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We apply a new numerical method, the singular Fourier-Padé (SFP) method invented by Driscoll and
Fornberg (2001, 2011), to price European-type options in Lévy and affine processes. The motivation
behind this application is to reduce the inefficiency of current Fourier techniques when they are used to
approximate piecewise continuous (non-smooth) probability density functions. When techniques such as
fast Fourier transforms and Fourier series are applied to price and hedge options with non-smooth prob-
ability density functions, they cause the Gibbs phenomenon; accordingly, the techniques converge slowly
for density functions with jumps in value or derivatives. This seriously adversely affects the efficiency and
accuracy of these techniques. In this paper, we derive pricing formulae and their option Greeks using the
SFP method to resolve the Gibbs phenomenon and restore the global spectral convergence rate. More-
over, we show that our method requires a small number of terms to yield fast error convergence, and it
is able to accurately price any European-type option deep in/out of the money and with very long/short
maturities. Furthermore, we conduct an error-bound analysis of the SFP method in option pricing. This
new method performs favourably in numerical experiments compared with existing techniques.
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1. Introduction

The application of Fourier techniques to pricing and hedging financial derivatives has flourished
in computational and mathematical finance over the last decade because most of the underlying
processes driving derivatives have a characteristic function (i.e., the Fourier transform of the prob-
ability density function (PDF)). In general, two Fourier techniques are applied to option pricing:
fast Fourier transforms (FFTs) and Fourier series, such as Fourier cosine (COS) series. To explain
the first technique, FFTs in option pricing, we first consider a European option pricing formula
that is a risk-neutral expectation of the discounted payoff of the option driven by an underlying
process. This formation naturally implies the integration of the discounted payoff and the PDF of
the underlying process. As the underlying process has a characteristic function, one can apply an
inverse continuous Fourier transform to recover the PDF, discretise the continuous Fourier integral
and use an FFT algorithm that computes discrete Fourier transforms in O(N log2(N)) operations
to obtain the option prices (cf. Carr and Madan 1999, Lewis 2001, Lipton 2002, Chourdakis 2004,
Itkin 2005, Lord et al. 2008). The main disadvantage of using these methods is that they require
thousands of grid points and considerable computational time to reach an acceptable level of ac-
curacy. Another approach is to use Fourier series to expand a PDF in terms of a partial sum of
orthogonal basis functions. The basis function can be complex an exponential, e.g., Chan (2016),
or COS, e.g. Fang and Oosterlee (2009a), function. Each coefficient in the series is approximated
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via the characteristic function of the PDF. By integrating each basis function with the discounted
payoff function of the option, we can obtain an option price. This technique originated in Fang
and Oosterlee (2009a) to price European-style options with COS basis functions. The success of
Fourier COS series in European option pricing has lead to the rapid expansion of pricing and
hedging options with early-exercise features and exotic options, like Asian, multi-asset or barrier
options (e.g., Leentvaar and Oosterlee 2008, Fang and Oosterlee 2009b, 2011, Zhang and Oosterlee
2013). Compare with FFTs, the advantage of using Fourier series for option pricing is that they
can achieve a global spectral (exponential) convergence rate and require fewer summation terms as
long as the governing PDF is sufficiently smooth. However, using any type of Fourier series to rep-
resent a Cν1 piecewise continuous (non-smooth) function2, e.g., a non-smooth PDF, is notoriously
fraught. Discontinuities cause the Gibbs phenomenon, which has two important consequences for
the Fourier partial sum of length N :

(i) failure to converge at the jump, and
(ii) pointwise convergence elsewhere at the rate O(N1).

More generally, if the function f and its derivatives up to order ν − 1 are continuous but f (ν)

is discontinuous (i.e., f has a jump of order ν), then the global convergence rate is O(N−ν). The
impact of the Gibbs phenomenon can lead to inaccurate pricing and hedging when the approximate
option prices are generated via FFT or Fourier series methods at or around the jumps.

Ruijter et al. (2013) attempt to resolve the Gibbs phenomenon and improve the algebraic-index
convergence rate of the plain COS method by adding filters. They call this the filter COS method. In
their paper, they intensively test six different filters, e.g., the Fejér filter and the exponential filter,
and discover that the exponential filter gives a better algebraic-index convergence rate for pricing
European options. The method is implemented to represent the non-smooth PDF of the Variance
Gamma (VG) model. Although they provide some improvements over the current COS method,
filtering only works well away from the peak of the VG PDF; at the peak, the approximation
performs worse. The method also requires almost a thousand COS partial summation terms to
reach acceptable accuracy when the PDF is non-smooth.

According Ortiz-Gracia and Oosterlee (2013, 2016), another disadvantage of using the COS
method is that the COS exhibits periodicity in the vicinity of the integration boundaries, and long-
maturity option round-off errors may accumulate near the domain boundaries. A series of papers of
using wavelets, e.g., B-spline and Shannon wavelets, have addressed this problem. Wavelet methods
are similar to Fourier series methods; they use wavelets to represent a PDF and then integrate the
discounted payoff function with wavelet basis functions to reach the closed-form representation
of an option pricing formula. Compared with the COS method, the wavelet methods are flexible
and accurate for pricing options with long maturities. However, the choice of the wavelet basis
functions determines whether the method can achieve a spectral convergence rate. In some cases,
the B-spline and Haar wavelets cannot achieve spectral convergence (cf. Table 1 in Ortiz-Gracia
and Oosterlee 2013 and Ortiz-Gracia and Oosterlee 2016). Although Ortiz-Gracia and Oosterlee
use Shannon wavelets (Shannon Wavelets Inverse Fourier Technique (SWIFT)) to correct this
problem and achieve spectral convergence in some cases where the PDF is smooth (cf. Table 1 and
Table 4 in Ortiz-Gracia and Oosterlee (2016)), the accuracy of SWIFT heavily relies on a scale
parameter. The scale parameter is determined by the speed of decay of a characteristic function,
which in turn, determines the accuracy of the approximation of the corresponding PDF. Although,
in general, Ortiz-Gracia and Oosterlee (2016) consider 0 or 1 the best choice of the scale, there is
no theoretical reason for this choice, and different scale parameters are chosen for different PDFs
throughout their paper.

Finally, in our numerical tests, the accuracy of the COS method is very sensitive to small and

1A vector space in which functions are ν continuously differentiable.
2A function is called piecewise continuous on an interval if the function is made up of a finite number of ν times differentiable

continuous pieces.

2



November 13, 2017 Quantitative Finance SingCFSEuroV13reformatted

large option prices. The COS method tends to be less accurate when we measure small option
prices (cf. Table 8 in Section 8).

To circumvent the aforementioned disadvantages of FFT, Fourier series and wavelet methods,
we propose a novel method, the singular Fourier-Padé (SFP) method, which exhibits the following
characteristics:

(i) global spectral convergence rate for piecewise continuous PDFs,
(ii) fast error convergence with fewer partial summation terms required,
(iii) accurately prices any European-type option with the features of deep in/out of the money

and very long/short maturities,
(iv) consistently accurate for approximating large or small option prices throughout, and
(v) does not require a scale parameter to adjust its accuracy.

Why do we choose the SFP method? Compared with the SFP method, the Fourier-Padé technique
is not a better choice. The Fourier-Padé technique (cf. Chisholm and Common 1981, Small and
Charron 1988, Geer 1995) is a famous technique for approximating a non-smooth function such
that spectral convergence can be achieved away from the jumps and convergence is not globally
degraded. Nevertheless, Driscoll and Fornberg (2001, 2011) note that the fundamental limitation
of the Fourier-Padé method is that the use of poles to approximate branch cuts is inefficient,
and logarithmic singularities translated by the jumps on the unit circle are very difficult for the
Padé approximants to simulate. Accordingly, the method fails to converge at the jump. To address
this problem, Driscoll and Fornberg (2001, 2011) add proper logarithmic branch singularity terms
into the Fourier-Padé approximation process. They call this method the singular Fourier-Padé
method. In all numerical tests (cf. Driscoll and Fornberg 2001, 2011), the SFP can accelerate error
convergence to the true solutions for analytic periodic functions or non-smooth functions, and the
global effects of the Gibbs phenomenon due to a jump are largely eliminated. If the function is very
difficult, when jump locations are known in advance, the method still appears to converge globally
and exponentially and offer 4–6 digits of accuracy at the jumps. Most importantly, in addition to
comparing the Fourier-Padé technique, Driscoll and Fornberg compare the SFP method with other
two famous methods of overcoming the Gibbs phenomenon–the Gegenbauer method (Gottlieb and
Shu 1997), a method to project the Fourier partial sum onto a space spanned by a Gegenbauer
polynomial, and singularity removal (Eckhoff 1997), a method of singularity removal for functions
with jump discontinuities. In the numerical tests comparing these three methods (cf. Driscoll and
Fornberg 2001, 2011), the SFP method yields better global spectral convergence and faster error
convergence than do the other methods. Based on all these benefits of the SFP method, we chose
it over the other available numerical methods.

The remainder of this paper is structured as follows. Section 1 provides an introduction. Section 2
describes the SFP method. Section 3 introduces the financial stochastic models we examine in this
paper. Section 4 describes and proves the formulation of the SFP option pricing/Greeks formulae
for different styles of European options. In Section 5, we describe the SFP algorithm and the
Fourier-Padé method to find the jump locations on a non-smooth function. Section 6 describes the
choice of truncated integration intervals. Section 7 provides the error analysis of the SFP method
in option pricing and hedging. Section 8 discusses, analyses and compares the numerical results of
the SFP method with those of other numerical methods. Finally, we conclude and discuss possible
future developments in Section 9.
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2. Singular Fourier-Padé Interpretation and Correction of the Gibbs Phenomenon

If we consider a function f with a formal power series representation
∑∞

k=0 bkx
k, and a rational

function defined by RN,M = PN/QM , where PN and QM are the polynomials of

PN (x) =

N∑
n=0

pnx
n and QM (x) =

M∑
m=0

qmx
m, (1)

respectively, then we say that RN,M = PN/QM is the (linear) Padé approximant of order (N, M)
of the formal series satisfying the condition(

N∑
n=0

pnx
n

)
−

(
M∑
m=0

qmx
m

)(
M+N∑
k=0

bkx
k

)
= O(xN+M+1). (2)

Here, f is approximated by
∑M+N

k=0 bkx
k, To obtain the approximant R(N,M), we simply calculate

the coefficients of polynomials PN and QM by solving a system of linear equations. To obtain
{qm}Mm=0, we first normalise q0 = 1 to ensure that the system is well-determined and has a unique
solution in (2). Then, we consider the coefficients for xN+1, . . . , xM+N , and we can yield a Toeplitz*1

linear system: 
bN+1 bN bN−1 · · · bN+1−M

bN+2 bN+1 bN
. . . bN+2−M

...
. . .

. . .
. . .

...
bN+M · · · bN+2 bN+1 bN



q0

q1
...
qM

 = 0. (3)

Once {qm}Mm=0 is known, {pn}Nn=0 is found through the terms of order N and less in (2). This yields
p = Bq, where bij = bi−j . For example, if N = M, one obtains

p0

p1
...
pN

 =


b0
b1 b0
...

. . .
. . .

bN · · · b1 b0



q0

q1
...
qM

 . (4)

Computing Padé approximants through linear algebra, as we have done here, is simple but not
necessarily the most efficient or stable numerical method (cf. Driscoll and Fornberg 2001, 2011).

Now, suppose that f be a piecewise analytic function defined on the interval [−π, π), with s jump
locations in f at t = ζs ∈ [π, π), s = 1, . . . , S. We define a jump as an actual discontinuous point on
f or a discontinuous point appearing after its derivatives. Then the complex Fourier series (CFS)
representation is given by

f(t) =

∞∑
k=−∞

bke
ikt, with bk =

1

2π

∫ π

−π
f(t)e−iktdt. (5)

The transformation z = eit, which maps the interval [π, π) onto the unit circle in the complex

1A Toeplitz matrix or diagonal-constant matrix is an invertible matrix in which each descending diagonal from left to right is

constant.
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plane, transforms the Fourier series into the following Laurent series in z, which can be split into

f(z) =
∞∑

k=−∞
bke

ikt =
∞∑
k=0

′
bkz

k +
∞∑
k=0

′
b−kz

−k

= f+(z) + f−(z−1), (6)

where the prime sums indicate that the zeroth term should be halved. The Fourier-Padé approxi-
mation of f± is comprised of polynomials

P±N (z) = Q±M (z)f±(z) +O(zN+M+1), z → 0. (7)

The resulting approximant is then defined as

P+
N (z)

Q+
M (z)

+
P−N (z−1)

Q−M (z−1)
. (8)

However, Driscoll and Fornberg (2001, 2011) note that this approximant does not reproduce very
well at/around the jump locations of the function and make the approximation inaccurate. There-
fore, they suggest that every jump in value of f at t = ζ can be attributed to a logarithm of the
form

log
(

1− z

eiζ

)
. (9)

This logarithmic singularity in f±, which is difficult for the Padé approximant to simulate, can
be exploited to enhance the approximation process. This is the rationale behind the SFP method
introduced in Driscoll and Fornberg (2001, 2011). We modify the Fourier-Padé approximant (7) to
obtain the following condition:

P±N (z) + L = Q±M (z)f±(z) +O(zU+1), (10)

where

L =
S∑
s=1

L±s (z) log
(

1− z

eiζs

)
(11)

for some polynomials Ls, s = 1, . . . , S, and U is determined by S and the degrees of PN , QM and
Ls.

If we extend the SFP method to support any piecewise analytic real function f in a finite interval
[a, b] with a set of jump locations {ζs}Ss=1 ∈ [a, b] appearing in f , the CFS representation of the
function is defined as

f(x) = Re

[ ∞∑
k=−∞

bke
i 2π

b−akx

]
, with bk =

1

b− a

∫ b

a
f(x)e−i

2π

b−akxdx. (12)

Here, Re represents the real part of the function. As we focus on approximating a real function,
we can further obtain

f(x) = Re

[
2
∞∑
k=1

bke
i 2π

b−akx + b0

]
. (13)
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Based on this representation, we denote z as exp
(
i 2π
b−ax

)
and then transform f into a truncated

power series of f1 equal to

Re

[
2

U∑
k=1

bkz
k + b0

]
. (14)

The transformation z = exp
(
i 2π
b−ax

)
also suggests that the jump location ζ translates into

log
(

1− z

ε

)
, where ε = ei

2π

b−a ζ (15)

in f1. Finally, applying (14) and (15), we can reach the final form of the SFP approximant given
by

P+
N (z) +

S∑
s=1

L+
Ns

(z) log (1− z/εs) =

(
2

U∑
k=1

bkz
k + b0

)
Q+
M (z) +O(zU+1), (16)

where

P+
N (z) =

∑N
n=0 pnz

n, Q+
M (z) =

∑M
m=0 qmz

m 6= 0,

L+
Ns

(z) =
∑Ns

ns=0 lnsz
ns , s = 1, . . . , S,

U = N +M + S +
∑S

s=1Ns.

(17)

Once we have determined the unknown coefficients of {pn}Nn=0, {qm}Mm=0 and {lns}Nsns=0 (cf. Section
5), the SFP representation of f(x) can be formulated as

f(x) = Re

(
P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

)
, with z = ei

2π

b−ax. (18)

3. Stochastic Models of the Asset Dynamics

We assume frictionless financial equity markets and no arbitrage, and take as given an equivalent
martingale measure Q chosen by the market. All stochastic processes defined in the following are
assumed to live on the complete filtered probability space (Ω,F , {Ft}t≥0,Q). Standard references
for exponential Lévy processes can be found in Schoutens (2003) and Cont and Tankov (2004); for
affine processes, see Duffie et al. (2003).

3.1. Exponential Lévy Processes

The stock price process (St)t≥0 under Q driven by an exponential Lévy process can be defined:

ST = Ste
(r−q)(T−t)+XT−Xt+ω(T−t) (19)

= Ste
(r−q+ω)(T−t)+XT−t , (20)

where XT , Xt and XT −Xt are all Lévy processes. As Lévy processes have independent stationary
increments, we can say that XT − Xt = XT−t. Throughout the paper, r ≥ 0 and q ≥ 0 denote
the constant risk-free interest rate and the constant dividend yield, respectively; St represents the

6
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known stock price at time t; and ST represents the random stock price at time T . The condition
that (ST e

−(r−q)(T−t))t≥0 is a martingale will be guaranteed by an appropriate choice of the mean-
correcting compensator ω as follows:

ω =
1

T − t
E
(
eXT−t

)
, (21)

where E
(
eXT−t

)
is assumed to be finite for all 0 ≤ t ≤ T . Given a Lévy process (XT−t)t≥0, define

the corresponding characteristic function as follows:

ϕ(u) = E[eiu(XT−t)] = e(T−t)φ(u), u ∈ R. (22)

Here, φ(u) is a continuous function with the Lévy-Khintchine representation given by

φ(u) =
1

2
A2u− iγu+

∫ ∞
−∞

(1− eiuχ + iuχ1|χ|≥1)ν(dχ), χ ∈ XT−t,

with characteristic triplet (A, γ, ν). There is substantial consideration of exponential Lévy processes
in stock process modelling. Due to space limitations, we cannot show all the processes in this paper;
rather, we selectively investigate the processes due to their popularity or their numerical imple-
mentation challenge. However, this does not mean that our method only works on the processes we
selected. As the paper evolves, we can see that as long as a process has a characteristic function,
the option price and its risk driven by the process can be properly approximated via our method.

3.2. Exponential Affine Processes

An exponential affine characteristic function is given by

ϕ(u) = E[eiuXt ] = exp(C(u, t) +X0D(u, t)). (23)

Here, the function C(u, t) is fully characterised by dC(u, t)/dt = D(u, t) and the function D(u, t)
satisfies a Riccati equation (Duffie et al. 2003). More precisely, we can find functions C(u, t) and
D(u, t) with C(u, t) = 0 and D(u, t) = u, such that

Mt = exp(C(u, T − t) +XtD(u, T − t)) (24)

is a martingale process. In the family of affine processes, we focus on investigating the Heston
model in this paper. The stochastic differential equation (SDE) of the Heston model is written as

dSt = (r − q)Stdt+
√
ytStdW1,t, (25)

dyt = λ(ȳ − yt)dt+ η
√
ytdW2,t, (26)

where Lt and yt denote the stochastic log-asset price variable and the variance of the asset price
process, respectively. In this process, the speed of mean reversion λ, the mean level of variance
ȳ and the volatility of volatility η are constant values greater than or equal to zero. Addition-
ally, the Brownian motions W1,t and W2,t are correlated with the correlation coefficient ρs, and

ω = E[ei(−1i)Xt ] is the mean-correcting compensator. The model characteristic function fits in the

7
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general affine characteristic function framework and is given by

ϕ(u) = exp

(
iu ((r − q)t+ ω) +

y0

η2

(
1− eEt

1− FeEt
(λ− iρsηu− E)

)
+

λȳ

η2

(
t(λ− iρsηu− E)− 2 log(

1− Fe−Et

1− F
)

))
, u ∈ R, (27)

with

E =
√

(λ− iρsηu) + (u2 + iz)η2,

F =(λ− iρsηu− E)/(λ− iρsηu+ E).

This characteristic function is uniquely specified because we take
√

(x+ yi) such that its real part
is nonnegative, and we restrict the complex logarithm to its principal branch.

In this case, as Lord and Kahl (2010) prove, the resulting characteristic function is the correct
one for all complex numbers z in the analytic strip of the characteristic function. In the SDE, we
have two possible conditions with respect to λ, ȳ and η:

2λȳ ≥ η2, (28)

2λȳ < η2. (29)

The model satisfies the Feller property if (28) holds; otherwise, (29) holds. If a process fulfils the
property, the process never hits zero; conversely, if it does not, the process can reach 0. Condition
(29) is a very important property for the Heston SDEs because they can only have a unique solution
when we specify a boundary condition at 0. In mathematical finance, the chosen boundary condition
is that the process remains at 0. We define this as an absorbing boundary condition. When the
process reaches 0 and is allowed to leave 0, we call it a reflecting boundary. These two boundary
conditions are crucial for pricing early-exercise options, including American options and barrier
options.

4. Singular Fourier-Padé Representation of European Option Prices and their
Option Greeks

4.1. Option Pricing Formulae

In this section, we derive closed-form formulae for European-style options using the SFP method.
Considering the PDF f of a stochastic process, the current log-price x := logS, the strike price
of K and maturity T ≥ t, we can express the option price V (x,K, t) starting at time t with its
contingent claim paying out G(ST ,K) as follows:

V (x,K, t) = e−r(T−t)E(G(ST ,K)|St = ex) (30)

= e−r(T−t)E(G(Ste
XT−Xt ,K)) (31)

= e−r(T−t)
∫ ∞
−∞

G(ex+χ,K)f(z)dz, χ ∈ XT −Xt. (32)

8
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Furthermore, if we choose an interval [c, d] satisfying the condition∫ d

c
f(χ)eiuχdχ ≈ E[eiu(XT−Xt)] = ϕ(u), (33)

where ϕ(u) is a characteristic function of XT −Xt, we can approximate the pricing formula:

V (x,K, t) ≈ e−r(T−t)
∫ d

c
G(ex+χ,K)f(χ)dχ. (34)

Theorem 1 When a dividend-paying risky asset price process (St)t≥0 with a traceable, analytical
characteristic function ϕ(·) has a current asset price ex = S, risk-free interest rate r and com-
pounded continuous dividend q, the SFP pricing formula of a European vanilla call option
driven by this process with maturity T and strike price K is

V (x,K, t) = e−r(T−t)Re

[
P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

]
, (35)

with

z = ei
2π

d−c (−x+logK) εs = ei
2π

d−c ζs

P+
N (z) =

∑N
n=0 pnz

n, Q+
M (z) =

∑M
m=0 qmz

m 6= 0,

L+
Ns

(z) =
∑Ns

ns=0 lnsz
ns , s = 1, . . . , S.

(36)

Here, ζs is the jump in V (x,K, t).

Proof: First, the payoff function of a European call option is G(ex+χ,K) = max (ex+χ −K, 0) in
(34). To conform to the SFP approximation framework, we first transform the payoff:

max
(
ex+χ −K, 0

)
= K max

(
ex+χ−logK − 1, 0

)
. (37)

Accordingly, by replacing x+ χ− logK with y, we have a new form of V (x,K, t) denoted as

e−r(T−t)
∫ ∞
−∞

K max(ey − 1, 0)f (y − x+ logK) dy. (38)

As we intend to make the SFP method more efficient, we define a truncated computational in-
terval [c, d] (cf. Section 6), which satisfies condition (33), to replace [−∞,∞]. Then, V (x,K, t) is
reformulated as

e−r(T−t)
∫ d

c
K max(ey − 1, 0)f (y − x+ logK) dy

=e−r(T−t)
∫ d

0
K(ey − 1)f (y − x+ logK) dy. (39)

Using the Fourier transform shift theorem and the CFS expansion shown in (13), we express
f (y − x+ logK) as

Re

[
2

∞∑
k=1

bke
i 2π

b−aky + b0

]
, (40)

9
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where

bk =
1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy
(
ei

2π

d−ck(−x+logK)
)

and b0 =
1

d− c

∫ d

c
f(y)dy. (41)

We substitute (40) into (39) and apply Fubini’s theorem; V (x,K, t) can be computed as

e−r(T−t)
∫ d

0
K(ey − 1)Re

[
2

∞∑
k=1

bke
i 2π

d−cky + b0

]
dy

= e−r(T−t)Re

[
2
∞∑
k=1

1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy
(
ei

2π

d−ck(−x+logK)
)∫ d

0
K(ey − 1)ei

2π

d−ckydy+

1

d− c

∫ d

c
f(y)dy

∫ d

0
K(ey − 1)dy

)
. (42)

In the equation above, basic calculus implies that

∫ d

0
K(ey − 1)ei

2π

d−ckydy =
K(d− c)

i2πk + (d− c)

(
e(i 2π

d−ck+1)d − 1
)
− K(d− c)

i2πk

(
e(i 2π

d−ck)d − 1
)
, (43)∫ d

0
K(ey − 1)dy = K(ed − 1)−Kd. (44)

In the meantime, because of condition (33), we can also see that

∫ d

c
f(y)e−i

2π

d−ckydy ≈ ϕ
(
− 2π

d− c
k

)
and

∫ d

c
f(y)dy ≈ ϕ(0) = 1. (45)

For the sake of simplicity in (42), we set

B̂k = 1
d−cϕ

(
− 2π
d−ck

)
, B̂0 = 1

d−cϕ(0) = 1
d−c ,

Ĝk = K(d−c)
i2πk+(d−c)

(
e(i 2π

d−ck+1)d − 1
)
− K(d−c)

i2πk

(
e(i 2π

d−ck)d − 1
)
, Ĝ0 = K(ed − 1)−Kd

(46)

to obtain a simplified form:

V (x,K, t) = e−r(T−t)Re

[
2
∞∑
k=1

B̂kĜke
i 2π

d−ck(−x+logK) + B̂0Ĝ0

]
. (47)

To express our final pricing formula with the SFP representation, we approximate

2

∞∑
k=1

B̂kĜke
i 2π

d−ck(−x+logK) + B̂0Ĝ0 (48)

in (47) with (16). To do so, we first replace −x + logK with a variable y1 in (48), and then, this

allows us to set exp
(
i 2π
d−cy1

)
equal to z. The transformation z = exp

(
i 2π
d−cy1

)
maps the interval

[c, d] onto the unit circle in z. This change also transforms the jumps ζ along V (x,K, t) into z with

10
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the form of ε = exp
(
i 2π
d−cζ

)
. Finally, expressing (48) with a new variable of z, we have

2
∞∑
k=1

B̂kĜkz
k + B̂0Ĝ0. (49)

Substituting the equation above with f1(z) in (16), we obtain the approximant given by

P+
N (z) +

S∑
s=1

L+
Ns

(z) log (1− z/εs) =

(
2

U∑
k=1

B̂kĜkz
k + B̂0Ĝ0

)
Q+
M (z) +O(zU+1) (50)

P+
N (z) =

∑N
n=0 pnz

n, Q+
M (z) =

∑M
m=0 qmz

m 6= 0,

L+
Ns

(z) =
∑Ns

ns=0 lnsz
ns , s = 1, . . . , S,

εs = ei
2π

d−c ζs , U = N +M +
∑S

s=1Ns.

(51)

Once we can determine the unknown coefficients of {pn}Nn=0, {qm}Mm=0 and {lns}Nsns=0 in (50) via
the algorithm shown in Section 5 and replace

2

∞∑
k=1

B̂kĜke
i 2π

d−ck(−x+logK) + B̂0Ĝ0

with

P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

, z = exp

(
i

2π

d− c
(−x+ logK)

)
in (47), we reach our first SFP pricing formula for European vanilla call options, as in (35). Q.E.D.

We can apply the same technique to seek the SFP pricing formula of vanilla put options. To
achieve this, we first transform the put payoff function G(ex+χ,K) = max (K − ex+χ, 0) into

−K max
(
ex+χ−logK − 1, 0

)
. (52)

Then, we follow the proof of Theorem 1 to reach the CFS representation of V (x,K, t) given by

e−r(T−t)Re

[
2
∞∑
k=1

B̂kĜke
i 2π

d−ck(−x+logK) + B̂0Ĝ0

]
, (53)

with

Ĝk =

∫ 0

c
−K(ey − 1)ei

2π

d−ckydy =
K(d− c)

i2πk + (d− c)

(
e(i 2π

d−ck+1)c − 1
)
− K(d− c)

i2πk

(
e(i 2π

d−ck)c − 1
)
,

(54)

Ĝ0 =

∫ 0

c
−K(ey − 1)dy = K(ec − 1)−Kc. (55)

In the same manner shown in the proof of Theorem 1, we approximate the CFS expansion in (53)
with the SFP approximant (16). We can therefore yield the same expression of (35) with different
coefficient values of {pn}Nn=0, {qm}Mm=0 and {lns}Nsns=0.

11
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From the vanilla call and put pricing formulae, we can see that they share the same format as the
SFP approximant of (35). It is no different for other European-type options discussed in this paper.
The only difference is that the values of {pn}Nn=0, {qm}Mm=0 and {lns}Nsns=0 in the SFP formula of
each option are completely different from one another. This is attributed to the jumps ζ in each
option and their payoff functions, which lead to different Fourier transformations of Ĝk and Ĝ0 in
(47). For the reader’s information, we enumerate all the options we investigate in this paper and
their corresponding payoff functions G(ex+χ,K) and Fourier transformations Gk and G0 in Tables
1 and 2.

4.2. Option Greeks

Now, we turn our attention to deriving the option Greeks. Although accurately valuing financial
claims plays a key role in financial modelling, the risk management (hedging) of these derivative
instruments is equally important. Financial institutions manage option risk when they sell options
to their clients through the analysis of the Greeks, which are defined as the sensitivities of the
option price to single-unit changes in the values of state variables or parameters. Such sensitivities
represent the different dimensions of the risk associated with an option. In this paper, we will focus
on deriving three option Greeks—Delta, Gamma, and Vega. Delta, ∆, is defined as the rate of
change in the option value with respect to changes in the underlying asset price; Gamma, Γ is
the rate of change of ∆ with respect to changes in the underlying price; and finally, Vega is the
measurement of an option’s sensitivity to changes in the volatility of the underlying asset price. In
general, volatility measures the amount and speed at which the price moves up and down, and it is
often based on changes in the recent, historical prices of a trading instrument. Other Greeks, such
as Theta, can be derived in a similar fashion; however, depending on the characteristic function,
the derivation expression might be rather lengthy. We omit them here, as many terms are repeated.

Delta is the first derivative of the value of V of the option with respect to the underlying
instrument price S. Hence, differentiating the CFS expansion of V (47) with respect to S, we have

∆t =
∂V (x,K, t)

∂S
=
∂V (x,K, t)

∂x

∂x

∂S

= e−r(T−t)−x

(
Re

[
2
∞∑
k=1

(
−i 2π

d− c
k

)
B̂kĜke

i 2π

d−ck(−x+logK)

])
. (56)

In a similar fashion, we can obtain Γt by differentiating ∆t with respect to S such that

Γt =
∂2V (x,K, t)

∂S2
=
∂∆t

∂S
=
∂∆t

∂x

∂x

∂S
, (57)

and eventually,

Γt = e−r(T−t)−2x

(
Re

[
2

∞∑
k=1

(
i

2π

d− c
k

)(
i

2π

d− c
k + 1

)
B̂kĜke

i 2π

d−ck(−x+logK)

])
. (58)

It is also easy to obtain the formula for Vega, ∂V
∂yt
, where yt is the initial value of the volatility at

time t. For example, for the Heston model, as y0 is the initial value of the volatility in (27), we
derive Vega as follows:

∂V (x,K, y0, t)

∂y0
= e−r(T−t)

(
Re

[
2

∞∑
k=1

∂B̂k
∂y0

Ĝke
i 2π

d−ck(−x+logK)

])
, (59)

12
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with

∂B̂k
∂y0

=
∂ϕ(− 2π

d−ck, y0)

∂y0
, (60)

where ϕ contains the parameter y0.

To obtain our first SFP representation of ∆, we first let y1 = −x+ logK, z = exp
(
i 2π
d−cy1

)
and

then transform all the jumps ζ in ∆t into ε = exp
(
i 2π
d−cζ

)
in (56). Accordingly, this transforms

the CFS representation in (56) into the form

f1(z) = 2
U∑
k=1

(
−i 2π

d− c
k

)
B̂kĜkz

k. (61)

Based on the equation above, using (16), we can eventually obtain the SFP approximant given by

P+
N (z) +

S∑
s=1

L+
Ns

(z) log (1− z/εs) = f1(z)Q+
M (z) +O(zU+1). (62)

Applying the approximation algorithm in Section 5 to determine the coefficients of P+
N , Q

+
M , and

L+
Ns
, we can obtain the SPF formula for ∆t with the form

e−r(T−t)−xRe

(
P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

)
. (63)

To determine the SFP approximant of Γt and Vega, we follow the same idea of approximating ∆t

but replace f1(z) for

2
U∑
k=1

(
i

2π

d− c
k

)(
i

2π

d− c
k + 1

)
B̂kĜkz

k and 2
∞∑
k=1

∂B̂k
∂y0

Ĝkz
k. (64)

5. Singular Fourier-Padé Algorithm and Locating Singularities

The approach to computing the polynomial coefficients needed in the SFP method is fairly
straightforward. To demonstrate the algorithm, we focus on a simple case where the option pricing
and Greeks formulae are infinitely smooth apart from jumps located at the endpoints c and d. As

we consider z = exp
(
i 2π
d−cy1

)
in either the option pricing formula or the Greeks formula, the jump

of c and d in the z-plane is -1. For sake of simplicity, we denote f1(z) as the CFS representation of
any European-style pricing formula or its option Greeks one. With some superscripts dropped for
clarity and knowing that s = 1, in (16), we have

PN (z) + LN1
(z) log

(
1− z

ε1

)
= f1(z)QM (z) +O(zU+1), (65)

13
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Table 1.: Payoff functions and their transforms for a variety of financial contingency claims

Financial Contingency Claim Payoff Function Transformed Payoff Function

G(ST ,K) G(ex+χ,K)

Call max(ST −K, 0) K max(ex+χ−logK − 1, 0)

Put max(K − ST , 0) −K max(ex+χ−logK − 1, 0)

Covered Call min(ST ,K) K min(ex+χ−logK − 1, 0) +K

Cash-or-Nothing Call 1ST≥K 1ex+χ−logK≥1

Cash-or-Nothing Put 1ST≤K 1ex+χ−logK≤1

Asset-or-Nothing Call ST1ST≥K ex+χ1ex+χ−logK≥1

Asset-or-Nothing Put ST1ST≤K ex+χ1ex+χ−logK≤1

Asymmetric Call (SnT −Kn)1ST≥K Kn(en(x+χ−logK) − 1)1ex+χ−logK≥1

Asymmetric Put (Kn − SnT )1ST≤K −Kn(en(x+χ−logK) − 1)1ex+χ−logK≤1

Symmetric Call (ST −K)n1ST≥K
n∑
j=0

(
n
j

)
(−1)(n−j)ej(x+χ)+(n−j) logK1ex+χ−logK≥1

Symmetric Put (K − ST )n1ST≤K
n∑
j=0

(
n
j

)
(−1)(n−j)e(n−j)(x+χ)+j logK1ex+χ−logK≤1

where N +M +N1 = U. Both LN1
and f1(z) have Taylor series and CFS expansions, respectively,

to determine U; therefore, their expansions are

log

(
1− z

εs

)
=

U∑
k=1

−z
k

εk1
+ 0 (66)

f1(z) = 2
U∑
k=1

B̂kĜkz
k + B̂0Ĝ0. (67)

Our goal is to derive a linear system for the unknown polynomial coefficients. Note that QM (z)
and LN1

(z) are determined only by terms of order greater than N . Accordingly, we seek a linear
solution to

[
B̂Ĝ −L

] [q
l

]
= 0. (68)

Here, B̂Ĝ is the (M +N1 + 1)× (M + 1) Toeplitz matrix
B̂U

2
+1ĜU

2
+1 B̂U

2
ĜU

2
· · · B̂1Ĝ1

B̂U

2
+2ĜU

2
+2 B̂U

2
+1ĜU

2
+1

. . . B̂2Ĝ2

...
...

. . .
...

B̂U ĜU B̂U−1ĜU−1 · · · B̂U

2
ĜU

2
,

 (69)
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Table 2.: Complex Fourier transforms for a variety of financial contingency claims

Financial Contingency Claim Fourier Transform Fourier Transform

Ĝk Ĝ0

Call K(d−c)
i2πk+(d−c)

(
e(i

2π
d−ck+1)d − 1

)
− K(d−c)

i2πk

(
e(i

2π
d−ck)d − 1

)
K(ed − 1)−Kd

Put K(d−c)
i2πk+(d−c)

(
e(i

2π
d−ck+1)c − 1

)
− K(d−c)

i2πk

(
e(i

2π
d−ck)c − 1

)
K(ec − 1)−Kc

Covered Call − K(d−c)
i2πk+(d−c)

(
e(i

2π
d−ck+1)c − 1

)
+ K(d−c)

i2πk

(
e(i

2π
d−ck)c − 1

)
−K(ec − 1) +Kc

Cash-or-Nothing Call (d−c)
i2πk

(
e(i

2π
d−ck)d − 1

)
d

Cash-or-Nothing Put − (d−c)
i2πk

(
e(i

2π
d−ck)c − 1

)
−c

Asset-or-Nothing Call (d−c)
i2πk+(d−c)

(
e(i

2π
b−ak+1)d − 1

)
(ed − 1)

Asset-or-Nothing Put − (d−c)
i2πk+(d−c)

(
e(i

2π
d−ck+1)c − 1

)
−(ec − 1)

Asymmetric Call Kn(d−c)
i2πk+n(d−c)

(
e(i

2π
d−ck+n)d − 1

)
− Kn(d−c)

i2πk

(
e(i

2π
d−ck)d − 1

)
Kn

n (end − 1)−Knd

Asymmetric Put Kn(d−c)
i2πk+n(d−c)

(
e(i

2π
d−ck+1)c − 1

)
− Kn(d−c)

i2πk

(
e(i

2π
d−ck)c − 1

)
Kn

n (enc − 1)−Knc

Symmetric Call
n∑
j=0

(
n
j

)
(−1)(n−j) Kn(d−c)

i2πk+j(d−c)

(
e(i

2π
d−ck+j)d − 1

) n∑
j=1

(
n
j

)
(−1)(n−j)×

Kn

j (ejd − 1) + (−1)nKnd

Symmetric Put
n∑
j=0

(
n
j

)
(−1)(n−j+1) Kn(d−c)

i2πk+(n−j)(d−c)

(
e(i

2π
d−ck+n−j)c − 1

) n−1∑
j=0

(
n
j

)
(−1)(n−j+1)×

Kn

n−j (e(n−j)c − 1)−Knc

and L is the (M+N1 +1)(N1 +1) matrix defined similarly using the Taylor coefficients of log(1+z).
The vectors q = {qm}Mm=0 and l = {ln1

}N1

n1=0 hold the unknown polynomial coefficients in order
of increasing degree. As the column dimension of the matrix in (68) is one greater than its row
dimension, we can conclude that there is one nonzero solution to (68). In many cases, this can
be made into a square system by choosing, say, q0 = 1. However, if one does not want to assume
that any particular coefficient is nonzero, one can solve (68) by a singular value decomposition
(cf. Gonnet et al. 2013). Finally, the unknown coefficients of p = {pn}Nn=1 can be obtained by
multiplication through the following matrix system:

p =


B̂0Ĝ0

B̂1Ĝ1 B̂0Ĝ0
...

. . .
. . .

B̂U

2
ĜU

2
· · · · · · B̂0Ĝ0

q−


l0
l1 l0
...

. . .
. . .

lU
2
· · · · · · l0

 l. (70)

If there is more than one jump location in the option pricing/Greeks curve (65), this suggests the
following modification of the equation:

PN (z) + LN1
(z) log

(
1− z

ε1

)
+ . . .+ LNs(z) log

(
1− z

εS

)
= f1(z)QM (z) +O(zU+1). (71)

Accordingly, we have to modify (68) to produce a new L matrix and a vector of coefficients for
each location to reflect the changes. According to Driscoll and Fornberg (2001, 2011), there is no
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Figure 1.: Density functions (top) of the VG model and their first derivative (bottom). A piecewise continuous
(non-smooth) PDF with a jump after/before differentiation is shown in the graphs on the top and bottom
right. The parameters are taken from VG–Para1.

rigorous optimal formula for choosing the degrees M, N, and N1,. . . ,Ns. Because the denominator
polynomial QM is shared, we allow M to be the largest, with the others being equal as far as
possible. For the case of just one jump location, taking N at roughly 40% of the total available
degrees of freedom seems to work well. Experiments suggest that these choices can affect the
observed accuracy, occasionally by as much as an order of magnitude, but on average, there is little
variation within a broad range of choices.

The methods described above all assume that the locations of all jumps are known in the op-
tion pricing/Greeks curve. For jumps whose locations are unknown, we follow the suggestion of
Driscoll and Fornberg (2001, 2011) to use the Fourier-Padé algorithm to estimate their locations.
As we approximate a PDF rather than a payoff function with the CFS method (see the proof of
Theorem 1), we only consider jumps existing in the PDF. The existence of a jump is attributed to
a combination parameters and/or a very short maturity that causes a sharp-peaked PDF curve.

Using the Fourier-Padé algorithm (cf. the Fourier-Padé approximant in Section 2) to estimate
the jumps in a PDF is fairly simple. We first express the PDF as the CFS representation:

Re

[
2
∞∑
k=1

ϕ

(
− 2π

d− c
k

)
ei

2π

b−aky + ϕ (0)

]
. (72)

Then, we can differentiate (72) with respect to y to obtain

Re

[
2

∞∑
k=1

(
i

2π

b− a
k

)
ϕ

(
− 2π

d− c
k

)
ei

2π

b−aky

]
. (73)

Finally, we let z = exp
(
i 2π
d−cy

)
in the two equations above, and they are ready for the Fourier-Padé

approximation. In general, when the PDF has a jump, the sharp-peaked jump point will have an
enormously large value after differentiation. Then, based on this result, we find that point in the
original PDF. In other words, Figure 1 is a graphical illustration of the outlooks of two PDFs (top)
under the VG model (cf. Section 8.1.2) and the first derivative (bottom) after the Fourier-Padé
approximation. In the figure, we can see that the PDFs in the top and bottom panels are smooth
without any jumps, as they do not show any point with an extremely large value. However, in the
graph on the bottom right, we can see that there is a jump that produces a value of 15× 104.
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6. Choice of Truncated Intervals

As we will show in Section 7, the choice of the interval [c, d] is affected by the accuracy of the
SFP method. A minimum and substantial interval [c, d] can capture most of the mass of a PDF
such that the SFP method can in turns produce sensible global spectral convergence rate. In this
short section, we show how to construct an interval related to the closed-form formulas of stochastic
process cumulants. The idea of using the cumulants is first proposed by Fang and Oosterlee (2009a)
to construct the definite interval [c, d] in (33). Based on their ideas, we have the following expression
for [c, d]:

d =

∣∣∣∣c1 + L
√
c2 +

√
c4 +

∣∣∣∣log

(
S0

K

)∣∣∣∣∣∣∣∣ (74)

c = −d, (75)

where c1, c2, and c4 are the first, second and fourth cumulants, respectively, of the stochastic
process and L ∈ [10, 12]. For simple, less-complicated financial models, we also obtain closed-form
formulas for c1, c2, and c4, which are shown in Table A1 of Appendix A. However, in the Heston
model, we use the absolute value of c2 and ignore the value of c4 due to the negative value of c2

and the lengthy representation of c4 (cf. Fang and Oosterlee 2009a). We therefore have c1 +L
√
|c2|

rather than c1 + L
√
c2 +

√
c4. The truncated intervals only work for smooth PDFs without any

jumps. In general, by trial and error, if there is a jump in a PDF, we add 0.5 to (74) to allow the
better convergence of our method. Accordingly, the formulae can be transformed as:

d =

∣∣∣∣c1 + L
√
c2 +

√
c4 +

∣∣∣∣log

(
S0

K

)∣∣∣∣∣∣∣∣+ 0.5 (76)

c = −d. (77)

Remark 2 Without a doubt, in most cases, the truncated interval of (76) works for any normal
non-smooth PDF. However, when the conditions become very extreme, for example, T = 1e − 06
in BSM–Para4 in Section 8.1.1, the PDF is extremely narrow, thin and spiky at one point. The
interval of (76) can still perform but is not optimal. To improve it, we replace 0.5 in the equation
with 0.1. This is attributed to the desire for higher accuracy and convergence with fewer terms
required over a short interval range.

7. Error Analysis

In this section, we demonstrate that the total error from pricing European-style options can
be made very small by choosing a suitably large interval [c, d]. Furthermore, we show that global
spectral convergence can be achieved at any point along the option pricing curve even though the
input PDF is a Cν piecewise continuous (non-smooth) function.

In this paper, there are three types of approximation errors in any call/put option.

(i) Integration truncation error:

ε1 :=

∣∣∣∣∫ ∞
−∞

G(ex+χ,K)f(χ)dχ−
∫ d

c
G(ex+χ,K)f(χ)dχ

∣∣∣∣ (78)
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(ii) Error related to approximating (42) with (47):

ε2 :=

∣∣∣∣∣Re

[
2
∞∑
k=1

1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy Ĝk e
i 2π

d−ck(−x+logK) +
1

d− c

∫ d

c
f(y)dy Ĝ0

]
−

Re

[
2
∞∑
k=1

B̂k Ĝk e
i 2π

d−ck(−x+logK) + B̂0 Ĝ0

] ∣∣∣∣∣
=

∣∣∣∣∣Re

[
2
∞∑
k=1

(
1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy − B̂k
)
Ĝk e

i 2π

d−ck(−x+logK)+

(
1

d− c

∫ d

c
f(y)dy − B̂0

)
Ĝ0

]∣∣∣∣∣ (79)

(iii) Truncated SFP series error:

ε3 :=

∣∣∣∣∣Re

[
2
∞∑
k=1

B̂kĜkz
k + B̂0Ĝ0

]
−Re

[
P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

]∣∣∣∣∣ ,
z = ei

2π

d−c (−x+logK) and εs = ei
2π

d−c (ζs) (80)

If we introduce the concept of the cumulative probability density function (CDF) F (χ) such that
f(χ)dχ = dF (χ), we can simplify the integration truncation error as follows:

ε1 =

∣∣∣∣(∫ ∞
−∞

G(ex+χ,K)f(χ)dχ−
∫ d

c
G(ex+χ,K)f(χ)dχ

)∣∣∣∣
=

∣∣∣∣(∫ c

−∞
G(ex+χ,K)f(χ)dχ+

∫ ∞
d

G(ex+χ)f(χ)dχ

)∣∣∣∣
≤
∣∣∣∣(∫ c

−∞

∂G(ex+χ,K)

∂χ
F (χ)dχ

)∣∣∣∣+

∣∣∣∣∫ ∞
d

∂G(ex+χ,K)

∂χ
(1− F (χ))dχ

∣∣∣∣ (81)

≈ 0 : (ifχ = c, d,−∞,∞). (82)

We can see that ε1 is bounded and approaches zero as long as [c, d] is chosen reasonably such that
1− F (d) ≈ 0 when d <∞ or F (c) ≈ 0 when c > −∞. We are also able to adapt the same idea to
investigate the bound of ε2. Accordingly, taking into account | exp(i 2πk

d−cy)| ≤ 1, we first investigate
the error

ε2 :=

∣∣∣∣ 1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy − B̂k
∣∣∣∣
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in ε2. If we expand the equation above, we obtain

ε2 :=

∣∣∣∣ 1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy − 1

d− c
ϕ

(
−i 2π

d− c
k

)∣∣∣∣ (83)

=

∣∣∣∣ 1

d− c

∫ ∞
−∞

f(y)e−i
2π

d−ckydy − 1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy

∣∣∣∣ (84)

≤
∣∣∣∣ 1

d− c

(∫ c

−∞
f(y)dy +

∫ ∞
d

f(y)dy

)∣∣∣∣ (85)

=

∣∣∣∣ 1

d− c
(F (∞)− F (d) + F (c)− F (−∞))

∣∣∣∣ (86)

≈ 0 : (if y = c, d,−∞,∞). (87)

Based on the result above,

ε2 :=

∣∣∣∣∣Re

[
2
∞∑
k=1

(
1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy − B̂k
)
Ĝk e

i 2π

d−ck(−x+logK)+

(
1

d− c

∫ d

c
f(y)dy − B̂0

)
Ĝ0

]∣∣∣∣∣
≤

∣∣∣∣∣Re

[
2
∞∑
k=1

ε2 Ĝk e
i 2π

d−ck(−x+logK) +

(
1

d− c

∫ d

c
f(y)dy − 1

d− c

∫ d

c
f(y)dy

)
Ĝ0

]∣∣∣∣∣
≈ 0. (88)

To conclude that ε2 is approaching zero, we first note that there is no approximate error of Gk
and G0 because of their closed-form expressions. Then, once ε2 tends to zero, the first term of the

equation will also diminish to zero. The last term of the equation tends to zero because B̂0 equals
1
d−c

∫ d
c f(y)dy (cf. (45) and (46)).

Finally, the SPF series truncation error is also bounded (cf. Driscoll and Fornberg 2001, 2011)
and can be formulated as follows:

ε3 :=

∣∣∣∣∣Re

[
2

∞∑
k=1

B̂kĜke
i 2π

d−ck(−x+logK) + B̂0Ĝ0

]
−Re

[
P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

]∣∣∣∣∣
= O(zN+M+

∑Ns
s=1Ns+1). (89)

The error term of ε3 tends to zero with a global spectral rate of O(zN+M+
∑Ns
s=1Ns+1) even though

the input PDF is Cν piecewise continuous.
Before we illustrate the total error bound when approximating any true European-type option

price V (x,K, t) defined as

ε :=

∣∣∣∣∣V (x,K, t)− e−r(T−t)Re

[
P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

]∣∣∣∣∣ , (90)

we first summarise the whole approximation procedure of European-type option prices and note
where ε1, ε2, and ε3 lie. We start off by seeking a definite interval [c, d] that allows us to approximate
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V (x,K, t) defined on [−∞,∞] in (30) with the form

V (x,K, t) ≈ e−r(T−t)
∫ d

c
G(ex+χ,K)f(χ)dχ.

The interval [c, d] we proposed satisfies condition (33). As a result, we obtain our first approximation
error ε1. As V (x,K, t) is now approximated in [c, d], this implies that we can construct a CFS
expansion of V (x,K, t), like the one in (42). Then, because including a characteristic function ϕ(·)
in the CFS expansion allows for a more accurate approximation, we have another CFS expansion
of V (x,K, t), given as in (47). Accordingly, we have ε2, an approximation error of (42), being
approximated by (47). Finally, ε3 is the error of (50), which is the formula for approximating (47)
with the SFP approximant (16).

By combining the results of ε1, ε2 and ε3, we can determine the total error bound ε; hence, we
have an inequality of

ε =

∣∣∣∣∣V (x,K, t)− e−r(T−t)Re

[
P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

]∣∣∣∣∣ (91)

=

∣∣∣∣∣e−r(T−t)
(∫ ∞
−∞

G(ex+χ,K)f(χ)dχ−Re

[
P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

])∣∣∣∣∣
≤
∣∣∣∣e−r(T−t)∣∣∣∣

( ∣∣∣∣∫ ∞
−∞

G(ex+χ,K)f(χ)dχ−
∫ d

c
G(ex+χ,K)f(χ)dχ

∣∣∣∣+∣∣∣∣∣Re

[
2
∞∑
k=1

1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy Ĝk e
i 2π

d−ck(−x+logK) +
1

d− c

∫ d

c
f(y)dy Ĝ0

]
−

Re

[
2
∞∑
k=1

B̂kĜke
i 2π

d−ck(−x+logK) + B̂0Ĝ0

] ∣∣∣∣∣+∣∣∣∣∣Re

[
2
∞∑
k=1

B̂kĜkz
k + B̂0Ĝ0

]
−Re

[
P+
N (z) +

∑S
s=1 L

+
Ns

(z) log (1− z/εs)
Q+
M (z)

]∣∣∣∣∣
)

≤ |e−r(T−t)|(ε1 + ε2 + ε3)|

< |e−r(T−t)|(ε1 + ε2 +O(zN+M+
∑S
s=1Ns+1))|

≈ 0. (92)

Remark 3 According to Driscoll and Fornberg (2001, 2011), the rate of O(zN+M+
∑Ns
s=1Ns+1)

is not spatially uniform because convergence at a jump is somewhat limited by the well-known
numerical ill-conditioning of the straightforward Padé problem. Moreover, when a curve has a
discontinuous point (zeroth-order jump), it also has a convergence rate that is the average of the
one-sided limit values. Through the numerical experiments in Driscoll and Fornberg (2001), we can
see that the SFP method can yield spectral convergence rate at jumps. This is not necessarily the
case if the jumps are very difficult to interpolate. Nevertheless, as Driscoll and Fornberg (2011)
suggest, we can still have 4–6 digits of accuracy at the jumps when they are known in advance.
When the jumps are not known in advance, we can use the Fourier-Padé algorithm to find them
(see Section 5). By incorporating this technique, the SFP method still can perform and yield spectral
convergence or 4th-order convergence when the jumps are very difficult to interpolate.
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8. Numerical Results

In this section, we demonstrate the performance of the SFP method through various numerical
tests. The purpose of this section is first to test whether the error convergence analysis presented
in Section 7 is in line with the numerical findings in this section. Second, we test the ability of
the SFP method to price any European-style option that are deep in/out of the money and have
long/short maturities. Third, we analyse whether the SFP method can provide consistent accuracy
when approximating small or large values of option prices. Finally, in a major development of the
method, we test whether the SFP method can retain global spectral convergence even when the
PDF is piecewise continuous. A number of popular numerical methods are implemented to test the
SFP method in terms of the error convergence, convergence rate and computational time. These
methods include the COS method (a Fourier COS series method, Fang and Oosterlee 2009a), the
filter-COS method (a COS method with an exponential filter to resolve the Gibbs phenomenon;
see Ruijter et al. 2013), the CONV method (an FFT method, Lord et al. 2008), the Lewis-FRFT
method (a fractional FFT method, Lewis 2001, Chourdakis 2004), and the B-spline, Haar wavelet
and the SWIFT methods (a wavelet-based method; see Ortiz-Gracia and Oosterlee 2013, 2016).
When we implement the CONV and Lewis-FRFT methods, we use Simpson’s rule for the Fourier
integrals to achieve fourth-order accuracy. In the filter-COS method, we use an exponential filter
and set the accuracy parameter to 10 as Ruijter et al. (2013) report that this filter provides better
algebraic convergence than the other options. We also set the damping factors of the CONV and
Lewis-FRFT to 0 and any value greater than zero, respectively.

As the SFP method requests approximating jumps in logarithmic series, we consider and apply
the endpoints c and d as our two known jumps for all non-smooth/smooth PDFs. Only the jump
of the non-smooth PDF of the Black-Scholes-Merton (BSM) model is known as its mean value. For
the rest of the non-smooth PDFs, we use the Fourier-Padé algorithm (cf. Section 5) to find their
locations. In all numerical experiments, we use the parameter U to denote the number of terms of
the SFP method and N to denote the number of terms/grid points of the others. When we measure
the approximation errors of the numerical methods, we use absolute errors, the infinity norm errors
R∞ and the L2 norm errors R2 as the measurement units. Moreover, to improve the accuracy of our
method, we use the call-put parity–Vcall(x,K, t) = Vput(x,K, t) + S0 exp(−qT ) − K exp(−rT )–to
approximate call prices once we have put prices ready. Finally, all the CPU times presented (in
seconds) are determined after averaging the computational time over 120 experiments. A MacBook
Pro with a 2.8 GHz Intel Core i7 CPU and two 8 GB DDR SDRAM (cache memory) is used for all
experiments. The code is written in MATLAB R2011b. Finally, the MATLAB code of implementing
the COS method and the FFT method, such as the CONV method and the like, is retrieved from
von Sydow et al. (2015).

8.1. Exponential Lévy Processes

8.1.1. The Black-Scholes-Merton Model. The first numerical experiments are performed
using the BSM model (cf. Black and Scholes 1973, Merton 1973). The stock dynamics driven by
the BSM model (a geometric Brownian process) are given by

ST = S0e
(r−q− 1

2
σ2)T+σWT , (93)

where WT is a risk-neutral Brownian motion, and σ is the volatility. The characteristic function of
the model is also defined as

ϕ(u) = exp

(
T

(
iu(r − q − 1

2
σ2)− 1

2
σ2u2

))
, u ∈ R. (94)
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The parameters for the experiments are selected from the following:

BSM–Para1 : S0 = 100, σ = 0.15, r = 0.03, T = 1.0, q = 0.0, (95)

BSM–Para2 : S0 = 100, σ = 0.25, r = 0.1, T = 50 or 100, q = 0, K = 120, (96)

BSM–Para3 : K = 100, σ = 0.2, r = 0.06, T = 1e− 06, q = 0. (97)

In the first numerical test (BSM–Para1), we first check for convergence behaviour against a
range of strikes K from 1 to 200 for deep in/out-of-the money and at-the-money vanilla put
options, respectively. The parameters are retrieved from von Sydow et al. (2015). Using the same
parameters, we check for convergence behaviour against a range of strikes K from 80 to 120 for
cash-or-nothing put options rather than vanilla options in our second numerical test. We compare
our method with the COS method, the CONV method and the Lewis-FRFT method in the first
test but only with the COS method in the second test. The third numerical experiment (BSM–
Para2) is devoted to comparing the performance of the COS method, the SFP method, the SWIFT
method for long maturity call options. As we sometimes encounter these options in the insurance
and pension industry, it is worth testing our method against them. The parameters are retrieved
from Ortiz-Gracia and Oosterlee (2016) for the test. Finally, for the last numerical test (BSM–
Para3), we use the values of σ, r and q from Andricopoulos et al. (2003) and check for convergence
behaviour against a range of stock prices S0 from 80 to 120 for very short maturity vanilla call
options and their option Delta and Gamma. Our method is compared with the COS, filter-COS,
Lewis-FRFT and CONV methods. Reference values for all the tests are based on the BSM analytical
formula. In each numerical test, except for the third one, we declare 250 different option prices
within the range of either K or S0 to test the efficiency of our method and the others. We represent
all recovered PDFs via the SFP method in Figure 2 for all sets of parameters. We can see that the
non-smooth recovered PDF (top right) can be obtained via BSM–Para3. We set L = 10 in the
truncated interval proposed in Section 6. One should note that for the truncated interval in the
last numerical test BSM–Para3, we replace 0.5 with 0.1 in (76) (see Remark 2), as we want our
method to have higher accuracy and a better convergence rate. It is quite rare for the maturity
time to be infinitesimal as in BSM–Para3, but to demonstrate the efficiency of our method, it is
worth performing such a test.

All the tables in this section and the others suggest that the difference in the computational
time across methods is not large. It takes less than 0.1 seconds to approximate 250 option prices
for any method when N and U equal 64. Without considering the accuracy of the methods, this is
a quite reasonable time frame in which to produce a substantial number of option prices at once.
However, when we consider the error convergence and convergence rate of the methods, there are
sizeable differences among them. Figure 3 and its numerical presentation in Table 3 are dedicated
to the first numerical test (BSM–Para1). In this test, the SFP method has the smallest R∞ and
R2 errors, with R∞ and R2 less than 5.8e−13 as U = 64 when the strike increases from 1 to 200. It
also yields global spectral convergence against which none of the other methods can compete. This
suggests that the truncated range proposed in this paper can work over longer range than that
proposed in Fang and Oosterlee (2009a). In Table 4, we use the same parameters (BSM–Para1)
to examine the ability of the COS and SFP methods to price cash-or-nothing put options. Again,
the two methods can achieve very low convergence error and spectral convergence. Table 5 refers
to the third test (BSM–Para2) and replicates Table 3 in Ortiz-Gracia and Oosterlee (2016). In
this test, the SFP method impressively provides high accuracy over the SWIFT and COS methods
with fewer terms required. For example, when T = 50, we only need 32 terms to obtain the true
solution with 7-digit accuracy in the SFP method, whereas the other two require more terms to
obtain 1-digit accuracy. Finally, in the last test (BSM–Para4), as the cumulants are too small
to create a meaningful truncated range for the COS and filter-COS methods, we use (76) to allow
the method to generate relevant option prices. In Figure 4, the SFP method dominates the other
four methods to yield the global spectral convergence rate away from the jump, while the input
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Figure 2.: Probability density functions are generated by three sets of parameters: BSM–Para1 (top left),
BSM–Para3 (top right) and BSM–Para2 (bottom).
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Figure 3.: Error envelopes of the CONV, Lewis-FRFT, COS and SFP methods for pricing European deep
at/in/out-of-the-money put options under the BSM model with strikes increasing from 1 to 200. The number
of terms/grid points increases in a sequence of 8 (red line), 16 (blue line), 32 (green line) and 64 (black line).
Spectral convergence is observed in the SFP method. The parameters are taken from BSM–Para1.

non-smooth PDF (see top right, Figure 2) behaves like a Dirac Delta function1 and has an almost
infinitely thin spike near the origin. In Table 6, when we test the accuracy of the option prices
around/at the jump—S0 = 99.999—the SFP method dominate the other methods. It has zero
absolute error in the case of S0 = 95 and 6.269e − 05 error from the true solution in the case of
S0 = 99.999 when U = 64. This is in line with the findings of Driscoll and Fornberg (2011) as
the SFP offers 4-6 digit accuracy at the jumps when the function is very difficult. Obviously, the
non-smooth PDF in the last test is very difficult to approximate, as it behaves like a Dirac Delta.
Finally, using the same parameters of BSM–Para3, we recover the call Delta and Gamma via
the SFP approximant in Figure 5. In the graphs, the SFP provides a solution of extremely high
accuracy and global spectral convergence apart from the jump.

8.1.2. The Variance Gamma Model. A VG process (Madan and Seneta 1990, Madan and
Milne 1991, Madan et al. 1998) is an infinite activity Lévy process and is a subordinate version of
Brownian motion (cf. Cont and Tankov 2004). The most important feature of this model is that the
Brownian motion is evaluated in random time t∗ (determined by an independent increasing Lévy

1The Dirac Delta function is a generalised function or distribution on the real number line that is zero everywhere except at
zero.
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Table 3.: Comparison of the CONV, Lewis-FRFT, COS and SFP methods in error convergence and CPU
time for pricing European deep at/in/out-of-the-money put options under the BSM model. The range of
K is from 1 to 200. Spectral convergence is observed in the SFP method. The parameters are taken from
BSM–Para1.

CONV Lewis-FRFT
N R∞ R2 Time N R∞ R2 Time
8 20.49 180.1 0.00806 8 32.53 356 0.02111
16 6.292 53.54 0.00941 16 16.1 156.4 0.02525
32 1.998 13.83 0.01012 32 7.933 69.38 0.04571
64 0.5709 3.286 0.01641 64 4.765 38.81 0.09151

COS SFP
N R∞ R2 Time U R∞ R2 Time
8 5.046 10.06 0.00706 8 1.028e-01 5.893e-01 0.00901
16 5.109 8.447 0.00841 16 2.818e-04 1.559e-03 0.00951
32 5.111 8.449 0.01113 32 1.598e-09 3.732e-09 0.01312
64 5.111 8.449 0.01423 64 1.991e-13 5.801e-13 0.01731

Table 4.: Comparison of the COS and SFP methods in error convergence and CPU time for pricing European
cash-or-nothing put options under the BSM model. The range of K is from 80 to 120. Spectral convergence
is observed in the COS and SFP methods. The parameters are taken from BSM–Para1.

COS SFP

N R∞ R2 Time U R∞ R2 Time

8 6.395e-02 7.711e-01 0.00716 8 3.673e-03 3.974e-02 0.00901

16 2.562e-03 2.831e-02 0.00831 16 3.801e-06 2.646e-05 0.00931

32 7.681e-08 8.794e-07 0.01123 32 5.702e-12 2.668e-11 0.01342

64 1.772e-15 4.015e-15 0.01523 64 1.156e-14 2.297e-14 0.01791

Table 5.: Comparison of the COS, SWIFT and SFP methods in terms of absolute error for pricing a call
option under the BSM model. The reference values have been computed using the Black-Scholes analytical
formulae: 99.2025928525532000 (T = 50) and 99.9945609694213000 (T = 100). The SFP method is more
accurate than the others with fewer summation terms required. The parameters are taken from BSM–
Para3.

Method Error (T = 50) Error (T = 100)

SWIFT (m = 0) 1.91e− 01 2.50e− 05

COS (N = 35) 4.98e− 01 2.05e+ 02

SFP (U = 32) 2.653e− 07 7.067e− 08

SWIFT (m = 1) 7.78e− 09 3.20e− 06

COS (N = 70) 2.79e− 08 2.02e− 05

SFP (U = 64) 2.251e− 10 7.037e− 11

process—a Gamma process) rather than in calendar time t. Suppose that the VG process b(t∗; θ, σ)
is defined as θt∗ + σWt∗ , where the random time t∗ is given by a Gamma process Gamma(t; 1, υ)
with a unit mean and variance υ, θ is a drift at t∗, and Wt∗ denotes a standard Brownian motion.
Then, we define the stock price dynamics driven by the VG process as follows:

ST = S0e
(r−q−ω)t+θGamma(t;1,υ)+σWGamma(t;1,υ) , (98)
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Figure 4.: Error envelopes of the CONV, Lewis-FRFT, filter-COS and SFP methods when pricing European
at/around-the-money call options under the BSM model in an S0 range from 80 to 120. The number of
terms/grid points increases in a sequence of 8 (red line), 16 (blue line) and 32 (green line). In the SFP
method, spectral convergence is observed away from the jump. The parameters are taken from BSM–
Para4.

Table 6.: Comparison of the CONV, COS, filter-COS and SFP methods in terms of the absolute error for
pricing a call option under the BSM model. The reference values are 0 (S0 = 95) and 0.007491657716010
(S0 = 99.999). The SFP method is more accurate than the others with fewer summation terms required.
The parameters are taken from BSM–Para4.

S0 = 95 CONV filter-COS SFP S0 = 99.999 COS filter-COS SFP
N/U Error Error Error N/U Error Error Error

8 2.004e+01 5.099 2.813e-04 8 2.475e-01 4.482e-01 3.849e-02
16 1.940e+01 4.987 7.268e-08 16 1.307e-01 1.944e-01 4.704e-03
32 1.311e+01 5.001 0.000 32 7.008e-02 1.030e-01 3.473e-03
64 6.696 5.000 0.000 64 3.960e-2 5.587e-02 6.268e-05

and its characteristic function is given by

ϕ(u) = exp

(
iu(r − q − ω)t

)(
1

1− iθυu+ σ2υ
2 u2

) t

υ

, u ∈ R. (99)

Here ω = − 1
ν log

(
1− θυ − σ2υ

2

)
. The parameters for the experiments are selected from the fol-

lowings:

VG–Para1 : S0 = 100, σ = 0.12, θ = −0.14, ν = 0.2, r = 0.1, T = 0.1, q = 0, (100)

VG–Para2 : K = 1, σ = 0.1213, θ = −0.1436, ν = 0.1686, r = 0.03, T = 1, q = 0.01. (101)

The first set of parameters is chosen because relatively slow convergence was reported for the
CONV method for very short maturities in Lord et al. (2008). The last set is from Pistorius and
Stolte (2012), which originates from Madan et al. (1998). The reference values for these tests are
based on the VG analytical formula. We present all the recovered PDFs via the SFP method in
Figure 6, and the non-smooth recovered PDF (red line) can be obtained via VG–Para1. We set
L = 10 in the truncated intervals of (74) and (76). In first numerical test (VG–Para1), we check
for convergence behaviour against 250 different call prices within a range of K from 80 to 120
and then examine some individual call prices around/at the jump. Global spectral convergence
away from the jump is reported for the SFP method in Figure 7. In Table 7, when K = 90, the
SFP method can achieve 13 digits of accuracy with 128 terms required. This result is far better
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Figure 5.: Recovered call Delta ∆ (top left) and Gamma Γ (top right) via the SFP method under the BSM
model with strikes increasing from 80 to 120 and their corresponding error envelopes: Delta ∆ (bottom left)
and Gamma Γ (bottom right). The number of terms increases in a sequence of 8 (red line), 16 (blue line) and
32 (green line). In the SFP method, spectral convergence is observed away from the jump. The parameters
are taken from BSM–Para4.
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Figure 6.: Recovered density functions for the VG model are generated via two sets of parameters: VG–
Para1 (red line) and VG–Para2 (blue line).

than those of the other two methods, as they only achieve 4 or 5 digits of accuracy. In the same
test, Fang and Oosterlee (2009a) show that the COS method requires 1024 terms to achieve an
error difference of 2.52e− 08 from the true solution. Obviously, their result indicates that the COS
method cannot compete with the SFP method. When S0 = 102.336, the call price is measured
at the jump. We can see that the convergence rate of the call price becomes algebraic. Compared
with other methods, the SFP method is still more accurate with 6 digits of accuracy and only
128 terms required. This is in line with the finding in Driscoll and Fornberg (2011) that the SFP
method can yield 4-6 digits of accuracy at the jump if the function is very difficult. In the last
test (VG–Para2), we check for convergence behaviour against 250 call prices within a range of S0

from 0.5 to 2. Figure 8 and its numerical representation—Table 8—suggest that the COS and SFP
method have global spectral convergence when the PDF is smooth. However, the SFP method has
the highest accuracy in terms of R∞ and R2. Moreover, in the test, we notice that the COS method
yields less stable and accurate numerical results when it is used to approximate small values of
option prices.

8.1.3. The CGMY Model. The CGMY model was developed by Carr et al. (2002) and
can be seen as a generalisation of the VG model discussed above. Carr et al. (2002) introduced
the CGMY model as a class of infinitely divisible distributions (also known as tempered stable
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Figure 7.: Error envelopes of the CONV, filter-COS, COS and SFP methods for pricing European at/around-
the-money call options under the VG model. The strikes increase from 80 to 120. The number of terms/grid
points increases in a sequence of 8 (red line), 16 (blue line), 32 (green line) and 64 (black line). Apart from
the jump, spectral convergence is observed in the SFP method. The parameters are taken from VG–Para1.

Table 7.: Comparison of the COS, filter-COS and SFP methods in terms of absolute error for pricing
a vanilla call option under the VG model. The reference values are 10.993703186728190 (K = 90) and
0.689027011772653 (K = 102.336). The SFP method is more accurate than the others with fewer summation
terms required. The parameters are taken from VG–Para1.

K = 90 COS filter-COS SFP K = 102.336 COS filter-COS SFP
N/U Error Error Error N/U Error Error Error

8 5.783e-01 3.062e-02 5.256e-02 8 1.326 2.413 5.506
16 5.843e-02 3.152e-01 1.241e-04 16 4.185e-01 7.921e-01 5.435
32 1.405e-02 4.756e-02 2.221e-08 32 1.153e-01 2.488e-01 2.895e-04
64 1.603e-03 7.951e-04 1.401e-11 64 2.976e-02 6.836e-02 2.899e-05
128 4.281e-04 8.931e-05 5.755e-13 128 7.595e-03 1.762e-02 1.147e-06

processes; see Cont and Tankov 2004). The Lévy measure for the CGMY process is given by

ν(CGMY)(dχ) =

{
C exp(−G|χ|)/|χ|Y+1dχ, χ < 0,

C exp(−M |χ|)/|χ|Y+1dχ, χ > 0,
(102)

where C > 0, G > 0, M > 0, and Y < 2. The parameter Y captures the fine structure of the
process. For Y < −1, we obtain a compound Poisson process that has finite variation and finite
activity. However, when Y ∈ [0, 1), the process has infinite activity and finite variation, which is
similar to a VG process (we can see that when Y = 0, this process is equivalent to a VG process).
For Y ∈ [1, 2), the process has infinite activity and infinite variation. In this paper, we focus on a
CGMY process with Y ∈ (0, 2)/{1}, so its characteristic function is defined as follows:

ϕ(u) = exp

(
iu(r − q + ω) + CΓ(−Y )GY

((
1 +

iu

G

)Y
− 1− iuY

G

)

+ CΓ(−Y )MY

((
1− iu

M

)Y
− 1 +

iuY

M

))
. (103)

Here, ω = ϕ(−i). The parameters (CGMY–Para1) for the numerical test are drawn from Fang
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Figure 8.: Error envelopes of the CONV, Lewis-FRFT, COS and SFP methods for pricing European
at/around-the-money call options under the VG model in the range of S0 from 0.5 to 2. The number
of terms/grid points increases in a sequence of 8 (red line), 16 (blue line), 32 (green line) and 64 (black line).
Spectral convergence is observed for the COS and SFP methods. The SFP method has the highest accuracy.
The parameters are taken from VG–Para2.

Table 8.: Comparison of the CONV, Lewis-FRFT, COS and SFP methods in terms of error convergence and
CPU time for pricing European at/around-the-money call options under the VG model in the range of S0

from 0.5 to 2. Spectral convergence is observed in both the COS and SFP methods. The SFP method has
the highest accuracy. The parameters are taken from VG–Para2.

CONV Lewis-FRFT
N R∞ R2 Time N R∞ R2 Time
8 1.384 13.31 0.00816 8 3.147e-01 3.913 0.02111
16 5.933e-01 4.344 0.00941 16 1.506e-01 1.645 0.02625
32 1.161e-01 6.922e-01 0.01012 32 7.126e-02 6.727e-01 0.04571
64 7.092e-03 4.533e-02 0.01641 64 3.986e-02 3.245e-01 0.09151

COS SFP
N R∞ R2 Time N R∞ R2 Time
8 1.477e-02 1.292e-0 0.00716 8 2.174e-03 1.476e-02 0.00921
16 1.472e-03 1.131e-02 0.00841 16 5.234e-05 2.300e-04 0.00961
32 2.217e-05 1.596e-04 0.01223 32 2.409e-09 7.566e-09 0.01372
64 4.694e-08 2.857e-07 0.01413 64 1.541e-11 2.485e-11 0.01741

and Oosterlee (2009a) and defined as follows:

CGMY–Para1 :S0 = 100, C = 1, G = 5, M = 5, Y = 0.5 or 1.5 or 1.98, (104)

r = 0.1, T = 1, q = 0.

We evaluate the SFP method’s convergence rate for vanilla calls and puts under the CGMY model.
Almendral and Oosterlee (2007) and Wang et al. (2007) have reported that using the finite difference
method to solve partial differential integral equations to obtain option prices is difficult in cases
when Y ∈ [1, 2). Therefore, we evaluate the SFP method using Y = 0.5, Y = 1.5, and Y = 1.98
and compare the numerical results with those of the COS and CONV methods. For the cases of
Y = 0.5, and Y = 1.5, we compute the call reference values for the numerical experiments using
the COS method with N = 214. However, for the case of Y = 1.98, we use the SFP method with
U = 29 to generate the put reference values. We use L = 10 in the truncated interval of (74), as
all the input PDFs are smooth. In Figure 9, the recovered density functions for the three cases are
plotted. As when Y tends to 2, the tails of the PDF are fatter and heavier, and the centre of the
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Figure 9.: Recovered density functions (top) and their zoom (bottom) for the CGMY model generated via
the parameters CGMY–Para1.

Table 9.: Comparison of the CONV, COS and SFP methods in terms of absolute error for pricing vanilla
call options under the CGMY model with K = 100. The reference values are 19.812948843118576 (Y = 0.5)
and 49.790905468523860 (Y = 1.5). The SFP method is more accurate than others with fewer summation
terms required. The parameters are taken from CGMY–Para1.

Y = 0.5 CONV COS SFP Y = 1.5 CONV COS SFP
N/U Error Error Error N/U Error Error Error

8 2.320 4.443 2.984e-02 8 5.246 9.304e-01 3.020e-02
16 1.079 5.283e-01 3.163e-04 16 7.763e-01 2.863e-02 2.566e-05
32 8.172e-01 1.240e-02 2.608e-08 32 7.607e-01 1.240e-05 5.060e-10
64 2.089e-01 2.801e-05 7.687e-11 48 1.384 5.286e-12 8.527e-14

80 85 90 95 100 105 110 115 120
Strike

-14

-12

-10

-8

-6

-4

-2

0

lo
g 1

0
jE

rr
or

j

SFP

Figure 10.: Error envelopes of the SFP methods for pricing European at/around-the-money put options
under the CGMY model in a range of K from 80 to 120 when Y = 1.98. The number of terms increases in a
sequence of 8 (red line), 16 (blue line), 32 (green line) and 64 (black line). Spectral convergence is observed
in the SFP method. The parameters are taken from CGMY–Para1.

distribution shifts. Table 9 replicates Table 7 in Fang and Oosterlee (2009a). The table compares
our method with the CONV and COS methods, and we see that the SFP method can achieve better
accuracy than the other methods. For example, in the SFP method, when U equals 32 terms, the
error difference from the true values are 2.608e− 08 (when Y=0.5) and 5.060e− 10 (when Y=1.5).
The results are far better than those of other two methods with the same number of terms/grids.
Figure 10 is the graphical result for the test of Y = 1.98. In the test, we first generate 250 different
put prices in a range of strikes from 80 to 120 and check for the error convergence against the put
prices in the range. In Figure 10, we can clearly see that the SFP method obtains global spectral
convergence and fairly high accuracy.
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8.2. Affine Processes

Finally, for affine processes, we choose the Heston model and price calls using the following
parameters:

Heston–Para1 :S = 100, y0 = 0.0175, y = 0.0398, λ = 1.5768,

η = 0.5751, ρ = −0.5711, r = 0, T = 1 or 10 or 30 or 45, q = 0. (105)

Figure 11 presents the recovered density functions. It shows that T = 1 gives rise to a sharper
peaked density than T = 10, as expected. In this test, we compare the SFP method with the COS
method. Most of the reference values are generated via the COS method with N = 214. However,
when the option value is measured at the jump in the PDF, we generate the value using the SFP
method, as the reference value provided by other methods is not accurate. We use L = 12 in the
truncated intervals of (74) and (76). We replicate the numerical tests shown in Tables 4 and 5 of
Fang and Oosterlee (2009a) and display them in Table 11. In the original test, Fang and Oosterlee
(2009a) (see Appendix B, Table B1) report that the COS method has an algebraic convergence rate
in T = 1 and spectral convergence in T = 10 when they approximate the call values with a strike
of 100. They also suggest that the error convergence is very reasonable, e.g., the error difference is
3.17e− 07 with N = 192 in the test of T = 1 and 1.85e− 10 with N = 160 in the test of T = 10.
However, this seems not to be the case when we replicate these tests. Using Heston–Para1 and
the idea of the first and second cumulants to construct the truncated intervals (as suggested in Fang
and Oosterlee 2009a) for the Heston model, the PDF range is fairly large at [−11, 11]. According
to Fang and Oosterlee (2009a), this implies that more terms should be used to compensate for the
error convergence when the truncated interval is larger. It is not clear how Fang and Oosterlee
(2009a) obtain the results in Table B1 without requiring many terms, especially for the test of
T = 1.

Without making any changes, we follow the steps reported in Fang and Oosterlee (2009a) and
Ruijter et al. (2013) to compute the call prices via the COS method and the filer-COS method,
respectively, and compare their error convergence results with those of the SFP method. In Table
10, the SFP method provides roughly 8 digits of accuracy in the case of T = 1 and 10 digits of
accuracy in the case of T = 10 with only 128 terms required. This is an immense improvement
over the other methods, which provide only 1-2 digits of accuracy with the same number of terms.
Furthermore, if we compare our results with those shown in Tables 4 and 5 of Fang and Oosterlee
(2009a) (see Appendix B, Table B1), our method yields better convergence. As the PDF is non-
smooth when T = 1, we compare the COS, filter-COS and SFP methods in terms of absolute
error for pricing call options around/at the jump. When K = 50, the SFP method has 14 digits of
accuracy, but the other two methods gain only 4 digits of accuracy with 256 terms required. When
K = 105.453, the option price is at the jump. The call price generated by the SFP can reach 4 digits
of accuracy. This is in line with the finding of Driscoll and Fornberg (2011). Finally, the last test
replicates Table 3 in Ortiz-Gracia and Oosterlee (2013). In the test, the authors compare the error
convergence of the Haar wavelets method and the COS method when they price call options with
long maturities. They selected maturities T = 30 and T = 45, which may correspond to pensions
or mortgage contracts. Table 12 lists the error convergence results from Table 3 in Ortiz-Gracia
and Oosterlee (2013) and compares them with those produced by the SFP method. As we see in
the table, the SFP method yields better and faster error convergence than the other methods. For
example, the absolute error of the SFP method is roughly 3.000e−06 for both T = 30 and 45 with
U = 64, but those of other two methods are range from 2.46e − 03 to 9.68e − 01 in both cases
under the same conditions.
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Figure 11.: Recovered density functions for the Heston model generated via the parameters Heston–Para1.

Table 10.: Comparison of the CONV, COS, filter-COS and SFP methods in terms of absolute error for
pricing a call option under the Heston model with K = 100. The reference values are 5.7851554534076321
(T = 1) and 22.318945791154533 (T = 10). The SFP method is more accurate than the others with fewer
summation terms required. The parameters are taken from Heston–Para1.

T = 1 COS filter-COS SFP T = 10 CONV COS SFP
N/U Error Error Error N/U Error Error Error

8 19.77 24.44 2.568 8 21.65 23.17 5.557
16 9.148 13.73 1.111e-01 16 15.65 18.79 4.555e-01
32 3.096 5.843 4.725e-02 32 7.721 12.01 2.178e-04
64 6.381e-01 1.752 1.262e-04 64 1.878 4.779 3.231e-05
128 2.685e-02 2.68e-01 1.331e-08 128 7.969e-02 7.982e-01 7.529e-10

Table 11.: Comparison of the COS, filter-COS and SFP methods in terms of absolute error for pricing a call
option under the Heston model with T = 1. The reference values are 50.070539139715081 (K = 50) and
3.181555642433310 (K = 105.453). The SFP method is more accurate than others with fewer summation
terms required. The parameters are taken from Heston–Para1 .

K = 50 COS filter-COS SFP K = 105.453 COS filter-COS SFP
N/U Error Error Error N/U Error Error Error

8 5.031 8.546 3.514e-01 8 19.71 24.37 2.608
16 8.763e-01 1.202 1.047e-02 16 9.163 13.71 12.81
32 4.861e-01 1.197 6.327e-06 32 3.201 5.902 4.681
64 3.715e-02 9.661e-02 1.861e-08 64 7.801e-01 1.888 3.649e-02
128 6.003e-03 2.361e-02 2.467e-11 128 1.003e-01 3.941e-01 1.001e-03
256 3.922e-04 2.363e-04 8.527e-14 256 3.722e-03 3.801e-02 1.898e-04

Table 12.: Comparison of the COS, Haar wavelet and SFP methods in terms of absolute error for pricing a
call option under the Heston model. The reference value is computed via the COS method using 50000 terms.
The SFP method is more accurate than the others with fewer summation terms required. The parameters
are taken from Heston–Para1.

T=30 T=45
Haar COS SFP Haar COS SFP

scale error N error U error scale error N error U error
3 2.58e+02 8 1.72e+06 8 3.783 3 3.92e+02 8 3.19e+07 8 2.584
4 2.72e+00 16 2.75e+05 16 2.259e-01 4 1.09e+01 16 5.45e+06 16 2.953e-01
5 7.94e-01 32 2.19e+03 32 3.981e-04 5 5.99e-01 32 3.10e+04 32 9.438e-04
6 2.46e-03 64 3.37e-01 64 1.353e-06 6 1.05e-02 64 9.68e-01 64 3.049e-06
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9. Conclusion and discussion

In this paper, we illustrate how to use the SFP method (cf. Driscoll and Fornberg 2001, 2011)
as an alternative approach to hedging and pricing European-type options. We provide an error
analysis to show that a good truncated interval can yield the highest accuracy of the method and
theoretically prove that the approximate values generated by the method can trend towards the true
option prices. Through the numerical experiment results, we first show that the SFP method has the
ability to price any European-type option with the features of deep in/out of the money and/or
very long/short maturities. Second, compared with other numerical methods of option pricing,
we show that the SFP method can has faster error convergence with fewer partial summation
terms required, and it remains consistently accurate when approximating large and small option
prices. Third, it does not require a scale or damping factor to adjust its accuracy, e.g., as in the
SWIFT, CONV and filter-COS methods. Finally, when PDFs are smooth, the method exhibits
global spectral convergence. When PDFs are not smooth, it achieves global spectral convergence
except at the jumps. Nevertheless, the results indicate that the SFP method offers 4–6 digits of
accuracy at the jumps. This is indeed in line with the findings of Driscoll and Fornberg (2011).

Although the theoretical analysis/numerical results presented here have demonstrated the ef-
fectiveness of the SFP method. Further work might proceed in three ways. First, the creation of
the truncated interval (76) for a non-smooth PDF relies on a process of trial and error. In the
future, a more theoretical, accurate algorithm for creating truncated intervals should be used for
all non-smooth PDFs. Second, whether the SFP method can be applied to price European spread
options is an interesting research question, as the SFP worked well in with one dimension (one as-
set). Finally, our ultimate goal is to extend the method to price options with early exercise and/or
path-dependant features.
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Appendix A:

In Table A1, we show the first c1, second c2, and fourth c4 cumulants of the BSM, VG, CGMY
and Heston models. However, as Fang and Oosterlee (2009a) suggest, due to the lengthy represen-
tation of c4, we only present the first two cumulants of the Heston model. Given the characteristic
functions, the cumulants can be generally computed using

cn =
1

in
∂n logϕ(z)

∂zn

∣∣∣∣
z=0

.

Table A1.: The first c1, second c2, and fourth c4 cumulants of various models

Lévy Models
BSM c1 = (r − q + ω)t c2 = σ2t, c4 = 0, ω = −0.5σ2

VG c1 = (r − q + θ + ω)t
c2 = (σ2 + υθ2)t
c4 = 3(σ4υ + 2θ4υ3 + 4σ2θ2υ2)t
ω = 1

υ log(1− θυ − σ2υ/2)
CGMY c1 = (r − q + ω)t

c2 = (CΓ(2− Y )(MY−2 +GY−2)t
c4 = (CΓ(4− Y )(MY−4 +GY−4)t

ω =
(
CΓ(−Y )GY

((
1 + 1

G

)Y − 1− Y
G

)
+ CΓ(−Y )MY

((
1− 1

M

)Y − 1 + Y
M

))
Affine Processes

Heston c1 = (r − q)t+ (1− e−λt) ȳ−y02λ − 0.5ȳt

c2 = 1
8λ3

(
ηtλ exp(−λt)(y0 − ȳ)(8λρ− 4η)+

λρη(1− e−λt)(16ȳ − 8y0) + 2ȳλt(−4ρη + η2 + 4λ2)+

η2((ū− 2u0)e−2λt + ȳ(6e−λt − 7) + 2y0) + 8λ2(y0 − ȳ)(1− e−λt)
)

Appendix B: Absolute error convergence for the COS method for calls under the
Heston model

Table B1.: Absolute error convergence for the COS method for calls under the Heston model with T = 1
and T = 10. Reference values are 5.785155450. . . (T = 1) and 22.318945791. . . (T = 10).

T = 1 T = 10
N Error N Error
64 4.92e-03 32 7.40e-03
96 2.99e-04 64 5.02e-05
128 1.94e-05 96 1.40e-07
160 2.99e-06 128 4.92e-10
192 3.17e-07 160 1.85e-10
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