction process. This shortcut between the input and output was

104



found to decrease distortion and leads to better network generalization. This shortcut
connection is represented by the blue line in Figure 5.1.

The encoder network has several 1D strided convolution layers and strided-dilated
causal convolution blocks. Each 1D strided convolution layer has stride size 2, kernel
size of 9, and PReLU activation. This layer is then followed by a strided-dilated causal
convolution block, which consists of 5 dilated 1D causal convolution layers of increas-
ing dilation rates; 1, 2, 4, 8, and 16 dilation rates used, and a final PReLU activation.
The combination of strided convolution and dilated convolution techniques is proven
to enhance the denoising process and improve the overall speech perception (Pandey
and Wang, 2020a), as it allows exponential expansion of the receptive field, which de-
creases speech distortion without increasing the network’s complexity (Yu and Koltun,
2016). We also used increasing kernel sizes as the dilation rate increases to decrease
sparsity. The strided-dilated convolution block ends with a concatenation layer to com-
bine both the fine and coarse features extracted by these techniques. The noisy speech
is processed by the encoder network, to form a compact form representing the predicted
clean speech signal in the bottleneck layer.

Speech reconstruction is performed by the decoder network through several 1D de-
convolution layers of upsampling size 2 and PReLU activation. Each layer takes a
concatenation of two inputs: the output of the previous layer and the output of the
corresponding concatenation layer in the encoder network, received by the skip con-
nections. The final convolution layer of the decoder is responsible for predicting the
enhanced speech, and it has a kernel size of 7 and linear activation function. The input
to this layer is a concatenation of the output of the previous layer and the original noisy
speech input.

The full architecture has about 6.3 million parameters; however, the encoder is
deeper than the decoder network, because the strided-dilated causal convolution blocks
were not applied in the decoder network. The reason for this is that no significant im-
provement in the performance was detected when repeating these blocks in the decoder
network, as the information gained by the skip connections provides the necessary in-
formation for the reconstruction process. Therefore, these blocks were removed from
the decoder, to decrease network complexity and processing time. This results in having
an encoder with 74 layers, making a total of 4.2 million parameters; while the decoder
has 36 layers, making a total of 2.1 million parameters. Hence, we named this architec-
ture Deep Encoder - Convolutional Autoencoder DEnoiser (DE-CADE), and this name
will refer to this architecture throughout the rest of the thesis.
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5.3 Experimental Setup

In this section, the setup used to train and test the proposed DNN will be demonstrated.
This section presents the speech and noise datasets used, preprocessing techniques,
and the learning hyperparameters. These will be discussed separately in the following
subsections.

5.3.1 Datasets

The DE-CADE architecture was trained and tested using two datasets for speech en-
hancement: a small-scale dataset for baseline comparison, and a large-scale dataset
for measuring overall network performance. These two datasets are described in the
following subsections.

5.3.1.1 Small-Scale Dataset

In the speech enhancement field, it is common to first train and test the architecture us-
ing a benchmark dataset that is used to compare with the SOTA models in the literature,
and then to show the network’s performance when a using large dataset. The bench-
mark dataset used to verify and compare our architecture performance is the Valentini
dataset (Valentini-Botinhao et al., 2017b). This dataset is a subset of the Voice Bank
corpus (Veaux et al., 2013), with a total of 30 speakers, 28 for training and 2 for testing.
The speakers are native English, reading about 400 English sentences.

The training set contains noisy speech audios created by mixing the training speech
utterances with 10 noise environments: 8 from the Diverse Environments Multichannel
Acoustic Noise Database (DEMAND) dataset and two artificial noises, at four SNRs:
0, 5, 10 and 15dB, to make 11,572 training samples, about 18 hours of noisy speech
data. The proposed DE-CADE architecture was trained using 90% of this noisy data,
and 10% was used for validation during training. The Valentini test set is formed by
corrupting the test speech utterances with 5 unseen noise environments from the DE-
MAND dataset, to make 824 test samples. This data was used to test and compare
the architecture performance against SOTA speech enhancement networks. This train-
ing and testing data will be denoted by ”Small-Scale Train Set” and ”Small-Scale Test

Set”, respectively.

5.3.1.2 Large-Scale Dataset

The architecture was also trained using a very large noisy speech dataset of 1,000 hours.
The clean speech data includes 800 hours of English speech, and 200 hours of an addi-
tional 175 languages (Topcoder, 2017). The 800 hours of English speech was collected
from the Microsoft Deep Noise Suppression (DNS) challenge dataset (Reddy et al.,
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2020), the CSTR VCTK Corpus (Yamagishi et al., 2019) and the Reverberant speech
dataset (Valentini-Botinhao et al., 2017a). Together make a total of 267,841 different
speech utterances. The noise environments were taken from the DNS noise dataset,
which is about 181 hours of noise data, and makes a total of 60,000 different noise clips
(Reddy et al., 2020). The speech and noise datasets were divided into 90% for train-
ing and 10% for validation. The noisy speech training and validation data was created
through random mixing of the clean speech utterances with the noise environments at a
wide range of SNRs from -5 to 15 with a step of 1. This training data will be denoted
by ”Large-Scale Train Set”

In order to test architecture performance in challenging conditions that were not
previously seen in the training process, a mismatched noisy test data was created using
speech utterances from the Librispeech corpus (Panayotov et al., 2015). 200 randomly
selected speech audio files were corrupted using 20 unseen noise environments, shown
in Figure 5.2. The selected speech utterances are for 20 male and 20 female speakers,
not seen by the network during training. The 20 noise environments (N1:N20 in Figure
5.2) were taken from 100 Nonspeech Environmental Sounds (Hu, 2014): 9 crowd noise,
an AWGN, 2 human yawn noises, a human cry, a shower, tooth brushing, 2 footsteps, a
door moving, and 2 phone dialling. Six test SNRs were considered to create the mixture,
from -5 dB to 20 dB with a step of 5 dB. This test data will be denoted by ”Large-Scale

Mismatched Test Set”. We also mixed these speech files with unseen Babble, Factory,
Engine, HF radio channel and Operating Room noises from the NOISEX-92 dataset
(Varga and Steeneken, 1993), to perform the analysis that will be presented in Section
5.4.

To assess the network’s generalization, the architecture was also tested using a
matched test data that is seen during the training process. This data was used to compare
the network’s performance for seen and unseen noisy speech, to evaluate the network’s
generalization ability. We used 200 speech audios from the DNS dataset, seen in the
training, and of similar length as the mismatched Librispeech speech audios. These
audios were corrupted with 20 seen noise environments, randomly selected from the
training DNS noise dataset. These noises include: church bell, sweeping sound, motor-
cycle, train, music, cry, water, crowd, wind, sea waves, siren, hummer, kitchen machine,
piano, and birds; spectrograms of these matched noise environments are presented in
Figure 5.3. We mixed them at the same 6 SNRs of the mismatched test set, to obtain
similar conditions. This test data will be denoted by ”Large-Scale Matched Test Set”.
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Figure 5.2 The 20 mismatched noise environments used in the testing process. N1-N9:
crowd noise; N10: AWGN; N11-N12: yawn sound; N13: Cry; N14: Shower; N15:
Toothbrushing; N16-N17: Footsteps; N18: Door moving; N19-N20: Phone dialing

Figure 5.3 The 20 matched noise environments used in the testing process.

5.3.2 Data Preprocessing

The input noisy audio to DE-CADE is resampled to 16 kHz sampling frequency, and it
is normalized to zero mean and unit variance. This sampling frequency was used as the
common one for speech enhancement, in order to be able to compare DE-CADE with
other speech enhancement models in the literature, as the baseline comparison is based
on 16 kHz sampling frequency.

The architecture was trained twice: once in the frequency and once in the time do-
main, because CDAEs shows good performance in both domain, so the best practice is

109



to evaluate DE-CADE performance in both time and frequency, and then use the bet-
ter implementation based on the scores of the speech enhancement evaluation metrics.
On the one hand, T-F features were extracted for frequency domain-based implementa-
tion. The STFT was performed on the noisy speech audio, using a Hamming window
with time frame of size 256 and 50% overlap. Magnitude spectrogram mapping is the
used training target, where the noisy phase was not used in the processing. The noisy
phase was retained and added to the final predicted clean magnitude spectrogram, and
then transforming of the signal back to the time domain was performed using Inverse
Short Time Fourier Transform (ISTFT). This implementation will be denoted as DE-
CADE(F).

On the other hand, a Hamming window with time frames of size 2,048 and 50%
overlap was the only extracted features for the time domain based implementation, and
time frame mapping is the used training target in this case. The traditional overlap-add
method was applied to the enhanced time frames (Griffin and Lim, 1984) to reconstruct
the speech utterance. This implementation will be denoted as DE-CADE(T)

5.3.3 Learning Hyperparameters

For both time and frequency domain implementations, the DE-CADE was developed
and trained using the Keras framework with Tensorflow backend. The MMSE is the loss
function used with the Adam optimizer, learning rate = 0.0001, β1 = 0.1, β2 = 0.999.
We used a training batch size = 2, and the networks were trained until convergence for
50 epochs, and then the best weights were taken based on the validation data.

5.4 Time Versus Frequency Domain Learning

When training the DE-CADE architecture in the frequency domain, DE-CADE(F), it
shows great ability in removing background noise. However, the enhanced speech is
highly distorted, especially the high frequency components and at low SNR levels.
While processing the architecture in the time domain, DE-CADE(T), shows an oppo-
site effect, where the denoising ability of the network is less than that of the frequency
domain-based implementation; however, much better speech reconstruction was found
in this case. This can be proven using the Cbak and LSD speech evaluation metrics,
shown in Figure 5.4, and the spectrogram representation of the output enhanced speech
from each implementation, shown in Figure 5.5.

In Figure 5.4, DE-CADE(F) shows much better Cbak scores, which proves the bet-
ter denoisng ability of this implementation. At a very low SNR level, such as -5 dB, the
time and frequency domain based implementations give nearly the same Cbak scores.
An explanation to this is that the negative effect of using the noisy phase in the fre-
quency domain based implementation becomes very clear at a very low SNR, and this
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degrades the network’s denoising ability. On the other hand, DE-CADE(T) outperforms
in terms of the LSD, which shows the better speech reconstruction for this implemen-
tation, especially at low SNRs; -5, 0, 5 dB, where aggressive noise removal of the
frequency network results in high distortion.

The trade-off between speech denoising and reconstruction can also be justified us-
ing spectrograms, shown in Figure 5.5, which represent clean and noisy speech at three
SNRs: -5 dB crowd noise, 0 dB tooth brushing noise and 5 dB shower noise, and their
corresponding estimated output from DE-CADE(F) and DE-CADE(T). It is clear that
at all SNR levels, DE-CADE(F) can effectively remove background noise. However,
the output speech experiences high distortion due to the spectrum representation, which
gives more attention to the fundamental frequencies when reconstructing the estimated
speech. On the other hand, DE-CADE(T) shows less denoising ability, but with better
speech reconstruction, especially for the high-frequency components.

5.5 The Proposed Two-Stage Speech Enhancement Approach

Based on the results of the time versus frequency implementation analysis from the
previous section, a two-stage speech enhancement approach will be presented in this
section that combines the advantages of both time and frequency domain learning. An
illustration of this approach is provided in Figure 5.6. In this approach, the noisy speech
is first processed by a frequency domain based DE-CADE network, DE-CADE(F); af-
terwards, the output from this network along with the original noisy speech are fed
to second stage DE-CADE running in the time domain, DE-CADE(T). The first stage
DE-CADE(F) performs magnitude spectrogram denoising, due to the greater denois-
ing ability of frequency domain based implementations. While, the second stage DE-
CADE(F-T) mainly helps in speech reconstruction by minimizing the speech distortion
caused by the noise removal processing of the first stage; additionally, phase enhance-
ment is considered in this second stage, which results in further denoising. Mathemati-
cal analysis of this two-stage approach will be provided in the following subsection.

5.5.1 Problem Definition

The input noisy speech to the first stage DE-CADE can be represented as follows:

y(m) = s(m) + n(m), (5.1)

where y represents the noisy speech, s and n are the speech and additive noise signals,
respectively, and {y, s, n} ∈ RM × 1, where M is the total number of samples in the
signals, and m is the time sample index. In the case of having additional reverberate
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Figure 5.5 The spectrograms of the clean, noisy, and estimated speech from the fre-
quency and time domain DE-CADE at -5 dB crowd noise, 0 dB tooth brushing noise
and 5 dB shower noise.

noise in the noisy speech signal, this equation can be redefined as follows:

y(m) = x(m) + n(m), (5.2)

where,

x(m) = s(m) ∗ r(m) =
M−1∑
j=0

r[j]s[m− j], (5.3)

where ∗ denotes the convolution operator, x denotes the reverberant speech, r represents
the Room Impulse Response (RIR), j is the discrete RIR sample, and m is the sample
point of the discrete signals, x and s.

As discussed in Chapter 4, reverberation is a special noise type that needs additional
processing different from denoising. For this reason, dereverberation is currently con-
sidered as an extra task in speech enhancement, and it is applied as a separate stage to
improve performance (Zhao, Wang and Wang, 2018). Consequently, DE-CADE was
trained to only suppress additive noise, without applying dereverberation, which means
that DE-CADE will map noisy, reverberant speech to reverberant speech as a target.
Applying denoising only without dereverberation was also proven to improve the intel-
ligibility of the output speech from speech enhancement DNNs (Zhao et al., 2016).
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Figure 5.6 The proposed two-stage speech enhancement approach in the frequency and
time domain.

For a DNN to be able to solve Equation 5.2, in order to output a good estimate of
the clean speech, it is required to have additional information about the relationship
between speech and additive noise. When processing noisy speech using a DNN for
speech enhancement, the network performs some linear and non-linear operations to
finally give an estimate of the clean speech. Based on the fact that most recent DNNs in
the literature managed to generate a good prediction of the clean speech, we hypothesize
that feeding the output of a DNN for speech enhancement, x̂, with the original noisy
speech, y, to another second stage speech enhancement DNN will provide the second
stage DNN with the needed information about the speech and noise relationship, and
this will result in a better learning process and prediction for the second stage DNN.

For the above idea to work, the information provided by the first stage DNN about
the estimated clean speech must be different from that of the second stage. In deep
learning-based speech enhancement, this can be achieved by either implementing two
different DNNs for each stage or apply two different processing approaches using the
same architecture for both stages. The proposed two-stage approach is based on the
latter idea, as it is based on performing speech enhancement using DE-CADE in the
frequency domain, DE-CADE(F), as a first stage to estimate the magnitude spectrogram
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of the clean speech. Afterwards, this estimation is fed with the original noisy speech
to the second stage DE-CADE, DE-CADE(F-T), to be processed in the time domain,
where both magnitude and phase denoising are considered. In this way, a different
estimation of the clean speech will be performed using the time domain features.

In the first stage, the noisy speech signal is transformed to the frequency domain
to extract time-frequency features using STFT, which can be calculated as described
below:

Y (t, f) =
F−1∑
f=0

y(m+ t)h(m)e−j2πfm/F , (5.4)

where Y(t,f) is the STFT of the noisy signal, f is the frequency bin index; {f = 0, 1, ..., F-

1} and F is the total number of frequency bins, t is the time frame, {t = 0, 1, ..., T-1} and
T is the total number of frames, m is the input signal time sample, h denotes the applied
window function, which is a Hamming window in our implementation. The time frame
size was set to 256 with 50% overlap. The magnitude of the T-F features was taken to
obtain the input spectrograms to the DNN, so the frequency domain representation of
Equation 5.2 can be expressed as:

|Y (t, f)| = |X(t, f)|+ |N(t, f)|, (5.5)

where, |Y (t, f)|, |N(t, f)|, and |X(t, f)| are the magnitude spectrograms of the noisy
speech, noise and speech signals, respectively. The first stage DE-CADE was then
trained to estimate the clean speech magnitude spectrogram, |X(t, f)|. The choice of
this mapping approach-based target is based on the fact that CDAEs have bad gener-
alization ability when using masking targets, as discussed in Chapter 4. In this stage,
we assumed that the phase is not highly affected by noise compared to the magnitude
spectrogram (Wang and Lim, 1982), so the noisy phase was not considered in the first
stage processing, and was kept to be added to the final estimated clean magnitude spec-
trogram.

The processing applied by each layer of DE-CADE is based on a 1D dilated causal
convolution operation, which can be expressed as follows:

B(u, v) =
∑
c

∑
w+d∗q=v

A(c, w) ∗ weight(u, c, q), (5.6)

where, B(u,v) is the output of the 1D dilated causal convolution layer, A(c,w) is the
layer input, weight(u,c,q) is the filter applied to the input, u is the number of applied
convolution channels, v is the output width, c is the number of input channels, w is the
input width, q is the filter width and d is the dilation rate.

Each convolution layer is followed by a nonlinear function, PReLU in our case, so

115



the output, G, from the non-linearity layer will be:

G(u, v) = PReLU(B(u, v)), (5.7)

where,

PReLU(B(u, v)) =

B(u,v), if B > 0,

α B(u,v), otherwise,
(5.8)

where α is a variable parameter that changes based on the model during training. Mean
Square Error (MSE) is the loss function used with the Adam optimizer, learning rate =
0.0001, β1 = 0.1, β2 = 0.999. DE-CADE(F) will minimize the frequency domain MSE
loss, given below, to estimate the speech magnitude spectrum.

LF =
1

TM

T∑
t=0

F∑
f=0

[
|X̂(t, f)| − |X(t, f)|

]2
, (5.9)

where LF is the loss function for the frequency network, DE-CADE(F), T is the to-
tal number of frames, and F is the number of frequency bins. After processing the
noisy speech using several convolution and non-linearity functions, the estimated clean
speech STFT, X̂(t,f), can be reconstructed using the estimated speech magnitude spec-
trogram, |X̂(t, f)|, and the STFT phase of the noisy speech, ∠Y(t,f). This can be ex-
pressed as follows:

X̂(t, f) =

√
|X̂(t, f)| ⊗ ej∠Y (t,f), (5.10)

where ⊗ denotes element-wise multiplication. Finally, the time domain estimated
speech signal from the first stage, x̂, can be generated using the ISTFT.

x̂1(m) = ISTFT (X̂(t, f)). (5.11)

In the second time domain-based stage, DE-CADE(F-T), both the noisy speech, y,
and the estimated clean speech by the first stage, x̂1, are concatenated on two different
channels, and then fed to a similar second stage network but operating in the time
domain. Framing is the only preprocessing operation applied to the inputs using a
frame size of 2,048 with 50% overlap. The input concatenated time frames, y2(t), to the
second stage network, DE-CADE(F-T), can be represented as follows:

y2(t) = (y(t), x̂1(t)), (5.12)

where, t is the time frame, y(t) and x̂1(t) are the framed noisy and estimated speech,
respectively. The network here will try to enhance both the magnitude and phase, given
the time-domain representation of the noisy speech and the denoised speech from the

116



first stage. This will allow different learning and enhancement processes from that of
the first stage. MSE is the loss function used for the second stage, as an optimum choice
to reduce the time domain prediction error (Kolbæk et al., 2020). This can be expressed
as given below.

LT =
1

T

T∑
t=0

[x̂2(t)− x(t)]2 , (5.13)

where LT is the loss function of the second enhancement stage and x̂2(t) is the estimated
clean speech frame from the second stage. We finally apply overlap-add procedure to
obtain the final estimated clean speech, x̂2(m).

5.6 Results and Discussion

In this section, evaluation and analysis of the proposed architecture and two-stage ap-
proach will be presented. This evaluation covers the performance of the architecture
in improving the noisy speech signal, a comparison to other best performing speech
enhancement models in the literature, and the complexity of the architecture. The fol-
lowing subsections demonstrate these points in detail.

5.6.1 Baseline Comparison

The architecture performance was first verified by training it using the ”Small-Scale

Train Set”, and then it was tested using ”Small-Scale Test Set” to be compared with
SOTA models in the literature. For comparison, we used a combination of classical and
SOTA deep learning-based speech enhancement models, listed below:

• classical Wiener filter approach (Scalart et al., 1996)

• SEGAN (Pascual et al., 2017)

• Wave U-Net (Macartney and Weyde, 2018)

• WaveNet (Rethage et al., 2018)

• MMSE-GAN (Soni et al., 2018)

• Deep Feature Loss (Germain et al., 2019)

• Deep Xi-ResLSTM (Nicolson and Paliwal, 2019)

• Metric-GAN (Fu et al., 2019)

• SEGAN-D (Phan et al., 2020)

• DEMUCS (Défossez et al., 2020)
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• Koizumi et al. (Koizumi et al., 2020)

• T-GSA (Kim et al., 2020)

• Deep MMSE (Zhang et al., 2020)

The results of this evaluation are given in Table 5.1, where the models are listed in
ascending order based on the overall predicted MOS score, Covl. The training and
evaluation of the SOTA architecture was performed by the original authors, and they
are just presented in this thesis for comparison based on the table presented in this
website (Zhang et al., 2021), so all the SOTA networks were not trained or tested.

The results show that the proposed two-stage architecture, DE-CADE(F-T), out-
performs in terms of both Csig and Covl scores. In comparison to other models, our
architecture shows a good compromise between noise removal and speech reconstruc-
tion, because although the Cbak score is lower for our architecture when compared to
some other networks, our implementation managed to decrease speech distortion, lead-
ing to the best Csig score, which is the target of this design, and finally this results in
an improved overall performance; the highest Covl score. The single stage version of
the proposed architecture, DE-CADE(F) also performs better than most of the models;
however, the two-stage implementation leads to significant improvement.

5.6.2 Complexity Analysis

Figure 5.7 shows the number of parameters of the first stage DE-CADE(F) and the two-
stage version, DE-CADE(F-T), of the proposed architecture, highlighted in red, in com-
parison with other SOTA speech enhancement models. It should be noted that in this
analysis, we only included architectures whose number of parameters were reported by
the authors. The single-stage frequency domain-based network, DE-CADE(F), shows a
comparable number of parameters to other architectures, such as Wavnet and CDAE-T,
but it shows better performance based on the evaluation in Table 5.1. The two-stage
architecture, DE-CADE(F-T), is more complex, but it significantly improves speech
quality and overall performance as shown in Table 5.1. Moreover, it is of remarkably
less complexity compared to the GAN architectures, see Figure 5.7.

5.6.3 Large-Scale Training Performance

In this section, we evaluated the DE-CADE architecture when trained using the ”Large-

Scale Train Set”, and tested using the ”Large-Scale Mismatched Test Set” and the bab-
ble noise corrupted speech used in the evaluation of Section 5.4; these datasets were de-
fined in Section 5.3. Moreover, a comparison was performed with the standard CDAE-
based implementations that were trained and tested using the same dataset. The results
of these experiments will be presented in the following subsections.
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Table 5.1 Performance comparison of SOTA speech enhancement models using the
Valentini Voice Bank dataset benchmark (Valentini-Botinhao et al., 2017b), based on
the results presented online by authors (Zhang et al., 2021).

Metric Csig Cbak Covl
Noisy 3.35 2.44 2.63

Wiener (Scalart et al., 1996) 3.23 2.68 2.67
SEGAN (Pascual et al., 2017) 3.48 2.94 2.80

Wave U-Net (Macartney and Weyde, 2018) 3.52 3.24 2.96
WaveNet (Rethage et al., 2018) 3.62 3.23 2.98
MMSE-GAN (Soni et al., 2018) 3.80 3.12 3.14

Deep Feature Loss (Germain et al., 2019) 3.86 3.33 3.22
Deep Xi-ResLSTM (Nicolson and Paliwal, 2019) 4.01 3.25 3.34

Metric-GAN (Fu et al., 2019) 3.99 3.18 3.42
SEGAN-D (Phan et al., 2020) 3.46 3.11 3.50

DEMUCS (Défossez et al., 2020) 4.14 3.21 3.54
Koizumi et al. (Koizumi et al., 2020) 4.15 3.42 3.57

DE-CADE(F) 4.00 3.11 3.60
T-GSA (Kim et al., 2020) 4.18 3.59 3.62

Deep MMSE (Zhang et al., 2020) 4.28 3.46 3.64
DE-CADE(F-T) 4.36 3.01 3.86

5.6.3.1 Architecture Performance

Figure 5.8 presents five speech quality scores for the output speech from DE-CADE in
the frequency domain, DE-CADE(F), DE-CADE in the time domain, DE-CADE(T),
and the two-stage DE-CADE, DE-CADE(F-T). It can be noticed from the results that
DE-CADE(F) outperforms in terms of the Cbak scores, which proves the higher de-
noising ability of the frequency domain-based implementation. On the other hand,
DE-CADE(T) managed to estimate clean speech with better intelligibility and lower
distortion. This is very clear in the case of babble noise, where speech reconstruction is
very challenging, as the noise here is similar to the target speech signal, and this results
in severe distortion in the case of DE-CADE(F) while the network was trying to elim-
inate background noise. The proposed two-stage approach DE-CADE(F-T) achieves
the best compromise between speech denoising and reconstruction. This is shown in
the Cbak graphs, which show an increase in the noise level in some cases compared
to DE-CADE(F). This increase in the noise level avoids significant distortion and im-
proves performance with respect to all the other evaluation metrics.

Table 5.2 presents the average of the numerical results presented in Figure 5.8 in the
case of the 20 mismatched noise environments. Table 5.2 also shows the performance
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Figure 5.7 A comparison between the number of parameters for the first stage of our
architecture, DE-CADE(F), its two-stage version, DE-CADE (F-T), and SOTA speech
enhancement models.

of the two-stage model DE-CADE(F-T) after 18 and 50 training epochs, DE-CADE(F-
T)(18th) and DE-CADE(F-T)(50th). It can be seen that the performance gain after 18
epochs is not significant, which means that 50 epochs were more than enough for the
architecture to converge. Large-scale training and validation curves are shown in Figure
5.9.

Table 5.2 Performance comparison of the two-stage approach to single stage imple-
mentations in the frequency and time domains, using the Large-Scale Mismatched Test
Set. The results are averaged over 6 SNRs, from -5 to 20 with 5 dB step.

Metric PESQ STOI LSD Csig Cbak Covl
Noisy 2.086 83.28 1.422 2.856 2.037 2.421

DE-CADE(F) 2.623 88.21 0.862 3.658 2.777 3.120

DE-CADE(T) 2.630 88.32 0.853 3.673 2.596 3.042

DE-CADE(F-T)(18th) 2.782 89.63 0.791 3.862 2.744 3.305

DE-CADE(F-T)(50th) 2.797 89.69 0.790 3.865 2.762 3.315

5.6.3.2 Comparison to the Standard CDAE

The single and two-stage DE-CADE performance was compared to the standard CDAE,
proposed in (Pandey and Wang, 2018a). Table 5.3 shows the outcome of this compar-
ison, where all the models were trained and tested using the Large-Scale Train Set

and the Large-Scale Mismatched Test Set, respectively. The results shows that regard-
less of the training domain used, both single stage and two-stage DE-CADE based
implementations; DE-CADE(F), DE-CADE(T), and DE-CADE(F-T), perform better
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Figure 5.9 The training and validation curves for large-scale training with 1,000 hours
of noisy speech.

than the standard CDAE based models, CDAE(F) and CDAE(T). The two-stage DE-
CADE(F-T)(50th) outperforms all implementations with respect to all the evaluation
metrics, except the Cbak score, where the single stage frequency domain-based net-
work DE-CADE(F) performs better; however, this improvement is at the expense of all
the other evaluation metrics.

Table 5.3 Performance comparison of the architecture to standard CDAE speech en-
hancement networks, using the Large-Scale Mismatched Test Set. The results are aver-
aged over 6 SNRs, from -5 to 20 with 5 dB step.

Metric PESQ STOI LSD Csig Cbak Covl
Noisy 2.086 83.28 1.422 2.856 2.037 2.421

CDAE(F) (Pandey and Wang, 2018a) 2.622 86.78 1.285 3.438 2.687 3.009

CDAE(T) (Pandey and Wang, 2018a) 2.556 87.33 0.936 3.543 2.588 3.016

DE-CADE(F) 2.623 88.21 0.862 3.658 2.777 3.120

DE-CADE(T) 2.630 88.32 0.853 3.673 2.596 3.042

DE-CADE(F-T)(50th) 2.797 89.69 0.790 3.865 2.762 3.315

5.6.4 Architecture Generalization

In this section, the architecture generalization will be evaluated by comparing the dif-
ference between the performance when using a matched test set that is seen during the
training process, ”Large-Scale Matched Test Set”, and a mismatched test set not pre-
viously seen by the network, ”Large-Scale Mismatched Test Set”; these test sets were
defined in Section 5.3. This will show the network’s variance, which is an important
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measure to assess the generalization ability of DNNs. Moreover, an evaluation was
performed for the generalization of the proposed two-stage approach, by replacing the
first stage DE-CADE(F) with two DNNs from the literature. These speech enhance-
ment networks are frequency domain-based implementations, trained with huge speech
and noise datasets, and their models are available online. The output from these DNNs,
which is not previously seen in the training process, was fed to the second stage network
of the two-stage DE-CADE architecture. Details about these experiments are presented
in the following two subsections.

5.6.4.1 Generalization to Mismatched Test set

The results in Table 5.4 show that the difference between the performance of DE-
CADE(F-T)(18th) in the case of matched and mismatched datasets is acceptable for
all evaluation metrics, as it is normal for DNNs to perform better for data seen during
training. One of the interesting results in this table is the Cbak score, where the archi-
tecture outputs speech with a lower Cbak score in the case of matched test data, which
is not common as the DNN should be able to better remove seen noise environments.
This proves the ability of this implementation to compromise between noise removal
and speech reconstruction, because this decrease in the Cbak score results in a better
overall performance in comparison to the mismatched test set, as shown in the Covl
score.

Table 5.4 The performance of the proposed two-stage network for matched and mis-
matched test data. The results are averaged over 6 SNRs, from -5 to 20 with 5 dB
step.

Metric PESQ STOI LSD Csig Cbak Covl
Matched 2.848 91.44 0.773 3.865 2.635 3.341

Mismatched 2.782 89.64 0.791 3.862 2.744 3.305

5.6.4.2 Two-Stage Approach Generalization

In this subsection, an important experiment was conducted to show the effect of the
proposed two-stage frequency then time approach using different speech enhancement
architectures in the first stage. This experiment is based on taking the processed speech
from pre-trained frequency domain based DNNs for speech enhancement in the lit-
erature, and then feed this output as an input to the trained second stage DE-CADE,
DE-CADE(F-T). The used frequency domain networks are: an RNN model (Braun and
Tashev, 2020) and an MLP model (Xu et al., 2015). These models were not previously
seen in the training process. An illustration of this experiment is shown in Figure 5.10.
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The alternative first stage models are available online in (Xia et al., 2020a) and
(Yong et al., 2015). The RNN architecture is the baseline DNN, provided by Microsoft
as a part of the DNS challenge, and it is based on GRUs (Cho et al., 2014) and FF layers.
The MLP network is only based on FF layers, to form a highly dense network. The
training target in both networks is based on the masking approach. When comparing
these networks to the first stage DE-CADE(F) that the second stage is trained on, it is
clear that different setup and approaches were applied. This will increase the mismatch
between the first stage DNN used in testing and the second stage DE-CADE(F-T), to
fairly assess the performance and generalization ability of the DE-CADE(F-T).

Figure 5.10 The testing process of the two-stage approach generalization, where RNN
and MLP are unseen first stage networks during the training.

Additionally, the test speech and noise environments used were not seen by the first
stage RNN and the second stage DE-CADE(F-T) architectures during training; how-
ever, the first stage MLP network was trained on these noise environments. Based on
this, the effect of the second stage will be evaluated on two conditions for the first
stage network: seen and unseen test data during the training process, which will show
the effect of adding the DE-CADE(F-T) when the noise environments are matched or
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mismatched for first stage DNNs. The output from the first stage architecture is concate-
nated with the noisy speech as input to the second stage DE-CADE, then we evaluated
the performance of these architectures using the same Large-Scale Mismatched Test Set,
described in Section 5.3.

The results of this evaluation are presented in Table 5.5, where the subscripts 1 and
2 denote running the architecture as a single stage and after adding the second stage,
DE-CADE(F-T), of our architecture, respectively. The results show that the overall
performance of these networks improved when adding the second stage, especially the
intelligibility score, which is a difficult factor to improve (Xia et al., 2020b). It should
also be noted that although the first stage networks were trained to estimate a masking
target, which is proven to improve the intelligibility score (Wang et al., 2014), adding
the second stage DE-CADE(F-T) results in further significant improvement in speech
intelligibility. Moreover, the DE-CADE(F-T) improves the performance of the MLP
network, although the noise environments used were seen by the MLP during training.
In conclusion, the proposed second stage DE-CADE(F-T) in the time domain can be
used as an independent reconstruction stage to other DNN based speech enhancement
frequency networks in the literature, to improve their overall performance.

Table 5.5 The performance of other DNNs after adding the time domain second stage
of our architecture, using the mismatched test data. The results are averaged over 6
SNRs, from -5 to 20 with 5 dB step.

Metric PESQ STOI LSD Csig Cbak Covl
RNN1 2.653 88.45 0.845 3.71 2.697 3.141
RNN2 2.782 89.57 0.818 3.826 2.759 3.28
MLP1 2.992 88.42 0.835 3.611 2.986 3.287
MLP2 3.019 90.38 0.808 3.998 2.962 3.495

5.6.5 Comparison to Cascaded Approach

Several experiments were conducted using the DE-CADE architecture, described in
Section 5.2, to compare the proposed two-stage frequency then time approach to other
cascaded approaches. In all approaches, the estimated output of the first stage, x̂, is fed
to the second stage; while, in the proposed approach, both the noisy speech, y, and the
estimation of the first stage x̂ are concatenated and fed to the second stage. Table 5.6
shows this comparison, and the description of each approach is defined below:

• T(y)-T(x̂): two-stage DE-CADE, in which the first and second stages are operat-
ing in the time domain.

• F(y)-F(x̂): two-stage DE-CADE, in which the first and second stages are operat-
ing in the frequency domain.
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• T(y)-F(x̂): two-stage DE-CADE, in which the first stage is operating in the time
domain and the second stage in the frequency domain.

• F(y)-T(x̂): two-stage DE-CADE, in which the first stage is operating in the fre-
quency domain and the second stage in the time domain.

• F(y)-T(x̂,y): the proposed two-stage DE-CADE with first frequency domain stage
and second time domain stage, and the noisy speech is taken through to the second
stage along with the output of the first stage.

The evaluations show that the proposed approach, (F(y)-T(x̂,y)), outperforms other cas-
caded approaches for all evaluation metrics, except the Cbak results that measure the
denoising ability. The cascaded frequency-frequency approach, (F(n)-F(x̂)), shows the
best noise removal performance; however, all the other evaluation metrics are nega-
tively affected. This is more evidence that the frequency network has better denoising
ability, as discussed in Section 5.4.

Table 5.6 Performance comparison of the proposed two-stage approach to the cascaded
approach, using the mismatched test data. The results are averaged over 6 SNRs, from
-5 to 20 with 5 dB step.

Metric PESQ STOI LSD Csig Cbak Covl
Noisy 2.086 83.28 1.422 2.856 2.037 2.421

T(n)-T(x̂) 2.591 88.01 0.981 3.566 2.581 3.050
F(n)-F(x̂) 2.609 87.52 0.892 3.557 2.794 3.066
T(n)-F(x̂) 2.643 87.63 0.906 3.580 2.785 3.094
F(n)-T(x̂) 2.680 87.92 0.884 3.712 2.665 3.176

F(n)-T(x̂,n) 2.797 89.69 0.790 3.865 2.762 3.315

5.7 Conclusion

This chapter presents a new CDAE model for speech enhancement, named DE-CADE.
The architecture is designed in a way to benefit from the good feature extraction capa-
bility of deep networks while keeping the complexity as minimum as possible. More-
over, a two-stage deep learning approach was proposed that deals with speech distortion
caused by speech enhancement processing. This approach is based on performing con-
secutive speech enhancement using DE-CADE but in two different learning domains,
frequency then time. The proposed architecture and two-stage approach were proven to
outperform SOTA speech enhancement models in the literature. The evaluations also
show that the second stage approach generalizes to other speech enhancement DNNs,
as it was found that the second stage DE-CADE running in the time domain can be
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integrated into other frequency domain-based speech enhancement networks in the lit-
erature, to improve their performance. Finally, the presented two-stage approach was
compared to other cascaded approaches, and the results show that this approach is the
best to compromise between speech denoising and reconstruction, which leads to high-
est scores for the overall speech quality evaluation metrics.

The next chapter will present edited versions of the proposed speech enhancement
architecture in this chapter, in order to apply and test the architecture for real time
speech enhancement applications.
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CHAPTER 6

Application-based Speech Enhancement

6.1 Introduction

This chapter discusses two speech enhancement applications: ASR and Hearing Aids,
and how the developed architecture in Chapter 5 can be optimized for these applica-
tions. The discussion of each application will be presented separately in two sections,
by presenting the results that were obtained by tuning the DE-CADE architecture, pre-
sented in Chapter 5, to perform speech enhancement for the target application.

6.1.1 Research Contribution

The contributions of the work in this chapter are as follows:

• optimizes the second stage network of the two-stage DE-CADE architecture to
solve the mismatch issue between single stage speech enhancement DNNs and
ASR models,

• the development of a full speech enhancement architecture, designed specifically
to improve the performance of ASR systems,

• the development of an edited version of the DE-CADE using a deep CRN-based
architecture for speech enhancement of lower complexity, and

• proposes an integrated hearing aid and alert system architecture to improve the
functionality of currently available hearing aids.

6.2 Speech Enhancement for Automatic Speech Recognition

The speech enhancement architecture proposed in this section for ASR is used to solve
the mismatch issue between the speech enhancement ASR models, discussed in Sub-
section 2.5.1 (page 26). The proposed architecture is a two-stage speech enhancement
model in which speech denoising is applied in the first stage using the DE-CADE net-
work, described in Chapter 5, which performs speech enhancement in the frequency
domain. While the second stage is a Least Square Generative Adversarial Network
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(LSGAN) model that uses a GAN-based speech enhancement network running in the
time domain, to deal with speech distortion caused by the first denoising stage. More-
over, a noise SNR classifier was added as a first processing stage before applying speech
enhancement, in order to perform speech enhancement only when necessary, which de-
creases network complexity and improves the overall performance. The full architecture
will be described in details later in Section 6.2.2 and it is represented in Figure 6.1.

The following subsection will present a full description of the developed architec-
ture, including the mathematical explanation of the distortion issue under investigation.
Afterwards, results and discussion will be given, showing how this architecture im-
proves the performance of a real ASR system in noisy conditions.

6.2.1 Speech Distortion

The addition of a speech enhancement model provides important preprocessing for an
ASR system in intrusive noise environments, where the noisy speech signal has low
SNR value. The time domain noisy speech y affected by a noise environment n can be
expressed as in Equation 6.1:

y(k) = s(k) + n(k), (6.1)

where s is the clean speech signal and k is the time index. The added frontend speech
enhancement module generates an estimate to the clean speech signal ŝ by applying a
nonlinear mapping function that maps noisy speech to clean speech. Considering the
case when the speech enhancement model only performs denoising to the input noisy
speech, which is the common case of most available single-stage DNNs for speech en-
hancement, the output estimated clean speech signal will have a higher SNR compared
to the input noisy speech. However, a new noise form will accompany ŝ, caused by the
distortion that occurred during the denoising process, as proved in (Wang et al., 2019),
and this noise is known as distortion noise. Based on this fact, the estimated clean
speech by the frontend DNN speech enhancement model can be defined by Equation
6.2:

ŝ(k) = s(k) + αn(k) + nd(k), (6.2)

where α is a scaling factor that describes the decrease in the noise intensity, and nd is the
added distortion noise. Although the output speech from most DNNs has better quality
and intelligibility than the noisy unprocessed speech, a mismatch problem between the
backend ASR system and the frontend speech enhancement model occurs when the
distortion noise, nd, is significant; in other words, nd is greater than αn, leading to
major changes in the characteristics of the estimated speech compared to the clean
and noisy speech signals. Consequently, the negative effect of this distortion noise
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outweigh the positive denoising effect of the speech enhancement model, leading to
ASR performance degradation.

In order to deal with this distortion noise, a second stage speech enhancement archi-
tecture is proposed in this chapter, which is trained to minimize this dominant distortion
noise using a GAN-based model with a MSE loss function, known as LSGAN. As dis-
cussed in Chapter 2, the GAN architecture consists of two DNNs: a generator and a
discriminator network. The generator (D) in the proposed architecture performs speech
reconstruction by reducing distortion noise through the feedback of the discriminator
network (G), which is a binary classifier that differentiates between clean and distorted
speech. Both the generator and discriminator have a MSE loss function, which can be
expressed as in Equations 6.4 and 6.3, respectively:

minDLLSGAN (D) =
1

2
Es∼Pdata(s)[(D(s, y)− b)2]+

1

2
Eŝ∼Pŝ(ŝ)[(D(G(ŝ, y), y)− a)2], (6.3)

minGLLSGAN (G) =
1

2
Eŝ∼Pŝ(ŝ)[(D(G(ŝ, y), y)− b)2, (6.4)

where b is an all-one vector representing the label for real clean speech, while a is an
all-zero vector that represents the label for estimated clean speech. D(s,y) is the output
of the discriminator with concatenated real clean speech and noisy speech as an input,
and D(G(ŝ,y),y) is the output of the discriminator with concatenated noisy speech and
the second stage estimated clean speech from the generator network as an input; this
is clarified in Figure 6.1. The noisy speech is fed to both the generator and the dis-
criminator, as it was found that this improves the learning process, because when the
noisy signal is seen as a different signal from the clean speech, noise reconstruction will
be avoided during the training process. By applying this second reconstruction stage,
the architecture will improve the quality of the estimated speech from the first denois-
ing stage, focusing on the distortion noise, which will ideally overcome the mismatch
problem between the speech enhancement model and the ASR model.

In order to further improve the performance of the integrated speech enhancement
and ASR system, additional processing is applied to the input noisy speech before ap-
plying speech enhancement. This processing aims to test the SNR level of the input
noisy speech, to decide whether a speech enhancement stage is required or not before
performing ASR. This will improve the overall performance by decreasing system com-
plexity and processing time when speech enhancement is not needed. Moreover, better
WERs can be achieved for clean and high SNR speech, by preventing the speech distor-
tion caused by the speech enhancement model. To apply this technique, a CNN-based
binary classifier was developed to differentiate between high and low SNR speech sig-
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nals. The classifier will activate the speech enhancement model only if a low SNR input
speech is detected.

As most ASR systems are trained to deal with some noisy speech signal, the choice
of the decision boundary of the classifier between high and low SNR speech will be
based on the performance of the backend ASR system in noisy conditions. In the pro-
posed implementation, the classifier was designed to run the speech enhancement model
for input noisy speech with 15 dB SNR value or less, so 15 dB is the threshold SNR
used to differentiate between high and low SNR speech. The choice of this threshold
SNR value is based on evaluations performed to the testing ASR system in noisy envi-
ronments, where the ASR model was found to be able to deal with noisy speech with
SNR value greater than 15 dB without the need to add a speech enhancement stage.

The CNN classifier decision is made based on the average of five audio features
that are concatenated together and fed to the classifier network to output a prediction,
further details of this classification stage will be given in Subsection 6.2.2. The used
input feature vector to the classifier, Ci, can be represented as in Equation 6.5:

Ci = yMFCC ⊕ yMel ⊕ ySC ⊕ yChroma ⊕ yT , (6.5)

where yMel is the Mel-Spectrogram, yMFCC is the MFCCs, YSC is the Spectral Contrast,
YChroma is the Chromagram, and YT is the Tonnetz (Alı́as et al., 2016).

6.2.2 The Developed Architecture

The developed speech enhancement architecture for ASR is shown in Figure 6.1. The
architecture is composed of three DNNs: the CNN binary SNR classifier, the first-stage
denoising DE-CADE, and the speech reconstruction LSGAN network. The following
subsections will demonstrate the structure and function of each DNN.

6.2.2.1 The SNR Classifier

A CNN-based network was developed in order to perform binary classification to the
SNR value of the input noisy speech, to decide whether speech enhancement processing
is needed or not. The network consists of three 1D convolution layers with PReLU ac-
tivation functions. In order to improve network generalization and overcome overfitting
to the training data, the three convolution layers were followed by a dropout layer of
0.2% rate. Two dense layers were added after the convolution layers, one with ReLU
activation for further processing the advanced features extracted by the convolution lay-
ers, and the final one with Sigmoid activation to perform the prediction. The classifier
generates an output based on the detected SNR value of the noisy speech, where 15 dB
SNR was chosen as the threshold that differentiates between the low SNR noisy speech
(less than or equal 15 dB) that is required for speech enhancement processing, and the
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ŝ 1

an
d
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high SNR and clean speech (greater than 15 dB) that is better fed directly to the ASR
system without applying speech enhancement.

6.2.2.2 The First Denoising Stage

In case that the input noisy speech is classified as low SNR by the CNN network, the
noisy speech will be first processed by the frequency domain-based DE-CADE archi-
tecture, DE-CADE(F), to eliminate background noise. The noisy speech is converted
from the time to frequency domain by applying STFT using a Hamming window of
size 256 and 50% overlap. The T-F features will be then fed to the DE-CADE(F) ar-
chitecture, to generate an estimate to the clean speech spectrogram using several layers
of strided-dilated convolutions in the encoder and deconvolution and upsampling in the
decoder. Phase denoising is not applied in this stage, so the noisy phase is used in
the reconstruction of the time domain estimated clean speech by this first enhancement
stage.

6.2.2.3 The Second Reconstruction Stage

The applied second enhancement stage DE-CADE was modified, in order to improve
the performance of a baseline ASR model (Peddinti et al., 2015) provided by Intelligent
Voice for research purposes. A LSGAN-based architecture was used to perform speech
reconstruction, to minimize distortion noise caused by the first denoising stage, which
is the main reason for the mismatch problem between speech enhancement models and
ASR systems, as discussed in Subsection 6.2.1. The generator of the LSGAN archi-
tecture is a DE-CADE network, described in Chapter 5, operating in the time domain,
DE-CADE(T). Therefore, framing is performed to the output speech from the first en-
hancement stage using a Hamming window with frames of size 2,048 and 50% overlap.
During training, magnitude and phase enhancement were applied in this second en-
hancement stage, and the output of the generator is fed to the discriminator network,
which evaluates the quality of the processed speech in terms of speech distortion.

The discriminator network is a CNN-based binary classifier network that differen-
tiates between distorted and clean speech. The network performs classification based
on the frequency domain-based MFCC features, because these are the main features
used by the ASR system being tested. This will ensure that the processed speech by the
second enhancement stage will keep the most important speech information, which will
help the ASR to successfully transcribe the processed speech. The discriminator con-
sists of nine 1D strided convolution layers with stride size of 2 and PReLU activations.
These layers extract advanced features from the MFCCs of the input audio, and then
the final decision is performed using two dense layers. The first dense layer performs
further processing using ReLU activation, and the final dense layer gives the prediction
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using a Linear activation function. It should be noted here that Linear activation was
used in the final layer of the discriminator network because this is a LSGAN-based im-
plementation, which uses the MSE loss function in both the generator and discriminator,
as illustrated in Subsection 6.2.1.

6.2.3 Experimental Setup

All three DNN models in the architecture shown in Figure 6.1 were trained using speech
and noise data from the DNS challenge dataset (Xia et al., 2020a), provided by Mi-
crosoft. The dataset has more than 500 hours of speech and 181 hours of noise data. The
data was divided into 90% for training and 10% for validation. Afterwards, speech utter-
ances were mixed with noise utterances to form the training and validation noisy/clean
pairs, required for the training of the first and second stage speech enhancement DNNs.
While for the SNR classifier training, the data was categorized by the SNR value, where
noisy speech with a SNR value of 15 dB or less was labeled as low SNR speech (binary
1), and noisy speech with a SNR value higher than 15 dB and clean speech data were
labeled as high SNR speech (binary 0). A wide range of SNRs was used during the
training of the three DNNs, as training includes SNR values from 0 to 20 dB in steps of
1 dB.

Two challenging test sets were used to evaluate the performance of the proposed
architecture, one with extremely intrusive noise environments and the other with less
intrusive noise environments. For both test sets, 224 clean audio samples were used,
for 56 speakers and 224 different speech utterances. These audio samples were ran-
domly selected from the Voice Bank Corpus (Veaux et al., 2013), which is a different
dataset than the one used in the training process. To create the first test set, these clean
speech audio samples were corrupted with 9 highly intrusive crowd noise environments
(N1:N9) and AWGN, taken from the 100 Nonspeech Environmental Sounds dataset
(Hu, 2014); this will be denoted by Test Set (1). On the other hand, the second test set
was formed by corrupting the clean speech audio samples with 10 different less intru-
sive noise environments (N91:N100) from the 100 Nonspeech Environmental Sounds
dataset; this will be denoted by Test Set (2). These test sets are very challenging to
the proposed architecture, based on the fact that the clean speech utterances were taken
from a dataset unseen during training, the number of speakers is high, and the noise
environments are highly mismatched and challenging. This ensures fair assessment of
the architecture for real situations (Pandey and Wang, 2020b).

As the ASR model used for testing was trained using narrow band speech with 8
KHz sampling frequency, the speech enhancement architecture was trained using the
same sampling frequency, so all input speech audios were downsampled to 8 KHz. As
discussed in Subsection 6.2.1, MSE is the loss function used by the first and second
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stage speech enhancement models, with Adam optimizer, learning rate = 0.0001, β1

= 0.1 for the first enhancement stage DE-CADE network and β1 = 0.5 for the second
enhancement stage LSGAN model. On the other hand, Binary Cross Entropy (BCE)
is the loss function used by the SNR classifier. A batch size of 2 was used in training,
and the first and second stage speech enhancement DNNs were trained for 100 and 20
epochs, respectively, which were enough for both models to converge. While the SNR
classifier was trained for 300 epochs.

6.2.4 Results and Discussion

Three experiments were conducted to evaluate the performance of the proposed speech
enhancement architecture for ASR. Speech enhancement performance was first as-
sessed in comparison to similar SOTA speech enhancement models in the literature.
Moreover, another evaluation was performed to show the effect of adding the architec-
ture as a preprocessing stage to the ASR model being tested. A final experiment was
then conducted to evaluate the generalization ability of the second stage LSGAN model,
used to avoid the mismatch problem between the speech enhancement model and the
ASR model. This was performed by processing the noisy speech by first stage speech
enhancement DNNs in the literature, different from the DE-CADE(F) model used in
the training process, and then the output from these DNNs was fed to the LSGAN, to
show the improvement gained by the LSGAN.

The PESQ (Rix et al., 2001), STOI (Taal et al., 2011), and SI-SDR (Le Roux et al.,
2019) are three measures used to evaluate speech quality, intelligibility, and distortion,
respectively. On the other hand, the standard WER was used to evaluate the perfor-
mance of the ASR model. The experiments were performed using four testing SNR
values: 0 dB, 5 dB, 15 dB, and 20 dB for both test sets. For speech enhancement
evaluations, shown in Tables 6.1 and 6.2, the average results are given. While second
stage LSGAN generalization ability evaluations, shown in Tables 6.5 and 6.6, were per-
formed using 0 dB SNR only, which is the most challenging test SNR value, enough to
prove network generalization.

6.2.4.1 Speech Enhancement Performance

The results in Tables 6.1 and 6.2 show the performance of the proposed two-stage ar-
chitecture for ASR, DE-CADEASR, for Test Set(1) and Test Set(2), respectively, against
two similar two-stage speech enhancement models: a cascaded GAN model (Phan
et al., 2020), GAN2, and the two-stage DE-CADE model presented in Chapter 5, DE-

CADE(F-T). The results also include the performance of the first enhancement stage
by the frequency domain-based DE-CADE, DE-CADEs1, and another single stage best
performing GAN model (Fu et al., 2019), GAN1, developed to optimize the PESQ score.
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It is clear from the results that proposed architecture for ASR outperforms with
respect to all the evaluation metrics for both test sets. The architecture shows better
performance than the previously proposed DE-CADE(F-T) architecture, which shows
the positive effect of replacing the second stage DE-CADE model with the LSGAN-
based model.

Table 6.1 Performance comparison of the architecture to other speech enhancement
networks using Test Set (1).

Metric Noisy GAN1 DE-CADEs1 GAN2 DE-CADE(F-T) DE-CADEASR

PESQ 2.20 2.49 2.68 2.73 2.87 3.02
STOI (%) 80 81.5 81.8 82.2 84.1 85.3

SI-SDR 4.13 9.82 10.77 11.05 11.36 12.64

Table 6.2 Performance comparison of the architecture to other speech enhancement
networks using Test Set (2)

Metric Noisy GAN1 DE-CADEs1 GAN2 DE-CADE(F-T) DE-CADEASR

PESQ 2.50 2.81 2.95 3.11 3.20 3.30
STOI (%) 83.7 84.8 86.4 87.8 88.2 88.6

SI-SDR 6.10 11.16 12.64 12.81 13.98 15.06

6.2.4.2 Automatic Speech Recognition Performance

Tables 6.3 and 6.4 show the performance of the ASR model after adding the proposed
speech enhancement architecture to process noisy speech for Test Set(1) and Test Set(2),
respectively. The tables present the WERs of unprocessed speech, WERUnproc., after
the first enhancement stage, WERSE1, after the second enhancement stage, WERSE2,
and for the full speech enhancement architecture with the SNR classifier network,
WERC+SE . WERs are presented when processing clean speech and noisy speech at
the four testing SNRs, the average of the results is also given in the tables. It should
be mentioned here that the WER of the clean speech utterances is high compared to the
WER of the Valentini test set, reported in this work (Giri et al., 2019), because here
224 speech utterances for 56 speakers were randomly selected from the training set,
compared to the 824 test speech utterances for only two speakers in the Valentini test
set. This more challenging test conditions were used to fairly show the effect of adding
the speech enhancement network on the performance of ASR; while the performance of
the ASR as an independent system is outside the scope of the work done in this thesis.

The classification accuracy of the SNR classifier for both Test Set(1) and Test Set(2)

is 100% at very low SNR values (0 dB and 5dB), where it is not challenging for the
classifier to detect these highly intrusive noise levels. However, the classifier accuracy
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at 15 dB SNR is 82% for Test Set(1) and 80% for Test Set(2). A degradation in the clas-
sification accuracy was detected at 15 dB SNR, because it is the threshold SNR value
used to differentiate between low and high SNR speech, which means it is the most
challenging SNR for the classifier to output the correct decision. While the accuracy of
the classifier improves again as the SNR level increases, 89% and 90% accuracy at 20
dB SNR for Test Set(1) and Test Set(2), respectively. Finally, the classifier accuracy for
clean speech data is 94%. The classification accuracy for Test Set(1) and Test Set(2) is
summarized in Figure 6.2.

The results in Tables 6.3 and 6.4 show that the full speech enhancement architecture
with the classifier leads to the lowest average WER for both test sets. The mismatch
problem between speech enhancement and the ASR model can be verified by the WER
of the processed speech by the first stage speech enhancement, WERSE1, where the
WER is higher than that of the unprocessed noisy speech, although the first stage was
proven to output speech with better quality and intelligibility. It can be clearly seen
how the second enhancement stage LSGAN model solves this issue, leading to 8.2%
reduction in the WER in comparison to the noisy speech. Another point that should
be discussed is the slightly higher WER at 15 dB SNR for the full architecture with
classifier, WERC+SE , compared to the case when the classifier is not added, WERSE2.
Again, this is due to the fact that 15 dB SNR is a very challenging value, as it is the
decision boundary SNR value. This slight increase in the WER was caused by noisy
speech audios that were incorrectly classified by the classifier network. Finally, the
unprocessed clean speech is of the lowest WER, due to the distortion added by any
speech processing techniques even for clean speech. However, further improvement
in classification accuracy for clean speech data can completely avoid this issue. This
shows the importance of the added classifier network as an initial processing before
performing speech enhancement for ASR application.

Table 6.3 Performance of the automatic speech recognition system using Test Set (1)

SNR Clean 20 dB 15 dB 5 dB 0 dB Ave
WERUnproc. 31.9 33.6 40.4 71.3 88 53.04

WERSE1 32.4 35.7 39.5 65.2 88.3 52.22
WERSE2 32.4 35 39.2 60.8 79.8 49.44

WERC+SE 32.1 33.9 39.4 60.8 79.8 49.20

6.2.4.3 Second Stage Generalization

A generalization ability assessment was performed on the second stage LSGAN model,
similar to the one performed on the second stage DE-CADE, presented in Chapter 5. In
the first enhancement stage, two pre-trained single stage DNNs were used in testing: an
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Figure 6.2 SNR classifier accuracy for Test Set (1) and Test Set (2)

Table 6.4 Performance of the automatic speech recognition system using Test Set (2)

SNR Clean 20 dB 15 dB 5 dB 0 dB Ave
WERUnproc. 31.9 33.2 39.7 53.9 65.7 44.9

WERSE1 32.4 33.9 36.7 48.2 59.2 42.1
WERSE2 32.4 33.8 35.5 43.5 51.9 39.4

WERC+SE 32.1 33.4 35.6 43.5 51.9 39.3

MLP model (Xu et al., 2015) and an RNN model (Braun and Tashev, 2020), available
in (Xia et al., 2020a) and (Yong et al., 2015), respectively. These models performs
speech enhancement in the frequency domain using masking targets, which is a different
training target from the mapping-based target of the first stage DE-CADE network used
in training. This will evaluate network generalization to DNNs with different training
approaches as well. Moreover, the pre-trained MLP model used was trained using the
noise environments in both test sets, making the testing conditions not challenging for
the MLP network. This is to show the improvement added by the proposed second
stage, even when the test data is matched and seen by the first enhancement stage during
training.

The results of this experiment are shown in Tables 6.5 and 6.6 for Test Set(1) and
Test Set(2), respectively. The presented results are for 0 dB SNR, and the subscripts
1 and 2 denote the model running as a single stage and after adding the second stage
of our architecture, respectively. For both test sets, the results show that the second
stage LSGAN improves speech quality and intelligibility for both single stage DNNs
used in testing. On the other hand, the improvement in ASR performance is clear after
adding the LSGAN, and it solved the mismatch problem occurred by the processing
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of the MLP network. This evaluation stands as a proof that the proposed second stage
LSGAN architecture can act as a standalone speech enhancement model that can be
applied to other single stage speech enhancement DNNs, to allow their application as a
preprocessing stage to ASR models.

Table 6.5 Generalization of the second stage network to other speech enhancement
models using Test Set (1).

Metric Noisy MLP1 MLP2 RNN1 RNN2

PESQ 1.71 2.41 2.48 2.35 2.42
STOI(%) 68.4 75.8 75.9 76.3 76.6

WER 88 88.2 86.3 85.4 79.4

Table 6.6 Second stage network generalization to other speech enhancement models
using Test Set (2)

Metric Noisy MLP1 MLP2 RNN1 RNN2

PESQ 1.92 2.84 2.92 2.48 2.53
STOI(%) 73.8 82.7 82.9 79.9 80.1

WER 65.7 65.9 59.3 60.1 54.2

6.3 Speech Enhancement for Hearing Aids

This section presents a developed DNN architecture for smart speech enhancement,
defined as a technique that aims to enhance the speech signal by eliminating any back-
ground noise, except emergency noises. The architecture is shown in Figure 6.3, and it
consists of a CNN-based noise classifier and a Deep Convolutional Recurrent Network
(DCRN). The input noisy speech is first processed by the CNN classifier to detect the
noise environment. The output from the classifier determines the mode that the DCRN
will apply to process the noisy speech. If emergency noise is detected by the classi-
fier, the DCRN will run in an audio enhancement mode, to amplify both speech and
emergency noise and mitigate any other undesired noise. If the classifier detects an un-
desired, non-emergency noise environment only accompanying the speech signal, the
DCRN will run in speech enhancement mode, to perform regular speech enhancement
processing by trying to eliminate all background noise. This architecture can be consid-
ered as an integrated hearing aid and alert system in one electronic device, which aims
to develop currently available hearing aids while maintaining the same performance of
the speech enhancement module.

The following subsections will cover all the technical details of this smart speech
enhancement architecture, and the mathematical explanation of the developed smart
speech enhancement. Afterwards, results and discussion will be provided.
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Figure 6.3 Smart speech enhancement architecture: an integrated speech enhancement
and alert system for hearing aids.

6.3.1 Smart Speech Enhancement

The input noisy speech to any speech enhancement DNN can be represented as follows:

y(k) = s(k) + n(k), (6.6)

where y, s, and n are the noisy speech, clean speech and noise, respectively, {y, s, n} ∈
RK × 1, where K is the total number of samples, and k is the sample index.

The developed DCRN, shown in Figure 6.4, processes audio frames in the time
domain, where the encoder compresses the input using strided convolutions which will
help in the denoising process. It also performs several 1D dilated causal convolutions
to increase the depth and extract more features. Dilated convolution can be defined as
in Equation 6.7:

G(u, v) = PReLU(
∑

c

∑
w+d∗q=v A(c, w) ∗ weight(u, c, q)), (6.7)

where, G(u,v) is the output of the 1D dilated causal convolution and PReLU activation,
A(c,w) is the layer input, weight(u,c,q) is the filter applied to the input, u is the number
of applied convolution channels, v is the output width, c is the number of input channels,
w is the input width, q is the filter width and d is the dilation rate.

The two LSTM layers between the encoder and decoder will extract temporal in-
formation from the generated bottleneck features from the encoder. The LSTM layer
operations are given below in Equations 6.8-6.13:

ft = σg(Wf × xt + Uf × h(t−1) + bf ), (6.8)

it = σg(Wi × xt + Ui × h(t−1) + bi), (6.9)

ot = σg(Wo × xt + Uo × h(t−1) + bo), (6.10)

c̀t = σc(Wc × xt + Uc × h(t−1) + bc), (6.11)

ct = ft · ct−1 + it · c̀t, (6.12)

ht = ot · σc(ct), (6.13)
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where ft is the forget gate, it is the input gate, ot is the output gate, ct is the cell state, ht

is the hidden state, σg and σc are Sigmoid and Tanh activation functions, respectively,
and · represents element wise multiplication. The decoder will then decompress the
output to its original size using dilated 1D convolution and upsampling layers.

The DCRN for speech enhancement minimizes a MMSE loss function, LSE , during
the training process, in order to generate an estimate to the clean speech signal, ŝ(t).
This can be described by Equation 6.14:

LSE =
1

T

T∑
t=0

[ŝ(t)− s(t)]2 , (6.14)

where, t is the time frame index, and T is the total number of frames.
In smart speech enhancement, we categorize the input noise as emergency (ne) or

unimportant noise (nu), so in this case Equation 6.6 can be represented as in Equations
6.15 and 6.16:

y(k) = s(k) + ne(k) + nu(k) (6.15)

= x(k) + nu(k), (6.16)

where x(k) is the clean speech in addition to the emergency noise. In this case, the
DCRN minimizes a different loss function than that of speech enhancement, because
here the network runs in an audio enhancement mode to enhance both speech and emer-
gency noise while suppressing other unimportant background noise. Therefore, the
MMSE loss function for smart speech enhancement, LSSE , can be defined as in Equa-
tion 6.17:

LSSE =
1

T

T∑
t=0

[x̂(t)− x(t)]2 . (6.17)

Although this audio enhancement mode has an important role in retaining emer-
gency noise, it negatively affects the denoising ability of the DCRN for unimportant
noise. To avoid this issue, the noisy speech will be first processed by a CNN noise clas-
sifier that acts as a switch to run the DCRN in one of two modes: speech enhancement
or audio enhancement mode. If the classifier detects emergency noise, the DCRN will
perform audio enhancement to enhance both speech and emergency noise while sup-
pressing any other kind of noise. Otherwise, the DCRN will perform speech enhance-
ment to improves the speech signal only and discard any other noise environments.

The classifier accepts five features as input that are useful for audio classifica-
tion: Mel-Spectrogram (YMel), MFCC (YMFCC), Spectral Contrast (YSC), Chroma-
gram (YChroma), and Tonnetz (YT ) (Alı́as et al., 2016). Mel-Spectrogram and MFCC
are mainly used to model human hearing perception, while Chromagram and Tonnetz
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model the harmonic structure of speech and noise and shows harmonic relationships.
Spectral Contrast is defined as the decibel difference between peaks and valleys in the
spectrum. It measures energy variations of frequency at each timestamp and represents
the relative spectral characteristics. These features were extracted, averaged and con-
catenated to form the input vector to the classifier Ci. This is shown below in Equation
6.18:

Ci = Y MFCC ⊕ Y Mel ⊕ Y SC ⊕ Y Chroma ⊕ Y T . (6.18)

Based on the detected noise environment, the classifier will decide the DCRN mode
of operation. The classifier is trained to differentiate between emergency and non-
emergency noise by minimizing a BCE loss function, LC , given in Equation 6.19:

LC =
1

M

M∑
i=1

[
Zi log Ẑi + (1− Zi) log (1− Ẑi)

]
, (6.19)

where M is the total number of input samples, i is the sample index, Z is the target
binary value (1 if emergency noise is detected and 0 otherwise), and Ẑ is the predicted
probability generated by the model.

6.3.2 The Developed Smart Speech Enhancement Architecture

The developed smart speech enhancement architecture is presented in Figure 6.4, and
it consists of two DNNs: the CNN-based noise classifier and the DCRN. The following
subsections will illustrate each network separately.

6.3.2.1 The Convolutional Classifier

The input noisy speech is first processed using a binary noise classifier that classifies
the input audio as noisy speech with undesired noise (class 0) or noisy speech with
emergency noise (class 1). The classifier is shown in Figure 6.4(a), and it is a CNN-
based architecture due to the proven efficiency of CNNs in noise classification (Park and
Lee, 2020; Mushtaq and Su, 2020). The network extracts T-F features from the input
noisy speech, which improve the classification accuracy (Mushtaq and Su, 2020). The
architecture consists of three 1D strided-convolution layers with PReLU activations, a
stride of size 2, and a kernel of size 10. Filter sizes of 64, 128, and 256 were used for
the first, second and third layers, respectively. The input is compressed by these three
layers to extract more advanced features that will help in the prediction process, which
is performed using two dense layers. The first dense layer has 512 units andReLU
activations, while the second dense layer is an output layer with sigmoid activation.
The output from the classifier is then fed to the DCRN to perform speech enhancement
if the output is 0, or audio enhancement if the output is 1.
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6.3.2.2 The Deep Convolutional Recurrent Network (DCRN)

The developed DCRN is based on the proposed DE-CADE architecture, presented in
Chapter 5; however, modifications have been made to decrease network complexity for
hearing aid devices. This is achieved by implementing a symmetric encoder and de-
coder network and applying one enhancement stage only. Moreover, two LSTM layers
were added to convert the DE-CADE architecture to a DCRN. All these modifications
will improve the performance of the first stage DE-CADE and decrease network com-
plexity by applying single stage speech enhancement instead of two stages, which will
be more suitable for applications such as hearing aids, where device size matters. This
architecture is presented in Figure 6.4(b).

Similar to the DE-CADE network, the developed DCRN is a 1D convolution-based
network that takes advantage of strided and dilated convolution to improve the process
of feature extraction (Pandey and Wang, 2020a). The architecture operates in the time
domain using input time frames of 1,024 size, considering the recent promising per-
formance of time domain-based speech enhancement (Défossez et al., 2020). It should
be mentioned here that the 10 ms maximum latency restriction of currently available
hearing aids was not considered in this work, as the network accepts a time frame of 64
ms.

The architecture is divided into three components: the encoder, two LSTM layers,
and the decoder. Both the encoder and decoder networks are implemented using several
dilated convolution blocks, where the kernel size used for the convolution layers in each
block increases across the hidden layers. This allows for better feature extraction by
increasing the receptive field of each feature vector, which can be illustrated by the
diagram in Figure 6.5. The use of these increased kernel size convolutions prevents
information loss that might occur by the compression process in deep hidden layers of
the encoder; at the same time, it decreases network complexity by avoiding the use of
large kernel sizes in all the convolution layers.

The input is compressed in the encoder network using strided convolutions of size
2 and PReLU activations, to finally reach a size of 8, while deconvolution is applied in
the decoder network using convolution layers with PReLU activations and upsampling
layers of size 2, to reconstruct the audio back to its original size. To avoid network
overfitting, a dropout of 0.2% is used after every three dilated convolution blocks.

The two LSTM layers were added in the middle before feeding the signal to the
decoder network, each has 320 units with Tanh activation. The role of these layers is to
process the compressed bottleneck features to consider temporal dynamics of speech.
Further details for other hyperparameters used for each layer are provided in Figure 6.4.
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Figure 6.5 Illustration of dilated causal convolution with increased kernel size

6.3.3 Experimental Setup

The Microsoft DNS challenge dataset (Reddy et al., 2021) was used to train the DCRN.
The dataset has more than 500 hours of speech and 181 hours of non-emergency noise
data. The speech and noise data was first divided, 90% for training and 10% for val-
idation; afterwards, they were randomly mixed to create the noisy speech audios with
non-emergency noise at a wide range of SNRs, from 0 dB to 20 dB with a step of 1.
This creates a total of 65,000 and 6,500 noisy speech utterances with non-emergency
noise used for training and validation of the DCRN to perform speech enhancement,
respectively. This dataset will be denoted as Speech Enhancement Train Set

To train the DCRN to perform smart speech enhancement using audio enhancement
procedure that enhances both speech and emergency noise, a total of 1,478 emergency
noise audio samples were collected for 5 emergency noise types: 118 alarm audio sam-
ples, including fire alarms, door bells, and alarm clocks; 440 car horn audio samples;
440 car siren audio samples; 440 baby crying audio samples; and 40 footstep audio
samples. A total of 240 emergency noise audio samples were taken from the ESC-
50 dataset (Piczak, 2015), 800 from UrbanSound8K database (Salamon et al., 2014),
400 from Donate-a-Cry corpus (Gveres, 2015), and 38 from Mixkit website (Elements,
2019). First, these emergency noise audio samples were randomly mixed with the clean
speech data from the DNS dataset at 0 dB SNR, to help the network to deal with speech
and emergency noise similarly during training, and then this mixture was corrupted with
the non-emergency noise data from the DNS dataset at SNR levels ranging from 0 dB
to 20 dB with a step of 1. Similar to the speech enhancement module training, 90% of
the data was used for training and 10% was used for validation. This dataset is denoted
as Smart Speech Enhancement Train Set

To create a challenging test set, different speech and noise corpora were used in
the testing process. Clean speech data were randomly selected from the Librispeech
corpus (Panayotov et al., 2015), where 100 speech utterances for 5 male and 5 female
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speakers were used. To create the Smart Speech Enhancement Test Set, these clean
speech utterances were first mixed at 0 dB SNR with five emergency noises unseen
during the training process, collected from the Mixkit website. Afterwards, this mixture
was corrupted with 10 mismatched non-emergency noise environments, unseen during
the training process, taken from the 100 Nonspeech Environmental Sounds dataset (Hu,
2014). These noise environments are: 9 crowd noises, including babble noise, and
AWGN, -5 dB, 0 dB, and 5 dB are the used test SNRs, where -5 dB is an unseen SNR
during training. To create the Speech Enhancement Test Set, the clean speech utterances
were only corrupted with the mismatched non-emergency noise environments at the
same testing SNR levels (-5 dB, 0 dB, and 5 dB).

The frontend binary noise classifier was trained and tested using the same datasets
as the DCRN. The Speech Enhancement Train Set was labeled by binary 0, which runs
DCRN in the speech enhancement mode; while the Smart Speech Enhancement Train

Set was labeled by binary 1, which runs DCRN in the audio enhancement mode.
To generate speech audios with good quality, all the speech utterances were resam-

pled to 16 kHz sampling frequency. Normalization to zero mean and unit variance was
then applied to improve the training process. T-F features were extracted for the CNN
classifier and the BCE loss function was used, as explained in Subsection 6.3.1. For
the DCRN, audio framing was performed with 1,024 frame size and 50% overlap. We
used MSE loss function and Adam optimizer, learning rate = 0.0001, β1 = 0.1, β2 =
0.999. The used batch size is 4, and the number of epochs is 20, which was found to
be sufficient for the network to converge. The final weights were taken based on the
validation data, to avoid network overfitting.

6.3.4 Results and Discussion

Evaluation was performed for the proposed architecture for normal hearing and hearing-
impaired listeners, considering that the architecture is designed specifically for hearing
aids. For normal hearing listeners, the PESQ and STOI evaluation metrics were used
to evaluate speech quality and intelligibility, respectively. Moreover, further evalua-
tions were conducted using the composite speech quality measures, Csig, to measure
the speech signal quality in terms of speech distortion; Cbak, to measure noise intru-
siveness; and Covl, to measure the overall quality of the processed speech. All these
evaluation metrics were fully described in Chapter 3.

For hearing loss, we used the Hearing-Aid Speech Quality Index (HASQI) (Kates
and Arehart, 2010) (from 0 to 1) and the Hearing-Aid Speech Perception Index (HASPI)
(Kates and Arehart, 2021) (from 0 to 1) to measure speech quality and intelligibility, re-
spectively. The Hearing-Aid Audio Quality Index (HAAQI) (Kates and Arehart, 2015)
(from 0 to 1) is also used to measure the quality of the output speech with emergency

146



noise audio. For all these evaluation metrics higher values indicate better speech quality.

6.3.4.1 Speech Enhancement Model Comparison to Baselines

An experiment was first conducted to evaluate the performance of the DCRN speech
enhancement model, DCRNSE , in comparison with SOTA speech enhancement models
in the literature using the Valentini Voice Bank dataset benchmark (Valentini-Botinhao
et al., 2017b). The results also include the performance of the first stage DE-CADE in
the frequency domain, DE-CADE(F), and the two-stage DE-CADE architecture, DE-
CADE(F-T), presented in Chapter 5.

The outcome of this comparison is presented in Table 6.7, in which the DCRNSE

outperforms all models with respect to the PESQ and Covl scores, expect the pre-
viously proposed two-stage speech enhancement architecture presented in Chapter 5,
DE-CADE(F-T). As mentioned before in Subsection 6.3.2, the developed DCRN was
designed in this chapter for hearing aids, which is an application that requires DNNs
with fewer network parameters to fit onto the device hardware. For this reason, the
DCRN performs worse than the two-stage DE-CADE(F-T); however, the DCRN is less
complex with only 7 million parameters in comparison to the DE-CADE(F-T), which
has 12.6 million parameters. The DCRN also shows better performance than the single
stage DE-CADE(F), without significant increase in network’s parameters; DCRN has
0.7 million parameters more than DE-CADE(F). It should be noted that the STOI re-
sults were not reported by the authors of Wave U-Net (Macartney and Weyde, 2018),
Metric-GAN (Fu et al., 2019), SEGAN-D (Phan et al., 2020), Koizumi et al. (Koizumi
et al., 2020), and T-GSA (Kim et al., 2020); for this reason, they are not included in
Table 6.7.

6.3.4.2 Smart Speech Enhancement Architecture Performance

Further evaluations were conducted to assess the performance of the full smart speech
enhancement architecture, given in Figure 6.4, for normal and hearing-impaired listen-
ers. The performance of the speech enhancement and audio enhancement processing
will be presented and discussed in the following subsections.

Speech Enhancement Evaluation
This evaluation is to assess the performance of the speech enhancement module after
adding the CNN noise classifier. In order to perform this evaluation, the smart speech
enhancement architecture was tested using the Speech Enhancement Test Set, described
in Subsection 6.3.3, in which the speech signal is only corrupted with non-emergency
noise. The classifier accuracy for this test set is 90%, and the evaluation of the quality
of the processed speech by the architecture is shown in Table 6.8. PESQ and STOI
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Table 6.7 Performance comparison with SOTA speech enhancement models using the
Valentini Voice Bank dataset benchmark (Valentini-Botinhao et al., 2017b).

Metric PESQ STOI Csig Cbak Covl
Noisy 1.97 91.5 3.35 2.44 2.63

Wiener Scalart et al. (1996) 2.22 92.0 3.23 2.68 2.67
SEGAN Pascual et al. (2017) 2.16 93.0 3.48 2.94 2.80

Wave U-Net Macartney and Weyde (2018) 2.40 - 3.52 3.24 2.96
MMSE-GAN Soni et al. (2018) 2.53 93.0 3.80 3.12 3.14

Deep Xi-ResLSTM Nicolson and Paliwal (2019) 2.65 91.0 4.01 3.25 3.34
Metric-GAN Fu et al. (2019) 2.86 - 3.99 3.18 3.42
SEGAN-D Phan et al. (2020) 2.39 - 3.46 3.11 3.50

DEMUCS Défossez et al. (2020) 3.07 95.0 4.14 3.21 3.54
Koizumi et al. Koizumi et al. (2020) 2.99 - 4.15 3.42 3.57

T-GSA Kim et al. (2020) 3.06 - 4.18 3.59 3.62
Deep MMSE Zhang et al. (2020) 2.95 94.0 4.28 3.46 3.64

DE-CADE(F) 3.21 93.4 4.00 3.11 3.60
DCRNSE 3.29 93.5 4.18 2.96 3.76

DE-CADE(F-T) 3.38 93.8 4.36 3.01 3.86

scores were used for normal listeners, while HASQI and HASPI were used for hearing-
impaired listeners, considering two hearing loss degrees: Mild hearing loss (HL1) and
Moderate hearing loss (HL2). The values of the hearing loss degree were taken from
the real Occupational Hearing Loss (OHL) Worker Surveillance Data (Masterson et al.,
2013), which is a dataset used to estimate the prevalence of hearing loss among U.S.
industries. Hearing loss data was randomly selected for 100 workers, 50 males and 50
females, for mild and moderate hearing loss cases, 50 values for each.

The presented results in Table 6.8 are the average of the three test SNRs: -5 dB,
0 dB, and 5 dB. This evaluation includes the scores of the unprocessed speech; the
speech enhancement network, DCRNSE; and the smart speech enhancement network,
DCRNSSE . The results show that both networks improve the quality and intelligibil-
ity of the speech for both normal and hearing-impaired listeners. The smart speech
enhancement architecture, DCRNSSE , generates estimated speech with slightly worse
quality and intelligibility compared to the speech enhancement network, DCRNSE .
The reason for this degradation in performance is the failure of the classifier to clas-
sify some challenging undesired crowd noise used in testing. Consequently, the noisy
speech will be processed with the audio enhancement network, based on the wrong de-
cision of the classifier in this case. This negatively affects the denoising capability of
the architecture for non-emergency noise environments, because the DCRN was trained
to output emergency noise with speech, resulting in more background noise.

The spectrograms in Figure 6.6(a) show the performance of the speech enhance-
ment module of the smart speech enhancement architecture when tested using speech
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corrupted with undesired, non-emergency babble noise, not previously seen in the train-
ing process, at 0 dB SNR. The classifier outputs the correct decision for this test case,
to run the architecture in speech enhancement mode. When comparing the enhanced
speech to the original speech spectrogram, it is clear that the network managed to elim-
inate most of the challenging babble noise, proving its effective denoising ability.

Table 6.8 Speech enhancement performance of the architecture for normal and hearing-
impaired listeners

Metric
Normal Hearing Hearing Loss

PESQ STOI
HASQI HASPI

HL1 HL2 HL1 HL2
Unprocessed 1.57 70 0.37 0.24 70 65
DCRNSE 2.12 77 0.57 0.38 76 70
DCRNSSE 2.00 76 0.56 0.36 75 68

Figure 6.6 The performance of the proposed architecture, a) speech enhancement mode,
b) audio enhancement mode

Audio Enhancement Evaluation
This evaluation is to assess the performance of the audio enhancement module of the
smart speech enhancement architecture, which is used to generate speech and important
emergency noise. The Smart Speech Enhancement Test Set, described in Subsection
6.3.3, was used to perform this evaluation, and the HAAQI score was used to assess the
quality of the enhanced speech and emergency noise audio. The classifier accuracy for
this test set is 95%. The outcome of this experiment is shown in Table 6.9, where the
presented results are the average of the three test SNRs: -5 dB, 0 dB, and 5 dB.
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For both mild and moderate hearing loss degrees, it can be seen that the smart speech
enhancement architecture, DCRNSSE , generates processed audio with a quality com-
pared to the unprocessed audio, which proves the applicability of the presented archi-
tecture for hearing aids.

The spectrograms in Figure 6.6(b) show the performance of the audio enhancement
model when tested using speech with fire alarm emergency noise corrupted with un-
desired challenging babble noise, not previously seen in the training process, at 0 dB
SNR. These diagrams shows that the audio enhancement model mitigates undesired
babble noise while trying to generate both speech and emergency fire alarm noise.

Table 6.9 Performance of the architecture for speech and emergency noise enhancement

Metric
HAAQI

HL1 HL2
Unprocessed 0.21 0.16
DCRNSSE 0.44 0.34

6.4 Conclusion

This chapter covers two popular speech enhancement applications: hearing aids and
ASR. The chapter presents two speech enhancement DNN architectures for these ap-
plications, based on the developed DE-CADE architecture, presented in Chapter 5. The
DE-CADE architecture was modified and optimized in this chapter to improve its per-
formance, in order to finally adapt to each application. For ASR, an architecture was
developed to solve the mismatch issue between speech enhancement models and ASR
models, which is a current research question. The architecture minimizes speech distor-
tion, which is the main cause of this problem; moreover, a prepossessing SNR classifier
was added to achieve further improvement. For hearing aids, a smart speech enhance-
ment technique was developed, which enhances both speech and important emergency
noise, in order ensure the safety of hearing aids users in emergency situations. The ob-
tained results show promising performance for the modified architectures in the case of
the two applications under investigation. This proves the applicability of the presented
work in this PhD thesis.
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CHAPTER 7

Conclusions and Recommendations

7.1 Introduction

In this chapter, concluding summary of thesis chapters is first presented, followed by
conclusions of this PhD thesis using critical analysis for deep learning-based super-
vised speech enhancement through Strengths, Weaknesses, Opportunities, Challenges
(SWOC) analysis. This is a general analysis that highlights the Strengths, Weaknesses,
Opportunities, and Challenges of this approach, in order to finally determine its position
in the signal processing field. This analysis identifies the strength of this approach and
why it is a hot topic. It also presents the current issues of the technique and the future
investigations needed, through weaknesses and challenges, respectively. Furthermore,
it suggests opportunities for the approach to develop in the future, by discussing ideas
that may lead to further improvements in the research area. Fig. 7.1 shows the SWOC
matrix and a detailed explanation is presented in the following sections. This chap-
ter also provides summary of thesis contributions, and concluding summary of thesis
chapters. Finally, recommendations for future will be provided.

7.2 Concluding Summary

The main conclusions of each chapter are summarised as follows:

Chapter 1 provides introduction to the thesis, and defines thesis aims, objectives, and
contributions.

Chapter 2 presented a review of speech enhancement approaches, focusing on deep
learning-based speech enhancement. This review gives a brief discussion about clas-
sical speech enhancement techniques; afterwards, a detailed illustration was pre-
sented to the modern deep learning speech enhancement techniques. The chapter
covers different DNN architectures, and the strengths and weaknesses for each ar-
chitecture type. Moreover, it summarized the progress of deep learning-based speech
enhancement, and how different approaches contribute to improving the performance.
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This review was important to have a deep knowledge of the research field, understand-
ing the current issues, and defining the research question of the thesis.

Chapter 3 showed the procedure needed to develop a DNN for speech enhancement
through dividing it into six steps. Each step was described separately, and discussion
was given on the different approaches that can be followed in each step. This review
was essential to have an organized and systematic procedure to follow, in order to
develop a new speech enhancement model.

Chapter 4 presented an experimental analysis to seven best performing DNN architec-
tures in the literature. Moreover, it investigates the effect of different techniques and
approaches on the performance. The main conclusions of this chapter are as follows.
Deep CDAE is the best performing DNN architecture for speech enhancement in both
the frequency and time domains, in comparison to MLPs, DDAEs, CNNs, FCNNs,
and shallow CDAE. The use of 1D strided convolution layers with PReLU activations
improves the performance. Although deep learning is a data driven approach, feature
extraction has a great positive impact on the performance. Mapping targets also show
better generalization ability to mismatched test data than masking targets.

Chapter 5 presented a new architecture and two-stage speech enhancement approach
that minimizes speech distortion by applying speech denoising in the frequency do-
main, and then speech reconstruction in the time domain. The results showed that the
two-stage speech enhancement architecture outperforms SOTA speech enhancement
models in the literature.

Chapter 6 investigated two speech enhancement applications, hearing aids and ASR.
The architecture presented in Chapter 5 was modified and optimized to apply smart
speech enhancement for hearing aids, and to be applied as a preprocessing stage to
ASR systems to reduce WER in noisy environments. The results showed promis-
ing performance for the developed architectures for both applications, proving the
possibility of applying this work in the real world.

Chapter 7 presents critical SWOC analysis to deep learning-based speech enhance-
ment, concludes the thesis, and provides recommendations for future research.

7.3 SWOC Analysis

In this section, a SWOC analysis will be presented to deep learning-based speech en-
hancement. Figure 7.1 shows the SWOC matrix.
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Figure 7.1 SWOC matrix

7.3.1 Strengths

In comparison to the classical techniques, deep learning-based speech enhancement is
more efficient at removing background noise, especially at very low SNRs. Addition-
ally, deep learning-based speech enhancement generates speech with better quality and
intelligibility (Wang and Chen, 2018). Moreover, deep learning-based speech enhance-
ment managed to solve the well-known problem of musical noise (Uemura et al., 2009)
for the classical techniques, especially the spectral subtraction method. Musical noise, a
remnant, unnatural noise that accompanies the processed speech, is the main drawback
of classical speech enhancement techniques when applied in devices such as hearing
aids, as it causes unsatisfactory performance for customers (McCormack and Fortnum,
2013). Therefore, solving this issue can be considered as a real advantage to the modern
speech enhancement approach.

Over the previous decades, there has been a massive increase in the number of
speech and noise datasets available online. This data will facilitate the development of
more efficient DNNs for speech enhancement, as it is essential in the training process
and in improving the generalization ability of networks. Furthermore, transfer learning
(Wang and Zheng, 2015) is one of the techniques that makes the training of speech
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enhancement DNNs more efficient. This technique allows the reuse of a network pre-
trained with a huge amount of data for a certain task as a starting point to another task.
In this case, the speech enhancement network can be fine-tuned with a small amount of
data to perform the required task. This is helpful when training the network on different
languages, as the collection of a huge dataset for every language is not always necessary
(Xu et al., 2014a).

The implementation and training of DNNs is now much easier with the high avail-
ability of deep learning libraries and frameworks, which facilitate development and
testing. Additionally, GPU-based hardware equipment, which is readily available now,
results in faster DNN training and real-time testing.

7.3.2 Weaknesses

Interference or babble noise, which is one or more speech signals accompanying the
target speech, is one of the most challenging type of background noise for speech en-
hancement. Although some DNNs managed to almost completely remove different
noise types, the algorithm cannot effectively deal with interference or babble noise. A
clear degradation in network performance happens when testing it using babble noise,
this is because the DNN lacks the ability to separate different speech sources, as it is
trained to differentiate between noise and speech features. Another drawback is that the
efficiency of the technique is negatively affected when more than one background noise
exists, which is the most common situation in the real world; while, most speech en-
hancement DNN evaluations in the literature are based on one background noise. This
will lead to poorer performance than reported in the literature. Reverberation was also
proven to have a significant negative impact on the performance of DNNs for speech
enhancement. As a result, there should be specific techniques and adjustment to be
added to DNN training in order to deal with these challenging noise conditions.

Another weakness point is network overfitting, which is related to the training pro-
cess of DNNs. As deep learning is a data-driven approach, the network usually performs
better on data similar to the one used in the training process; however, it can fail to gen-
eralize this performance on mismatched data (Lawrence and Giles, 2000). This will
result in uncertain performance of DNNs in real-time and the output might be unpre-
dictable. Furthermore, DNNs are difficult to tune, as changing the network’s parameters
or data structure highly affects the training process.

The complexity and huge computational cost of deep learning techniques act as
a barrier when trying to implement the technique in real-time. Hardware and mem-
ory restrictions for specific applications may restrict the applicability of this approach.
Testing processing time is another complexity related issue that will be an obstacle
for real-time applications. Although very fast GPUs can be used to speed up processing
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times, their usage will result in higher product costs, decreasing its affordability. A final
weakness, related to DNN implementation, is changing the framework used in training
for real-time implementation purposes (Bahrampour et al., 2015). Frameworks allow
faster and easier development of DNNs; however, the performance might be affected
by changing the framework.

7.3.3 Opportunities

Recently, the size of the available data has exponentially increased, and it is expected
that this increase will continue (Dytman-Stasienko and Weglinska, 2018). The per-
formance of deep learning-based speech enhancement techniques will be positively
affected by this ever-growing data, and this will result in improving the quality and
intelligibility of the generated speech. Furthermore, data synthesis is another approach
that can be used in the case of data scarcity, and it is proven to improve networks’ per-
formance (Tremblay et al., 2018). Synthetic data is also solving the issues related to real
data privacy and restricted use regulations and provides more flexibility in manipulat-
ing data and creating challenging conditions to learn in the training process, which will
finally result in improved performance (Barbosa et al., 2018). The cascaded approach
for speech enhancement networks was also shown to positively impact the performance
and some DNN combinations have shown promising results (Zhao, Zarar, Tashev and
Lee, 2018; Tan and Wang, 2018; Phan et al., 2020); while, other combinations have
not been visited yet which may also improve the overall performance. The integration
of deep learning and other techniques, such as reinforcement learning (Koizumi et al.,
2017) and non-negative matrix factorization (Vu et al., 2016), is another field that opens
the opportunity for enhancing the performance of deep learning techniques.

With the continuous advances in technology and hardware equipment, it will be pos-
sible to improve computation costs and latency, or solve long processing time problems
for deep learning techniques. This will open the opportunity for deep learning-based
speech enhancement to invade the marketplace (Pan et al., 2018).

7.3.4 Challenges

The continuous invention of new machines, equipment, transportation, electronic de-
vices, etc. will lead to the introduction of new environmental noise, which may further
increase noise levels. This will be very challenging for deep learning techniques to deal
with, and may negatively affect performance. Moreover, electronic devices and ma-
chines have internally generated noise (Teel, 2005), which are rarely studied in the lit-
erature. These internal noises are unpredictable and vary among different devices, so it
may cause significant performance degradation in real-time implementations (Cameron
et al., 1992). Different speech rates for different speakers acts as another challenge
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to deep learning-based speech enhancement techniques, as it has specific patterns or
features that may be confusing for the DNN to process. Additionally, the wide range
of accents for every language makes the speech enhancement task more challenging,
because this can result in different phonemes that the network did not learn during the
training process. Although our brain has a great ability to amend and understand these
incorrect phonemes or pronunciation, it is not granted that a computer algorithm will
have the same capability to deal with this issue.

The miniaturization of technology (Peercy, 2000) is a trend that may act as an obsta-
cle when developing deep learning techniques. The continuous need to shrink electronic
devices to be more efficient and portable is very challenging for complex techniques
like deep learning-based speech enhancement because device miniaturization may re-
strict performance improvement and the technique’s applicability. As a result, applying
a deep learning approach for speech enhancement may not cope with customers’ needs
for smaller devices.

The mathematical modeling of phenomena or processes has been greatly advanced
(Tomlin and Axelrod, 2007), where computer modelling and simulation are used to
mimic certain functionality. Human ear modelling gained attention for decades (Lyon,
1982), and more advanced models are being developed to simulate the complex func-
tions of the human ear (Givelberg and Bunn, 2003). The fact that these models are
more understandable and controllable than deep learning-based speech enhancement
techniques makes them real competitors, as the deep learning approach is still ambigu-
ous. Although there is a study that shows that combining the two approaches leads to
better performance (Baby and Verhulst, 2018), developing a good mathematical model
for simulating human ear physiology threatens the existence of deep learning-based
speech enhancement techniques.

7.4 Summary of Thesis Contributions

The contributions of this thesis can be summarized as follows.

• Investigating deep neural networks for speech enhancement through experimen-
tal analysis, to identify the factors affecting the performance, which enables the
development of better speech enhancement architecture.

• Developing a new deep learning-based architecture for speech enhancement that
outperforms SOTA speech enhancement models in the literature.

• Proposing a new deep learning two-stage approach for speech enhancement that
takes advantage of time and frequency domain features, which minimizes speech
distortion.
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• Optimizing the developed architecture and applying it to improve the perfor-
mance of two real time speech enhancement applications, hearing aid and ASR.

• Providing critical SWOC analysis to the deep learning approach for speech en-
hancement

7.5 Recommendations for Future Research

The analysis performed in Chapter 4 can be expanded by investigating recent two-stage
speech enhancement complex approaches and the recently proposed loss functions that
aim to minimize distortion or maximize a specific speech quality evaluation metric.

Further investigation is needed to the two-stage speech enhancement approach, pro-
posed in Chapter 5, which preforms consecutive speech enhancement processing in the
frequency then in the time domain. In this thesis, the approach utilizes the same DNN
architecture in both stages. Although the approach was tested and validated using dif-
ferent DNNs in the first stage and the results show promising performance, the use of
different DNN combinations in the training process as well may lead to further im-
provement. As a result, future work is needed to train and test this two-stage approach
using dissimilar DNNs in the training process.

Further improvement is needed to the accuracy of the CNN binary noise classifier
used in the smart speech enhancement architecture, proposed in Chapter 6. This can
be achieved by increasing the dataset size of the emergency and non-emergency noise,
or developing better DNN to perform the classification. On the other hand, the classi-
fication accuracy of the SNR binary classifier of the architecture proposed in the same
chapter for ASR also requires improvement for SNR values near the decision boundary.
A possible solution to improve this accuracy is to increase the size of noisy speech data
around the boundary SNR level and manipulate this data to create challenging training
conditions for the DNNs, which can improve the learning process.

157



REFERENCES

Abd El-Fattah, M., Dessouky, M. I., Diab, S. M. and Abd El-Samie, F. E.-S. (2008),
‘Speech enhancement using an adaptive wiener filtering approach’, Progress in Elec-

tromagnetics Research 4, 167–184.

Alam, M. J. and O’Shaughnessy, D. (2011), ‘Perceptual improvement of wiener filter-
ing employing a post-filter’, Digital Signal Processing 21(1), 54–65.

Alberti, G. S. and Ammari, H. (2017), ‘Disjoint sparsity for signal separation and ap-
plications to hybrid inverse problems in medical imaging’, Appl. Comput. Harmon. A.

42(2), 319–349.

Alghamdi, N., Maddock, S., Marxer, R., Barker, J. and Brown, G. J. (2018), ‘A corpus
of audio-visual lombard speech with frontal and profile views’, J. Acoust. Soc. Am.

143(6), EL523–EL529.
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Coşkun, M., YILDIRIM, Ö., Ayşegül, U. and Demir, Y. (2017), ‘An overview of popu-
lar deep learning methods’, European Journal of Technique 7(2), 165–176.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B. and Bharath,
A. A. (2018), ‘Generative adversarial networks: An overview’, IEEE signal processing

magazine 35(1), 53–65.

Dave, N. (2013), ‘Feature extraction methods LPC, PLP and MFCC in speech recogni-
tion’, Int. j. Adv. Res. Eng. Tech. 1(6), 1–4.
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