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Abstract 

Paracetamol (acetaminophen), is a centrally-acting antipyretic analgesic drug, which can also 

lower body temperature.  Despite a century of clinical use, its mechanism of pharmacological 

action has not been completely elucidated. Previously, we demonstrated significant 

attenuation in the paracetamol induced hypothermia in parallel with its inhibitory action on 

the synthesis of brain prostaglandin E2 (PGE2) in cyclooxygenase-1 (COX-1) knockout mice 

in comparison to wild-type mice. The above reported pharmacological actions by 

paracetamol were completely retained in COX-2 knockout mice. We thus concluded that the 

mechanism of hypothermic action of paracetamol is dependent on inhibition of a COX-1 

gene-derived enzyme. In the current investigation, we provide further support for this notion 

by demonstrating that the paracetamol-induced hypothermia is not mediated through 

inhibition of COX-1 as neither the COX-1 selective inhibitor, SC560, nor the COX-1/COX-2 

dual inhibitor, indomethacin, induced hypothermia at pharmacologically active doses in mice. 

In addition, using a COX-2-dependent and PGE2-mediated model of endotoxin-induced 

fever, paracetamol induced anti-pyretic and hypothermic actions in COX-1 wild-type mice. 

These effects were fully or partially attenuated in COX-1 knockout mice after prophylactic or 

therapeutic administration, respectively. Therapeutically-administered paracetamol also 

reduced hypothalamic PGE2 biosynthesis in febrile COX-1 wild-type mice, but not in febrile 

COX-1 knockout mice. In conclusion, we provide further evidence which suggests that the 

hypothermic and now anti-pyretic actions of paracetamol are mediated through inhibition of a 

COX-1 variant enzyme.         

 

Keywords: Cyclooxygenase, Fever, Hypothermia, Lipopolysaccharide, Paracetamol, 

Prostaglandin E2 
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1. Introduction 

Paracetamol (acetaminophen) is an analgesic antipyretic drug with weak anti-inflammatory 

actions; commonly used for the treatment of acute pain and fever in adults and children 

(Roberts and Morrow, 2001). Despite its widespread clinical use for over a century, the 

totality of the mechanism of pharmacological actions of paracetamol has not been 

satisfactorily explained.      

The mechanism of action of aspirin and other non-steroidal anti-inflammatory drugs 

(NSAIDs) is dependent on inhibition of cyclooxygenase (COX) activity (Vane 1971). Unlike 

NSAIDs, paracetamol was shown to reduce prostaglandin E2 (PGE2) synthesis more potently 

in the brain than in peripheral (e.g. spleen) tissues (Flower and Vane 1972) suggesting 

specificity of action. Several in vivo studies confirmed this hypothesis (Ayoub et al. 2004; 

Ayoub et al. 2006; Feldberg et al., 1972; Muth-Selbach et al. 1999; Yaksh and Malmberg, 

1993).  

Paracetamol produced weak inhibition of COX-1 and COX-2 activities in in vitro inhibitory 

assays (Mitchell et al. 1993), thus inhibition of these two enzymes could not provide a 

satisfactory explanation for the reduction of CNS PGE2 synthesis by paracetamol. From in 

vitro experiments, it was shown that paracetamol worked as a reducing agent to inhibit COX 

activities and that this inhibitory action was therefore dependent on the intracellular lipid 

hydroperoxide tone. (Boutaud et al., 2002; Hanel and Lands, 1982; Oulellet and Percival, 

2001).  

In 2002, Simmons and colleagues identified a novel cyclo-oxygenase species, COX-3, in 

canine tissues as a new catalytically active splice variant of COX-1, which unlike COX-1, 

retained intron-1 in its mRNA and protein sequences. Paracetamol potently inhibited COX-3 

activity in a cell based assay, but not COX-1 or COX-2 (Chandrasekharan et al. 2002). As 

COX-3 was shown to be highly expressed in the CNS, it was therefore thought that it could 

provide the long sought after target for the pharmacological actions of paracetamol. However, 
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Retention of intron-1 in rodent and human COX-1 mRNA was shown to result in an out-of-

frame sequence that terminated translation, producing a truncated catalytically inactive 

protein (Chandrasekharan et al. 2002; Dinchuk et al. 2003; Schwab et al. 2003). Despite this, 

COX-3 protein has been detected in rodent and human tissues (Ayoub et al. 2006; Qin et al. 

2005; Shaftel et al. 2004; Snipes et al. 2005). It has been suggested that removal of one or 

more nucleotides from the intron-1 mRNA sequence prior to translation could lead to an in-

frame sequence (Qin et al. 2005).      

Previously, we provided evidence that the hypothermic action of paracetamol in 

normothermic mice is dependent on inhibition of a COX-1 gene-derived protein (Ayoub et 

al., 2004). This conclusion is derived from the demonstration that the brain PGE2-dependent 

paracetamol-induced hypothermia was significantly attenuated in COX-1-/- mice, and was 

completely retained in COX-2-/- , in comparison to the respective littermate wild-type 

controls.  The two likely targets for the paracetamol-induced hypothermia are either COX-1 

or its variant COX-3.  

In the current study, we provide evidence that the target for the paracetamol-induced 

hypothermia in normothermic mice is not COX-1 as the COX-1 selective inhibitor SC560 

and dual inhibitor indomethacin both failed to induce hypothermia at pharmacologically 

active doses. We also investigated the mechanism of antipyretic action of paracetamol, and 

we provide evidence that, unlike NSAIDs, the antipyretic action of paracetamol is not 

dependent on inhibition of COX-2, but on a COX-1 gene-derived protein.  
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2. Materials and methods 

2.1. Animals 

Male C57BL/6J mice (20±2g) were supplied from Harlan UK (Bicester, UK). COX-1-/-, 

COX-2-/- (Langenbach et al. 1995; Morham et al. 1995) and littermate wild-type mice (COX-

1+/+ and COX-2+/+) were from stocks bred at Bart’s and the London School of Medicine and 

Dentistry. All strains of mice were maintained under a 12-h/12-h light/dark cycle at 22°C±1. 

Food and water were provided ad libitum. Experimental procedures were conducted in 

accordance with the United Kingdom Home Office Guidelines.  

 

2.2. Reagents 

Paracetamol (Sigma, Poole, UK) was dissolved in 12.5% (v/v) 1,2-propanediol. SC560 and 

celecoxib (kind gifts from Schering Aktiengesellschaft, Berlin, Germany) were initially 

dissolved in 100% dimethyl sulphoxide (DMSO) then diluted to the appropriate doses in a 

solution containing 10% cremophor oil, 10% ethanol and 80% saline reducing the 

concentration of DMSO to 0.1%. Indomethacin was dissolved in a 5% solution of sodium 

bicarbonate. Lipopolysaccharide (LPS) from Escherichia coli (serotype 0111:B4) purified by 

trichloroacetic acid extraction was purchased from Sigma and constituted in pyrogen-free 

saline (PFS). 

 

2.3. Measurement of body temperature 

To measure core body temperature of freely moving mice, temperature-sensitive transponders 

(Plexx B.V. AB Elst, The Netherlands) were implanted subcutaneously under light isoflurane 

anaesthesia. Mice were immediately placed under warming lamps to aid with recovery from 

the anaesthetic with a piece of tissue paper placed between the light source and mice to 

protect their eyes from direct light exposure. Implantation of the temperature-sensitive 

transponders was done one week prior to the experiment. Temperature measurements were 
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made using a temperature-sensitive scanner held 3cm above the back of the animals. Seven 

days prior to the experiment, the body temperature of mice was measured and recorded on a 

daily basis to familiarize (condition) mice to the temperature scanner in order to reduce stress 

and also to monitor their body temperature.  

 

2.4. Induction of fever and drug administration 

At 8:00am the animals were transferred to a warm air system (Vet Tech Solutions Limited, 

UK) set to the murine thermoneutral zone of 30oC. Prior to the start of the experiments, body 

temperatures were measured twice in order to screen for any abnormally high or low body 

readings. At 9:00am LPS (see results section for doses used) was administered 

intraperitoneally. Paracetamol at a dose of 200mg/kg was administered subcutaneously either 

prophylactically (0.5h prior to LPS) or therapeutically (2h after LPS). In each experiment the 

time-profile of body temperature, usually up to 5h was determined. In other experiments, 

normothermic mice housed at standard 22oC were treated intraperitoneally with either 

300mg/kg paracetamol, 15mg/kg SC560, 15mg/kg celecoxib or 5 - 10mg/kg indomethacin 

(subcutaneously) in order to determine whether these drugs induce hypothermia. 

 

2.5. Measurement of hypothalamic PGE2 

2.5.1. Dissection of hypothalamus 

At the end of the experiments the mice were killed by cervical dislocation and the brains were 

quickly removed from the skull, placed on ice and immediately washed with cool 10µM 

indomethacin (constituted in 5% w/v biocarbonate buffer).  Whole brains or hypothalamic 

tissues were removed and snap-frozen in liquid nitrogen. All tissues were stored at -80oC 

ready for PGE2 extraction and subsequent measurement.  
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2.5.2. PGE2 extraction and measurement  

The same procedures as previously published (Ayoub et al. 2004; Ayoub et al. 2006; Ayoub 

et al. 2008) were followed. Briefly, hypothalamic tissues or whole brains were pulverized 

with a nitrogen bomb (Biospec Products, Bartlesville, OK). One millilitre of 15% (v/v) 

ethanol (diluted in distilled water and then acidified to pH 3) was added to each tissue 

sample. The tissue homogenates were left at 4°C for 10 min and then spun at 375g for 10min 

at 4°C. C-18 Sep-Pak cartridges (Waters, Milford, MA, USA) were conditioned with 4ml of 

ethanol followed by 4ml of distilled water. The supernatant from tissue homogenates were 

then applied to the columns at a flow rate of 5 ml/min. The columns were then washed in 4ml 

of distilled water followed by 4ml of 15% ethanol in distilled water. The samples were finally 

eluted with 2 ml of ethyl acetate. The samples were dried in a Speed-Vac and then stored at -

80°C. 

Measurement of hypothalamic PGE2 was performed using a commercial enzyme 

immunoassay kit from Cayman Chemicals (Ann Arbor, MI, USA), according to the 

manufacturer’s instructions.  The concentration of PGE2 in the samples was determined by 

comparing the calculated percentage binding of PGE2 in the samples with a standard PGE2 

curve (15.6-2,000pg/ml). 

 

2.6 Quantification of paracetamol in plasma 

After the subcutaneous administration of 200mg/kg paracetamol to wild-type C57BL/6J 

mice, plasma was collected from mice at 0.5, 1, 2, 3 and 4h and the concentration of 

paracetamol was measured using a colorimetric method (Cambridge Life Science). This 

method relies on the enzymatic conversion of paracetamol by aryl acyl amidohydrolase to 

acetate and 4-aminophenol. 4-aminophenol then reacts with o-cresol in the presence of 

ammoniacal copper sulphate to give a blue indophenol dye which is measured at 630nm. The 
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paracetamol concentrations were measured against standards of 0.02-5mmol/L (Campbell et 

al., 1983; Slater 1987; Smith et al., 1991). 

 

2.7. Statistical analysis 

The results were analysed using Graph Pad Prism 3.0 (San Diego, CA, USA) and, after 

checking that it was normally distributed, expressed and presented graphically as 

meanS.E.M. Statistical analysis was performed using unpaired Students t-test to compare 

different treatments at the same time point. A P-value of <0.05 was considered to be 

statistically significant. 
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3. Results 

3.1. Selective inhibition of COX-1 or COX-2 does not result in hypothermia 

At pharmacologically active doses, the selective COX-1 and COX-2 inhibitors, SC560 

(15mg/kg) and celecoxib (15mg/kg), respectively (Smith et al. 1998) administered 

intraperitoneally failed to induce hypothermia in normothermic mice housed at 22oC ambient 

temperature over a 4h observation period (Fig. 1A). As a positive control, 300mg/kg 

paracetamol induced significant hypothermia (P<0.05), 0.5h (34.13oC) and 1h (33.0oC) after 

administration, resulting in 2.5 and 3.63oC decreases in core body temperature, respectively. 

Paracetamol was given at a pharmacological dose of 300mg/kg (Crawley et al. 2008; 

Dalmann et al. 2015; Kanashiro et al. 2009; Muth-Selbach et al. 1999) for consistency with 

our previously published research (Ayoub et al. 2004). 

At the same pharmacological dose of 15mg/kg, SC560 significantly (P<0.01) reduced brain 

PGE2 synthesis in comparison to vehicle treated mice resulting in 76% reduction in PGE2 

synthesis (Fig. 1B) demonstrating that the absence of a hypothermic effect with this 

compound is not related to pharmacokinetic limitations. 

 

3.2. LPS-induced fever is PGE2-mediated and COX-2-dependent 

To study the anti-pyretic mechanism of paracetamol, we developed and characterised a model 

of pyrexia in mice. We observed that 10µg/kg LPS (i.p.) resulted in a significant increase of 

core body temperature in mice housed at 30oC ambient temperature from 0.5h (0.75oC 

increase) to 4h (1.18oC increase) post-administration (Fig. 2A). Administration of 100µg/kg 

LPS (i.p.) did not cause any significant changes in body temperature whilst, paradoxically, 

1000µg/kg LPS (i.p.) resulted in an initial increase of body temperature at 0.5h, immediately 

followed by persistent hypothermia. This is consistent with previously published research in 

which 1000µg/kg LPS produced polyphasic changes in body temperature (Rudaya et al. 

2005; Steiner et al. 2009). Based on the fact that 10µg/kg LPS gave a consistent mono-phasic 
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increase in body temperature (fever), this dose of LPS was used in subsequent experiments 

for the induction of fever in mice. 

Administration of 10µg/kg LPS to mice housed at 30oC ambient temperature significantly 

increased (P<0.05) the hypothalamic levels of PGE2, 2 and 4h post-administration, in 

comparison to  PFS-treated mice; with 61% and 53% increases, respectively (Fig. 2B). No 

statistically significant difference in the hypothalamic concentrations of PGE2 between LPS 

and PFS-treated mice at 0h (immediately after injection) was found (Fig. 2B).  The increases 

in hypothalamic PGE2 synthesis induced by 10µg/kg LPS are temporally consistent with the 

induction of fever. 

Intraperitoneal administration of 10µg/kg LPS to COX-1-/- and littermate COX-1+/+ mice 

induced comparable pyrexia when compared to genetically matched COX-1-/- and COX-1+/+ 

mice treated with PFS (Fig. 3A). There was some difference in the degree of diurnal body 

temperature change between COX-1+/+ and COX-1-/- treated with PFS. This is mostly due to a 

small drop of temperature in PFS-treated COX-1-/- mice and not a decrease of temperature in 

PFS-treated COX-1+/+ mice, as supported by observing the natural circadian changes in body 

temperature in COX-1+/+ and COX-1-/- mice from other experiments where the body 

temperature at the start of the experiments was approximately 37.0oC and dropped to 

approximately 36.0oC (Figs. 4 and 5). Despite this, there was still a significant increase in the 

body temperature of COX-1-/- mice treated with 10µg/kg LPS compared to COX-1-/- mice 

treated with PFS (P<0.05; Fig. 3A).   

COX-2+/+ mice developed statistically significant pyrexia (1-5h) to 10µg/kg LPS when 

compared to COX-2+/+ mice treated with PFS with increases in body temperature ranging 

from 0.65-1.3oC (Fig. 3B). On the other hand, COX-2-/- mice treated with 10µg/kg LPS 

intraperitoneally failed to develop pyrexia when compared to COX-2+/+ mice receiving the 

same treatment (Fig. 3B).  
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These data demonstrate that 10µg/kg LPS induced a COX-2 and not COX-1-mediated fever, 

which is associated with increased production of hypothalamic PGE2 synthesis. These 

findings are consistent with previously published investigation on the mechanism of LPS-

induced fever (Cao et al. 1999; Matsumura et al. 1998; Ootsuka et al. 2008; Saha et al. 2005; 

Steiner et al. 2005; Ushikubi et al. 1998). 

 

3.3. The anti-pyretic action of paracetamol is dependent on inhibition of a COX-1 gene-

derived protein 

COX-1-/- but not COX-2-/- mice were used to investigate the mechanism of anti-pyretic action 

of paracetamol for two reasons. Firstly, COX-2-/- mice failed to respond with a febrile 

reaction in response to LPS and secondly, our previous research (Ayoub et al. 2004) 

demonstrated dependency by paracetamol on a COX-1 gene-derived enzyme for the 

induction of hypothermia. 

Prophylactic treatment of COX-1+/+ mice with 200mg/kg paracetamol 0.5h before challenge 

with 10µg/kg LPS, resulted in reversible and statistically significant (P<0.01 at 0h and 

P<0.05 at 1h and 2h post-LPS administration) hypothermia in comparison to COX-1+/+ mice 

treated with vehicle and LPS with 1.76oC, 1.16oC and 0.54oC hypothermia at 0h, 1h and 2h of 

LPS administration, respectively (Fig. 4A). Consistent with the results presented in fig. 3, 

LPS induced statistically significant fever in COX-1+/+ mice (P<0.01, P<0.001 and P<0.05 

after 1h, 2h and 3h of LPS administration, respectively) housed at 30oC ambient temperature 

in comparison to COX-1+/+ mice treated with PFS (Fig. 4A).  

On the other hand, prophylactic administration of 200mg/kg paracetamol to COX-1-/- mice 

challenged with LPS, did not induce a hypothermic or anti-pyretic effect in comparison to 

COX-1-/- mice treated with vehicle and LPS (Fig. 4B). In fact the pyrexia observed in 

paracetamol treated COX-1-/- mice persisted longer than in non-paracetamol treated mice at 

4-5h post-LPS administration. LPS induced statistically significant (P<0.05 and P<0.01) 
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pyrexia in both the paracetamol treated and vehicle treated mice in comparison to PFS treated 

mice (Fig. 4B).  

In fig. 4A, after the paracetamol-induced hypothermia has subsided at 1.5h post-paracetamol 

administration, COX-1+/+ mice went on to develop a febrile response to LPS. Therefore it can 

be assumed that paracetamol is able to induce hypothermia only in the absence of LPS. In 

order to test this assumption, in fig. 5A 200mg/kg paracetamol was administered 

therapeutically to COX-1+/+ mice housed at 30oC ambient temperature 2h after the 

administration of LPS, hence well beyond the establishment of a COX-2-mediated fever. In 

these animals paracetamol reduced the LPS-induced febrile response and indeed, similar to 

the data presented in fig. 4A, it also was able to significantly induce hypothermia (P<0.001 at 

1, 2 and 3h after paracetamol administration. The maximum hypothermia observed with 

paracetamol was 3h after paracetamol administration with the body temperature falling to 

31.1oC. It is not clear why therapeutically administered paracetamol (2h after LPS) is able to 

induce a more substantial hypothermia in comparison to prophylactically administered 

paracetamol. Following on from the subcutaneous administration of paracetamol, the plasma 

concentration peaked at 0.5h at a concentration of 0.7mmol/L (700µM), which then started to 

steadily decline from 1h (0.56mmol/L) onwards reaching a concentration of 0.025mmo/L at 

4h (Fig. 4C). The paracetamol plasma profile follows temporally follows its effect on body 

temperature in COX-1+/+ mice (Fig. 4A).   

 

In comparison, the substantial hypothermia induced with therapeutically administered 

200mg/kg paracetamol in COX-1+/+ mice (32.8 - 31.1oC hypothermia), there was a moderate 

reduction in febrile body temperature with therapeutically administered paracetamol (2h post-

LPS) in COX-1-/- mice with body temperatures ranging from 35.8 to 35.93oC (Fig. 5B). In 

COX-1-/- mice, paracetamol non-significantly reduced the febrile body temperature by around 

0.67oC after 1h of administration (Fig. 5B). This is in comparison to the significant reduction 
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of febrile body temperature in COX-1+/+ mice compared to LPS treated mice (4.56oC after 1h 

of paracetamol administration). There was no statistically significant difference in the body 

temperatures between COX-1+/+ and COX-1-/- mice treated with LPS after 3h of LPS 

administration (1h post-paracetamol administration; figs. 5A and B). Hence the febrile 

responses in COX-1+/+ and COX-1-/- mice 1h post-paracetamol administration was negligible.    

The loss of paracetamol induced hypothermia in febrile COX-1-/- mice in comparison to 

COX-1+/+ mice correlated with a loss of the effect of the same dose of paracetamol on 

hypothalamic PGE2 synthesis in COX-1-/- mice, again, in comparison to COX-1+/+ mice at 1h 

after paracetamol administration (Fig. 5C).  

In the data presented in figs. 4 and 5, non-LPS challenged paracetamol treated mice were not 

included as availability of sufficient numbers of littermate COX-1-/- mice was a problem. 

Equally, from previous data presented in fig. 1A and previously published by us (Ayoub et al. 

2004) the effect of paracetamol given to non-febrile mice on normothermic body temperature 

has already been demonstrated. 

 

3.4. Indomethacin is antipyretic, but does not induce hypothermia 

To compare the hypothermic and antipyretic profile of paracetamol (as reported in the current 

study and previously: Ayoub et al. 2004) with an NSAID, indomethacin was selected as a 

non-selective dual COX-1/COX-2 inhibitor (Mitchell et al. 1993). At pharmacological doses 

of 5 and 10mg/kg (Crawford et al. 1979; Masferrer et al. 1994) indomethacin administered 

subcutaneously failed to induce hypothermia over a 5h period (Fig. 6A), despite resulting in a 

statistically significant inhibition (P<0.05) in the synthesis of brain PGE2 measured at 1h 

after administration (Fig. 6B). Despite the lack of hypothermia in normothermic mice housed 

at 22oC ambient temperature (Fig. 6A), 5mg/kg indomethacin (administered subcutaneously) 

resulted in a statistically significant drop in the febrile response (P<0.05) induced by 10µg/ml 

LPS in mice housed at 30oC ambient temperature at 4h and in a statistically non-significant 
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decrease at 1, 2 and 3h post-LPS administration (Fig. 6C). Indomethacin was administered 

prophylactically 0.5h before LPS. Compared to PFS, LPS resulted in statistically significant 

increases in core body temperature from 0.5-4h post administration and with increase of body 

temperatures ranging from 0.8-1.44oC (Fig. 6C).     
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4. Discussion 

Previously we demonstrated significant attenuation in brain PGE2-mediated paracetamol-

induced hypothermia in COX-1-/-, but not COX-2-/- mice, leading us to conclude that this 

action of paracetamol is dependent on the inhibition of a centrally expressed COX-1 gene-

derived protein (Ayoub et al. 2004). With the identification of COX-3 as a splice variant of 

COX-1 (Chandrasekharan et al. 2002), which is present in mouse tissues at the expected 

molecular size (Ayoub et al. 2006; Shaftel et al. 2004), there are two possible targets for the 

paracetamol-induced hypothermia; either COX-1 or a COX-1 variant protein. Since the 

selective COX-1 inhibitor SC560 and the dual COX-1/COX-2 inhibitor indomethacin at 

pharmacologically active doses (Fig. 1B; Crawford et al. 1979; Masferrer et al. 1994; Smith 

et al. 1998), failed to induce hypothermia, we conclude that the target for the paracetamol-

induced hypothermia is not COX-1 and is likely to be a variant of COX-1.  

 

Contrary to the generally accepted notion, Brennies (2006) reported that SC560 was 

equipotent as an inhibitor of COX-1 and COX-2 in cultured cells. These findings do not alter 

our conclusion that inhibition of a COX-1 variant enzyme mediates the paracetamol-induced 

hypothermia because whether SC560 is COX-1 selective or is non-selective for COX-1 and 

COX-2, does not indicate potential inhibition of COX-1 variant proteins. In fact, if SC560 

does inhibit both COX-1 and COX-2 in vivo, this gives more support to our theory that the 

paracetamol-induced hypothermia is not mediated by inhibition of either enzymes. In 

addition, indomethacin, a dual COX-1 and COX-2 inhibitor, was non-hypothermic, but is 

anti-pyretic through inhibition of COX-2 at pharmacological doses.  

 

Since paracetamol is commonly used for the treatment of fever, we also investigated the 

mechanism of antipyretic action of paracetamol. As demonstrated by others (Abe et al. 2001; 

Li et al. 2001) and confirmed in the current study, intraperitoneally-administered LPS induces 
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COX-2-dependent and hypothalamic PGE2-mediated pyrexia. Since paracetamol has 

previously been shown to induce hypothermia in mice after 0.5h of administration (Ayoub et 

al. 2004), it was expected that prophylactic paracetamol would result in hypothermia prior to 

LPS treatment. Consistent with our previous study (Ayoub et al. 2004), we also find that this 

hypothermic action is also abolished in febrile COX-1-/- mice compared to littermate wild-

type controls. The evidence to support the notion that paracetamol induces an anti-fever 

effect through inhibition of a COX-1 gene-derived enzyme is provided by the finding that 

paracetamol administered therapeutically induced potent hypothermic and anti-pyretic actions 

in COX-1+/+ mice with established pyrexia and that this effect was partly lost in COX-1-/- 

mice. The induction of hypothermia by therapeutically administered paracetamol in febrile 

mice was also observed by Li and colleagues (2008). Moreover the loss of hypothermia in 

febrile COX-1-/- mice was also associated with loss in the reduction of hypothalamic PGE2 

synthesis by paracetamol. We therefore, make the assumption that paracetamol reduces body 

temperature through the induction of hypothermia through inhibition of a constitutively 

expressed COX-1 variant enzyme (Ayoub et al. 2004; Satinoff, 1972), whilst NSAIDs induce 

antipyretic actions through inhibition of the inducible COX-2 enzyme expressed in 

hypothalamic endothelial cells (Li et al. 2001).      

In contrast, Li et al. (2008) showed that the hypothermic and anti-pyretic actions of 

paracetamol were not attenuated in COX-1-/- mice in comparison to wild-type mice. These 

authors used mice housed at 23oC ambient temperature, which is well below the well-

established 30oC thermoneutral temperature for mice (Fraifeld et al. 1995; Kozak et al. 1998); 

a key requirement for the reliable induction of fever in mice (Rudaya et al. 2005; Steiner et 

al. 2009). The anti-pyretic activity of paracetamol reported by Li et al (2008) cannot be 

attributed to inhibition of inducible COX-2 protein as it was observed 1h following on from 

LPS administration, which is insufficient time for the induction of COX-2 (Ryseck et al. 

1992). However when we tested the anti-pyretic action of paracetamol 2h after LPS 
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administration, the anti-pyretic action of paracetamol was maintained in COX-1+/+ mice and 

partly attenuated in COX-1-/- mice. The discrepancy between our results and those of Li and 

colleagues (2008) could be due to phenotypic differences between the COX-1-/- mice used in 

Li’s study and those used in the current study. For example, Ballou et al.  (2000) reported a 

significantly lower number of writhing counts in COX-1-/- mice in comparison to wild-type 

mice, whereas we found no such difference (Ayoub et al., 2006).  

 

It has been argued by several groups that both the antipyretic and analgesic target for 

paracetamol is COX-2. Hinz and colleagues in 2007 demonstrated a 4.4 fold selectivity by 

paracetamol for the inhibition of human COX-2 (IC50 = 25.8µmol/L) over COX-1 (IC50 = 

113.7µmol/L) and argued that the weak inhibitory effect by paracetamol on COX-2 activity 

during inflammation and hence its weak anti-inflammatory activity is dictated by its lower 

potency for COX inhibition under elevated intracellular lipid hydroperoxide tone (Hanel and 

Lands 1982). It is noteworthy that to date the link between the lipid hydroperoxide tone and 

the inhibition of COX enzymes by paracetamol has only been demonstrated in vitro (Boutaud 

et al. 2002; Lucas et al. 2005; Ouellet and Percival 2001) and not shown in vivo. In fact 

scavenging intracellular lipid hydroperoxides did not reverse the lack of inhibition by 

paracetamol of the endotoxin-induced COX-2 activity in macrophages (Ayoub et al. 2011a).  

Since COX-2-/- mice fail to develop fever to LPS, Engstrom Ruud et al. (2013) went on to use 

COX-2+/- mice to study the mechanism of anti-pyretic action of paracetamol. At a dose which 

is non-hypothermic in COX-2+/+ mice, 50mg/kg paracetamol actually reduced the LPS-

induced pyrexia in COX-2+/- mice. It is not clear how losing one allele of the COX-2 gene 

would render paracetamol more effective at reducing fever and how it can be concluded from 

these results that COX-2 is the anti-pyretic target for paracetamol. In support of the notion 

that the antipyretic action of paracetamol is mediated through inhibition of a constitutively 

expressed enzyme, it was shown that prophylactically administered paracetamol produced the 
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same decrease in body temperature as therapeutically administered paracetamol in children in 

randomised controlled trials (Yalçin et al., 2008; Prymula et al., 2009). Induction of 

hypothermia with paracetamol and the concomitant reduction in brain PGE2 synthesis 

(Ayoub et al. 2004) suggest a role for PGE2 in the maintenance of normothermia. Evidence 

for such a function for PGE2 is scarce, however Oka and colleagues (2004) showed 

administration of EP1, EP3 and EP4 receptor agonists in the absence of LPS fever to induce 

an increase in body temperature and have suggested a counter-regulatory role for the EP4 

receptor. 

 

Paracetamol is regarded generally speaking as a centrally-acting analgesic (Ayoub et al. 

2006; Muth-Selbach et al. 1999; Yaksh and Malmberg 1993). The same notion applies to the 

temperature lowering effects of paracetamol (Ayoub et al. 2004; Feldberg et al. 1972; Massey 

et al. 1982). Paracetamol-induced hypothermia is temporally correlated with reduction in 

brain PGE2 synthesis (Ayoub et al., 2004; Feldberg et al. 1973; Kanashiro et al. 2008; 

Mirrasekhian et al., 2018). Intracerebroventricular administration of paracetamol resulted in 

profound hypothermia (Clark and Alderdice, 1972) and anti-pyretic actions (Crawford et al. 

1979; Massey et al. 1982). Massey et al (1982) identified that the central hypothermic action 

of paracetamol was mediated predominantly by the parent compound and not its reactive 

metabolite N-acetyl-p-benzoquinone imine (NAPQI). The same authors also reported that 

500mg/kg of orally administered paracetamol to result a plasma concentration of 113µg/ml 

(747µM) after 1.5h. We showed that 200mg/kg paracetamol administered orally to produce a 

peak plasma paracetamol concentrations of 210µM after 1h (unpublished observation), which 

is within a similar range reported by Hinz et al. (2007) in humans given the standard 

therapeutic oral dose of 1000mg (104.8µM). We also showed that subcutaneously 

administered 200mg/kg paracetamol in mice to result in a plasma concentration within the 

high micromolar concentration range. These findings justify the use of 200mg/kg dose of 
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paracetamol in mice as a therapeutic pharmacological dose. Indeed, doses between 100-

300mg/kg of paracetamol are considered sub-toxic and have been extensively used for 

investigations on the mechanism of action of this drug (Pini et al. 1996). The therapeutic dose 

for paracetamol in humans is 1000mg, whereas the therapeutic doses for celecoxib and 

indomethacin are in the range of 100-200mg. When calculating the doses used for all three 

drugs given to humans on a body weight basis, the differences in doses between celecoxib 

and indomethacin compared to paracetamol used in mice in the current study, are comparable 

to dose differences in humans. 

 

The study by Högetätt and colleague (2005) provided evidence of the metabolism of 

paracetamol into N-acyl phenolamine (AM404) in the brain concluding that the 

pharmacological actions of paracetamol, including hypothermia, may be mediated through 

AM404. Indeed AM404 induces hypothermia and analgesia (Borsani et al. 2007; Mitchell et 

al. 2007; Rawls et al. 2006); either through activation of endocannabinoids or the transient 

receptor potential vanilloid-1 (TRPV1) channel (Beltramo et al. 1997; De Petrocellis et al. 

2000). However, inhibition of the conversion of paracetamol to AM404 by inhibition of fatty 

acid amido hydrolase (FAAH) did not prevent the development of hypothermia induced by 

paracetamol and paracetamol induced comparable hypothermia in FAAH-/- mice to wild-type 

mice (Ayoub 2011b). Recently we have detected AM404 in the cerebrospinal fluid of patients 

given paracetamol systemically (Sharma et al. 2017), however we do not know whether 

AM404 was pharmacologically active in these patients.   

 

5. Conclusion 

In conclusion, we provide further supportive evidence that the hypothermic action of 

paracetamol and also the antipyretic action of this drug are likely to be mediated through 
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inhibition of a centrally expressed (mostly likely in the hypothalamus) COX-1 gene-derived 

protein. 
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Figure legends 

Fig. 1: Selective inhibition of COX-1 with SC560 and COX-2 with celecoxib does not 

result in hypothermia. A: Male C57BL/6 mice were treated with 15mg/kg SC560, 15mg/kg 

celecoxib or 300mg/kg paracetamol intraperitoneally and their body temperatures monitored 

for 4h. B: SC560 at the same non-hypothermic dose resulted in statistically significant 

reduction in brain levels of PGE2 after 1h treatment, *P<0.05 vehicle versus paracetamol, 

n=4. 

 

Fig. 2: Intraperitoneally administered 10µg/kg LPS induces consistent PGE2 dependent 

pyrexia. A: dose-response to LPS (10-1000µg/kg) for the induction of pyrexia in male 

C57BL/6 mice (expressed as change in core body temperature relative to zero time-point for 

the same treatment group). B: in comparison to pyrogen-free saline (PFS) treated mice, 

10µg/kg LPS resulted in significant increases in hypothalamic levels of PGE2 after 2 and 4h, 

n=3-4. 

 

Fig. 3: Intraperitoneally administered 10µg/kg LPS induced COX-2, but not COX-1-

dependent pyrexia. Time-profile of LPS-induced pyrexia in COX-1-/- (A) and COX-2-/- (B) 

mice compared to littermate wild-type control mice. A: *P<0.05 and **P<0.01 COX-1+/+ PFS 

versus COX-1+/+ LPS; #P<0.05 COX-1-/- PFS versus COX-1-/- LPS. B: *P<0.05, **P<0.01 

and ***P<0.001 COX-2+/+ PFS versus COX-2+/+ LPS; n=3-4. 

 

Fig. 4: The antipyretic effect of prophylactically administered paracetamol correlates 

with the paracetamol plasma concentration and is abolished in COX-1 knockout mice. 

The antipyretic effect of 200mg/kg paracetamol administered subcutaneously 0.5h prior to 

10µg/kg LPS was examined in COX-1+/+ (A) and COX-1-/- (B) mice. A: *P<0.05, **P<0.01 

and ***P<0.001 vehicle and PFS versus vehicle and LPS; #P<0.05 and ##P<0.01 vehicle and 
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LPS versus paracetamol and LPS. B: *P<0.05 and **P<0.01 vehicle and PFS versus vehicle 

and LPS; ##P<0.01 vehicle and LPS versus paracetamol and LPS; n=3-5. C: the paracetamol 

plasma concentration in C57BL/6J mice peaked at 0.5h, which correlated with the peak of 

hypothermia in COX1+/+ mice. 

 

Fig. 5: The antipyretic and inhibitory effect of therapeutically administered 

paracetamol on hypothalamic PGE2 synthesis was abolished in COX-1 knockout mice. 

The antipyretic effect of 200mg/kg paracetamol administered subcutaneously 2h after 

10µg/kg LPS was examined in COX-1+/+ (A) and COX-1-/- (B) mice. Panel C shows 

comparisons of the effect of therapeutically administered 200mg/kg paracetamol on 

hypothalamic PGE2 levels 1h after paracetamol administration. A: *P<0.05, **P<0.01 and 

***P<0.001 PFS and vehicle versus LPS and vehicle; ##P<0.01 and ###P<0.001 LPS and 

vehicle versus LPS and paracetamol. B: *P<0.05 and **P<0.01 PFS and vehicle versus LPS 

and vehicle; n=4-5. 

 

Fig. 6: Indomethacin reduced brain PGE2 synthesis, but did not induce hypothermia in 

wild-type mice, while reducing the LPS-induced fever. Indomethacin was administered 

subcutaneously at 5 and 10mg/kg to male C57BL/6 mice housed at 22oC and their body 

temperature was monitored for 5h (A) and brain PGE2 synthesis was compared between mice 

treated with vehicle and 5mg/kg indomethacin 1h after administration (B). Indomethacin 

(5mg/kg) administered subcutaneously 0.5h before LPS significantly reduced the febrile 

response induced by intraperitoneally administered 10µg/ml LPS at 0.5, 2, 3 and 4h post-LPS 

administration. B: *P<0.05 vehicle versus 5mg/kg indomethacin. C: **P<0.01 and 

***P<0.001 vehicle and PFS versus vehicle and LPS; #P<0.05 vehicle and LPS versus 

indomethacin and LPS; n=3-6. 
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