
ENTERPRISE ADOPTION ORIENTED CLOUD COMPUTING
PERFORMANCE OPTIMIZATION

Moustafa Noureddine

A thesis submitted in partial fulfilment of the requirements of the University of East

London for the degree of Doctor of Philosophy

April 2014

2

Abstract

Cloud computing in the Enterprise has emerged as a new paradigm that brings both business

opportunities and software engineering challenges. In Cloud computing, business

participants such as service providers, enterprise solutions, and marketplace applications

are required to adopt a Cloud architecture engineered for security and performance. One

of the major hurdles of formal adoption of Cloud solutions in the enterprise is performance.

Enterprise applications (e.g., SAP, SharePoint, Yammer, Lync Server, and Exchange Server)

require a mechanism to predict and manage performance expectations in a secure way. This

research addresses two areas of performance challenges: Capacity planning to ensure

resources are provisioned in a way that meets requirements while minimizing total cost of

ownership; and optimization to authentication protocols that enable enterprise applications

to authenticate among each other and meet the performance requirements for enterprise

servers, including third party marketplace applications. For the first set of optimizations, the

theory was formulated using a stochastic process where multiple experiments were

monitored and data collected over time. The results were then validated using a real-life

enterprise product called Lync Server. The second set of optimizations was achieved by

introducing provisioning steps to pre-establish trust among enterprise applications servers,

the associated authorisation server, and the clients interested in access to protected

resources. In this architecture, trust is provisioned and synchronized as a pre-requisite step

3

to authentication among all communicating entities in the authentication protocol and

referral tokens are used to establish trust federation for marketplace applications across

organizations. Various case studies and validation on commercially available products were

used throughout the research to illustrate the concepts. Such performance optimizations

have proved to help enterprise organizations meet their scalability requirements. Some of

the work produced has been adopted by Microsoft and made available as a downloadable

tool that was used by customers around the globe assisting them with Cloud adoption.

4

Table of Contents
ABSTRACT .. 2

LIST OF TABLES ... 6

LIST OF FIGURES ... 7

CHAPTER 1: INTRODUCTION ... 8

1.1 MOTIVATION ... 8

1.2 RESEARCH METHODOLOGY ... 10

1.3 SUMMARY OF CONTRIBUTIONS ... 11

1.4 PLAN OF THE RESEARCH ... 13

CHAPTER 2: LITERATURE REVIEW ..15

2.1 CAPACITY PLANNING ... 15

2.1.1 Introduction .. 15

2.1.2 Literature Review of Capacity planning in the Cloud ... 16

2.1.3 Dynamic Capacity Allocation .. 19

2.1.4 Static Capacity Allocation ... 21

2.2 CLOUD AUTHENTICATION ... 24

2.2.1 Introduction .. 24

2.2.2 Analysis of Single-Sign-On (SSO) and Federated Identity Management (FIM) 26

2.2.3 OpendID ... 31

2.2.4 SAML .. 35

2.2.5 OAuth 2.0 ... 39

2.3 CONCLUSION OF LITERATURE REVIEW ... 45

CHAPTER 3: CAPACITY PLANNING USING MODALITY COST ANALYSIS ...47

3.1 INTRODUCTION AND MOTIVATION ... 47

3.2 MEDIA APPLICATIONS PERFORMANCE .. 48

3.3 MODALITY COST ANALYSIS (MCA) METHODOLOGY .. 49

3.4 EXPERIMENTS AND RESULTS ... 54

3.5 VALIDATION METHODOLOGY .. 59

3.6 HARDWARE BENCHMARKS ... 67

3.7 CONCLUSION ... 70

CHAPTER 4: LYNC SERVER CAPACITY PLANNING CALCULATOR ...72

4.1 OVERVIEW .. 72

4.2 USING THE CAPACITY CALCULATOR .. 74

4.2.1 Instant Messaging and Presence .. 76

4.2.2 Enterprise Voice .. 76

4.2.3 Conferencing .. 77

4.2.4 Voice Applications .. 78

5

4.3 ADJUSTING FOR PROCESSORS’ VARIATIONS ... 80

4.4 EXAMPLE CALCULATING NEEDED RESOURCES ... 81

CHAPTER 5: PERFORMANCE OF CLOUD AUTHENTICATION ..87

5.1 INTRODUCTION TO CLOUD AUTHENTICATION ... 87

5.2 OAUTH OPTIMIZATION FOR ENTERPRISE ADOPTION .. 89

5.3 CASE STUDY .. 92

5.4 CONCLUSION ... 97

CHAPTER 6: FEDERATION IN THE ENTERPRISE ...98

6.1 INTRODUCTION TO CLOUD FEDERATION .. 98

6.2 MARKETPLACE AS A SERVICE MAAS ... 100

6.3 ENTERPRISE FEDERATION ... 102

6.4 FEDERATION CASE STUDY ... 106

6.5 CONCLUSION ... 115

CHAPTER 7: CONCLUSION .. 116

7.1 SUMMARY .. 116

7.2 LIMITATIONS & FUTURE WORK ... 117

REFERENCES .. 118

6

List of Tables

Table 1: Main Authentication Protocols .. 26

Table 2: Authentication Protocols ... 44

Table 3: Experiment I Results .. 56

Table 4: Experiment II Results ... 57

Table 5: Experiment III Results .. 57

Table 6: Experiment IV Results .. 58

Table 7: MCA-S Experiment Results .. 63

Table 8: MCA-M Experiment Results ... 64

Table 9: MCA-L Experiment Results .. 65

Table 10: Benchmarking example modalities .. 69

Table 11: Server CPU Capacity Calculations .. 82

Table 12: Audio/Video CPU Capacity Calculations .. 85

Table 13: Resource Server (SharePoint) Table .. 93

Table 14: Authorisation Server (AS1) Table ... 93

Table 15: Client Table (SAP) ... 94

Table 16: The Modified Protocol Access Token Parameters ... 96

Table 17: Authorisation Server (AS1) .. 107

Table 18: Access token parameters for the modified protocol ... 109

Table 19: Authorisation Server (AS1) Table Supporting Identity Federation .. 110

Table 20: Results of Case Study ... 112

7

List of Figures

Figure 1: OpenID Protocol Flow... 33

Figure 2: SAML Protocol Flow .. 38

Figure 3: OAuth 2.0 Protocol Flow .. 42

Figure 4: CPU utilization .. 50

Figure 5: Memory utilization ... 51

Figure 6: Bandwidth utilization ... 52

Figure 7: Lync Server Stress Tool GUI .. 60

Figure 8: CPU average for each server .. 62

Figure 9: Lync Server Capacity Planning Calculator ... 75

Figure 10: OAuth 2.0 Protocol Flow .. 90

Figure 11: OAuth 2.0 Modified Flow ... 91

Figure 12: UML Sequence Diagram of a marketplace application .. 104

Figure 13: Overall view of the proposed authorisation model ... 106

file:///C:/Users/monoured/Desktop/Thesis-Final-viva%20v3.docx%23_Toc391300581

8

Chapter 1: Introduction

1.1 Motivation

Adoption of Cloud computing model can only become a viable alternative for large

enterprises if these infrastructures can provide proper levels of performance that assure

quality and guarantee service level agreements are met. An enterprise that focuses on

moving to the Cloud needs to know and apply the proper configuration to provide the right

levels for individual services if they are deployed in the Cloud (Noureddine & Bashroush,

2011). Security, availability, performance, and privacy are examples of many metrics that

are important for an enterprise to ensure a successful migration to the Cloud. This research

covers an important metric necessary for Cloud adoption—performance optimization to

guarantee service license agreements (SLAs). In order to guarantee performance SLAs,

service providers in the Cloud tend to over-provision expensive resources. This is done

mainly due to the lack of tools that guide such optimization of performance and cost, and

SLA violations are costly for Cloud-hosted applications. This research addresses these issues

by providing a methodology to help enterprises to make informed decisions with respect to

the right level of resource provisioning and optimizing server-to-server authentication

mechanisms for Cloud authentication and federation.

The first research area demonstrates a tested methodology to guide resource provisioning

decisions for datacentre providers. In this research, a systematic methodology is presented

9

to approximate the performance predicted from each modality (e.g., instant messaging and

voice calls). The methodology is based on the representation of resource cost per modality.

Subsequently, the research presents how the estimate of the expected application

performance could guide resource provisioning decisions. The methodology is illustrated

through various case studies using a commercially available media application, the Microsoft

Lync Server.

Secondly, in addition to capacity planning, in order to further encourage enterprise adoption

of Cloud services, providers need to ensure adequate and secure architecture is

implemented with minimal performance overhead. Today, most large Cloud providers use

OAuth (Open Authentication) to enable authentication in the Cloud. OAuth protocol was

published in December 2007 and quickly became the industry standard for web-based

access delegation (Yang & Manoharan, 2013), (Pai, et al., 2011). However, OAuth faced

many challenges to enter the enterprise domain, mainly due to the lack of performance

capabilities currently offered by the protocol. In this research, optimization to OAuth is

introduced where the Authorisation Server is provisioned with an explicit authorisation table

so that servers can act on behalf of users and reduce per-client round trip to OAuth

authorisation server. This reduces the amount of processing for some popular protected

resources and alleviates the risk of potential threats such as Denial-of-Service (DoS) attacks

(Symantec, 2010) and Distributed DoS (DDoS) attacks (Chao-yang, 2011)

10

With the combination of optimal hardware resource provisioning and reduced

authentication overhead, Cloud providers can minimize the cost, guarantee SLAs, and secure

access to data resources, all of which are key aspects for enabling better Cloud adoption in

the Enterprise.

1.2 Research Methodology

In the early stages of this research, a hypothesis is developed to solve the issues related to

performance for enterprise adoption of Cloud computing. The hypothesis calls for a

methodology to estimate hardware resources cost for cloud applications to ensure service

level agreements are met.

Two sets of experiments are performed. In the first set of experiments, the resource

overhead for four modalities are measured in isolation, namely instant messaging, Voice

over IP (VoIP), application sharing conference, and address book download. In the second

set, the resource overhead for three scenarios that combine all of the four modalities

together are measured simulating a real end user experiment. The second set of

experiments is used to validate the hypothesis. Each set of experiments are run for several

hours where data is collected every hour. The hardware for both set of experiments were

fixed: A server with dual processors quad-core 2.0 GHz (2,000 megacycles per second), 16

gigabytes of memory, 30GB disk space, and 2-port 1 gigabit per second network adapter.

The results of the experiments showed that there is possible to calculate capacity using the

developed methodology. To further validate the methodology, Office Lync Server is

11

deployed on the fixed experiment hardware server, and a simulation tool representing users

accessing the server is developed for these experiments. The results show that the

methodology is valid for production software.

1.3 Summary of Contributions

The key contributions of this research are in presenting methodologies that will allow the

Enterprise to adopt Cloud Computing, the contributions are summarized in four different

areas:

1. Develop a methodology for capacity planning to estimate the resources needed of

the Cloud service providers, this will reduce total cost of ownership and guarantees

service level agreements are met.

2. Develop the Lync Server Capacity Calculator as a tool to guide the resources needed

to host Lync Server in the Cloud.

3. Optimization to OAuth authentication mechanisms to make it more suitable for

Enterprise adoption, with focus on server-to-server authentication. Such

optimization will enable large enterprise organizations to meet the performance and

scalability expectations when hosting hundreds of millions of users.

4. Optimization to authentication mechanisms to enable cloud federation with focus

on marketplace (third party) applications. Such optimization will enable large

12

enterprise applications to meet performance expectations when serving large

numbers of third party applications across multiple federated organizations.

The following is a list of publications made on the findings of this research:

1. M. Noureddine, R. B. (2013). An Authentication Model towards Cloud Federation

in the Enterprise. Journal of Systems and Software.

2. M. Noureddine, R. B. (2011). A Performance Optimization Model towards OAuth

2.0 Adoption in the Enterprise. Proceedings of the 7th International Conference

on Global Security, Safety & Sustainability (ICGS3). Greece.

3. M. Noureddine, R. B. (2011). A provisioning model towards OAuth 2.0

performance optimization. IEEE 10th International on Cybernetic Intelligent

Systems (CIS), (pp. 76-80).

4. M. Noureddine, R. B. (2011). Cost Effective Datacentre Capacity Planning Analysis

Using Modality Cost Methodology. Ubiquitous Computing and Communication

Journal (UBICC).

5. M. Noureddine, R. B. (2011). Modality cost analysis based methodology for cost

effective datacentre capacity planning in the cloud. Special Issue on the

International Conference on Information and Communication System, ICIC.

6. M. Noureddine, R. B. (2011). Modality Cost Analysis: A Methodology for Cost

Effective Datacentre Capacity Planning in the Cloud. International Conference on

Information and Communication systems (ICICS).

13

7. R. Bashroush, M. N. (2012). A Cost Effective Cloud Datacentre Capacity Planning

Method Based on Modality Cost Analysis. International Journal of

Communication Networks and Distributed Systems.

8. R. Bashroush, M. N. (in review). Predictive Cloud Service Management for

Optimizing Energy Efficiency: A Modality Based Approach, IEEE Transactions on

Network and Service Management (in review)

9. M. Noureddine, R. B. (in review). Capacity Planning Analysis and Workload

Prediction for Lync Server, IEEE Transactions on Dependable and Secure

Computing (progressed to second round of reviewing)

1.4 Plan of the Research

The thesis is structured in the following way:

Part I: Introduction

 Chapter 1: Problem statement and contribution

 Chapter 2: Literature Review

Part II: Capacity Planning

 Chapter 3: Capacity planning using modality cost analysis methodology

 Chapter 4: The Lync Server capacity planning calculator

Part III: Cloud Authentication Optimization

 Chapter 5: Performance of Cloud authentication

 Chapter 6: Federation in the Enterprise

14

Part IV: Conclusion

 Chapter 7: Conclusion and Future Work

Chapter 1 introduces the challenges with enterprise adoption of Cloud computing,

summarizes the contributions and lists out the recent publications. Chapter 2 covers the

literature review and organizes them into two main subsections, literature review for the

capacity planning research area and literature review for Cloud authentication protocols and

includes a survey of most popular authentication protocols including their strengths and

weaknesses. Chapter 3 covers the methodology developed in this research to help Cloud

providers ensures the optimal level of resources are used to serve the needs of their hosted

customers while Chapter 4 illustrates the Capacity Planning Calculator tool developed out

of this research to help guide the resource allocation for Lync Server. Chapter 5 discusses

the performance of Cloud authentication and the optimization developed in this research to

address the enterprise challenges with adopting authentication protocols. Chapter 6 builds

on chapter 5 and extends the optimization to cover cloud federation for marketplace

applications. At last, chapter 7 provides conclusion remarks with a summary and future

work.

15

Chapter 2: Literature Review

2.1 Capacity Planning

A series of data centre capacity planning methods have been proposed to minimize resource

utilization while guaranteeing service level agreements (SLAs). The goal of this research area

is to help Cloud service providers to provision hardware resources while maintaining

performance expectations. This literature review considers current approaches to Cloud

capacity planning schemes. This consideration is beneficial to Cloud providers interested in

reducing total cost while guaranteeing performance expectations.

2.1.1 Introduction

Cloud computing provides an advantage for companies and institutions that rely on a grand

scale IT operations in a cost effective way. The early Cloud-based models have enabled the

enterprises to access more computing resources and more services at an attractive price

model to reduce total cost of ownership (TCO) (Sukumar, 2011). The Cloud architectures are

designed in a way that multiple services as IaaS (Infrastructure as a Service), PaaS (Platform

as a Service), and SaaS (Software as a Service) are provided to a large set of consumers in a

shared set of hardware resources. In Cloud models, the jobs initiated by the customers are

16

allocated with a set of physical or virtual servers that run in the datacentres. These servers

are available in different types with varying capabilities such as number of processors,

different network bandwidth, different ranges of memory, and different storage capacity.

The capacity planning process is one of the modern fields of interest for Cloud computing,

and it is used for estimating the efficiency of the Cloud operations. Ad-hoc or intuitive

resource allocation processes can drive the Cloud network towards an operational failure

due to missed SLAs or wasted resources due to over-provisioning. Therefore, it is the

responsibility of Cloud service providers to ensure appropriate resources are allocated to

each customer to guarantee acceptable performance of their products. Many Cloud

providers misunderstand the relationship between capacity planning and performance

tuning (Allspaw, 2008). While they affect each other significantly, they have different goals.

Performance tuning optimizes an existing system for better performance, while capacity

planning determines what the system needs while maintaining the performance baseline. In

this chapter, a summarized number of the well-known capacity planning models are

presented, and an evaluation of the known strength and weaknesses in the context of

capacity planning for Cloud providers are discussed.

2.1.2 Literature Review of Capacity planning in the Cloud

Cloud computing offers the facility to utilize shared hardware and software resources and

common infrastructure, offering services on demand over the network to execute

17

operations that meet changing and evolving business requirements. The location of physical

resources and devices being accessed are typically not known to the end user. Cloud

providers such as Amazon EC2 (IaaS), Azure (PaaS), and Google (SaaS) are transforming

labour intensive, hard-coded systems into shared, automated, and fully managed adaptive

services which promise great opportunities for reducing energy and hardware costs (Lenk,

et al., 2009). These providers need to provision hardware resources to meet required

capacity. Required capacity is the minimum amount of capacity needed to satisfy resource

demands for workloads on a server resource (Rolia, et al., 2005). An important issue is how

various server resources may be allocated to an application such that the service level

agreements (SLAs) are met while minimizing the cost. Using heuristic and intuitive

methodology usually leads to more resources than are actually necessary. While such over-

provisioning may guarantee performance, this guarantee may come at a very high cost. A

capacity planning model may guide the Cloud service provider in making informed decisions

about the right level of resources, so that acceptable service performance may be provided

in a cost-effective manner. There are various research areas that provide guidance for Cloud

providers to allocate the right capacity and minimize hardware resource utilization. They

can be broken into two main areas, 1) dynamic capacity allocation (Simmons, et al., 2007),

(Ye Hu, 2009), and 2) static capacity allocation (Zhu, et al., 2008), (Daniel Gmach, 2007),

(Madhukar R. Korupolu, 2009), (Hasselmeyer & d'Heureuse, 2011).

18

In dynamic capacity allocation, the resources are allocated dynamically as needed and

demand peaks, while, in statistic allocation, the needs are pre-estimated and expected

resource requirements are preconfigured until the requirements or demand of the

application is planned to change. For example, if an application is expected to have a

response time of less than t seconds and if the workload is expected to increase then the

required computing resources will increase accordingly to ensure response time remains <

t. One approach for ensuring the satisfaction of the computing needs of a particular

application is to provide enough resources for the anticipated peak demand (static

allocation). Alternatively, in dynamic allocation, the resources are dynamically allocated as

needed and de-allocated from a hardware resource when the demand for the applications

is decreased.

Both dynamic and static allocation models research areas cover virtualization and

virtualization overhead such as in (Chris Matthews, 2009), (Yexi Jiang, 2013), and shared

resource pools vs. dedicated resource pools (Zhiliang Zhu, 2011) (Menasce & Bernnani,

2006). The next sections analyse various dynamic and static capacity planning research

areas.

19

2.1.3 Dynamic Capacity Allocation

Every Cloud provider facility, composing of data centres, servers, tooling and fixtures, etc.,

has a limited amount of capacity. Effective consumption and management of production

resources have significant implication to the profitability of the organization. Capacity

planning helps in laying the base for all resource optimization activities. However, due to the

fluctuation of’ demand pattern, a Cloud provider may experience unexpected utilization

caused by fluctuating demands. The ability to response to the dynamic demand and product

mix changes has become a key competitive advantage, even at the short term and long term

capacity planning arena. Much of the research in this field is at its early phases with respect

to the understanding of effective allocation of the dynamic resources for optimal utilization

in Cloud data centres. Yagiz Onat Yazir et.al (Yagiz Onat Yazir, 2010), have proposed a new

approach for dynamic independent resource management in Cloud computing. It is a two-

phase work. In the first phase, the resource management is allocated into independent

tasks, which is done by independent node agents which are lightly coupled with the physical

machines in the data centre. In the second phase, the autonomous node agents run the

configuration in parallel through multiple threads that process decision analysis. Their

approach claims to have a positive reflection on feasibility, scalability, and flexibility. T.R.

Gopalakrishnan et.al (Gopalakrishnan & Vaidehi, 2011) developed a Rule Based Resource

allocation model (RBRAM). It is a time-marching model that processes Supply-Demand

analysis of the resources. These analyses have shown improved performance of the system,

20

achieved through allocating the right resources to the Cloud at the right time. Daniel

Warneke and Odej Kao (Warneke & Odej, 2011) have designed a data processing framework

and have compared it with other data processing framework. The research they proposed

clearly takes advantage of the dynamic resource allocation offered by Infrastructure as a

Service (IaaS) Cloud for task scheduling and execution. Jiayin et.al (Jiyin Li, 2010), have

proposed a Cloud capacity planning system that uses adaptive resource allocation with

preconfigured tasks. The algorithms in this research adjust the resource allocation

dynamically based on the progress of the actual task completion. Therefore, they are able

to improve utilization by predicting next in line task requirements. Graham Kirby et.al

(Graham Kirby, 2010) designed an ad hoc Cloud model. Their research shows that the

proposed model is performance resilient and self-managing where it can balance potentially

conflicting objectives. The authors claim that their ad-hoc Cloud model allows complex

Cloud style applications to utilize unused resources on hardware allocated in the datacentre.

Another area of research on dynamic capacity allocation looks at specific application type.

Peter Bodík et.al (Peter Bodík, 2009) research discusses methodologies for training and

tuning data centre performance. It focuses on online training without violating the SLA in

place. Mainly, it identifies the challenges in offline training, for example, not necessarily

reflecting the capacity of application in production, and that the performance profile

changes regularly because of changes of how applications are used. In this research, the

authors propose to train the performance model using an exploration method that quickly

collects data from various performance regimes of the application. The methodology

21

claimed in the research provides an exploration process to strike a balance between not

violating the performance SLAs and the need to collect sufficient data to train an accurate

performance model, which requires pushing the system close to its capacity. By using this

exploration policy, they can train a performance model of a Web 2.0 application in less than

an hour and then immediately use the model in a resource allocation controller. In this

research, analysis is provided of how the resources in a Cloud computing infrastructure may

be managed in a cost efficient manner to reduce the total cost of ownership, similar research

focuses on e-Commerce applications exclusively (Gokhale, 2008), (Lu & Gokhale, 2006).

2.1.4 Static Capacity Allocation

Static allocation of hardware resources is a method for forecasting resources demands

upfront. This method calls for a solution that ensure SLAs for applications in changing

datacentre conditions while hiding the complexity from the owners or administrators of the

datacentre and the application owners. Service providers, today, achieve this through virtual

resources or physical resources. Virtualization technologies promise great opportunities for

reducing energy and hardware costs through server consolidation (Song, et al., 2008) (J.

Zhang, 2007). In addition, virtualization can optimize resource sharing among applications

hosted in different virtual machines to better meet their resource needs. However, to safely

transition and correctly estimate and predict the required capacity, service providers need

to estimate the additional resource requirements incurred by virtualization overheads. In

(Wood, et al., 2008), the authors provide a model for such estimation. In this research, they

22

design a methodology for estimating the additional requirements when transferring an

application to virtual servers. The methodology has two key components: A set of micro-

benchmark to assess the various types of overhead caused by virtualization on a given

configuration, and another model to assess regression when virtualization is used. Their

experiments show impressive results predicting requirements within 5% median error. The

focus of their research is on CPU requirements due to the virtualization overhead. These

findings provide a methodology for Cloud providers interested in virtualizing datacentres to

assess additional capacity needed to make a move to the Cloud without excessively over-

provisioning resources.

In (Zhu, et al., 2008), the authors look at analysing various workload requirements per

application. In this research, the authors consider the issues of workload analysis, capacity

planning, and performance modelling with a goal to automate the use of resource machines

that are serving a large numbers of enterprise services. They provide a three tier approach

that relies on the following:

1. The classification of workload demand configurations

2. The simulation of synthetic workloads that help predict future demands based on

the configurations

3. A capacity placement recommendation service.

The accuracy of capacity planning predictions depends on the ability to depict capacity

demand patterns, to recognize trends so that future demands are predicted, and to align

business forecasts so that future demands are well understood. A capacity analysis

23

determines the peak and repetitive nature of enterprise expectations. Resources are

automatically classified according to their expected behaviour based on the periodic model.

The repeated occurrences are evaluated for similarities. Synthetic transactions and

workloads are produced in a manner that mimics peak, periodic nature, and trending

behaviour of the various resources. In addition, the authors illustrate these analysis in a case

study that involves running 6 months of data for 139 enterprise applications used to apply

and evaluate the enterprise capacity analysis and related capacity planning approaches. The

results show that such approach is great for predicting the required capacity with little risk.

In (Bashroush & Noureddine, 2012), the research area provides a quantitative measurement

of the resource cost (CPU, memory, storage, and network bandwidth) imposed by each of

the modalities of the application, in isolation, allowing organizations to make informed

decisions with respect to the right level of resource provisioning. The objective of the

research is to illustrate a tested methodology to guide resource provisioning decisions. It

presented a systematic methodology to estimate the performance expected from each

modality based on the representation of resource cost per modality. Subsequently, the

research discussed how the estimate of the expected application performance could guide

resource provisioning decisions. The research illustrated the methodology using a case study

of commercially available media application, the Microsoft Lync Server 2010 (Noureddine &

Bashroush, 2011), (Noureddine & Bashroush, 2011), (Noureddine & Bashroush, 2011). Then

it validated the performance estimation and resource provisioning methodology using a

validation software tool to simulate a realistic workload against a production datacentre

24

with all the modalities working together. The results can guide providers into provisioning

datacentres for optimizing performance and cost. By profiling the application into a set of

modalities and measuring hardware resources cost in isolation, Cloud providers should be

able to pinpoint their capacity to exact needs without wasting expensive resources. The

experiments provided in this research represented various application profiles. The results

showed that measuring modalities in isolation and using the results to provision datacentres

is an effective methodology. The research also discussed the process for applying hardware

benchmarks for scenarios where experimental hardware servers differ from deployment

hardware or for upgrading hardware servers without invalidating experimental results. The

challenge with shared CPU resources has been reviewed in (Sean Kenneth Barker, 2010) and

(Jones, et al., 1997) extensively with profiling the CPU utilization in a shared resource pool.

This research emphasized the opportunity to profile CPU utilization in a shared manner.

 2.2 Cloud Authentication

A number of authentication protocols have been used over the years to enable Cloud

authentication. These protocols have strengths and weaknesses that make them desirable

for some organizations while an impediment for other organizations. This section analyses

the most popular ones and discusses their strength and weaknesses.

2.2.1 Introduction

Single Sign On (SSO) or federated identity means linking the electronic identities across

several authorisation servers (Yebin Chen, 2011), (Manshan Lin, 2001). Federated identity

25

management (FIM) systems are the systems in place to enable such linking (Ernest & Foo,

2009). Simply, applications and servers do not necessarily need to own and store users’

credentials in order to authenticate them. Instead, they can use an identity management

system that is already storing a user’s electronic identity to authenticate the user, given, of

course, that the user has the right to access the resources. For providers of protected

resources, this is great as it relieves it from having to manage the identity of every user. It

is also very convenient for users, since they don’t have to keep a set of usernames and

passwords for every single application that they use. There are many protocols for federated

identity such as OpenID, SAML, and OAuth. These protocols are developed by three main

body standards, namely OASIS, W3C, and the IETF. They all provide standards that cover

current identity management protocols that combine multiple configurations. OASIS

supplies SAML and the Web services (WS-* (IEFT, 2010), (IETF, 2010)) suite of standards.

W3C provides HTTP architecture, URIs, and the service-related SOAP that are leveraged by

federated and distributed identity solutions. The IETF body of standards provides several

relevant standards, including the Transport Layer Security (TLS), Simple Authentication and

Security Layer (SASL), and Public-Key Infra- structure (PKIX) along with OAuth. Below in Table

1: Main Authentication Protocols is a summary of these standards and their main protocols:

26

Table 1: Main Authentication Protocols

Standards Body Protocols

OASIS SAML, WS*, IMI

W3C HTTP, URIs, SOAP

IEFT SASL, TLS, PKIX, OAUTH

In this section, a survey of the three main ones, OpenId, SAML, and OAuth along with analysis

of SSO (Single Sign On) and Federated Identity Management (FIM) services are discussed.

2.2.2 Analysis of Single-Sign-On (SSO) and Federated Identity
Management (FIM)

SSO (Single Sign On) is a service in which the user authenticates once at home identity

provider (IDP) and log in to access consecutive services within the federated service

providers. This area is covered in much research over the years. In (Madsen, et al., 2005),

Madsen et al. addressed multiple problems of federated identity. The research illustrated

that Federated Identity Management (FIM), which is architected on numerous industry

standards, streamlines the processes used by federated organizations in term of simplifying

the authentication configuration experience, sharing user identity objects, and accessing

various permissions using credentials requirements. However, Madsen illustrated the

ongoing problems and challenges in a federated identity environment such as exploitation

of user identity information through user’s identity theft, single sign on capability, and

27

trustworthiness of the user. Problems and concerns of identity management are too many,

among others, most worthy of mention is users having to provide their credentials to many

service providers, leading to opportunities for the users’ credentials to be compromised

while executing the federated identity. In (Layouni & Pollet, 2009), Rodriguez et al.

demonstrated Federated Identity Architecture as a technique for resolving exposures. The

research identified the three methods for implementing security issue in Federated Identity

Architecture including Shibboleth, Liberty Alliance, and WS- Federation (Layouni & Pollet,

2009). In (Archer, et al., 2011), Archer et al. argued that the most common attacks are the

theft of users’ identity. Identity theft happens on the least secure channels while it is very

difficult to identify until the harm is done. Besides identity attacks, legal compliance is

another security problem in federated identity; the research does not address the enterprise

effect on such vulnerability. In (Eghbal Ghazizadeh, 2012), Eghbal et al. recognized five

28

security problems related to federated identity concerning relationships between vendors

and consumers, these five security issues are:

1. Communication with a Human Resources system (HR) is tough where HR is the only

master source for employees’ identities.

2. Identities in partner organizations cannot be verified in an authoritative way.

3. Most organizations do not support federated identity.

4. The identity service provides the self-asserted identity for consumers yet it does not

cover the rest of identity types.

5. Organizations do not have a way to communicate directly, but rather federate or

proxy their identity services

These issues emphasize the need for good planning and to handling how identity attributes,

accounts, and lifecycle management of all identity-types will operate in the Cloud (Archer,

et al., 2011). Suriadi et al. in (Suriadi, et al., 2009) identified that one of the main problems

with these identity models is privacy in an SSO environment, relying parties (RP) or service

providers (SP). All of these three services hold important and secure user identities. These

services can also be collecting information about users from various identity providers.

Suriadi et al. also analysed sharing of user’s information by malicious identity providers and

service providers which can disclose a complete user’s identity and activities. Related to

these vulnerabilities, Zarandioon et al. in (Zarandioon, et al., 2009) shows that this issue has

29

caused web users to be careful of SSO implementations, the research claims that this is one

of the main reasons for the lack of widespread adoption. In (Wang, et al., 2012), Wang

discussed another problem of federated identity that is in the process of switching

authentication mechanisms to a single sing on solution. Such switch requires education of

the users and possible dissatisfaction if the transition to SSO is not smooth. What makes the

situation worse is the lack of demand from users as studies have shown that users are

already satisfied with their own password management.

Additional research on single sign on (SSO) studies the security implications of various

authentication protocols. Somorovsky et al. in (J. Somorovsky, 2012) investigated fourteen

implementations of SAML protocol and they founded many security issues that related to

Extensible Mark-up Language (XML) signature wrapping. These implementations used SAML

assertions for making security statements between subjects. Therefore, they developed an

automated tool to penetrate XML testing of signature wrapping, their research did not

address performance implications, rather focused exclusively on security penetration.

Wang (Wang, et al., 2012) considered alternative solutions to SSO when he analysed Privacy

Aware Identity Management and Authentication for the Web (SAW) as viable alternatives.

He highlighted vulnerabilities and security issues in the three common identity systems,

namely, Microsoft Passport, OpenID and SAML (Wang, 2011). Rodriguez et al. (Layouni &

Pollet, 2009) focused on Federated Identity Architecture (FIA) and analysed some of the

problem related to it. Furthermore, they explored commercial Federal Identity Architecture

solutions and investigated their security and privacy issues. Yan et al. (Yan, et al., 2009)

30

suggested a cryptography based federated identity with some important features to make

it Cloud friendly and adaptable to the Cloud environment. They synchronized hierarchical

identity-based cryptography with federated identity management in the Cloud. However,

such research does not address specific values to increase adoption of SSO in the Cloud.

In (Li-chun, et al., 2008), the authors suggested a dynamic federated-domain authentication

scheme based on credit worthiness. The trust relationship is dynamically formed based on

the value of the credit. Based on this relationship, federated-domain authentication could

be established. However, the calculations need to be processed by a trusted third party

which can become bottlenecked during the authentication execution. In (Zhen-Guo, et al.,

2009), the authors put forward an enhanced dynamic authentication process based on

digital signature. The process can reduce how often the two parties communicate in order

to authenticate, and thus improving the availability of the network resources. But the

federated domains were not considered in this paper, so it was more applicable to single-

domain, thus such protocol is not considered adequate for large-scale distributed computing

environment.

Performance is yet another open challenge for organizations planning to adopt a security

protocol to achieve SSO. These areas have been analysed in different research areas. The

majority of the research have compared the performance of different tools that tune the

performance. In (Ferraz, 2005) server SOAP based tools were profiled to assess SOAP

inefficiency to pin point the features of SOAP that affect performance the most. Another

31

study (Gray, 2004) looked into the performance of other middleware such as Java RMI and

CORBA. This research has illustrated that the performance of web services is a major

performance bottleneck, especially when applying reliability and security assertions. In

security related studies, Moralis et al. (Moralis, et al., 2007) have compared the performance

of SSO requirements through X.509 Token Profile against Kerberos Token Profile. Liu et al.

(Liu, et al., 2005) have performed several tests for different operations such as Encryption

vs. Decryption and Signing vs. Verifying using multiple various algorithms to assess their

performance capabilities for these operations. The study of Tang et al. (K. Tang, 2006) has

compared the performance of WSS Encryption and WSS Signing. Shirasuna et al. (Shirasuna,

et al., 2004) have assessed security methods for grid services. Their assessment has shown

that message level security is slower than transport level security, and should be used if

there is no additional requirement to use message level security. In (Sun Microsystems,

2010), WSIT (Web Service Interoperability Technology) is evaluated for the opportunity to

improve performance for WS* protocols, and its tight integration with WCF, however, it is

relatively new, and there is no published research that conducted performance assessment

of applying WSIT Security Mechanisms at this time.

2.2.3 OpendID
OpenID is an open standard adopted by Microsoft, Facebook, Google, Symantec, PayPal,

Yahoo, and Ping Identity, among many others. OpenID allows clients to be authenticated

using third-party services called IDPs or identity providers. Clients can pick their choice of

32

OpenID providers to log in to protected services that accept the OpenID authentication

model.

The OpenID specification defines three roles:

1. The client or the user that is looking to verify its credentials

2. The entity looking to verify the identity of the client, known as the relying party (RP)

3. The entity that registers the OpenID URL and can verify the end client’s identity,

known as the OpenID provider (OP)

For OpenID to be configured correctly, every single client or user in a client needs to have

its OpenID configured or pre-registered. SAML and OAuth are able to sign in users based on

their email address or username, which makes it much easier to administer. Consider, for

example, an application that serves 10k users. To enable SSO via OpenID, it would be

required to preconfigure the correct OpenID settings for each of the users of the application.

To enable SSO via SAML or OAuth, all that's required is to configure a couple of URLs that

are applicable to all users.

One of the important advantages of OpenID is the ability to auto-discover the identity

provider. For example, the OpenID https://identityprovider1.com/user1/ contains the

discovery information, in other words, that identity provider can be found at

https://identityprovider1.com. This is a great feature for consumers because it makes

https://identityprovider1.com/user1/
https://identityprovider1.com/

33

configuring an app for SSO very simple, but it becomes a drawback in a large enterprise

context. There are also many Cloud-based OpenID identity providers to choose from which

can create a wild-wild-west environment with no scrutiny of who can become an identity

provider.

The following diagram Figure 1: OpenID Protocol Flow explains a use case for an OpenID

scenario:

Figure 1: OpenID Protocol Flow

OpenID
Provider

Resource
Owner

Relying Party

1. User provides OpenID URL

2. Relying Party disovers OpenID Provider
and requests association

3. OpenID Providers produces
association and returns key

4. RP redirects user to OpenID Providers

5. Resource owner presents authentication
request

6. OpenID provider authenticates user and
redirects to RP

7. Resource Owner presents authentication key

8. User is authenticated

34

Though OpenID started as a very promising protocol, it failed to make a large impact. Many

enterprises rushed into adopting OpenID by becoming an OpenID provider but declined to

become a relying party. For example, Microsoft soon became an OpenID provider allowing

its users (for example, a Hotmail user can use Hotmail credentials to login to other websites)

to obtain an access token for logging into a relying party. However, most enterprises did not

become relying parties to other OpenID providers (in the example of Hotmail, users were

not allowed to login to Hotmail using third party OpenID tokens). Mostly due to security and

performance concerns with OpenID.

OpenID can be described as being a user-centric rather than a site centric approach to

identity management (Jacob Bellamy-McIntyre, 2011). Unlike OAuth, as also illustrated in

Figure 1: OpenID Protocol Flow above, each user needs to obtain an access token. While in

OAuth with some optimization, one token can be presented on behalf of other users (server

level trust). What is more favourable, however, about OpenID compared to other identity

protocols such as OAuth, is that the identity provider does not require any pre-established

relationship with the web service or website for which it is providing authentication. Users

choose their own OpenID identity providers who provide them with a unique URL that

represents their identity. They then supply this URL to the relying party site that supports

authentication with OpenID. This means that enterprises that are acting as relying parties

35

can leverage the authentication methodology of other identity providers and therefore

reduce the time required for users to access their services.

You and Jun in (Jun & You, 2010) proposed I-PIN (Internet Personal Identification Number)

method to strengthen the authentication of users with the Cloud OpenID environment to

restrict phishing attacks. They compared and evaluated their method with the existing

OpenID method, and came up with recommendations to secure OpenID ecosystem (Jun &

You, 2010). Their method proposes that a user has to choose only 1 identity provider out of

3 identity providers, which delivers OpenID authentication in order to receive the OpenID

service. A user receives I-PIN information from main Confirmation Authority via OpenID

Identity Provider. In addition, they compared and evaluated their proposed method with an

existing OpenID method, and confirmed that authentication was safe and secure against

private information exposition and hence against phishing attacks.

2.2.4 SAML

Security Assertion Markup Language (SAML) is a product of the OASIS Security Services

Technical Committee. Dating from 2001, SAML is a XML-based open standard for exchanging

authentication and authorisation data between secure domains, that is, between a service

provider and identity provider (Fang, et al., 2005) (Lynch, 2011) (Zhenxiang Tu, 2012) (Wang

Xiuyi, 2007)

36

SAML assumes the principal, mostly a user but could be an application, has enrolled with at

least one identity provider. The identity provider is anticipated to provide local

authentication services to the principal. On the other hand, SAML is agnostic to how local

authentication services are implemented, though individual service providers most likely are

interested in how authentication is implemented. SAML is an extensible protocol by design

since it is XML-based, which makes it a standard that is very flexible. For example, federation

partners can decide to share whatever identity objects they want in a SAML assertion

message payload as long as those objects can be represented in XML. Interoperability gives

SAML a major advantage over other systems. Using SAML, organizations do not need to

build relying party for every incoming authentication type. SAML can support single sing on

with many different federated partners. Organizations who have gone through the pain of

supporting single sign on for multiple providers value the benefits of SAML the most. They

are now requiring the use of SAML for single sign on with Cloud services, applications and

other external service providers. SAML defines XML-based assertions and protocols, profiles

and bindings. The term SAML Core refers to the general syntax and semantics of SAML

assertions as well as the protocol used to request and transmit those assertions from one

system entity to another. SAML includes three types of assertions:

A. Authentication assertion

B. Authorisation assertion

C. Attribute assertion

37

Each assertion contains all the important information such as assertion id, version, issuer,

and assertion creation time. The elements of assertion are used to provide the recipients of

the assertion and the start time of the assertion. The element contains the important data

that describes the certification object. Records such as IP address, authentication time, and

authentication method, permissions, and authorisation basis are all part of an SAML

element. It is important to note that SAML does not refer to how an object is transmitted

but rather to what is transmitted. The ‘how’ part is obtained by the SAML binding. A SAML

binding determines how SAML requests and responses map onto standard messaging or

communications protocols. An important and synchronous binding is the SAML SOAP

binding. A SAML profile is a combination of assertions, bindings and protocols. SAML is not

concerned with confidentiality, integrity, or non-reputability of assertions in transit.

The SAML specifications define three roles:

1. The principal, which is usually the user looking to access a protected resource

2. The identity provider (IDP), which is the entity that is capable of authenticating and

verifying the identity of the principal

3. The service provider (SP), which is the entity hosting the protected resource and

interested in verifying the identity of the end user

The following Figure 2: SAML Protocol Flow shows a flow of SAML protocol:

38

Figure 2: SAML Protocol Flow

SAML is viewed in the industry as a complex protocol and has been out favoured mainly due

to the complexity in parsing the XML and the performance implications of such

requirements (Menasce, 2002). The new generation of innovators viewed the Internet from

inside the Web and brought a new set of languages and tools to bear on the development.

This has shifted focus from XML and SOAP into lighter weight JavaScript Object Notation

(JSON) and REST using HTTP architecture. Although XML can also be used in the REST model,

the trend has been for a more stripped-down approach. OAuth has been implemented from

the grounds upon HTTP architecture and natively supports JSON tokens.

39

As the interaction between service providers and requesters occurs via XML-based SOAP

messages, securing web services tends to make these messages longer than they would be

otherwise. Such interaction will require interpretation by XML parsers on both sides that

reduces the performance of web services (Menasce, 2002).

In order to minimize the drawback of performance, there are some research that were

reviewed. One of them is discussed in (Ragouzis, et al., 2008), an approach named as ‘the

Enhanced Client or Proxy (ECP)’. However, this profile refers to WAP-Gateways (Wireless

Application Protocol), and it brings additional complexity and limitation to mobile

application, yet there exists no performance evaluation for such approach. Another

alternative approach is the virtual authentication proxy which enables communication with

multiple IDPs during the authentication process (Takeda, et al., 2006), but has not resulted

in a complete implementation yet that can validate the performance gain.

In addition, in (K. Daniel, 2008) the performance analysis of SAML showed that the

authorisation procedures need a lot of time in comparison to other processes due to the

SAML specific communication sequences and resulting overhead. This makes SAML a

challenging protocol for enterprises concerned with performance.

2.2.5 OAuth 2.0

 OAuth (OAuth, 2012) (Open Authorisation) is an authentication standard for allowing users

to share their private resources (e.g. photos, videos, contact lists) stored on a protected

resource server without having to hand out their credentials. This allows the user to grant

40

a third-party site access to their information stored with another service provider, without

sharing their access permissions or the full extent of their data. OAuth has become a popular

choice for Cloud providers due to its simplicity. As large providers started using OAuth 1.0

(the first version of the protocol), the community of organizations interested in adopting

OAuth came quickly to realize that the protocol does not scale well when it comes to

performance. It required state management across different steps; temporary credentials

management; and provided no isolation of the Authorisation server from the protected

resource server itself. In addition, OAuth 1.0 required that the protected resource servers’

endpoints have access to the client credentials in order to validate the request. This broke

the typical architecture of largest providers in which a centralized authorisation server is

used for issuing credentials, and a separate server is used for API calls. OAuth 1.0 required

the use of both sets of credentials: the client credentials and the token credentials, which

made the separation very hard (OAuth, 2012).

As the deployment of Cloud based enterprise software evolves (such as Exchange Online,

SharePoint Online, and SAP to name a few), there is a growing trend for these applications

to integrate with each other. In addition, many marketplace applications would highly

benefit from integrating with these enterprise resources through an API over HTTP or other

protocols. Often these resources require authorisation for access to such Protected

Resources. The systems that are trusted to make authorisation decisions may be

independent of the Protected Resources Servers for scalability and security reasons. The

41

OAuth Web Resource Authorisation Profiles (OAuth WRAP (IEFT, 2011)) enables a Protected

Resource to delegate the authorisation task to one or more trusted authorities. Clients,

which wish to access a Protected Resource, would have to first obtain authorisation from a

trusted authority (Authorisation Server). Different credentials and profiles can be used to

obtain this authorisation, but once authorised, the Client is provided with an Access Token

and possibly a Refresh Token for obtaining more Access Tokens. The Authorisation Server

typically includes authorisation information in the Access Token and digitally signs the

Access Token. The Protected Resource server can verify that an Access Token received from

a Client was issued by a trusted Authorisation Server and is valid using the digital signature.

The Protected Resource Server can then examine the contents of the Access Token to

determine the authorisation level that has been granted to the Client.

Figure 3: OAuth 2.0 Protocol Flow below shows the architecture for OAuth 2.0 with an

independent Authorisation Server.

The abstract flow illustrated in Figure 3 describes the interaction between the four roles and

includes the following steps:

1. The client requests authorisation from the resource owner

2. The resource owner redirects the request to authorisation server

3. The client requests authorisation grant from the authorisation server by presenting

42

the client credentials

4. The authorisation server validates the client credentials and the authorisation grant,

and if valid issues an access token

5. The client requests the protected resource from the resource server and

authenticates by presenting the access token

6. The resource server validates the access token, and if valid, serves the request.

Client

Resource Owner

Authorization Server

Resource Server

2 Redirect to authorization server

1 Request a protected Resource

3 request access token

5 present token

4 grant access upon credentials validation

6 obtain protected resource

Figure 3: OAuth 2.0 Protocol Flow

43

OAuth specification aimed to complement OpenID and let users delegate access to a

protected resource through an Authorisation Server that issues tokens that do not include

users’ credentials. OAuth implementation and deployment continues to grow with a lot of

research currently emerging to address various limitations of the protocol. In (Marouf,

2012), the authors discuss an optimization to OAuth to enhance overall privacy. The

research proposes a user-based, and category-based collaborative filtering mechanisms

which are not provided by the protocol itself; however, the research does not address the

performance challenges discussed in this research. In (Pai, et al., 2011), the authors

formalize the OAuth protocol using a method called Knowledge Flow Analysis to discover

known security vulnerability in OAuth, yet again, the research does not outline any

performance issues such as the ones identified in this research paper.

Another related area of research adopts a similar optimization approach albeit using

browser-based plug-ins and extensions to aid information privacy without necessarily

specifying the protocol. In (Dymond, 1998), Jenkin and Dymond originally identified this

approach to address the problem of “an information provider wanting to serve secrets

embedded within regular webpages to authorised users.”

So far, there has been no work focusing on Enterprise adoption of the OAuth protocol. This

might indicate a gap between the state-of-the-art and the state-of-practice and highlights

44

an area where more research is needed. Some of this research are covered in upcoming

chapters where the current state of existing protocol is extended to benefit adoption in the

enterprise. (Noureddine & Bashroush, 2011), (Noureddine & Bashroush, 2011), (Noureddine

& Bashroush, 2013)

This Table 2: Authentication Protocols explains the major differences between the three

protocols:

Table 2: Authentication Protocols

 OpenID OAuth SAML

Dates from 2005 2006 2001

Current version OpenID 2.0 OAuth 2.0 SAML 2.0

Main purpose Single sign-on for

consumers

API authorisation between

applications

Single sign-on for enterprise

users

Protocols used XRDS, HTTP JSON, HTTP SAM, XML, HTTP, SOAP

Strengths Open (no provisioning

needed)

Performance Extendable, simple to

configure

45

Weaknesses Performance, Security

and Privacy, hard to

configure

Pre-configuration

requirements

Complex, time consuming to

parse XML

2.3 Conclusion of Literature Review

Performance modelling in cloud computing is critical for any cloud provider to ensure

appropriate provisioning of hardware resources and deployment of enterprise applications.

This chapter reviewed various research areas around capacity planning and performance

optimization for authentication protocols. The capacity planning research is broken into

two areas, the dynamic capacity planning and the static capacity planning, both areas are

reviewed with focus on current research. In addition to capacity planning, organizations

need to ensure proper deployment of enterprise cloud solution in a secure and performant

way. Selecting the right authentication protocol is critical to such success. This chapter

reviewed the major authentication protocol with focus on current research while comparing

pros and cons for each of the top three protocols, namely, OpenId, SAML, and OAuth. The

chapter alluded to the lack of research on enterprise level performance evaluation. This

research and the rest of the chapters cover the area of performance optimization for

enterprise adoption of cloud computing.

46

47

Chapter 3: Capacity Planning Using Modality Cost Analysis

3.1 Introduction and Motivation

It is one of the responsibilities of service providers to ensure appropriate resources are

allocated to each tenant to guarantee acceptable performance of their products. The

relationship between capacity planning and performance tuning is often misunderstood

(Allspaw, 2008). While they affect each other significantly, they have different goals.

Performance tuning optimizes an existing system for better performance, while capacity

planning determines what the system needs while maintaining the performance baseline.

In order to guarantee performance SLAs (Service License Agreements), service providers in

the Cloud tend to over provision mainly due to the lack of capacity planning tools that guide

such optimization of performance and cost, and SLA violations are costly for Cloud hosted

applications. A quantitative measurement of the resource cost (CPU, memory, storage, and

network bandwidth) imposed by each of the modalities of the product, in isolation, may

allow organizations to make informed decisions with respect to the right level of resource

provisioning. In this research, tested methodology to guide resource provisioning decisions,

is presented. The research presents a systematic methodology to estimate the performance

expected from each modality based on the representation of resource cost per modality.

Subsequently, the research discusses how the estimate of the expected application

performance could guide resource provisioning decisions. A case study of the methodology

48

using a commercially available media application is presented using the Microsoft Lync

Server 2010. Subsequently, the performance is estimated using a validation software tool

to simulate a realistic workload against a production datacentre with all the modalities

working together. The layout of this chapter is as follows: Section 3.2 provides an overview

of media applications performance. Section 3.3 provides an overview of the Modality Cost

Analysis, the research capacity planning methodology. Sections 3.4 and 3.5 present the

results of performance analysis and validation tool. Section 3.6 discusses hardware

benchmarks and Sections 3.7 offers concluding remarks and directions for future research.

3.2 Media Applications Performance

The performance of real-time media applications may be divided into two main categories,

each categorized by the requirements of their intended applications. Conversational

applications (also known as synchronous communication applications) are characterized by

their stringent delay constraints, or latency, which makes it bound by the network

bandwidth and processor speed. On the other hand, non-conversational applications (also

known as asynchronous communication applications) are delay-insensitive as they operates

in a similar way to email and bound by storage capacity. Performance analysis for media

applications can be addressed from two perspectives: end-user’s and service provider’s

perspective. A customer interacts with media applications through a series of consecutive

but unrelated requests. This request sequence is termed as a session. Each session can

include a combination of audio, video, instant messaging, or application and desktop

49

sharing. Metrics such as response time, session length, session availability, and quality of

service are important from a user’s perspective. On the other hand, metrics such as

throughput, latency, and resource usage are important from a provider’s perspective since

they can guide the capacity planning and affect total cost and SLA guarantees. This research

considers the performance from a provider’s perspective since the focus is on capacity

planning for Cloud providers (vs. consumer or end user perspective). The research

addresses both synchronous and asynchronous method of communication for media

application by assessing CPU, storage, memory and network bandwidth.

3.3 Modality Cost Analysis (MCA) Methodology

Modality Cost Analysis is a methodology for assessing resource cost for each of the

modalities of an application (modality is a scenario in which an application is used, for

example, instant messaging and voice calls are two different modalities of a media

application). In this methodology, the application is broken into a set of modalities, and each

is measured for resource cost (CPU, Network bandwidth, Storage, and Memory) in isolation.

The first rationale behind using isolated cost analysis rather than the aggregated cost of the

application in its entirety is that the workload for different modalities varies dramatically and

aggregation may not capture these variations. The second rational is that Cloud providers

may need to allocate resources based on their customers’ user-profile. For example, when

hosting communication software in the Cloud, one customer may be a heavy instant

50

messaging user, another may be a heavy video chat user, and a third one may be a very

heavy voice customer such as a call centre. Instant messaging is CPU intensive while video

and voice calls are network bandwidth intensive. Using this methodology, the service

provider will be able to allocate resources appropriately and accurately for these different

user profiles according to what they are going to be using.

When using modality cost analysis, resource cost is calculated separately, namely, the CPU

cost, the Network cost, and the memory cost, and any other cost that might be relevant to

the provider such as storage in scenarios where the application storage requirements are

significant. The following graphs show the results of the experimentations after plotting the

results. The next section, Experiments and Results, discusses the details of the experiments.

Figure 4: CPU utilization

y = 0.745x + 5.4933

y = 0.73x + 0.2967

y = 0.895x + 0.69

y = 3.79x + 3.2667

0

2

4

6

8

10

12

14

16

MCA-S MCA-M MCS-L

CPU Utilization

IM users

VoIP calls

ABS contact

App Sharing Conference

51

Figure 5: Memory utilization

y = 7041.5x + 121156

y = 6673.5x + 259752

y = 237005x + 293263

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

MCA-S MCA-M MCS-L

Memory Utilization

IM users

VoIP calls

ABS contact

App Sharing Conference

52

Figure 6: Bandwidth utilization

The figures, Figure 4: CPU utilization, Figure 5: Memory utilization, and Figure 6: Bandwidth

utilization, summarize the results of the three experiments. By adding trend lines to the

chart lines, it can be seen that the modalities grow linearly. The next section discusses the

details of obtaining the results.

In order to simplify the methodology, consider T tenants (customers) with their distribution

denoted by T1, T2. … Tn. Consider m modalities, and r resources. The provider can calculate

the resources needed using the following equation:

y = 360.5x + 1253.7

y = 119x + 7.6667

y = 3212.5x + 3822.7

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

MCA-S MCA-M MCS-L

Bandwidth Utlization

IM users

VoIP calls

ABS contact

App Sharing Conference

53

Cost of resource 𝑟 of tenant 𝑇 = ∑ 𝑁

𝑚

𝑖=0

 (1)

Where N is the modality cost of resource r.

In the experiments in this research, the CPU cost for instant messaging modality using Office

Lync Server 2010 (Microsoft, 2012) was found to be:

0.745𝑥 + 5.4933 (2)

Where x is the number of concurrent users being provisioned.

The CPU cost for application sharing was found to be:

3.79𝑥 + 3.2667 (3)

Where x is the number of concurrent or active users.

54

These equations were deduced by capturing CPU utilization while varying number of users

(see Figure 4: CPU utilization below for CPU trend lines and subsequent sections for further

information). Therefore, a provider wanting to calculate the CPU cost with these two

modalities can obtain it simply by summing the resource cost of each modality being

provisioned, that is by simply adding Eq. (2) and Eq. (3) above:

(5.4933 + 0.74x) + (3.2667 + 3.79x) (4)

3.4 Experiments and Results

In this section, early experiments with modality cost analysis are presented. Two sets of

experiments are performed. In the first set of experiments, the resource overhead for four

modalities are measured in isolation, namely instant messaging, Voice over IP (VoIP),

application sharing conference, and address book download. In the second set, the

resource overhead for three scenarios that combine all of the four modalities together are

measured simulating a real end user experiment. The first scenario is named MCA-S for

small load, the second one is named MCA-M for medium load, and the third one named

MCA-L for large load, representing a small, medium, and large customers.

The performance estimation is based on the following hardware: A server with dual

processors quad-core 2.0 GHz (2,000 megacycles per second), 16 gigabytes of memory,

55

30GB disk space, and 2-port 1 gigabit per second network adapter. The hardware topology

remains fixed during the experimentation.

Office Lync Server 2010 (OLS) (Microsoft, 2012) which is an enterprise real-time

communications server software, providing the infrastructure for enterprise instant

messaging, data collaboration conferencing and multiparty Voice and Video calling. These

features are enabled within an organization, between organizations, and with external users

on the public internet. This product is also provided as a Cloud offering as part of Office 365.

Office Lync Server was deployed on the above described hardware server, and a simulation

tool representing users accessing the server is developed for these experiments. In the first

experiment, users are simulated using instant messaging modality only (in isolation where

no other modality is running). In experiment 2, users are simulated making VoIP calls with

no other modality running. In experiment 3, users are simulated joining a conference call

and sharing a power point presentation. In experiment 4, users are simulated downloading

an address book.

For the first experiment (Table 3: Experiment I Results), 5000 users were simulated sending

IM messages to each other at the same time. The CPU utilization was measured over a

period of 4 hours, and the averages were obtained for the CPU utilization of the server. In

addition, the CPU utilization was measured using megacycles. The megacycles are obtained

by multiplying the experiment server megacycles (2,000) by the number of cores (8) or a

total of 16,000 megacycles per server. For example, if a modality is utilizing 10% of server

56

processors resources, it is calculated that it is consuming 1,600 megacycles. In addition,

network bandwidth and memory utilization are measured. Then, the load is increased, and

a medium size of 10,000 simultaneous users are run next. Finally, a large size experiment of

15,000 simultaneous IM users are run at last. The tables below show the result of the data

collection.

Table 3: Experiment I Results

Instant

Messaging

Users

CPU

%/Server

CPU

Megacycle

s

Network/Bytes Memory/Bytes

5000

6.21 998 1,596,403 117,435,418

10000

7.04 1,126 2,011,843 136,765,376

15000

7.70 1,232 2,317,056.51 141,518,365

57

Table 4: Experiment II Results

Table
5:

Experiment III Results

Application

Sharing

Conference

CPU

%/Server

CPU

Megacycles

Network/Bytes Memory/Bytes

100 users

6.95 1,112 7,164,641 517,244,781

200 users

11.06 1,769 9,990,548.47 793,322,894

250 users

14.53 2,324 13,589,203.86 991,254,808.25

VoIP Users CPU

%/Server

CPU

Megacycles

Network/Bytes Memory/Bytes

200

1.02 163 104,508 268,334,836

400

1.7 272 216,545 269,283,186

600

2.48 396 320,444.62 281,681,544

58

Table 6: Experiment IV Results

Address Book

 Download

CPU %/Server CPU

Megacycles

Network/Bytes Memory/Bytes

5000 entries

1.84 294 157,286 53,965,229

10000 entries

1.97 315 185,179.73 52,671,103

15000 entries

3.63 580 395,116.23 53,686,217

In the second experiment, three research are simulated, namely, 200, 400, and 600 users

making VoIP calls simultaneously. Table 4: Experiment II Results above shows the resource

cost for each run.

In the third experiment, the research simulated a conference call with application sharing

and 100, 200, and 250 users connecting simultaneously. Table 5: Experiment III Results

above shows the resource cost for each run.

In the fourth experiment, 1000 simultaneous users downloading an address book with 5000,

10000, and 15000 contacts, respectively were simulated. Table 6: Experiment IV Results

above shows the resource cost for each run.

59

Using the above results, for example, a provider that wants to provision 10,000 IM users,

6,000 VoIP users, and 250 application sharing conference, will need: 7.04 + 2.48 + 14.53 =

~24% of the CPU resource of one server (with 2.0 GHz and 8 cores or a total of 3,840

megacycles), and 136,765,376 + 281,681,544 + 991,254,808.25 = ~ 1.4GB of memory. Using

such methodology, providers can plan their capacity to the exact needs without having to

over-provision. However, it is well expected that Cloud providers do not necessarily

provision the same hardware profile, it is also expected that hardware upgrades force a

change to the provisioned resources, for example, upgrading memory or CPU. Providers

that want to utilize this methodology and apply it to a different hardware profile can

benchmark the processor used in this experiment against existing or planned hardware.

Section 3.6 below discusses this method in more details to benchmark hardware variations

using an industry accepted standard.

3.5 Validation Methodology

In the second set of experiments, the four modalities are mixed together to validate that

measuring resources in isolation is an acceptable methodology for datacentre provisioning.

In order to prove this hypothesis, the three experiments are run mixing IM, VoIP, Address

Book download, and Application Sharing conference, using a tool called Office Lync Server

Stress Tool (Microsoft, 2012) (LSS, Figure 4: Lync Server Stress Tool GUI). The stress tool

generates a simulated load on Office Lync Server based on each experiment’s load. For

60

example, when it is time to set up IM users, the tool will send instant messages between

differently simulated users based on the load that is specified (in this case, 5000 users

sending instant messages (at a rate of 4 instant messages per user per hour). This user

profile remains constant across all the experiments.

Figure 4: Lync Server Stress Tool GUI shows a snapshot of the Lync Server Stress tool.

Figure 7: Lync Server Stress Tool GUI

61

The first experiment in the second set, named MCA-S, simulates users using all the four

modalities in smaller quantities over time and putting the load against the Office Lync Server.

To do this, the same hardware are set up to run the modalities in isolation and then using

Lync Server Stress tool for simulating and experimenting the server with 5000 Instant

Messaging users sending messages to each other where each user is sending 4 IMs/hour

(the same load as when the modality in isolation was run). Then 200 VoIP calls were loaded,

in parallel, 1000 users downloading 5000 contacts simultaneously, and 100 users sharing a

power point presentation (size of 5 MB) at the same time.

Table 7: MCA-S Experiment Results below summarizes the findings for the first experiment

in the second set of experiments.

In order to calculate the average, the experiment is run on 4 servers independently. The

chart presented in Figure 5: CPU average for each server below shows how the CPU averages

for each of the servers are measured and collected.

As shown in Figure 5: CPU average for each server, the averages for the four CPUs are

19.13%, 13.81%, 9.16%, and 15.82% or an aggregate average of 14.48%. Also it is important

to note that the experiment is run for 2 hours and collected the data every ten minutes as

shown in Figure 5: CPU average for each server.

62

Figure 8: CPU average for each server

63

Table 7: MCA-S Experiment Results

M
C

A
-S

 CPU %

/Server

CPU

Megacycles

Network

/Kbytes

Memory

/Kbytes

IM 5000 users 6.21 994 1,596 127,435

VoIP 200 calls 1.02 163 104 268,334

ABS 5000 contact 1.84 294 157 53,965

App Sharing

Conference 100

users

6.95 1,112 7,164 517,244

Total of Isolated

Measurements

16.02 2,563 9,022 956,980

Measured Resource

Cost

14.48 2,316 8,382 1,086,426

Diff -10% -10% -7.10% 11.90 %

64

Table 8: MCA-M Experiment Results

M
C

A
-M

 CPU %

/Server

CPU

Megacycles

Network

/Kbytes

Memory

/Kbytes

IM 10000 users 7.04 1,126 2,011 136,765

VoIP 400 calls 1.77 283 216 269,283

ABS 10000 contact 1.97 315 185 52,671

App Sharing

Conference 200

users

11.06 1,770 9,990 793,322

Total of Isolated

Measurements

21.84 3,494 12404 1,252,042

Measured Resource

Cost

19.89 3,182 11,676 1,304,269

Diff -10%% -10% -6% 4%

65

Table 9: MCA-L Experiment Results

M
C

A
-L

 CPU %

/Server

CPU

Megacycles

Network

/Kbytes

Memory

/Kbytes

IM 15000 users 7.70 1,232 2,317 141,518

VoIP 600 calls 2.48 454 320 281,681

ABS 15000 contact 3.63 580 395 53,686

App Sharing

Conference 250

users

14.53 2,324 13,589 991,254

Total of Isolated

Measurements

28.34 4,534 16,621 1,468,140

Measured Resource

Cost

33.98 5,436 16,953 1,492,496

Diff 16% 16% 2% 1.3%

The second experiment, named MCA-M, simulates a user using all the four modalities in

medium quantities. Table 8: MCA-M Experiment Results above summarizes the findings for

the second experiment.

The third experiment, named MCA-L, simulates users using all the four modalities in large

quantities. The outcome of that is summarized in Table 9: MCA-L Experiment Results above.

66

The results show that measuring modalities in isolation and using the results to provision

datacentre is an effective capacity planning methodology. The variance between measuring

in isolation and measuring the modalities running side by side is within ±16%. In order to

better plan for such variance, it is recommended to add an adequate buffer for covering

variation in side-by-side versus aggregated execution. 10% to 30% buffer is considered a

minor buffer compared to current hardware over-provisioning estimates of 200-300% in

best cases, and 5% to 10% of server resource utilizations in some of the worse cases (CA,

2010). Process isolation is typically known to affect how resources are utilized, however; it

is not deterministically assessed (Fedorova, et al., 2008).

Using the equations discussed in the sections above, Cloud providers can predict the

utilization at any point. It is expected that each modality will hit a ceiling level which is not

captured in these experiments. Such work is needed to figure out the limits of where the

system starts reaching a point of non- linear growth. It is important to note that this

methodology is applicable for static allocation of resources, in other words, in cases where

the Cloud provider understands the expectations and what the user model is. Example of

such cases are companies with finite resources and known set of employees that access the

system at a typical point in the day. To illustrate, consider the case of company contoso.com

with 10,000 employees. All the employees will sign in between 9 AM and 10 AM and will

send Instant Messages to each other at an average of 4 IMs per user per hour. Such

company can easily predict the load on the system and provision the Cloud or data centre

67

to fit this need. This approach will not work for dynamic allocation of resources, in other

words, if the company has no knowledge of how many users sign in per day, and what their

user model is like. Such organizations need to apply a dynamic capacity model approach.

An example is an organization that provides access to public users (for example “What’s

App”), where the usage is determined by events around the world (for example, if there is

an earthquake or natural disaster in some country, the load will spike unexpectedly). Such

model is best represented with dynamic capacity allocation. The model in this research is

most applicable to enterprises model where the set of users are somewhat static and the

user model is well understood (i.e. the time of the day employees are most active and the

average usage per employee).

3.6 Hardware Benchmarks

Rapid change in hardware and the multitude of different hardware configurations available

nowadays make it difficult for any provider wanting to adopt performance optimization or

capacity planning methodologies. For example, a provider validating against existing

hardware may find that the hardware is not available during procurement time. In order to

ensure that this methodology is not hardware specific, benchmarking techniques can be

used to adapt the methodology and equations identified in this work to different hardware

settings. For example, processor benchmarking tools such as SPECint (SPECint Processor

Benchmarking, 2012) can be used. The SPECint processor benchmark for the hardware used

68

in this research methodology is 186 for eight cores or 23.25 per core. So, providers

interested in using this performance validation methodology against a different hardware

can use the following steps:

 Visit the SPECint website (SPECint Processor Benchmarking, 2012)

 Select SPECint2006 Rates

 Find the server and processor they have deployed or intend to deploy, and look at

the number in the Result column.

 Dividing this value by the number of cores in the server returns the per-core value.

For example, if the Result number is 240 on an eight-core server, the per-core value

is 30.

 The following equation can then be used to determine the per-core megacycles for

the server: (Per-core value) x 2,000/ 23.25

 Finally, by multiplying the result above by the number of cores in the server, the total

number of megacycles per server is obtained. This is then compared to the 16,000

megacycles for the baseline server used to produce the numbers in these

experiments.

In order to clarify this further, consider the following example. Assume a provider to

provision the following modalities as summarized in Table 10: Benchmarking example

modalities below.

69

Table 10: Benchmarking example modalities

Modality Test server CPU% cost Megacycles needed

IM 15000 users 7.70 (7.7/100) * 2,000 * 8 = 1,232

VoIP 600 calls 2.48 (2.48/100) * 2,000 * 8 = 396

ABS 15000 contact 3.63 (3.63/100) * 2,000 * 8 = 580

App Sharing Conference 250

users

14.53 (14.53/100) * 2,000 * 8 = 2325

Total ~28% of total server

CPUs

4,533 total megacycles needed

For this example, suppose the Cloud provider is deploying servers with a SPECInt result of

186 for 8 cores, which averages out to 23.25 per core. Using the calculations explained in

the previous sections, once can compute the megacycles of the servers, which would be

16,000 megacycles each in this case.

To determine the number of such servers required to provision the above modalities, the

number of needed megacycles (4,533) can be divided by the number of megacycles per

70

server (16,000 in this example). This can easily be replaced by the number of megacycles

represented by the hardware being utilized.

Thus, in this example, it is needed a circa of 28% of total server CPU resources to run the

modalities in the table above.

3.7 Conclusion

In this chapter, a quantitative methodology for capacity planning in Cloud datacentres was

presented. The results are used to guide providers into provisioning datacentres for

optimizing performance and cost. By profiling an application into a set of modalities and

measuring hardware resources cost in isolation, Cloud providers should be able to pinpoint

their capacity to exact needs without wasting expensive resources. In addition, a process

for applying hardware benchmarks for scenarios where experimental hardware servers

differ from deployment hardware or for upgrading hardware servers without invalidating

experimental results was analysed. In addition, a discussion on how to validate the results

by running three sets of experiments, MCA-S, MCA-M, and MCA-L that represent small,

medium, and large user profiles was presented. The results showed that measuring

modalities in isolation and using the results to provision datacentre is an effective

methodology. As one of the future research directions, it is important to address

virtualization using modality cost analysis methodology and address any effects or

71

limitations. This work can extensively benefit from virtualization to dynamically allocate

resources based on usage profile. In order to achieve this, one can plan to look at Windows

Azure as a virtualization platform where one can deploy MCA and provision dynamically in

order to reduce the total cost of ownership while maintaining SLAs.

72

Chapter 4: Lync Server Capacity Planning Calculator

4.1 Overview

Microsoft Lync Server is an enterprise real-time communications server, providing the

infrastructure for enterprise instant messaging, presence, file transfer, one or multiparty

voice and video calling, conferencing (audio, video and web) among other features

(Microsoft, 2012). These synchronous and real-time communication modalities are

dependent on the availability of hardware resources. It is different from asynchronous

communication modalities such as email where a user would not perceive an outage if the

resources were not readily available. For example, sending an email that does not make it

until few minutes later does not warrant an outage, while a voice or video call with few

seconds of delay becomes useless. Software with such dependencies do require adequate

capacity planning. Unfortunately, most cloud providers deploy excessive hardware

resources to host Lync server at the cost of ensuring quality and meeting SLAs. This work is

targeted to guide such cloud providers to better assess capacity needs in a methodological

approach.

This chapter provides guidance for hardware allocation based on the analysis of organization

needs. The organization would use their organization’s number of users, user profiles, and

workloads deployed to determine the necessary CPU clock speed, server memory

73

requirements, and network bandwidth required for the server. The results are applicable to

both physical and virtual topologies.

The information in this chapter will be especially helpful if the user model or server hardware

do not differ from what is described in Lync Server 2010 User Models (Microsoft, 2012). If

the user model differs, then additional work is needed to benchmark the differences. For

the sake of this these experiments, we expect a user model as defined in (Microsoft, 2012).

All the performance analysis provided assume a baseline that each server has dual quad-

core processors with a clock speed per core of 2.33 GHz. This yields 2,333 megacycles per

processor core, or 18,664 megacycles per server.

If the organization’s servers have different processors, they can adjust the figures

accordingly. For details, see “Adjusting for Processors’ Variations” later in this chapter.

The Microsoft Lync Server 2010 capacity planning calculator is designed to assist the

organization in determining server requirements based on numbers of users and

communication modalities that are enabled at their organization. The organization

administrators enters their organization’s profile, and the calculator provides

recommendations that help them plan their topology. The calculator is an Excel Tool that is

based on the Modality Cost Analysis research.

The recommendations created by the calculator are for planning purposes only. Actual load

simulation is required to ensure that Lync Server 2010 is adequately provisioned. To perform

74

stress testing under a simulated load, the Lync Server 2010 Stress and Performance Tool can

be used (Microsoft, 2012).

After the organization administrators have determined their user profile and the modalities

that they want to enable for their users, it is time to use the calculator to plan the number

of servers, memory, and bandwidth that are needed. This version of the calculator does not

provide guidance for disk I/O requirements. For disk I/O requirements, refer to the Capacity

Planning section of the Lync Server 2010 planning documentation (Microsoft, 2012). This

calculator complements the Microsoft Lync Server 2010 Planning Tool and Microsoft Lync

Server 2010 Planning Guide (Microsoft, 2012). The organization can benefit most from the

calculator if they have accurate, detailed information about their specific user profile. For

example, the percentage of voice-enabled users, average calls per user per hour, call

duration, and the percentage of concurrent users in conferences can make a huge difference

in server requirements. The accuracy of the recommendations created by the calculator

depends on the accuracy of the information that the customer provides into the calculator.

4.2 Using the Capacity Calculator
The calculator is a Microsoft Excel spreadsheet and can be downloaded from

http://www.microsoft.com/en-us/download/details.aspx?id=12295. Yellow-colour cells are

for input from the customer. Default values are entered (80,000 users in one organization

with eight Front End Servers), but the customer can change these values according to their

organization’s needs.

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=bcd64040-40c4-4714-9e68-c649785cc43a
http://www.microsoft.com/en-us/download/details.aspx?id=12295

75

The following sections below explain what the organizations need to provide to calculate

the capacity required. The following image Figure 9: Lync Server Capacity Planning

Calculator shows a snap of the Excel calculator that is used in this guide. As mentioned

above, the calculator is available for download with instruction manual on the Microsoft

website. (Microsoft, 2011)

Figure 9: Lync Server Capacity Planning Calculator

76

4.2.1 Instant Messaging and Presence
 Under Number of Users, type the number of users who will be concurrently signed

in. This number is typically 80% of the total number of provisioned users. In some

situations, 100% of the customer concurrent users will be enabled for IM and

Presence. The default number of total users is 80,000. This number is based on the

typical profile of a large enterprise hosting Lync Server in one Cloud datacentre.

 Average number of contacts in Contact list indicates the number of contacts that are

being used to validate the system requirements. This number is not changeable. This

number is not changeable because it severely affects the calculation in this research.

Organizations that have significantly different number of contacts per user should

customize the calculator to their needs using the Modality Cost Analysis

methodology.

4.2.2 Enterprise Voice
 In Users enabled for Enterprise Voice, type the percentage of concurrent users who

are enabled for Enterprise Voice. The default is 50%.

 In Average number of UC-PSTN calls per user, type the number of calls per hour that

the customer expects the average user to participate in during times of peak load.

The default is 4.

 In Percentage of calls that use media bypass, type the percentage of users who are

enabled for Enterprise Voice who will place UC-PSTN phone calls that will bypass the

Mediation Server.

77

 In Percentage of voice users enabled for UC-PSTN calls, type the percentage of users

who are enabled for Enterprise Voice who will concurrently participate in UC-PSTN

phone calls.

 In Percentage of voice users enabled for UC-UC calls, type the percentage of users

who are enabled for Enterprise Voice who will be concurrently participating in UC-

UC calls.

4.2.3 Conferencing
 In Percentage of users in concurrent conferences, type the percentage of concurrent

users who will be concurrently participating in conferences. The default is 5%.

 In Percentage of conferences with group IM only (no voice), type the percentage of

conferences whose conferences will involve instant messaging only, that is, that do

not include an audio component.

 In Percentage of users using dial-in conferencing, type the percentage of concurrent

participants in conferences who will be using dial-in conferencing.

 In Percentage of conferences using voice (web conferences), type the percentage of

conferences that will include an audio component. If 20% of the voice conferences

will also include video, select the ‘Including video’ check box. If 50% of your voice

conferences will also include application sharing, select the ‘Including application

sharing’ check box. If 20% of your voice conferences include data uploads, such as

Microsoft PowerPoint® presentations, select the ‘Including web conferencing’ check

box.

78

4.2.4 Voice Applications
 In Response Group Service, type the percentage of concurrent users who will use the

Response Group service.

 In Call Park, type the percentage of concurrent users who will use the Call Park

service.

If the customer will enable Address Book Web Query, select the corresponding check box.

When the customers have entered all the necessary information, the capacity calculator

estimates the requirements. The pink cells show calculated values for CPU, memory, and

bandwidth requirements based on tests performed in Lync Server 2010 performance labs.

The numbers are provided as a guideline; not every single variation is tested and validated.

The following values are calculated:

 Front End CPU: Percentage of CPU usage if the entire load was being handled by one

Front End Server of the same specifications as the server that was used in Microsoft

testing.

 Virtual Machine CPU: Percentage of CPU usage if the entire load was being handled

by one virtual machine of the same specifications as those used in Microsoft testing.

 Memory Requirements: Memory required in gigabytes (GB) for the corresponding

workload.

 Bandwidth Requirements: Bandwidth requirements in megabits per second (Mbps)

for the corresponding workload.

79

The green cells show recommendations for the usage model that you entered.

Total Front End Servers calculation identifies the number of physical servers required. These

calculations are based on dedicated servers running Lync Server 2010 with dual processor,

quad-core, with 2,333 megacycles.

 Total Virtual Servers: The number of virtual servers required is based on dedicated

servers running Lync Server 2010 with four cores, each with 2,333 megacycles.

 Edge Servers: The number of Edge Servers required, based on 30% of all concurrent

users communicating through the Edge Servers. This percentage cannot be changed

in the calculator.

 Directors: Number of Directors needed. Each Director is assumed to support 15,000

users.

 Audio/Video Conferencing Servers: Number of dedicated A/V Conferencing Servers

needed to support the selected conferencing workload based on Lync Server 2010

with eight cores for physical servers or four cores with virtual servers. The usage

model does not support collocating the A/V Conferencing service on Front End

Servers. Hyper-threading is disabled on these servers. Note that enabling hyper-

threading is recommended and has been proven to improve performance for servers

that support audio/video.

 Back End Database Servers: The number of back-end database servers required to

support the selected workload.

80

 Average CPU Load: The average CPU usage per server.

 Network in Mbps: The required bandwidth allocation to support the usage model

that you entered.

 Memory in GB: Memory, in gigabytes, required for each server.

4.3 Adjusting For Processors’ Variations
All the CPU usage figures in the spreadsheet assume that each server has a dual processor,

quad-core, with 2.33 GHz. This yields 2,333 megacycles per second per processor core, or

18,664 megacycles per second per server.

If the servers have different processors, the customer can adjust the figures to match their

hardware.

The SPECint processor benchmark for the processors used in these tests is 186 total for the

eight cores, or 23.25 per core. To calculate the equivalent processor cycles for your servers,

do the following:

1. In a web browser, go to http://www.spec.org.

2. In the navigation bar of the website, point to Results, point to CPU2006, and then

click Search CPU2006 Results.

3. In the Available Configurations box, click SPECint2006 Rates, and then click Go!

4. Under Simple Request, select search criteria that will help you find your processor,

and then click Execute Simple Fetch.

http://www.spec.org/

81

5. Find the server and processor that you have deployed, and look at the number in the

Result column.

6. To obtain the per-core value, divide the value in the Result column by the number of

cores in the server. For example, if the Result number is 240 on an eight-core server,

the per-core value is 30.

7. Use the following formula to determine the per-core megacycles for the server:

(Your processor's per-core value) × 2,333 / 23.25

8. Multiply the result by the number of cores in the server, and you have the total

number of megacycles per server. This compares to the 18,664 megacycles for the

baseline server used to produce the numbers in the previous sections of this topic.

For examples and for details about adjusting for your processors, see next section for an

example of calculating needed resources.

4.4 Example Calculating Needed Resources

The following example shows how the customer can calculate their resource needs if the

organization’s use of Lync Server 2010 differs from that in the Lync Server 2010 User Models.

In this example, the organization’s use is significantly higher than in the user model.

30,000 users, 100% use Enterprise Voice (instead of 50% of users being voice-enabled, as in

the user model). Mediation Server is collocated with Front End Server. 75% of UC-PSTN calls

use media bypass.

http://technet.microsoft.com/en-us/library/gg398811.aspx

82

An average of 7.5% of users are concurrently in conferences (instead of the 5% in the user

model), giving us 2250 concurrent users in conferences.

Other conferencing uses follow the Lync Server 2010 user model.

Enterprise Voice usage is heavier than in the user model, with a busy hour average of five

calls per hour lasting an average of 3 minutes (the user model is four calls per hour at busy

hour). Following the user model, three of those five calls will be UC-PSTN, and two will be

UC-UC.

The CPU needs for the Front End Server are calculated in Table 11: Server CPU Capacity

Calculations as follows:

Table 11: Server CPU Capacity Calculations

Front End Server workload Test server CPU% cost Megacycles needed

Base IM and Presence 30,000 users * 0.001 =

30

(30/100) * 2,333 * 8 =

5,599

Address Book Web Query (30,000 users *

0.0004) + 2 = 14

(14/100) * 2,333 * 8 =

2,613

Group IM (50% of conferences use

group IM)

(1125 users * 0.001) +

2 = 3.125

(3.125/100) * 2,333 *

8 = 583

83

Web conferencing (75% of all

conferences include web conferencing,

and 20% of those conferences include

group IM)

(337 users * 0.01) +

1.5 = 4.87

(4.87/100) * 2,333 * 8

= 909

PSTN conferencing (15% of conference

attendees dial in from PSTN phones)

(338 users * 0.033) +

(338 users * 0.0918) =

42.18

(42.18/100) * 2,333 *

8 = 7,872

Application sharing (75% of all

conferences include web conferencing,

and 50% of those conferences use

application sharing)

(843 users * 0.071) +

2.5 = 62.353

(62.353/100) * 2,333 *

8 = 11,638

Enterprise Voice, UC-UC calls 30,000 users * 2 calls *

3 minutes / 60 = 5000

concurrent calls

5000 calls * .007 = 35

(35/100) * 2,333 * 8 =

6,532

Enterprise Voice, UC-PSTN calls 30,000 users * 3 calls *

3 minutes / 60 = 4500

concurrent calls

(114.12/100) * 2,333 *

8 = 21,299

84

(4500 calls * .007) +

(4500 calls * 0.0918 *

(1 - .8)) = 114.12

 57,045 total

megacycles needed on

Front End Servers.

On the Front End Servers, the total CPU requirement for the heavily-used deployment is

57,045 megacycles. For this example, suppose a customer is deploying servers with a

SPECInt result of 258 for 8 cores, which averages out to 32.25 per core. Using the

calculations in the previous section, we see that these servers have 25,888 megacycles each.

To determine the number of these servers that are needed, divide the number of needed

megacycles (57,045) by the number of megacycles per server (25,888 in this example). Then

divide this result by .7, to ensure that each server runs at no more than 70% of CPU capacity.

Take this final result and round it up to the next whole number. In this example,

(57,045/25,888)/0.7) = 3.15.

The customer will need four of these servers (round up of 3.15). The four servers provide

the customer with a total of 103,552 megacycles, and 57,045 is about 55% of that, so our

four servers should be running at 55% of CPU capacity at peak times.

85

The following Table 12: Audio/Video CPU Capacity Calculations determine the A/V

Conferencing Server needs in the example scenario.

Table 12: Audio/Video CPU Capacity Calculations

A/V Conferencing Server

workload

CPU cost Megacycles

needed

Audio conferencing

(75% of conferences

include Enterprise

Voice)

1688 users *

0.062 =

104.625

(104.625/100) *

2,333 * 8 = 19,527

Video Conferencing

(75% of all conferences

include web

conferencing, and 20%

of these conferences

include video)

338 users * 0.07625 = 25.77 (25.77/100) * 2,333 * 8 =

4,810

 24,337 total megacycles

needed on A/V

Conferencing Servers.

86

The customer can deploy two of these servers, at 25,888 cycles each, and run A/V

Conferencing Server at about 47% CPU on each.

One can perform similar calculations for the memory and network bandwidth needed for

the projected workload, as well. For workloads or scenarios in which the customers think

their organization has typical usage patterns, refer to Lync Server 2010 User Models

(Microsoft, 2012) to see the user models tested by Microsoft

87

Chapter 5: Performance of Cloud Authentication

5.1 Introduction to Cloud Authentication

A major hurdle of formal adoption of OAuth protocol for enterprise applications is

performance. Enterprise applications (e.g. SAP, SharePoint, Exchange Server, etc.) require a

mechanism to predict and manage performance expectations. As these applications become

more and more ubiquitous in the Cloud, the scale and performance expectations become

an important factor impacting architectural decisions for security protocol adoption. This

chapter proposes an optimization to OAuth 2.0 for enterprise adoption. This optimization is

achieved by introducing provisioning steps to pre-establish trust amongst enterprise

applications’ Resource Servers, its associated Authorisation Server and the clients interested

in access to protected resources. In this model, trust is provisioned and synchronized as a

pre-requisite step to authentication and authorisation amongst all communicating entities

in OAuth protocol, namely, the client requesting a protected resource, the resource server,

and the authorisation server. For a case study, SAP authenticating with SharePoint is

simulated using the proposed optimization versus existing OAuth protocol. Such

optimization will further facilitate the adoption of OAuth in the enterprise where scale and

performance are critical factors. (Noureddine & Bashroush, 2011)

Chapter II above introduces OAuth and discusses in details the strengths and weaknesses

and compares it against other protocols. To summarize, OAuth is a claim-based security

88

protocol that enables users to grant third-party access to their protected resources without

sharing their passwords (Microsoft, 2012). OAuth implements this by using a data structure,

called token, that decouples the access right from the client login credentials. Clients

request tokens from an authorisation server and present the token to the service provider.

OAuth 1.0 was published in December 2007 and quickly became the industry standard for

web-based access delegation. However, OAuth 1.0 faced lots of challenges to make it into

the enterprise domain mainly due to the lack of performance optimization capabilities

currently on offer by the protocol. Microsoft, Google, and other large organizations

proposed OAuth WRAP (Web Resource Authorisation Profiles) to solve the performance

challenges and facilitate adoption by the enterprise. One of the main optimizations is the

introduction of an independent Authorisation Server. OAuth adopted the WRAP

recommendation into OAuth 2.0. However, adoption has not yet been proven in enterprise

deployments (e.g. Microsoft Exchange Server, Lync Server, Oracle, SharePoint, SAP, etc.). In

this work, an optimization is introduced to OAuth 2.0 where the Authorisation Server is

provisioned with explicit authorisation table so that access grants are rejected at the

Authorisation Server before getting to the protected resource. This reduces the amount of

processing some popular protected resources would have to do and alleviates the risk of

potential threats such as Denial-of-Service (DoS) attacks and Distributed DoS (DDoS) attacks.

In addition, by extending the parameters of OAuth authorisation request, the calling client

can reduce the number of calls it makes to the authorisation server. In the model developed

in this research, a client makes a single trip to the authorisation server to serve all its users.

89

In the case study presented, it is shown how a SAP server would only need to make a single

acquisition of a token to serve all it’s logged in users with documents available in SharePoint.

In the next chapter, detailed discussion of the drivers behind the introduction of OAuth2.0

and its architecture are presented. The upcoming sections argue the modifications

suggested to OAuth 2.0 in order to facilitate enterprise adoption of the protocol through a

case study.

5.2 OAuth Optimization for Enterprise Adoption

It is often required for servers to integrate with each other and exchange protected data.

An example of this is SharePoint Online integration with SAP. A third party may want to

develop an application to login into SAP and save completed financial reports in SharePoint

for sharing with colleagues or managers, for example. Since these financial reports are

protected resource with high business impact, it may not want to hand its protected data to

any application with a valid token. Also since the example protected resource servers

SharePoint and SAP can host millions of users in the Cloud in a Shared Tenancy model,

request for access with valid tokens can easily burden the server.

In this research proposal, shown in Figure 10: OAuth 2.0 Modified Architecture below, a new

provisioning step is added in which a pre-established trust between the Client and the

Resource Server is configured. This step can reduce many of the unwanted requests to the

Resource Server. Also, during this step the client is given information on where to go to

90

acquire a token, in other words, the address of the Authorisation Server. Figure 9: OAuth

2.0 Protocol Flow and Figure 10: OAuth 2.0 Modified Flow show the before optimization

step and the after optimization is applied call flow, respectively.

Figure 10: OAuth 2.0 Protocol Flow

Client

Resource Owner

Authorization Server

Resource Server

2 Redirect to authorization server

1 Request a protected Resource

3 request access token

5 present token

4 grant access upon credentials validation

6 obtain protected resource

91

Figure 11: OAuth 2.0 Modified Flow

The abstract flow illustrated in Figure 10: OAuth 2.0 Modified Flow above describes the

OAuth 2.0 modified interaction between the different roles and includes the following steps:

A. Provisioning step: clients interested in acquiring protected resources from resource

server are provisioned (in a delegation table, for example). The address of the

authorisation server is provided, for example: https://authserver.com

B. Resource Server synchronizes trusted client with Authorisation Server so that it only

issues tokens to provisioned clients

When a client wants to access a resource from Resource Server:

A. The client requests authorisation grant from the authorisation server by presenting

the client credentials

Client
(C1)

Authorization Server
(AS1)

Resource Server
(RS1)

1

3

2

4

Provisioning Step (A)

Synchronize (B)

92

B. The authorisation server validates the credentials of the client and the authorisation

grant. It also validates that the client is a trusted entity by Resource Server and issues

an access token

C. The client requests the protected resource from the resource server and

authenticates by presenting the access token

D. The resource server validates the access token, and if valid, serves the request.

It is important to note that, during provisioning step, the client may be given the rights to

act on behalf of any user. In this case, the client makes a request to acquire a token (step 1

above) only once during the lifetime of the token. In this experiment, when a token is setup,

the lifetime of the token is 24 hours, the client was making a round trip to the authorisation

server once a day. This is a significant optimization over what the current OAuth 2.0 model

offers.

5.3 Case Study

In this case study, the use of two enterprise applications are simulated, namely SharePoint

Online and SAP that are interested in sharing protected resources on behalf of their users.

For the purpose of this case study, SAP and SharePoint are also pre-provisioned to trust each

other and can act on behalf of any user they trust. Therefore, SharePoint is provisioned to

trust SAP and SAP is provisioned to trust SharePoint. The Authorisation Server is

synchronized so it only issues tokens to trusted clients such as SAP and SharePoint. If any

93

client requests a token with no pre-established trust, the Authorisation server will deny

access.

In order to simulate this, Resource Server (RS1) is built, and an Authorisation Table is setup

as shown in below Table 13: Resource Server (SharePoint) Table. This table is synchronized

on the Authorisation Server (Table 14: Authorisation Server (AS1) Table) as well as the client

(Table 15: Client Table (SAP)). Resource Server can only issue tokens to SharePoint and for

SAP. The Resource Server can only accept tokens issued by Authorisation Server (AS1)

scoped to SharePoint.

Table 13: Resource Server (SharePoint) Table

Authorised Client Credentials

SAP SAP Credentials /public key

Client2 Client2 credentials/public key

Table 14: Authorisation Server (AS1) Table

Client OAuth_Scope Credentials

SAP All users SAP Credentials/public key

SharePoint All users SharePoint Credentials/public key

94

Table 15: Client Table (SAP)

Resource Server Authorisation Server

SharePoint https://AS1

Resource

Server 2

https://AS2

During trust establishment (Step A in Figure 11: OAuth 2.0 Modified Architecture above),

the Resource Server (SharePoint) sets the credentials for the clients it allows access to its

resources as shown in Table 13: Resource Server (SharePoint) Table. It synchronizes that

data with its Authorisation Server. In return, the Authorisation Server will only issue tokens

to clients in the table after validating their credentials. If, for example, a client C1 comes

with a request, it will not be granted a token since it does not have an entry in the table.

Such optimization reduces the number of unwanted calls to resource servers such as

SharePoint or SAP, since they will be rejected at the authorisation server. During the

provisioning process with the client, the Resource Server provides the address of its

Authorisation Server so that the client goes there to acquire a token. These clients do not

need to ping the resource server and be redirected to the authorisation server as in the

original OAuth 2.0 protocol. This also helps in reducing potential DoS or DDoS threats since

the resource server does not need to compute every request and redirect it. Instead, it will

be rejecting the unwanted requests due to lack of an access token within the request itself.

In this case study, both SAP and SharePoint simulated servers shared the same Authorisation

https://as1/
https://as2/

95

Server and exchanged the location “https://AS1”, in this example. https://AS1 simulates the

location of the authorisation server so that the client knows where to go to obtain the

authorisation token. In the original OAuth protocol, the client needs to hit the resource

server first and gets redirected to the authorisation server. With this proposed optimization,

due to the provisioning step, the client can go directly to the authorisation server.

A second optimization that is introduced in this research is the introduction of additional

parameter to the Token itself. This parameter is called OAuth_Scope parameter. When SAP

requests a Token from AS1, it will be receiving a token with OAuth_Scope parameter = ‘All

users’ (if during trust provisioning such client is allowed to act on behalf of all users using a

unique key such as user SMTP (Van Staden & Venter, 2011)). SAP (client in this case),

therefore, does not have to request a token for every additional request against SharePoint.

SAP in this case, can cache the token and make a request against SharePoint for additional

claims throughout the lifetime of the token. In this case study, SAP was required to acquire

a single token once every 24 hours since the lifetime of the token has been setup to 24

hours. It is important to note that OAuth protocol allows the authorisation server to set the

token lifetime. For this case study, a 24 hours lifetime was used. This can be configured

based on the security needs of the resource server, in another example, it can use a lifetime

of 10 minutes or 1 hour if it is mission critical where security is more important than

performance.

96

Table 16: The Modified Protocol Access Token Parameters below shows the modified

protocol access token parameter list.

Table 16: The Modified Protocol Access Token Parameters

 Field Value Description

Claims in

the token

Response_type Code Request

parameter is

used to identity

which grant type

the client is

requesting

Client_id SAP The name of the

principal that

issued the token

Scope SharePoint The scope of the

access request

expressed

 Signature Public key

stamp

Client credential

Response

parameters

ExpiresIn … The lifetime of

the token

97

Authorisation_type Code The authorisation

code that was

used to generate

the access token

OAuth_Scope All users A parameter to

indicate that

client is

interested in

acting on behalf

of all users

5.4 Conclusion

As a consumer centric authentication protocol, OAuth is light-weight, secure, and simple

identity management protocol. In this chapter, an optimization has been presented that can

significantly reduce the number of authentication requests without jeopardizing security

requirements. This optimization also reduces unwanted authentication claims and can

potentially reduce potential DoS and DDoS threats. To better leverage OAuth 2.0 in the

enterprise, two optimizations were proposed. The first optimization is requiring a pre-

established trust provisioning step. In this step, an authorisation table is synchronized

between the client, the Resource Server, and the Authorisation Server. The second

98

optimization is introducing OAuth_Scope parameter so that highly trusted clients can

authenticate on behalf of users.

In the next chapter, additional optimizations are introduced to target federated identities in

the Cloud, including m.

Chapter 6: Federation in the Enterprise

6.1 Introduction to Cloud Federation

Internet identity management is an umbrella that covers several related concerns, all of

which stem from the use of multiple services based on various protocols available in the

industry, all of which come from different providers and reside in different domains. Each

service has a separate identity model and use separate authentication protocol. Developing

usable tools that provide fine-grained control over user private data is an emerging problem

in the Cloud (M. Hart, 2003), (Gates, 2007). As web users looked for ways to collaborate

with others across multiple sites and services, the need for a simple, persistent way to

identify oneself became a compelling issue. SAML, OpenID, OAuth are examples of the

widely adopted protocols as discussed in previous chapters. In the OpenID scenario, a user

creates an account with the Identity Provider of his or her choice and can then use an agent

to negotiate authentication. This became a problem as the number of identity providers

99

became too many, and websites ran out of space displaying various identity providers’ logos

that a user may have chosen. SAML is a SOAP based protocol that saw wide adoption in its

first iterations, however, the world around it changed as developers turned to REST and

JSON to write their APIs. OAuth specification aimed to complement OpenID and let users

delegate access to a protected resource through an Authorisation Server that issues tokens

that do not include users’ credentials. OAuth implementation and deployment continues to

grow and recently seeing research coverage to provide optimizations in various areas.

OAuth provides a worthy promise to organizations planning to leverage the Cloud yet need

a solution for marketplace integration in a secure way that guarantees performance

requirements. As enterprise organizations leverage Cloud computing, one of the important

topics in the Enterprise is the marketplace integration. Whether the enterprise application

is hosted in a dedicated tenancy or shared tenancy, the challenges are similar; that is to

adopt the right security protocol engineered for security and performance. OAuth protocol

is becoming a popular choice for solving such challenges. In the previous chapter, an

optimization to OAuth 2.0 was introduced where the Authorisation Server is provisioned

with explicit authorisation table so that access grants are rejected at the Authorisation

Server before getting to the protected resource. This reduces the amount of processing

popular protected resources would have to do and alleviates the risk of potential threats

such as Denial-of-Service (DoS) attacks and Distributed DoS (DDoS) attacks (Chao-yang,

2011). In this chapter, the enhancements to the protocol are extended to cover marketplace

applications. The notion of referral tokens is introduced to solve the identity federation

100

challenge for marketplace applications. In this architecture, trust is provisioned and

synchronized as a pre-requisite step to authentication amongst all communicating entities

using the OAuth protocol. And in the same way, multiple authorisation servers pre-establish

trust amongst the federated organizations allowing clients to receive referral tokens that

can be validated across organizations.

6.2 Marketplace as a Service MaaS

Marketplace as a Service has emerged as a model of software deployment with its own

economics (Vivek Nallur, 2010) (Nallur & Bahsoon, 2010) whereby a provider licenses an

application to customer for use as a service on demand. Marketplace software vendors

typically host the application on their own web servers or download the application to the

consumer device. The concept of marketplace as a Service started to circulate in December

2000 as shown in Bennett et al. "Beginning to Gain Acceptance in the marketplace" (Bennett,

et al., 2000), while the "Software as a Service" (SaaS) concept started emerging prior to 1999

(Gilroy, 2009).

 Using marketplace can reduce the up-front investment in Software through less costly and

on demand pricing from the hosting service providers. The key characteristics of software

marketplace include (Konary, 2005):

 Network access and management infrastructure

 Availability and ubiquitous web access

101

 Centralized feature updating, which avoids the need for downloadable patches

and upgrades

 Centralized application delivery model, including architecture, pricing, partnering,

and management characteristics;

When Apple opened the first marketplace service on July 10th, 2008, it transformed the

scenario and behaviour traditionally presented in software publishing and purchasing to a

new stage, that is, the application marketplace. The Apple store was a grand slam with over

10 million applications downloaded in just three days (Shih-Fang, 2010) . Proved successful

by Apple, more and more manufacturers and service providers embarked on building and

operating their own marketplace services. Examples included Android Market of Google, Ovi

Store of Nokia, Windows marketplace of Microsoft, Office marketplace for Office 365, SAP

marketplace, and so on.

While Google and Apple made strong headways in application marketplace, enterprise

applications are still not up to speed. Authentication is proving to be one of the major issues

hampering progress due to performance complications. Unlike Facebook and Google,

enterprise applications are not architected from the grounds up to manage the

simultaneous access of a huge number of clients, and the need for marketplace is scoped

within the organization’s boundaries.

102

There are three authentication types when it comes to marketplace: one is the user

authentication, the second type is the application authentication, and the third type is the

application federation. An example of application authentication is a Farmville application

running inside Facebook, while an example of user authentication is a user logging in to

Farmville through Facebook application, and an example of an application federation is

accessing Google email of a user in Farmville (because a user is authenticated to Farmville,

which is allowed to run in Facebook that is federated with Google). All of these models have

various research areas. Central to all is OAuth as a federation protocol, introduced in the

next section, as a protocol that can solve the identity challenge in the Cloud.

6.3 Enterprise Federation

It is often required for servers to integrate with each other and exchange protected data.

An example of this is SharePoint Online integration with SAP. In the previous chapter, the

addition of a provisioning step during which a pre-established trust between the Client and

the Resource Server is configured was discussed. This step can reduce many of the

unwanted requests to the Resource Server. Also, during this step the client is given

information on where to go to acquire a token, in other words, the discovery of the

Authorisation Server. In addition to server to server authentication, a third party may want

to develop a marketplace application to login into SAP and provide a simplified set of

completed financial reports in SharePoint for sharing with colleagues or managers, as an

example. Such integration with third party marketplace can be costly in terms of

103

performance for the enterprise. To illustrate such model, the UML sequence diagram below

(Figure 12: UML Sequence Diagram of a marketplace application) is drawn to illustrate each

step:

End User
Third Party

Marketplace
Applicaiton

Authorization
Server

(AS)
Resource Server

Register an Applicaiton

Confirm with Resource Server.
Requires an Admin consent

AllowReceive Registration ID
User (1) log in to Marketplace

application using their credentials

Request Oauth token from AS

Receive Oauth token from AS

Request protected resource
by presenting oauth token

Receive protected resource

User(2) log in to
Marketplace application
using their credentials

Request protected resource by
presenting cached oauth token

Receive protected resource

104

Figure 12: UML Sequence Diagram of a marketplace application

Note that when the second user (user 2) tries to access the protected resource server, the

marketplace application does not request a token, instead it reuses the existing token

because the protocol allows it to act on behalf of all its users. Such optimization is critical to

enterprise application to reduce round-trips to the authorisation server and optimize

performance. To make it more complex, the marketplace application may want to pull data

from another organization (such as a subsidiary) that contain relevant data. This model is

referred to as identity federation. In this research, another set of optimizations is added

where the Authorisation server is able to provide a referral token. The referral token is

served to facilitate federation across organizations. In this model, a pre-established trust is

provisioned between these two organizations Authorisation Servers. This model is a rather

simple solution to the identity federation challenge as compared to others far more complex

approaches that are difficult and more expensive to implement such as the backend

dedicated identity broker (Wang Bin, 2009) or the life-cycle model in (Ji Hu, 2010).

In the proposed model, if a marketplace application is authorised to access protected

resources in a Protected Resource Server A (and thus trusted by Authorisation Server A),

when the application wants to access a Protected Resource Server B (in organization B), it

will be given a referral to Authorisation Server B as the authorisation servers in both

105

organizations are federated, and a pre-established trust has been setup. This is illustrated

in Figure 13: Overall view of the proposed authorisation model below.

Organization B

Organization A

Client
(C1)

Authorization
Server
(AS1)

Resource
Server
(RS1)

1

3

2

6

Provisioning Step (A)

Authorization
Server
(AS2)

Resource
Server
(RS2)

4

5

Provisioning Step (B)

106

Figure 13: Overall view of the proposed authorisation model

• In step 1, the client C1 is requesting access to Resources in Organization B.

However, since the client is pre-provisioned with the Authorisation Server in

Organization A, it makes the request there.

• In step 2, the Authorisation Server (AS1) returns back a referral (with an address)

to Authorisation Server (AS2) where the client needs to go to get the access token

• In step 3 the client C1 presents the referral token and requests access to Resource

Server (RS2)

• In step 4, after the Authorisation Server (AS2) validates the referral token, it grants

access token to Resource Server RS2

• In step 5, the client C1 presents the access token to Resource Server RS2 with

request to the protected resource. Note that Resource Server only able to validate

tokens issued by its Authorisation Server (AS2). The fact that the client is pre-

configured with Authorisation Server (AS1) is not relevant to the Resource Server

• In step 6, the client C1 receives the requested resource.

6.4 Federation Case Study

In this case study, Enterprise application SharePoint Online in Organization A (OrgA as a

subscriber to Office 365) and marketplace application (EasyAudit) are interested in sharing

107

protected resources on behalf of their users. EasyAudit is a third party marketplace

application developed by an independent Enterprise called EasyAudit.com. SharePoint

online is an Enterprise application available in the Cloud and scoped for OrgA. SharePoint

for OrgA is provisioned to trust an Independent Authorisation Server known as AS1. The

Authorisation Server is developed so it only issues tokens to trusted marketplace

applications that present a valid license purchased through Office 365 licensing model for

marketplace.

In order to simulate this, a Resource Server (RS1) is developed and configured with

Authorisation Table as shown in Table 17: Authorisation Server (AS1) below. This table is

synchronized on the Authorisation Server (AS1). Resource Server (RS1) can only allow access

to applications presenting OAuth tokens issued by AS1.

Table 17: Authorisation Server (AS1)

The

following

steps show the functional flow for the authentication protocol:

Client Credentials

EasyAudit EasyAudit Credentials (Public Key)

108

1. The user types a URL in a web browser to go to a SharePoint page where EasyAudit

is installed.

2. The page is detected by SharePoint processes indicating that there is a component

from the EasyAudit.com app on the page. SharePoint must get a token that it can

send to the EasyAudit.com app. SharePoint asks AS1 to create a token or provide

an synchronize it to SharePoint for future use

3. AS1 requests licensing information from EasyAudit.com and creates an entry upon

valid presentation of the licensing information and then synchronizes the data to

SharePoint.

4. EasyAudit can cache the token and present it to AS1 in future service calls to

SharePoint. It can reuse the token for all of its users where a single call to AS1 can

serve the authentication needs of all users of EasyAudit.com

5. SharePoint returns the information that EasyAudit.com requested in its browser

frame.

6. The EasyAudit.com app renders the browser frame contents as requested by the

user. The user now sees the SharePoint page fully rendered completing the OAuth

transaction process.

The following table (Table 18: Access token parameters for the modified protocol) shows

the access token parameters for the modified protocol.

109

Table 18: Access token parameters for the modified protocol

 Field Value Description

Claims in

the token

Response_type Code Request parameter is used

to identity which grant type

the client is requesting

Client_id EasyAudit.co

m

The name of the principal

that issued the token

Audience SharePoint,

OrgA

The scope of the access

request expressed

 Signature Public key

stamp

Client credential

Response

Parameters

ExpiresIn 24hrs The lifetime of the token

Authorisation_

type

Code The authorisation code that

was used to generate the

access token

110

In the next step, it is assumed that SharePoint Online for OrgA wants to federate trust with

Organization B (OrgB). OrgB is a subsidiary of OrgA, and it is important for EasyAudit to

access resources from both organizations to present the accurate reports. In this case, AS1

is configured to issue access tokens that can be authenticated by AS2. When EasyAudit token

parameter ‘Audience’ is addressed to OrgB, AS1 response parameter token is returned with

a referral to AS2 along with the referral address https://AS2. In this step, the client

(EasyAudit) presents the referral token to AS2 at the address provided and obtains a token

that can be presented to protected SharePoint resources in OrgB. No exchange of

credentials is required between AS2 and the client (EasyAudit). AS1 is configured as below

in Table 19: Authorisation Server (AS1) Table Supporting Identity Federation.

Table 19: Authorisation Server (AS1) Table Supporting Identity Federation

Client

Credentials

Federation

EasyAudit

EasyAudit Credentials (Public Key)

AS2, Https://AS2

OAuth_Scope All users A parameter to indicate that

client is interested in acting

on behalf of all users

Referral Referral

Address

The address where the

token need to be issued

from

https://as2/

111

In the next step, the case study analysed in this chapter is compared with a pure OAuth

protocol use case. To do the study, Office 365 is simulated with 1000 users all provisioned

with a license to run SharePoint online. 500 of these users are in OrgA and 500 are in OrgB

where a federation is established per the optimization addressed in this chapter. Each of

these users is simulated to have EasyAudit service installed and ready for use. When the

first user in OrgA requests access to EasyAudit report, SharePoint server loads EasyAudit in

its frame, EasyAudit then obtains a token from Authorisation Server (AS1) and presents it to

SharePoint, SharePoint validates the token, caches it to 24 hours and allows access to the

user. When user 2 requests access to the EasyAudit service, SharePoint uses the same

cached token, it is able to do that because the trust is between the servers and the servers

have the right to act on behalf users, no additional trips to Authorisation server is required

for either of the servers. When user 1 in OrgB requests access to EasyAudit, SharePoint in

OrgB loads EasyAudit in its frame and requests a token. EasyAudit makes a round trip to AS1

to obtain a token; it is then referred to AS2 to obtain the token. EasyAudit server obtains

the token and presents it SharePoint in OrgB. The user is authenticated; the token is cached

and reused for the rest of users 2...500 in OrgB. If using pure OAuth protocol without the

proposed optimization, such use case will require 1000 trips to the Authorisation server, 500

calls in each of the organizations, while with proposed optimization, the Market Place client

only needed to make 3 trips. The first call is made to the first Authorisation server (AS1) for

112

OrgA users, the second trip to AS1 for OrgB, and the third trip to the federated Authorisation

Server (AS2) via a referral token. The following table (Table 20: Results of Case Study)

summarizes these results.

Table 20: Results of Case Study

Number of users

in the Study

Number of calls required to

AS per OAuth Protocol

Number of calls required to AS per

proposed OAuth protocol

optimization

1000 1000 3

It is important to note that this ratio of 1000:3 is arbitrary and for demonstration of the

optimization. The optimization will apply for any number of clients, in other words, this ratio

could be 100000:3, etc. The optimization basically eliminates the dependency on number

of clients trying to access the protected resource, using this optimization, the number of

round trips to the authorization server is always the same and equal to 3 trips.

In more practical terms, and to illustrate how this is implemented in real world application

for the authentication amongst SharePoint and marketplace as illustrated in (Microsoft,

2012), the client builds a HTTP "POST" request to the AS (Authorisation Server) endpoint and

113

includes the following mandatory parameters as defined in OAuth-WG Device Profile

(OAuth-WG, 2010)

 oauth _identifier, the identifier of the client.

The client can also include the following optional parameters, as well as any additional

parameters as defined by the authorisation server:

 OAuth_Server_Scope: This parameter should be used if the authorisation server

has defined a method for the client to request certain capabilities of the access

token.

Since the requests are sent via plain text, the server may require the user of TLS or SSL.

For example, the following HTTPS request is made by the client:

 POST /request_token HTTPS/1.1

 Host: server.as2.com

 oauth _identifier=easyaudit.com

When the client sends the authorisation request, a user verification code and a device

verification code is generated by the authorisation server. These are included in the HTTP

response body using the "application/x-www-form-url-encoded" content type as defined by

[W3C.REC-html40-19980424] with a 200 status code (OK). The following PREREQUISITE

parameters are included in the response:

 oauth_device_id, the device code that does the verification.

 oauth_user_id, the user code that does the verification.

114

 oauth_verification_url, the user URL that does the verification on the authorisation

server.

The following parameters may also be included, as well as any additional parameters as

defined by the authorisation server:

 oauth_verification_token_expires_in, the lifetime of the two verification codes in

seconds.

 oauth_verification_rate_limit, the minimum amount of time in seconds that the

client should wait between polling requests to the device authorisation URL.

For example:

 HTTPS/1.1 200 OK

 Content-Type: application/x-ww -url-encoded

 oauth_device_code=7u8TKKcKB&oauth_user_code=5696&oauth_verification_url

=http%2A%2M%2Fwuw%2Zexample%2Gcom%2Fdevice

The verification code and the user verification URL must be displayed by the client to the

end user. The client must instruct the user to visit the user verification URL in a web browser,

and to enter the user verification token upon doing so.

This research does not cover the way in which the authorisation server handles the

authorisation request, including whether it uses a secure channel such as TLS/SSL (OAuth-

WG, 2010).

The example illustrates the authorisation case and the denial case for an authorisation

server. This case study shall better explain the proposed solutions and how they work in

115

practice. Overall, the simplification is illustrated, and the optimization is clear where the

calling application needs to authenticate with the Authorisation Server once to obtain the

token, the token then can be reused for all its users. Such optimization is necessary to

ensure the scale needed for Enterprise applications to practically leverage OAuth protocol.

6.5 Conclusion

As a consumer centric authentication protocol, OAuth is light-weight, secure, and simple

identity management protocol. In this chapter, it was shown an optimization that can

significantly reduce the number of authentication requests without jeopardizing security

requirements. The same model is enhanced to solve the federation challenge. To better

leverage OAuth 2.0 in the enterprise, this chapter proposed two modifications. The first

modification requires a pre-established trust provisioning step. In this step, the proposal

calls for synchronized authorisation table between the client, the Resource Server, and the

Authorisation Server. The second modification is the introduction of the referral parameter

to the protocol so that various Authorisation Servers can refer requests to each other and

thus federate trust. Organizations that want to leverage this model will need to pre-

establish trust with this global Authorisation Server. This would also potentially provide the

platform that would allow for the creation of a unified Cloud identity. Some of these

modifications are currently being considered for adoption as part of the next version of the

OAuth protocol.

116

Chapter 7: Conclusion

7.1 Summary

This research addressed some of the challenges that large enterprises face when hosting

Cloud solutions. In the beginning of the research, Cloud computing was researched with a

focus on performance optimization. In the area of performance optimization, the area of

capacity planning was researched since it is a major challenge for Cloud providers opting to

reduce the cost and meet SLAs for Cloud providers. In addition to capacity planning, the

area of security protocol adoption was researched due to the challenge of adopting an

authentication protocol that meets the performance needs of a large enterprise. It is usually

an issue in the enterprise due to the cost of performance overhead. Finding a secure

solution without a performance hit is a major challenge for adopting Cloud computing. The

research on capacity planning has led to the development of the Capacity Planning

Calculator for Lync Server. In addition, the research has covered Cloud performance

optimization for the marketplace (third-party developers that want to authenticate with

enterprise applications), as this is an open challenge for large enterprises adopting OAuth

protocol. With such optimizations, Cloud providers can minimize the cost, guarantee SLAs,

and secure access to data resources, all of which are key aspects for enabling better Cloud

adoption in the Enterprise.

117

7.2 Limitations & Future Work

It can be argued that one of the limitations of this work is that capacity-planning validation

was only done via one real-life case study, the MS Lync platform, with wide industrial

adoption of the results by providers using the MS Lync platform. Although this met our

research objective and demonstrated clearly the level of efficiencies that can be achieved

by better and more reliable resource requirement prediction at the planning stage, the next

target would be to expand and generalize the applicability of our methodology to other

Cloud application domains. This will involve studying the effect of how the actual inter-

arrival of incoming requests of the different application types are distributed and how the

service time durations are temporally distributed. For example, there might be a

considerable difference between application types where the incoming requests are

distributed in accordance to the Poisson distribution as compared to other types of

distribution (e.g. the response time of M/M/1 queues versus that of G/G/1 queues).

Finally, future work will further investigate the reason behind the differences between the

results produced by our methodology (section 3.3) and the real values measured (section

3.5). For example, in the first experiment (Table 3) there was a -10% difference between the

CPU performance computed with the methodology and the simulator; in the third

experiment (Table 5) it was +16%. This should help us better enhance our methodology by

identifying a more precise overprovisioning upper bound margin which is currently set based

on statistical data.

118

References

Allspaw, J., 2008. The Art of Capacity Planning: Scaling Web Resources. 1 edition ed. San Francisco, CA:

O’Reilly Media.

Archer, D., Pushlmann, N., Boehme, A. & Kurtz, P., 2011. Security guidance for critical areas of focus in

cloud computing v3.0. Miami, FL, Cloud Security Alliance.

Bashroush, R. & Noureddine, M., 2012. A Cost Effective Cloud Datacenter Capacity Planning Method

Based on Modality Cost Analysis. International Journal of Communication Networks and Distributed

Systems.

Bennett, k. et al., 2000. The Future for Flexible Software. Singapor, APSEC.

CA, 2010. Utilization and Datacenter productivity. [Online]

Available at: http://www.ca.com/files/technologybriefs/dca-manager-tech-brief-us.pdf

[Accessed 11 July 2012].

Chao-yang, Z., 2011. DOS attack analysis and study of new measures to prevent. Wuhan, IEEE.

Chris Matthews, Y. C., 2009. Virtualized recomposition: Cloudy or Clear?. Vancouver, BC, Software

Engineering Challenges of Cloud Computing, 2009. CLOUD '09. ICSE Workshop, pp. 38-43.

Daniel Gmach, J. R. L. C. A. K., 2007. Workload Analysis and Demand Prediction of Enterprise Data

Center Applications. Boston, MA, IEEE.

Dymond, M. J. a. P., 1998. A Plugin-Based Privacy Scheme for World-Wide Web File Distribution. Kohala

Coast, HI , IEEE, pp. 621-627.

Eghbal Ghazizadeh, M. Z. a. J.-l. A. M., 2012. A Survey on Security Issues of Federated Identity in the

Cloud Computing. Taipei, IEEE 4th International Conference on Cloud Computing Technology and

Science.

Ernest, S. & Foo, A., 2009. A user-centric federated single signon system. Journal of Network and

Computer Applications, 32(2), pp. 288-401.

Fang, Z., Ying, C. & Lin-Ping, W., 2005. “o,”. Computer&Digital Engineering, Volume 33, no. 1, pp. 81-

84.

Fedorova, A., Seltzer, M. & Smith, M. D., 2008. Improving Performance Isolation on Chip

Multiprocessors via an Operating System Scheduler. Brasov, IEEE.

Ferraz, A. C. C. M. a. C. A. G., 2005. Guidelines for performance evaluation of web services. New York,

NY, ACM, pp. 1-10.

119

Gates, D. C. a. E., 2007. Access Control Requirements for Web 2.0 Security and Privacy. New York, NY,

W2SP.

Gilroy, A., 2009. Microsoft, Nokia Add Phone App Stores. This Week in Consumer Electronics (TWICE),

24(5), pp. 1-8.

Gokhale, J. L. a. S. S., 2008. Resource Provisioning in an E-commerce Application. Washington, DC ,

IEEE.

Gopalakrishnan, T. & Vaidehi, M., 2011. Efficient resource arbitration and allocation strategies in cloud

computing through virtualization. Beijing, Proceedings of IEEE CCIS.

Graham Kirby, A. D. A. M. a. F., 2010. An Approach to Ad hoc Cloud Computing. Fife, Scottland, Arxiv,

pp. 1-6.

Gray, N. A. B., 2004. Comparison of web services, java-RMI, and CORBA service implementations.

Sydney, ASWEC.

Hasselmeyer, P. & d'Heureuse, N., 2011. A System for Data Center Performance Estimation.

Minneapolis, Minnesota USA, ICDCS.

IEFT, 2010. WS-Federation. [Online]

Available at: http://msdn.microsoft.com/enus/library/bb498017.aspx

[Accessed 4 2011].

IEFT, 2011. OAuth WRAP. [Online]

Available at: http://tools.ietf.org/html/draft-hardt-oauth-01

[Accessed 17 4 2011].

IETF, 2010. WS-Trust. [Online]

Available at: http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

[Accessed 4 2012].

Intel, 2013. HyperThreading. [Online]

Available at: http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-

threading/hyper-threading-technology.html

[Accessed 2014].

J. Somorovsky, A. M. J. S. M. K. a. M. J., 2012. On breaking saml: Be whoever you want to be. Berkeley,

CA, IEEE.

J. Zhang, M. Y. a. R. C., 2007. Application resource demand phase analysis and prediction in support of

dynamic resource provisioning. New York, NY, IEEE.

120

Jacob Bellamy-McIntyre, C. L. G. W., 2011. OpenID and the Enterprise: A Model-based Analysis of

Single Sign-On Authentication. Helsinki, 15th IEEE International Enterprise Distributed Object

Computing Conference.

Ji Hu, X. F. R. F., 2010. Business Driven Trust Federation Management fo Service Marketplaces. Miami,

FL, IEEE.

Jiyin Li, M. Q. J.-W. N. Y. Z. M., 2010. Adaptive Resource Allocation for Preempt able Jobs in Cloud

Systems. Philadelphia, PA , IEEE International Conference on Intelligent Systems Design and

Applications, pp. 31-36.

Jones, M., Rosu, D. & Rosu, M., 1997. CPU reservations and time constraints: Efficient, predictable

scheduling of independent activities.. Saint-Malo, France, ACM.

Jun, J. & You, H., 2010. A Mechanism to Prevent RP Phishing in OpenID System. Yamagata, IEEE, pp.

876-880.

K. Daniel, T. T. C. W., 2008. Interoperable Role-Based Single Sign-On-Access to Distributed Public

Auhority In- formation Systems. Boston, MA, IEEE.

K. Tang, S. C. D. L. J. Z. a. B. Y., 2006. A performance evaluation of web services security. Hong Kong,

IEEE, pp. 67-74.

Konary, E. T. a. A., 2005. 2005 Software as a Service Taxonomy and Research Guide. IDC, p. 7.

Layouni, F. & Pollet, Y., 2009. An Ontology-Based Architecture for Federated Identity Management.

Bradford, IEEE.

Lenk, A., Llems, M., Nimis, J. & Tai, S., 2009. What’s inside the cloud? An architectural map of the cloud

landscape. Palo Alto, CA, ACM.

Li-chun, P., Xing-yuan, C., Ting, W. & Zhang, B., 2008. Credit-based dynamic authentication mechanism

crossing heterogeneous domains. Computer Applications, Volume vol. 28, no. 6, pp. 1382-1384.

Liu, H., Pallickara, S. & Fox, G., 2005. Performance of web services security. Proceedings of the 13th

Annual Mardi Gras Conference, IEEE.

Lu, S. & Gokhale, S., 2006. Performance and availability analysis of e-commerce sites. Chicago, IL , IEEE.

Lynch, L., 2011. Inside the identity management game. Internet computing, IEEE Volume 15(Issue 5),

pp. Pages 78-82.

M. Hart, R. J. a. A. S., 2003. More Content - Less Control: Access Control in the Web 2.0. Miami, FL, IEEE.

Madhukar R. Korupolu, A. S. B. B., 2009. Coupled placement in modern data centers. Rome, IEEE.

Madsen, P., Koga, Y. & Takahashi, K., 2005. Federated identity management for protecting users from

ID theft. New York, ACM, pp. 77-83.

121

Manshan Lin, H. G., 2001. Present Situation and Development of single sign-on technology. Journal of

Computer Applications, 24(6), pp. 248-250.

Marouf, M. S. a. S., 2012. Recommendation Models for Open Authorization. IEEE transactions on

dependable and secure computing, July/August.Volume Vol. 9, NO. 4.

Menasce, D. A., 2002. QoS issues in Web services. IEEE Internet Computing, Volume vol. 6, pp. 72-75.

Menasce, D. & Bernnani, M., 2006. Autonomic virtualized environments. Silicon Valley, CA, IEEE.

Microsoft, 2011. Lync Server 2010 Capacity Calculator. [Online]

Available at: http://www.microsoft.com/en-us/download/details.aspx?id=12295

Microsoft, 2012. Implement OAuth in your Marketplace App. [Online]

Available at: http://msdn.microsoft.com/en-us/library/windowsazure/gg193416.aspx

[Accessed 27 1 2014].

Microsoft, 2012. Lync Server 2010 Planning Guide. [Online]

Available at: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=2da9fa26-e032-4dcf-

b487-da916ddc508f

Microsoft, 2012. Lync Server 2010 Stress and Performance Tool. [Online]

Available at: http://go.microsoft.com/fwlink/?LinkId=212599

Microsoft, 2012. Lync Server 2010 User Models. [Online]

Available at: http://technet.microsoft.com/en-us/library/gg398811.aspx

Microsoft, 2012. Microsoft Lync Server. [Online]

Available at: http://office.microsoft.com/en-us/lync/

[Accessed 7 2013].

Microsoft, 2012. Microsoft Lync Server 2010 Planning Tool. [Online]

Available at: http://go.microsoft.com/fwlink/?LinkId=206134

Microsoft, 2012. What's new in authentication for SharePoint 2013. [Online]

Available at: http://labellesharesonsharepoint.wordpress.com/2013/01/10/whats-new-in-

authentication-for-sharepoint-2013/

[Accessed 2 2013].

Moralis, A. et al., 2007. Performance comparison of web services security: Kerberos token profile

against X.509 token profile. Athens, IEEE.

Nallur, V. & Bahsoon, R., 2010. Design of a market-based mechanism for quality attribute tradeoff of

services in the cloud. New York, NY, ACM.

Noureddine, M. & Bashroush, R., 2011. A Performance Optimization Model towards OAuth 2.0

Adoption in the Enterprise. Greece, IEEE.

122

Noureddine, M. & Bashroush, R., 2011. A provisioning model towards OAuth 2.0 performance

optimization. London, U.K., IEEE, pp. 76-80.

Noureddine, M. & Bashroush, R., 2011. Cost Effective Datacenter Capacity Planning Analysis Using

Modality Cost Methodology.. Ubiquitous Computing and Communication Journal (UBICC).

Noureddine, M. & Bashroush, R., 2011. Modality cost analysis based methodology for cost effective

datacenter capacity planning in the cloud. nternational Journal of Communication Networks and

Distributed Systems, Volume 11(N 3).

Noureddine, M. & Bashroush, R., 2011. Modality Cost Analysis: A Methodology for Cost Effective

Datacenter Capacity Planning in the Cloud. Jordan, ICICS.

Noureddine, M. & Bashroush, R., 2013. An Authentication Model towards Cloud Federation in the

Enterprise. Journal of Systems and Software.

OAuth, 2012. [Online]

Available at: http://tools.ietf.org/html/draft-hardt-oauth-01

OAuth-WG, 2010. OAuth-WG Device Profile. [Online]

Available at: http://www.ietf.org/mail-archive/web/oauth/current/msg01346.html

[Accessed 3 2013].

Pai, S., Sharma, Y., Kumar, S. & Pai, R., 2011. Formal Verification of OAuth 2.0 using Alloy Framework.

Katra, Jammu , IEEE.

Pai, S., Sharma, Y., Pai, R. & Singh, S., 2011. Formal verification of oauth 2.0 using alloy framework.

Katra, Jammu , IEEE.

Peter Bodík, R. G. C. S. A. F. M. I. J. a. D. A. P., 2009. Automatic Exploration of Datacenter Performance

Regimes. Orlando, FL , Automated Control for Datacenters and Clouds.

Ragouzis, N. et al., 2008. Security assertion markup language (saml) v2.0 technical overview. Security

Services Technical Committee of OASIS.

Rolia, J., Cherkasova, L., Arlitt, M. & Andrzejak, A., 2005. A Capacity Management Service for Resource

Pools. Spain, IEEE.

Sean Kenneth Barker, P. S., 2010. Empirical evaluation of latency-sensitive application performance in

the cloud. New York city, NY, ACM.

Shih-Fang, C., 2010. Application Marketplace as a Service, A Reference Architecture for Application

Marketplace Service. Orlando, FL, IEEE.

Shirasuna, S., Slominski, A., Fang, L. & Gannon, D., 2004. Performance comparison of security

mechanisms for grid services. Miami, FL, IEEE, pp. 360- 364.

123

Simmons, B., McCloskey, A. & Lytfiyya, H., 2007. Dynamic Provisioning of Resources in Data Centers.

Orlando, FL, IEEE.

Song, Y., Li, Y. & Wang, H., 2008. Service-oriented priority-based resource scheduling scheme for

virtualized utility computing. Miami, FL, IEEE.

SPECint Processor Benchmarking, 2012. [Online]

Available at: URL: http://www.spec.org

[Accessed 4 2012].

Sukumar, R., 2011. Platforms for Building and Deploying Applications for Cloud Computing. Miami, FL,

IEEE, pp. 6-11.

Sun Microsystems, 2010. Metro Web Services Interoperability Technology (WSIT),

https://wsit.dev.java.net/.. [Online]

Available at: https://wsit.dev.java.net

[Accessed 13 12 2012].

Suriadi, S., Foo, E. & Josang, A., 2009. A user-centric federated single sign-on system. Journal of

Network and Computer Applications, pp. 288-401, vol 32.

Symantec, 2010. DoS. [Online]

Available at: http://www.symantec.com/security_response/glossary/define.jsp?letter=d&word=dos-

denial-of-service-attack

[Accessed 10 6 2014].

Takeda, Y. et al., 2006. Avoidance of performance bottlenecks caused by http redirect in identity

management protocols. New York, ACM, pp. 25-32.

Van Staden, F. & Venter, H., 2011. Adding digital forensic readiness to electronic communication using

a security monitoring tool. Johannesburg, IEEE.

Vivek Nallur, R. B., 2010. Self-adapting Applications Based on QA Requirements in the Cloud Using

Market-Based Heuristics. ServiceWave , pp. 51-62.

Wang Bin, H. H. Y. L. X. X. X. J. M., 2009. Open Identity Management Framework for SaaS Ecosystem.

Macau, IEEE.

Wang Xiuyi, W. L. J. C. Q., 2007. Security Research on a SAML-based Single Sign-on implement mode.

Microcomputer Information, 23(8-3), pp. 81-83.

Wang, 2011. An Analysis of Web Single Sign-On.

Wang, R., Chen, S. & Wang, X., 2012. Signing Me onto Your Accounts through Facebook and Google: a

Traffic-Guided Security Study of Commercially Deployed Single-Sign-On Web Services. Oakland, CA,

IEEE.

124

Warneke, D. & Odej, K., 2011. Exploiting Dynamic Resource Allocation for Efficient Parallel Data

Processing in the Cloud. Parallel and Distributed Systems, 22(6), pp. 985 - 997.

Wood, T., Cherkasova, L., Ozonat, K. & Shenoy, P., 2008. Profiling and Modeling Resource Usage of

Virtualized Applications. New York, NY, USA, ACM.

Yagiz Onat Yazir, C. M. R. F., 2010. Dynamic Resource Allocation in Computing Clouds using Distributed

Multiple Criteria Decision Analysis. Miami, FL , IEEE Third International Conference on Cloud

Computing, pp. 91-98.

Yang, F. & Manoharan, S., 2013. A security analysis of the OAuth protocol. Victoria, BC , IEEE.

Yan, L., Rong, C. & Zhao, G., 2009. Strengthen cloud computing security with federal identity

management using hierarchical identity- based cryptography. s.l., 1st International Conference on

Cloud Computing, CloudCom 2009.

Ye Hu, J. W. G. I. a. M. L., 2009. Resource Provisioning for Cloud Computing. Riverton, NJ, USA , ACM.

Yebin Chen, B. W. B. X. L. S., 2011. Design of web service single sign-on based on ticket and assertion.

Deng Leng , IEEE.

Yexi Jiang, C.-S. P. T. L. C. R., 2013. Cloud Analytics for Capacity Planning and Instant VM Provisioning.

IEEE Transactions on Network and Service Management, 10(3).

Zarandioon, D., Yao, D. & Ganapathy, V., 2009. Privacy-aware identity management for client-side

mashup applications. Chicago, IL, ACM, pp. 21-30.

Zhen-Guo, D., Duo-Zheng, L. & Mei-Ling, L., 2009. Optimistic dynamic authentication based on digital

signature. Computer Engineering and Design, Volume vol. 30, no. 15, pp. 3511-3513.

Zhenxiang Tu, Q. L., 2012. Design and implementation of unified identity management system based

on SAML. Yichang, IEEE, pp. Page(s): 3178 - 3181.

Zhiliang Zhu, J. B. H. Y. Y. C., 2011. SLA Based Dynamic Virtualized Resources Provisioning for Shared

Cloud Data Centers. Washington, DC, IEEE.

Zhu, X., Young, D. & Watson, B., 2008. 1000 Islands: Integrated Capacity and Workload Management

for the Next Generation Data Center. Chicago, IL , IEEE, pp. 172-181.

125

