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Abstract 

The use of geographic information for mobile applications such as wayfinding has 

increased rapidly, enabling users to view information on their current position in relation 

to the neighbouring environment. This is due to the ubiquity of small devices like mobile 

phones, coupled with location finding devices utilising global positioning system. 

However, such applications are still not attractive to users because of the difficulties in 

viewing and identifying the details of the immediate surroundings that help users to 

follow directions along a route. This results from a lack of presentation techniques to 

highlight the salient features (such as landmarks) among other unique features. Another 

problem is that since such applications do not provide any eye-catching distinction 

between information about the region of interest along the route and the background 

information, users are not tempted to focus and engage with wayfinding applications. 

Although several approaches have previously been attempted to solve these deficiencies 

by developing focus maps, such applications still need to be improved in order to provide 

users with a visually appealing presentation of information to assist them in wayfinding. 

The primary goal of this research is to investigate the processes involved in generating a 

visual representation that allows key features in an area of interest to stand out from the 

background in focus maps for wayfinding users. In order to achieve this, the automated 

processes in four key areas - spatial data structuring, spatial data enrichment, automatic 

map generalization and spatial data mining - have been thoroughly investigated by testing 

existing algorithms and tools. Having identified the gaps that need to be filled in these 

processes, the research has developed new algorithms and tools in each area through 

thorough testing and validation. Thus, a new triangulation data structure is developed to 

retrieve the adjacency relationship between polygon features required for data 

enrichment and automatic map generalization. Further, a new hierarchical clustering 

algorithm is developed to group polygon features under data enrichment required in the 

automatic generalization process. In addition, two generalization algorithms for polygon 

merging are developed for generating a generalized background for focus maps, and 

finally a decision tree algorithm - C4.5 - is customised for deriving salient features, 
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including the development of a new framework to validate derived landmark saliency in 

order to improve the representation of focus maps. 
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Chapter 1   Introduction  

This chapter provides the motivation for taking up this research where it discusses the 

background of wayfinding and broad aspirations of what is to be achieved through this 

research. 

1.1   Research motivation 

The use of geographic information through mobile applications has been rapidly 

increasing and enabling users to view their current position in the context of the 

neighbouring environment through the advancement of technologies such as Global 

Positioning System (GPS) and ubiquitous computing Internet technologies, along with the 

availability of mobile devices. Thus, one of the major challenges facing the national 

mapping authorities (NMAs) across the world is the development of maps that are more 

helpful and attractive to be used in mobile applications such as in wayfinding. This 

necessity is emphasised in the usability evaluation of topographic maps for mobile devices 

where users need more meaningful map entities in topographic maps that should be 

adapted, according to their context of use according to Nivala et al. (2003), since 

cartographic presentation and symbology in traditional topographic maps are not 

designed for wayfinding applications. 

Wayfinding is the process by which human beings orient themselves and navigate through 

space. According to Allen (1999) wayfinding by human beings can be mainly for three 

purposes: (a) travel with a goal of reaching a familiar destination (b) exploratory travel 

with the view of returning to a familiar point of origin and (c) travel with the goal of 

reaching a novel destination. Therefore, it is evident that wayfinding involves direct 

interaction between the traveller and the environment. Human beings use various spatial, 

cognitive and behavioural abilities to find their way through the environment, gaining 

environmental information or spatial knowledge about the environment (Raubal and 

Winter, 2002; Lloyd, 1989; Gopal and Smith, 1990; Cornell, Sorenson and Mio, 2003; 

Brimicombe and Li, 2010). According to Kuipers (1978), people acquire spatial knowledge 

in positioning through route descriptions, topological relations of the road network and 
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the orientation of objects in the environment. Research in spatial cognition has shown 

that maps are a vital means of providing spatial knowledge to assist travellers acquire 

route information to reach their destination without trouble (MacEachren, 1995; Kray et 

al., 2003; Elias and Paelke, 2008). 

Further experiments conducted by Denis et al. (1999), Freksa et al. (1999), Tversky and 

Lee (1999) and Montello, Michon and Denis (2001) have shown that pedestrians perceive 

landmarks as a useful part of route information in wayfinding. Lynch (1960) describes 

landmarks as defined physical objects external to the observer and that are used as a 

point of reference to make one orient oneself. According to Golledge (1999), landmarks 

are physically defined objects that stand out from the surroundings and help locate 

geographic position. More meaningfully, landmarks are cognitively distinct from other 

elements in spatial memory and central to the nature and organisation of spatial 

representation (Presson and Montello, 1988). 

Thus, including supplemental landmarks could make travellers much more confident and 

comfortable when experiencing a new environment irrespective of the navigation aids 

whether they be a traditional paper street map or a vehicle navigation system (Deakin, 

1996). However, according to Deakin (1996), one of the reasons for the non-inclusion of 

supplemental landmarks on street maps arises from the difficulty of selecting such 

landmarks that are salient based on a standard methodology and criteria. Another issue is 

the limited map space to incorporate landmarks, which requires the application of map 

generalization techniques to reduce map details to accommodate space. Although current 

navigation systems utilise visual representation in addition to positioning and routing 

functionality to convey navigational information to the users, landmarks are still missing in 

spatial data sets in such applications due to aforesaid limitations. However, various 

approaches by Raubal and Winter (2002), Elias (2003), Elias and Brenner (2005) and Elias, 

Hampe and Sester (2005) have been attempted to derive salient landmarks from spatial 

data sets to improve navigation aids. Evaluation of such methods in terms of geometrical, 

spatial and semantic characteristics of such landmarks for the effective integration of 

them into both static maps and mobile maps (maps that can be accessed wirelessly to use 
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in mobile situations (Meng and Reichenbacher, 2005) for wayfinding) has not been 

investigated yet. Further, due to the technical limitations such as processing power, 

memory, resolution and small screen size in mobile devices, the general cartographic rules 

in applying colours, symbology and feature representation in map production could not be 

used in mobile mapping. To this effect, some research has discussed the cartographic 

repercussions of small displays (Gartner and Uhlirz, 2001; Radoczky and Gartner, 2005; 

Elias, Hampe and Sester, 2005). 

Therefore, it is understood that there is a significant difference between a traditional 

topographic map and a map designed for mobile navigation especially considering the 

limitations discussed above. Another important factor in designing a mobile map is to 

enable users to engage in the wayfinding task by presenting him/her an egocentric map 

view which is more a technique of representing geographic information in relation to a 

user’s position (Meng, 2005). This not only keeps users focused on the task of interest 

without distracting him/her from other external interferences in the environment, but 

also improves his/her cognitive capability of understanding the immediate surroundings of 

the navigation route in a manner which is not the same as gathering spatial knowledge by 

reading a traditional topographic map. In a traditional topographic map, a uniform visual 

balance of details is maintained with an allocentric view (viewing location of one object in 

relation to other objects) throughout the map at a uniform scale. This emphasises that 

mobile applications for wayfinding should allow users to bring to their attention the areas 

of interest rather than searching for important locations and prominent features, reading 

through the whole map as is the case in retrieving information from a traditional analogue 

topographic map. 

Thus, the NMAs should aim to produce customer-oriented mobile maps, incorporating 

important landmarks that are more useful and attractive to users in finding points of 

interest with the minimum effort using cartographic visualisation techniques discussed 

above rather than necessarily giving priority to producing conventional topographic map 

series along their production lines. Being a surveyor by profession in the NMA of Sri Lanka, 

having read Master of Science Degree in Geoinformatics at the Faculty of Geo-information 
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Science and Earth Observation (ITC) of the University of Twente, the Netherlands, with a 

specialisation in multiple representation visualisation of topographic features of the same 

phenomena, I have been persuaded to take up this research which is oriented towards 

investigating the automatic processes of developing visually appealing maps primarily 

designed for wayfinding users to bring their immediate focus to the area of interest with 

highly detailed, prominent features and leaving all other information in the peripheral 

areas with the coarse background information. 

1.2   Background 

With the growth of ubiquitous computing through the emergence of mobile devices and 

distributed applications over the Internet, personalisation is leaving the desktop domain 

(Günter, 1991; Zipf and Jöst, 2006). A widespread availability of mobile devices and the 

distributed applications via wireless access have allowed people to access maps in mobile 

situations personally rather than using fixed line, personal computer based web maps. 

Particularly, ubiquitous computing has brought location based services (LBS) into 

existence with a variety of spatial applications. LBS are regarded as services that deliver 

data and information customised to the current or some projected location and context of 

the user (Brimicombe and Li, 2006). As one of the principal and useful applications in LBS, 

using lightweight mobile devices to point the location on Earth has been popular with the 

rapid development of geographic information system (GIS), GPS, radio frequency 

identification and various other location sensing technologies with varying degrees of 

accuracy (Jiang and Yao, 2006). According to Reichenbacher (2003), a mobile user can 

perform various tasks in relation to geoinformation in the real world: locating, navigating, 

searching, identifying and checking. Maps containing these geoinformation can either be 

stored in the mobile device or retrieved online. Locating is related to the question “where 

am I?” or “where is X?”. Navigating involves wayfinding either from the user’s current 

position to a given position or object or between any specified objects/positions 

independent of the user’s current location. Searching deals with finding objects or people 

located from the user’s current position. Identifying relates to the recognition of objects in 

relation to the other objects in the vicinity. Finally checking relates to an event task for 
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finding information about what happens at a given place. As a result of the capabilities of 

such spatially related tasks, wayfinding has become one of the most popular applications 

for small electronic devices such as smartphones. Further, in contrast to in-vehicle 

navigation systems (such as SatNavs), the increasing demand for the use of mobile phones 

has also brought pedestrian wayfinding to the fore (Elias, Hampe and Sester, 2005). Such 

pedestrian wayfinding systems depend heavily on maps to convey wayfinding information 

to the users in addition to positioning and routing functionality (Elias and Paelke, 2008). 

However, different visualisation techniques such as changing the opacity/colours of 

features (Reichenbacher, 2004, 2005; Figure 1.1 below) and application of the variable 

scale object representation techniques (Fairbairn and Taylor, 1995) have been attempted 

to improve the egocentric map. In addition to the technique of visualising multiple 

representations of data at different scales (Elias, Hampe and Sester, 2005) based on map 

generalization, that is, the reduction of details of a source map at a larger scale to produce 

a target map at a smaller scale to accommodate smaller map space. Further, a mobile 

map should have a task-based representation, concentrating on rich details in the area of 

interest while representing coarse details in the peripheral area rather than an 

exploratory instrument like a traditional topographic map with uniformly rich detail to 

gain an idea of the entire area of the map (Meng, 2005). This emphasises that a mobile 

map should represent highly selective information in accordance with the purpose of use 

(user context and objectives). Due to specific needs and technical limitations of the 

wayfinding systems, a relatively new concept called adaptation has been introduced in 

mobile geographic information applications (Zipf and Jöst, 2006). The two most important 

factors for adaptation are (a) the user’s objectives and (b) the context in the 

representation of the current situation of the immediate navigation environment. The 

aforesaid selective information in the immediate navigation environment should include 

salient landmarks as described in Section 1.1 for users to aid navigation. According to the 

study conducted by Lovelace, Hegarty and Montello (1999), most frequently used 

landmarks in finding route directions in unfamiliar environments are point landmarks (at 

decision points) and on-route landmarks (along the path). In addition, two other types of 

landmarks, distinguished by Lovelace, Hegarty and Montello (1999), are potential choice 

5 
 



point landmarks (street intersections) and off-route landmarks (distant but visible from 

the route). According to Deakin (1996), potential choice point landmarks are not distinct 

in an urban environment. Also, off-route landmarks are only used in navigation by a 

novice for overall guidance according to Lynch (1960). Further, it has been found that 

about 50% of all the landmarks in wayfinding instructions are buildings according to a 

study conducted by Elias and Paelke (2008). Therefore, a wayfinding application heavily 

relies on the identification of salient buildings at decision points (choice point) and along 

the path (on-route) of navigation. 

 

 

 

 

 

 

From the definition of LBS according to Brimicombe and Li (2006), it is understood that the 

LBS mainly consist of a system (hardware and software), user, location and context 

(environment). These components play a significant role in LBS applications. A number of 

models of these components in LBS have been presented in the literature (Sarjakoski and 

Nivala, 2005; Jiang and Yao, 2006; Li, 2006). According to Sarjakoski and Nivala (2005), 

when a mobile map in LBS is used in the field, a user has to deal with different contexts in 

the surrounding environment depending on the type of application (Figure 1.2). 

 

Figure 1.1  (a) Mobile map with symbols represented  by relevance values  with different 
opacities, from Reichenbacher (2005) and (b) traditional cartographic map, from Bard (2003). 

 

(a) (b) 
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Location deals with the real time information about a wayfinder’s current position on the 

mobile map which cannot be retrieved from a traditional hardcopy map. Wayfinding 

efficiency and effectiveness has a high dependency on system properties of the mobile 

device in terms of screen size, resolution, memory capacity and processing speed. The 

mobile map created should fit the situation and the purpose so that depending on the 

user requirement, different specific map views should be able to be generated (e.g. during 

daylight on a sunny day a mobile map with coloured landmarks is more useful than at 

night time). Also during wayfinding, depending on the time of the day, points of interest 

(POI) along the route may differ considerably. Another important factor in the context is 

the physical surroundings of the user. For example, screen display colour and brightness 

should adapt to the light of the physical surroundings irrespective of daylight or night and 

the environmental condition (a sunny day or rainy day). Further, the loss of orientation in 

an underground environment and disruptions, such as busyness of people during peak 

times, to navigation in an urban environment are some other impediments in physical 

surroundings. The observer’s viewpoint is also an important factor to be considered 

Figure 1.2  The surrounding context of a mobile map user, from Sarjakoski and Nivala 
(2005). 
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together with the route selection based on the topography of the area of navigation. It is 

also important to a user to retrieve the navigation history and the planned route in some 

situations. Orientation is considered where the mobile map should be displayed in the 

right position with respect to the user’s line of sight and the direction of movement. 

Usage situations of mobile maps may also vary with a user’s social and cultural settings 

(Sarjakoski and Nivala, 2005). In addition to the purpose of use, one of the most challenging 

contexts to handle is the characteristics of the user him/herself. The reason is that the 

physical, cognitive, perceptual abilities and the personality of the user will have a 

considerable effect on their wayfinding scenario. However, the main aspiration of this 

research is towards improving the context with more emphasis on the enrichment of 

salient landmarks and enhancement of visual representation by way of investigating the 

processes to generate a focus map view (see Figure 2.1 in Section 2.1 for a variable scale 

focus map) using multiple representations of spatial data. It will also help NMAs produce 

the topographical maps and the task-oriented wayfinding maps with the inclusion of 

salient landmarks using a methodical and systematic approach which is still lacking in 

commercial navigation data sets (Elias and Paelke, 2008) and current map production at 

NMAs. 
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1.3   Outline of the thesis 

Following this introductory chapter, this thesis is organised into nine chapters, and they 

are briefly described as follows: 

Chapter 2 describes the research context. It first introduces focus maps and then presents a 

review of the related work in each field involved in generating focus maps. Then the 

overall objective is defined and research questions are formulated. 

Chapter 3 presents the methodology as to how it is proposed to achieve the overall 

objective through answering the research questions formulated in the previous chapter. 

Chapter 4 describes the testing and evaluation of existing algorithms so as to develop and 

implement a new constrained triangulation spatial data structure to derive explicit 

neighbourhood relations between polygon geometries. 

Chapter 5 describes how two new data enrichment algorithms: (a) spatial clustering of 

building polygons and (b) shape enrichment of such clusters are developed and 

implemented through testing, evaluating and modifying existing algorithms to be used in 

subsequent automatic map generalization. 

Chapter 6 describes how new algorithms and methods are developed to enrich attributes 

that are required to derive landmark saliency of building features stored in a spatial 

database in the first part. In the second part, it further describes how the existing decision 

tree algorithms used in data mining are tested, modified and evaluated to derive the 

salient building landmarks with the enriched attributes during the first phase. 

Chapter 7 describes how four different aggregation algorithms based on cluster 

characteristics enriched during the data enrichment process, are developed and 

implemented through testing, evaluating and modifying existing algorithms to be used in 

the automatic generalization of building polygons to generate a coarse background in 

focus maps. 
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Chapter 8 illustrates the results of focus map generation together with their external 

validation in the areas of automatic map generalization and data mining for deriving 

landmark saliency using the two test data sets chosen from Newham area and Tower 

Hamlets area of London, United Kingdom. Then it critically discusses what has been done 

in each area involved in generating focus maps in relation to the related work. 

Chapter 9 is the conclusions where the results and the answers to the research questions 

are reaffirmed. Then it describes the significance of the work done in this research. Finally, 

it provides an outlook of the areas for future research. 
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Chapter  2  Research context 

This chapter first introduces focus maps and then presents a critical review of related 

work in each area involved in generating focus maps for pedestrian wayfinding, which 

provides the basis for identifying the problem scope to formulate research questions. In a 

focus map, the user’s attention is drawn to a specific area or location with cartographic 

representation techniques by way of emphasising salient features. In this research on 

generate focus maps, four specific areas are taken into account: Delaunay triangulation 

data structure, data enrichment, automatic map generalization and data mining under 

knowledge discovery in spatial databases. These areas serve as a basis to design, 

implement, test and evaluate methods for generating focus maps. Delaunay triangulation 

will be used to get the adjacency relationships between polygonal spatial features. Data 

enrichment is for extracting hidden information from the spatial databases to be utilised 

in subsequent automatic map generalization and data mining processes. Next the main 

technique used to generate focus maps is the automatic map generalization. Finally, in 

order to retrieve salient landmarks to be incorporated into focus maps, data mining 

techniques are used in the knowledge discovery process. 

2.1    Focus maps 

Fairbairn and Taylor (1995) have discussed methods to derive variable scale maps that are 

another form of focus maps based on a space-directed transformation technique 

(Bereuter and Weibel, 2010) in which map objects are moved apart to reduce conflicts by 

transforming the map space. In this process, the scale constantly decreases from the 

centre towards the edge of the map (Figure 2.1(a)). Further work on generating variable- 

scale maps has been carried out by Harrie, Sarjakoski and Letho (2002). In their approach 

the scale is kept constant within a circular cap based on the distance from the centre of 

the map while the scale of features outside the circular cap constantly decreases towards 

the edge of the map (Figure 2.1(b). In both approaches, details have been reduced to 

avoid compressed data at the edge of the maps based on map generalization before 

applying variable scales. Fairbairn and Taylor (1995) have applied the variable scale 
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approach on two data sets where data at the centre represent large scale data while the 

data at the edge of the map represent small scale data. Harrie, Sarjakoski and Letho 

(2002) have chosen a large scale data set at the centre within the circular cap while data 

outside the circulars cap are generalized with selection and simplification of details 

followed by applying a variable scale technique. 

 

 

 

 

 

 

 

A major characteristic of a variable scale map in wayfinding is to emphasise data in large 

scale at the region of interest to the user while the data in the peripheral area are 

represented at decreasing scales as distances increase from the centre of the area of 

interest. However, since the scale throughout the map is not uniform, features get 

cluttered towards the edge of the map even if the map generalization technique is applied 

to reduce details. Thus, the application of variable scale does not necessarily make the 

map more legible. Furthermore, the variable scale map is not visually attractive and lacks 

spatial fidelity because of the distortions. The evaluation of perceptual and cognitive 

validity of the variable scale approach in mobile map representation has not been tested. 

Figure 2.1  Focus maps represented with variable scales: (a) scale radially decreases constantly 
from the centre of the map, from Fairbairn and Taylor (1995) and (b) scale within a circular cap 
based on a distance from the centre is uniform while the scale outside the area of circular cap 
radially constantly decreases, from Harrie, Sarjakoski and Letho (2002). 

 

(a) (b) 
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To overcome the issues in distortions on variable scale maps, Rappo in 2003 as cited by 

Reichenbacher (2004), has used a new technique of generalization called radial 

generalization where the details of the map are radially generalized from the user’s 

position towards the edge of the map. 

Zipf and Richter (2002) have applied the focus map technique to emphasise the region of 

interest of the user according to their current task of wayfinding by enhancing the 

visualisation of landmarks by the assignment of colours and an object-directed 

transformation technique (Bereuter and Weibel, 2010). When the object-directed 

transformation is applied, it is the objects in the map that are modified using map 

generalization operations without changing the metric properties of the underlying map 

space. The same concept has been extended by Neis and Zipf (2008) to represent routes 

with 3D landmarks (buildings) using Open Geospatial Consortium (OGC) web service 

standards. Reichenbacher (2005), citing his own work on the egocentric representation of 

mobile maps (Reichenbacher, 2004), has described the concept he used to model the 

relevance of geographic objects in terms of opacity values by determining the relevance of 

events for mobile users, calculating the temporal and spatial distances to the events based 

on the current location and time. 

Elias, Hampe and Sester (2005) have used an adaptive visualisation technique which is a 

focus map technique for presenting important building information to the user in real-

time based on the multiple representation data handling as described by Hampe, Anders 

and Sester (2003), together with object-directed transformation of objects (map 

generalization). In this method all the building information is represented in the 

background with coarse details and as the user gets closer to a salient building landmark 

on the navigation route, the respective generalized coarse detail (building amalgam) is 

replaced by the salient landmark represented at the original scale. This replacement is 

achieved by the object links between the salient landmarks and the generalized building 

amalgams stored in a multiple representation database management system (MRDBMS). 

The salient landmarks are emphasised by using a visual variable - colour - as used by Zipf 

and Richter (2002) and Reichenbacher (2004). The adaptive visualisation mentioned 
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herein implies the use of the visual variable colour applied to the single objects of salient 

landmarks where the colour should be changed (adapted) depending on the 

environmental context of navigation. 

2.2   Map generalization 

Map generalization is the process of applying modifications to the information on a 

cartographic map so that information can be shown on a smaller surface area whilst 

retaining the essence of original geometrical and descriptive characteristics. According to 

the International Cartographic Association (ICA) in 1973, generalization is “the selection 

and simplified representation of detail appropriate to the scale and/or the purpose of the 

map” as cited by Brassel and Weibel (1988). This emphasises that the smaller the map 

scale, the more the representation is to be simplified and abstracted in order to maintain 

visual clarity and balance of the representation (Figure 2.2). 

 

 

 

 

 

 

 

 

 

  

Figure 2.2  Requirement of generalization of a map: scale on the first row left           
1 : 100K, middle 1 : 200k and right 1 : 500K. Maps in the second row are not to 
scale, from Cecconi (2003). 
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The complexity of manual cartographic generalization derives from its holistic and artistic 

nature when it comes to deciding how to portray which important aspects of information 

are to be preserved while omitting unwanted information (Dunkars, 2004). Attempts to 

automate map generalization in cartography have a long history that moves back to the 

advent of computers. Such attempts have not been entirely successful, and the map 

generalization is still an interesting topic in the scientific research community for the 

reason that the full automation of generalization is not yet realised (Oosterom, 2009). In 

addition to its holistic and artistic nature, there are many other reasons as to why 

generalization is so difficult to automate fully. Among these are: (a) the contextual nature 

of the spatial information and (b) the maintenance of topological relationships among the 

features on generalization and (c) its subjectivity. McMaster (1987) notes that: “Even the 

most skilled manual cartographers would have trouble precisely replicating their results 

from one day to the next”. 

2.2.1  Knowledge acquisition for generalization 

The lack of success in fully automated map generalization is due to two problems: (a) 

sufficiently detailed and accurate knowledge does not exist to solve generalization 

problems, also termed the knowledge acquisition bottleneck, and (b) difficulty in 

formalising the generalization process in the knowledge acquisition task mainly due to the 

contextual nature of the objects subject to generalization with mixed topological and 

semantic relations (Weibel et al., 1995). Another reason given by Weibel and Dutton 

(1999) is “Cartographic knowledge is different from other knowledge types (e.g. the 

knowledge needed in medical diagnosis) in that it is essentially graphical and, therefore, 

hard to verbalise and formalise”. In the literature, there are several classifications given to 

formalising generalization knowledge (Armstrong, 1991; Kilpelinen, 1997; Ormsby and 

Mackaness, 1999). Among these classifications, the most influential forms of knowledge in 

terms of rules are topological rules, geometrical rules, semantic rules, procedural rules 

and contextual rules. Geometrical rules refer to the shape, size and location of objects; 

topological rules relate to the relationship of objects before and after generalization (e.g. 

a building should not cross a road after generalization); semantics refer to the meaning of 
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objects; procedural rules determine the generalization operators and algorithms to use 

and contextual rules define the rule of thumb of topographical terrain properties. For 

example, aggregation of buildings should not be performed if there is a canal between 

them. An understanding of the generalization knowledge in terms of constraints rather 

than rules is very important in the generalization process as explained in Section 2.2.6 

below. Classification of constraints in the context of map generalization as explained by 

Weibel et al. (1995) and Weibel and Dutton (1998) consists of five categories: (a) graphical 

(specify size and dimensions as directed by graphical limits according to target scale) (b) 

topological (ensure that the relationships between features are maintained) (c) structural 

(define criteria describing spatial and semantic structure such as clustering and alignment) 

(d) Gestalt (relate to aesthetic and visual balance) and (e) process (mainly influence on 

how generalization operators are selected and sequenced). 

2.2.2  Conceptual architecture for generalization 

Graphic and conceptual generalization 

Depending on the target scale, automatic generalization can be conceptually categorised 

into graphic generalization and conceptual generalization in the application of 

generalization operations. When the scale reduction is small (e.g. 1 : 2K to 1 : 5K), a more 

graphic generalization that affects the geometry of objects is needed. The conceptual 

generalization is much more suitable when there is a significant scale reduction (e.g.           

1 : 10K to 1 : 50K) where fewer details can be represented. Hence, the reduction in detail 

is necessary. Further, graphic generalization can be characterised by simplification, 

smoothing, enlargement, displacement and merging. None of these operations affect the 

symbology of the map whereas conceptual generalization can be characterised by 

merging and selection in addition to enlargement and symbolization that lead to change 

of classification of attributes (Krakk and Ormeling, 2003). The relationship between the 

two types of generalization is illustrated in Figure 2.3(a) using the generalization 

operations. It can also be distinguished that conceptual generalization is related to the 

object and model generalizations while graphic generalization is related to cartographic 

generalization. 
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Star and Ladder approaches 

Two approaches to performing automatic generalization as illustrated in Figure 2.3(b) are: 

ladder approach and star approach which are often adopted by the NMAs, sometimes 

with a mixed approach of both according to Stoter (2005). In the ladder approach, each 

small scale data set is derived from a large scale data set in steps (from scale to scale). In 

the star approach, all small scale data sets are derived from the same base scale data set. 

The large to middle data sets are derived from the base data set and the smaller scale 

data sets are derived from one middle scale data set in the mixed approach. Deciding 

which approach is chosen is important depending on the application requirement. In the 

application of deriving several small scale data sets using model generalization, adopting 

the ladder approach is not suitable since it degrades spatial accuracy up the ladder. The 

Figure 2.3  (a) Relation between graphic and conceptual generalization, based on Krakk and 
Ormeling (2003) and (b) Ladder approach left and Star approach right, based on  Stoter (2005). 
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main purpose of model generalization is to reduce the amount of detail of a digital 

landscape model (DLM) at the target scale under statistical control (João, 1998). In this 

case, the star approach is the most suitable method. Ladder approach is more suitable for 

producing digital cartographic models (DCM) using cartographic generalization where the 

spatial accuracy is not that significant. 

2.2.3  Models of generalization 

With a wider meaning given in digital cartography and GIS, generalization can be considered 

as a process of representing the real world in different models with abstract details while 

preserving maximum information, depending on the purpose of the application. 

Generalization takes influence through creating the first model called the DLM with the use 

of object generalization (Figure 2.4). As a part of deriving information for specific purposes, 

the first DLM can be generalized in two ways, either by reducing it into a DLM of lesser 

information content using model generalization (statistical generalization) or by converting 

it into a DCM using cartographic generalization (Brassel and Weibel, 1988; Weibel and 

Dutton, 1999; Sarjakoski, 2007). 

 

 

 

 

 

 

 

 

Figure 2.4 Generalization as a sequence of modelling operations, based on 
Weibel and Dutton (1999). 
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2.2.4  Generalization operators 

The main task of a generalization operator is to solve a specific generalization problem. A 

combination of different generalization operators can be used to build up the entire 

generalization process or the workflow. Traditionally, cartographers use different manual 

operations such as selection, simplification, displacement, enlargement and combination 

to describe various stages of the generalization process. This manual application involves a 

great deal of human interpretation of spatial data and decisions about how to generalize 

and how to solve generalization conflicts. Therefore, a manual process is considered 

holistic in nature. In the digital context, it is almost impossible to develop such holistic 

solutions for generalization due to its subjective nature and lack of well-defined rules to 

guide decision-making. Therefore, a functional breakdown of the entire generalization 

process benefits identification of the constituents of generalization and enriches the 

development of specific solutions to sub-problems in the process (Weibel and Dutton, 

1999). Application of the generalization operators is governed by different criteria to solve 

a specific generalization problem in a given situation. Even the same generalization 

operator implemented with different algorithms may behave differently. The use of 

generalization operators is influenced by three main elements: (a) the feature class (road, 

building, relief etc.) (b) preceding situation analysis and (c) the map scale (Cecconi, 2003). 

As discussed by Cecconi (2003), there are basically two types of generalization operators 

acting upon spatial objects: 

• Independent: This kind of operator is applied to individual objects or a group of 

objects independent of their spatial context (not necessary to check spatial 

relations with feature classes, e.g. simplification, smoothing and collapsing). 

• Contextual:  Context-dependent operators such as selection, aggregation, 

enlargement and displacement can only be triggered and controlled following 

spatial relations with other objects. For example, a displaced building should 

remain on the same side of the road after generalization. If the context between 

different spatial objects is ignored, spatial relations between objects are lost 

causing topological conflicts between objects. 
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Several researchers have discussed and used generalization operators for geospatial 

mapping applications (Beard, 1987; McMaster and Shea, 1992; Robinson et al., 1995; 

Peng, 1997; Cecconi, 2003; Galanda, 2003). However, a significant difference can be found 

in the literature on the number of generalization operators, and in the terminology used 

to describe them as observed by Rieger and Coulson (1993). Galanda (2003) has made a 

clear graphic and textual overview of his generalization classification of operators while 

Cecconi (2003) presented the classification of operators defined for the automatic 

generalization new technology (AGENT) project (Figure 2.5). This classification of 

generalization operators builds the base for the work in this thesis since it provides a 

detailed and comprehensive explanation of the use of such operators on both individual 

and/or groups of spatial objects in the application of the model generalization and the 

cartographic generalization. 

2.2.5  Generalization algorithms 

While a generalization operator defines and performs some transformation in the 

generalization process, a generalization algorithm is used to implement the particular 

transformation. A particular algorithm implementation can be based on either raster-

based or vector-based theories. Many generalization algorithms implement one or several 

operators. For example, the building amalgamation algorithm on polygon features by 

Regnauld and Revell, (2007) consists of simplification and enlargement operators in 

addition to merging operator. Also, the line simplification algorithm by Wang and Mϋller 

(1998) is a combination of selection and exaggeration operators. There are countless 

generalization algorithms written over the past four decades, and more algorithms are 

described in the AGENT technical report by Bader et al. (1999). 
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Selection Select the most important object from a cluster/ 
network to represent the original feature. 

Elimination Eliminate unimportant objects from the map. 

Displacement 
Move objects to solve conflicts between objects that are too close or to 
keep important neighbourhood relations eg. if a bend is moved through 
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Join features to 
one object 

Amalgamation 
Fusion Aggregation of the two connected 

objects of the same nature 
Merge Join disconnected objects 

Combine Combine a set of objects into one object of higher 
dimensionality 

Aggregation 
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An initial set of objects is transformed into a new 
generalized group. It is not clear after the 
transformation which original object(s) created a new 
one - the new objects are merely space holders 

Join features to 
several objects 

The initial group might be built of disjoint objects (such 
as buildings) or be created through segmentation of 
one single object (such as road segments). The former 
type is called structuration, the latter one 
schematisation. 

 
Figure 2.5 Generalization operators defined for the AGENT project simplified after Bader et al. 
(1999), based on Cecconi (2003). Note: Different colours are only used to enhance the visual 
clarity. 
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2.2.6 Review of the generalization frameworks 

Automatic cartographic generalization has been used to find solutions to restricted spatial 

problems, in particular for linear features by Douglas and Peucker (1973) and point and 

area features by Töpfer and Pillewiser (1966). According to Buttenfield and McMaster 

(1991), the first conceptual framework for automatic map generalization has been 

presented by Ratajski (1967) who identifies two fundamental types of generalization 

processes: (a) quantitative generalization which consists of a gradual reduction in map 

content depending on scale change and (b) qualitative generalization which results from 

the transformation of elementary forms of symbolization to more abstract forms. After 

Ratajski’s model, several frameworks for automatic map generalization have been 

proposed, which broadly follow two models: (a) process oriented model which structures 

the entire generalization process by the process of structure recognition and (b) object-

oriented model which addresses the level of map objects as distinguished by Steiniger and 

Weibel (2005). One of the most influential process-oriented models is the framework 

proposed by Brassel and Weibel (1988) where five stages are distinguished in the process: 

(a) structure recognition (b) process recognition (c) process modelling (d) process 

execution and (e) data display. Process modelling involves the compilation of rules and 

procedures in generalization. Among the drawbacks in adopting rules is the difficulty of 

acquiring and formalising cartographic knowledge; a requirement for a great amount of 

rules to describe conditions and actions between map objects, and sequencing of 

generalization operators since they affect each other. 

A major step forward in dealing with the generalization frameworks is the introduction of 

object-oriented models and their associated spatial functions into automatic map 

generalization where a constraint-based modelling approach is adopted as proposed by 

Beard (1991). Constraints formulate a synthesis of conditions that a generalized map 

should adhere to find a goal state in which a variety of constraints will be satisfied. 

However, in contrast to rule-based modelling, violation of a single condition is not bound 

to an individual action to solve a particular generalization problem in this type of 

modelling. The constraint-based modelling approach by Ruas and Plazanet (1996) using an 
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object-oriented framework is a combination of the model of Brassel and Weibel (1988) 

which comprises of parts of the structure recognition and process recognition as well as 

the process modelling and execution, and the constraint-based and iterative refinement 

strategy suggested by Mackaness (1995) with trial and error (backtracking facilities) to 

generate a satisfactory generalized map. The proposed framework has been implemented 

in an experimental stage at IGN France with three levels of processing where the highest 

level being the ‘global master plan’ that determines a sequence of generalization tasks to 

apply to the entire map (e.g. aggregate all connected objects of the same class). The 

second level is the choice of the geographical region according to the given task (e.g. the 

objects are contained in an urban block). The third and final level called the local level is 

the development and execution of a generalization plan for every situation with the 

generalization output being evaluated at the end. These generalization plans locally 

determine generalization operations (e.g. simplification, smoothing) and their sequence 

while considering appropriate algorithms and parameters for such operations (e.g. line 

simplification with the Douglas Peucker algorithm (Douglas and Peucker, 1973) with a 

constraint threshold of 5m distance). At this local level, if the generalization evaluation 

phase reports an unacceptable output, three types of actions are possible: (a) selection of 

other parameter values (b) use of another algorithm or (c) a new local plan is chosen. This 

refinement process is continued until a satisfactory result is obtained at the evaluation 

phase (Steiniger and Weibel, 2005). This constraint-based model has been further refined 

and re-implemented in the prototype generalization system of the AGENT project 

(Barrault et al., 2001) with its commercial successor software - CLARITY - by Laser-Scan 

(Figure 2.6). 

 

 

 

 

  
23 

 



 

 

 

 

 

 

 

 

 

 

 

The generalization model used in the German ATKIS (the Official Authoritative 

Topographical Cartographic Information System) project as mentioned by Brassel and 

Weibel (1988) and Morgenstern and Schürer (1999) represents a different view of 

generalization, which identifies three distinct generalization processes as described in 

Section 2.2.3 above. The first type is object generalization which describes a mental 

generalization process in the sense of abstraction and selection from the real world data 

by the data collecting person (land surveyor, aerial photo analyst or GIS data analyst). The 

second type of generalization - model generalization - can be seen as a pre-processing step 

prior to visualisation through cartographic generalization (Sarjakoski, 2007). This process is 

also called statistical generalization (Brassel and Weibel, 1988) because it is mainly a 

filtering process after object generalization, aimed at data reduction under a certain 

statistical control to maintain quality of information as much as possible with generalization 

Figure 2.6  AGENT generalization procedure for a single object or a group of 
objects, based on Steiniger and Weibel (2005). 
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operators such as selection, removal and reclassification operations with more or less no 

conflicts between objects. It also causes lesser generalization effects in which reduction of 

data volume is maximised while, at the same time, modification of data is minimised 

(Weibel, 1992). Further, it aims at the minimum average displacement of objects. As a 

result, the statistical generalization mainly affects the symbology of the map to create a 

minimum of conflicts. Cartographic generalization being the third type, aims to modify the 

local structure of the data, and hence is non-statistical (Brassel and Weibel, 1988). In this 

process, the main aim is to give a better visual effectiveness to the graphic display with the 

best use of map space to optimise legibility at a given scale for a particular purpose of the 

map. This would more often cause graphical conflicts to be resolved after generalization 

using the operations such as symbolization, enlargement, displacement and exaggeration. 

2.2.7  Relationship of generalization models to wayfinding maps 

The selection of the desired objects and the features as well as the desired resolution of 

the presentation is a matter that needs to be highly focused on processing and viewing 

data in wayfinding maps on mobile devices due to their limited display size, resolution and 

processing power (Hampe, Anders and Sester, 2003). As a result, a new technique called 

adaptive visualisation has come to the fore in handling wayfinding maps as discussed in 

Section 2.1 above. For this purpose, the advantage of a multiple representation database 

(MRDB) has been discussed by Hampe, Anders and Sester (2003), Hampe and Sester 

(2004), Hampe, Sester and Harrie (2004) and Elias, Hampe and Sester (2005) in the 

adaptive visualisation of geographical information on wayfinding maps. An MRDB is a 

spatial database used to store the same real world phenomena at different levels of 

precision, accuracy and resolution (Devogele et al., 1996; Weibel and Dutton, 1999). 

According to Hampe and Sester (2004) an MRDB is mainly characterised by two features: 

(a) different levels of details are stored in one database and (b) the corresponding objects 

at different levels are linked (Figure 2.7). When establishing an MRDB, there are two 

possibilities according to Hampe, Anders and Sester (2003): (a) linking existing data sets at 

different resolutions by data matching procedures if data across these resolutions are 
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consistent and (b) creating new data sets from the existing data sets with the links in the 

application of the automatic map generalization. 

 

 

 

 

One of the main advantages to NMAs in establishing MRDBs using existing vector data 

sets at different resolutions, represented either in a DLM or a DCM, which have been 

evolved from the development of generalization in the NMAs according to Stoter, Kraak 

and Knippers (2004), is the storage of pre-generalized data involving complex time 

consuming algorithms at different levels for subsequent use. As a result an MRDB has 

enabled the adaptive visualisation of wayfinding maps used in mobile devices because 

real-time processing of these complex generalization algorithms in order to generate 

views at any desired scale of the mobile user has still not fully been realised (Hampe, 

Anders and Sester, 2003). However, real-time generalization can be efficiently performed 

in regions with limited scales using the generalization algorithms having less complexity. 

The notion in such instances is to apply the real-time generalization to data stored in an 

MRDB at a scale which is close to the desired scale chosen by the user (Hampe, Anders 

and Sester, 2003; Hampe, Sester and Harrie, 2004). When the scale change is small, 

reduction of data content is small and, therefore, more involvement of graphical 

generalization is required as mentioned in Section 2.2.2 above. 

However, in a wayfinding scenario with focus maps, what is most required is an eye-

catching distinction between the prominent landmarks and the background features. As a 

result, generating views with the real-time generalization within a small scale change is 

less significant. In such instances, the use of multiple representations of relevant features 

at two desired representation levels with a significant scale difference is an ideal situation 

Figure 2.7  Characteristics of an MRDB - storage of multiple representations of objects 
(left) and linkage of corresponding objects (right) from Hampe and Sester (2004). 
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(representation between large scale and small scale data sets in an MRDB). One such 

example is the representation of buildings at two scale levels in an MRDB by Elias, Hampe 

and Sester (2005). In this example, buildings at smaller scale have been derived by 

aggregating building groups into a single entity using an aggregation generalization 

operator, which is more an application of the statistical generalization as discussed in 

Section 2.2.6 above, aiming at reduction of data at the smaller scale based on conceptual 

generalization. Further, minimising of topological conflicts in generalized data while 

maintaining its accuracy in the statistical generalization is an added advantage to preserve 

the quality of information on the generalized features with the least displacement. 

2.2.8  Related work on building geometries 

In the focus map representation for wayfinding, one of the key aspects is the application 

of the object-directed transformation technique which is the method of reducing details 

on the map using map generalization techniques. Different possibilities in highlighting 

important objects such as landmarks have been discussed in the literature using either 

graphical variables such as colour and opacity, representation of objects with variable 

scale techniques and/or generalization with simplifying features. As discussed, there have 

been attempts to emphasise the focus by overlaying the important building on the 

merged background building group, that is, merge background buildings while leaving the 

salient landmark building separate (Sester, 2002) and emphasising the salient landmark 

building by replacing the corresponding merged background group of buildings (Elias, 

Hampe and Sester, 2005). In these instances, the emphasis of the salient landmarks is 

made distinct from the coarse background information. Therefore, aggregation of building 

groups to be treated as merged background information in map generalization plays an 

important role in emphasising landmarks for wayfinding. 

Aggregation of building vector data using displacement and then rotation of one building 

in the adjacent pair of buildings to align the two buildings before merging has been 

discussed by Lichtner (1979), Ware, Jones and Bundy (1995) and Jones, Bundy and Ware 

(1995) using triangulation (Figure 2.8). However, their approaches cannot deal with the 

pairs of buildings, each positioned in exceptional locations such as almost overhanging 
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and total separation locations as illustrated in Figure 2.9 since merging of buildings in such 

pairs produce corner touching building entities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The approach used by Schylberg (1992) on raster data for the aggregation of buildings 

comprising of orthogonal sides based on dilation and erosion also cannot deal with the 

Figure 2.8  (a) A pair of buildings at total separation (b) displacement of building B1 to building 
B2 has created a corner touching situation and (c) rotating, aligning and merging of building B1 
with building B2, has created a corner touching situation. 

 

Figure 2.9  A pair of buildings in a cluster at different positions: (a) total overhanging (b) 
partial overhanging (c) almost overhanging (d) corner touching and (e) total separation, 
based on Regnauld and Revell (2007). 
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building objects at exceptional locations as explained above to bring out a meaning to the 

merged building. Further, the approaches by Li (1994) and Su et al. (1997) based on 

mathematical morphology on raster data for building aggregation have the same problem 

in dealing with buildings placed in three exceptional locations described above. In the 

approach of Su et al. (1997), depending on the target scale, the size of the structuring 

element that is used in filling the gaps between buildings in the cluster is calculated based 

on an equation. However, this does not guarantee that all the gaps are filled in at a 

specific scale as evident from Figure 2.10(b) when compared with source cluster in Figure 

2.10(a) where the building at the bottom of the cluster is not aggregated. Ai et al. (2007) 

have used a method of filling gaps between building clusters using rasterizing techniques 

and then converting the rasterised amalgam into the vector. However, they have not 

explicitly mentioned how they have dealt with clusters where buildings are placed in 

exceptional locations as discussed above. 

 

 

 

 

 

Regnauld and Revell (2007) have described an approach to aggregate building vector 

geometries to give a single orthogonal building by squaring each building in the group and 

then filling the gap between each pair of buildings. This gap is chosen in the order of the 

minimum spanning tree (MST) that runs with the weight of the minimum distance 

between each pair of buildings in the group for the five types of exceptional building 

locations they have identified - ‘total overhang’, ‘partial overhang’, ‘almost overhanging’, 

‘corner touching’ and ‘total separation’ - as illustrated in Figure 2.9. This filling method 

Figure 2.10  Area aggregation based on morphological operators: (a) source building 
cluster and (b) amalgam after aggregation with a structuring element formed at 7 x scale 
reduction where the bottom building is not aggregated; from Su et al. (1997). 
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almost follows the configuration of the series of structural elements used by Su et al. 

(1997) for shape refinement of the merged building. Although their method has also come 

out with a shape refinement of the merged building through the simplification of granular 

sides and the enlargement of juts, a separate algorithm in the 1Spatial generalization 

platform - CLARITY (Revell, 2008) - is used to enlarge narrow corridors created as a result 

of aggregation. 

Savino (2011) has developed a method to aggregate buildings, creating an initial outward 

buffer with a minimum distance chosen based on the target scale around each building in 

the data set (e.g. building BO in Figure 2.11), and retrieving buildings that intersect with 

the initial outward buffer. In this method the gaps between the building with initial 

outward buffer and the retrieved buildings (buildings 1, 2 and 3 in Figure 2.11) are merged 

with the oriented bounding rectangles of the convex hulls formed using the intersection 

between each outward buffer of the retrieved buildings and the initial outward buffer. 

The oriented bounding rectangles are generated based on the method by Regnauld and 

Revell (2007). However, if the area of the convex hull is less than a particular area 

threshold between two buildings, the two buildings are considered too far away and not 

glued with the oriented bounding rectangle (e.g. building 3 is not glued as shown in Figure 

2.11(e)). 

 

 

 

 

Figure 2.11 Building aggregation: (a) initial building B0 subjected to buffering based on 
threshold distance (b) Buffering of buildings 1, 2 and 3 that intersect the initial building B0 with 
the same threshold distance (c) convex hulls (d) oriented bounding rectangles between building 
B0 and 1, 2 and 3 and (e) amalgam created by gluing buildings with the oriented bounding 
rectangles where oriented bounding rectangle between building B0 and 3 is ignored considering 
the area of the convex hull between buildings B0 and 3, based on Savino (2011). 
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Several algorithms that deal with a generalising outline of either single buildings or 

amalgams exist in the literature. The algorithm by Julian (2009) squares the edges of a 

building polygon, taking into account an orientation threshold based on the wall statistical 

weighting algorithm by Duchêne et al. (2003). Further, Rainsford and Mackaness (2002) 

have developed a squaring algorithm using template matching on predefined shapes. 

Lamy et al. (1999) have discussed an algorithm for squaring and enlarging narrow sections 

(corridors) with the use of the AGENT technology. Revell (2008) has mentioned an 

algorithm implemented in the CLARITY software for enlargement of narrow corridors 

although the algorithms used in CLARITY are not given in the literature. Sester (2000a) has 

developed an algorithm for simplification of orthogonal buildings. Further, Fan and Meng 

(2010) have developed an algorithm to simplify buildings which have non-orthogonal 

sides. 

When aggregating natural objects (e.g. buildings with irregular shape) as opposed to 

rectangular building objects, filling spaces between each pair of objects with triangles 

formed using the constrained Delaunay triangulation (CDT) has been presented by Jones, 

Bundy and Ware (1995) and Ware, Jones and Bundy (1995). These filling triangles are 

selected so that the edge distance between triangles in a pair of objects does not exceed 

some distance threshold based on the related technique described by DeLucia and Black 

(1987). 

2.3    Data enrichment 

Data enrichment is the process of enhancing, refining or improving raw data to make data a 

valuable asset pertaining to a specific use or application. One of the main applications of 

data enrichment in this research is to derive building clusters (groups) to be used in the 

building aggregation process for the subsequent map generalization as discussed in the 

previous section. Another important application is to derive salient landmarks under data 

mining which is the discovery of knowledge from existing data for decision-making about 

complicated processes. A simple example of data enrichment is harvesting fish from the 

ocean (Pyle, 1999). In order to perform this task, there are three tools existing with the 

advancement of technology: (a) data modelling (that reveals each ‘fish’) (b) data mining or 
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surveying (that looks at the area of the ocean for fish and is the ‘fish finder’) and (c) data 

enrichment (that removes murk and clears the water so that ‘fish’ can be clearly seen and 

easily attracted). Data enrichment can be used in both attribute and spatial data. For 

example, bank account details of the general public in a data store are a type of attribute 

data set while a set of building geometries in a spatial database contains both attribute and 

spatial data. For example, automatic map generalization involves the use of several 

integrated generalization algorithms in a comprehensive workflow which is a decision-

making process and requires some additional information about data to apply the 

algorithms correctly in the workflow. Further, in spatial data mining the execution of 

decision-making algorithms requires exploring the information that are hidden in the raw 

data. Generally the spatial databases with the raw data could not support decision-making. 

One reason is the lack of auxiliary information derived from the spatial data structures to 

describe spatial relationships within the data. Therefore, data enrichment is necessary to 

equip raw data with additional information (auxiliary data) with their semantics, geometry 

and spatial relationships and common patterns for subsequent automatic map 

generalization and data mining processes. 

According to the literature, spatial data structures that are of much importance to extract 

auxiliary information include Delaunay triangulation (DeLucia and Black, 1987; Jones, 

Bundy and Ware, 1995; Ware, Jones and Bundy, 1995; Jones and Mark, 1998; Li et al., 

2004; Haowen, Weibel and Bisheng, 2008; Qi and Li, 2008), Voronoi diagrams (Basaraner 

and Selcuk, 2004; Haowen, Weibel and Bisheng, 2008), MSTs (Regnauld, 2001, 2005; Qi 

and Li, 2008), graph structures (Mackaness and Beard, 1993; Regnauld, 2003, 2005), 

Skeletons (Bader and Weibel, 1997), hierarchical partitioning schemes (Ruas, 1995) and 

machine learning (Sester, 2000b). 

2.3.1 Relations in data enrichment 

Data enrichment has two main relations: (a) horizontal and (b) vertical as identified by 

Neun, Weibel and Burghardt (2004). Horizontal relations exist on the same level of detail 

in a data set and represent common structural properties such as proximity, topology, 

pattern and alignment, and helps recognise and derive clusters of geometrical objects, 
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while vertical relations can exist among homologous objects or groups of objects such as 

shape, size, compactness, object links and scale relations. Identification of horizontal 

relations in data sets not only helps to identify structural knowledge required to deal with 

the contextual nature of map generalization, but also to leverage horizontal relationship 

among data sets in a vertical relation at different resolutions to represent the same 

phenomena. These vertical relations can exist on both attributes and geometric features. 

Vertical relations are important to leverage structural knowledge (horizontal relations) of 

different levels of details. In vertical relations, the object links (object identification 

numbers) of different data sets can be integrated and maintained in an MRDBMS (Hampe, 

Anders and Sester, 2003; Sarjakoski, 2007). Links needed for the integration of such data 

sets can be maintained either in one separate table or among the tables of the data sets 

according to Hampe, Anders and Sester (2003). 

2.3.2 Clustering 

Clustering is the process of grouping similar objects based on their geometric, spatial and 

semantic characteristics and is a technique for data interpretation. According to Anders 

(2003), there are basically three types of clusters: non-hierarchical clusters, hierarchical 

clusters and graph-based clusters. Non-hierarchical clusters create a simple partitioning of a 

data set into a set of k non-overlapping clusters where each cluster must contain at least 

one data element, and each data element must belong to exactly one group. The 

hierarchical clustering represents a tree view with multiple levels of partitioning where on 

top is a single cluster which includes all other clusters. At the bottom are the clusters with 

single elements. The tree can be constructed either top-down (divisive approach) or 

bottom-up (agglomerative approach). In the agglomerative approach the two most similar 

objects are merged together based on similarity measures in the subsequent steps and as a 

result of merging, the total number of clusters is decreased by one. These steps are 

repeated until only one large cluster is left, or a given number of clusters are obtained or the 

distance between the two closest clusters is above a threshold. The divisive approach works 

in the reverse direction starting with a large cluster. The graph-based clustering initially 

involves computing neighbourhood graph (Jaromczyk and Toussaint, 1992) such as an MST 
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of the original points. Then any edge in the graph that is much longer than its neighbours is 

deleted according to certain criteria to form forests which are trees representing clusters. 

The result of forests can be represented in a similarity matrix such that every element of the 

matrix represents the similarity between two objects (Anders, 2003). 

2.3.3 Related work on clustering building geometries 

Data enrichment has been used over the last two decades to enhance geometric, spatial 

and semantic properties of features with auxiliary information for subsequent automatic 

map generalization to assist with the use of computationally intensive generalization 

algorithms in order to reduce complexity. The following paragraphs describe the research 

undertaken to cluster buildings into groups, considering properties of geometric features. 

Regnauld (1996, 2001) has conducted research to cluster buildings using an MST which is 

an algorithm to create a neighbourhood graph with nodes and edges (Anders, 2003) using 

the proximity between the buildings as the weight. In order to create building clusters, the 

MST is segmented based on calculating the factor of inconsistency proposed by Zahn 

(1971) with the help of average weights and standard deviation of nearby edge weights of 

both ends of a particular edge in the MST. Further analysis of the homogeneity of groups 

has been carried out applying only the criteria of size and orientation of buildings in the 

Gestalt theory. In this case the shape of buildings which is an important criterion to 

identify groups has not been considered since the process has had more focus on 

generalising areas of dense individual housing where the shape is rarely considered as a 

defining characteristic. 

Steinhauer et al. (2001) have designed and implemented an approach to cluster buildings 

into groups to form abstract regions on cartographic maps using the following criteria: 

adjacency of buildings, proximity between buildings and the cardinality of buildings with 

the generation of Voronoi diagram and convex hull of all the buildings. Christophe and 

Ruas (2002) have developed an approach to detect buildings aligned in rows using a series 

of simple hypothetical straight lines from a single anchor point located at the x-min and y-

min of the spatial features of a block. The advantage of this approach is that it does not 

34 



require the development of complex spatial structures such as the MST, the Delaunay 

triangulation and the Voronoi regions. This approach comprises of two steps: the first step 

is to identify candidates of aligned buildings within the block and the second step is to 

filter the perceptual alignments out of the candidate alignments using the constraints of 

buildings such as proximity of building alignment, arrangement of buildings (quality of 

sides and centre of buildings) in alignment and similarity of buildings in the form of size, 

shape and wall orientation. 

Data enrichment approaches by Regnauld (2003, 2005), Li et al. (2004), Revell, Regnauld 

and Thomas (2005), Ai et al. (2007), Regnauld and Revell (2007) and Haowen, Weibel and 

Bisheng (2008) have adopted clustering of building objects based on the Gestalt factors 

using the Delaunay triangulation for subsequent automatic map generalization. However, 

variations in the methods used to derive the Gestalt factors for such clustering are found 

in Li et al. (2004), Ai et al. (2007) and Haowen, Weibel and Bisheng (2008). Clustering 

approaches discussed by Regnauld (2005) and Regnauld and Revell (2007) are based on 

mapping adjacency relations in terms of the minimum distance between buildings, 

between roads and between buildings and roads stored in a proximity graph. Then 

through edge filtering of the proximity graph on a minimum distance threshold between 

objects, clusters are derived (Figure 2.12). 

Figure 2.12 Building clustering with three steps: (a) CDT (b) connectivity links between 
buildings in the proximity graph and (c) four building clusters through filtering of the 
connectivity links between buildings based on the minimum distance threshold. 

(a) (b) (c) 
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Allouche and Moulin (2005) have developed an approach to identify geometric feature 

clusters on maps using the Kohonen-type neural network analysis and the Delaunay 

triangulation for map generalization. This approach can replace cartographic elements 

such as buildings in a region by its surrounding polygon. The use of this type of neural 

network has allowed them to generate different levels of groupings with respect to 

various zoom scales of the map thus enabling the generation of multiple representations 

of the same phenomena in the context of map generalization. 

Anders et al. (2006) have developed an approach to typify building geometries with the 

help of building groupings based on the identification of buildings in a grid structure 

format. In this approach first the grid structures are detected with the assistance of a so-

called relative neighbourhood graph (RNG) which detects grid-like graph structures. Then 

the detected grid structures are regularised by the least-square adjustment with an affine 

transformation or a Helmert transformation. 

Chaudhry and Mackaness (2006) and Basaraner and Selcuk (2004, 2008) have used 

buffering technique to derive building clusters. However, in the approach of Basaraner 

and Selcuk (2004, 2008), they have further used the Delaunay triangulation and the 

Voronoi diagrams in order to enhance the spatial relationship among clusters required for 

the automatic map generalization. 

Although several research studies have so far been conducted pertaining to building 

polygon grouping to simulate the manual process with well-defined and sound theories 

and techniques such as Delaunay triangulation, Voronoi diagrams, graph theory, 

Kohenens’s self-organising maps, urban morphology and Gestalt theory, such studies have 

not considered the hierarchical relationship between constraints other than the work by 

Qi and Li (2008) which refers to vertical relation in data enrichment by Neun, Weibel and 

Burghardt (2004). The approach by Qi and Li (2008) has employed two categories of 

constraints namely the contextual features and the Gestalt factors, both of which can be 

ordered hierarchically. Based on these two categories of constraints, building groupings 

can be divided into two groups: groupings based on the global contextual constraints such 

as road and hydrographic network; and groupings based on local constraints of the Gestalt 
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factors: proximity, orientation and similarity. Next the generation of the CDT (see Section 

2.4.2 below) to create adjacency relationships of buildings has been carried out. The 

approach of creating a connectivity graph is similar to that of Regnauld (2005). Then the 

degree of proximity, the difference of orientation and the degree of dissimilarity of each 

pair of buildings are calculated and attached to the connectivity graph. Finally, the MST is 

used to explore the adjacency relationships of buildings of the three Gestalt factors 

applied sequentially to cluster buildings based on the MST segmentation (Figure 2.13). The 

clustering approach is very interesting in that it creates clusters top-down, identifying 

them initially based on proximity. It also closely follows the manual cartographic process 

of building grouping, considering the hierarchical relationship of buildings. However, the 

results have not been tested and validated using real data sets. 

Although Li et al. (2004), Basaraner and Selcuk (2004, 2008), Haowen, Weibel and Bisheng 

(2008) and Qi and Li (2008) have considered contextual features to identify building 

regions or blocks for clustering with the Delaunay triangulation, Regnauld and Revell 

(2007) have only considered contextual features, including features with dead ends (e.g. 

roads) to avoid generating clusters across such features within a region or a block in the 

application of the triangulation. Further, none of the clustering approaches discussed 

above have considered semantic/thematic aspects of buildings since the resultant groups 

Figure 2.13  Building clustering with the MST: (a) CDT (b) connectivity graph (c) MST created from 
the connectivity graph with the weight of the tree as the minimum distance and (d) initial building 
clusters using the MST segmentation based on the threshold value of the minimum distance. 

(a) (b) (c) (d) 
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in the clustering process are mainly based on the geometric analysis. In defining 

orientation, Li et al. (2004) have used the longest edge (major axis of buildings) as a 

measure while Haowen, Weibel and Bisheng (2008) and Qi and Li (2008) have used the 

Minimum Bounding Rectangle (MBR). The longest edge is not a good measure if the shape 

of the building has several orientations of sides and/or irregular shapes. Further, the MBR 

is not a good measure when the shape of the building is square or terraced (Duchêne et 

al., 2003) while the MBR is consistent with buildings comprising of irregular shapes. 

However, the main disadvantage of all these clustering approaches is that visual 

perception tests for evaluating building clustering have not been carried out due to the 

complication of such tests. 

Constraints for polygon clustering 

According to Li et al. (2004) who have performed building clustering as mentioned in the 

previous section, two steps are involved in the cognitive interpretation of visual signals: a 

pre-attentive phase and an attentive phase. In the former, an attempt is made quickly to 

extract information from an image through a global search. The latter is a local phase in 

which attention is drawn to specific features of the visual landscape that have been 

identified as being different during the pre-attentive phase. It is understood that similar 

steps are to be adopted to visual information processing in map recognition. Therefore, it 

can be imagined that the cartographers must have followed the same two-step process in 

manual generalization of building features. Further, there is a group of global constraints 

and a group of local constraints for initial grouping and subsequent generalization of 

buildings. According to Weibel and Dutton (1998), a constraint is referred to as a design 

specification that a generalization problem should adhere to. These two types of 

constraints (local and global) have been already adopted in the approach of automatic 

generalization of buildings (Li et al., 2004; Haowen, Weibel and Bisheng, 2008; Qi and Li, 

2008). The global constraints can be considered as contextual features which mostly 

comprise of roads and rivers often used to partition buildings into groups due to their 

network structures. The local constraints, namely the Gestalt factors are from the Gestalt 

theory which is the study of criteria influencing grouping perception. Wertheimer (1923) 
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has laid the foundation for identifying a number of important perceptual principles 

(criteria) for object grouping. These principles are: (a) proximity (b) similarity (c) closure 

(d) continuity and (e) common fate. These principles are called the Gestalt laws of 

perception according to Thórisson (1994). To the criteria list of Wertheimer (1923), some 

more criteria have recently been added: common region (Palmer, 1992), element 

connectedness (Palmer, S. and Rock, 1994), density change and concentration (Sadahiro, 

1997), common orientation (Li et al., 2004) and directional relations (Haowen, Weibel and 

Bisheng, 2008). Among these Gestalt factors, proximity, common orientation and 

similarity are relevant to the spatial distribution of buildings. 

Hierarchy of constraints 

As discussed above, the two categories of constraints - global and local - guide the process 

of building grouping, and the final grouping results vary depending on the outcome of 

both categories of constraints. When observing the manual building grouping process for 

generalization by the cartographers, the use of constraints conforms to the human’s 

customs of spatial cognition (Qi and Li, 2008). Information on maps is arranged 

hierarchically, and hierarchical classification methods are used for reasoning and 

clustering (Hirtle, 1985; Timpf, 1999). Cartographers generally adapt hierarchical 

constraints in the manual building grouping process for subsequent generalization. First, 

roads and river networks are used to partition the area represented on the map into 

different regions and then for each region; the Gestalt factors are employed to further 

partition buildings into groups. Figure 2.14 represents the constraints of building 

clustering with their hierarchical relationship according to Qi and Li (2008). 
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2.3.4 Related work on data mining 

Data enrichment techniques are involved in the extraction of the important attributes 

(auxiliary information in terms of geometric, spatial and semantic data) from spatial 

databases that are required for the subsequent salient landmark generation using data 

mining processes (Raubal and Winter, 2002, Brenner and Elias, 2003; Elias, 2003; 

Nothegger, Winter and Raubal, 2004; Elias, Hampe and Sester, 2005). However, no work 

has been found in the literature as to the use of data enrichment in the context of 

extracting attributes (especially geometric and spatial attributes) from spatial databases 

using spatial data structures, such as triangulation, for the derivation of salient landmarks 

with the automatic methods and tools. 

Figure 2.14  Hierarchical relationship of constraints for building clustering, 
based on Qi and Li (2008). 
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2.4   Triangulation 

A triangulation is made up of a collection of triangles on a set of points in a plane (Figure 

2.15) and is a basic geometric data structure in computational geometry (Biniaz and 

Dastghaibyfard, 2012). Triangulations are widely used in various applications for 

representing geometries such as terrain surfaces in GIS, modelling structures in particular 

in the automotive industry with computer aided design systems and deriving relations 

between geographical objects in GIS. Also, finite element methods in engineering widely 

use triangulation to simulate physical phenomena with mesh generation techniques 

(Hjelle and Dæhlen, 2006). For both theoretical and practical reasons, a particular 

triangulation must meet the following requirements (Hjelle and Dæhlen, 2006). 

 

 1. No triangle ti,j,k in a triangulation ∆ is degenerate, that is, points P i, Pj, Pk are not 

collinear. 

 
2. The interiors of any triangle in ∆ do not intersect, that is, if P i, Pj, Pk and Pα, Pᵦ, Pᵧ 

are points of two triangles, then Int(ti,j,k) ∩ Int(tα,ᵦ,ᵧ) = Φ. 

 
3. The boundaries of two triangles in a triangulation can only intersect at a common 

edge or at a common vertex. 

4. The union of all triangles in a triangulation ∆ is equal to the domain over which 

the triangulation is defined, that is, Ω = ∪ ti,j,k 

 
5. The domain Ω must be connected. 

 
6. The triangulation ∆ shall not have holes. 
 
7. If vi is a vertex at the boundary of domain Ω, then there must be exactly two 

boundary edges that have vi as the common vertex. This implies that the number 

of boundary vertices is equal to the number of boundary edges. 
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2.4.1 Delaunay triangulation 

It is observed that given a set of points P, their triangulation is not necessarily unique since 

a sequence of edge swaps could be applied to obtain a new valid triangulation. As a result, 

there can be poorly shaped triangles which are elongated or almost degenerate in some 

triangulations. This has given rise to the need to optimise triangulation of a set of points 

to create well-shaped triangles where the interior angles are almost close to equiangular. 

Among all possible triangulations on a set of points P, Delaunay triangulation named after 

Boris Delaunay (Delaunay, 1934) is the most optimised triangulation in terms of shape of 

triangles in that the triangulation maximises the minimum angle of its triangles (Hjelle and 

Dæhlen, 2006; Biniaz and Dastghaibyfard, 2012). When the triangulation is Delaunay, it 

has the property that no point in P is inside the circumcircle of any triangle in the 

triangulation (Berg et al., 2008; Biniaz and Dastghaibyfard, 2012) (Figure 2.16(b)). 

(a) (b) 

Figure 2.15  (a) A domain (Ω) with a set of points and (b) triangulation of 
the points. 

Figure 2.16  (a) Non-Delaunay and (b) Delaunay stable triangulation, based on Žalik (2005). 

(a) (b) 
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Biniaz and Dastghaibyfard (2012) have categorised sequential algorithms for the 

construction of the Delaunay triangulation into five groups according to Su and Drysdale 

(1997). They are: 

• Divide and conquer algorithms - these algorithms recursively partition the point set 

and apply local Delaunay triangulation in each partition. Next, on a merging phase 

resultant local triangulations are joined. The recursion stops when the size of the 

point set matches some given threshold. 

• Incremental insertion algorithms - these algorithms insert points into the point 

data set: P one by one. The triangle containing the point inserted is further 

subdivided to form new triangles and then the circumcircle criterion is tested 

recursively on all triangles adjacent to the new ones and if required, their edges 

are flipped to meet the Delaunay property. Initially, it is easy to start with an 

auxiliary triangle such that all other points in P are inside it (Guibas, Knuth and 

Sharir, 1992; Kolingerová and Žalik, 2002; Žalik and Kolingerová, 2003). 

• Gift-wrapping algorithms - the technique of these algorithms is that it first starts 

with a single Delaunay triangle and then incrementally discovers valid Delaunay 

triangles one at a time (Shewchuk, 1999). A similar kind of technique known as 

step by step approach is described in Hjelle and Dæhlen (2006). 

• Convex hull based algorithms – First, in these algorithms the point set P is 

transformed into three-dimensional (3D) space and then the convex hull is 

computed. Finally, the Delaunay triangulation is created by projecting the resulting 

convex hull back into 2D space (Biniaz and Dastghaibyfard, 2012). 

• Plane sweep algorithms - this is a most famous technique of solving 2D geometric 

problems with a line called the sweep line moving along the X or the Y axis over a 

set of points (Cormen et al., 2009). First, the points are sorted. Next the points are 

glided over the 2D plane and stopped at event points which are the points at which 

sweep line meets site points. According to the literature, the plane sweep 

algorithm has been employed with two geometric primitives: a line by Fortune 

(1987) and Žalik (2005) and a circle by Adam et al. (1997), and Biniaz and 

Dastghaibyfard (2012). 
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2.4.2 Constrained Delaunay triangulation 

 The constrained Delaunay triangulation (CDT) is the generalization of conventional 

Delaunay triangulation in order to constrain a set of planar edges E in a triangulation 

comprising of a set of planar points P (Hjelle and Dµhlen, 2006) including the end points of 

edges E, thus E is a subset of edges in the final triangulation ∆(G). Constrained edges may 

represent hydrographic features, roads, mountain ridges and building sides in cartography 

or linear features in finite element grids. In the CDT algorithm, the requirement is that the 

constrained edges must serve as the edges of the triangulation ∆(G). That is; the edges 

between points in P must not intersect the interior of any constrained edge E or any 

triangulated region such as a hole or a region outside the exterior boundary of ∆(G). With 

this requirement, the definition of conventional Delaunay triangulation can be modified to 

come out with a new circumcircle criterion definition which is according to Hjelle and 

Dæhlen (2006) is “a constrained Delaunay triangulation ∆(G) of a planar Points and Edges 

G(P, E) also known as planar straight line graph (PSLG) is a triangulation containing the 

edges E such that the circumcircle of any triangle t in ∆(G) contains no point of P in its 

interior which is visible from all the three nodes of t” (Figure 2.17(d)). 

Further, according to Shewchuk (1999), an edge or triangle is deemed to be constrained 

Delaunay if it satisfies the two conditions: (a) its interior does not intersect an input 

segment (edge) and (b) it has a circumcircle that encloses no vertex of the point set that is 

visible from the interior of the edge or the triangle. When considering the properties of the 

CDT, it is not Delaunay stable since it can violate the empty circumcircle criterion (see the 

hatched triangle in Figure 2.17(d) below) used in conventional Delaunay triangulation as 

described in Section 2.4.1. Therefore, the CDT is not necessarily a Delaunay triangulation as 

implied by its name. However, like Delaunay triangulation, the CDT can be constructed to be 

totally Delaunay by the flip algorithm where initially the point set which also include end 

points of all the edges to be constrained is triangulated with an arbitrary triangulation. Then 

each input segment (constrain segment) is forced into the triangulation by deleting the 

edges of the initial triangulation which cross the input segments. Further, re-triangulation is 

applied on either side of the two resulting polygons of each constraint segment. Finally, the 
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flip algorithm is applied to the provision that the constraint segments are not flipped 

(Shewchuk, 1999). This method finally generates a constrained triangulation which is 

Delaunay stable. A similar kind of approach to make the CDT Delaunay stable has been 

developed by Nam, Kiem and Nam (2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.17  (a) A planar points and straight line edge graph G(P, E) called PSLG (b) conventional 
Delaunay triangulation of point set P (c) CDT of G(P, E) and (d) illustration of the modified 
circumcircle criterion on the hatched triangle for the CDT, based on Hjelle and Dæhlen (2006). 

 

(a) (b) 

(c) (d) 
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2.4.3 Conforming Delaunay triangulation 

Triangulation of a planar straight line graph (PSLG) may form long and skinny triangles, 

leading to its numerical stability and convergence affected by the shape of the elements of 

PSLG in many applications. The approach to overcoming this problem is through the quality 

mesh generation as described by Bern and Eppstein (1992). Quality mesh generation offers 

techniques to guarantee the measure of the shape of triangles such as all non-obtuse 

triangles or all triangles with bounded aspect ratio which is the length of the largest edge 

divided by the length of the shortest altitude. According to Ruppert (1995), a simple 

measure of triangle shape is the minimum angle α, allowing a bound of maximum angle of 

π-2α, enabling a guarantee of an aspect ratio between |1/Sin α| and |2/Sin 2α|. In order to 

obtain shape bounds to generate optimal triangle shapes, Steiner points have to be 

introduced which are not the original input vertices in the triangulation. According to 

Vreda et al. (2004), a Steiner point is a point with a particular geometric relation to a 

triangle although it is not part of the input set of points. Baker, Grosse and Rafferty (1988) 

have generated a triangular mesh where all angles are mostly at 900 with the smallest angle 

is at least 130 using a uniform square grid placed over the polygon to be triangulated with 

the grid spacing determined by the smallest object present (by the pair of closest vertices or 

by the closest pair of vertex-edge). Due to the mesh density being determined by the size of 

the smallest object, mesh density can be high resulting a large number of triangles in the 

mesh. Bern, Eppstein and Gilbert (1994) have introduced a mesh generation algorithm with 

both shape and size guarantee in replacement of a uniform grid (Baker, Grosse and Rafferty, 

1988) by a quadtree which is a recursive subdivision into squares of different size yielding 

large triangles on large features. Further, Melissaratos and Souvaine (1992) have given 

some extensions to the quadtree algorithm to generate a Steiner triangulation with neither 

small angles nor obtuse triangles by introducing Steiner points. In Steiner triangulation, 

triangles are optimised with some criteria by adding Steiner points (Bern and Eppstein, 

1992). A quite different technique of quality mesh generation is the Delaunay refinement 

approach where the properties of the Delaunay triangulation are preserved and maintained 

based on adding Steiner points following certain criteria. The Delaunay refinement 

algorithm presented by Chew (1989) triangulates a given polygon into a mesh in which all 
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the angles of the triangles are between 300 and 1200 and all the edges are between 2h and h 

where h is a parameter chosen by the user to meet the angle criterion. Though their 

algorithm produces uniform mesh, there are cases where such a mesh has many more 

triangles than are necessary. 

Conforming Delaunay triangulation (CNDT) is the process of creating a Delaunay stable 

mesh where triangles are generated using a set of Steiner points with some shape criteria 

inducing a Delaunay triangulation of the input PSLG. In this triangulation, each input edge 

must be a union of the edges of the Delaunay triangulation of the input vertices and the 

Steiner points (Bern and Eppstein, 1992). Ruppert (1995) has extended the work of Chew 

(1989) by introducing the CNDT algorithm to triangulate a PSLG such that all the angles of 

triangles between α and π-2α as described above where α is a parameter between 00 and 

200. In this approach, polygons, polygons with holes, objects consisting of multiple polygons, 

dangling edges and isolated vertices can be dealt with. This method is based on the 

Delaunay triangulation using two steps to maintain the mesh Delaunay stable by a 

refinement process: (a) find the Delaunay triangulation of all the input vertices of PSLG and 

(b) insert new vertices to split edges that need be served as constraint edges in the 

triangulation and to split a triangle with a vertex at its circumcentre to allow Delaunay stable 

mesh generation, sticking to the angle criterion in the Delaunay refinement process. Vertex 

insertion is mainly governed by two rules: (a) a segment is said to be encroached if a point 

lies within its diametral circle which is the (unique) smallest circle that contains the 

segment (vertex p lies inside the diametral circles drawn for segments s3 and s4 in Figure 

2.18(d)) and any encroached segment that arises is immediately split by inserting a vertex 

at its midpoint and (b) split a triangle with a vertex at its circumcentre. The two resulting 

sub-segments have smaller diametral circles, hence may or may not be encroached 

themselves. See Figures 2.18 and 2.19 for the execution of the algorithm for clarity. 
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Figure 2.18  Execution of the CNDT algorithm on a simple example, based on Ruppert 
(1995): (a) input polygon (b) Delaunay triangulation of input vertices and constraint edge 
s is not a Delaunay edge since it crosses edge pq (c) segment s is split into s1 and s2 at 
its midpoint. Dot in (c) indicates its circumcentre of the shaded triangle with a minimum 
angle of 5.9 degrees and (d) circumcentre p is added to the triangulation where it 
encroaches upon segments s3 and s4. 
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Figure 2.19  Continuation of the CNDT algorithm with splitting edges and triangles, based 
on Ruppert (1995): (a) two segments are split at q and r where shaded triangle now has a 
minimum angle of 9.8 degrees and will be split at the circumcenter (b) new minimum angle 
11.6 degrees (c) allowing execution of split algorithm until the minimum angle becomes 25 
degrees and (d) only triangles inside polygon is retained after removing external triangles. 

q 

r 

(a) (b) 

(c) (d) 
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2.4.4 Polygon triangulation 

The decomposition of a simple polygon into triangles is polygon triangulation (Eberly, 2008). 

The notion of a simple polygon is that it does not have any vertex shared by more than two 

edges nor new vertices created by the intersection of two non-consecutive edges of the 

polygon. The simple polygon is also called a Jordan polygon according to Meisters (1975). 

That any triangulation of a simple polygon with n vertices should have n-2 triangles is a 

known fact in computational geometry. Various algorithms have been developed for 

triangulation of polygons. According to Meisters (1975), a polygon with four or more sides 

always has at least two non-overlapping ears where an ear is regarded as the region 

enclosed by the triangle V1, V2 and V3 formed at the vertex V2 if the chord joining V1 and V3 

lies entirely within the Jordan polygon P comprising of consecutive vertices V1, V2, V3, …Vn 

where n >= 4. Ears (triangles) can be removed and stored for generating polygon 

triangulation using a recursive approach to triangulation. Improvement to Meisters (1975) 

algorithm has been done in terms of efficient implementation performance by Toussaint 

(1991). The implementation is based on searching for ears and cutting them off from the 

polygon recursively. Seidel (1991) has developed an algorithm for triangulating a simple 

polygon with the use of trapezoidal decomposition followed by the identification of 

monotone polygons. First, Chazelle (1991) has used trapezoidal decomposition, drawing 

horizontal chords from the vertices using the bottom-up approach and then applying the 

top-down approach to refine the triangulation based on polygon cutting theorem (Chazelle 

and Chazelle, 1982) and planar separator theorem (Lipton and Tarjan, 1979). Further, the 

polygon triangulation algorithm described by ElGindy, Everett and Toussaint (1993) divides 

the polygon P into two sub-polygons such that one of these sub-polygons is a good sub-

polygon (GSP). A GSP is a polygon whose boundary differs from P in at most one edge. A 

proper ear of a GSP is an ear of P, and a GSP has at least one proper ear (ElGindy, Everett 

and Toussaint, 1993). Subsequently, the algorithm has been applied to finding a GSP and a 

vertex (a proper ear) recursively to retrieve all ears in the polygon P. However, one of the 

simplest and efficient algorithms for polygon triangulation, as mentioned by Eberly (2008), is 

ear-clipping. According to Eberly (2008), an ear of a polygon is a triangle formed by three 
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consecutive vertices V1, V2 and V3 of the polygon for which no other vertices are inside the 

triangle. In this context, vertex V2 is called the ear tip (see Figure 2.20). 

 

 

 

 

 

 

In the algorithm of Eberly (2008), if a polygon has n >= 4 vertices, it locates an ear and 

removes (clips) it recursively as in the algorithm by Toussaint (1991) until a polygon with n-1 

vertices is left with at the end of the process (a polygon with three (n = 3) vertices). Each ear 

thus clipped is a triangle in the final polygon triangulation process. 

2.4.5 Related work on building geometries 

In the data enrichment approach for building clustering with auxiliary data for subsequent 

generalization discussed in Section 2.3.3, the Delaunay triangulation spatial data structure 

has been the key technique used by Regnauld (2003, 2005), Basaraner and Selcuk (2004, 

2008), Li et al. (2004), Ai et al. (2007), Regnauld and Revell (2007), Haowen, Weibel and 

Bisheng (2008) and Qi and Li (2008) because of its ability to derive adjacency relationships 

between contextual features that are to be dealt with in automatic map generalization. It 

should be noted that most of the GIS software and the spatial databases still lack the tools 

or flexible spatial data structures to derive auxiliary data. Adding auxiliary data also gives 

prior knowledge of the type of generalization operations to be applied based on the 

Figure 2.20 Recursive process of finding triangles in polygon triangulation: (a) A polygon with 
an ear (V1, V2, V3) and (b) remaining polygon after removing the ear (V1, V2, V3). Searching 
of ears is iterated until the remaining polygon becomes a triangle. 
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characteristics of clusters of a data set. For example, clusters of buildings located very 

close to each other can be merged to form a single building entity at a smaller target scale 

while buildings located at the medium distance range can be represented by a reduced 

number of symbols usually called typification. Regnauld (2003, 2005), Regnauld and Revell 

(2007), Ai et al. (2007), and Qi and Li (2008) have used the CDT for the building clustering 

process. Further, it has been used by Jones, Bundy and Ware (1995) and Ware, Jones and 

Bundy (1995) for building and polygon aggregation and Ware and Jones (1996) for 

detecting and resolving spatial conflicts caused by polygons in map generalization. 

However, there is no guarantee that the CDT provides explicit neighbourhood relations 

between polygon objects such as buildings located in exceptional cases as shown in Figure 

2.21. This issue has been discussed by Jones, Bundy and Ware (1995) and Ware and Jones 

(1996) citing a solution given by Jones et al. in 1995 using a search procedure that starts 

with the triangles externally connected to the object, and Ai et al. (2007). In order to 

overcome this exception, Ai et al. (2007) have first split the long edges (i.e. densification of 

edges) of building features into short segments before applying the CDT. However, the 

solution by triangulation based search procedure has not been used in the field of 

automatic map generalization. Another solution suggested for this exception is described 

in Section 2.4.2 above using the flip algorithm with re-triangulation. Further, none of the 

others have mentioned how they have worked on this issue in their applications in the 

field of building clustering and automatic map generalization. 

 

 

 

  

Figure 2.21  CDT of a set of building objects with constraining edges is shown in solid lines 
while other virtual edges are shown in dashed lines. The Figure shows that there is no object 
link connectivity between building with identification number (IDN) 1 and its nearest 
neighbouring building with IDN 2. 
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The type of constrained triangulation used by Li et al. (2004) and Haowen, Weibel and 

Bisheng (2008) on building objects has not been specifically mentioned by them. However, 

when observing the results of triangulation of both approaches, it is understood that they 

have either applied the CNDT or the CDT because intermediate vertices of building edges 

have also been triangulated. In the CNDT, these intermediate vertices are Steiner points 

that are not part of the source data as described in Section 2.4.3 above. In the case of the 

CDT, intermediate vertices can be added by densifying edges of buildings at appropriate, 

equal intervals before generating triangles as performed by Ai et al. (2007). Such 

densification splits the source input building edges into sub-segments affecting the source 

geometry. However, polygon triangulation, as described in the previous section, has not 

been applied in the fields of  data enrichment and its subsequent automatic map 

generalization. 

2.5    Knowledge discovery 

With the amount of data, increasing in large volumes in databases day by day, the 

demand increases to extract useful knowledge from such large data sets. This requires 

intelligent and automatic analysis of such databases known as knowledge discovery in 

databases (KDDs). According to Frawley, Piatetsky-Shapiro and Matheus (1992), the term 

KDD is defined as “the non-trivial extraction of implicit, previously unknown and 

potentially useful information from data”. The KDD is an overall process of finding and 

interpreting patterns from data, while data mining only confines to data analysis (Elias, 

2003) or narrowly defines as the application of computational, statistical or visual 

methods according to the literature (Mennis and Guo, 2009). Further, Witten, Frank and 

Hall (2011) have identified data mining as an automated technique for finding and 

describing structural patterns in data and as a tool for assisting in explaining the data and 

make predictions from them. According to Fayyad, Piatetsky-Shapiro and Smyth (1996), 

data mining is the application of specific algorithms for extracting patterns from data, 

identified as one of the steps in the KDD process. Further, the overall KDD process is 

iterative and involves multiple steps (Fayyad,Piatetsky-Shapiro and Smyth, 1996): (a) data 

selection (b) pre-processing - data cleaning (removal of noise) with deciding on strategies 
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to handle missing data, data filtering (finding the significance of data) and data 

transformation (harmonise different scale and attribute types) (c) incorporation of prior 

knowledge (enhancing auxiliary information of data to support analysis) (d) analysis 

carried out with computational algorithms and/or visual approaches (using data mining 

algorithms) and (e) interpretation of the results. The KDD process in relational databases 

deals with attribute types such as nominal (values as categories with no ranking), ordinal 

(values have a meaningful order), numeric values (values can be continuous, discrete and 

interval) and object relations. Further, automated knowledge discovery has become vital 

because spatial databases, which deal with data defined by location in addition to 

attribute data, have been rapidly growing in the applications such as geo-marketing, 

traffic-control and environmental studies (Ester, Kriegel and Sander, 1997) thus identifying 

spatial data mining as a growing research field in GIS applications (Miller and Han, 2009).  

2.5.1  Data mining methods 

Data mining methods are specific algorithms designed to predict or describe data. 

Prediction involves the use of some variables or fields to have unknown or future values of 

data (Fayyad, Piatetsky-Shapiro and Smyth, 1996). According to Fayyad, Piatetsky-Shapiro 

and Smyth (1996), existing data mining methods used to achieve goals in prediction and 

description of data are: (a) classification that maps (classifies) a data item into one of 

several predefined classes (b) regression that maps a data item to a real-valued prediction 

variable (c) clustering which seeks to identify a finite set of categories or groups to 

describe data (d) summarisation that deals with methods for finding a compact 

description for a subset of data (e) dependency modelling that deals with finding a model 

that describes significant dependencies between variables and (f) change and deviation 

detection that focusses on discovering the most significant changes in the data (a kind of 

sequence analysis). 

These algorithms can be divided into two basic techniques called supervised learning 

(learning from examples) and unsupervised learning (learning from observations) 

according to the terminology of machine learning community (Elias, 2003). One of the 
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most popular supervised learning techniques used in spatial information retrieval (Sester, 

2000b; Elias, 2003; Elias, Hampe and Sester, 2005) is the ID3 classification algorithm by 

Quinlan (1986). It is a symbolic learning and rule induction decision tree algorithm that 

learns by being told and looking at examples (looking at input/output matches of training 

data to find results for new data). It uses information gain as splitting criteria for decision 

tree formation based on a divide-and-conquer approach, working top-down, seeking at 

each stage an attribute to split on that best separates the classes and then recursively 

processing the sub-problems that result from the split (Witten, Frank and Hall, 2011). 

However, the ID3 algorithm can only deal with attributes with nominal values. It does not 

handle attributes with numeric values nor with missing values. Further, a series of 

improvements to ID3 culminated in a practical and influential system for decision tree 

induction called C4.5 (Quinlan, 1993). Such improvements include methods for dealing 

with numeric attributes, missing values and robust splitting criteria based on a gain ratio. 

The unsupervised nature of the learning task leads to the classification over observations 

without the help of a teacher to pre-classify objects, but use an evaluation function to 

discover classes with a good conceptual description (Fisher, 1987), also known as 

clustering. Clustering is a common technique for statistical data analysis employed in 

many fields including machine learning, pattern recognition, image analysis, 

bioinformatics and information retrieval (Sharma, Bajapai and Litoriya, 2012). Among 

many clustering algorithms such as K-MEANS, DBSCAN, EM, CLOPE, OPTICS and CLASSIT, 

one of the incremental clustering algorithms attempted in the literature for spatial 

information retrieval (Elias, 2003; Elias, Hampe and Sester, 2005) is COBWEB developed by 

Fisher (1987), which is an incremental algorithm for hierarchical clustering based on the 

concept formation (Gennari, Langley and Fisher, 1989). The COBWEB algorithm does not 

split the instance space by testing a single ‘teacher-selected’ attribute at each node. A 

given instance belongs in the child node after incorporating it in the tree for which the 

category utility value has the highest probabilistic average. The category utility value is 

computed from all the attribute values based on a hill-climbing search where it identifies 

similarity of instances within the same class and dissimilarity of instances in different 

classes. The COBWEB tree is created with four main operators based on the employment 
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of the category utility value to determine which operator to employ at each decision point 

in the classification process: (a) classifying instance into an existing class (b) creating a new 

class (c) combining two classes into a single class (merging) and (d) dividing a class into a 

several classes (splitting) (Gennari, Langley and Fisher, 1989). One of the limitations in 

COBWEB is that it can handle only nominal attributes. However, CLASSIT is another 

hierarchical clustering algorithm further improved to work with numeric attribute values 

based on the COBWEB algorithm (Gennari, Langley and Fisher, 1989). 

2.5.2  Salient landmarks 

The landmarks based on the automatic map generalization can be used with different 

visualisation techniques as described in Section 2.1 in order to generate focus maps that 

give more emphasis in wayfinding. Further, as described in Section 1.1, salient landmarks 

help organise space because they stand out from their surroundings and serve as 

reference points in the environment so that they can support the identification of choice 

points where a navigational decision has to be made in wayfinding. Landmarks can be 

classified as local and global or on-route and off-route landmarks (Lovelace, Hegarty and 

Montello, 1999). On-route landmarks are positioned between nodes at decision points (a 

junction where a navigation decision is required) or at potential decision points (where a 

navigation decision is possible, but the route goes straight on). Off-route landmarks are 

directly neighboured to the route or at a distance like a tower or mountain chain. 

Accordingly, a landmark stands for a salient object in the environment and, therefore, 

indicates visual characteristic, unique purpose or meaning of a central or prominent 

location. Landmarks can further be divided into three categories considering these 

indicators: visual, cognitive and structural (Sorrows and Hirtle, 1999). According to 

Sorrows and Hirtle (1999), the more of these categories embed in a particular object, the 

more it qualifies as a landmark. Apart from landmarks, route information can be conveyed 

to the wayfinder in various presentation modes. For example, verbal instructions, 

although private and nonintrusive, can be problematic in public environments, and textual 

instructions on the navigation display can nevertheless require a high level of attention. As 

a result, humans tend to prefer to follow navigation instructions in a more natural way 
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with the use of landmarks along a route (Elias, Hampe and Sester, 2005). These landmarks 

can be represented graphically in a map-like depiction which provides a good overview 

knowledge, but sometimes can be difficult to interpret (Elias and Paelke, 2008). The 

research conducted by May et al. (2003) in order to find out information requirement for 

pedestrian navigation aids has shown that landmarks have been by far the most 

predominant navigation cue. The distance information and street names have been 

insignificant whereas the landmark information enables navigation decisions and 

enhances the pedestrian’s confidence and trust. Raubal and Winter (2002) have specified 

properties to determine if a feature qualifies as an attractive landmark by taking into 

account its visual, semantic and structural characteristics. According to Nothegger, Winter 

and Raubal (2004), mapped routes enriched with landmarks at decision points lead to 

better guidance or less wayfinding errors than routes without landmarks. 

2.5.3  Related work in deriving landmark saliency 

In the application of knowledge discovery process, initially Sester (2000b) has employed 

the ID3 supervised learning classification algorithm for the interpretation of 2D map data. 

Then deriving salient landmarks for wayfinding has been carried out by Elias (2003) where 

all visual, structural and semantic characteristics that are required to determine a 

landmark to be salient have been obtained from a cadastral database for the subsequent 

use in data mining algorithms. In this approach, the ID3 and the COBWEB algorithms have 

been employed where COBWEB is an unsupervised clustering algorithm to identify the 

landmark saliency. According to Elias (2003), use of both algorithms has led to the desired 

results of identifying locally salient landmarks. However, ID3 has had the advantage of 

identifying discriminating attributes and their value domains directly over that of the 

COBWEB algorithm. Further, Elias, Hampe and Sester (2005) have used the modified ID3 

algorithm to extract potential landmarks from a spatial database for the subsequent 

selection of route specific landmarks in a particular routing situation with the use of 

visibility analysis. However, the landmark saliency derived by Elias (2003) and Elias, Hampe 

and Sester (2005) has not been validated. Elias and Sester (2006) have introduced an 

approach to optimise route selection with point-like landmark buildings using qualitative 
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measures for the given potential set of landmarks chosen based on the approaches 

discussed by Elias (2003) and Elias and Brenner (2005). 

Raubal and Winter (2002) have introduced a framework (formal model) to derive 

landmark saliency based on the statistical measures, considering visual, semantic and 

structural characteristics of landmarks. Then values of these measures for each property 

are integrated to assess local landmark saliency of a feature (i.e. hypothesis testing) at 

decision points by detecting outliers using the significance of deviations from the local 

characteristics of landmarks based on the mean and the standard deviation, assuming the 

data are normally distributed. However, this hypothesis has not been tested on a large 

data set to analyse the results, performance and computational cost. Nothegger, Winter 

and Raubal (2004) have derived landmark saliency for building facades at decision points 

and validated the results with a usability test involving human participation. The usability 

test has only taken into consideration the visual and semantic characteristics of the 

facades, neglecting structural characteristics. In this method, a significance score based on 

robust statistical measures to identify outliers using the median absolute deviation (MAD) 

of data is used to calculate the overall salience of a feature. 

2.6    Problem scope 

The CDT data structure has been used in many approaches to derive neighbourhood 

relations between polygon objects such as buildings in the field of automatic map 

generalization. However, deriving such relations between objects (especially buildings) 

located in exceptional cases as discussed in Section 2.4.5 has only been considered by Ai 

et al. (2007) by densifying edges of buildings in order to have triangle hooks between 

buildings to derive all possible neighbourhood relations. The disadvantage of this 

approach is that although additional vertices are added at regular intervals during 

densification of edges, this process is distance dependent, that is, depending on the 

densification distance, the result of triangulation varies with no guarantee that all possible 

neighbourhood relations are captured without a validation process. The use of the other 

solution mentioned for handling such exceptional cases by Ware, Jones and Bundy (1995) 
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and Ware and Jones (1996) using a triangulation based search procedure has not been 

applied in research related to map generalization. Several approaches (Jones, Bundy and 

Ware, 1995; Ware and Jones, 1996; Regnauld, 2003; Li et al., 2004; Regnauld, 2005; 

Regnauld and Revell, 2007; Ai et al., 2007; Revell, 2008; Haowen, Weibel and Bisheng, 

2008; Qi and Li, 2008) have considered Delaunay triangulation between polygon features 

to derive neighbourhood relationships for automatic map generalization. However, none 

of the approaches have conducted an evaluation leading to the proper representation of 

neighbourhood links between polygon objects. Such an evaluation is required for further 

assessment of clustering and automatic map generalization to be adopted based on the 

CDT. 

Although many approaches to clustering of building polygon features under data 

enrichment for subsequent generalization using the Delaunay triangulation have been 

adopted according to the literature (Regnauld, 2003, 2005; Li et al., 2004; Revell, Regnauld 

and Thomas, 2005; Regnauld and Revell, 2007; Haowen, Weibel and Bisheng, 2008; Qi and 

Li, 2008), evaluation of clustering has not been tested and validated. Further, a systematic 

hierarchical clustering of building features, considering contextual features assisted by the 

Delaunay triangulation for proximity derivation together with a proper building 

orientation algorithm such as the statistical weighting by Duchêne et al. (2003) has not 

been developed and tested to support automatic map generalization of buildings. 

The realisation of a robust building aggregation algorithm is understood to bring about a 

proper meaning to the aggregated buildings while preserving orthogonality of edges as 

much as possible as evidenced when investigating the results of some examples of such 

aggregation performed on building objects in the previous research by Li et al. (2004) and 

Haowen, Weibel and Bisheng (2008). Also, aggregation of building clusters containing 

irregular-shaped buildings with exceptional locations as described in Section 2.2.8 has not 

been dealt with in the previous work of building aggregation using both raster and vector 

techniques. Although the algorithm introduced by Regnauld and Revell (2007) creates 

orthogonal amalgams by aggregating rural building clusters, the results tend to become 

too simplified since all the buildings are represented with its MBR before aggregation. 
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Further, the MST to retrieve neighbouring pairs of buildings has been applied to the 

aggregation of buildings. It is not clear that the application of the MST alone would give 

proper neighbourhood relations for all the pairs of buildings considered in the 

aggregation. 

There is a rich literature on spatial behaviour, spatial ability and cognitive aspects of the 

user in order to understand how people gain spatial knowledge with the assistance of 

cues in the real environment for various tasks (Lloyd, 1989; Gopal and Smith, 1990; 

Cornell, Sorenson and Mio, 2003; Li (2006); Brimicombe and Li, 2010). According to 

Kuipers (1978), people acquire spatial knowledge in positioning through route 

descriptions, topological relations of the road network and the orientation of objects in 

the environment. According to Elias and Paelke (2008), about 50% of all landmarks used in 

common wayfinding instructions are building features. Attempts made to visualise 

multiple representations of salient landmarks with automatic map generalization in the 

form of building objects by Elias, Hampe and Sester (2005) is one of the techniques 

towards generating focus maps for wayfinding. A hierarchy of multiple representations 

would also enable the human user to choose different types of building objects as 

landmarks at different representation levels, depending on the mode of navigation. 

However, automatic extraction of attributes required to extract salient landmarks 

subsequently from the spatial databases with data mining algorithms has not been 

extensively studied and realised, although the characteristics of landmarks to emphasise 

landmark saliency have been presented by Elias (2003) and Raubal and Winter (2002). 

Further, two data mining algorithms - ID3 and COBWEB - under KDD have been used 

(Elias, 2003; Elias, Hampe and Sester, 2005) in identifying salient landmarks for 

wayfinding. However, the results of the two algorithms have not been compared and 

validated with real data sets. Also, the output of landmark saliency obtained from these 

two algorithms has not been validated. 
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2.7   Research objective 

The overall objective of this research is to investigate the processes and fill in the gaps of 

knowledge leading to the derivation of focus maps for wayfinding. The fields of research in 

this process are spatial data structuring with Delaunay triangulation, data enrichment, 

data mining techniques and automatic map generalization, focusing on building objects as 

salient landmarks. 

2.8   Research questions 

The following research questions will be addressed to fulfil the overall objective. 

• How is the CDT data structure used and validated to derive explicit neighbourhood 

relationship between building polygons? 

• How building objects are clustered with the hierarchical application of the Gestalt 

factors, considering contextual features with an intelligent cluster classification for 

the subsequent generalization process? 

• Which generalization algorithms are the most influential for merging (aggregation) 

of building clusters depending on their outline shape (orthogonal or irregular) in 

order to provide a meaning to merging at coarser representation levels? 

• Which data mining algorithm is the most appropriate to emphasise building 

landmark saliency? 

• How are the focus maps validated in terms of the generalized results and derived 

landmark saliency? 
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2.9   Conclusion 

This chapter introduces focus maps used for wayfinding and then investigates four 

important fields required to generate such maps with a review of related work in each 

field. Then it identifies the gaps to be addressed in each field in the process. Finally, it 

establishes the problem scope and formulates research questions to fill in the gaps in each 

field towards generating effective focus maps for wayfinding applications. The next 

chapter will discuss the methodology chosen to satisfy the information requirement to 

answer the research questions formulated in this chapter. 
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Chapter 3   Research Methodology 

This chapter justifies the research design which is adopted in the research based on the 

previous studies in the four specific fields for generating focus maps identified through 

literature review in the previous chapter. It proposes methods to answer research 

questions to achieve the overall objective with a choice of existing tools, new tools and 

algorithms using open source software and algorithm libraries. Further, it discusses the 

approach to evaluating the results using the internal validation in each field with existing 

data sets chosen from the NMA of Sri Lanka and the Ordnance Survey (OS) of the United 

Kingdom. Finally, it describes the methods of external validation for the evaluating results 

of the focus maps generated using automatic map generalization and the identification of 

salient landmarks. 

3.1   Related work for adopting the research design 

The research design is selected by investigating the relevant testing and experiments 

already done in the four specific fields - triangulation data structure, data enrichment, 

automatic map generalization, and data mining - which are described below. 

Triangulation data structure 

Su and Drysdale (1995) have conducted an experimental comparison for computing 

Delaunay triangulation in terms of total runtime and high-level geometric primitives 

implemented using different triangulation algorithms on a number of non-uniform and 

uniform data distributions. Žalik and Kolingerová (2003) have tested a 2D incremental 

construction algorithm for Delaunay triangulation using the nearest point paradigm 

against time and worst case complexity. Further comparison has been made with some 

other existing triangulation algorithms using various distributions of input points 

representing both artificially generated data sets and the real point distributions. The 

constrained triangulation applied to building polygon data sets based on divide-and-

conquer method using the principles described in Dwyer (1987) and Shewchuk (1996) has 

been compared with Delaunay triangulation in terms of runtime efficiency using data sets 
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with different details by Regnauld (2005). Erten and Üngör (2009) have also conducted an 

experiment to improve the performance of Delaunay refinement algorithms by developing 

two new algorithms and testing them against the refinement algorithm on the 

circumcircle insertion by Ruppert (1993) and off-centre insertion algorithm by Üngör in 

2004 as mentioned by Erten and Üngör (2009) on many data sets with various properties 

such as complex boundaries with small angles and/or holes in the triangulation domain. 

The sweep-circle algorithm developed by Biniaz and Dastghaibyfard (2012) to compute 

the Delaunay triangulation has been tested and compared with the other popular 

Delaunay triangulation algorithms on runtime efficiency using various point distributions 

such as uniform, Gaussian, points arranged in clusters and points arranged in a tilted grid. 

In addition to the runtime, a test has been conducted to evaluate in-circle primitive of the 

algorithm with other algorithms. 

Feature clustering under data enrichment 

Zahn (1971) has discussed methods of clustering arbitrary point sets comprising of 

different cluster characteristics using the graph-based MST approach. This method is 

aimed at developing clustering algorithms based on examples from the 2D space to 

capture the human perception of Gestalts. Although this approach in automating 

clustering algorithms with a set of quantitative tools based on edge inconsistencies of 

MSTs is quantitative, experimental co-relation between the clusters of human perception 

and those determined by the quantitative tools has not been tested though suggested. 

However, Sadahiro (1997) has conducted an experiment to evaluate clustering results of a 

set of points obtained from clustering perception models with the manual clustering 

perception of subjects. In this experiment, subjects have been given a set of maps and 

asked to draw lines around points that they have perceived to be spatial clusters. Then the 

same set of maps has been digitised and processed through the GIS software for 

generating neighbourhood points for the development of cluster perception models. 

Finally, the results of cluster perception models have been compared with manual 

clustering perception results by the subjects in the validation process. Further, a 

hierarchical clustering algorithm implemented on a set of building polygon features by Qi 

64 
 



and Li (2008) has not been validated although future research on visual perception tests 

has been suggested. 

Automatic map generalization 

Bard (2003) has introduced an assessment model to evaluate generalization output with 

two levels of information: (a) information required to provide a generalization assessment 

(schema of geographic feature classes) and (b) information required to perform 

generalization assessment (i.e. algorithms for evaluation). The assessment model consists 

of mainly two features: (a) a characterisation function to report descriptive information 

about ungeneralized and generalized objects and (b) an evaluation function to report 

assessment information on the quality of generalization where evaluation corresponds to 

the computation and interpretation of the difference between the observed result and 

the theoretical result (of reference). The reference is defined by the values specified by 

the user and the initial characterisation of objects. Further, such values have been 

separated into two categories of specification: user specification and object specification. 

In this approach, quality information in the evaluation is divided into two: (a) detailed 

information (i.e. criteria by criteria) and (b) more general information (i.e. a value 

generated by aggregating all quality information of the features). In this method, the 

evaluation is coupled with visualisation of generalized output in zones where it gives 

unsatisfactory results. Bard (2004) has further explained the approach in detail with more 

theoretical background about evaluation functions, identifying a workflow of the 

generalization assessment. Stoter et al. (2009) have developed a methodology 

(framework) for evaluating automatic map generalization in commercial software with a 

broad study using four test cases of data, each from a different NMA, considering all sorts 

of map generalization problems. Their methodology mainly consists of two steps. In the 

first step, analysis of map requirements for automatic generalization with sourcing 

representative test cases, defining map specification in generalization constraints and 

harmonising constraints across the test cases has been carried out. The second step has 

been used to evaluate the generalized output using three integrated evaluation methods: 

(a) qualitative evaluation by the cartographic experts (b) automatic constraint-based 

evaluation and (c) evaluation which visually compares different outputs for one test case. 
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Upon the evaluation of the test cases it has been identified that the preservation 

constraints (e.g. on networks, patterns and spatial distributions) have been more difficult 

to formalise and evaluate automatically than that of the legibility constraints. Further 

experimentation on the evaluation of the preservation constraints on building pattern 

preservation in generalized outputs across different scales has been conducted by Zhang 

et al. (2012). The methodology has been implemented and validated on the interactively 

generalized data using the automatic pattern detection algorithms by Zhang, Ai and Stoter 

(2012) followed by data matching. 

Deriving salient landmarks under data mining 

Burnett, Smith and May (2001) have conducted an experiment to find out which 

landmarks are valued for vehicle navigation and their salient characteristics using two 

groups of subjects with three linked routes within an urban driving environment. On the 

analysis of data, a strong consensus on salient characteristics such as permanence, 

visibility, usefulness of location, uniqueness and brevity has emerged from their research. 

Raubal and Winter (2002) have used statistical measures for deriving landmark saliency on 

building features at decision points. However, the hypothesis has not been tested on a 

large data set as discussed in Section 2.5.3. Nothegger, Winter and Raubal (2004) too have 

derived landmark saliency based on the statistical measures. However, the results have 

been validated with building facades without considering the structural characteristics, 

using human participation in an urban area as discussed in Section 2.5.3. 

3.2   Research design 

Based on the related work in the previous section, the research design for emphasising 

landmarks for generating focus maps is experimentally based, and requires four phases of 

testing, evaluation, modification and validation of automatic processes in 2D spatial 

triangulation data structure, data enrichment, data mining and map generalization with 

the use of existing algorithms, modified existing algorithms and/or new algorithms to 

answer the research questions formulated in Chapter 2. In order to achieve this, open 

source algorithm libraries which are written in powerful Java object-oriented 
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programming language and the open source GIS software are used as the test 

environment. For spatial data storage and management, a powerful open source object-

relational data management system called PostgreSQL coupled with the PostGIS spatial 

extension will be used. The reason to use such open source libraries and software is 

mainly because users have the ability to run, distribute, study and modify such libraries 

and software for any purpose. Open source is a collaborative software development 

platform that harnesses the power of peer review and transparency of the process to 

develop code that is freely accessible. Further, open source draws in a broad network of 

developers and customers from all over the world to drive innovation, unlike proprietary 

software. And it is worth to mention that the main data resource used in this research is 

the very rich and highly detailed OS MasterMap data at the scale of 1 : 1.25K owned and 

maintained by the OS which is the NMA of the United Kingdom. Further, topographic data 

at the scale of 1 : 1K from the NMA of Sri Lanka and some synthetic data will be used for 

the development and the testing of the algorithms. 

3.3   Methods adopted 

3.3.1 Constrained triangulation spatial data structure 

In order to develop a proper constrained triangulation structure for polygon features 

which also applies to buildings and preserves the Delaunay property, existing constrained 

triangulation structures such as the CDT on sweep line algorithm by Domiter and Žalik 

(2008) and the CNDT on incremental algorithm by Ruppert (1995) will be implemented 

and compared with two modified constrained triangulation structures developed in this 

research based on the ear-clipping algorithm by ElGindy, Everett and Toussaint (1993) and 

the incremental point insertion based on the recursive edge-flipping algorithm by Berg et 

al. (2008) so as to investigate the efficiency and the effectiveness of retrieving explicit 

neighbourhood relations between polygon objects. The evaluation of the results of the 

algorithms will be carried out by developing prototypes at the implementation stage. 

Upon evaluation, the optimum algorithm out of the two new modified triangulation 

structures will further be validated including its runtime efficiency. A description of the 
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approach in detail together with resources and the type of data required for validation is 

as follows: 

Resources: 

• Synthetic data sets used for testing different algorithms. 

• OS MasterMap digital data representing building polygons at the scale of 1 : 1.25K. 

• Algorithm library of 2D spatial predicates and functions - Java Topology Suite (JTS) 

(Vivid Solutions JTS, 2013). 

• Java object-oriented programming language. 

Types of data required: 

(a) For the validation of the modified constrained triangulation. 

Primary data: Area of the convex hull of the triangulated region, total area of each triangle 

in the space region, number of triangles generated in the space region and the total area 

of polygons in the triangulated region. 

(b) For testing the runtime efficiency of the modified constrained triangulation. 

Primary data: Time taken to generate triangulation, number of triangles generated, 

number of neighbourhood links generated, number of buildings, number of building 

segments and the number of vertices in all buildings. 

Data collection method(s): 

Data collection will be carried out by the developed prototype with the necessary tools to 

extract these data from the four constrained triangulation structures explained above 

implemented with full automation techniques using object-oriented programming. 

Data analysis: 

Initially, a visual comparison between the results of the four constrained triangulation 

structures implemented will be carried out. Further, a quantitative evaluation will be 
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carried out in order to assess the modified constrained triangulation structure developed 

in terms of validity and runtime efficiency. 

3.3.2 Spatial clustering of polygons under data enrichment 

A hierarchical clustering algorithm will be developed based on the methodology of Qi and 

Li (2008) in the initial step to support subsequent generalization of building features with 

testing of different algorithms: (a) constrained triangulation developed in this research on 

incremental point insertion based on recursive edge-flipping algorithm by Berg et al. 

(2008) for generating explicit neighbourhood links (b) building orientation based on the 

MBR and the algorithm by Duchêne et al. (2003) and (c) the algorithm developed to find 

similarity in shape by Qi and Li (2008). The next step is to validate the clustering algorithm 

thus developed. For this purpose, an experiment which is similar to the visual perception 

test carried out by Sadahiro (1997) for validation of clusters on point features will be 

conducted by the NMA of Sri Lanka on the design developed in this research in which the 

evaluation of the algorithm consists of two phase data collection and analysis. The 

resources required and the methodology of the cluster perception test will be described in 

detail below. 

Resources: 

• Algorithm library of the 2D spatial predicates and functions: JTS (Vivid Solutions 

JTS, 2013). 

• Algorithm library to perform conflation on spatial data sets: Java Conflation Suite 

(JCS) (Vivid Solutions JCS, 2013). 

• Java object-oriented programming language. 

• Hardcopy map representing building and road data at the scale of 1 : 4K in an 

urban area in Sri Lanka. 

• Reduced hard copy, but not generalized, of the same data set at the scale of            

1 : 10K. 

• Digital map representing clusters around buildings together with road data at the 

scale of 1 : 4K from the NMA of Sri Lanka. 
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Types of data required: 

Primary data: Graphics representing manual clusters, observation of subjects in figures 

and text to compare results of automatic clustering versus manual clustering. This data 

will be used from the NMA of Sri Lanka. Thus, such data become secondary in this work. 

Data collection method(s): 

Two phase focus group user testing will be carried out by the NMA of Sri Lanka. The 

second phase is based on the data collected during the first phase. In both phases, data 

collection is through participant observations. Two groups, each group consisting of 

fifteen (15) subjects, one group will consist of key informants who are cartographic 

experts in map generalization with the age in the range of 41-54 from the NMA of Sri 

Lanka and the other will consist of laymen from the clerical and management sections of 

the same NMA with the age in the range of 18-40, will be employed. 

Data collection procedure: First phase 

i. Both groups are given a general idea of what clustering is about in automatic map 

generalization with some generalized outputs, explaining the polygon merging 

operator that will be used in the automatic map generalization process in this 

research. 

ii.  They are given an idea (especially the lay group) of the map scale and how map 

scale will be used to determine ground distance between two objects based on the 

corresponding map distance between those two features depicted on the map. 

iii. The automatic clustering algorithm developed in this research is explained to both 

groups with the hierarchical constraints - proximity, orientation and similarity in 

shape - and the classification approach used for clustering. And more importantly, 

the purpose of this survey is to compare and evaluate the automatic clustering 

algorithm with manual clustering of each participant as to see how they perceive 

the application of hierarchical clustering on these three constraints. 
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iv. They are given two hardcopy maps - one map at the scale of 1 : 4K comprising of 

building polygons and road network in an area of 0.75Km2 (1Km x 0.75Km) and the 

other map consists of the same data reduced and printed at the scale of 1 : 10K 

with no generalization applied. The participants are made aware of the metric 

scale printed on both maps so that the participants can read both maps and 

corresponding ground distance conveniently. 

v. Participants are instructed to apply manual clustering to buildings (see Appendix 

D.3) based on the three criteria used in automatic clustering in regions partitioned 

according to the road network in a systematic order as described by the 

researcher, starting from the North-West (top-left) followed by a zigzag route, 

ending at South-East (right-bottom) corner of the source map (1 : 4K) by 

investigating the target map at 1 : 10K to get an idea of probable clusters. 

Data collection procedure: Second phase 

The purpose of data collection at the second phase with the same subjects who 

participated in the first phase is to get a thorough evaluation of the results of the 

automatic clustering algorithm by comparing manual clustering results of each participant 

with the automatic results using a structured questionnaire with both open-ended and 

close-ended questions. Steps are taken to conduct the second survey before the elapse of 

one month of the first survey to avoid losing the impressions of the subjects involved in 

the first survey in the manual clustering process. 

i. In this phase, each subject in both groups is given the relevant manual clustering 

result on a map at the scale of 1 : 4K, a target map at the scale of 1 : 10K and a 

questionnaire to be filled by each participant to assess the quality of automatic 

clustering by comparing their own result with the automatic result. 

ii. The automatic clustering results are displayed to every subject in common on the 

screen. Subjects are allowed to request the researcher to zoom-in, zoom-out and 

pan areas of interest to view clusters on the digital map. 
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Data analysis: First phase 

For the analysis of data in this phase, pre-processing of data is required to give meaning to 

the data collected. The following procedure will be adopted in this process. 

i. Results of manual clustering of each subject will be converted into digital format by 

assigning cluster labels manually. Then each cluster is polygonized with a convex 

hull formation. Therefore, at the end of the polygonization process, there will be 

thirty (30) digital maps containing polygon clusters. 

ii. Similarly, the results of automatic clusters will be polygonized by the same 

procedure. 

Polygon clusters of the automatic results will be matched with the results of each 

participant of the entire source map region-wise to evaluate the results quantitatively 

after pre-processing. For this purpose, a prototype will be developed based on the work 

done by Revell and Antoine (2009) and a quantitative evaluation will be carried out based 

on the results of polygon matching. 

Data analysis: Second phase 

A qualitative evaluation will be carried out based on the data collected using the 

questionnaire to assess the quality of automatic clustering algorithms. 

3.3.3 Automatic map generalization with building aggregation 

Two new building aggregation operators, one is to aggregate clusters of orthogonal shape 

and the other is to aggregate clusters of non-orthogonal shape, will be developed to 

merge building polygons to be represented in coarse details as landmark polygons in this 

research. After the development, it is very important to evaluate the output of 

generalization results (Bard, 2003; Bard, 2004; Stoter et al., 2009). The use of constraints 

is a common method of evaluating the automatic generalization process as discussed by 

Beard (1991), Sester (2000a), Barrault et al. (2001), and Ware, Jones and Thomas (2003). 

There are already two generalization assessment models based on constraints, each by 

Bard (2004), and Stoter et al. (2009) in the literature as discussed in Section 3.1. 
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Automatic evaluation by Bard (2004) has only assessed generalization output on 1 : 1 

relation between the single type of building features. Further, the robustness of the 

algorithm has not been tested on a large number of features. However, the framework 

established by Stoter et al. (2009) for defining generalization specification and evaluating 

the generalized output using three methods: (a) qualitative evaluation by cartographic 

experts (b) automatic constrained based evaluation and (c) visual comparison of different 

outputs has been developed, considering all the aspects of problems in map 

generalization using comprehensive test cases chosen from the four reputed NMAs in the 

world. Therefore, for the evaluation of generalization output of this research, the 

framework of Stoter et al. (2009) will be used. Among the three methods of evaluation in 

the framework, the two methods leading to the evaluation of the generalized output using 

qualitative evaluation by cartographic experts and automatic constrained based 

evaluation are promising methods. However, considering the time and the cost involved, 

the third method which is based on a visual comparison of different outputs will be 

selected. For this purpose, the generalized output of this research will be visually 

compared with the output obtained from the industrial standard proprietary ArcGIS 

software (ArcGIS, 2013) by the Environmental System Research Institute (ESRI) and its 

methodology is described in detail below. 

Resources: 

• Synthetic data sets for developing and testing generalization algorithms. 

• Digital source topographic data from the NMA of Sri Lanka, consisting of building 

and road features on the scale of 1 : 1K. 

• OS MasterMap data at the scale of 1 : 1.25K. 

• Generalization tools in the proprietary ArcGIS software. 

• Algorithm library of the 2D spatial predicates and functions: JTS (Vivid Solutions 

JTS, 2013) and OpenCarto Java library (OpenCarto, 2013) for developing 

generalization tools in this research. 
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• Java object-oriented programming language. 

The data used for both internal and external evaluations of the generalized output of the 

focus map is based on the two types of constraints: preservation constraints and legibility 

constraints. However, as encountered by Stoter et al. (2009), it is impossible visually to 

assess a threshold value used for a constraint. Therefore, these constraints are made such 

that they can be visually assessed with ordinal values - ‘bad’, ‘fair’ and ‘well’ - in the 

evaluation process. 

Phase I: Internal validation of the testing algorithms 

Types of data required: 

Primary data in the form of text: 

(a) Preservation constraints: general orientation, general position, squareness, 

elongation and general shape. 

(b) Legibility constraints: area, dimensions (length/width of any part or edge) and 

granularity of edges. 

Data collection method(s): 

A prototype will be developed to visualize the generalized results using the algorithms 

developed in this research. 

Data analysis: 

A qualitative evaluation based on the visual comparison of the generalized results 

obtained from the test algorithms will be carried out. 

Phase II: External validation of the generalized output in the focus maps 

Types of data required: 

It is the same as in phase I. 
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Data collection method(s): 

Data will be collected using the generalization tools in the prototype developed to get the 

generalized results in the Phase I, and using the existing generalization tools in the ArcGIS 

proprietary software. 

Data analysis: 

A qualitative evaluation based on the visual comparison of the generalized results 

produced by the internally validated best algorithms in this research and the results 

generated from the generalization tools in the ArcGIS software will be carried out. 

3.3.4 Emphasis of salient landmarks 

This will be carried out in three phases in the research: (a) extracting all possible attributes 

required for subsequent knowledge discovery of salient landmarks from the spatial 

database automatically by developing a prototype (b) internal validation of the salient 

landmarks derived using three existing algorithms - ID3 (Quinlan, 1986) and C4.5 (Quinlan, 

1993) classification algorithms, and COBWEB (Fisher, 1987) clustering algorithm - with 

customisation in Java using the WEKA Application Programming Interfaces (APIs), 

comparing the output produced both at regions and decision points where navigational 

uncertainty would expect and (c) external validation of the results of salient landmarks in 

the focus maps generated in this research. For external validation of the salient 

landmarks, one of the two following methods are possible as discussed in Section 3.1: (a) 

an experiment with human participation (Burnett, Smith and May, 2001) and (b) using the 

two existing frameworks developed by Raubal and Winter (2002) and Nothegger, Winter 

and Raubal (2004). The first approach with human participation may be subjected to bias 

as mentioned by Burnett, Smith and May (2001). Further, in terms of cost, time and 

ethics, an experiment without human participation would be more convenient and 

experimentally controlled. Therefore, for the external validation of the output of salient 

landmarks in this research, the two frameworks by Raubal and Winter (2002) and 

Nothegger, Winter and Raubal (2004) will be implemented with a prototype development. 
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Resources: 

• OS MasterMap data containing buildings and roads of two data sets representing 

the urban area. 

• Open source PostgreSQL database with the PostGIS component to handle spatial 

data (PostGIS, 2013). 

• Algorithm library of the 2D spatial predicates and functions: JTS (Vivid Solutions 

JTS, 2013). 

• Open source GIS software - QGIS. 

• Open source WEKA data mining algorithm library in Java developed by the 

University of Waikato (Weka, 2013). 

• Java object-oriented programming language. 

Phase I: Extracting visual, structural and semantic characteristics (attributes) of building 

objects required to identify landmark saliency 

Types of data required: 

Primary data: numbers and text - all possible attributes in terms of visual, semantic and 

spatial characteristics of building features that can be extracted from the available data 

sets. 

Data collection method(s): 

The data collection will be carried out by developing a prototype with necessary tools. 

Delaunay refinement incremental algorithm by (Ruppert, 1995) called the CNDT, and 

some PostGIS spatial functions will be used to extract structural properties. Semantics is 

directly obtained from the attribute information available in the spatial database while 

visual and structural characteristics will be derived from the existing tools and the new 

computational geometry algorithms developed in this research. 
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Data analysis: 

This will be covered under the analysis of landmark saliency in the next phase (Phase II). 

Phase II: Internal validation of the salient landmarks derived with COBWEB, ID3 and C4.5 

data mining algorithms 

Types of data required: 

Primary data: Semantic, visual and structural properties of the salient landmarks derived 

in the Phase I above. 

Data collection method(s): 

A prototype will be developed to write the landmark saliency derived from the three data 

mining algorithms (COBWEB, ID3 and C4.5) in the PostGIS spatial database in which 

building features are stored. 

Data analysis: 

Both quantitative and qualitative evaluations will be carried out comparing the results 

derived from the three algorithms in regions covered by the contextual features and at 

decision points. 

Phase III: External validation of the salient landmarks 

Types of data required: 

Primary data: visual, structural and semantic characteristics of buildings, salient landmarks 

derived from this research using the data mining algorithm evaluated to be the best 

during internal validation, salient landmarks derived from the two frameworks based on 

the values of significance, and Google street views of the identified decision points on the 

test data sets. 
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Data collection method(s): 

A prototype will be developed to implement the two aforesaid existing frameworks to 

derive and compare landmark saliency with that of derived from the best data mining 

algorithm implemented in the prototype developed under Phase II. All derived results are 

written to the PostGIS spatial database by the new prototype. 

Data analysis: 

Both quantitative and qualitative evaluations will be carried out comparing the results 

with that of obtained from the two frameworks. A further cross-check of the results will 

be carried out with the Google street views. 

3.4   Conclusion 

This chapter presents and describes the methodology that are to be adopted in each of 

the four specific fields dealt with in this research to provide information requirement 

necessary to answer the research questions formulated in Chapter 2 to generate focus 

maps. Next chapter will describe in detail the implementation of tools required to develop 

spatial data structuring using object oriented Java programming for the subsequent use in 

data enrichment and automatic map generalization through rigorous testing and 

validation of existing algorithms, modified algorithms and/or new algorithms using both 

synthetic and real data sets. 
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Chapter  4  Implementation - I: Spatial Data Structure 

This chapter presents how existing triangulation algorithms are tested and evaluated for 

further improvements and modifications to develop a constrained triangulation spatial 

data structure to handle polygon geometries specially with the enforcement of edge 

constraints, preserving Delaunay property and explicit neighbourhood relations. This data 

structure will subsequently be used for the data enrichment process required in automatic 

map generalization. It will also be used to develop the generalization algorithms required 

in generating focus maps in this research. The main reason for such testing and evaluation 

of a triangulation data structure is that the CDT structure used in many data enrichment 

and automatic map generalization applications, as described in Section 2.4.5, cannot 

generate explicit neighbourhood relations between polygons. Although a couple of 

solutions have been suggested to make the neighbourhood relations explicit: (a) a triangle 

based search procedure by Jones, Bundy and Ware (1995) and Ware and Jones (1996) and 

(b) a method of arbitrary triangulation initially applied on all points and further application 

of re-triangulation in areas, deleting initial triangles crossing constraint edges by 

Shewchuk (1999), none of the solutions have been tested and implemented in research 

related to the map generalization. Another reason is that when reviewing the literature, 

the CNDT data structure described in Section 2.4.3 has not been used and tested 

abundantly in applications related to data enrichment and automatic map generalization. 

The work by Bader and Weibel (1997) in producing polygon maps using automatic map 

generalization is among one of the few applications of the CNDT on polygon geometries. 

For testing and evaluation (internal validation) of the triangulation data structures 

developed in this research, both synthetic and real data sets will be used. The testing 

platform is proprietary Visual C# and open source Java object-oriented programming 

languages with data stored both in ASCII and PostGIS formats with PostGIS working as a 

spatial extension to PostgreSQL object-relational database management system to handle 

spatial data. 
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4.1   Testing of an existing constrained Delaunay triangulation algorithm 

The CDT using the sweep line algorithm by (Domiter and Žalik (2008) is tested on both 

synthetic and real data. This algorithm is already implemented in the open source Poly2Tri 

CDT library (poly2Tri, 2012). However, the source code is modified in Java in this research 

to get the adjacency link between each pair of buildings with the use of unique building 

identification numbers (IDNs) as there is no provision to derive adjacency relationships 

between the triangulated polygons in the poly2Tri implementation. The reason is that no 

attribute is assigned for polygon objects to track them with the connected triangle edges 

in its implementation. 

 

 

 

 

 

 

 

 

 

  

Figure 4.1 (a) CDT with duplicate nodes of triangles hatched in grey colour and (b) Hashtable 
data structure to handle duplicates where concatenated X and Y coordinate pair of each 
vertex is stored as a value against unique key consisting of a combination of building IDN and 
the vertex number (e.g. Key 1-2 denotes vertex 2 of building IDN 1) of each building polygon. 
Building polygon IDN 1 has seven vertices starting from (X1,Y1) to (X7,Y7) and building 
polygon IDN 3 has four vertices - (X2,Y2), (X8,Y8), (X9,Y9) and (X3,Y3) as shown in (a) above. 
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In this approach a unique IDN created for each vertex of all the polygons with the 

combination of polygon IDN and its vertex IDN is mapped with its concatenated pair of 

coordinate values (x, y) using the Hashtable data structure widely used in computer 

algorithms (Cormen et al., 2009) in Java (Figure 4.1). This enables enriching each triangle 

edge vertex with the connected polygon IDNs by retrieving the concatenated pair of edge 

vertex coordinates from the Hashtable. A single vertex in a triangle can have multiple 

polygon IDNs in this instance as shown in Figure 4.2. Thus, from the polygon IDNs enriched 

at all three points of a triangle, adjacency relations of polygons can be derived. The 

adjacent links thus derived are automatically written to an ASCII file once triangulation is 

executed (see Appendix B.1 for poly2Tri user interface and an example of adjacency links 

with constrained Delaunay triangulation on a synthetic data set). 

 

 

 

 

 

 

 

 

 

  

Figure 4.2 (a) CDT with a triangle comprising of duplicate nodes hatched in red 
colour and (b) the same hatched triangle with duplicate node IDNs generated 
from building number attached at three corners.  The attached building IDNs in 
the hatched triangle derive adjacency links (3,4), (4,7) and (4,8) between 
buildings with IDNs 3, 4, 7 and 8. 
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4.1.1 Input data structure 

The input data file for the building configuration depicted in Figure 4.3(a) should have the 

ASCII format given in Figure 4.3(b). This file is created automatically from the building 

geometries stored in PostGIS with a prototype developed in Visual C# 2008 (see Appendix 

A.1) to read data from a PostGIS query (see Appendix E.1). In creating this file, building 

geometries which are the features to be triangulated must be enclosed in an outer 

bounding polygon. The coordinates of this outer polygon are stored counter-clockwise 

while the coordinates of the inner polygons are stored clockwise in order to differentiate 

bounding polygon from all other inner polygons by the algorithm. The prototype uses 

minimum bounding box (MBB) of all building geometries to create the outer bounding 

polygon with a small outward offset from the MBB. The reason to use a small outward 

offset is that this algorithm does not work if the outer bounding polygon touches one or 

more inner polygons. Further, the IDN of outer polygon is assigned minus one (- 1) while 

the other inner polygons are assigned random or serial unique IDNs in order to 

differentiate outer bounding polygon from all other inner polygons in the prototype. In 

the ASCII file the number of vertices of the outer polygon and each inner polygon should 

be on top of each polygon information (building polygon IDN and its coordinates of each 

vertex) in the file as shown in the Figure 4.3(b). 
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4.1.2 Evaluation of the results of constrained Delaunay triangulation 

The algorithm by Domiter and Žalik (2008) does not weaken the Delaunay property 

described in Section 2.4.1 as they adapt re-triangulating regions formed by the deletion of 

triangles that are intersected by constrained edges, described in Section 2.4.2, as 

discussed by Shewchuk (1999). However, the Delaunay property is not stable in the 

implementation of the CDT in open source Poly2Tri library despite it being mentioned that 

the triangulation is based on the work of Domiter and Žalik (2008) when considering the 

results #2 and #3 in Table 4.1 - result #2 does not represent explicit neighbourhood relations 

(no connection between building IDNs 1 and 3) and result #3 produces both skinny triangles 

and implicit neighbourhood relations (building IDN 11 in the middle has no connection with 

building IDNs 6, 7 and 8 shown with arrows). It is also found that the triangulation cannot 

handle polygons that share common boundaries when observing the three adjoining 

building IDNs 1, 2 and 3 circled in the top left corner of result #3 in Table 4.1 (vertices of 

building IDN 2 have been snapped to incorrect positions, distorting the shape of the three 

attached buildings). When observing the results, it can be concluded that the CDT does not 

provide explicit adjacency relationships between polygon geometries. 

Figure 4.3  (a) Outer polygon and inner building polygons (triangulating features) with 
corner coordinates and (b) representation of the outer polygon and the two inner 
building polygons in ASCII format. 
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Table 4.1 Results of the CDT based on the sweep line algorithm by Domiter and Žalik (2008) 
with different data sets.   
 

# Type of data Results of the CDT 
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Figure 4.1(a) 
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parallel edges 
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vertices except buildings 2, 12 
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4.2 Testing of an existing conforming Delaunay triangulation algorithm 

The CNDT class which is available in JTS 2D spatial algorithm library based on the 

incremental algorithm by Ruppert (1995) is implemented in a prototype (Appendix B.2) for 

this research and tested on the same three data sets used in the previous Section 4.1. 

4.2.1 Input data structure 

 

 

 

 

 

 

 

Building polygon data in ASCII space delimited format with the 3D coordinates (height - Z 

is zero) of vertices of each polygon stored either counter-clockwise or clockwise, can be 

used to generate triangulation with the prototype built (Appendix A.2). In this case, only 

the building outlines are dealt with. Feature IDN of each polygon should be coupled with 

the coordinates of each vertex as depicted in Figure 4.4(b). Further, this prototype can 

extract each line segment with its IDN and respective coordinates similar to the 

representation of building polygon data in ASCII format. The link between each polygon, 

between each line and polygon, and between each line is tracked by the unique 

coordinate of each source polygon/line coordinate mapped with polygon/line IDN as 

explained in Section 4.1 for deriving neighbourhood relations. The incorporation of both 

the polygon and the line geometries has been facilitated in generating the ASCII data file 

since the CNDT implementation in JTS can also generate triangulation between line 

geometries. 

Figure 4.4 (a) Building polygons (triangulating features) with corner coordinates 
and (b) representation of two building polygons in ASCII format. 
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4.2.2 Enriching Steiner points 

The Steiner points as explained in Section 2.4.3 generated to make the triangles Delaunay 

stable in the triangulation process are foreign vertices that are not in the source data set. 

Therefore, to identify which edge of the object is split virtually and linked to the triangles 

thus generated, the following algorithm is developed and adopted in this research as no 

members (attributes) are set to link the triangulation between polygons or between 

polygons and lines with their corresponding triangle edges in the CNDT class in JTS. 

i.  Iterate the list of triangles generated by the use of triangulation class and get the 

first triangle. 

ii. Check from the mapped coordinate against IDN of each vertex of an object, if an 

edge of the triangle is linked to an object. 

iii. If it is not linked to an object, retrieve all objects that are close to the triangle 

using spatial indexing based on the sort-tile-recursive (STR) algorithm by 

Leutenegger, Lopez and Edgington (1997) implemented in JTS. R-Tree is a 

dynamic index structure widely used in spatial databases to retrieve data objects 

of non-zero size quickly, particularly polygon geometries of multi-dimensional 

spaces according to their locations (Guttman, 1984). 

iv. Create a small buffer with a small tolerance around the vertex of the triangle 

edge that is not linked to an object. 

v. Get all objects that intersect this buffer and link their IDNs to the triangle vertex. 

vi. Check two other edges of the triangle and adapt the steps (iii) to (v) if objects are 

not linked to the edges. 

vii.  Go to step (i) to choose the next triangle until the end of the triangle list. 
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4.2.3 Evaluation of the results of conforming Delaunay triangulation 

When investigating the results #2, #3 and #4 in Table 4.2, the triangulation represents 

explicit neighbourhood relations between the buildings, and between buildings and roads. 

It can also handle buildings that share a common edge (building IDNs 3 and 4 in the result 

#3 and most of the buildings in the result #4). However, the CNDT splits lines and edges of 

the polygons virtually introducing new vertices (Steiner points) thereby allowing more 

triangle hooks between polygons, between lines and polygons, and between lines in the 

result as depicted in Table 4.2 (compare triangles between building IDNs 1 and 2, 3 and 4 

in the result #2 and triangles between building IDNs 5 and 6, 7 and 8, 8 and 9, and 11 and 

12 in the result #3 in Table 4.2 with triangles generated using the CDT on the same 

building data sets in Table 4.1 for the identification of Steiner points) in order to make the 

triangulation Delaunay stable as explained in Section 2.4.3. 

 

Since more hooks are added to the triangulation, this type of triangulation is useful in 

aggregating building polygons with least exaggeration in bridging the gaps between such 

polygons. However, exceptions have to be dealt with when triangles consisting of Steiner 

points are handled with source polygons in geometrical operations such as aggregation 

(union) since Steiner points thus added are not part of the segments of the original 

polygons (edges of polygons are not split into the sub-segments). Further, this 

triangulation structure can be utilised to derive all possible adjacency relationships 

between polygons, between lines and polygons, and between lines with the help of more 

hooks, along with the algorithm developed in this research given in Section 4.2.2. 

 

There is a need to improve the CDT algorithm to handle explicit neighbourhood relations 

so that it generates Delaunay stable triangles which include only the source points in the 

polygon data set. Such a triangulation can be utilised not only in deriving neighbourhood 

relations in the data enrichment process, but also in the development of generalization 

algorithms such as polygon aggregation, depending on the application requirement. 
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Table 4.2 Results of the CNDT based on the incremental algorithm by Ruppert (1995).   
 
 

# Type of data Results of the CNDT 

 

1 Synthetic data set 
represented in Figure 4.1(a) 
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parallel edges 
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4.3   Testing of a new constrained algorithm on polygon triangulation 

When considering the results of both CDT and CNDT implementations using Poly2Tri and 

JTS open source Java libraries, it is understood that the CDT which is completely Delaunay 

unstable with skinny triangles, will have triangle edges connecting only existing polygon 

vertices with implicit neighbourhood relations while the CNDT implementation with JTS 

open source Java libraries as described in Section 4.2.3 has produced Delaunay stable 

triangles with explicit neighbourhood relations with the addition of new vertices (Steiner 

points). The new algorithm for constrained triangulation will use the open source Java 

source code of the polygon triangulation algorithm on classic ear-clipping by Eberly (2008) 

discussed in Section 2.4.4, available for download in the JTS forum (JTS Topology Suite, 

2012). This triangulation will also have triangle edges only connecting existing polygon 

vertices (compare the results #2 and #3 in Table 4.3 with triangles generated using the 

CNDT on the same building data sets in Table 4.2). 

4.3.1 Input data structure 

The input data structure is the same as that of the CNDT described in Section 4.2.1. The 

same prototype, as given in Appendix A.2, is used for input data file creation. Further, the 

triangulation can be processed by reading polygons from PostGIS directly as well. For 

deriving neighbourhood relations, the same approach with mapping polygon IDNs with 

polygon vertices explained in Section 4.1 is used. The results of the triangulation on 

different data sets are given in Table 4.3. 

4.3.2 Triangulation algorithm 

A new constrained algorithm for polygon triangulation is implemented in the same 

prototype mentioned in Section 4.2 (Appendix B.2) and described in Figure 4.5. 
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The results of the implemented constrained triangulation algorithm on the data sets used 

for testing are given in Table 4.3. 

  

Figure 4.5 Constrained triangulation algorithm based on the polygon 
triangulation on ear-clipping by Eberly (2008). 
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Table 4.3 Results of the constrained triangulation developed in this research based on the 
polygon triangulation algorithm by Eberly (2008) on the source data. 
 
 

# Type of data Results of the constrained triangulation 
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4.3.3 Evaluation of the results of constrained algorithm on polygon 

triangulation 

When considering the results #2 and #3 in Table 4.3, the triangulation represents the 

explicit neighbourhood relations between the buildings. It can also handle buildings that 

share a common edge (building IDNs 2 and 3 in the result #3). Further, the triangulation 

does not split building edges, inserting new vertices in generating triangles. This is an 

advantage because this triangulation can generate explicit neighbourhood relations in 

generating well-shaped triangles by using the input source data set (no Steiner points 

added), comparing to the skinny triangles generated in the result #3 of Table 4.1 with the 

same data set used in the CDT described in Section 4.1. However, the implementation 

may bring topological collapses in generating triangulation on some data sets (see 

buildings encircled in Figure 4.6) due to some unknown exceptions in handling geometries 

by the Java implementation of the algorithm where the cause could not be found. Thus, 

this polygon triangulation approach is not used in this research to derive explicit 

neighbourhood relations between polygons. 

4.4 Testing of a new constrained algorithm on Delaunay triangulation 

The constrained algorithm implemented in this research on the polygon triangulation 

provides rich neighbourhood relations with existing building vertices when comparing the 

Figure 4.6  (a) A simple data set of buildings and (b) a larger data set with buildings 
irregularly spaced, triangulated based on the polygon triangulation. 

(a) (b) 
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results with those obtained using the CDT with Poly2Tri library given in Table 4.1. 

However, an improved algorithm is required since the implementation creates exceptions 

in triangulation as mentioned in the previous Section 4.3.3. For this purpose, the Delaunay 

triangulation with so-called recursive edge-flipping technique (Berg et al., 2008) is used to 

satisfy Delaunay’s condition applied to triangles formed from a set of points. It is 

implemented based on the incremental method as explained in Section 2.4.1. The 

approach used to constrain edges of polygons is based on the edge deletion technique 

discussed by Shewchuk (1999) in Section 2.4.2. Initially buildings are enriched based on the 

contextual features such as road and river network. A field called global_id is created and 

assigned to each region (partition) to identify buildings surrounded by the contextual 

features in the prototype development (Appendix B.3). Then each building in a region is 

assigned a unique local IDN. Then testing of algorithms is performed on building polygons 

falling within each region (see region surrounded by the roads delineated in Figure 4.7). In 

addition to reading building geometries from the ASCII format, the graphical user interface 

(GUI) of the prototype has the ability to read PostGIS geometries directly from the 

PostgreSQL database system (Appendix B.3). 

Figure 4.7  Building polygons with local IDNs in a single region surrounded 
by the road network. 
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4.4.1 Input data structure 

The input data structure is the same as the one used in the CNDT and the polygon 

triangulation described in Sections 4.2.1 and 4.3.1. The same prototype, as given in 

Appendix A.2, is used for input data file creation. 

4.4.2 Triangulation algorithm 

This algorithm falls into the category of an incremental insertion algorithm as described in 

Section 2.4.1 (see Appendix G.1 for the pseudo code). The triangulation initially starts with 

a single triangle. Then the points are incrementally inserted one by one into the interior or 

the exterior to the initial triangulation. The duplicate points are ignored when adding new 

points to the triangulation. The sequence of steps of the constrained algorithm on 

Delaunay triangulation is as follows: 

• Extract vertices of all building polygons as input points in the triangulation known

as the site points P with vertex IDN of each point as building polygon IDN (local

IDN).

• Start the initial triangulation with a single triangle with its three points. This

triangle is called the “starting triangle”.

• When inserting a new point p also known as Query point p to the triangulation

initialised with the “starting triangle”, the point location is determined from the

convex hull of the existing site points P, so as to see if the new point is inside or

outside the existing triangulation ΔN.

• If the new point p is inside, then the triangle t of ΔN containing p is located by

starting the search from the “starting triangle” and then looking for the next

triangle t according to the relation between the query point p and the triangle

edges. Then split triangle t into three triangles by making three new edges

between p and the nodes of t to obtain the new triangulation Δ’N+1 (Figure 4.8(a)).
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• If the query point p lies outside ΔN, the initial triangulation Δ’N+1 is obtained by

connecting p to all nodes at the boundary of ΔN that are visible from p (Figure

4.8(b)).

• If the query point p falls on an edge of an interior triangle or a half-plane triangle

bounded by the convex hull, the old edge is replaced by two edges (Figure 4.8(c)),

which is not a split of the old edge in the case of an interior triangle and in the case

of a triangle bounded by the convex hull (half-plane triangle), it is split into two by

adding a new edge (Figure 4.8(d)) to form the initial triangulation Δ’N+1.

• Once the initial triangulation Δ’N+1 is formed, the next step is to apply the swapping

procedure based on circumcircle test to swap edges in Δ’N+1 until all edges are

locally optimal, and the default triangulation ΔN+1 is Delaunay. The circumcircle test

checks if a triangle t in triangulation ΔN requires modification when inserting a new

point p to obtain the Delaunay triangulation ΔN+1 if and only if the circumcircle of t

contains point p in its interior.

• The swapping procedure runs recursively starting from the three initial edges of

the “starting triangle” incident with point p without examining all edges of the

triangulation ΔN (Figure 4.9).

Figure 4.8  Insertion point location: (a) inside triangle (b) outside convex hull of ΔN,   (c) on an 
edge of an interior triangle of  ΔN  and (d) on an edge of a triangle bounded by convex hull to 
form the initial triangulation Δ’N+1. 

(a) (b) (c) (d) 
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• Once the default Delaunay triangulation is complete on the set of site points which

are the building vertices, the next step is to identify and delete triangle edges that

run across polygon edges used as constraint edges (Shewchuk, 1999) and building

triangle edges (Figure 4.10(a)) from the default triangulation array since no

constraints were applied during default Delaunay triangulation.

• In order to identify the edges of such triangles, 2D topological relations are used.

Both intersection and cover (Egenhofer, Litwin and Schek, 1989) relations are

checked between each triangle in the triangulation array against all building

polygons in the data set. This is a time-consuming process when the data set is

very large and, therefore, spatial indexing is used to improve the efficiency. The

spatial indexing used is based on the STR algorithm (Leutenegger, Lopez and

Edgington, 1997) which is a query-only R-Tree with packing for 2D data

implemented in JTS.

• However, one of the disadvantages in R-Tree is the poor performance in unduly

retrieving a large number of nodes in order to satisfy a query. The packing

algorithm -STR - pre-processes the data to be stored in an R-Tree so that fewer

nodes are accessed while performing a query thus improving space utilisation and

query time. Therefore, from the STR, buildings which intersect a given query region

which is a triangle in the default triangulation array are retrieved very fast for

Figure 4.9  Swapping procedure when inserting a point p into Delaunay triangulation in (a) 
each picture shows the triangulation after a new edge has been swapped from (b) to final 
Delaunay triangulation ΔN+1  in (d). 

(a) (d) (b) (c) 

p p p p 
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checking topological intersection and cover with the queried region. Such retrieved 

buildings are a small subset of all available buildings in the data set. 

 

• If such a crossing triangle or a building triangle (Figure 4.10(a)) is found, the 

triangle is removed from the triangulation array. This topological 

intersection/cover search criterion is checked for all triangles in the triangulation 

array finally to remove all crossing and building triangle edges. 

 

Figure 4.11 illustrates three types of triangles that can occur in a Delaunay triangulation 

according to Haowen, Weibel and Bisheng (2008). A “building triangle” connects the 

vertices of the same polygon and lies inside the polygon, a “false triangle” connects the 

vertices of the same polygon but lies outside the polygon and a “true connection triangle” 

connects two or more polygons in the space region which is the area between the convex 

hull of all the polygons and the union of polygons. 

  

Figure 4.10  Default Delaunay triangulation: (a) triangulation with crossing triangles (red) 
over building polygons and (b) triangles left after removing crossing triangles and 
building triangles (triangles inside building polygons in Figure 4.11) that intersect and 
cover building polygons respectively. 

 

(a) (b) 
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The removal of both crossing triangles and building triangles from the final triangulation 

array is required to obtain valid proximity relations between building geometries. Removal 

of crossing triangles leaves the triangulation invalid in the sense that every point falling in 

the space region R which is the area obtained by subtracting the summation of area of 

each building polygon from the convex hull of all site points P, does not belong either to 

an edge or a vertex of one or more triangles or to the interior of a single triangle. This is 

clear from the trapezoidal area created after the removal of crossing triangles from the 

triangulation in Figure 4.10 (b). 

• Next step is to identify the polygons which need to be re-triangulated due to the 

removal of crossing triangles created in the initial default Delaunay triangulation 

steps. The re-triangulation process is explained in Figure 4.12. Triangles generated 

caused by the removal of crossing triangles after subtraction (see hatched triangle 

(middle) in Figure 4.13) are not re-triangulated and added to the triangle array to 

include missing triangles of the region R. The other convex and/or concave 

polygons (Figure 4.13) with four sides or more are re-triangulated and added to 

the triangulation array to complete the triangulation process. In this polygon re-

triangulation process, crossing triangles formed as a result of concave polygons are 

required to be searched again and removed if found. Once the triangulation 

process is complete, the union of all triangles in the constrained triangulation must 

Figure 4.11  Representation of Delaunay triangulation: (a) default Delaunay triangulation 
considering vertices of all buildings as the site points and (b) the same triangulation after 
removing all building triangles, based on  Haowen, Weibel and Bisheng (2008). 

 

(a) (b) 

True connection  
triangle 

False triangle 

Building triangle 
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be equal to the region R over which the triangulation is defined according to the 

rules of validation of a triangulation explained in Section 2.4, that is, R = U t i,j,k 

where i, j and k refers to vertex IDNs of the triangle t. 

  

Figure 4.12  Re-triangulation steps of the isolated polygons after subtraction of triangles and 
building polygons from the convex hull of all the site points P. 

 

Re-triangulate each polygon of 
the resultant multi-polygon of 
region R other than triangular 

polygons with default Delaunay 
triangulation 

Create an aggregated 
polygon by union of all 
polygonal buildings and 

remaining triangles  

Subtract aggregated polygon 
from the convex hull to obtain 

region R 
 

Create convex hull of the 
 Site points P 

 

Remove building triangles 
and crossing triangles using 
topological relations with 

building polygons 

Remove crossing triangles 
while iterating through each 
polygon in re-triangulation 

process 
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• It is important to note that the triangulation handles typical cases of site point 

configuration in the following manner: (a) no triangle is created if three points are 

co-linear (b) duplicate points are ignored in the triangulation and (c) if the four 

points on a convex quadrilateral are co-circular, the choice of the triangulation 

depends on the point order of each triangle. 

 

 

 

 

 

 

 

 

 

 

 

The results of the implemented constrained triangulation algorithm on the data sets used 

for testing are given in Table 4.4. 

  

Figure 4.13:  Crossing triangles to be removed in the triangulation process are 
shown in red broken lines. Remaining isolated polygons hatched including a convex 
polygon (left), a triangle (middle) and a concave polygon (right) after the removal 
of initial crossing triangles 
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Table 4.4 Results of the constrained triangulation developed in this research 
based on the Delaunay triangulation with the recursive edge-flipping technique 
(Berg et al., 2008) using the incremental method. 
 

# Type of data Results of the constrained 
triangulation 

 
1 Synthetic data set represented 

in Figure 4.1(a) 

 

 
 
 
 
 

2 

 
 
 
 
Synthetic data set comprising 
of narrow buildings with long 

and parallel edges 
 
 
 

 

 
 
 
 
 

3 

 
 
 
 

OS MasterMap source data    
(1 : 1.25K) comprising of edges 

of all buildings with 
intermediate vertices except 

buildings 2, 12 and 14 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

4 

 
 
 
 

OS MasterMap Data                
(1 : 1.25K) - 

London-part of 
 

 
 

 

1 
2 

3 

4 

5 6 7 

12 

8 

10 

9 

13 

11 

14 

2 
3 4 

1 
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4.4.3 Proximity links derivation between polygons 

In the constrained triangulation approach based on edge deletion in Section 4.4.2, the 

minimum distance between each linked pair of buildings is obtained from the triangles 

generated between buildings (true connection triangles connected between buildings 

only) by the use of the data structure adopted in the triangulation with each building IDN 

represented as site point IDN based on the nearest neighbour links formed by the 

triangulation. The steps in deriving proximity links are as follows: 

• Iterate through each triangle in the final constrained triangulation array and 

retrieve the building IDNs linked to each node of the triangle with the use of the 

Hashtable data structure illustrated in Figure 4.1 in Section 4.1. 

• Find pairs of building link relations between each edge of the true connection 

triangles (Figure 4.11 (a)) representing building neighbourhood relations with the 

help of building link IDN information at three corner points of the respective true 

connection triangle (Figure 4.14 (b)). This process also takes into account the 

buildings that are vertex-contiguous and/or edge-contiguous in addition to 

detached buildings. In this process, if two nodes of a triangle have the same 

building IDN, such links are ignored. Similarly, ‘False triangles’ (Figure 4.11 (a)) 

representing links between vertices of the same building are ignored while 

iterating the triangulation array. 

• From each pair of building link relations, compute the minimum Euclidean distance 

between each pair of buildings and append the result with such pairs of building 

links of each true connection triangle into the one-dimensional array representing 

the proximity. 

• Now the array has all possible links of neighbourhood relations of all buildings, 

including duplicate links (Figure 4.14 (c)). 
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4.4.4 Evaluation of the results of the constrained algorithm on Delaunay 

triangulation 

When considering the results #1, #2 and #3 in Table 4.4, the triangulation represents 

explicit neighbourhood relations between the buildings. Further, the triangulation does 

not split edges inserting new vertices to maintain the Delaunay property (compare the 

result #2 between building 1, and 2, 3 and 4, and the result #3 between building IDNs 5 

and 6, 7 and 8, 8 and 9, and 11 and 12 in Table 4.4 with the results #2 and #3 generated 

using the CNDT of the same building data sets in Table 4.2). It can also handle very 

complex buildings that share a common edge (building IDNs 2 and 3 in result #3 of Table 

4.4) and contain holes (result #4 in Table 4.4). It is also observed that the two new 

constrained triangulation algorithms - algorithm based on polygon triangulation as 

described in Section 4.3 and the algorithm based on Delaunay triangulation with edge 

deletion technique as described in Section 4.4 - provide the same results for the three 

data sets used to test all four algorithms. However, the algorithm based on the edge 

deletion technique is more robust compared to the algorithm developed based on 

polygon triangulation in terms of handling neighbourhood relations (topological relations). 

Figure 4.14  (a) Constrained triangulation with duplicate nodes of a triangle hatched in red 
colour (b) same triangle with duplicate node IDNs and distances of the three edges D1, D2 and 
D3 and (c) array representing proximity links of both contiguous and disjoint buildings with the 
minimum Euclidean distance. 
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Since the algorithm represents explicit neighbourhood relations, it can be used to derive 

the Gestalt factors such as proximity, orientation and shape between building polygons 

under data enrichment process for subsequent generalization. 

The tests to generate a constrained triangulation based on the Delaunay triangulation 

with edge deletion technique and its neighbourhood relations with proximity have been 

performed on a Laptop with an Intel Core 2 Duo 2.5 GHz processor and a 4GB of RAM 

(3.5GB usable). The default Delaunay triangulation spends 110ms while constrained 

triangulation spends 1200ms on a data set consisting of 125 building features. Table 4.5 

shows the execution times required to build triangulation and neighbourhood relations 

over a large set of features. 

Table 4.5  Computation times to generate triangulation and neighbourhood relations. 

Geometric 
entities Triangulation Neighbourhood relations 

Features/Nodes Default  Delaunay 
triangulation (ms) 

 constrained 
triangulation (ms) 

Number of 
Proximity links 

Proximity links 
(ms) 

125/1015 110 1200 364 560 

250/2156 155 2370 751 1750 

500/3522 170 3460 1504 3800 

1000/5879 245 5200 3052 9140 

104 



4.4.5 Validation of the constrained algorithm on Delaunay triangulation 

Table 4.6 presents the results of the validation of the constrained triangulation algorithm 

developed in this research for subsequent data enrichment and generalization processes. 

It is validated with a synthetic data set which provides exceptions in topology in the 

constrained triangulation as discussed by Ware and Jones (1996) and Ai et al. (2007), and with 

OS MasterMap data sets at the scale of 1 : 1.25K. 
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The validation is based on the criteria defined to check the triangulation validity as 

explained in Section 2.4. The domain (Ω) of the constrained triangulation is the space 

region which is the free space between buildings and the convex hull of the entire building 

polygon vertices. With the pictorial representation and calculation of the area of the 

domain and comparison of the total area of the generated triangles in the domain, all the 

criteria given in the aforesaid Section 2.4 are satisfied, making constrained triangulation a 

valid triangulation. 

4.5   Outcome of the triangulation algorithms used for testing 

The intention of this section is to explain the outcome of each of the four triangulation 

methods tested for generating the constrained triangulation and clarify the terminology of 

new algorithms developed. 

4.5.1 Constrained Delaunay triangulation 

The CDT based on the sweep line algorithm by Domiter and Žalik (2008), implemented in 

the open source poly2Tri triangulation library as described in Section 4.1, can only process 

polygon geometries in generating triangulation. The triangulation does not handle 

polygons that share common boundaries either. Further, this triangulation is not Delaunay 

stable since it does not respect the empty circle criterion adopted in the Delaunay 

triangulation as described in Section 2.4.2. As a consequence, it creates skinny triangles 

thereby generating implicit topological relations between polygons as evident from the 

visual result #3 in Table 4.1 (building IDN 11 is not connected to building IDNs 6, 7 and 8). 

4.5.2 Conforming Delaunay triangulation 

The CNDT which is implemented using the JTS algorithm library based on the incremental 

algorithm by Ruppert (1995) as described in Section 4.2 can process both line and polygon 

geometries in generating triangulation with Delaunay stable triangles with more hooks 

between geometries with the addition of Steiner points. Thus, it can create explicit 

neighbourhood relations between features. However, these points are not part of the 
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geometry of the input source data set. This implementation also has  the ability to enforce 

edge constraints in the triangulation (see results in Table 4.2). 

4.5.3 New constrained algorithm on polygon triangulation 

The new constrained triangulation algorithm developed in this research uses the open 

source Java source code of the polygon triangulation algorithm based on classic ear-

clipping by Eberly (2008) as discussed in Section 2.4.4. The algorithm can only be used with 

polygon geometries. Further, the polygon edges can be constrained in generating the 

triangulation. It can also handle buildings that share a common edge (buildings with IDNs 2 

and 3 in the result #3 of Table 4.3). Also, the triangulation generates triangles that connect 

only the vertices of the input data set. 

4.5.4 New constrained algorithm on Delaunay triangulation 

This algorithm employs Delaunay triangulation with so-called recursive edge-flipping 

technique (Berg et al., 2008) to satisfy Delaunay’s condition applied to triangles formed 

from a set of points. It is implemented in this research based on the incremental method 

as explained in Section 2.4.1. The algorithm can only be used with polygon geometries. The 

approach used in this algorithm to constrain edges of polygons is based on the edge 

deletion technique discussed by Shewchuk (1999) as described in Section 2.4.2. It can also 

handle buildings that share a common edge (building IDNs 2 and 3 in result #3 of Table 

4.4). Further, the triangulation generates triangles that connect only the vertices of the 

input data set. Since this algorithm has the ability to generate Delaunay stable triangles 

with applying edge constraints, it is termed as the Delaunay constrained triangulation 

(DCT) in this research. 

4.5.5 Comparison of the triangulation algorithms 

Table 4.7 presents a comparison of the four algorithms on the constrained triangulation 

structures - two existing algorithms and two new modified algorithms - with their 

properties, capabilities and runtime exceptions in this research. 
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* existing algorithm 
** Modification and/ or extension to existing algorithm 
 

Table 4.7 Different triangulation types implemented and compared. Algorithms are: (1) Sweep 
line algorithm by Domiter and Žalik (2008)  (2) incremental algorithm by Ruppert (1995) (3) 
new algorithm (see Section 4.3) coupled with polygon triangulation algorithm by Eberly (2008) 
and (4) new algorithm (see Section 4.4) coupled with incremental point insertion based on the 
recursive edge-flipping technique by Berg et al. (2008). 

# 

Tr
ia

ng
ul

at
io

n 
da

ta
 st

ru
ct

ur
e 

Vi
su

al
 

re
pr

es
en

ta
tio

n 

N
ei

gh
bo

ur
ho

od
 

re
la

tio
ns

 

Ha
nd

lin
g 

sh
ar

ed
 

ge
om

et
ry

 

Ad
di

tio
n 

of
 n

ew
 

ve
rt

ic
es

 

De
la

un
ay

 
pr

op
er

ty
 

Ru
nt

im
e 

ex
ce

pt
io

ns
  

1 
 

CDT* 
 

 

 

 Implicit No No 

Not 
preserved 

and 
skinny 

triangles 
generated 

Cannot 
handle 
shared 
edges 

 

2 CNDT*  

 

Explicit Yes 
Yes. 

Steiner 
points 
added 

Preserved No 

3 

Constrained 
triangulation*

*  on polygon 
triangulation 

approach 

 

Explicit Yes No Preserved 

Collapses 
in 

topology 
 

4 DCT**  

 

 

Explicit 

 

Yes 
 

No 
 

Preserved 

 

No 

108 
 

                                                           



When comparing the results of the constrained algorithm based on polygon triangulation 

with the constrained algorithm based on the Delaunay triangulation (termed as DCT), both 

algorithms have produced the same results (compare result #3 in Tables 4.3 and 4.4). 

Thus, it is evident that the constrained algorithm based on the polygon triangulation is 

also Delaunay stable. Out of the four algorithms, there are two potential algorithms - 

algorithm #2 (CNDT) and algorithm #4 (DCT) in Table 4.7 - that can be used to derive 

spatial relations between polygon geometries, between line geometries and between 

polygon and line geometries, and between polygon geometries respectively in any spatial 

application. The algorithm #2 adds Steiner points that are not available in the source data 

used to generate triangulation, allowing more hooks between feature geometries. 
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4.6   Conclusion 

The chapter presents and describes how the existing triangulation algorithms have been 

tested, analysed and modified with the synthetic and the real data sets in order to identify 

and/or develop constrained triangulation structures in this research to derive explicit 

neighbourhood links between polygons, between lines and between polygon and line 

objects for the data enrichment process and the subsequent automatic map 

generalization. The research has identified that the CNDT implementation in JTS based on 

the work by Ruppert (1995) can derive the explicit adjacency relationships between 

polygons, between the lines, and between lines and polygons with enforcing edge 

constraints. In deriving this triangulation, Steiner points are introduced that are not part 

of the source data set. Therefore, an algorithm has been developed in this research for 

the enrichment of Steiner points (Section 4.2.2) in order to track the polygon or line 

geometry to which each Steiner point created belonged. The new constrained algorithm 

for polygon triangulation based on classic ear-clipping by Eberly (2008), as discussed in 

Section 2.4.4, which is developed in this research with the JTS library, gives explicit 

adjacency relationships between polygons while enforcing edge constraints using input 

points in the source data set. However, the implementation introduces topological 

collapses in generating triangulation on some data sets (see Figure 4.6). Further, the new 

modified constrained algorithm based on Delaunay triangulation (addressed hereafter as 

DCT as termed in Section 4.5.4) developed with the existing algorithms - edge flipping 

technique by Berg et al. (2008) and edge deletion technique discussed by Shewchuk (1999) 

- can derive explicit adjacency relationships between polygons while enforcing their edges 

as constraints using the input points in the source data set without introducing Steiner 

points. Next chapter will describe in detail the implementation of the tools for the building 

data enrichment process by the use of the developed DCT structure. 
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Chapter 5   Implementation - II: Spatial Data Enrichment Process 

This chapter presents the data enrichment processes required for automatic map 

generalization. The two main phases of data enrichment in this work are: (a) spatial 

clustering and (b) shape enrichment of spatial clusters. It further describes how existing 

algorithms on these two phases - creating spatial polygon clustering and enhancing shape 

characteristics of such derived clusters based on building geometries - are tested and 

evaluated by modifying existing algorithms to develop new algorithms required for the 

automatic map generalization process. For testing and evaluation (internal validation), 

both synthetic and real data sets will be used. The testing platform is open source Java 

object oriented programming language with data stored in PostGIS, a spatial extension to 

PostgreSQL object-relational database management system to handle spatial data. 

5.1   Hierarchical polygon clustering process 

The polygon clustering algorithm developed in this research is based on the hierarchical 

clustering approach by Qi and Li (2008), which is similar to the manual clustering of 

cartographers as mentioned in Section 2.3.3. In the manual clustering approach, the global 

constraints can be organised hierarchically in a spatial database or in a topographic map. 

For example, roads between cities can be classified as national highways, and those within 

a city can be classified as major roads, minor roads and cul-de-sacs. Similarly, a 

hydrographic network can be identified as main rivers and tributaries at different levels. 

Figure 5.1(a) illustrates a hierarchical structure of a road network. In the manual building 

grouping process, roads and hydrographic features with corresponding levels of details 

are chosen for the initial partition of buildings into regions according to the target map 

scale. Further, the use of Gestalt factors considered as local constraints - proximity, 

common orientation and similarity - is also hierarchical in the manual grouping of 

buildings (see Figure 2.14 in Section 2.3.3). This can be clearly described with the help of 

Figure 5.1(b). Five building groups (i, ii, iii, iv & v) can be identified initially according to 

the degree of proximity between buildings. Groups (i) and (v) will not be clustered 

anymore because the degree of proximity between buildings in these two groups is very 
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close. Groups (iii) and (iv) can be considered as separate single building clusters since both 

are very far from each other and from other groups. Building group (ii) delineated in red 

broken lines can be considered as a single group since the degree of proximity between 

the buildings is medium. The buildings in this medium distance range group (ii) are further 

clustered based on the differences in orientation between buildings into ‘small’ and ‘large’ 

categories. Since the differences in orientation between buildings in the group (ii) are 

small, these are categorised into a single sub-group. Finally, this single sub-group is further 

clustered, considering the differences in similarity between buildings in shape labelled as 

‘similar’ and ‘dissimilar’ to end up with final building groups x, y (y is a single building) and 

z (x and z delineated in black broken lines). All these three building groups (x, y and z) are 

dissimilar in shape and have an almost similar orientation with the proximity between two 

buildings being within the medium distance range. Figure 5.2 illustrates the hierarchical 

relationship of these three local constraints. 

 

 

 

 

 

 

 

 

Figure 5.1 (a) Hierarchical structure of the road network (part) and (b) manual 
process of building grouping, based on Qi and Li (2008). 
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The following subsections will test and compare the manual process of this hierarchical 

clustering approach with the same process automated using different algorithms in 

deriving Gestalt factors - proximity, orientation difference, and similarity difference in 

shape - contributing to creating clusters coupled with a graph-based minimum spanning 

tree (MST) clustering algorithm. 

5.2    Automation of hierarchical clustering process 

Clustering of buildings is applied to each partitioned region created with the use of global 

constraints (contextual features) as described in Section 5.1 in the data set. In the process 

of building clustering within a region, hierarchical local constraints - proximity, common 

orientation and similarity in shape - are used as weights in the minimum spanning tree 

(MST), as discussed in Section 2.3.3. This is implemented using Prim’s algorithm (Prim, 

1957) (see Appendix C.1 for the pseudo code of the algorithm). This clustering process 

with full automation is similar to the manual process of building clustering by 

cartographers. The building clustering process can principally be divided into three 

hierarchical sections: (a) clustering based on proximity (b) clustering based on orientation 

difference and (c) clustering based on the similarity difference in each partitioned region. 

Figure 5.2 Hierarchical relationship between the three local constraints for 
building grouping, based on Qi and Li (2008). 

VC - Very Close,   M - Medium,   VF - Very Far,   S - Small,   L - Large,   Si - 
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5.2.1  Derivation of the Gestalt factors 

Proximity 

The proximity relation between each pair of buildings is generated by the Delaunay 

constrained triangulation (DCT) algorithm developed in this research (see Section 4.4). 

Orientation difference 

Duchêne et al. (2003) have discussed five measures for building orientation - longest edge, 

weighted bisector, wall average, statistical weighting and MBR for building orientation. 

There are basically two types of orientations defined for a building: (a) general orientation 

used to characterise the elongation of a building and (b) the orientation of the walls of a 

building. Of the five measures, the MBR and the weighted bisector represent general 

orientation, and all other three represent wall orientation (Figure 5.3). 

Duchêne et al. (2003) have concluded that the MBR is the most appropriate to define the 

general orientation of a building by testing the measures on a large set of buildings data. 

Usually, the MBR is computed to have an idea of the extension of the object (Toussaint, 

1983). The orientation of the longest side of MBR is assigned as the general orientation of 

a building. However, if the MBR is used to calculate the general orientation, the 

orientation of a square building (Figure 5.4(b)) and a circular building (Figure 5.4(c)) 

cannot be defined. And the orientation of an offset terraced building (Figure 5.4(e)) is 

quite extensive along the longest side of the MBR (red broken line) where the orientation 

of the walls would be more appropriate (orange thick lines). 

Figure 5.3  Existing measures of building orientation, from (Duchêne et al. (2003). 

 

Longest edge Statistical weighting Smallest MBR Wall average Weighted bisector 
d
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Li et al. (2004) have used the MBR algorithm with the contribution of both major and 

minor axes to define building orientation for subsequent building clustering. This 

approach can deal with computing orientation of buildings with square shapes where the 

directional extent of a building is not perceptually clear (Figure 5.4 (b)). The use of both 

axes of buildings has also been adopted for building clustering by Haowen, Weibel and 

Bisheng (2008). However, circular buildings and terraced buildings still cannot be handled 

using this approach. Furthermore, the longest side of the MBR as experimented by 

Duchêne et al. (2003) has been used by Qi and Li (2008) for building clustering despite this 

approach not being suitable for the building shapes shown in Figure 5.4(b), (c) and (e). 

When reviewing the literature, the MBR with the contribution of the major axis and the 

minor axis to define a common orientation approach by Li et al. (2004) and a wall 

orientation method by Duchêne et al. (2003) are both suitable for polygon clustering. 

However, if a wall statistical orientation algorithm (see Appendix C.2) is used for building 

polygon clustering, it would only have the exception for buildings with circular shape since 

data sets with irregularly shaped buildings (Figure 5.4(d)) are more rare. If the MBR with 

the significance of the major axis and the minor axis is used, it would often end up with 

two exceptions for circular or terraced shaped building polygons (Figure 5.4(c) and (e)). 

Figure 5.4  Smallest minimum bounding rectangle (SMBR): (a) SMBR = Walls (b) SMBR non-
consistent (c) SMBR and Walls non-consistent (d) Walls non-consistent and (e) SMBR ≠ 
Walls, based on Duchêne et al. (2003). 

(a) (b) (c) (d) (e) 

? ? ? ? 
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Table 5.1 Typical examples of the orientation difference between a rectangular pair of buildings 
based on the wall orientation algorithm by Duchêne et al. (2003). 

Case Orientation calculation with wall 
orientation (α) of each building Illustration 

I α1 and α2 > 450 
Orientation difference = (α2 – α1) < 450

II  α1 and α2 = 450 
Orientation difference = (α2 – α1) = 00 

III 

Situation I: 
 α1 < 450 and α2 > 450 and (α2 – α1) < 
450 
Orientation difference = (α2 – α1)

Situation II: 
α1 < 450 and α2 > 450 and (α2 – α1) > 
450 
Orientation difference = (900 + α1 – α2)

IV α1 and α2 < 450 
Orientation difference = (α2 – α1) < 450 

θ α1 
α2

θ α1

α2 

θ α1 α2

θ 
α1 α2
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Since the algorithm developed by Duchêne et al. (2003) calculates the orientation of a 

building based on its wall statistics with a value forced to be between 0 and π/2 along with 

a precision angle increment value (0.250 degrees used in this research), it is an appropriate 

candidate to compare the orientation difference between a pair of buildings because it 

can give a proper judgement of the orientation difference based on the visual impression. 

This is more emphasised when observing the pair of buildings illustrated in Case II, Table 

5.1 where the orientation difference between the pair of buildings is 00 when it is 

calculated by using the wall orientation algorithm. However, when it is calculated based 

on the MBR, the orientation difference is larger (900 degrees). Therefore, the algorithm by 

Duchêne et al. (2003) based on wall orientation is used to get the orientation difference 

between each pair of buildings in the clustering algorithm developed in this research. 

In the calculation of orientation difference with the wall orientation algorithm using a 

reference angle of 450 degrees, the algorithm adopted in this research describes how it 

calculates the orientation difference for the four cases illustrated in Table 5.1. The 

maximum orientation difference is forced to be a value between 00 and 450 (see Case III in 

Table 5.1). Adapting this range would enable human beings to perceive the difference 

between a pair of buildings with ease. 

Similarity difference 

Li et al. (2004) and Haowen, Weibel and Bisheng (2008) have defined two different 

measures in terms of size and shape based on the ratio of the area and the number of 

edges respectively in a pair of buildings to find the similarity difference between the two 

buildings in it. Further, when the orientation of a pair of buildings has no difference, both 

buildings must be completely similar in shape, size and orientation (Qi and Li, 2008). Based 

on this fact, using the ratio of area of intersection and the area of the union of the two 

building polygons superimposed together, the degree of similarity difference has been 

calculated by Qi and Li (2008). The ratio is an index (value) between 0 and 1, which is a 

linear estimation of similarity. However, a more robust method together with an 

improvement in the calculation of the similarity difference by Qi and Li (2008) is 

developed in this research where the similarity difference between a pair of buildings is 
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calculated using three values integrated together - symmetric difference, compactness 

and the Hausdorff distance. 

• Symmetric difference. This is the area ratio between the non-overlapping portions

of the two buildings and the total area of the two polygons. This is a value between

0 and 1 and it represents a linear estimation of similarity. If the two polygons

perfectly coincide, the area ratio is 1. The two geometries are superimposed using

a translation based on the two centroids of the building polygons before

calculating the ratio. Suppose the two buildings are - A and B - then the Symmetric

difference can be defined by the equation (1).

𝑆𝐷𝐴,𝐵 = 𝑆(𝐴∩𝐵)
𝑆(𝐴∪𝐵)

(1) 

Where, S(A∩B) is the area of the intersection of the two building polygons A and B, 

and S(A∪B) is the area of the union of building polygons A and B. 

• Compactness. This is defined as the area to perimeter ratio (CA, B) of the two

polygons. The compactness is a value between 0 and 1 and it represents a linear

estimation of similarity. If the two polygons perfectly coincide, its value becomes 1.

• Hausdorff distance. The Hausdorff distance (HD) measures the greatest local

deviation of two geometries (Atallah, 1983; Günter, 1991). The two geometries are

superimposed using a translation based on the centroids of the building polygons

before calculating this distance value. In order to compute this value, the discrete

Hausdorff distance (DHD) implementation in JTS is used. This function itself has a

method to densify the two geometries if the two geometries are to be discretized.

The DHD is an approximation to the HD based on discretization of the input

geometry where this distance is the maximum deviation between the discrete

points of the two geometries as in the HD calculation (Figure 5.5(a)). The discrete

points can be either existing vertices of the geometries (the default) or the

geometries with line segments densified by a given value (Figure 5.5(b)). Since no
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densification is applied in this work when deriving the similarity difference 

between an adjacent pair of buildings, the DHD thus calculated becomes the HD. 

The HD = 0 is mapped to 1 in the HD matching index. Any HD which is greater than or 

equal to 0.5 mm in map scale is mapped to 0 in the HD matching index. Therefore, the 

calculated matching index and the final similarity difference index depend on the target 

scale of the generalized map. Any HD which is greater than zero and less than 0.5 mm at 

map scale is mapped using equation (2). 

𝑀𝐻𝐷𝐴,𝐵 = 1 −𝐻𝐷 ×  1000 ×𝑇𝑆
0.5

(2) 

Where, 𝑀𝐻𝐷𝐴,𝐵 is the matching index of HD and TS is the Target Map Scale. 

Finally the similarity difference index (SA, B) is defined by the equation (3) by integrating 

three measures into one. 

SA, B = 𝑆𝐷𝐴,𝐵+ 𝐶𝐴,𝐵+𝑀𝐻𝐷𝐴,𝐵
3

(3) 

Where, SA,B is the Similarity difference index. 

Figure 5.5  Calculation of the Hausdorff distance: (a) distance D1 is the maximum of 
the distances from vertices of polygon A to any point in polygon B (the closest point 
in B might not be a vertex) and distance D2 is the maximum of the distances from 
vertices of B to any point in A (the closest point in A might not be a vertex). The 
Hausdorff distance dH (A,B) = max(D1, D2) and (b) the discrete Hausdorff distance dHD 
= max (D3, D2) after discretization of points of the two polygons A and B by 
densification (densified points are in red). 

A 

B 

D2 

D1 

A 

B 

D2 

D3 

(a) (b) 
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5.2.2  Clustering algorithm 

The following are the steps of the algorithm developed in this research for the automatic 

building clustering process. The Gestalt factors described in the previous Section 5.1 are 

used in this algorithm (see Appendix G.2 for the pseudo code). 

a) Clustering based on the proximity:

i. Construct the Delaunay constrained triangulation (DCT) network of buildings (Figure

5.6(a)).

ii. Create an adjacency relationship list of buildings by calculating the proximity using the

neighbourhood relations.

iii. Calculate the differences in orientation and similarity between each connected pair of

buildings in the adjacency relationship list and attach values to the list itself (Figure

5.6(b)).

iv. Weight each linked pair of buildings in the adjacency relationship list with the

proximity and create the MST (Figure 5.6(c)).

v. Then a 2D adjacency matrix is created by traversing through the segmentation of the

initial MST created based on three distance thresholds - very close, medium distance

and very far - depending on the target map scale on which the buildings are supposed

to represent (see Section 5.3 for the specifications used in the testing process). Each

element of the matrix stores the information of a pair of buildings in the format of

[bid_from (IDN 1), bid_to (IDN 2), proximity (dst), orientation difference (od) and

similarity difference index (simd)] into a single array. The null elements in the matrix

represent no adjacency link with “0,0” (Figure 5.7 (a)). The number of rows is the

number of MST segments, and the number of columns is three (3) based on the

hierarchy of proximity - very close, medium and very far.
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vi. The initial adjacency matrix is further refined based on the priority of proximity

hierarchy. In the initial adjacency matrix, comparison of common building IDNs

between pairs of buildings is carried out in three sequential steps between two

columns in the following order - 3 => 1, 2 => 1 and 3 => 2. If the same building IDN is

found in two of the columns once compared as in the above order, the building IDN in

the higher column is always removed (more priority is given to buildings that are

closer).

For example, as depicted in Figure 5.7, links between buildings 1-2, 2-3 and 3-4 belong 

to the column one (‘Very Close’) while link 3-5 belongs to column two (‘Medium’) and 

link 5-6 belongs to column three (‘Very Far’) in the initial adjacency matrix according to 

the distance thresholds. In this matrix, no similar building IDNs are found between the 

two columns 3 and 1 in the first level of comparison. In the second level of comparison 

between the two columns 2 and 1, building IDN 3 is available in both columns 1 and 2. 

Therefore, the building IDN 3 is removed from the second column, leaving building IDN 

5 single in the refined matrix [value (3,5,d4,o4,s4) is assigned (0,5)]. In the third level 

of comparison between the columns 3 and 2, the building IDN 5 is available in both 

columns. Now considering the priority, the building IDN 5 is removed from the third 

Figure 5.6  (a) DCT (b) adjacency relationship list (part) comprising of [bid_from, bid_to, 
proximity, orientation difference, similarity difference] and (c) MST segmentation in thick black 
lines with proximity as the weight where dst: proximity (minimum distance), od: orientation 
difference and simd: similarity difference index in shape  between an adjacent pair of buildings. 

(a) (b) (c) 

IDN 1, IDN 2, dst, od, simd 
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2 
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4 

5 6 

M VF 

VC  - Very close M  - Medium VF  - Very far 

(b) 

column thus leaving building IDN 6 single in the refined matrix (value (5,6, d3, o3, s3) is 

assigned the value (0,6)). Next, checking is done in each of the columns in the refined 

matrix to verify such a single building IDN (e.g. IDN 5 stored as (0,5) in column 2 of the 

refined matrix) is not linked with any other building in the same column. If it is linked, 

single building IDN 5 is removed from the column element making it null (i.e. 0,0). 

Once this step is complete, the adjacency matrix is completely refined for the final 

building clustering based on the proximity. 

vii. Based on the refined matrix, buildings are clustered on the proximity and clusters are

filtered out for all the three levels. A separate field called cluster_id is added to the

data set to store the cluster information. The cluster filtering algorithm is based on the

identification of similar IDNs by comparing pairs that are linked across elements of

each column (Figure 5.8) of the matrix and described as follows:

a. Iterate through the elements of each of the three columns of the adjacency matrix

other than elements with zero(s) in a pair.

# Very Close Medium Very Far 

0 BlinkArray1 
(1,2,d1,o1,s1) 0,0 0,0 

1 BlinkArray2 
(2,3,d2,o2,s2) 0,0 0,0 

2 0,0 BlinkArray3 
(3,5,d4,o4,s4) 0,0 

3 0,0 0,0 
BlinkArray4 

(5,6,d3,o3,s3) 

4 BlinkArray5 
(3,4,d5,o5,s5) 0,0 0,0 

5 0,0 
BlinkArray6 

(6,9,d6,o6,s6) 0,0 

(a) 

Figure 5.7  (a) 2D initial adjacency matrix based on the proximity hierarchy depending on the 
target map scale and (b) example of the distribution of buildings spaced at three levels - VC, M 
and VF. Outcome of clustering: buildings 1, 2, 3 and 4 are clustered as cluster ‘VC-1’, building 5 
as ‘MD-0’ and building 6 as ‘VF-0’ (buildings 5 and 6 become single buildings). 
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b. Get the linked pairs of building IDNs, finding a similar IDN of one pair in all the

other pairs stored in elements of the particular column.

c. If similar building IDNs are found in two consecutive pairs or more, the cluster IDN

of the first pair is assigned to other pairs.

d. If a building IDN of a pair in an element does not exist in all the pairs in other

elements of the column, the next incremental cluster IDN is assigned to the

available pair in the next element.

e. Go to the next element and follow steps (b) to (d) until the last row of the column.

viii. Then classify clusters based on the proximity with the following labels:

• Clusters comprising of buildings in very close proximity are labelled as VC-i (where i =

1,2, .., n).

• Buildings which are very far are considered to be single clusters and labelled as VF-0.

• A building, which gets isolated (single) such as building 5 (if one of the building IDNs in

a pair is zero) in the medium proximity range, as described in step vi, is labelled as

MD-0.

ix. Buildings which belong to medium proximity clusters are stored in the memory for

subsequent clustering process at the next hierarchical level (orientation difference).

# Column 
0 26,25 
1 27,26 
2 0,0 
3 64,43 
4 0,0 
5 44,43 
6 41,42 
7 0,0 
8 51,26 

Figure 5.8  An example of linked pairs and non-linked pairs with building IDNs in a 
column of the adjacency matrix. Each pair is stored in an element of the column. 

Cluster 1 

Cluster 2 

Cluster 3 
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b) Clustering based on the orientation difference:

i. Create a dynamic matrix to store building information related to the orientation

difference (next constraint after proximity difference) using the clusters of buildings

belonging to medium proximity except the single buildings that get isolated during

clustering based on the proximity (e.g. a building with cluster label MD-0). The number

of columns of the dynamic matrix depends on the number of linked pairs of buildings

in a single medium cluster and the number of rows depends on the number of

medium clusters formed during clustering based on the proximity.

ii. Iterate through each row of the dynamic matrix and check if all links in the

connectivity list are available in the cluster of buildings in that row. If one or more links

are missing, such links should be added to each cluster in the dynamic matrix with the

help of the connectivity list. The missing links can be caused by the MST segmentation

process with three proximity hierarchies - very close, medium and very far. Getting all

new connectivity links between the building IDNs in one cluster is performed from the

stored connectivity list generated during initial triangulation, and it is not necessary to

run the DCT again within each cluster.

iii. However, such connectivity links must be refined in each cluster by excluding the link

between each pair of buildings with the distance outside the medium distance range

(distances within close range and very far range) if available.

iv. Run the MST for each cluster stored in each row in the dynamic matrix iteratively with

the orientation difference as the weight.

v. Adopt similar steps iv to vii under Section (a) (clustering based on proximity) by

creating the initial adjacency matrix for the two hierarchies of the orientation

difference - small and very large - according to the threshold.
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vi. Classify clusters in the medium proximity range based on the orientation differences

with the following labels:

• Clusters comprising of buildings with large orientation differences are labelled as ML-i

(where i = 1, 2, …, n).

• A building, which gets isolated (single) due to a similar process described in step vi

under Section (a) (clustering based on proximity), is labelled as ML-0 (more priority is

given to buildings in pairs with small orientation differences).

vii. Clusters comprising of buildings with small orientation differences are stored in the

memory for subsequent clustering process at the next hierarchical level (similarity

difference).

c) Clustering based on the similarity difference index:

i. This process is same as that described in the clustering steps i to iv under Section

5.2.2(b) to create the dynamic matrix using clusters comprising of buildings with small

orientation differences. Next the two hierarchies of the similarity difference (next

constraint after the orientation difference) - similar and dissimilar pairs of building

geometries in shape - are used for clustering according to the threshold.

ii. Classify clusters in the medium proximity range based on the similarity difference

index with the following labels:

• Clusters comprising of buildings with similar shapes are labelled as MS-i (where i = 1,

2, .., n).

• Clusters comprising of buildings with dissimilar shapes are labelled as MDS-i (where i =

1, 2, .., n).

• A building, which gets isolated (single) due to a similar process described in step vi

under Section (a) (clustering based on the proximity), is labelled as MDS-0 (more

priority is given to buildings in pairs that are similar in shape).
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5.3  Testing of automatic clustering 

A GUI using open source Java object-oriented programming language (see Appendix B.3) 

has been developed for automatic building clustering. Topographic data are stored in the 

open source PostgreSQL database supported by PostGIS spatial extension (PostGIS, 2013) 

to handle spatial data (see Appendix E.1 for the SQL queries used). The following three 

new fields are added to the implementation of the clustering process to the data stored in 

a spatial database. 

• Global identification (glbl_id): This is used to identify each partitioned region in a data

set uniquely according to the global constraints (contextual features).

• Local identification (local_id): This is used to assign each building in a particular region

a unique IDN, which is used to find adjacency relationships of buildings using the DCT

and the MST.

• Cluster identification (cluster_id): This is the field used to store cluster classification

information about each building.

Initially, using Java GUI (frontend), the data stored in the spatial database (backend) are 

read to run the triangulation, to derive the Gestalt factors and to calculate the MST 

(Appendix B.3). Finally, the derived clusters are written to the database in the cluster_id 

field. In using the hierarchies of the Gestalt factors - proximity, orientation difference and 

the similarity difference - threshold values are to be used. The Java GUI enables setting 

these threshold values. Based on the experience as mentioned by Li et al. (2004), 

empirical value 0.5mm of the target map scale is used as the separation threshold 

between two buildings. This is the threshold for the very close cluster in the proximity 

hierarchy. Threshold values for orientation and similarity are determined by the following 

criteria in this research: 
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Threshold values for the proximity: 

• Very close distance threshold (minimum separation distance between two buildings):

0.5mm of the target map scale (Figure 5.7). Any two neighbourhood buildings which

are spaced at a distance less than or equal to the above threshold value based on the

target map scale are considered to be in the very close range of proximity in cluster

formation.

• Medium distance threshold: 0.5mm < d <= 2mm of the target map scale. Any

neighbouring buildings which are spaced at a distance d are considered to be in the

medium range of proximity.

• Very far distance threshold: d > 2mm of the target map scale. Any neighbouring

buildings which are spaced at a distance d are considered to be in the very far range of

proximity.

Threshold value for the orientation difference: 

• The orientation difference threshold is taken as the angle subtended in degrees by an

arc of 0.125mm with a radius of 1m (Figure 5.9). Thus, the angle used is 70 degrees to

generate results.

Threshold value for the similarity difference: 

• The similarity difference index used in the generation of results is 0.75. Any value

which is greater than or equal to 0.75 and less than or equal to 1 indicates that the

two neighbourhood buildings are similar and any value which is less than 0.75

indicates that the two neighbourhood buildings are dissimilar in shape.
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However, these threshold values for the medium and the very far ranges of proximity, 

orientation difference and the similarity difference are to be empirically determined. 

5.3.1 Results of automatic clustering 

Data set – I: Ordnance Survey MasterMap 

Figure 5.10 represents an OS MasterMap source data set at the scale of 1 : 1.25K. The aim 

is to create a target map at the scale of 1 : 5K with the parameter values mentioned in 

Section 5.3 of the three Gestalt factors - proximity, orientation difference and the 

similarity difference. According to the clustering results in Figure 5.10 in a single region 

surrounded by the road network, it can be seen that there are fifteen (15) building 

clusters that are classified as ‘very close’ depending on the neighbourhood distance. There 

are seven (7) building clusters in the medium distance range, which satisfy the threshold 

for orientation difference but do not satisfy the threshold for the similarity difference 

index to become similar clusters. Buildings in these clusters are labelled as dissimilar. 

When observing the two dissimilar clusters in the medium range - MDS-6 and MDS-7 - 

buildings in both clusters satisfy the threshold for the orientation difference (i.e. 

orientation difference <= 7 degrees). However, the two buildings marked ‘X’ in both of 

these clusters as shown in Figure 5.10, which constitute a pair of buildings according to 

the neighbourhood relations in the triangulation, do not satisfy the threshold for the 

orientation difference. As a result, two clusters - each with a small orientation difference - 

Figure 5.9  (a) Separation threshold between two buildings and (b) angle 
ө subtended by an arc of 0.125mm with radius r = 1m. 

 

0.5m

0.125mm

r = 1m 

ө 

(a) (b) 
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are formed. This is the reason as to why further clustering with the next constraint - the 

similarity difference - on these two clusters creates two dissimilar clusters labelled MDS-6 

and MDS-7 in the clustering results. Therefore, this approach does not only serve as a 

potential method to identify buildings distributed in clusters, but also a method for so-

called building alignments in clusters. There are five (5) single buildings that belong to the 

medium distance range according to cluster classification (i.e. buildings with cluster_id 

‘MD-0’). These are formed due to the consideration of hierarchical priority in forming the 

adjacency matrix for clustering (i.e. buildings that are very close are given more priority 

than those in the medium range). There is a single building that belongs to cluster_id ‘ML-

0’. When analysing this building and the building marked ‘X’ in cluster ‘MDS-6’, these two 

buildings belong to the medium range distance with a large orientation difference 

according to the threshold, but due to the hierarchical priority of orientation difference 

(i.e. ‘small’ and ‘large’), the building in black colour gets isolated from the pair and 

classified as ‘ML-0’. In the results, there are eight (8) buildings that are clustered as single 

entities with ‘Very far’ classification based on the very far distance threshold value. 

It is important to mention that when changing the threshold values in the three Gestalt 

factors considered in the clustering depending on the target map scale, the results end up 

with different clusters. However, in order to use empirical values for proximity (medium 

range), orientation difference and similarity difference index, the automatic results need 

to be compared and validated with that of the manual cluster perception in the 

distribution of building geometries for subsequent automatic map generalization. 
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Data set – II: Topographic data of the National Mapping Authority of Sri Lanka 

Figure 5.11 depicts clustering results of building polygon geometries at the scale of 1 : 1K 

in three separate regions - R1, R2 and R3 - surrounded by the road network. The aim is to 

create a target map at the scale of 1 : 10K with the parameter values mentioned in Section 

5.3 of the three Gestalt factors - proximity, orientation difference and the similarity 

difference. When observing the region R2, it should be noted that the algorithm for 

orientation by Duchêne et al. (2003) used in this research works well for the terrace 

shaped buildings. 

Figure 5.11  Automatic building clustering on the source data at the scale of 1 : 1K, showing 
three different regions R1, R2 and R3 surrounded by the road network in (a), (b) and (c). 
Note: Each cluster is shown here by a unique colour. 

(a) (b) 

(c) 

R2 

R1 

R3 
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The R1 region has only two clusters in which one belongs to very close proximity and the 

other belongs to a medium distance range with a larger orientation difference. Further, 

the R3 region has six (6) clusters with a close distance range, one cluster belonging to a 

medium distance range with similar shape and the other cluster in the medium distance 

range with dissimilar shape. All the other clusters are single buildings. 

5.3.2 Synopsis of the contributing algorithms used 

Table 5.2 summarises the contributing algorithms of the main polygon clustering 

algorithm developed in this research. 

Table 5.2  Main polygon building clustering algorithm with the contributing algorithms: (1) new 
algorithm (Section 4.4) coupled with incremental point insertion based on the recursive edge-
flipping technique by Berg et al. (2008) (2) wall statistical weighting for deriving building 
orientation by Duchêne et al. (2003) (3) new algorithm for similarity difference using the 
algorithm for discrete Hausdorff distance described by Atallah (1983) and Günter (1991) 
(Section 5.2.1) (4) MST (Prim, 1957) (5) new algorithm to segment the MST (Section 5.2.2) for 
creating clusters and (6) new algorithm for cluster classification (Section 5.2.2). 

Main  
algorithm # Contributing algorithms Purpose 

Hi
er

ar
ch

ic
al

 b
ui

ld
in

g 
po

ly
go

n 
cl

us
te

rin
g 

1 DCT**

Topology and proximity 
derivation between 

buildings 

2 Wall statistical weighting* 
Calculation of orientation 

difference between a 
building pair 

3 

Similarity index measure using a combination of 
overlapping ratio, area to perimeter ratio (compactness) 

and discrete Hausdorff distance 
between a pair of buildings** 

Similarity measure for shape 
and size between buildings 

in a pair 

4 MST*

To find near optimal 
neighbours in a tree with a 
cost value (e.g. distance) 

5 MST segmentation*** To identify hierarchical 
clusters 

6 Cluster classification***
To assign a sequential label 

to each cluster based on 
classification 

* Existing algorithm
**   Modification and/ or extension to an existing algorithm 
*** New algorithm 
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5.3.3 Evaluation of the clustering results 

The clustering results are evaluated based on the collected data with a two-phase focus 

group user testing that was carried out as explained in detail in Section 3.3.2. 

Data collection - Phase I 

The participants for this phase were chosen as described in Section 3.3.2. The focus group 

testing was conducted at the head office of the NMA of Sri Lanka on 10th August 2012 

from 10.00 hrs to 12.00 hrs. In this phase, subjects were asked to apply manual clustering, 

following the instructions given in Appendix D.3 on a topographic map at the scale of 

1 : 4K (Appendix D.1). 

Procedure adopted for cluster evaluation: 

i. Assign clusters manually in each region (22 partitioned regions: see Appendix D.2) in

the digital data set of source map stored in PostGIS based on the analogue results of

the drawn clusters (see Appendices D.4 and D.5 for manual clustering results of

randomly selected subjects from each group) collected using both expert and lay

groups. There are 30 such feature layers created in PostGIS (layer names: exp1_poly to

exp15_poly and lay1_poly to lay15_poly).

ii. Create convex hulls of automatically generated clusters except single building clusters

in PostGIS database based on the automatic clustering algorithm (feature layer names

of the generated convex hulls: hull_glbli where i = 1-22).

iii. Create a convex hull on each cluster created manually in the source data for each

region by each subject from both lay and expert groups (feature layer names of the

generated convex hulls: expi_glblj where i = 1, 15 and j = 1, 22 for expert group and

layi_glblj, where i = 1, 15 and j = 1, 22 for lay group). See Appendix D.4 and D.5 for

manual clustering results.

iv. Then convex hulls under each region created by step (ii) above are matched with that

of created by step (iii) by each subject using the symmetric difference of polygons with

the JCS algorithm library (Vivid Solutions JCS, 2003) with a prototype developed in this
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research (see Appendix B.4) as used by Revell and Antoine (2009). This matching is 

performed to understand how close the manual clustering results of subjects to the 

automatic clusters generated by the algorithm developed in this research. In this 

matching process, manual clusters which are matched to a value greater than or equal 

to 75% with that of automatic clusters are considered to be matching clusters. 

v. Finally, the evaluated results of automatic clustering and manual clustering in each

region by the subjects in both groups are written to a file in ASCII format (see Appendix

D.6 for the results in a tabular format).

Analysis of the clustering results - Phase I 

Tables 5.3 and 5.4 summarise the clustering results of the expert and the lay groups 

respectively. 

Table 5.3  Summary of the clustering results of the expert group derived from the cluster data 
given in Appendix D.6 in each of the twenty two regions compared with automatic clustering 
results. Highlights are the regions involved with hierarchical clustering. 

Region 
IDN 

No. of automatic clusters 
Average no. of manual 

cluster classification by the 
group 

Percentage cluster 
classified ratio (manual 

average/automatic)  
VC ML MS MDS VC ML MS MDS VC ML MS MDS 

1 1 1 - - 0.6 0 - - 60 0 - - 
2 5 - - 1 1 - - 0 20 - - 0 
3 6 - 1 1 1.5 - 0 0 25 - 0 0 
4 6 1 - 2 1.7 0 - 0 28 0 - 0 
5 40 6 1 5 7.3 0 0 0 18 0 0 0 
6 2 - - - 0.4 - - - 20 - - - 
7 19 - - 4 4.7 - - 0 25 - - 0 
8 1 - - - 0.6 - - - 60 - - - 
9 8 - - - 2 - - - 25 - - - 

10 13 1 - 1 2.9 0 - 0 22 0 - 0 
11 1 - - - 0.33 - - - 33 - - - 
12 1 - - - 0.2 - - - 20 - - - 
13 1 1 - - 0.73 0 - - 73 0 - - 
14 1 - - - 0.73 - - - 73 - - - 
15 1 - - - 0.73 - - - 73 - - - 
16 3 - - - 0.4 - - - 20 - - - 
17 3 1 - 2 0.93 0 - 0 31 0 - 0 
19 1 - - 2 0.2 - - 0.13 20 - - 7 
20 6 - - - 1.06 - - - 18 - - - 
21 1 - - - 0.33 - - - 33 - - - 
22 4 - - - 1.06 - - - 27 - - - 
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When observing the summarised results in Tables 5.3 and 5.4, it can be seen that both lay 

and expert groups have attempted clustering of buildings belonging to very close range 

distance, although results are not so satisfactory on average in identifying such clusters in 

all the regions. When comparing the results of both groups, regions with a few or single 

clusters of buildings belonging to very close range (regions 1, 13, 14 and 15 in Figure 5.12) 

have shown a rather satisfactory cluster classification ratio. 

The reason is that the buildings in these regions have been clustered based on proximity 

alone without hierarchical clustering perception which involves partitioning clusters into 

multiple levels as described in Section 2.3.2. However, similar types of clusters in regions 

11, 12 and 16 show a low percentage in the Tables 5.3 and 5.4. This could be due to the 

Table 5.4  Summary of the clustering results of the lay group derived from the cluster data 
given in Appendix D.6 in each of the twenty two regions compared with automatic clustering 
results. Highlights are the regions involved with hierarchical clustering. 

Region 
IDN 

No. of automatic clusters 
Average no. of manual 

cluster classification by the 
group 

Percentage cluster 
classified ratio (manual 

average/automatic)  
VC ML MS MDS VC ML MS MDS VC ML MS MDS 

1 1 1 - - 0.66 0 - - 66 0 - - 
2 5 - - 1 0.86 - - 0 17 - - 0 
3 6 - 1 1 1.26 - 0 0 17 - 0 0 
4 6 1 - 2 1.73 0 - 0 29 0 - 0 
5 40 6 1 5 5.4 0 0 0 14 0 0 0 
6 2 - - - 0.27 - - - 14 - - - 
7 19 - - 4 2.46 - - 0 13 - - 0 
8 1 - - - 0.33 - - - 33 - - - 
9 8 - - - 1.73 - - - 22 - - - 

10 13 1 - 1 1.6 0 - 0 12 0 - 0 
11 1 - - - 0.33 - - - 33 - - - 
12 1 - - - 0.13 - - - 13 - - - 
13 1 1 - - 0.27 0 - - 27 0 - - 
14 1 - - - 1 - - - 100 - - - 
15 1 - - - 0.87 - - - 87 - - - 
16 3 - - - 0.13 - - - 4 - - - 
17 3 1 - 2 0.4 0 - 0 13 0 - 0 
19 1 - - 2 0 - - 0 0 - - 0 
20 6 - - - 0.4 - - - 7 - - - 
21 1 - - - 0.13 - - - 13 - - - 
22 4 - - - 0.93 - - - 23 - - - 
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reason that though buildings in these clusters are located at very close range according to 

the results of the automatic method, it is difficult to judge visually if they belong to very 

close clusters. When the distances are close to the medium distance range threshold (see 

regions 11, 12 and 16 in Figure 5.12), clusters can be perceived in the medium range by 

the subjects where hierarchical clustering is involved. 

Figure 5.12  Automatic clustering results in: (a) region 1 (b) regions 14, 15 and 16 (c) regions 
11, 12 and 13 and (d) region 19. 
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The lay group has perceived clusters of buildings in the medium distance range more 

satisfactorily than the expert group when considering the average percentages of the 

subjects who recognized manual clusters belonging to the medium range in both expert 

and lay groups in all the partitioned regions where hierarchical clustering is involved (lay 

group: 9.3% and expert group: 8%, derived from the results of Table 5.5). 

It is also understood that the results of correctly classified clusters in regions with larger 

areas (see regions 5 and 7 in Figure 5.13(a) delineated in brown colour - see Appendix D.2 

for a more enlarged view) by both groups are very poor. This could be further emphasised 

when analysing the percentages of correctly identified clusters with a misclassification in 

regions 5 and 7 by the subjects in both expert and lay groups in Table 5.6 below. The 

reason could be that the subjects have lost concentration while making an strenuous 

effort to perceive and categorise clusters belonging to different types of classifications 

during the manual hierarchical clustering. The subjects performed this clustering as 

instructed in the experiment (see Appendix D.3) using the cluster classification and 

labelling method in the clustering algorithm explained in Section 5.2.2, implemented for 

automatic clustering in this research. 

Table 5.5  Summary of the results in identifying the medium distance range clusters for the 
hierarchical application of the Gestalt constraints - orientation and similarity difference - by 
the expert and the lay groups, derived from the cluster data given in Appendix D.6. 

Region IDN involved hierarchical 
clustering 

Percentage of subjects who recognized  manual 
clusters belonging to  medium distance range 

Expert group Lay group 
2 0 13 
3 40 13 
4 0 7 
5 13 13 
7 0 7 

10 7 7 
13 0 7 
17 7 0 
19 20 27 
21 0 7 
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When considering the results of clustering by the two groups shown in Tables 5.3 and 5.4 

above, the lay group has not performed hierarchical clustering with the classification in 

any of the regions, while the expert group has performed such clustering only in region 

19, but with a very low cluster classification ratio. The clear, typical building configuration 

in region 19 should have enabled them to perceive hierarchical clusters (Figure 5.12(d)). 

However, the lay group has got the highest percentage rate of identifying buildings in the 

medium distance range in region 19 when observing Table 5.5 which gives information 

about the regions in which hierarchical clustering was attempted by the participants. This 

emphasises that the lay group has at least attempted hierarchical clustering. This appears 

to arise because it is the buildings in the medium range that are hierarchically clustered 

after clustering buildings in the very close regions with the proximity in the next step 

based on the orientation and the similarity as discussed in the clustering algorithm in 

Section 5.2.2. 

Figure 5.13  (a) Partitioned regions surrounded by the road network where inner roads are 
ignored and (b) building features within each region. 
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Data collection - Phase II 

The same participants who took part in the first phase of user testing were used in this 

phase as well. This user testing was also conducted at the head office of the NMA of Sri 

Lanka on 13th September 2012 from 09.30 hrs to 10.30 hrs, almost one month after the 

elapse of phase I. In this phase, the idea was to evaluate the automatic clustering 

approach with the feedback of subjects by way of a structured questionnaire (see 

Appendix D.7), comparing each of their manual clustering results with that of the 

automatic results as explained in Section 3.3.2. 

Table 5.6  Summary of the results of percentages of the subjects in both 
groups identifying clusters with a misclassification, derived from the 
cluster data given in Appendix D.6. 

Region IDN 

Percentages of correctly identified 
clusters manually in each region, but 

with a misclassification 
Expert group Lay group 

1 - 7 
2 40 40 
3 53 20 
4 40 33 
5 93 80 
6 13 27 
7 87 47 
8 20 60 
9 27 13 

10 67 53 
11 13 13 
12 7 20 
13 20 40 
14 - - 
15 - 7 
16 27 13 
17 60 27 
18 13 - 
19 40 7 
20 33 27 
21 7 13 
22 20 20 
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Analysis of the clustering results – Phase II 

In the analysis of the results, Table 5.7 summarises the answers of questions 1 and 2, 

Table 5.8 for questions 5(a), 6(a) and 7(a), Table 5.9 for questions 3(a), 8 and 9(a), and 

Table 5.10 for questions 4 and 10 posed in the structured questionnaire (see Appendix 

D.7). 

Type of 
analysis Results Outcome 

(i)
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us
te

r r
es
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87% of the subjects 
in both groups 
rated automatic 
clustering good to 
Excellent 

(ii
). 

U
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f c
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 c
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n 
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100% of subjects in 
both groups agreed 

Table 5.7  Evaluation of the automatic clustering method by the expert and the lay groups. 
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Table 5.8  Evaluation of the use of threshold values of the Gestalt factors - proximity, 
orientation and similarity in the automatic clustering method by the expert and the lay groups. 

Type of 
analysis Results Outcome 
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93% of subjects in 
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) - 67% of subjects in 
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  All subjects in both 
groups agreed 
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Table 5.9  Evaluation of the comparison of manual clustering approach with the 
automatic clustering by the expert and the lay groups. 

Type of 
analysis Results Outcome 
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m
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g - Lay group claims 
that their results   
are totally matched 
(100%) 

- Expert group claims 
that their match is 
about 80% 
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concept of hierarchical 
clustering 
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) 

- Majority (53%) in the 
lay group claim no 
significance 
difference 

- Majority (60%) in the 
expert group claim a 
significant difference 
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Table 5.10  Evaluation of the adaptation of manual clustering process by the expert and 
the lay groups. 

Type of 
analysis Results Outcome 

(i)
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- 47% of subjects in the 
expert group claim it to 
be difficult to very 
difficult 

- 40% of subjects in the 
lay group claim it 
difficult 

(ii
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- 67% of subjects in the 
expert group claim it to 
be satisfactory 

- 53% of subjects in the 
lay group claim it to be 
satisfactory 

Table 5.11  Summary of the answers to the Question 3(b) of the 
questionnaire in Appendix D.7.  

Reasons for cluster mismatch Expert group Lay group 
Varying perception from subject to subject  
Adherence to a specific criteria by the automatic 
method  

Difficulty in distinguishing medium distance range  

Difficulty in differentiating orientation difference 
between buildings 
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According to the results of Table 5.11, both groups have mentioned that the cluster 

mismatch is mainly due to the varying perception from subject to subject in addition to 

the other reasons given by each of the two groups. 

Table 5.12 elaborates the results of difficulties encountered by the subjects in applying the 

Gestalt factors manually in a hierarchical manner depicted in Table 5.10(i). According to 

the results of Table 5.12, both groups have concluded that the hierarchical approach of 

applying the Gestalt factors - orientation and similarity in shape and size - are difficult. 

Another important reason for the difficulty mentioned is the cognitive load which subjects 

have to undergo in manual clustering as mentioned by the expert subjects. 

7% of the subjects of both groups have disagreed with the medium distance range (md) 

used in the automatic clustering method as depicted in Table 5.8(i) related to Question 

5(b) in the questionnaire. Subjects of the expert group were of the view that the range 

should be within 0.5mm and 4mm (0.5mm <= md <= 4mm) while the lay group was of the 

view that it should be within 1mm and 5mm (1mm <= md <= 5mm). However, the lower 

threshold value (1mm) suggested by the lay group cannot be used since the empirical 

value 0.5mm has been the value requested to be used in the manual clustering approach 

during the experimentation (see Appendix D.3). 

Reasons for the difficulty in applying the Gestalt 
factors hierarchically 

Expert group Lay group 

Application of orientation and similarity in shape 
and size is difficult  
Keeping a lot of information in mind (cognitive load 
high) difficult to handle   

Manual process time consuming  

Requires further experience  

Difficulty in referring to target result  every time in 
the manual clustering process 

 
Thresholds applied are guessed in manual method, 
but in automatic method, absolutes values are used 

 

Table 5.12  Summary of the answers to the Question 4(b) of the questionnaire in Appendix D.7. 
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Table 5.13 elaborates the results of non-compliance of the orientation threshold used by 

the subjects with that used in the automatic method depicted in Table 5.7(ii). When 

analysing the reasons given by the subjects in Table 5.13, further testing of the orientation 

threshold needs to be carried out. 

Table 5.14 elaborates the results of the significant difference between the manual cluster 

perception and the automatic clustering depicted in Table 5.9(iii) above. When analysing 

the reasons given by the subjects in Table 5.14, the main reason given by both groups is 

the varying perception of clusters from subject to subject. 

Table 5.13  Summary of the answers to the Question 6(b) of the questionnaire in Appendix D.7. 

Reasons for the non-compliance with the 
orientation threshold 

Expert group Lay group 

Arc distance used in the algorithm smaller (use arc 
distance of 2mm or greater and check results)  

For small buildings, with 70 degrees, no significant 
difference of orientation between pairs of 
buildings observed (smaller the building, larger the 
threshold value to be applied - requires further 
testing) 

 

Table 5.14  Summary of the answers to the Question 9(b) of the questionnaire in Appendix D.7. 

Reasons for the significant difference Expert group Lay group 
Non-consideration of hierarchical clustering  

Change of clustering results due to varying human 
perception  
Distance criteria applied was different   
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Implications of the cluster evaluation 

Based on the analysis of the results of phase I and phase II of the manual clustering 

approach in comparison with the automatic clustering method, it can be understood from 

the results that none of the groups have perceived hierarchical clustering as done by the 

automatic clustering method developed in this research. However, the subjects have 

perceived clusters based on proximity rather than the other two Gestalt factors - 

orientation difference and the similarity difference in shape and size - where no 

hierarchical clustering is involved. When considering the clusters that involve hierarchical 

clustering with proximity followed by the orientation difference and the similarity 

difference in shape and size, their ability to distinguish such clusters is very poor. Among 

the main reasons for this inability that can be drawn from the analysis are: (a) high 

cognitive load in the application of Gestalt factors hierarchically in regions within which a 

large numbers of clusters exist (b) less capability in distinguishing orientation difference 

between an adjacent pair of buildings, especially when one building is very small 

compared to the other building in the pair and (c) human perception differences in 

guessing threshold regions in the application of the Gestalt factors. However, the subjects 

have not found it difficult to distinguish the similarity difference between a pair of 

buildings compared to the orientation. 

It is also important to mention that one of the intentions of the experiment is to get an 

insight into the use of threshold regions in the application of the three Gestalt factors - 

proximity, orientation difference, and similarity difference in shape and size - for the 

purpose of deriving generalized maps at the target scale of 1 : 10K only. Depending on the 

scale and the purpose of the generalized map, these threshold regions can vary. 

In the whole evaluation process, the clusters were treated within a region surrounded by 

the contextual features (regions surrounded by the road network in the experiment). 

Subjects were instructed to ignore inner roads within each region on the assumption that 

they would be removed in the generalization process (see Appendix D.3). But in reality, 

there can be inner roads that should be represented in the target generalized map. When 

visualising automatic clustering results, it should be realised that the incorporation of 

146 



inner contextual features is necessary for separating clusters more appropriately for 

subsequent generalization. This can be further emphasised when observing the very close 

cluster labelled ‘VC-1’ in Figure 5.14. Since building adjacency relationships within the 

region have been considered ignoring inner roads, cluster - ‘VC-1’ - has got buildings on 

either side of the inner road. 

In order to consider inner contextual features of buildings within a region, not only the 

adjacency relationships between building features, but also the adjacency relationships 

between buildings and other contextual features inside the region must be derived and 

used in the clustering process. The DCT developed in this research and used in the 

clustering process deals only with polygon geometries. When contextual features such as 

roads and hydrographic features are considered, both line and polygons of such 

geometries exist and, therefore, the triangulation algorithm used should be able to handle 

both polygon and line geometries. 

Figure 5.14  Automatic building clusters (yellow) in region 9 used in the clustering experiment. 
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Modification to the clustering algorithm 

In order to enable the derivation of adjacency relationships between buildings, taking into 

account contextual features, the clustering approach is further improved with the 

extension described in Section 4.2.2 to attach feature geometry IDNs of buildings and 

contextual features to Steiner points introduced in the triangles generated by the CNDT 

described in Section 4.2 in a new data enrichment prototype (see Appendix B.5). In this 

approach, line geometries of contextual features - roads and hydrographic features - are 

processed together with building polygons to derive adjacency relationships as shown in 

Figure 5.15. Hence the DCT method (see Table 5.2) is replaced with the modified CNDT in 

the automatic clustering approach. However, the DCT that can only deal with polygons will 

be used in the generalization phase for retrieving adjacency relationships between 

buildings. 

Figure 5.15  Generation of the CNDT using buildings and roads with the enforcement of 
their edges as constraints within region 9 used in the clustering experiment. 
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Figure 5.16 depicts the results of the automatic clustering within region 9 after 

incorporating contextual roads inside the region in the automatic clustering process. Now 

it can be observed that the cluster labelled ‘VC-1’ (see Figure 5.14) obtained by the 

previous automatic clustering without taking into account the contextual inner roads, is 

now split into two on either side of the road when observing the results. 

There can also be rare instances where some buildings get isolated depending on their 

location in relation to contextual features (e.g. a single building gets isolated from other 

buildings inside an inner circular road). If such buildings exist, these buildings are not 

considered in the automatic clustering process because they are not captured in creating 

the building adjacency list in the triangulation. As a result, such buildings are considered 

to be non-clustered (not present in the initial adjacency matrix) and assigned a label 

‘NC-0’ in addition to the cluster classification described in the automatic clustering 

algorithm in Section 5.2.2. 

Figure 5.16  Automatic building clusters (light green) in region 9 after deriving adjacency 
relationships between buildings, taking into account the contextual inner roads within the 
region. 
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5.4    Shape enrichment of clusters 

Once the automatic clustering is complete, some more enrichment to each cluster should 

be assigned in order to support choice of building aggregation algorithms based on the 

shape of the outline (orthogonal or non-orthogonal) of building polygons that touch the 

outline of each cluster polygon. The reason is that after the aggregation of buildings in 

clusters during the subsequent automatic generalization process, the shape of the outline 

and orientation of the aggregated building needs to be maintained depending on the 

shape of the outline and the orientation of buildings of the cluster. The clusters of the 

buildings touching the outline with orthogonal sides have to be aggregated maintaining 

orthogonality of the sides of the new aggregated buildings while buildings with non-

orthogonal sides on the outline can be aggregated without maintaining orthogonality. 

Although the orientation has already been dealt with in the clustering process, its impact 

on the shape of the outline of buildings in a cluster has not been considered. Therefore, 

the enrichment of clusters in relation to the shape of their outline for determining the 

orientation is an important criterion and will be dealt with in this Section. 

5.4.1 Testing of algorithms for retrieving buildings at the cluster outline 

Convex Hull based algorithm 

(i) Create convex hull of the union of buildings in each cluster iteratively. 

(ii) Iterate through each building in the union and identify buildings that share an edge 

with the convex hull. 

(iii) Go to the next cluster and follow steps (i) and (ii) until the end of all clusters. 

Analysis of the results 

When analysing the buildings that share a side with the convex hull in the cluster in Figure 

5.17(a), the building IDN 7 that potentially should touch the cluster outline is not chosen 

due to its significant concavity in shape. However, when the cluster shape is convex, 

convex hull approach works well (Figure 5.17(b)) and it chooses all the buildings (e.g. 
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buildings with IDNs 3, 4, 6, 7 and 8) that can potentially touch the cluster outline. 

Therefore, using convex hull approach in determining the shape of clusters is not a 

suitable approach for finding buildings that touch the cluster outline. 

Concave hull based algorithm 

For this purpose, the open source Java library for concave hull implementation with JTS 

(Concave hull, 2013) based on the algorithm developed by Duckham et al. (2008) is used. 

(i) Create concave hull of the union of buildings in each cluster iteratively. 

(ii) Iterate through each building in the union and identify buildings that share an edge 

with the concave hull. 

(iii)  Go to the next cluster and follow steps (i) and (ii) until the end of all clusters. 

Figure 5.17   Building clusters on synthetic data: (a) convex hull of the cluster 
of concave shape and (b) cluster of convex shape. 
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Analysis of the results 

When testing the implementation with synthetic data, it is realised that the results are a 

little bit unexpected when the algorithm is used with different distance thresholds (see (a) 

and (b) in Figures 5.18 and 5.19). However, when a distance slightly larger than the 

maximum side length of all the sides of buildings in the cluster is used, the concave hull 

generated is quite satisfactory for identifying border touching buildings in both convex 

and concave clusters (see (c) in Figures 5.18 and 5.19). A problem may occur in finding the 

maximum side length of all the buildings if the edges have splits at closer intervals in the 

data set (building IDN 1 in Figure 5.19 has edges split into short segments). Therefore, it is 

required to simplify each building geometry to remove such splits before finding out the 

maximum length to be used in generating the concave hull. The next sub-topic will 

introduce an improved concave hull based algorithm in this research to extract the 

buildings that touch the outline of the cluster. 

Figure 5.18  Concave hull generation of a concave cluster of buildings on synthetic data: (a) 
concave hull with 0.0 m distance threshold (b) with 10.0 m distance threshold and (c) with 12.1 
m distance threshold which is slightly greater than the maximum distance of all the building 
edges in the cluster. 
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Improved Concave hull based algorithm 

i. Iterate through each building geometry in the cluster and get a building. 

ii. Iterate through each connected pair of edges of the building and find the common 

vertex between the pair. 

iii. Work out the angle formed by the pair at the common vertex. If the angle formed <= 

10, the vertex is a candidate to be removed from the building geometry. 

iv.  Check if the number of edges > 3. If yes, remove the candidate vertex from the 

geometry. 

v. If the number of edges = 3, the geometry becomes a triangle, and the removal of a 

vertex will lead to an invalid geometry polygon. Therefore, when the geometry is a 

triangle, simplification is stopped. 

vi. After all the edge iterations, what is left is a collection of simplified vertices. 

Recreate the simplified geometry using this collection of vertices. 

Figure 5.19 Concave hull generation of a convex cluster of buildings on synthetic data: 
(a) concave hull with 0.0 m distance threshold (b) with 10.0 m distance threshold and 
(c) with 11.56 m distance threshold which is slightly greater than the maximum 
distance of all building edges in the cluster. 
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vii. Iterate through each side of the simplified geometry and find out the maximum side

length.

viii. Generate the concave hull with a distance threshold slightly greater than the

maximum side length (e.g. distance threshold = maximum side length + 0.1).

5.4.2 Testing of new algorithms for the cluster shape enrichment 

This Section describes how a new algorithm has been developed, tested and refined in this 

research based on the improved concave hull generation algorithm as explained in the 

previous Section 5.4.1. Clusters belonging to the larger orientation category (i.e. clusters 

starting with the label ‘ML’ as described in Section 5.2.2 above) and isolated buildings are 

not subject to the shape enrichment, hence not considered in the query. Each cluster of 

buildings with a larger orientation difference is recorded as non-orthogonal while each 

cluster of buildings with a smaller orientation difference is recorded as orthogonal in the 

spatial database. The algorithm has been implemented in the spatial clustering GUI (see 

Appendix B.5). SQL queries used are given in Appendix E.1. 

Cluster shape enrichment algorithm I 

i. Query clusters belonging to a very close region (i.e. labels starting with ‘VC’) and

clusters in the medium range with a smaller orientation difference (i.e. labels

starting with ‘MS’ and ‘MDS’) and create a union of buildings with the group cluster

IDN and its classification iteratively.

ii. In each cluster, create a concave hull of the union of buildings based on the

improved concave hull based algorithm given above.

iii. Iterate through each building in the union and identify buildings that share either an

edge or point with the concave hull (the buildings that touch the outline of each

cluster).

iv. Check orthogonality of each such building in the building union (cluster) with the

building orientation algorithm by Duchêne et al. (2003).
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v. If all the buildings that touch the outline of the cluster have orthogonal sides i.e.

confidence interval >= 80% as defined by Duchêne et al. (2003), record shape of

such clusters to be orthogonal in the spatial database layer.

vi. If confidence interval < 80%, record the particular cluster as non-orthogonal in the

spatial database layer.

vii. Go to the next cluster and perform the steps (ii) to (vi) until the end of all clusters.

Analysis of the results of the shape enrichment algorithm I 

When analysing the cluster shape enrichment results in Figure 5.20, it is observed that 

some very close clusters identified to be orthogonal by the cluster shape enrichment 

algorithm, do not possess a reasonable orthogonal outline (e.g. Clusters labelled VC-6 in 

regions 4 and 5, and clusters labelled VC-30 and VC-31 in region 5 delineated in red 

colour). 

Figure 5.20  Shape enrichment of clusters in three regions 4,  5 and 7 (part of) surrounded by the 
road network: clusters of orthogonal shape are shown in cyan colour while clusters of non-
orthogonal shape are shown in yellow colour with the cluster label of each building shown in the 
cluster. Data source: 1 : 1K data of the NMA (Sri Lanka). Copyright reserved. 
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When analysing the very close clusters, it is understood that not only the orthogonality of 

buildings, but also the orientation of buildings in the cluster outline makes a significant 

effect in determining the orthogonal shape of a cluster. This may have happened because 

during the clustering process, only the proximity Gestalt factor is used in creating a very 

close cluster, assuming that there is no any significant orientation difference between 

buildings located very close in such clusters. However, this type of exceptional case can 

occur in different data sets. Therefore, further modification to the cluster shape 

enrichment algorithm I is required and dealt with next. 

Cluster shape enrichment algorithm II 

In this algorithm, in addition to finding orthogonality of buildings that touch the outline of 

clusters, the orientation is also taken into consideration (see Appendix G.3 for the pseudo 

code). 

i. Follow the steps (i) to (iii) of the cluster shape algorithm I.

ii. Get the orientation of each building and sort the orientation values which lie

between 0 and π/2 according to the wall orientation algorithm by Duchêne et al.

(2003) in ascending order.

iii. Get the orientation difference (dθ) between the maximum value and the minimum

value.

iv. If the dθ < 450, go to step (ix).

v. If the dθ > 450, count the number of buildings with the orientation less than

450 (count_1) and that of greater than 450 (count_2). The value 450 is chosen

because it is the reference orientation value used in deriving orientation between

each topologically adjacent pair of buildings in the clustering algorithm explained in

Section 5.2.1.

v. If count_2 >= count_1, iterate through each orientation less than 450 and add 900 so

that all the orientation values are greater than 450.
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vi. If count_1 > count_2, iterate through each orientation greater than 450 and subtract

each from 900 so that all orientation values are less than 450.

vii. Now sort the modified orientation values in ascending order.

viii. Subtracting the maximum value from the minimum value, Get new dθ which is

considered as the od between buildings that touch the cluster outline.

ix. If the dθ is within the threshold to be considered to have buildings oriented in the

cluster, check orthogonality of each building in terms of the confidence interval

(shape of the building outline) in the cluster outline using the algorithm by Duchêne

et al. (2003). If the confidence interval of all the buildings that touch the cluster

outline >= 80, record that cluster as an orthogonal cluster in the spatial database, or

else record that cluster as a non-orthogonal cluster.

x. If the dθ is not within the threshold, record that cluster as non-orthogonal in the

spatial database.

xi. Iterate through the steps (i) to (x) until the end of all clusters in the query.
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Evaluation of the results of the shape enrichment algorithm II 

Figure 5.21 shows the results of the cluster shape enrichment algorithm II, which will be 

evaluated in comparison with the results obtained with the cluster shape enrichment 

algorithm I. 

Figure 5.21 Shape enrichment of clusters in the same three regions 4, 5 and 7 (part of) 
surrounded by the road network as shown in Figure 5.20 with some improved results: clusters of 
orthogonal shape are shown in cyan colour while clusters of non-orthogonal shape are shown in 
yellow colour with the cluster label of each building shown in the cluster. Data source:  1 : 1K 
data of the NMA (Sri Lanka). Copyright reserved. 
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Table 5.15  Enlarged view of the clusters delineated in Figures 5.20 and 5.21 for the clear view of 
the orientation difference: clusters (a) and (c) are within region 4 and clusters (b), (d), (e) and (f) 
are within region 5. 

(a) (b) 

(c) (d) 

(e) (f) 
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The orientation threshold difference used in the prototype (see Figure B.7 in Appendix 

B.5) is 70 in the application of this algorithm, which is same as the value used in the 

application of hierarchical clustering for the data set. When comparing the shape 

enrichment results obtained using the shape enrichment algorithm I with that of obtained 

using the shape enrichment algorithm II, it is clearly identified that the clusters with labels 

‘VC-5’ and ‘VC-6’ in region 4 and ‘VC-6’, ‘VC-29’, ‘VC-30’ and ‘VC-31’ in region 5 classified 

as orthogonal clusters (Figure 5.20) according to the algorithm I are reclassified as non-

orthogonal clusters using the algorithm II according to the results in Figure 5.21. When 

observing the enlarged view of these clusters in Table 5.15, it is clear that the buildings 

that touch the cluster outline do not have a uniform orientation. Thus, the cluster shape 

enrichment algorithm II gives promising results of cluster shape characteristics, and it is 

the algorithm used in this research for cluster shape enrichment for the subsequent 

generalization process. The prototype developed with this algorithm enables one to apply 

different thresholds for orientation difference to derive different results in each region of 

the data set so that the different threshold values can be tested and used depending on 

the characteristics of data. 
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5.4.3 Synopsis of the contributing algorithms used 

Table 5.16 summarises the contributing algorithms used in the main cluster shape enrichment 

algorithm. 

* Existing algorithm
** Modified and/or extension to an existing algorithm 

5.5    Data enrichment workflow 

Figure 5.22 depicts the sequence of operations for creating clusters and deriving cluster 

shape enrichment for subsequent automatic map generalization. The source data are held 

in the PostGIS database, and the results of both enrichment processes are written back to 

the spatial database for viewing through the front-end which is in this research is the open 

source QGIS software. 

After creating clusters to suit the target generalized map scale using the three Gestalt 

factors - proximity, orientation difference and similarity difference index for shape and 

size - users have the facility to re-run the process with different thresholds for the three 

Gestalt factors by viewing and testing the results until the results are satisfactory. Once 

the clustering process is completed, users can run the cluster shape enrichment with the 

input being the derived clusters stored in the spatial database. In this process, users have 

Table 5.16 Cluster shape enrichment algorithm with the contributing algorithms: (1) new 
algorithm coupled with concave hull implementation with JTS (Section 5.4.1) and (2) wall 
statistical weighting algorithm by Duchêne et al. (2003). 

Main 
algorithm # Contributing algorithms Purpose 

Cl
us

te
r s

ha
pe

 e
nr

ic
hm

en
t 

al
go

rit
hm

 II
 

1 Improved concave hull based 
algorithm**

To select the buildings touching 
the cluster outline 

2 Wall statistical weighting*

- Calculation of orientation of 
a building 

- To check the orthogonality 
of buildings 
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the flexibility to view and test the results using different orientation threshold values in 

each region and write the results back to the spatial database. 

Figure 5.22  Data enrichment workflow of creating clusters and their subsequent shape 
enrichment. 
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5.6    Conclusion 

This chapter presents and describes how the new algorithms are developed, tested and 

refined both in creating spatial clusters and deriving cluster shapes for subsequent 

automatic map generalization using existing algorithms with both synthetic and real 

building polygon data sets. The algorithm developed for spatial clustering has been 

validated with the two experiments conducted with the participation of subjects. The 

outcome of the analysis of the experiments reveals that the adaptation of manual 

hierarchical clustering is difficult due to varying perceptions of the subjects in 

distinguishing differences in orientation and similarity in shape, and in handling high 

cognitive loads in analysing the Gestalt factors. The majority of the subjects (about 87%) in 

both expert and lay groups have stated that the automatic hierarchical clustering is good. 

Also, all the subjects have realised the usefulness of the cluster classification employed in 

the automatic hierarchical clustering for subsequent map generalization. The intention of 

this experiment was to get an insight into the efficiency and the effectiveness of 

automatic hierarchical clustering in comparison with the manual hierarchical clustering. 

Thus, the subjects were not directly questioned if the automatic hierarchical clustering 

was better than the manual hierarchical clustering. However, the analysed results of their 

observations in both phases emphasise that the automatic hierarchical clustering brings 

much more prominent results than the manual hierarchical clustering. Further, the cluster 

shape enrichment results have been compared and evaluated qualitatively with the two 

algorithms developed in this research. When analysing, the cluster shape enrichment 

algorithm II gives promising results. 

The next chapter will describe in detail the further implementation of data enrichment 

tools and their testing, together with the customisation of existing data mining algorithms 

for deriving landmark saliency. Deriving landmark saliency under data mining is a similar 

process to data enrichment to the topographic data (buildings and roads) used in this 

research and therefore the results of clustering and landmark saliency provide a strong 

support in the application of the generalization operators for subsequent automatic map 

generalization discussed in Chapter 7. 

163 



Chapter 6   Implementation - III: Data Mining Process 

This chapter presents the data mining (knowledge discovery) process in generating salient 

landmarks to be depicted on focus maps. Knowledge of salient landmarks provides 

additional support for decision-making during the automatic map generalization process 

as to which features are to be retained and which are to be removed based on their 

saliency when features are represented at smaller scales. Data mining techniques by 

Sester (200b), Elias (2003) and Elias, Hampe and Sester (2005) have been used in the past 

for the knowledge discovery process of spatial data as discussed in Section 2.5.1. Research 

by Elias (2003) and Elias, Hampe and Sester (2005) used the ID3 classification algorithm 

and the COBWEB clustering algorithm to derive landmark saliency of building features. 

Statistical approaches using a combination of attributes have been adopted by Raubal and 

Winter (2002) and Nothegger and Winter and Raubal (2004) as discussed in Section 2.5.3. 

However, no comparison has been made between the two algorithms using real data sets 

as to select the best algorithm for deriving landmark saliency. As a result, the main focus 

of this chapter is to test, modify and compare three existing data mining algorithms - 

COBWEB, ID3 and C4.5 (C4.5 not previously tested in mining spatial landmarks) - with both 

synthetic and real data sets using open source WEKA data mining software (Weka, 2013) 

in order to derive saliency of buildings as prominent landmarks. The implementations 

have been customised by modifying the Java source code which is freely available in the 

WEKA data mining algorithm library with a new user interface (UI) (see Appendix F.4). 

The inputs to these algorithms are the semantic, visual (geometric) and structural (spatial) 

characteristics of building features. In order to derive such characteristics from building 

features, data enrichment to be used in data mining is carried out as an initial phase. The 

second phase is the testing and comparison of the results (internal validation) of salient 

landmarks obtained from the three algorithms in the data mining process. The testing 

platform is the open source Java object oriented programming language with data stored 

in PostGIS, a spatial extension to PostgreSQL object-relational database management 

system to handle spatial data (see Appendix E.1 for SQL queries). 
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6.1    Data enrichment for the Data Mining process 

For the extraction of values of important attributes belonging to visual (geometric) and 

structural characteristics, functions are implemented in the same data enrichment 

prototype developed for data enrichment as discussed in the previous chapter and using 

most of the algorithms already discussed. For deriving structural properties, especially in 

relation to contextual features such as roads, the main algorithm used is the conforming 

Delaunay triangulation (CNDT) with the enforcement of edge constraints. The advantage 

of creating the CNDT over the DCT in dealing with buildings and roads is that in the CNDT, 

Steiner points are introduced at regular intervals on roads in the triangulation, and 

therefore it guarantees to capture the adjacency relationship with each and every building 

in relation to roads. If the DCT is to be used to find adjacency relationships of roads with 

buildings, roads have to be split into segments, introducing new vertices at a regular 

interval in order to make sure to capture all adjacency relationships between each and 

every building and roads as already done by Regnauld and Revell (2007) and Ai et al. 

(2007) in their applications in the field of automatic map generalization. For the extraction 

of semantics and visual properties - building size and height - existing attribute values 

stored in the building data set itself are used. Methods are developed to extract other 

attributes automatically from the spatial database as described and dealt with next. 

6.1.1 Automatic derivation of attribute values 

Brenner and Elias (2003) and Elias (2003) have suggested a set of attributes that are 

required to derive landmark saliency from a spatial database as discussed in Section 2.3.4. 

According to the availability of data, the attributes used in this research together with 

their description with pictorial representations are given in Table 6.1. Further, the 

methods and/or algorithms used for their value extraction are described in detail in this 

section. 

165 



Table 6.1 Description of attributes considered to derive salient landmarks in the data mining 
process. 

# Attribute 
property Attribute Value Visual representation 

i 
Vi

su
al

 a
tt

ra
ct

io
n 

Corner Number of corners 

ii Size Length (a) x Width (b) in 
[m2] 

iii Height 
Elevation above the mean 

sea level (MSL) to the top of 
a building [m] 

 

iv Elongation Ratio between Width (b)/ 
Length (a) 

v Orthogonality 
index 

Edges orthogonal to each 
other - 

value = {1 (orthogonal), 0 
(non - orthogonal)} 

vi Diversely 
oriented edges 

Edges with different 
orientations - 

value = {1 (diverse), 0 (non - 
diverse)} 

a 

b 

h 

a 

b 

MSL 
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vii 

St
ru

ct
ur

al
 a

tt
ra

ct
io

n 

Distance to road Minimum distance to road(s) 
[m] 

 

viii Neighbours Number of adjoining 
neighbours 

 

ix Orientation Orientation to North 
[degrees] 

 

x Orientation to 
road 

Parallel (longest edge along 
the road), across (width), 

angular to road, corner and 
none (orientation is 

irrelevant)  

xi Orientation to 
neighbours 

Average of orientation 
difference between 

neighbours [degrees] - for 
building 1: (difference [1,2 ] 

+ [1,3] + [1,4])/3 
 

xii Neighbour 
distance 

Closest distance to adjacent 
buildings [m] 

 

xiii Neighbourhood 
density 

Density within close 
proximity [1/m2]: 

Ratio between no. of 
buildings within a circular 

area around a building  

xiv 

Se
m

an
tic

 
at

tr
ac

tio
n 

Importance 
Hierarchy of priority of 

building use 
Value = {1, 2, 3, 4, 5} 

 

d 

α 

1 2 

3 

4 

d2 

d1 
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i. Number of corners (both concave and convex)

This is calculated by counting vertices from where the angle difference between 

succeeding line and preceding line > 150. 

ii. Size

Area of each building is available in the source data set. 

iii. Height

Height is considered to be the elevation from the MSL to the top of each building, 

obtained from the digital elevation model (DEM) in the data set. 

iv. Elongation

Elongation is calculated by working out the ratio between the width and the length of the 

MBR of each building. These values range between 0 and 1 according to the equation. 

Higher the value lower is the elongation and vice versa. 

v. Orthogonality index

This is calculated using the algorithm by Duchêne et al. (2003) described in Section 5.2.1 

based on the wall (edge) orientation of a building. In this method, a building with 

orthogonality index >= 80% is considered to be orthogonal and a building with the index 

value < 80% is considered to be non-orthogonal. Attribute value of orthogonality index (ε) 

assigned is: ε = {1, 0}, where 1 denotes orthogonality and 0 denotes non-orthogonality. 

vi. Diversely Oriented edges (walls)

This is also calculated using the same algorithm by Duchêne et al. (2003) using the weights 

of the candidate orientations. According to the algorithm, if a building has two leaves or 

more (a leave is the number of groups of spokes of different lengths, covering an angle of 

π/2 derived when calculating the statistical wall orientation of a building (Duchêne et.al., 

2003)) and its orthogonality index is < 80%, such a building is supposed to have edges 
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(walls) with several different orientations. An attribute value of diversely oriented edges 

(ε) is assigned a binary number, ε = {1 or 0}, where 1 denotes diverse orientation, and 0 

denotes the non-diverse orientation of the edges. 

vii. Minimum distance between a building and roads 

a. Iterate through the adjacency list of buildings and roads obtained from the CNDT 

with constraint edges and get the first iteration. 

b. Get the closest distance between a building and a road which would form a pair 

and add each building in the pair into a map containing building IDN and the 

closest distance in a list. In this operation, if the building IDN is already available 

in the map, add the closest distance only against existing building IDN in the list. 

c. Go to the next iteration in step (a) until the end of the list. 

d.  Now using the building IDN required to find the closest distance to the roads, 

retrieve the corresponding list containing all the closest distances between the 

building and roads from the map. 

e.  Sort the list in ascending order and get the first element of the sorted list as the 

closest distance to the roads from the corresponding building. 

viii. Finding adjoining neighbours (adjoining buildings) 

a. Iterate through the adjacency list between buildings obtained from the CNDT 

with constraint edges and get the first iteration. 

b. Find if a building has zero distance to the other building. If yes, add each 

building in the pair into a map containing building IDN and the distance in a list. 

In this operation, if the building IDN is already available in the map, add the 

distance only against existing building IDN to the list. If the distance between 

the buildings in a pair is not equal to zero, such links are not added. 

c. Go to the next iteration in step (a) until the end of the list. 
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d. Using the building IDN required, retrieve the corresponding list from the map

and find out the number of zero distances attached against each building IDN.

e. Calculate the number of zero distances (number of 0 distances are equal to the

number of adjoining neighbours). Buildings that are not attached to the list are

considered to have no adjoining neighbours.

ix. Orientation to North

This attribute helps identify buildings which have different orientations from a group of 

buildings of similar orientation. It is considered as the orientation of the edge (wall) of the 

building with the maximum statistical weight according to the algorithm by Duchêne et al. 

(2003). 

x. Orientation to road

A new improved algorithm has been developed to determine the orientation of a building 

to the road in this research, adopting the algorithm I given below, followed by its further 

refinement.  

Algorithm I 

a. Iterate through the adjacency list containing [bidg_id, road_id, min_dst] of each

building to roads.

b. If a particular building has three or more neighbouring roads in the adjacency list,

such a building is considered to be at a corner as illustrated in Figure 6.1(a).
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c. If a building has two neighbouring roads that intersect each other, such a building

is considered to be at a corner (Figure 6.1(b)).

d. If a non-corner building (building IDNs 1 or 2 in Figure 6.2) has two neighbouring

road segments on either side which do not intersect each other, select the road

with the minimum distance to the building out of the two roads and adopt the

following algorithm.

1. Get the wall orientation using the algorithm by Duchêne et al. (2003).

2. Rotate the building using the wall orientation to orient it along the X-Y axes.

3. Calculate the MBB of the rotated building and rotate it back to the same

orientation to get the locally oriented bounding rectangle (LOBR) of the

building. This is the MBR oriented in the direction of the wall orientation.

Figure 6.1  Building at a corner: (a) three road segments meet at a corner, and (b) 
two road segments meet at a corner. 

Figure 6.2  Buildings with three neighbouring road segments around (Buildings 
with IDNs 1 and 2: non-corner buildings and building with IDN3: a corner building). 

1 
2 3 

(a) (b) 
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4. Compute a distance factor (DF) by taking into consideration the minimum 

distance between the building and the road and a constant distance called 

the visual perception distance (currently taken as 50m). If the minimum 

distance is less than or equal to 50 m, assign the DF = 1. If it is greater than 

50m, assign the DF = 50m. 

5.  Calculate four outward segments parallel to the longest side of the LOBR 

from its four corners with the distance of each segment equal to the distance 

obtained by multiplying the minimum distance from the DF. 

6. Check if one of the two outward pairs of line segments from the two 

opposite longest sides intersects the line segments of the road near the 

building by iterating the line segments of the road through. 

7.  If it does not intersect, get one of the two outward pairs drawn parallel from 

the two opposite shortest sides, which intersects the road (Figure 6.3(a)) and 

adapt the following steps: 

• Iterate through each line segment of the road and get the angle 

subtended by both intersecting outward segments. 

•  If both angles subtended are outside 900 ± 150 between each outward 

segment and road line segment, the building is considered to be angular 

(Figure 6.3(b)). 

• If both angles subtended is within 900 ± 150 between each outward 

segment and road line segment, the building is considered to be parallel 

to that particular segment (Figure 6.3(a)). 

•  If one angle is within 900 ± 150 and the other is outside, the building is 

considered to be angular-parallel to a road as illustrated in Figure 6.3(c). 

8. If the pair of outward-line segments parallel to the longest side does 

intersect a road, iterate through the road line segments and get the two 
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angles with the similar threshold values applied in step 7 above. As in the 

case of step 7, if both angles are within 900 ± 150, the building is considered 

to be across the road (not physically, but virtually, see Figure 6.3 (d)). If both 

angles are outside 900 ± 150, the building is considered to be angular (Figure 

6.3(e)) and If one angle is within 900 ± 150 and the other is outside, the 

building is considered to be angular-across to the road as illustrated in Figure 

6.3(f). 

d. Go to the next iteration in step (a).

The algorithm uses a constant distance, considering the visual perception distance (taken 

as 50m) to extend the outward line segments towards the road. The intersection of these 

segments depends on the visual perception distance. 

Figure 6.3  Different orientation of the LOBR of a building to the closest road: (a) 
parallel (b) angular (c) angular-parallel (d) across (e) angular and (f) angular-across. 

(a) (b) (c) 

(d) (e) (f) 
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Improved algorithm 

In this approach, the algorithm I is improved for determining the intersection of outward 

segments of the LOBR with road segments independent of visual perception distance by 

extending each segment of the LOBR iteratively to meet the road. 

a. Adopt steps (a) and (b) from algorithm I.

b. If a particular building has two neighbouring roads (Figure 6.2) which do not

intersect each other, select the road with the minimum distance to the

building out of the two roads and adapt the following algorithm.

1. Adapt sub-steps I, 2 and 3 in step (d) in the algorithm I.

2. Create two line segments connecting the centroid to the midpoint of the two

perpendicular edges of the LOBR (Figure 6.4).

3. Check if these two segments intersect with the road by extending them

iteratively outward from both ends.

Figure 6.4  LOBR of the building with two line segments connecting 
the centroid and midpoints of its edges. 

1 

2 

3 

4 

c 

mp23

mp34
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4. If both line segments intersect the road, find the length of each extended

segment from the centroid to the intersection point on the road and go to

the next step, or else go to step 8.

5. If the length of the extended segment from the centroid perpendicular to the

longest edge of the LOBR (edge 23 in Figure 6.4) is smaller than the length of

the other extended line segment from the centroid perpendicular to the

shortest edge, adapt the following steps:

• Extend the two edges (edges 12 and 43 in Figure 6.4) perpendicular to the

longest edge and get the two intersecting points on the road.

• Get the angle difference between the line joining two intersecting points

(red line in Figure 6.4) and the extended line segment (extended segment

cmp23 in Figure 6.4).

• If the angle difference is within 900 ± 150, the building is considered to be

parallel to the road.

• If the angle difference is outside 900 ± 150, the building is considered to be

angular to the road.

6. If the length of the extended segment perpendicular to the longest edge of

the LOBR (edge 23 in Figure 6.4) is greater than the length of the other

extended line segment, adapt the first two sub-steps under step 5, extending

two edges perpendicular to the shortest edge of the LOBR.

• If the angle difference is within 900 ± 150, the building is treated to be

across the road virtually.

• If the angle difference is outside 900 ± 150, the building is treated to be

angular to the road.

7. Go to step (a).
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8. If the line segment from the centroid, extended perpendicular to the longest

edge of the LOBR only intersects the road, extend the two edges of the LOBR

perpendicular to the longest edge, find the angle difference between the line

connecting two intersection points on the road and the extended line

segment from the centroid and adapt the following steps:

• If the angle difference is within 900 ± 150, the building is considered to be

parallel to the road.

• If the angle difference is outside 900 ± 150, the building is considered to

be angular to the road.

9. If the line segment extended perpendicular to the shortest edge of the LOBR

only intersects the road, extend the two edges of the LOBR perpendicular to

the shortest edge, find the angle difference between the line connecting two

intersection points on the road and the extended line segment from the

centroid and adapt the following steps:

• If the angle difference is within 900 ± 150, the building is considered to be

across the road virtually.

• If the angle difference is outside 900 ± 150, the building is considered to

be angular to the road.

10. Go to step (a).
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Evaluation of the results of the orientation to the road 

According to Figure 6.5, the orientation to the road of the three buildings is ‘none’ as they 

do not spatially connect to roads in the triangulation. This categorisation of orientation in 

the algorithm I was too descriptive (seven categories - corner, parallel, across, angular, 

angular-parallel, angular-across and none), hence revised in the improved algorithm. In 

the improved algorithm, only five categories (corner, across, parallel, angular and none) 

are considered. Figure 6.5 depicts some of the categories of orientation to the road 

derived from the two algorithms. 

xi. Orientation to neighbours

a. Iterate through the adjacency list between buildings obtained from the CNDT

with constraint edges and get the first iteration.

b. Get the building orientation difference between the two buildings in a pair and

add each building in the pair into a map containing the building IDN and the

Figure 6.5  Results of building orientation to the road on the OS MasterMap Data within a region 
surrounded by the roads: (a) results of the algorithm I and (b) results of the improved algorithm. 

Corner 
Across 
Angular 
Angular 
- across 
None 

Corner 
Across 
Angular 
None 

(a) (b) 
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orientation difference stored in a list. In this operation, if the building IDN is 

already available in the map, add only the orientation difference against existing 

building IDN to the list. 

c. Go to the next iteration in step (a) until the end of the adjacency list.

d. Retrieve the corresponding list from the map and find out how many orientation

differences are attached in the list against the building IDN from which it is

required to find the average orientation difference to neighbours. This number

reflects the number of adjacent neighbours to the building.

e. Calculate the average orientation difference of the corresponding building,

dividing the total orientation difference by the number of adjacent neighbours.

xii. Neighbour distance

a. Iterate through the adjacency list between buildings obtained from the CNDT

with constraint edges and get the first iteration.

b. Get the closest distance between the two buildings in the pair and add each

building into a map containing building IDN and closest distance in a list. In this

operation, if the building IDN is already available in the map, add only the closest

distance against existing building IDN in the list.

c. Go to the next iteration in step (a) until the end of the list.

d. Using the building IDN required to find the closest distance to neighbours,

retrieve the corresponding list containing all the closest distances between each

pair of buildings from the map.

e. Sort the list in ascending order and get the first element of the sorted list as the

closest distance to other building neighbours.
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xiii. Neighbourhood density

This is considered as the ratio between number of buildings divided by the area of the 

region around these buildings as defined by the radial distance (currently taken as 50m, 

but can be changed depending on the nature of the data) of a circle with its centre being 

the centroid of the building of which density is to be calculated. 

This is achieved using an update query (see Appendix E.1(4)) in PostGIS using its 

ST_DWithin function. The ST_Centroid function is used to get the centroid of a building. 

The query itself updates the attribute field called “neigh_density” in the building layer. 

xiv. Building importance

A priority value based on the building function/use is assigned to each building. For this 

purpose, the priority type of each building given in the building source data, is categorised 

into distinctive groups and then a priority is assigned to buildings in each group as given in 

Table 6.2. 

Table 6.2  Building categories and their priority rankings. 

# Category Priority 

1 Attraction (Cultural and Historical, Botanical and 
Zoological, Recreational, Tourism, Pubs and Retail 

shops) 
1 

2 Health 

2 
3 Educational 
4 Public Infrastructure 
5 Transport 
6 Sports and Entertainment 
7 Commercial 3 
8 Manufacturing 4 
9 Residential 5 

179 



6.2    Data mining approach 

The three data mining algorithms - COBWEB hierarchical cluster, ID3 and C4.5 (known as 

the J48 implementation in the WEKA data mining software) decision trees - are tested and 

evaluated. Three important pre-processing steps need to be carried out on the enriched 

attributes before applying algorithms for mining salient building landmarks; the first step 

being to handle missing attribute values, the second step is the data transformation and 

the third step being the sensitivity analysis. These three processes are described next. 

6.2.1 Data pre-processing 

Handling missing values 

Depending on the type of the decision tree used for data mining, missing values, if found 

in the data set, have to be treated beforehand. The customised ID3 decision tree 

algorithm code available in the WEKA data mining software used in this research does not 

handle missing values. One of the methods of handling a missing value is to treat it as 

another value of the attribute if the missing value is significant when analysing data. 

However, if there is no particular significance of the attribute value, a more appropriate 

solution is to ignore (remove) all instances in which some of the values are missing 

(Witten, Frank and Hall, 2011). This option is not advisable in some cases where the 

instances with missing values often provide a good deal of information because of the 

significance of other attribute values. Another option is to work out the mean or probable 

value, considering other values. Handling of missing values in this research will be 

discussed under the testing phase of the ID3 decision tree in the WEKA data mining 

software. 
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Attribute data transformation 

Depending on the algorithm chosen for data mining, different attribute domains (types) 

are required. In the application of the ID3 algorithm as discussed in Section 2.5.1, it cannot 

handle numeric values. Therefore, the transformation of numeric attributes to nominal 

and/or ordinal values is necessary. For example, building size can be assigned either small 

or large (ordinal value) instead of a numeric value. In some occasions, even if the 

algorithm can handle numeric values, there are instances where more effective results can 

be obtained by classifying the numeric values into nominal. In the WEKA data mining 

software, automatic attribute transformation methods are available for this process and 

will be discussed in the testing phase of the ID3 algorithm below. 

Sensitivity analysis 

It is necessary to identify which attributes make a significant impact on the decision tree 

output before applying a decision tree algorithm. The reason is that there can be one or 

more attributes that make no significant contribution to the output (e.g. if the attribute 

values are the same for all the objects). The WEKA data mining software has the facility to 

check the suitability of the selected attributes to be considered for classification with an 

‘Attribute selection’ menu with full automation. It gives a list of ranks in order of 

significance of the attributes. This will be discussed in the testing phase of the three 

algorithms. 

6.2.2 Testing of the data mining algorithms on a synthetic data set 

The three algorithms - COBWEB, ID3 and J48 - already implemented in the WEKA GUI are 

tested on a synthetic data set of a decision point given in Figure 6.6 to understand how 

salient buildings are represented in the output produced by the WEKA software. In this 

example in Figure 6.6, it is clear that building 3 (building IDN - BP3) with the highlighted 

outline is a salient feature. 
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COBWEB hierarchical clustering 

The COBWEB clusterer is a hierarchical clustering and an unsupervised learning method as 

described in Section 2.5.1. Hence, no explicit training examples are needed. The COBWEB 

algorithm implemented in the WEKA software can handle both numeric and nominal data. 

Hence, the data transformation is not always necessary. It can also deal with missing 

values. 

In the synthetic data set given in Figure 6.6, no missing values are available to be dealt 

with. However, sensitivity analysis is required to check the significance of the attributes in 

the final results. Hence, the automatic sensitivity analysis is carried out using the filtered 

attribute evaluation function (see Appendix F.1 for sensitivity analysis workflow used in 

the WEKA GUI). When investigating the ranked attributes (see Appendix F.2), it can be 

seen that the attribute fields - ‘Building use’ and ‘Height’ - are ranked the lowest. The 

reason is that the attribute values in these two attributes are common to all and do not 

carry any discerning values. Therefore, these two attributes are ignored before applying 

the COBWEB clusterer in the WEKA software. 

IDN buse size neis ortn dst hght 

BP1 RESIDENTIAL SMALL 2 PARALLEL 0 15 

BP2 RESIDENTIAL SMALL 2 CORNER 0 15 

BP3 RESIDENTIAL LARGE 0 CORNER 0 15 

BP4 RESIDENTIAL SMALL 2 PARALLEL 0 15 

BP5 RESIDENTIAL SMALL 2 PARALLEL 0 15 

BP6 RESIDENTIAL SMALL 2 PARALLEL 0 15 

BP7 RESIDENTIAL SMALL 1 PARALLEL 3 15 

BP8 RESIDENTIAL SMALL 1 PARALLEL 3 15 

BP9 RESIDENTIAL SMALL 1 CORNER 3 15 

BP10 RESIDENTIAL SMALL 1 CORNER 3 15 

Figure 6.6  Synthetic data set with its attributes at a decision point, based on Elias (2003): 
buse - building use, neis - number of adjacent neighbours, ortn - orientation of a building 
in relation to road, dst - minimum distance to road and hght - building height.  
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Application of the COBWEB clustering 

The COBWEB clustering is applied to the synthetic data set given in Figure 6.6 after 

removing the two attributes during sensitivity analysis. The synthetic data set is used as 

the training data set (the data set used to train the classifier) with the class attribute - 

‘IDN’ - used for cluster evaluation. The necessity of using this clusterer is not to group 

building objects into clusters, but to identify salient landmarks through the tree structure 

and the cluster information as discussed by Elias (2003). 

Analysis of clustering on the synthetic data set 

When investigating the cluster output given in Figure 6.7, it is possible to identify the 

cluster IDN of each instance clustered (see classes to cluster classification matrix in Figure 

6.7(right)) and the number of instances in each cluster (see clustered instances in Figure 

6.7(left)). Further, it is understood that the graphical cluster output of the tree view given 

by the WEKA software is not informative. With the tree, it is not possible to identify which 

attributes are assigned to nodes with attribute values used to split the tree and what 

objects belong to which tree level. From the graphical representation of the tree in Figure 

6.8, what is only identified is the number of instances assigned to each node and a further 

count on how they are split into leaves in the tree. However, the analysis of the cluster 

output and the matrix shown in Figure 6.7 together with attributes in Figure 6.6 enables 

one to manually enrich the graphical tree view with the details of attributes, their values 

and the instances, a node or a leaf holds on the tree (see Figure 6.8). The node and leaf 

numbers given in the graphical output represent the cluster IDN when analysing with the 

cluster classification matrix which represents the cluster IDN against the class IDN 

(instance IDN).  
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When analysing the tree further, it is found that the salient landmarks get isolated 

towards the top level of the tree (at a higher level containing a single instance in a cluster, 

e.g. building with class IDN BP3 in Figure 6.8). It is also clearly visible that the algorithm 

Figure 6.7  COBWEB clustering tree view (left) and the matrix showing cluster 
numbers against instances (right) of the synthetic data set in Figure 6.6. 

Figure 6.8  Graphical representation of an enriched tree view with 
attributes, their values and instance IDNs (class IDNs) after the analysis. 
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aggregates instances with similar attribute values into clusters. The more deviations in the 

attribute values, the greater is the depth of the tree. 

ID3 decision tree 

It is a supervised classification algorithm (supervised learner) that learns from the training 

data to make predictions for new data. It can only deal with nominal attributes. No 

missing values are allowed. The aim of the ID3 algorithm is to create leaf nodes with 

homogeneous data based on the information gain of individual attributes as described in 

Section 2.5.1. 

Application of ID3 

The synthetic data set does not have missing values and therefore it is not necessary to 

deal with missing values. Since ID3 cannot handle numeric data, numeric attributes in the 

data set need to be transformed into a smaller number of distinct ranges. This is also 

called attribute discretization according to Witten, Frank and Hall (2011). However, 

depending on the discretization method, classification results vary. Unsupervised 

discretization is used in the absence of any knowledge of the classes of instances in the 

training data set while supervised discretization takes the classes into account. In this 

research, the attribute values of landmark class are the values that are not known and to 

be derived. As such, unsupervised discretization is the best option to be adopted. 

In the unsupervised discretization, there are two binning methods available in the WEKA 

software - equal-width binning and equal frequency binning. Equal width binning is 

sensitive to outliers in the data where it categorises neighbourhood values - 0, 1, and 2 - 

into 3 bins when applied (Figure 6.9(a)). Equal frequency binning assigns more or less the 

same number of training samples into each bin, adding more smoothness to the data 

(equal frequency binning classifies neighbourhood values - 0 and 1 - into a single class as 

shown in Figure 6.9(b)). This is also called the histogram equalisation due to the reason 

that when a histogram of the contents of the resulting bins is investigated, it gets 

completely flat. However, this method greatly affects the ability of the attribute to help 

build good decision trees, identifying the discerning attributes in the application of 
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deriving salient landmarks in this research. As such equal-width binning under 

unsupervised attribute discretization is used to transform numeric attributes to nominal 

attributes in applying the ID3 decision tree on the test data (see Appendix F.3). 

The next step is the sensitivity analysis of the data set. The two attributes - ‘Building use’ 

and ‘Height’ - are ignored from the data set used for classification based on the sensitivity 

analysis as already applied to the COBWEB clustering algorithm. 

The ID3 decision tree is a supervised classification algorithm, and therefore it is required 

to have known classes in the data set. In the test data set, the landmark attribute is used 

as the class attribute. Since its attribute values are not known, it is iteratively 

hypothesised each building to be a landmark, starting from the first instance in the data 

set during the classification process (see Table 6.3). 

Figure 6.9  Transformation (discretization) of the attribute - neighbour - in the synthetic data 
set in the WEKA GUI: (a) discretization with equal-width binning and (b) discretization with 
equal frequency binning. 

(a) (b) 
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Analysis of the classification on the synthetic data set 

When the classifier is run hypothesising each instance to be a landmark in a manual 

iterative process, the instance with IDN BP3 on the data set is correctly classified as a 

landmark (Figure 6.10(b)). It lies at the topmost level in the tree. None of the other 

instances are classified as a landmark (see Figure 6.10(a) for the classifier output at the 

first iteration). However, the WEKA software does not generate a graphical view of the ID3 

implementation. 

Table 6.3  Instances with attributes chosen after the sensitivity analysis on the 
synthetic data set where the attribute lmark is the classifier used as a dependent 
variable. The first instance is initially assigned to be a landmark which is 
iteratively assigned to each instance down the tuples during classification. Note: 
Attributes - neigh and dist - should be discretized to be nominal values before 
applying the ID3 classification. 

IDN size neigh orient dist lmark 

BP1 SMALL 2 PARALLEL 0 YES 

BP2 SMALL 2 CORNER 0 NO 
BP3 LARGE 0 CORNER 0 NO 
BP4 SMALL 2 PARALLEL 0 NO 
BP5 SMALL 2 PARALLEL 0 NO 
BP6 SMALL 2 PARALLEL 0 NO 
BP7 SMALL 1 PARALLEL 3 NO 
BP8 SMALL 1 PARALLEL 3 NO 
BP9 SMALL 1 CORNER 3 NO 

BP10 SMALL 1 CORNER 3 NO 

Figure 6.10  Classification output of the synthetic data set: (a) output at first iteration with the 
first instance hypothesized to be a landmark and (b) output at third iteration with the third 
instance hypothesized to be a landmark. 

YES 

NO 

(a) (b) 
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The classification output also gives a statistical error analysis of each instance. From the 

analysis of the tree, it can be deduced that a landmark is characterised by a short decision 

tree with only a few levels that lead to a potential landmark decision-making. 

J48 decision tree 

The J48 implementation in the WEKA software is also a supervised classification method 

based on the C4.5 algorithm by Quinlan (1993), which is a further improvement to the ID3 

algorithm as discussed in Section 2.5.1. Not only it can deal with missing values, but also 

with both numeric and nominal attributes and has a more robust splitting of attributes via 

gain ratio, including pruning of the tree structure. However, in this research, the unpruned 

tree of the J48 implementation for the classification of landmarks is used since each 

instance needs to be tested. 

Application of the J48 implementation 

The first two steps that are essential to the ID3 algorithm to handle missing values and 

transform numeric attributes into nominal values are not required in this algorithm. Since 

sensitivity analysis has already been done on the synthetic data set, attributes that are to 

be removed are already known (‘Building use’ and ‘Height’). Thus, the classification can be 

directly tested. However, hypothesising each building to be a landmark as described under 

the ID3 classification (Table 6.3) is applied to the J48 implementation since it is also a 

supervised classification method. 

Analysis of the classification on the synthetic data set 

When the classifier is run hypothesising each instance to be a landmark in a manual 

iterative process as in the classification with the ID3 algorithm, the instance with IDN  BP3 

is correctly classified as a landmark (Figure 6.11). Further, it lies on one of the leaves at the 

topmost level in the tree. None of other instances are classified as a landmark. Similar to 

ID3, with the J48 implementation, a landmark is characterised by a short decision tree 

with only a few levels for potential landmark decision-making. 
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Implications of the analysis of the three algorithms 

The three algorithms - ID3, COBWEB and C4.5 with J48 implementation - tested on the 

synthetic data set at the decision point, all identify building IDN BP3 as the salient 

landmark at the topmost level of each tree of the three algorithms. It is the design of each 

tree of these three algorithms that the top of the tree is the most important landmark 

(this is the performance measurement of the three algorithms). In the case of the ID3 and 

the J48 implementations, salient landmarks are always on the top of a short decision tree 

(Figures 6.10(b) and 6.11(a)). In the case of COBWEB clustering, salient features get 

isolated towards the top of the tree (building IDN BP3 in Figure 6.8). The same 

characteristics of the trees of ID3 and COBWEB algorithms in retrieving salient landmarks 

have been emphasised by Elias (2003). The WEKA software gives similar results in applying 

the three algorithms when observing the final result of landmark saliency (building IDN 

BP3). However, the WEKA software does not have functions to traverse through each tree 

of  ID3, COBWEB and J48 implementations and pick up the objects identified as salient 

features from the top level of the tree. Also, the iterative assignment of attribute values in 

the dependent variable of the instances (class attributes lmark in this example) of the 

instances is not facilitated by the WEKA software. 

Figure 6.11  Classification output of the synthetic data set at the third iteration with the 
third instance hypothesized to be a landmark: (a) graphical representation of the tree view 
and (b) the tree information. 

(a) (b) 
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6.2.3 Testing of the data mining algorithms on a real data set 

Considering the limitations found in the WEKA software to capture salient landmarks from 

the outputs of the three algorithms - COBWEB, ID3 and C4.5 with J48 implementation, the 

source code of these algorithms are extended with new methods to traverse through the 

output tree and pick the salient landmarks needed with a new UI (see Appendix F.4) based 

on the performance measurement of each tree as discussed under implications of the 

analysis of these algorithms in the previous section. The results in deriving salient 

landmarks are visualised to verify the impact of the performance measurement adopted. 

The developed interface that has the facilities to read data from a spatial database or a file 

with one of the different formats (.csv, .arff etc.) can deal with attribute transformation, 

ignoring of some attributes (removal of insignificant attributes) and writing salient 

landmark information back into the spatial database. However, the sensitivity analysis 

functions are not implemented in this UI. They are used from the WEKA software. 

Data set 

For testing the three algorithms with the new UI, a data set is considered within a region 

surrounded by the roads (data set in Figure 6.5, see part of the data set in ASCII format in 

Appendix F.5) from the OS MasterMap data at the scale of 1 : 1.25K which is enriched with 

the attributes (listed in Table 6.1) derived using the implementation of data enrichment 

methods discussed under Section 6.1. 

Missing values are generated in spatial data sets in finding the minimum distance to roads 

from buildings and orientation to the road from buildings in cases where buildings are not 

spatially connected to the road network in the triangulation as mentioned under the 

evaluation of results of building orientation to the road in Section 6.1.1. In this research, a 

single dummy value (-1) is assigned to all the attribute values with NULL in the attribute 

field - ‘mindist_road’ (minimum distance to the road) - and a dummy value ‘none’ to the 

attribute field - ‘orientation_road’ (orientation to the road) - to treat them as another 

possible unique value at the time of data enrichment under Section 6.1. This is a suitable 

approach rather than devising alternative methods to avoid null values either by ignoring 
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instances comprising of missing values or working out the most probable value or mean as 

discussed in Section 6.2.1. The reason is that there is a possibility where such instances 

can be candidates to become salient landmarks with other attributes. Further, applying a 

statistical value would not be realistic, especially with attributes comprising of spatial 

characteristics. Treating null values is especially required in this testing phase because the 

ID3 decision tree algorithm used in this research to emphasise landmark saliency cannot 

handle missing values. However, in order to keep consistency, treating null values is 

carried out, before executing all the three data mining algorithms during testing. 

Having treated NULL values as explained above, sensitivity analysis is carried out as 

applied to the synthetic data set (see Section 6.2.2), and five attributes - ‘diverse_sides’ 

(sides with different orientations), ‘orthogonal’ (orthogonality of sides), ‘neigh_density’ 

(neighbourhood density), ‘av_ortn_neigh’ (average orientation to neighbours) and 

‘importance’ (priority on building use/function) - are ignored as a result. The three 

algorithms are tested thoroughly with four explicit versions of the data set: (a) original 

data set with no discretization (except ID3 algorithm) (b) original data with discretization 

(c) data with rounded off decimal values for the three attributes - size, the minimum 

distance to road, and elevation - with no discretization (except ID3 algorithm) and (d) 

rounding off the same attribute data with discretization. Testing the algorithms with 

rounding off values of the three aforesaid attributes is necessary since there are several 

close values when investigating the data set. Each algorithm tested, and the results 

obtained by traversing the tree from the top to the bottom on the four versions of the 

above data set are given next. 

Analysis of the results of the COBWEB clustering 

Discretization of rounded off data has made a minor impact in the results when observing 

Table 6.4 in the application of COBWEB clustering on the top level of the tree. When 

observing the results of COBWEB using the combination of the top two levels (Table 6.5), 

attribute discretization has made a significant improvement both in the original data set 

and the data with rounded off decimal values of the three attributes. However, rounding 

of values of these three attributes in the data set has produced poor results when 
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compared with the results (a) and (b) with that of (c) and (d) in Table 6.5. This implies that 

the COBWEB clusterer is sensitive to the precision of attribute values. 

Table 6.4 Results of the COBWEB clustering on the top level of the tree: (a) original data with 
no attribute discretization (b) original data with discretization of the three attributes - size, the 
minimum distance to road, and elevation (c) data with rounded off values of the three 
attributes with no discretization and (d) data with rounded off values of the three attributes 
with discretization. Salient landmarks are shown in red colour. 

Isolated objects on the top level of the tree (3rd physical level) 

No result 

(a) (b) (c) (d) 

Table 6.5 Results of the COBWEB clustering using the top two levels of the tree: (a) original 
data with no attribute discretization (b) original data with discretization of the three aforesaid 
attributes (c) data with rounded off decimal values of the three aforesaid attributes with no 
discretization and (d) data with rounded off decimal values of the three aforesaid attributes 
with discretization. Salient landmarks are shown in red colour. 

Isolated objects on the top level and at the very next lower level of the tree 
(3rd and 4th physical levels) 

Original data Rounded off data 

(a) (b) (c) (d) 
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Analysis of the results of the ID3 classification 

There is no significant difference in results between the original data and the rounded off 

data on the top level of the tree (Table 6.6(a) and 6.6(b)). However, rounded off data have 

produced rather improved results when the top two levels are combined when comparing 

results of Table 6.6(c) and 6.6(d). 

Analysis of the results of the J48 classification 

The original and the rounded off data without discretization have not produced results on 

the top level of the tree while both data sets with discretization have produced the same 

results (Table 6.7). 

Table 6.6 Results of the ID3 classification: (a) original data with a discretization of all numeric 
attributes (b) data with rounded off values of the three aforesaid attributes and discretization 
of all numeric attributes on the top level of the tree (c) original data with a discretization of all 
numeric attributes and (d) data with rounded off decimal values of the three aforesaid 
attributes on the top two levels of the tree. Salient landmarks are shown in red colour. 

Isolated objects on the top level of the tree   
(1st physical level) 

Isolated objects on the top level and at the 
very next lower level of the tree       

(1st and 2nd physical levels) 
Original data Rounded off data Original data Rounded off data 

(a) (b) (c) (d) 
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Table 6.7 Results of the J48 classification on the top level of the tree: (a) original data with no 
attribute discretization (b) original data with discretization of the three aforesaid attributes (c) 
data with rounded off decimal values of the three aforesaid attributes with no discretization 
and (d) data with rounded off decimal values of three aforesaid attributes with discretization. 
Salient landmarks are shown in red colour. 

Isolated objects on the top level of the tree (1st physical level) 
Original data Rounded off data 

No result No result 

(a) (b) (c) (d) 

The J48 implementation has produced improved results using the combination of the top 

two levels with attribute discretization of the original data (Table 6.8(b)) when comparing 

the results obtained with attribute discretization in Table 6.7. The rounded off data 

without attribute discretization have also given improved results (Table 6.8(c)) when 

comparing with the results of data without attribute discretization (Table 6.8(a)). 

However, rounding off of data with attribute discretization has produced coarse results, 

selectingf four adjoining buildings (see Table 6.8(d)). 

Table 6.8 Results of the J48 classification using the top two levels of the tree: (a) original data 
with no attribute discretization (b) original data with discretization of the three aforesaid 
attributes (c) data with rounded off decimal values of the three aforesaid attributes with no 
discretization and (d) data with rounded off decimal values of the three aforesaid attributes 
with discretization. Salient landmarks are shown in red colour. 

 Isolated objects on the top level and at the very next lower level of the tree 
(1st and 2nd physical levels) 

Original data Rounded off data 

(a) (b) (c) (d) 
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Implications of the analysis of the three algorithms 

When comparing the visual results of Table 6.4, 6.6 and 6.7, it is observed that the 

performance measurement (i.e. the top level of the tree is the salient landmark) used in 

the synthetic data set as a decision point has not worked out to derive salient landmarks 

in the application of COBWEB, ID3 and J48 implementations when these have been 

applied to data representing a region. In such instances, the performance measurement 

that has to be applied is the combination of levels down the tree, starting from the top to 

the required level. Tables 6.5, 6.6(c) and 6.6(d), and Table 6.8 show the generated results 

using the combination of the top level and its very next lower level of the tree in the real 

data set. However, the number of levels that have to be searched down the tree for 

salient objects (e.g. in COBWEB, an isolated object in a cluster, and in the ID3 and the J48 

implementations, a classified object with lmark = ‘yes’) vary, depending on the data set. 

6.2.4 Evaluation of the results of the three data mining algorithms 

With the synthetic data set 

When analysing the results of three algorithms on the synthetic data set in Section 6.2.2, 

the three algorithms are suitable to derive landmark saliency at decision points since the 

three algorithms have given a unique result which is building 3 (building IDN BP3) on the 

top level of each tree. This is the building with its outline highlighted, identified to be a 

salient landmark initially in the synthetic data set described in Section 6.2.2. The building 

with IDN BP3 is chosen because of its discerning characteristic - ‘large’ - in the attribute 

name - ‘size’. With the ID3 and the J48 implementations, in addition to identifying salient 

landmark objects, characteristics leading to make a particular object as a salient landmark 

can be extracted from the tree. However, with the COBWEB clusterer only the salient 

landmark objects can be identified. 
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With the real data set 

When investigating the results in Section 6.2.3, it is realised that the rounding of the 

attribute values has made no significant improvement in the results in the three data 

mining algorithms tested. However, the attribute discretization with equal-width binning 

has improved the results of deriving salient objects. Therefore, the comparison of results 

given in the previous Section 6.2.3 is made only with the original data with and without 

attribute discretization given in Table 6.9. 

When comparing the results with the application of the three algorithms on the real data 

set given in Table 6.9 with buildings spreading over a region rather than at a decision 

point, it is understood that the ID3 algorithm is not suitable to apply to data spreading 

over a region or a larger area since it tends to select buildings that are not candidates to 

be salient landmarks. 

The results of COBWEB and the J48 implementation of the C4.5 algorithm without 

attribute discretization reveal that the building objects comprising of attributes with close 

values tend to be chosen as landmarks when observing Table 6.9. One of the examples is 

the chosen four adjoining buildings which have elevations 12.36m, 12.9m, 12.59m and 

12.44m in the results of the J48 implementation in Table 6.9. 
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Comparing the results of the COBWEB and the J48 implementations, attribute 

discretization has had a significant effect on the results. The results of the COBWEB and 

the J48 implementations on discretization are more or less similar. However, the J48 

implementation has the ability to identify more discerning attributes as potential 

landmarks (e.g. detached building at the corner where the three road segments meet) 

when observing the results of the COBWEB and the J48 implementations with attribute 

discretization. 

Table 6.9 Comparison of the results of the three data mining algorithms using the top level and 
the very next lower level (1st and 2nd physical levels) of the output trees on a building data set 
spread over a region enclosed by roads. Salient landmarks are shown in red colour. 

Algorithm Visual representation of the results 
Without discretization With discretization 

COBWEB 

ID3 - 

J48 
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Since the J48 implementation has given promising results of deriving salient landmarks 

both at a decision point and in a region with the ability to find over which attribute values 

an object becomes a landmark, the J48 implementation is chosen as the algorithm to 

derive salient landmarks in the generation of focus maps in this research. 

6.3    Conclusion 

This chapter initially describes how data are enriched for the subsequent use for deriving 

salient landmarks under data mining, developing new methods and algorithms including 

testing of results, taking into account the context of building objects such as roads and 

hydrographic features. In the second phase, the research tests three existing data mining 

algorithms - COBWEB hierarchical clusterer, ID3 and the J48 decision tree 

implementations  -  with further customisation for deriving salient landmarks from 

building features in the enriched data stored in the spatial database. The ID3 algorithm 

used by Elias (2003) at a decision point is not a successful candidate for deriving salient 

landmarks of a data set representing a region as investigated in this work. Further, the 

performance measurement of the trees adopted by Elias (2003) has not turned out 

promising results in deriving salient landmarks with COBWEB, ID3 and J48 data mining 

methods on a data set representing a region. It is identified that searching of objects in a 

combination of adjacent levels from the top level to the required level down the tree is 

required for deriving salient landmarks when applying these three algorithms on a data 

set representing a region. When testing the results, it can be concluded that out of the 

three algorithms, the J48 implementation gives promising results for deriving landmark 

saliency both at a decision point and in a region. These salient landmarks, thus generated, 

will be portrayed on a coarse background of building features in generating focus maps at 

the end of the thesis. The next chapter will describe in detail the implementation of tools 

for building data generalization to be applied in the enriched spatial clusters created with 

the use of the data enrichment process described in Chapter 5 for generating coarse 

background on the focus map. Information of the derived salient landmarks discussed in 

this chapter can also be used in the decision-making process for selecting building features 

to be depicted at the generalized scales. 
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Chapter 7   Implementation - IV: Automatic Map Generalization 

Process 

This chapter presents automatic map generalization processes required for deriving focus 

maps for wayfinding with the use of building geometries. The focus map generation will 

be realised by draping salient building landmarks on a generalized background through 

the application of the polygon aggregation operations on building geometries with the 

map generalization as discussed in Section 2.2.8. In this work, four types of polygon 

clusters are considered for the development of four different aggregation operations 

based on the cluster characteristics: (a) clusters which are smaller than a threshold area 

when aggregated are represented by symbols; (b) clusters with their outline almost 

orthogonal are aggregated with squared sides; (c) clusters with their outline non-

orthogonal are aggregated by bridging the gaps between buildings in the cluster using a 

distance threshold, and (d) extensive clusters forming built-up areas are aggregated using 

a concave hull approximation. In addition to aggregation algorithms, a building 

simplification algorithm and a building enlargement algorithm, to be applied after 

aggregation, are also developed apart from the use of some existing algorithms for 

simplification. Creating novel algorithms and modifying existing algorithms is carried out 

with thorough testing and refinement based on the enriched building geometries 

processed using the data enrichment tools developed under the data enrichment process 

discussed in the previous chapter. In developing generalization algorithms, internal 

validation will be carried out with both synthetic and real data sets. 

The testing platform is open source Java object oriented programming language with data 

stored in PostGIS, which is a spatial extension to PostgreSQL object-relational database 

management system to handle spatial data (see Appendix E.1 for SQL queries). 

Implementation of all the aforesaid aggregation algorithms is realised through a prototype 

development (see Appendix B.6). 
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7.1   Symbolization algorithm with squaring or enlargement 

The use of this algorithm is to represent building clusters which are smaller than a certain 

distance threshold when approximated to a group oriented bounding rectangle (GOBR) as 

explained in Figure 7.1, depending on the target generalized scale with either a polygon 

square or rectangular symbol, maintaining the orientation of the source cluster at the 

target scale (see Appendix G.4 for the pseudo code). 

i. Create concave hull using the improved concave hull based algorithm explained in

Section 5.4.1 on a building cluster.

ii. Find the edges of buildings at the cluster outline that touch the concave hull by a line

(e.g. buildings with IDNs 3, 4, 6, 7 and 8 touched by the concave hull as depicted in

Figure 5.18(c)) in Section 5.4.1.

iii. With the use of these touching edges of buildings in the cluster, calculate the

maximum wall (edge) orientation of the cluster using the algorithm by Duchêne et al.

(2003).

iv. Rotate the cluster about its centroid to align it with its maximum wall orientation

along the X-axis (Figure 7.1(a)).

Figure 7.1  Generating group oriented bounding rectangle (GOBR): (a) outline of the cluster 
(b) MBB created after rotating cluster by the maximum wall statistical orientation (θ) and (c) 
GOBR created by rotating the MBB back with the same orientation in the opposite direction. 

θ
θ

(a) (b) (c) 
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v. Calculate the MBB of the rotated cluster of buildings. This is the MBBx-y aligned along

the X-Y axes, which closely fits with the cluster based on the maximum wall

orientation (Figure 7.1(b)).

vi. If both sides of the MBBx-y are less than the minimum side length to represent at the

target scale, the cluster is replaced by a square of the minimum side length, oriented

according to the building group orientation by rotating about the centroid of the

cluster back with the use of the maximum weighted orientation.

vii. If only one side of the MBBx-y is less than the minimum side length according to the

target map scale, the shorter side is extended at both ends of the MBBx-y to have the

minimum side length and reform the rectangular geometry oriented to the X-Y axes

(Figure 7.2).

viii. Finally, rotate rectangular geometry back about the centroid of the cluster with the

use of the maximum weighted orientation to form the GOBR (Figure 7.1(c)).

Figure 7.2  Building enlargement: (a) enlargement along the Y-axis (height) 
and (b) enlargement along the X-axis (width) to comply building edges with 
the minimum building length. 

(a) (b) 
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7.2    Building cluster aggregation with orthogonal sides 

The intention is to get a square amalgam by aggregating buildings in an orthogonal shaped 

cluster which is identified and enriched during the cluster shape enrichment process 

described in Section 5.4 under the data enrichment process. The complete realisation of 

the algorithm for building aggregation with orthogonal sides should undergo a sequence 

of applications of the four generalization algorithms: (a) filling the gaps to create the 

amalgam (b) squaring the amalgam (c) enlargement of narrow sections and juts, and (d) 

simplification of the granular edges to suit the target generalization scale. During the 

amalgam creation process, if the cluster is too small to be shown on the target scale when 

aggregated, it is symbolized in the target scale as described in Section 7.1. Testing of the 

aforesaid generalization algorithms, leading to the final evaluation of the main algorithm 

developed in this research together with its internal evaluation, is dealt with in the next 

sections. 

7.2.1 Creating amalgam with dilation and erosion 

This is based on the expansion and the shrinkage technique adopted by Schylberg (1992) 

on raster data. For expansion and shrinkage, the buffer operation on vector data is used. 

Dilation and erosion with buffer operation I 

i. Read the union of each building cluster from the spatial database.

ii. Dilate the union geometry with a distance slightly greater than the minimum

threshold distance used for building clustering in the data enrichment process. Ensure

to square the cap of the buffering geometry with the end cap style being

CAP_SQUARE (3) and the join style of sharing buffer strips with JOIN_MITRE (2) to

form flat edge corners and preserve right angle edges (Figure 7.3) in setting buffer

parameters in the JTS library. These settings are required to preserve the

orthogonality of the sides of the aggregated geometry influenced by the orthogonal

sides of the buildings that touch the outline of a cluster that is subject to the

aggregation process.

202 



iii. Apply erosion with the same distance (negative buffer) and the parameters used in

the dilation process to get the buffered amalgam of the buildings in the cluster. If the

buffered amalgam is not a single polygon entity, especially in exceptional cases where

the building geometries in a cluster have either overhanging, corner touching or total

separation configuration (Figure 7.4), the dilation and erosion process with the same

distance may create a split amalgam with multi-polygons.

Figure 7.3  Example illustration of a buffer around a polygon 
with cap square and join style mitre. 

Figure 7.4  A pair of buildings in a cluster at different positions: (a) almost overhanging, 
(b) corner touching and (c) total separation. 

(a) (b) (c) 
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Dilation and erosion with buffer operation II 

i. Follow the steps (i) to (iii) under the buffer operation I above.

ii. If the buffered amalgam is not a single polygon entity, the erosion distance used in

step (iii) in the buffer operation I is not assigned the same negative buffer distance as

used in dilation in step (ii) in the buffer operation I. Instead, an eroding distance is

applied iteratively by a small increment until the operation stops when it reaches the

maximum possible eroding distance to form the buffered amalgam with a single

polygon entity (Figure 7.5).

iii. The distance difference left to apply for the total erosion is recorded for further use

on the results of the final aggregation after enlargement before the simplification

operation.

It should also be mentioned that if a polygon that is subject to buffering has holes and the 

buffering distance applied is greater than the minimum distance between some holes and 

the outer ring, such holes are removed in the buffering process. 

Figure 7.5  Polygon geometry shown in red colour using the dilation operation and then 
the erosion with iterative shrinking for exceptional cases where multi-polygons are 
created in blue colour with the same dilation and erosion distance: (a) almost 
overhanging (b) corner touching and (c) total separation.  

(a) (b) (c) 
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7.2.2 Creating amalgam with concave hull generation 

i. Read each building cluster from the PostGIS spatial database iteratively.

ii. Create concave hull using the ST_ConcaveHull function with the target percent being

the value of 0.99 based on the of area of convex hull, usually faster than forming a

convex hull according to PostGIS 2.0 manual (PostGIS Manual, 2012). In generating

the concave hull, the target percent can be a value between 0 and 0.99 (see Appendix

E.1(6)). Generating the concave hull with a value of 1 gives its convex hull. The

percent value of 0.99 is used because when lower values are used, generalization of

the concave hull gets higher, thus creating an amalgam not suitable to generate a

subsequent squared amalgam of building clusters.

7.2.3 Squaring edges of the amalgam 

After applying either the buffering operation or the concave hull generation on each 

building cluster to create the initial amalgam, its outline may not be orthogonal due to 

orientation differences of the buildings that touch the outline of the cluster (Figure 7.6(a)). 

In order to make these edges orthogonal, the following squaring algorithms are developed 

and tested. 

Squaring algorithm I 

i. Create the MBR of the clustered amalgam.

ii. Calculate the orientations of the longest and the shortest sides of the MBR.

iii. Iterate through each edge of the buffered amalgam and calculate both triangular

polygons (ears) in and out of the clustered amalgam with the edge being common

baseline to both triangles (Figure 7.6(a)) using the two orientations perpendicular to

each other in the MBR. If either of the orientations of the MBR is equal to that of an

edge of the amalgam, creating triangular polygons for that particular edge is ignored.
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iv. Merge all triangular polygons (ears) with the buffered amalgam to end up with a

squared amalgam as shown in Figure 7.6(b).

Squaring algorithm II 

i. Follow steps (i) to (iv) of the squaring algorithm I and get the merged and squared

amalgam.

ii. Calculate the statistical wall orientation by Duchêne et al. (2003) of the squared

amalgam and the orientation of the MBR and get the difference.

iii. Rotate the squared amalgam by the orientation difference to get the final squared

building amalgam with the rotation point selected as the centroid of the MBR or the

buffered amalgam.

Figure 7.6  Squaring of an initial amalgam of a building cluster created using a synthetic data 
set with ear polygons: (a) initial amalgam in blue colour with triangular polygons (ears) 
hatched and (b) squared amalgam in green colour. Note: an amalgam with non -orthogonal 
edges has been chosen deliberately in order to enhance the visual impression of the 
squaring technique despite squaring being applied to amalgams with approximate 
orthogonal edges. 

 

(a) (b) 
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Squaring algorithm III 

i. Calculate the centroid of the buffered amalgam.

ii. Calculate the maximum weighted local orientation (Duchêne et al., 2003) of the

buffered amalgam.

iii. Rotate the amalgam to align its edge with the maximum local weighted orientation

along the X-axis.

iv. Calculate the MBB of the rotated amalgam oriented along the X-axis.

v. Rotate back the MBB with a rotation equal to the previous value to get the GOBR.

vi. Rotate the amalgam back as well and use this amalgam for subsequent ear polygon

calculation as explained in the squaring algorithm I without using the original

amalgam to maintain consistency between the GOBR and the buffered amalgam.

vii. Calculate the orientations of both width and height of the GOBR.

viii. Calculate the ear polygons based on these two orientations by iterating through each

edge of the buffered amalgam.

ix. Merge all the ear polygons to get the final squared amalgam.

See Appendix G.5 for the pseudo code of the algorithm. 
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7.2.4 Testing of amalgams after squaring edges 

Table 7.1 depicts the results of cluster aggregation and squaring on a synthetic data set 

(the source) using the dilation and erosion algorithm I described in Section 7.2.1, coupled 

with the squaring algorithms I, II and III, each described in Section 7.2.3. 

Algorithm Geometry Visual 
representation Criteria 

Aggregation with 
Squaring** comprising 

of contributing 
algorithms dilation and 

erosion algorithm I*, 
and Squaring 

algorithms I, II and III*** 

Source Orientation Shape 

Aggregated with 
buffer 

Orientation of 
cluster outline 

preserved 

Preserved, but 
corner touching 

buildings not 
aggregated 

Squared with 
Squaring 

algorithm I 
Not preserved Not preserved 

Squared with 
Squaring 

algorithm II 
Preserved Not preserved 

Squared with 
Squaring 

algorithm III 
Preserved Preserved 

**   Modification and/ or extension to an existing algorithm 
* Existing algorithm
*** New algorithm 

Table 7.1 Test results of the building aggregation algorithm with dilation and erosion followed by 
squaring the sides of the amalgam. Threshold value used: cluster distance (buffer distance): 10m. 
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Table 7.2 depicts the results of cluster aggregation and squaring on a synthetic data set 

(source) using the concave hull generation algorithm described in Section 7.2.2, coupled 

with the squaring algorithm III described in Section 7.2.3. 

* Existing algorithm
** Modification and/or extension to an existing algorithm 
*** New algorithm 

When analysing the results of the amalgams shown in Table 7.1, it is observed that the 

squaring algorithm III gives promising results in terms of orientation and shape 

preservation of the original clusters except the clusters with buildings in corner touching 

positions. However, the shape should be improved to deal with narrow sections 

(bottlenecks), juts and granular sides introduced as a result of the amalgamation and 

squaring. Further, squared amalgams created by the concave hull generation do not 

preserve both orientation and shape of the original clusters as shown in Table 7.2. When 

squaring, some granular sides would be introduced because the close interval vertices are 

formed on its outline at the time of creating the amalgam by the concave hull generation. 

Table 7.2 Test results of the building aggregation algorithm with concave hull generation 
followed by squaring the sides of the amalgam. Threshold values used: cluster distance (buffer 
distance) - 10m and hull creation percentage - 0.99. 

Algorithm Geometry Visual 
representation Criteria 

Aggregation with 
Squaring** 

comprising of 
contributing 

algorithms - Concave 
Hull generation* for 

aggregation and 
Squaring algorithm 

III***

Source Orientation Shape 

Aggregated 
Orientation of 
cluster outline 
not preserved 

Not preserved, but 
corner touching 

buildings 
aggregated 

Squared with 
Squaring 

algorithm III 
Not preserved 

Not preserved and 
many granular 

sides introduced 
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However, the generation of the concave hull has eliminated corner touching exceptions in 

the clusters when viewing the aggregated result in Table 7.2. As a result of these 

observations, it is understood that the amalgam creation before squaring should be 

further improved to deal with clusters of buildings in the corner touching and almost 

overhanging instances. For this purpose, the dilation and erosion with buffer operation II 

given in Section 7.2.1 is used with the squaring algorithm III for further testing with 

implementations, developing new algorithms to remove narrow sections (bottlenecks), 

juts and granular sides which may exist in the amalgam. 

7.2.5 Enlargement of narrow sections and juts 

Enlargement algorithm I 

This algorithm is developed to apply to amalgams created by the two algorithms: the 

dilation and erosion with buffer operation II (see Section 7.2.1) and the squaring algorithm 

III (see Section 7.2.3). 

i. Calculate the centroid and the maximum weighted local orientation by Duchêne et al.

(2003) of the squared amalgam.

ii. Rotate the amalgam to align its edge with the maximum local weighted orientation

along the X-Y axes.

iii. Calculate the MBB of the rotated amalgam oriented along the X-Y axes.

iv. Create inner line strings of the amalgam by extending each edge of its outline to meet

the opposite edge as shown in Figure 7.7(b). Use the following algorithm for creating

inner line strings.

a. Select each edge of the outline.

b. Extend the edge from its both ends until it meets and intersects the outline of the

amalgam.
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c. Get these new extensions of the inner line strings and store them with the line

strings of the outline of the amalgam in an array.

v. Polygonize all the line strings in the array to create inner rectangular shape polygon

strips as shown in Figure 7.7(b).

vi. Similarly, polygonize all the line string extensions (shown in green) and the line strings

of the outline of all the polygons created by obtaining the polygon difference

between the amalgam and the MBB as shown in Figure 7.7(c) in order to create

rectangular polygons between the region of amalgam and the MBB, which is called as

the space region.

vii. Sort the inner rectangular polygon strips with the use of the centroid along the X-axis

and the Y-axis and store vertical inner polygons on a X_strip stack and horizontal inner

polygons on a Y_strip stack separately.

viii. In the case of stacking X_strips, if the width of the strip is larger than the bottleneck

threshold of the buffered amalgam, such strips are not stacked and ignored. Similarly,

in the case of Y_strips, if the height of the strip is larger than the bottleneck threshold,

such strips are not stacked and ignored.

ix. Iterate through the X_strip and the Y_strip stacks separately and union the polygons

in each X_strip and Y_strip and store in two stacks (X_stack and Y_stack) separately.

Figure 7.7  Creating rectangular strips required in the enlargement process: (a) squared 
amalgam with narrow corridors surrounded by the MBB (b) line string extensions inside the 
amalgam in broken lines by extending edges towards the respective opposite edges and (c) 
line string extensions inside polygons created by the difference of the squared amalgam 
from the MBB. 

(a) (b) (c) 
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X_strips along Y 

Y_strips along X 

(a) (b) (c)

x. Iterate through each union polygon on the X_stack and identify the left and the right

polygon rectangles in the space region that share a line with the union strip with the

help of the MBB coordinates of both the union polygon and the space polygon

rectangles.

xi. Similarly, identify the top and the bottom polygon rectangles in the space region

that share a line with the union strips in Y_stack with the help of the MBB

coordinates.

xii. In both (x) and (xi) steps, if two space rectangular polygons are selected on either

side of a union strip, the rectangular polygon with the minimum area out of the two

polygons is selected as one of the candidate filling polygons and stored in an array. If

both areas are equal, the top polygon is selected from the Y_stack and the right

polygon is selected from the X_stack to represent the filling polygons. During this

operation, if the same space rectangular polygon is selected with reference to both

axes, such duplicates are removed from the array list consisting of filling space

rectangular polygons.

xiii. Merge all the filling polygons thus obtained with the squared amalgam to come out

with the squared and enlarged building amalgam as shown in Figure 7.8(c).

Figure 7.8  Selection of filling rectangular strips in the enlargement process: (a) polygon strips 
along the X-Y axes (b) chosen polygon rectangles between the squared amalgam and the MBB 
(space region) to fill the bottlenecks of the amalgam and (c) final squared amalgam hatched after 
filling operation. 
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xiv. Finally, if the initial amalgam before squaring has been created with the iterative

erosion procedure as explained in the dilation and erosion with buffer operation II

(Section 7.2.1), apply a negative buffer with the distance left for total erosion to the

squared and enlarged amalgam to have the final refined amalgam.

xv. Rotate the refined amalgam back to its original orientation.

Enlargement algorithm II 

Enlargement algorithm II is the modified version of the enlargement algorithm I. 

i. Adapt the same steps i to xi explained in the enlargement algorithm I.

ii. In both steps x and xi, if two or more space rectangular polygons are selected on

either side (either polygons in top-bottom combination or right-left combination) of a

single strip while iteration, filling of the strip is performed evenly on either side with

the given filling threshold value (Figure 7.9).

iii. In cases where only the single sided space polygons are selected (e.g. left space

polygons are selected while no polygons are selected on the right side of the strip),

filling of the selected polygons is performed with the threshold width if and only if the

strip boundary adjoins the boundary of the MBB, if not, ignore filling that particular

strip (Figure 7.9(d)).

Figure 7.9  Possible cases of building enlargement with narrow sections: (a) enlargement of 
both sides of the narrow section of a building comprising of a pair of opposite concave 
corners aligned along the X-Y axes (b) enlargement based on the narrow sections oriented 
on the X-Y axes with the pair of opposite concave corners aligned diagonally (c) 
enlargement of both sides of a jut and (d) single-sided enlargement of a narrow section.  

(a) (b) (c) (d) 
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iv. Merge all the filling polygons thus obtained with the squared amalgam to create the

squared and enlarged building amalgam as shown in Figure 7.8(c).

v. Finally, if the initial amalgam before squaring has been created with the iterative

eroding procedure as explained in the dilation and erosion with the buffer operation

II (Section 7.2.1), apply a negative buffer with the distance left for total erosion to

the squared and enlarged amalgam to have the final refined amalgam.

vi. Rotate the refined amalgam back to its original orientation.

7.2.6 Simplification of granular edges 

The squaring and the enlargement algorithms produce granular edges comprising of 

pseudo corners (corners that do not exist in the source data) in the building outline and 

requires removal of such corners in addition to the building edges with a length less than 

the minimum building edge distance, depending on the target scale (Figure 7.10). 

Simplification of building edges is required for this purpose. 

 

Figure 7.10  Introduction of granular edges in the amalgam after squaring and 
enlargement: (a) pseudo concave shape formed (circled) at a convex corner due to 
building squaring and (b) a similar pseudo concave shape due to the enlargement of 
narrow sections of a building. 

(a) (b) 

214 



Simplification algorithm I 

i. Calculate the centroid and the maximum weighted local orientation by Duchêne et al.
(2003) of the squared and enlarged amalgam.

ii. Rotate the amalgam and align it along the X-Y axes with the maximum local weighted

orientation.

iii. Iterate through edges of the amalgam and find each concave vertex with the two

other immediately attached vertices.

iv. Find the MBB of these three vertices by iterating through each concave vertex. The

MBBs thus created are the candidate filling polygons to carry out simplification.

v. Filter out the potential filling polygons based on the minimum threshold distance in

the simplification process.

vi. Glue such polygons with the amalgam oriented along the X-Y axes.

vii. Get the new amalgam and run the steps III to VI iteratively until no filling polygon is

found with the edges less than the simplification threshold to get the combined

amalgam.

viii. Rotate this amalgam back to its original orientation to get the final simplified

amalgam.

When analysing the output geometrically within the implementation in Java, the filling 

polygons created do not exactly fit with the amalgam to which the filling polygons are to 

be glued because the orientation of the rotated amalgam does not get exactly oriented 

along the X-Y direction due to the angular precision value (0.250 degrees) used in the 

orientation calculation algorithm by Duchêne et al. (2003) implemented in this research. 

Therefore, an improved simplification algorithm is required and dealt with next. 
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Simplification algorithm II 

i. Adopt the same steps I and ii in the simplification algorithm I.

ii. Create the space regions between the MBB and the amalgam oriented along the X-Y

axes.

iii. Create line strings inside space regions by extending them until they meet the MBB

and polygonize those to form space polygons as shown hatched in Figure 7.11(b).

iv. Iterate through each vertex of the amalgam and find the concave vertices using the

exterior angle between two edges connecting each vertex of the amalgam. In this

process, if two adjoining concave vertices are found, one vertex is ignored.

v. Iterate through each concave vertex and filter out each space polygon (rectangle) on

which a concave vertex lies. If one of the sides of such a polygon is below the

simplification threshold value, select and store it as one of the candidate polygons to

glue with the amalgam.

vi. Glue all the filtered polygons (rectangles) with the amalgam after completion of the

iteration of concave vertices.

Figure 7.11  Simplification of the amalgam with orthogonal sides: (a) original building 
amalgam oriented along the X-Y axes (b) space polygons (rectangles) between the MBB 
and  the original building amalgam along the X-Y axes hatched with a cross and (c) 
simplified building amalgam with a simplification tolerance of 5.0m. 

(a) (b) (c) 
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vii. Get the new amalgam and run steps (ii) to (vi) iteratively until no space polygon is

found with the edges less than the simplification threshold to get the combined and

simplified amalgam as shown in Figure 7.11(c).

viii. Rotate this amalgam back to its original orientation to get the final simplified

amalgam.

See Appendix G.7 for the pseudo code of the algorithm. 

7.2.7 Testing of amalgams after complete generalization process 

In this phase, the main generalization algorithm of building aggregation with orthogonal 

sides is tested and evaluated while testing and evaluating intermediate algorithms 

developed for enlargement of narrow sections and juts, and simplification of granular 

sides. These two intermediate algorithms are applied to the squared amalgams obtained 

with the two algorithms - dilatation and erosion with the buffer operation II and the 

squaring algorithm III. Figure 7.12 depicts the functional model of the algorithm. 

Generalization Symbolization Filling Squaring Enlargement Simplification 

  
 
 
 

Figure 7.12 Functional process of building symbolization and aggregation with orthogonal sides. 

Symbolize 

Start 
Create 

amalgam 
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sections 
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granular 

sides 

End 
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Yes 
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Table 7.3 illustrates the test results of the building aggregation algorithm with orthogonal 

sides on a synthetic data set using a combination of the dilation and erosion algorithm 

with buffer operation II (see Section 7.2.1), the squaring algorithm III (see Section 7.2.3), 

the enlargement algorithm I (see Section 7.2.5) and the simplification algorithm II (see 

Section 7.2.6). 

** Modification and/or extension to an existing algorithm 
*** New algorithm 

Table 7.3 Test results I of building aggregation algorithm with orthogonal sides. Threshold 
values used: cluster distance (buffer distance) - 10m, Minimum building length - 15m, Minimum 
width of narrow sections - 5m and simplification tolerance - 3m. The cluster circled in red colour 
is symbolized by a rectangle using the symbolization algorithm in Section 7.1. 

Algorithm(s) Geometry Visual representation Criteria 

Symbolization*** and 
aggregation algorithm 

comprising of 
contributing 

algorithms - dilation 
and erosion with 

buffer operation II**, 
squaring algorithm 
III***, enlargement 
algorithm I*** and 

simplification 
algorithm II***

Source Orientation Shape 

Symbolized 
or 

aggregated, 
squared and 

enlarged 

Orientation of 
the clusters 
preserved 

Not preserved in 
corner touching, 

almost 
overhanging and 

total 
overhanging 

clusters  

Symbolized 
or 

aggregated, 
squared, 
enlarged 

and 
simplified 

Orientation of 
the clusters 
preserved 

Not preserved in 
corner touching, 

almost 
overhanging and 

total 
overhanging 

clusters 
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When analysing the test results, it is observed that the aggregated results do not preserve 

the shape very well in exceptional clusters, as in the case of buildings located touching at 

the corner, almost overhanging or total overhanging positions despite creating an 

amalgam, removing corner touching and hanging situations with the dilation and erosion 

with buffer operation II. Therefore, the enlargement algorithm dealing with filling up 

narrow sections and juts needs to be further modified and tested for improved shape 

preservation of the amalgam. The cluster with the rectangular corner touching pair of 

buildings is only symbolized using the algorithm described in Section 7.1 since it does not 

meet the legibility constraint - minimum edge length - to be represented in the target 

scale. 

Table 7.4 illustrates the test results of the building aggregation algorithm with orthogonal 

sides on the same synthetic data set used in Table 7.3 using the same combination of 

algorithms except the algorithm for the enlargement which is replaced by a modified 

algorithm of the previous enlargement algorithm I, named as enlargement algorithm II 

(see Section 7.2.5). When analysing the test results, it is observed that the modified 

enlargement algorithm preserves shape characteristics of the source clusters. The final 

results of the aggregation algorithm with orthogonal sides are satisfactory in preserving 

both orientation and shape characteristics in dealing with any exceptional case of building 

locations which would rarely come across in real data sets. However, thorough testing of 

these types of exceptional cases needs to be done for further verification of the algorithm. 
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** Modification and/or extension to an existing algorithm 
*** New algorithm 

Further testing of the algorithm with some exceptional synthetic data 

Further testing on another exceptional synthetic data set reveals that the algorithm 

collapses. This is evident when observing the amalgamated result circled in red colour on 

the building cluster shown in Table 7.5 where one hanging corner (upper) of the cluster 

has not been bridged. Analysing further, it is found that the above exception occurs when 

the polygon does not become a multi-polygon in the iterative buffer process to terminate 

its execution under the dilation and erosion with buffer operation II. The reason is that the 

algorithm keeps on iterating with the amalgam yet has been treated to be a polygon using 

the bridge on the other side of the hanging corner (down) until the bridge gets collapsed. 

Table 7.4 Test results II of the building aggregation algorithm with orthogonal sides. Threshold 
values used: cluster distance (buffer distance) - 10m, Minimum building length - 15m, Minimum 
width of narrow sections - 5m and simplification tolerance - 3m. The cluster circled in red colour 
is symbolized by a rectangle using the symbolization algorithm in Section 7.1. 

Algorithm(s) Geometry Visual representation Criteria 

Symbolization*** and 
aggregation algorithm 

comprising of 
contributing 

algorithms - dilation 
and erosion with 

buffer operation II**, 
squaring algorithm 
III***, enlargement 
algorithm II*** and 

simplification 
algorithm II***

Source Orientation Shape 

Symbolized 
or 

aggregated, 
squared and 

enlarged 

Orientation of 
the clusters 
preserved 

Preserved in 
corner touching, 

almost 
overhanging and 
total overhanging 

clusters, but 
granular sides 

introduced 

Symbolized 
or 

aggregated, 
squared, 

enlarged and 
simplified 

Orientation of 
the clusters 
preserved 

Preserved in 
corner touching, 

almost 
overhanging and 
total overhanging 

clusters 
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This occurs when the distance between the buildings in the non-collapsing hanging 

position is greater than the distance in the other collapsing hanging position. Therefore, 

the algorithm needs to be revised to handle any type of data consisting of simple data to 

very complex data of building shapes. 

Table 7.5 Results of further testing of the building aggregation algorithm with 
orthogonal sides using an exceptional synthetic data set. No symbolization is applied 
according to the value of the length threshold used in the testing. 

Type of data 
Distance 

thresholds in 
meters (m) 

Visual representation 

Source building 
data in the 

form of 
clusters 

Clustering: 8.5 

Amalgams 
after 

aggregation, 
squaring and 

enlargement of 
juts 

i. Length threshold
for symbolization: 

20 

i. Dilation and
erosion: 8.5

ii. Enlargement:5

Final amalgams 
after 

aggregation, 
squaring, 

enlargement of 
juts and 

simplification 
of edges 

i. Length threshold
for symbolization: 

20 
ii. Dilation and

erosion: 8.5 

iii. Enlargement:5

iv. Simplification:5
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7.2.8  Modified building aggregation algorithm with orthogonal sides 

The dilation and erosion algorithm with buffer operation II described in Section 7.2.1 

collapses in creating the initial amalgam of a cluster with the filling operation before 

applying squaring, enlargement and simplification operations. Therefore, the previous 

algorithm is modified by introducing a solution to fill in the gap space between buildings 

inside the cluster to create the initial amalgam using 2D spatial triangulation. The other 

algorithms developed and tested for squaring, enlargement and simplification are 

incorporated in this modified algorithm. However, the inner holes of polygons if available, 

are not treated in this algorithm. The algorithm is explained in detail below. 

Algorithm 

i. Read a non-single cluster of orthogonal shape from the PostGIS database. 

ii. Run the symbolization algorithm described in Section 7.1 on the cluster. 

iii.  If the threshold length applied to the building edges according to target scale is 

greater than the minimum length of the bounding rectangle created in the 

symbolization algorithm, symbolize the cluster and go to step (w) or else go to the 

next step. 

iv.  Apply buffer operation to the cluster using the dilation and erosion algorithm I 

described in Section 7.2.1. 

v. Check if the buffered amalgam is a polygon. If it is a polygon, adapt the following 

steps. 

a. Apply the squaring algorithm III to square the edges of the buffered amalgam. In 

the application of this algorithm, use the wall orientation of the union building 

cluster to get the GOBR because the wall orientation can be changed after gluing 

the buildings. 

b. Apply the enlargement algorithm II on the squared amalgam. 
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c. Apply the simplification algorithm II (Section 7.2.6) on the enlarged amalgam to

get the final amalgam and go to step (w).

vi. If it is a multi-polygon, it can have disjoint polygons which may consist of either

original source polygons in the cluster (all polygons with corner touching and/or

hanging locations) or a combination of glued polygons due to dilation and erosion and

source polygons or only the glued polygons located apart (e.g. buildings 3 and 4 are in

an overhanging position as depicted in Figure 7.13). Also, get the wall orientation to

be used in squaring before gluing buildings (wall orientation of the multi-polygon).

Then, adapt the following steps for creating the amalgam.

a. Reassign dummy IDNs to each polygon in the buffered amalgam geometry.

b. Triangulate the buffered amalgam with the DCT developed in this research (see

Section 4.4) as shown in Figure 7.14.

Figure 7.13   Result of buffering with same positive and negative distance: (a) source cluster 
and (b) buffered amalgam with the two leftmost buildings (IDNs 1 and 2) bridged together, 
and two other source buildings (IDNs 3 and 4) in the cluster.  
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c. Get the adjacent links and work out the minimum distance between each pair of

buildings and get a list of links in the form of [bid1, bid2, distance].

d. Iterate through the list, get each pair of buildings and do the following if the

minimum distance between each pair is less than or equal to the clustering

threshold.

e. Retrieve geometries of the two buildings in the pair.

f. Run the CNDT with constraint edges on the pair of buildings. The purpose of

running the CNDT is to have more hooks between the two buildings in the pair.

This will enable to have the least exaggeration of the gap between the two

buildings.

g. Retrieve the source building IDNs attached to each triangle in the CNDT.

h. With building IDN information, find out the space triangles between the two

buildings and assign them to an array (triangles that connect the two buildings

only). In this case, all the building triangles and the false triangles (see Figure

4.11 in Section 4.4.2) are omitted.

i. Iterate through the array of space triangles and get each triangle.

j. Now choose triangles to bridge the gap between each pair of buildings so that at

least an edge of each space triangle, which connects both buildings, is less than

Figure 7.14  DCT on the buffered amalgam.  

3 
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or equal to the distance threshold used in forming building clusters (see 

highlighted triangles in Figures 7.15(a) and 7.15(b)). 

k. These triangles are glued to obtain a single geometry (highlighted multi-polygons 

in yellow colour in Figure 7.15). 

l. Separate glued polygons if multi-polygon geometry exists (two polygons each in 

Figures 7.15(a) and 7.15(b). 

m. Iterate over each separated polygon and retrieve the triangles consisting of each 

such polygon (each separated polygon needs to be buffered with a small positive 

distance to track triangles within each such polygon). 

n. If such a polygon consists of a single triangle or a pair of triangles, such triangles 

are added to the final array of bridging triangles (e.g. triangle 1, 2 and 3 in Figure 

7.15(a)). 

p. If such a polygon consists of more than two triangles (e.g. triangles 1, 2 and 3 in 

Figure 7.15(b)), map shared edges of each triangle with its edge lengths and 

retrieve the pair of triangle IDNs which has the shared edge of the minimum 

length and add into the final array of bridging triangles (triangles 2 and 3). 

 

 

 

 

 

Figure 7.15 Triangles selected for bridging based on the distance threshold 
highlighted in yellow colour. 
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q. Glue the finally selected triangles with the source buildings to get the initial

building amalgam. Check if the amalgam is a polygon. If it is a polygon, adapt

sub-steps (a) to (c) of step (v).

r. If it is a multi-polygon, apply a small positive buffer (say distance - ∆d) to make

the entire amalgam a polygon.

s. Now adapt sub-steps (a) and (b) under step (v) for squaring and enlarging the

amalgam.

t. Apply a negative buffer with the same distance (∆d) used for positive buffering in

step (r) above.

u. Adapt sub-step (c) under step (v) to simplify the edges to have the final amalgam

cluster.

w. Go to step (i) iteratively until the end of all the clusters.

7.2.9 Testing of amalgams with the modified algorithm 

With a synthetic data set 

When comparing the results of the amalgams in Table 7.6 with the results (see Table 7.5) 

obtained from further testing of the previous algorithm in Section 7.2.7, it can be seen 

that the cluster at the top right-hand corner, which could not be amalgamated properly 

due to the exception in dilation and erosion with the buffer operation II in the previous 

algorithm, is now amalgamated correctly. 

Further, it is observed at the bottom Figure in the Table 7.6 that the algorithm has applied 

symbolization (circled in red colour is a symbolized amalgam) as described in Section 7.1 

instead of aggregation with the squaring operation when increasing the length threshold. 

The algorithm has the capability to handle buildings in exceptional places such as corner 

touching and overhanging positions in clusters. 
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** new algorithm 
* Existing algorithm

Table 7.6 Results of the aggregation of building clusters with orthogonal sides on the synthetic 
data used in Table 7.5 with some exceptional building configuration. Circled in red colour is a 
symbolized amalgam using the symbolization algorithm in Section 7.1. 

Geometry Distance threshold in 
meters (m) Visual representation 

Source building 
data in the form of 

clusters 
Clustering - 8.5 

Amalgams after 
symbolization or 

aggregation, 
squaring and 

enlargement of 
juts 

i. Length threshold for
symbolization** - 20

ii. Dilation and erosion* - 8.5

iii. Enlargement** - 5

Final amalgams 
after 

symbolization or 
aggregation, 

squaring, 
enlargement of 

juts and 
simplification of 

edges 

i. Length threshold for
symbolization** - 20

ii. Dilation and erosion* - 8.5

iii. Enlargement** - 5

iv. Simplification** - 5

i. Length threshold for
symbolization** - 25

ii. Dilation and erosion* - 8.5

iii. Enlargement** - 5

iv. Simplification** - 5
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With a real data set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16  Results of the aggregation of building clusters with orthogonal sides on a real data 
set representing a region after squaring, enlargement and simplification. Thresholds: clustering, 
enlargement and simplification - 5m and building side length - 20m (a) clusters in red (b) 
generalized buildings and (c) results overlaid with the source data. Data source: The NMA of Sri 
Lanka. Copyright reserved. 
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Figure 7.16 depicts the results of the amalgams with an orthogonal outline, created by 

aggregating buildings in each cluster. The implemented algorithm is applied to the clusters 

belonging to ‘very close’ and ‘medium range’ classifications (Figure 7.16(a)). The two 

rectangles shown in the generalized result are produced by the symbolized algorithm 

based on the building side length threshold. 

Synopsis of the contributing algorithms used 

Table 7.7 below summarises the contributing algorithms of the main cluster aggregation 

with orthogonal sides. 

Table 7.7 Building cluster aggregation algorithm with orthogonal sides, including contributing 
algorithms. 

Main algorithm # Contributing algorithm Purpose 

Bu
ild

in
g 

cl
us

te
r a

gg
re

ga
tio

n 
w

ith
 

or
th

og
on

al
 si

de
s 

1 Symbolization*** To Exaggerate the size of 
building geometry 

2 Dilation and erosion with buffering 
algorithm I*

To fill the gaps between 
building geometries 

3 DCT** To get adjacency relations 
between building geometries 

4 CNDT* To fill the gaps between 
buildings with triangles 

5 Squaring*** To square edges of the 
amalgam 

6 Enlargement*** To enlarge narrow sections 
and juts in the amalgam 

7 Simplification*** To delete shorter edges of 
the amalgam 

* Existing algorithm
** Modification and/or extension to an existing algorithm
*** New algorithm
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7.3    Building cluster aggregation with non-orthogonal sides 

The use of this algorithm is to create an amalgam by aggregating buildings in a non-

orthogonal shaped cluster which is identified and enriched during the cluster shape 

enrichment process described in Section 5.4 under the data enrichment process. In 

developing this algorithm, the treatment of buildings in exceptional positions as explained 

in the development of aggregation of buildings with orthogonal sides is considered with 

the use of the CNDT with constraint edges (see Section 4.2) and edge adjacency relations 

of interconnected polygons to fill in the gaps between buildings.  

7.3.1 Aggregation algorithm with triangulation 

i. Read a non-single cluster of non-orthogonal shape from the PostGIS database. 

ii. Run the symbolization algorithm described in Section 7.1 on the cluster. 

iii.  If the threshold length of the building edges given according to the target scale is 

greater than the minimum length of the bounding rectangle created in the 

symbolization algorithm, symbolize the cluster and go to step (xii) or else go to the 

next step. 

iv.  Apply buffer operation to the cluster using the dilation and erosion algorithm I 

described in Section 7.2.1. This operation may have created buildings that have got 

buffered forming self-connecting bridges due to concave shape (see Figure 7.17(b)) 

and the buildings that are partially glued in the form of a multi-polygon (see Figure 

7.18(b)). 
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v. Carry out the following process to avoid self-bridging corners as explained in the

previous step.

a. Get the filling bridges (if available) between each pair of buildings in the cluster

and the self-filling bridges of single buildings (if available) by subtracting buffered

amalgam from the union of the source building cluster.

b. Select only the bridges that connect two or more buildings in the cluster, ignoring

self-filling bridges by iterating through each bridge.

Figure 7.17  Result of buffering with the same positive and negative distance:  (a) 
source cluster with the lower building comprising of two concave corners shown 
circled and (b) buffered amalgam where the two concave corners are filled as a 
result of the buffering operation. 

Figure 7.18  Result of buffering with the same positive and negative distance: (a) 
source cluster including a polygon with a hole and (b) buffered amalgam in a multi-
polygon with a filling bridge between the two leftmost buildings and the preserved 
hole of the rightmost building in the source cluster in (a). 

(a) (b) 

(a) (b) 
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c. Union all these bridges with the union of source building cluster. This operation

preserves outline and inner holes of each building while bridges between

buildings are formed (Figure 7.18(b)).

vi. If the buffered amalgam is a polygon as a result of the aggregation of the cluster, go

to step (xii). If the buffered amalgam is a multi-polygon as shown in Figure 7.18 (b), go

to the next step.

vii. Reassign dummy IDNs to each polygon in the buffered amalgam geometry.

viii. Triangulate buffered amalgam with the DCT developed in this research (see Section

4.4) as shown in Figure 7.19.

ix. Get the adjacent links and work out the minimum distance between each pair of

buildings and get a list of adjacency links in the form of [bid1, bid2, distance].

Figure 7.19  DCT on the buffered amalgam.  
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x. Iterate through the list, get each pair of buildings and adopt the following if the

minimum distance between each pair is less than or equal to the clustering threshold.

a. Retrieve geometry of both buildings in the pair.

b. Run the CNDT with constraint edges on the pair of buildings. The purpose of

running the CNDT is to have more hooks between the pair of buildings. This will

enable to have the least exaggeration of the gap between the two buildings.

c. Retrieve the source building IDNs attached to each triangle in the CNDT with

constraint edges.

d. With building IDN information, find out the space triangles between the two

buildings and assign them to an array (triangles that connect the two buildings

only). In this case, all building triangles and false triangles (see Figure 4.11 in

Section 4.4.2) in the space between the two buildings are omitted.

e. Iterate through the array of space triangles and get each triangle.

f. Find the three edges and normalise each edge to help extract a common pattern

of all line segments with the use of their coordinates.

g. Keep a mapping between each normalised edge and the connecting triangle IDN

(dummy IDN is used for each triangle as stored in the array) over iteration.

h. Find out topologically adjacent pairs of triangles from the map, which share an

edge by finding all edges that appear exactly twice in the map (e.g. Pairs [1, 2], [2,

5], [3, 4] and [5, 3] (IDNs in red colour) in Figure 7.20).

i. Sort adjacent triangle IDNs in order with the help of adjacent pairs of triangle

IDNs (e.g. IDNs 1, 2, 5, 3 and 4 in red colour in Figure 7.20) to get topologically

adjacent triangles in an array.
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j.  Reassign serial dummy IDNs to each triangle in the array, starting from IDN 1 and 

map these IDNs with the triangle geometry (dummy IDNs are numbered in black 

colour in Figure 7.20). 

k. Now by inputting the clustering distance and the space triangle edge distance 

threshold values, select the candidate space triangles where at least the distance 

of a single edge or more edges is less than or equal to the space triangle edge 

distance threshold (e.g. Figure 7.20 depicts selected space triangles highlighted in 

yellow colour) and get their initial triangle IDNs to bridge the gap between a pair 

of buildings. A wider filling bridge can be achieved by increasing the space 

triangle edge distance threshold. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.20  Possible cases of bridging a pair of buildings: (a) selection of an inverted 
pair of triangles (b) hanging selection with a non-inverted pair (c) selection of a single 
triangle and (d) selection of a couple of pairs of triangles in scattered locations. 
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xi. Figure 7.20 illustrates the typical cases of bridging triangles that might occur due to

the shape and the location of each building in the pair and the space triangle edge

distance threshold. Apply the following steps for final selection of bridging triangles.

a. Apply pairing on the initially selected triangles (triangles highlighted in yellow

colour in Figure 7.20) based on the edge distance threshold. There are seven

cases that can cause triangle selection (see Table 7.8 for the pairing algorithm of

adjacent triangles) based on pairing triangles.

b. If only one triangle IDN is selected (Figure 7.20(c)), it occurs at the edge of the

convex hull. Iterate through topologically ordered and paired triangles until it

gets an inverted pair (e.g. triangle IDNs 1 and 2 in Figure 7.20(c)) either in

ascending order or descending order based on the first or the last IDN selected

(see Table 7.8 for pairing) and get the triangle IDNs of the finally selected

triangles.

c. If the triangle IDNs selected on pairing are serial with only a couple of triangles,

check if the pair is either invertible (Figure 7.20(a)) or non-invertible (Figure

7.20(b)). If the pair is invertible, choose it as the finally selected pair of triangles

for bridging. If it is non-invertible, get the two adjacent triangles on either side of

the pair based on the pairing algorithm (see Case 3 in Table 7.8) and choose the

triangle with the minimum area and add to the non-inverted pair to have the final

selection of triangles (e.g. triangle IDNs 1, 2 and 3 in Figure 7.20(b)) for bridging.

d. If the triangle IDNs are serial with three or more triangles, no pairing is done, and

all triangles are chosen as final bridging triangles as there must be at least two

connected inverted pairs in the selection.

e. If the triangle IDNs are not serial, there can be scattered selections (dummy IDNs

[2, 3] and [7, 8] in Figure 7.20(d)). In this case, there can be one of the four

possible cases occurring in pairs, in general, depending on the shape and the

position of the pair of buildings (see Cases 4, 5, 6 and 7 in Table 7.8). For example,

pairing between [2, 3] and [7, 8] is Ascending => [2, 3] [3, 4] [4, 5] [5, 6] [7, 8] and
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Descending => [7, 8] [6, 7] [5, 6] [4, 5] [3, 4] [2, 3]. Check invert triangles in both 

orders and break the iteration once it meets an invert pair of triangles. 

Table 7.8 Pairing algorithm of adjacent triangles: n - number of triangles and f, k, l, m, p, 
q, r, s and u are triangle IDNs. 

Pa
iri

ng
 o

f a
dj

ac
en

t t
ria

ng
le

 ID
N

s (
se

ve
n 

ca
se

s)
 

Ca
se

 Sorted triangle IDNs in 
ascending/descending 

order 
Triangle IDN: Tidn i=1,n

1 First IDN Ascending order => [ i, i+1]i=1,n-1 
2 Last IDN Descending order => [i, i-1]i=n,2 

3 Single pair [k, m] Ascending order => [i, i+1]i=m,n-1

Descending order => [i,i-1]i=k,2

4 More than one pair 
[p,q] [r,s] [u,v]… 

Consider two consecutive pairs at a time 
iteratively. 
[p,q]- [r,s] 
Ascending order => [i, i+1]i=q,r-1

Descending order => [i,i-1]i=p,2

[r,s] - [u,v] 

5 

More than one pair with First 
IDN 

 [f] [p,q] [r,s]… 

Consider two consecutive pairs including 
first triangle at a time iteratively. 
[f] - [p,q] 
Ascending order => [i, i+1]i=f,p-1

Descending order => [i,i-1]i=p,2 

6 

More than one pair with 
Last IDN 

 [p,q]… [u,v] [l] 

Consider two consecutive pairs including 
last triangle at a time iteratively. 
[u,v] - [l] 
Ascending order => [i, i+1]i=u,l-1

Descending order => [i,i-1]i=l,2 

7 

More than one pair with both 
First and Last IDNs 
 [f] [p,q]… [u,v] [l] 

Similar as above in the cases 4, 5 and 6. 

f. In the example (d) in Figure 7.20, the ascending order gives out the pair [2, 3] as

output and descending order gives out the pairs [7, 8] and [6, 7] as the output.

Finally, combine the two outputs and remove duplicates to get the final bridging

triangle selection (e.g. triangle IDNs 2, 3, 6, 7 and 8 in Figure 7.20(d)).
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g. The next step is to treat holes (inner rings) if created in the space area (Figure 

7.21). In this case, first retrieve the inner holes and add any false triangles which 

connect to a single building if any (inner hole no. 2 in this example) to get the 

final amalgam (Figure 7.21(b)). 

xii. Go to step (i) iteratively until the end of all the clusters. 

 

 

  

Figure 7.21  Dealing with polygon holes after aggregation of buildings with non -
orthogonal sides: (a) amalgam with bridging triangles highlighted in yellow 
colour - rings numbered 1 and 2 are the inner holes created after bridging and 
(b) final amalgam after removing the triangle hole. 
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7.3.2 Simplification algorithm 

For simplification of the shorter edges less than the simplification tolerance of the 

aggregated building, the algorithm implemented in the OpenCarto Java library 

(OpenCarto, 2013) for edge deletion is used. The principle of the algorithm is to delete all 

the edges shorter than a particular tolerance recursively. It starts by listing all edges 

shorter than the tolerance. Then, it tries to delete the shortest one. The way to delete this 

edge depends on the relative orientations of this edge and the two other edges connected 

to it (see Appendix C.3 for the algorithm). Figure 7.22 depicts the functional model of the 

algorithm with the filling and the simplification operations. 

7.3.3 Testing of building cluster aggregation with non-orthogonal sides 

In this phase, the main generalization algorithm of building aggregation with non-

orthogonal sides is tested and evaluated together with the filling and the simplification 

algorithms. The filling operation to bridge the gaps between buildings is realised by 

generating triangles between buildings. Depending on the triangle edge distance 

threshold, the filling bridge can be enlarged in the algorithm. Further, the simplification is 

carried out to remove shorter sides according to the target scale. 

 

Generalization Symbolization Filling Simplification 

Figure 7.22 Functional process of building aggregation with non-orthogonal 
sides. 
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With a synthetic data set 

Table 7.9 illustrates the results of building cluster aggregation with non-orthogonal sides 

using the filling operation followed by the simplification of the shorter edges less than the 

simplification tolerance using an exceptional synthetic data set consisting of buildings in 

clusters at almost hanging positions. When comparing the results of the amalgams after 

aggregation with the space triangle edge distance threshold equivalent to clustering 

threshold (distance threshold: 20m in the example of the Table 7.9), amalgams are 

created with the selection of minimum number of triangles to minimise exaggeration of 

the shape of the amalgam (see the algorithm in Section 7.3.1). Further, the 

implementation of the algorithm has the capability to fill in the gaps wider between 

buildings in the amalgam by increasing the space triangle edge distance threshold (see the 

results in the example in Table 7.9 with the space triangle edge distance - 50m). According 

to the algorithm, if a cluster does not have buildings either touching at the corner or in 

overhanging positions as seen in the cluster to the mid-right in the source Figure in Table 

7.9, it is amalgamated with the buffer operation, maintaining orthogonal sides if available 

in buildings in the cluster (see the amalgamated result in Table 7.9). 

With a real data set 

Depicted in Figure 7.2.3 are the clusters belonging to ‘very close’ and ‘medium range’ 

classifications obtained from the automatic clustering algorithm (the orientation 

difference threshold used is 70 in this example) for a region represented in a real data set. 

The cluster shown in red colour in Figure 7.23(a) is an orthogonal shaped cluster and 

therefore ignored in the process of generalization with non-orthogonal shaped clusters. It 

is dealt with in the generalization of orthogonal shaped clusters discussed in the previous 

section. Also, clusters of single buildings (buildings with cyan colour) are ignored in the 

generalization process. 

When observing the medium range clusters - ‘MDS-1’ and ‘ML-1’ - in Figure 7.23(a), they 

are in almost overhanging positions and the algorithm generalizes them by bridging the 

gaps using triangles (Figure 7.23(b)). 
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Table 7.9 Results of aggregation of building clusters with non-orthogonal sides on the 
synthetic data with some exceptional building configuration. 

Geometry Distance threshold in meters (m) Visual representation 

Source building data 
in the form of 

clusters 
Clustering - 20 

Building amalgams 
after aggregation**

Space triangle edge threshold - 20 
(same as clustering threshold) 

Building amalgams 
after aggregation** 
and simplification* 

i. Space triangle edge threshold - 20
 (same as clustering threshold) 

ii. Simplification tolerance - 10

Building amalgams 
after aggregation** 

with filling** and 
simplification*

i. Space triangle edge threshold - 50

ii. Simplification tolerance - 10

* Existing algorithm
** New algorithm 
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Figure 7.23  Results of the aggregation of non-orthogonal shaped clusters comprising of 
buildings with non-orthogonal sides and/or significant orientation difference: (a) clusters of 
buildings on the clustering threshold - 5m and the orientation difference threshold 70 degrees 
(b) generalized results before simplification (c) results after simplification and (d) results 
overlaid with the source data, thresholds used: space triangle edge and side length - 20m and 
simplification - 5m. 

(b) (a) 

(c) (d) 
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At the bottom of Figure 7.23(b) is the generalized result of the complex cluster - ‘VC-3’ - 

comprising of irregular shaped and differently oriented buildings at both overhanging and 

non-overhanging positions. The simplified results using the open source OpenCarto Java 

library are shown in Figure 7.23 (c) and (d). The cluster with ‘ML-2’ classification is 

symbolized, considering the building length threshold. However, if it is required to have a 

little more generalized aggregation for complex clusters and/or large clusters such as the 

cluster - ‘VC-3’ - the improved concave hull algorithm described in Section 5.4.1 can be 

used. 

Figure 7.24  Results of the generalized amalgams with the improved concave hull algorithm: 
(a) amalgam created with concave hull generation (b) amalgam overlaid with the building 
cluster (c) simplified amalgam with the OpenCarto Java library and (d) simplified amalgam 
with the JTS Java library. Simplification threshold in both cases - 10m. 

(a) (b) 

(c) (d) 
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Figure 7.24 depicts the results of the generalized amalgam of the aforesaid cluster - ‘VC-3’ 

- using the improved concave hull algorithm. When comparing the result with the one 

produced by the triangulation based aggregation algorithm, it is overgeneralized with 

some improved results. Results (c) and (d) in Figure 7.24 depict the two simplified results 

generated by the two simplification algorithms implemented in the OpenCarto (see 

Appendix C.3 for OpenCarto algorithm) and the JTS Java based libraries using the same 

distance threshold. The algorithm used in JTS is similar to that of Douglas and Peucker 

(1973) with further improvement to have a result with valid geometry with the 

preservation of topology (Vivid Solutions JTS, 2013). When comparing the results, the JTS 

simplifier has given more simplified results that would suit simplification of polygons 

generated by the improved concave hull algorithm on larger amalgams. 

Synopsis of the contributing algorithms used 

Table 7.10 summarises the contributing algorithms of the main building aggregation 

algorithm with non-orthogonal sides. 

Table 7.10 Building cluster aggregation algorithm with non-orthogonal sides, including 
contributing algorithms. 

Main algorithm # Contributing algorithm Purpose 

Bu
ild

in
g 

cl
us

te
r a

gg
re

ga
tio

n 
w

ith
 n

on
-

or
th

og
on

al
 si

de
s 

1 Dilation and erosion with the 
buffering algorithm I*

To fill the gaps between 
building geometries 

2 DCT**
To get the adjacency 

relations between building 
geometries 

3 CNDT** To fill the gaps between 
buildings with triangles 

4 Edge adjacency graph* To sort the adjacent 
triangles 

5 Filling with the pairing of the 
adjacent triangles***

To fill the gaps between 
buildings with the candidate 

triangles 
6 Concave Hull ** To aggregate larger clusters 
7 Simplification* To delete shorter edges 

* Existing algorithm
** Modification and/or extension to an existing algorithm 
*** New algorithm 
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7.4    Conclusion 

The chapter describes how the existing algorithms are tested and the new algorithms are 

developed for the purpose of creating generalized building polygons to depict salient 

landmarks on a coarse background to generate focus maps for wayfinding. For creating 

generalized amalgams, building cluster information enhanced under the data enrichment 

described in Chapter 5 is used. Further, in the development and the implementation 

process of each algorithm, a thorough testing has been carried out by analysing the results 

of its implementation on several versions until the refined algorithm is obtained using 

both the real and the synthetic data sets. The amalgamation algorithms developed in this 

work fall into two categories: (a) algorithm to deal with buildings with orthogonal sides 

and similar orientation in the cluster outline and (b) algorithm to deal with clusters 

comprising of buildings with non-orthogonal sides and/or dissimilar orientations in the 

cluster outline. 

The next chapter will describe how the tools and methods in the field of spatial data 

structures, data enrichment, data mining and automatic map generalization, implemented 

in this research are utilised together to generate focus maps for wayfinding along with the 

external validation of the results of focus maps.

244 



Chapter 8   Results and discussion 

This chapter elaborates generating focus maps, together with external validation of its 

results in the field of automatic map generalization and data mining for deriving landmark 

saliency. The generalized results are validated with the use of proprietary ArcGIS software 

as described in Section 3.3.3. The derived landmark saliency is validated through the 

implementation of the framework to find landmark saliency, introduced by Raubal and 

Winter (2002) and its extended framework by Nothegger, Winter and Raubal (2004) as 

described in Section 3.3.4 (see Appendix F.6 for the UI of the implementation of both 

frameworks). The validation of landmark saliency is further analysed with a crosscheck by 

using the Google street view of the test areas. This chapter further describes the 

implications and limitations of the results of focus map generation in relation to the 

literature review given in Chapter 2. Two different data sets - one from the London 

Borough of Newham and the other from the London Borough of Tower Hamlets - using OS 

MasterMap data at the scale of 1 : 1.25K are used for this purpose. The final product of 

focus map generation is achieved by the integration of results obtained through the 

implementation techniques described in Chapters 4, 5, 6 and 7 in the areas of spatial data 

structuring with triangulation, data enrichment in the context of automatic map 

generalization, data mining and automatic map generalization. In this process, the results 

of each stage are thoroughly analysed since the results of one phase affect the next in 

generating focus maps. 
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8.1    Dealing with issues in generating the results for focus maps 

In producing focus maps, the results at each stage, as mentioned above, can have a 

significant effect on the next stage towards generating the final results. When applying to 

the real data (as opposed to the synthetic test data), a few immediate fixes were required 

in the phases of data enrichment and automatic map generalization in this research. 

Therefore, fixing will be dealt with next before producing the focus maps on the test data 

sets. 

8.1.1 Fixing issues in building clustering 

In the building clustering process under data enrichment phase, the execution of the 

CNDT with building edges set as constraints failed in some of the regions in the OS 

MasterMap data sets. However, when the tolerance was increased to merge site points 

closer than a certain distance to deal with robustness issues, the triangulation executed, 

but did not give topologically correct triangles (no triangle edges existed from some site 

points that shared attached building edges and some triangle edges went across 

constrained geometries (Figure 8.1(a)), resulting in incorrect clustering. 

The ideal application would have been to run triangulation with a tolerance of zero or a 

very small value (0.1mm). However, for data in some regions, the tolerance had to be 

increased interactively until the triangulation executed despite incorrect topological 

results. Thus, an immediate fix was necessary. Identifying that the issue was partly in the 

data set with incorrect noding issues and duplicate geometries, cleaning and building 

topology with the GIS software - GRASS - was carried out before applying triangulation. 

However, this strategy too failed. Then the linear geometries set as edge constraints in the 

data set were tested and found that there existed duplicate line segments. The duplicate 

line segments had to be dissolved so as to get a unique constraint segment list to be input 

into the triangulation. This strategy worked out and with the modified triangulation 

method, along with a very small tolerance set in the code (0.1mm), topologically correct 

triangles could be generated with full automation (Figure 8.1(b)). 
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Figure 8.2 depicts the clustering results of buildings in a region before and after the fix of 

the duplicate geometries in the data set. Although the road network is used as a 

constraint in clustering, due to the increase of snapping tolerance in the triangulation, 

buildings highlighted in yellow colour in Figure 8.2(a) have been considered as a 

topologically adjacent pair in the triangulation. As a result, they have been grouped into a 

single cluster with a similar shape in the medium distance range. After treating duplicate 

geometries with triangulation, this pair is split into single buildings using the constrained 

road segment as shown in Figure 8.2 (b). 

Figure 8.1  Results of the CNDT with the edge constraints: (a) topologically incorrect 
triangulation: A - a triangle edge runs across the road, and B and C - non-triangulated 
building corner points and (b) topologically correct results after the fix. Data source: OS 
MasterMap data of Newham area at the scale of 1 : 1.25K. 

(a) (b) 

A 
B 

C 
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8.1.2 Fixing issues of enrichment of building information for deriving 

salient landmarks 

When analysing the automatic results of the orientation of each building to the road 

network with the use of building to road adjacency relationships derived from the CNDT, it 

was found that the implementation of the algorithm described in Section 6.1.1 collapsed 

due to a null pointer reference exception. The reason was that when the angle of the road 

segment formed between the two intersection points derived using the extended parallel 

line segments on either side of the longest side of the LOBR of a building under data 

enrichment (see Figure 6.4, page 174), there were instances where one of the two lines 

did not intersect the road (see building highlighted in yellow colour with the attribute 

‘orientation to road’ classified as ‘none’ in Figure 8.3(a)). In these instances, the angle of 

the road segment became null causing the null pointer exception. The other problem 

found was that the road segment thus formed was too simplified from the original road 

Figure 8.2  Results of clustering: (a) incorrect clustering due to topologically incorrect 
triangulation (highlighted in yellow colour) and (b) correct clustering after the fix of CNDT 
with the edge constraints. Clustering distance thresholds: Very close - 0.5mm, medium - 
2mm and very far - 2mm of the target map scale of 1 : 5K. Data source: OS MasterMap data 
of Newham area (part of) at the scale of 1 : 1.25K. 

(a) (b) 
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segments when there was a sharp turn on the road, causing incorrect interpretation of the 

angle between a building and the road, assigning a wrong orientation (see Figure 8.3(b)). 

The exception was fixed by modifying the step to find the line segment of the road using 

the improved algorithm described in Section 6.1.1 with the following steps. 

• When the line from the centroid of the LOBR of the building to the midpoint of one

of its perpendicular sides is extended to intersect the road (see line from points c

to mp23 in Figure 6.4, page 174), get the intersection point and retrieve the road

line segment that lies at the intersection point.

• Find the angle of that particular road segment to be used in the calculation of

finding angle difference between a building and the road in the algorithm.

Figure 8.4(a) shows the orientation of the building highlighted in yellow colour to the road 

as ‘across’ after fixing the exception while Figure 8.4(b) shows the correct assignment of 

the orientation of the two buildings to the left of the road. 

Figure 8.3  Results of building orientation to the closest road: (a) building highlighted in 
yellow colour is not assigned an orientation due to the exception explained above and (b) 
incorrect assignment of the orientation to the road for the two buildings to the left of the 
road. Data source: OS MasterMap data of Newham area (part of) at the scale of 1 : 1.25K. 

(a) (b) 
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In this algorithm, in order to enrich the orientation of buildings close to road corners, two 

or more intersecting roads at a node (junction of turning point), linked to a building are 

considered using the building to road adjacency relations derived from triangulation. 

However, this approach does not always produce expected results, depending on the 

configuration of buildings and road network (e.g. in the case of adjacent buildings in a 

row, which share a common edge, located near a junction, the buildings little away from 

the junction would also be assigned as ‘corner’ since they could be linked to two or more 

roads (see Figure 8.5(a)). One of the difficulties to get a unique result was that depending 

on the distance from a road intersection to buildings, the classification of a building as a 

‘corner’ varied. One of the solutions was to densify the road network before running the 

CNDT to get more hooks to restrict a building linking with many roads in the network. 

However, this approach too was only a partial solution to the issue (see Figure 8.5(b)) 

after densification of the road network where only two incorrectly classified buildings 

were rectified. Such unexpected results in a relatively few cases overall had to be 

interactively rectified before proceeding into emphasising salient landmarks under the 

data enrichment phase. 

Figure 8.4  Results of building orientation to the closest road after fixing the exceptions: (a) 
highlighted building is assigned the correct orientation and (b) correct assignment of the 
orientation to the road in the two buildings left to the road. Data source: OS MasterMap data 
of Newham area (part of) at the scale of 1 : 1.25K. 

(a) (b) 
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8.1.3 Fixing issues in the aggregation algorithms developed 

Aggregation algorithm with orthogonal sides 

It was identified that the enlargement of juts did not work out correctly when observing 

the result of aggregation of the pair of buildings in Figure 8.6 (a). This issue occurred in a 

few clusters only. 

Figure 8.5  Results of building orientation to the closest road, located at corners: (a) buildings 
highlighted in yellow colour with incorrect orientation and (b) orientation to the road of the 
same set of buildings after densification of the road network at 3m intervals where highlighted 
buildings have incorrect orientations to road. Data source: OS MasterMap data of Newham 
area (part of) at the scale of 1 : 1.25K. 

Figure 8.6  Enlargement results after squaring with a distance 5m: (a) faulty enlargement with 
an additional strip standing vertical and (b) correct enlargement along the jut between the 
two buildings. 

(a) (b) 

(a) (b) 
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When investigated, the cause was in the derivation of outer space polygons in step (vi) in 

the enlargement algorithm I and used in the enlargement algorithm II as described in 

Section 7.2.5, page 210. In deriving space polygons, the algorithm cut out the squared 

amalgam from its MBB, using the polygon difference method. When this was done, due to 

the robustness issues caused by limitations in the use of finite precision numerical values 

in overlay computations in geometric algorithms (polygon difference algorithm), the 

resultant space polygons sometimes did not create the exact outline near the boundary 

between the amalgam and the MBB. As a result, in checking the space polygons that 

shared an edge with the inner polygon strips along the X and the Y directions in the 

enlargement algorithm (see steps (x) and (xi) in Section 7.2.5, page 212 of the 

enlargement algorithm I, used in the algorithm II), some unwanted space polygons were 

selected. Thus, the algorithm assumed that the particular strip was to be enlarged from 

the selected sides of such unwanted space polygons. In order to fix the problem (though 

not a problem in the algorithm, but an implementation issue), steps (ix) to (xiv) in the 

enlargement algorithm I used in the algorithm II was replaced with the following steps to 

deal with this issue (see Appendix G.6 for the pseudo code): 

i. Iterate through slices in each X_strip stack separately and check if each slice has got

space polygons on either side or single side using a ‘point in polygon test’, creating

two arbitrary points on either side of the slice (left and right) with a small threshold

distance.

ii. Iterate through slices in each Y_strip stack separately and check if each slice has got

space polygons on either side or single side using a ‘point in polygon test’, creating

two arbitrary points on either side of the slice (top and bottom) with a small threshold

distance.

iii. If a slice has got space polygons on both sides (either left and right or top and

bottom), union the slices of the respective strip and then generate two even

rectangular polygons as enlargement candidates on either side using the MBB of the

union strip together with the union strip width and the enlargement width (Figure

7.9, page 213).
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iv. If all slices of the strip have got space polygons only on one side (top or bottom in the

case of Y_strips and left or right in the case of X_strips), union the slices and check if

the opposite side of the union strip adjoins the MBB of the amalgam. If it adjoins, fill

the other side of the strip using its MBB together with its width and the enlargement

width (Figure 7.9(d), page 213). If it does not adjoin the MBB of the amalgam, ignore

the particular strip.

Figure 8.6(b) shows the enlargement result after revising the enlargement algorithm to fix 

the robustness issue in the implementation (see Appendix G.8 for the pseudo code of the 

aggregation algorithm with orthogonal sides). 

Aggregation algorithm with non-orthogonal sides 

The first issue identified was treating the self-connecting bridges during the buffer 

operation in the case of concave corners and holes in the source building polygons as 

explained in Section 7.3.1, page 230. When applied the dilation and erosion technique to 

buffer operation using the same distance, it changed the original vertices in the outer ring 

of the polygons subjected to the buffer in the cluster due to geometry precision 

exceptions. Therefore, when subtracting the buffered result from the union geometry of 

the cluster, sliver polygons occurred in some instances along the outer ring of the buffered 

result, causing implementation to bring a runtime exception. This operation of dealing 

with self-connecting bridges was omitted from the algorithm since it could seldom happen 

in exceptional building geometries and would not bring any adverse effect on the final 

results. However, the incorporation of building holes was necessary and treated after 

obtaining the amalgam. The aggregation algorithm was modified so that it could either 

preserve or remove inner holes based on an area threshold during the aggregation 

operation. 

The next major issue was aggregating bridges between each pair of building polygons with 

triangles formed using the CNDT with edge constraints. Since some vertices were not part 

of the original polygon because of the addition of Steiner points to make the triangulation 

Delaunay stable, merging triangles to fill the bridges would sometimes create multi-
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polygons despite merging but seemed to be visually satisfactory. However, this did not 

create any runtime exception in the implementation. The intention of using the CNDT to 

fill the gap between each pair of buildings was to have bridges with the minimum 

exaggeration as explained in Section 7.3.1, page 233. Therefore, the DCT algorithm 

developed in this research was used to fill the gap between each pair of buildings instead 

of the CNDT. In order to have the least exaggeration of filling bridges, the densification of 

polygons was performed first with a distance equal to the cluster distance before applying 

the DCT algorithm (see Appendix G.9 for the pseudo code of the aggregation algorithm 

with non-orthogonal sides). 

8.1.4 Fixing issues in the simplification of aggregated amalgams 

The OpenCarto simplification algorithm described in Section 7.3.2, page 238 gave 

exceptions in edge simplification even on squared amalgams after aggregation (Figure 

8.7(b)). When investigating the algorithm, it was found that it did not handle intermediate 

vertices of building edges if existing in the input building geometry. The reason was that 

the algorithm considered two consecutive vertices as an edge. Therefore, if building edges 

consisted of intermediate vertices of a building geometry, they were removed before the 

application of the algorithm. Thus, the simplification of intermediate vertices used in the 

improved concave hull based algorithm described in Section 5.4 will be used with a small 

angle tolerance, terminating the removal of intermediate vertices when the building 

polygon has got only four edges in the vertex simplification process. 

Figure 8.7  Simplification of a building with the OpenCarto edge deletion algorithm: (a) 
source building (b) target building after simplification where the orthogonality does not 
preserve and (c) simplification with squared edges after removal of the intermediate 
vertices that existed on the edge at the lower left corner of the source building. 

(a) (b) (c) 
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8.1.5 Further incorporation and development of generalization tools 

required for deriving focus maps 

Polygon fusion 

When investigating the OS test data sets, it was found that there were a number of 

buildings adjoining to each other sharing a common edge (attached buildings). In these 

cases, fusing of buildings in clusters (the term fusion is according to the definition of 

generalization operations defined in the AGENT project (Figure 2.5, page 21)) was done 

with the use of the PostGIS ST_UnaryUnion method without amalgamating (merging) 

building clusters. The ST_UnaryUnion with ST_Collect method has the ability to dissolve 

boundaries of geometries in a geometry collection (see Appendix E.1 for a sample SQL 

used). However, there were cases with a mix of attached buildings and isolated buildings 

in a cluster. In these cases, the attached buildings were fused with the same functions 

during the PostGIS query before applying one of the two aggregation algorithms 

developed in this research, depending on the cluster shape (see specification for 

automatic generalization in Section 8.2.1). 

8.2   Results of focus maps 

It is important to note that the focus maps derived in this research are not necessarily a 

cartographically aesthetic product with various cartographic generalization techniques 

applied to depict landmark saliency as already researched by Sester (2002) and cited by 

Elias, Hampe and Sester (2005). Therefore, the salient landmarks derived are portrayed in 

the original form on the coarse background created by the automatic map generalization 

on the focus map. More emphasis has been placed on investigating the gaps that need to 

be filled during the process of focus map generation with the least graphical conflicts 

(distortions) to maintain quality information in the generalized output. This quality 

information on a coarse background is important to keep users engaged in a wayfinding 

task. The model of generalization used in this research is more towards the statistical 

generalization operations such as selection, removal and aggregation (aggregation is the 

main operation dealt with in this research) described in Section 2.2.3, page 18, although 
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the cartographic generalization operations such as simplification, enlargement and 

exaggeration are used together with the aggregation generalization operation, ensuring 

no graphical conflicts at the target scale. The digital products in the test areas thus 

generated can be used to create a scenario for adaptive visualisation of landmarks using 

the MRDB concept adopted by Elias, Hampe and Sester (2005) as described in Section 2.2.7 

in a real-time navigation system where the notion is to present the user with a coarse 

background of building details (e.g. generalized coarse building information in this 

research), allowing the user to visualise salient landmarks dynamically on their original 

shape as he/she approaches a salient landmark on the route or at a decision point, 

removing the coarse background amalgam pertaining to a particular landmark. The salient 

landmarks can be more emphasised by using a graphical variable - colour - as discussed by 

Reichenbacher (2004). Linkage between the salient landmark and the amalgam with 1 : N 

relationship can be established during the generalization process as mentioned in Section 

2.2.7 and stored in the spatial database for removal of the amalgam in order to emphasise 

salient landmarks. 

Each of the processes in deriving salient landmarks was tested using data both from Sri 

Lanka and the United Kingdom. However, the final results are presented with the data 

only from the United Kingdom due to the inadequacy of building height information and 

non-availability of the Google street view of data from Sri Lanka for deriving landmark 

saliency and validating of the same respectively. 

Figure 8.8  Location map of the London Boroughs of Newham and Tower Hamlets (hatched). 
256 



Further, all the algorithms developed and/or modified in this research have been 

implemented to process data within a defined region. The advantage of processing data 

by region is that it reduces the complexity of handling a large volume of data as well as 

improving runtime efficiency of handling complex algorithms dealing with spatial 

geometries. Figure 8.8 depicts the location map of the two test areas used to generate 

focus maps. 

Newham test data 

 

 

 

 

 

 

 

The test data from Newham area were chosen with a mix of building geometries 

comprising in regions interactively partitioned as shown in Figure 8.9(b) for the generation 

of the focus map. Since the modified clustering algorithm described in Section 5.3.3, page 

148 can take into account contextual features, it is possible to partition the data set into 

meaningful chunks as desired with the help of contextual geometries. Thus, a region can 

be defined with several small sub-regions inside. This is very useful when there are many 

small regions surrounded by the contextual features as characterised by the data sets in 

the test areas of Newham and Tower Hamlets where there are small regions surrounded 

Figure 8.9   Newham test area: (a) road network with the classification of roads comprising 
of minor roads, private roads and alleys and (b) chosen regions (area partitions) for data 
processing during the focus map generation. 
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by local streets, private roads and alleys. Therefore, a few adjoining smaller regions in 

these data sets were merged into a meaningful single region, considering building 

configuration before the start of focus map generation (Figures 8.9 and 8.13). Ultimately, 

the data were processed region-wise during the generation of the focus maps. Figure 8.10 

depicts the source map of Newham area at the scale of 1 : 8K. The coarse background 

building information generalized at a target scale of 1 : 8K mainly with building 

aggregation for the focus map generation is depicted in Figure 8.11 while Figure 8.12 

depicts the focus map with salient landmarks highlighted with the graphical variable - 

colour - on the coarse background. 

Source map of Newham area 

Figure 8.10   Source map of Newham test area at the scale of 1 : 8K.  Note: Map is not 
printed to scale. Data source: OS MasterMap, Crown copyright. 
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Generalized background of the focus map – Newham area 

Figure 8.11  Generalized building amalgams at the target scale of 1 : 8K to be used as the 
background on the focus map, derived from the source data at the scale of 1 : 1.25K in 
Newham area (part of).  Note: Map is not printed to scale. Data source: OS MasterMap, 
Crown copyright. 
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The focus map – Newham area 

The scale 1 : 8K is selected for depicting the coarse background since it is a medium scale 

which does not apply excessive generalization on data as in the smaller scales such as 

1 : 25K and 1 : 50K. A highly coarse background is especially not suitable for maps 

designed for pedestrian wayfinding where the user should have the opportunity to 

Figure 8.12  Focus map with salient building landmarks highlighted with the graphical variable - 
colour - portrayed in the original shape on the coarse background of the generalized buildings at 
the target scale of 1 : 8K, derived from the source data at the scale of 1 : 1.25K in Newham area 
(part of).  Note: Map is not printed to scale. Data source: OS MasterMap, Crown copyright. 
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understand the context in the surroundings while walking. Small scale coarse backgrounds 

on focus maps are especially suitable for users who travel by vehicles. 

Tower Hamlets test data 

The test data from Tower Hamlets area consist of some very complex building geometries 

including structures. The test area was chosen to represent complex high-rise buildings 

and structures with a variety of different and similar heights. Regions were partitioned as 

shown in Figure 8.13(b) for generating the focus map. Figure 8.14 depicts the source map 

of Tower Hamlets area at the scale of 1 : 8K. The coarse background building information 

generalized at a target scale of 1 : 8K for the focus map generation is depicted in Figure 

8.15 while Figure 8.16 depicts the focus map with salient landmarks highlighted with the 

graphical variable - colour. 

Figure 8.13   Tower Hamlets test area: (a) road network with the classification of roads 
comprising of minor roads, private roads and alleys and (b) chosen regions (area partitions) 
for data processing during the focus map generation. 
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Source map of Tower Hamlets area 

Figure 8.14   Source map of Tower Hamlets test area at the scale of 1 : 8K. Note: Map is not 
printed to scale. Data source: OS MasterMap, Crown copyright. 
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Generalized background of the focus map – Tower Hamlets area 

Figure 8.15  Generalized building amalgams at the target scale of 1 : 8K to be used as 
background on the focus map, derived from the source data at the scale of 1 : 1.25K in 
Tower Hamlets area (part of).  Note: Map is not printed to scale. Data source: OS 
MasterMap, Crown copyright. 
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The focus map – Tower Hamlets area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.16  Focus map with salient building landmarks highlighted with graphical variable - 
colour - portrayed in the original shape on the coarse background of the generalized 
amalgams of buildings at the target scale of 1 : 8K, derived from the source data at the scale 
of 1 : 1.25K in Tower Hamlets area (part of).  Note: Map is not printed to scale. Data source: 
OS MasterMap, Crown copyright. 
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8.2.1 Specifications used in the focus map generation process 

Data enrichment process for the automatic map generalization 

Clustering distance threshold values: 

i. The distance threshold values used for the evaluation of clustering in the Phase I,

described in Section 5.3, page 126, are used.

ii. The same similarity index (0.75) used for the evaluation of clustering in the Phase I is

used.

iii. The orientation threshold value used in the clustering evaluation in the Phase I was

70. However, there was a necessity in Phase II to revise the threshold value according

to the results of the cluster evaluation given in Section 5.3.3, page 145, as it was 

difficult to identify the orientation difference between a pair of buildings smaller in 

size with the value of 70. Therefore, the orientation threshold value used in the 

generation of clusters in the focus map generation is 150. 

Cluster shape enrichment: 

i. Clusters are considered to be non-orthogonal if the maximum orientation difference

between buildings is greater than 150 and/or if at least a single building in the cluster

is non-orthogonal.

Data enrichment process for deriving salient landmarks 

i. A building is considered to be angular if the longest axis of the LOBR of a building is

inclined to the closest road segment with an angle, not within a region of 900 ± 150.

Automatic generalization process for deriving coarse background on the focus map 

Automatic generation of the coarse background with generalized amalgams in this 

research adheres to a set of generalization specifications in the application of the 
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aggregation algorithms using the derived clusters based on their characteristics developed 

during the data enrichment process. The list of the specifications is as follows: 

i. Very close clusters of buildings of orthogonal shape, in which buildings are almost in

the same orientation, depending on the orientation threshold, classified as VC-i (i = 1,

n), enriched during the data enrichment process described in Section 5.4, are

aggregated, squared, enlarged and simplified to form single buildings in the target

scale with the aggregation algorithm with orthogonal sides. However, if buildings are

not in exceptional positions such as corner hanging, corner touching or almost

overhanging (see Figures 7.4 and 7.5, pages 203 and 204) in such clusters, the

aggregation algorithm with non-orthogonal sides, which also preserves orthogonality

of the original sides of the building outline, can also be applied depending on user

choice.

ii. Very close clusters of buildings of non-orthogonal shape, classified as VC-i (i = 1, n),

are only aggregated with the algorithm developed for dealing with non-orthogonal

shaped clusters.

iii. Medium range clusters of buildings of orthogonal shape (buildings with almost similar

orientation), classified as MS-i (i = 1, n), are also subject to the same specification of

generalization as in (i) above.

iv. Medium range clusters of buildings of non-orthogonal shape, classified as MS-i (i = 1,

n), are subject to the same specification of generalization as in (ii) above.

v. Medium range clusters comprising of buildings with large orientation differences,

classified as ML-i (i = 1, n), are aggregated with the algorithm developed for dealing

with non-orthogonal clusters.

vi. Clusters of buildings with any of the above category labels, falling below the minimum

threshold of dimension in terms of width and height based on the GOBR of each

cluster, are symbolized by a square, preserving general orientation of the cluster.

266 



vii. All single buildings which get isolated from clusters during the clustering process are

removed from the target scale if they have not been identified to be salient during the

data mining process.

Tolerance values used during automatic generalization: 

i. Aggregation distance tolerance for the very close distance range clusters: 0.5mm of

the target map scale.

ii. Aggregation distance tolerance for the medium distance range clusters: the maximum

distance threshold is 2mm of the target map scale.

iii. Enlargement (exaggeration) of narrow sections and juts in the application of the

aggregation algorithm with orthogonal sides: 0.5mm of the target map scale.

iv. Simplification of building edges: 0.5mm of the target map scale.

v. Inner holes less than an area of 1.5mm x 1.5mm of the target map scale are removed.

vi. A cluster of buildings with an area less than 1mm x 1mm of the target map scale is

symbolized with a squared symbol of dimensions 1mm x 1mm of the target map

scale. Symbolization may create topological conflicts in the generalized data.

8.2.2 External validation of the results of generalization 

Validation of the generalization results 

Stoter et al. (2009) have established a robust framework for validating generalization 

results. This framework evaluates the generalized results using three methods: (a) 

qualitative evaluation by cartographic experts (b) automated constrained based 

evaluation and (c) visual comparison of different results. However, for the validation of 

the generalization results of the focus maps of the two test areas, a qualitative evaluation 

of the generalized results is carried out in comparison with the generalized results 

obtained from the proprietary ArcGIS software, which is the visual comparison of different 

results - method (c) - mentioned in this framework based on the preservation constraints 
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and the legibility constraints of the generalized objects as further described in Section 

3.3.3, page 74. 

Generalized results - I: Newham area 

Figure 8.17 (b) depicts the generalized amalgams of three clusters classified as ‘very close’ 

and orthogonal in shape using the aggregation algorithm specifically developed for 

treating the orthogonal clusters. Aggregation distance used by the algorithm is the 

distance used to classify ‘very close’ clusters (distance - 4m). None of the three clusters 

Figure 8.17  Generalization results of clusters of orthogonal shape: (a) three source clusters 
highlighted in yellow colour (b) generalized amalgams with a distance of 4m (c) generalized 
amalgams in the ArcGIS software with a distance of 4m and (d) generalized amalgams in the 
ArcGIS software with a distance of 16m. 

(a) (b) 

(c) (d) 
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are aggregated when using the polygon aggregation tool with the orthogonal shape 

preserving option in the ArcGIS software with the same distance as depicted in Figure 

8.17(c). Even when the aggregation distance tolerance is increased to 16m which is four 

times the initial distance, only a couple of buildings in the cluster classified as ‘VC-35’ are 

aggregated (Figure 8.17(d)). 

Generalized results - II: Newham area 

Figures 8.18 and 8.19 depict the aggregated results of a cluster classified as ‘very close’ 

and ‘non-orthogonal in shape’, obtained from the generalization tool to deal with non-

orthogonal shaped clusters in this research and the polygon generalization tool available 

in the ArcGIS software respectively. 

Figure 8.18  Generalization results of clusters of non-orthogonal shape with the research tool: (a) 
three source clusters highlighted in yellow colour (b) amalgam with an aggregation distance and a 
space triangle edge distance of 4m (c) amalgam with an aggregation distance of 4m and a space 
triangle edge distance of 8m and (d) amalgam in (c) after simplification with a tolerance of 4m. 

(a) (b) 

(c) (d) 
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In Figure 8.18 (b) and (c), when observing the results of amalgams, it can be observed that 

the gaps between the buildings in the clusters have been exaggerated to improve legibility 

by increasing the edge distance threshold with the research tool. However, when 

observing the results in Figure 8.19(b), obtained from the ArcGIS software with an 

aggregation distance of 4m which is the clustering distance used to create ‘very close’ 

clusters in generating results, the cluster has been aggregated into two amalgams. 

However, when the distance is increased to double the cluster distance, the amalgam is 

created but the filled gap is still concave in shape, causing poor legibility (see the bridge 

Figure 8.19  Generalization results of clusters of non-orthogonal shape with the ArcGIS 
software: (a) source clusters highlighted in yellow colour (b) amalgam with an aggregation 
distance of 4m (c) amalgam with an aggregation distance of 8m before simplification and (d) 
amalgam after simplification with a tolerance of 4m. 

(a) (b) 

(c) (d) 
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circled in blue colour in Figure 8.19(c)). Also, some squared edges have turned out to be 

non-orthogonal after aggregation (see the edges circled in red colour in Figure 8.19(c)). 

Table 8.1 summarises the comparison of the generalized results given in Figure 8.17 (for 

orthogonal shaped clusters) and Figures 8.18, 8.19 and 8.20 (for non-orthogonal shaped 

cluster) in terms of preservation and legibility generalization constraints. 

Table 8.1 Evaluation of the generalization constraints on amalgams of Newham data. 

Results evaluated Evaluation 
Criteria 

Generalized method 
Research tools ArcGIS software 

Generalized results - I 
in Figure 8.17 for 

orthogonal shaped 
clusters 

Preservation 
constraints 

General orientation, 
squareness and general 

shape well preserved 

Partial amalgam creation 
based on the distance 
increment with a very 
small deviation of the 

shape from the initial data 

Legibility 
constraints 

Dimensions of bridges 
between gaps 

exaggerated well-
preserving uniformity 

with no conflicts 

Gaps between buildings 
badly filled (only one gap 

bridged) 

Generalized results - II 
in Figures 8.18, 8.19 

and 8.20 for the non-
orthogonal shaped 

cluster 

Preservation 
constraints 

General orientation and 
general shape well 

preserved 
Shape badly preserved 

Legibility 
constraints 

Gaps between buildings 
well bridged  

Bad legibility in the gaps 
bridged 

Figure 8.20  Comparison of amalgams of the non-orthogonal shaped cluster depicted 
in Figure 8.19(a) above: (a) created with the research tool and (b) created with the 
ArcGIS software. 

 

(a) (b)
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Generalized results - I: Tower Hamlets area 

Figure 8.21  Generalization results of clusters of orthogonal shape: (a) two source clusters 
highlighted in yellow colour (b) amalgams with an aggregation, exaggeration and 
simplification  distance of 4m with the research tool (c) amalgams in (b) overlaid with source 
clusters in (a), and (d) amalgams after simplification with a tolerance of 4m using the ArcGIS 
software. 

(c) 

(a) (b) 

(d) 
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Generalized results - II: Tower Hamlets area 

Figure 8.22  Generalization results of a cluster of non-orthogonal shape: (a) source cluster 
highlighted in yellow colour (b) amalgam with an aggregation distance of 4m and a space 
triangle edge threshold of 4m (c) amalgam before simplification with the two thresholds with a 
value of 8m (d) amalgam after simplification with 4m tolerance with the research tool (e) 
amalgam before simplification with a distance of 8m and (f) amalgam after simplification with a 
tolerance of 4m with the ArcGIS software. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 8.21(b) depicts generalized amalgams of the two clusters classified as ‘very close’ 

and orthogonal in shape using the aggregation algorithm specifically developed for 

treating the orthogonal clusters. Aggregation distance used by the algorithm is the 

distance used to classify ‘very close’ clusters (distance - 4m). When observing Figure 8.21 

(c), the cluster labelled as ‘VC-23’ is aggregated, squared and exaggerated to create the 

amalgam, preserving general orientation. The long and narrow jut of this cluster has been 

exaggerated to meet the exaggeration threshold. However, when observing the results 

obtained from the ArcGIS software, the cluster with the label ‘VC-24’ is not aggregated 

with the polygon aggregation tool, together with the orthogonal shape preserving option. 

Only one cluster (cluster classified as ‘VC-23’) is aggregated with the ArcGIS tool as 

depicted in Figure 8.21 (d). The long and narrow jut of the cluster is only simplified since 

this tool does not have the facility to exaggerate narrow juts. 

Figure 8.22 depicts the results of aggregation of the source cluster (Figure 8.22(a)) 

classified as ‘very close’ and ‘non-orthogonal in shape’ with the corner touching buildings. 

When it is aggregated with the aggregation tool to deal with non-orthogonal clusters 

developed in the research with an aggregation distance threshold and a space triangle 

edge distance threshold equal to the cluster distance (i.e. 4m), the amalgam is created 

solely by the buffer operation with a very narrow jut (see Figure 8.22 (b)). The reason is 

that the space triangles in the triangulation are not considered in this instance since the 

buffer operation with dilation and erosion brings out a polygon amalgam (not a multi-

polygon which is a collection of polygons). In this situation, the aggregation distance and 

the space edge triangle distance are increased to double the clustering distance to create 

an improved amalgam (see Figure 8.22(c)). When aggregating with the ArcGIS tool with a 

4m aggregation distance, no aggregation is created. When the distance is increased to 8m, 

an amalgam is created (see Figure 8.22(e)). However, when comparing the two simplified 

amalgams (final amalgams) created from both tools, the amalgam created by the research 

tool produces a uniform bridge (compare Figures 8.22 (d) and 8.22(f)). 
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Generalized results - III: Tower Hamlets area 

When applying the aggregation function for non-orthogonal shapes on the two circular 

shaped clusters depicted in Figure 8.23(a), the clusters are amalgamated, but with unusual 

shapes (Figure 8.23(b)). The reason is that in the dilation and erosion process, the edges of 

buffers are flattened with the buffer parameters used. Although this enables keeping 

Figure 8.23  Generalization results of a cluster of non-orthogonal shape: (a) two source 
clusters highlighted in yellow colour (b) amalgams with an aggregation distance of 4m and a 
space triangle edge threshold of 4m with the research tool and (c) amalgams with an 
aggregation distance of 4m with the ArcGIS software, no simplification applied in both cases. 

(a) 

(b) (c) 
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orthogonal edges of the buildings in the outline of the amalgam orthogonal, for circular 

shaped buildings, it tends to create irregular edges. When observing the results generated 

from the same clusters using the ArcGIS software (Figure 8.23(c)), its building aggregation 

algorithm too does not support merging circular shaped clusters. 

Table 8.2 Evaluation of the generalization constraints on amalgams of Tower Hamlets data. 

Results evaluated Evaluation 
Criteria 

Generalized method 
Research tools ArcGIS software 

Generalized results - I 
in Figure 8.21 for 

orthogonal shaped 
clusters 

Preservation 
constraints 

General orientation, 
squareness and general 

shape well preserved 

No amalgam created 
for the cluster with 

both the attached and 
the detached buildings 

Only amalgam created 
for the cluster with 
attached buildings, 

well-preserving 
orientation and shape 

Legibility 
constraints 

Dimensions of bridges 
between gaps 

exaggerated well-
preserving uniformity 

with no conflicts 

Poor legibility due to 
narrow jut of the 
amalgam of the 

attached building 
cluster  

Generalized results - II 
in Figure 8.22 for the 

non-orthogonal 
shaped cluster 

Preservation 
constraints 

General orientation and 
general shape well 

preserved 

General orientation 
and general shape 

well preserved 

Legibility 
constraints 

Gap between buildings 
well bridged  

Poor legibility in the 
bridged gap 

Generalized results - III 
in Figure 8.23 for the 

non-orthogonal 
shaped cluster 

Preservation 
constraints Shape preservation is bad Shape preservation is 

bad 

Legibility 
constraints 

Gaps between buildings 
fairly bridged  

Gaps between 
buildings fairly bridged 
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8.2.3 External validation of the results of landmark saliency 

Deriving landmark saliency with the J48 implementation 

During the salient landmark derivation process with the J48 implementation, the 

sensitivity analysis and the attribute discretization (transformation) were carried out in 

each region as performed on the test data sets as described in Section 6.2.2, pages 182 

and 185. None of the salient landmarks were identified at the topmost level (i.e. the zero 

level in the tree) in each of the regions in both data sets. However, all the salient 

landmarks were identified at the next level (level 1 on the tree) in each of the regions in 

both test areas. 

It is important to mention that the landmark saliency results obtained from the J48 

implementation within a region is not similar to the results obtained by applying it on the 

sub-regions of a particular region even if the same attribute discretization and the 

sensitivity analysis are carried out on the data (Figure 8.24). 

Figure 8.24  (a) Salient landmarks (highlighted in yellow colour) derived from region 3 of 
Newham area (see Figure 8.9), delineated in blue and (b) salient landmarks (highlighted in 
yellow colour) derived in sub-regions 3A and 3B of the main region 3, applying the J48 
implementation in each sub-region separately. 

3A

3B 

(a) (b) 
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The J48 implementation has derived 17 salient buildings in region 3, 16 salient buildings in 

region 3A and 13 salient building in region 3B. The total landmarks derived using sub- 

regions within region 3 is 29. This is more than the salient buildings derived when applying 

the J48 implementation in the whole of region 3. Among the 17 salient buildings in region 

3, 16 buildings are included in the 29 salient buildings derived from the sub-regions. These 

results emphasise that when applying the J48 implementation in a region, the sensitivity 

analysis and the attribute discretization must be carried out by taking into account the 

characteristics of the particular region only. Thus, generating results with the J48 

implementation is region dependent. 

Validation with the framework by Nothegger, Winter and Raubal (2004) 

A quantitative evaluation of the results based on the framework of Nothegger, Winter and 

Raubal (2004), which is the extended model by Raubal and Winter (2002), implemented in 

this research, are carried out in regions to validate landmark saliency of the focus maps in 

the two test areas obtained with the J48 implementation of the C4.5 decision tree 

algorithm evaluated in Section 6.2.4, page 195. This framework derives the most salient 

landmark with the use of building facades with their visual and semantic characteristics at 

decision points. In this method, the building with the highest overall significance score is 

chosen as the most salient landmark. An individual significance score for each building at a 

decision point is calculated based on the significance value of each attribute falling in both 

semantic and visual characteristics of buildings for this purpose (see Table 8.3). A value of 

significance for each attribute under each of the two characteristics is calculated by the 

following formulae (4) and (5), based on the median absolute deviation (MAD) which is a 

statistical measure. 

Score = (|x – med (x)|) / MAD(x)   (4) 

MAD(x) = med(|x – med (x)|) / 0.6745   (5) 

In these equations, x is a value of an attribute, med(x) is the median of all values of an 

attribute of all the buildings considered at the decision point and MAD(x) is the MAD from 

the median. 
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Although all types of attribute values such as numeric and text can be handled by the J48 

implementation, in order to apply text values in the framework of Nothegger, Winter and 

Raubal (2004), the text values of the attribute ‘orientation to road’ need to be transformed 

into ordinal values given below. The values of the other attributes given in Table 6.1, page 

166 are not required to be transformed when used in this framework. 

• Orientation to road: {Corner, Angular, Parallel, Across, None} => {1, 2, 3, 4, 5}

In addition, the attributes removed based on the sensitivity analysis in processing the 

results with the J48 implementation are ignored in generating results with the framework 

in order to keep the consistency. Further, in the use of the framework, equal weights are 

assigned to the three visual, structural and semantic characteristics of the attribute 

values. 

When this model was applied to the test data in region 5 of Newham area (Figure 8.9(b)), 

out of seventy one (71) buildings, fifty (50) buildings were assigned an overall score of 

infinity. Further testing the values of data, it was observed that the MAD values of some 

attributes of these 50 buildings became zero in the calculation, leading the overall score to 

become infinity because the MAD value was in the denominator in the equation (4) above 

used to measure the saliency score. Further, the score used by Nothegger, Winter and 

Raubal (2004) was the Z-score, a multiplicative factor of the standard deviation used to 

identify values around the mean of a normally distributed data set. Therefore, in cases 

Table 8.3: Method of calculating the overall significance score of each building using individual 
significance value of each attribute based on the framework by Nothegger, Winter and Raubal 
(2004). α1, α2 and α3 are the scores of the three attributes in the visual category, β1 and β2 are 
the scores of the two attributes in semantic category, and w1 and w2 are weights assigned to 
visual and semantic categories respectively. 

bid 
Significance score of 

each attribute in 
Visual category 

Significance 
score of each 
attribute in 
Semantic 
category 

Significance sub 
score: Visual 

Significance 
sub score: 
Semantic 

Overall 
significance 

1 α1 α2 α3 β1 β2 σ1 = (α1 + α2 + α3) / 3 σ2 = (β1 + 
β2)/2 

(σ1 * w1+ σ2 * 
w2)/(w1+w2) 

2 - - - - - - - - 
3 - - - - - - - - 
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where their score became infinity, it was considered to be zero in applying their model in 

the validation process. When investigating the total sub-score of each of the visual, 

structural and semantic characteristics (see Table 8.3), which was the arithmetic mean of all 

the scores of objects under each characteristic, the sub-scores generalized the important 

values of these characteristics, leading to a doubtful situation over which attributes and/or 

their values, a certain object became salient. Also, the overall score which was the weighted 

mean of the three sub-scores, tended to assign higher values. Nothegger, Winter and 

Raubal (2004) have used data transformation before applying this score on the data to 

eliminate this effect to make the distribution symmetric. However, this approach would in 

turn lose important outliers in the original data. 

The reason why Nothegger, Winter and Raubal (2004) have developed this score by 

extending the model of Raubal and Winter (2002), which uses the standard deviation 

around the mean to derive saliency score, is that it can deal with outliers that have a strong 

impact when using the standard deviation around the mean especially when data are not 

normally distributed as further emphasised by Leys et al. (2013). However, they have used 

this equation to derive landmark saliency only on a few decision points, considering the 

visual and the semantic characteristics of building facades, excluding the structural 

characteristics. 

According to Leys et al. (2013), the MAD is a robust measure to detect outliers especially 

from the non-normally distributed data because of its non-sensitivity to outliers, although 

Nothegger, Winter and Raubal (2004) have used a scalar (1/0.6745) with the MAD so that 

the score approximates a Z - score of normally distributed data. Considering all these 

aspects, the validation of landmark saliency for the test data in this research is done with 

two methods: (a) using the framework by Raubal and Winter (2002) to investigate how the 

outliers are impacted by using the standard deviation around the mean of the test data and 

(b) a new method is developed to detect outliers to derive salient features with the use of 

the MAD on the decision criterion proposed by Leys et al. (2013). This method is discussed 

in detail on page 285. 
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Validation with the framework by Raubal and Winter (2002) 

Similarly as for validation of the framework of Nothegger, Winter and Raubal (2004), text 

values of the attribute ‘orientation to road’ are required to transform into ordinal values. 

The values of other attributes given in Table 6.1, page 166 are not required to be 

transformed when used in this framework. In addition, the attributes removed based on 

sensitivity analysis in processing the results with the J48 implementation are ignored in 

generating results with this framework in order to keep the consistency. Further, in the 

use of this framework, equal weights are assigned to the three visual, structural and 

semantic characteristics of the attribute values. 

In the framework of Raubal and Winter (2002), the attributes of visual, semantic and 

structural characteristics are tested for their difference from the local mean using the 

standard deviation in detecting outliers. In this method each building is subject to a 

hypothesis test that determines whether an attribute value of each of the three 

characteristics (measures) of a building is significant with a binary value of 1, or is 

insignificant with a binary value of 0 using the significance of deviations from the local 

mean. Table 8.4 describes how the total significance score is calculated on a building using 

the framework of Raubal and Winter (2002). 
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Visual 

α1 - 1 
Svis = (α1 + α2 + α3 + α4) / 4 

= 0.75 Wvis = 1 Svis x Wvis = 0.75 

1.75 

α2 - 0 
α3 - 1 
α4 - 1 

Structural β1 - 1 Sstr = (β1 + β2)/2 = 0.5 Wstr = 1 Sstr x Wstr = 0.5 β2 - 0 

Semantic ϒ1 - 0 Ssem = (ϒ1 + ϒ2) / 2 = 0.5 Wsem = 1 Ssem x Wsem = 0.5 
ϒ2 - 1 

Table 8.4  Deriving a total significance score for a particular building by the method of 
Raubal and Winter (2002). 
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Tables 8.5 and 8.6 depict the evaluation results of salient landmarks based on the 

framework of Raubal and Winter (2002). A statistical significance measure is derived in this 

approach using a decision criterion which is plus or minus 2.5 (Z – score equivalent to 98% 

confidence interval) of the standard deviation around the local mean, assuming that the 

data are normally distributed, for all the attributes of each building in a specific region 

depicted in Figures 8.9 and 8.13 on pages 257 and 261 respectively. This particular value 

of the Z-score is used due to the fact that using an interval with a mean plus or minus a Z – 

score of either 2, 2.5 or 3 around the standard deviation is a common practice in detecting 

outliers (Leys et al., 2013; Miller, 1991), although the choice of this value in detecting 

outliers is subjective. This research uses the middle value of 2.5 to detect values of outliers 

that are outside both limits of the interval (to detect outliers with the low and the high 

values) in the decision criterion. 

Table 8.5  Evaluation of landmark saliency of the focus map with the framework of  Raubal and 
Winter (2002) in the regions depicted in Figure 8.9, page 257 of Newham area. 

Region No. of 
buildings 

Landmarks 
identified 

by J48 

Landmarks identified 
by the framework 

with total 
significance > 0 

Landmarks 
matched 
with the 

framework 

Landmarks 
mismatched 

with the 
framework 

Percentage of 
landmarks 

matched with 
the framework 

1 311 42 57 27 15 64% 
2 214 32 39 26 6 81% 
3 73 17 20 13 4 76% 
4 322 19 34 18 1 95% 
5 72 28 15 14 14 50% 
6 406 38 43 13 25 34% 
7 285 16 20 9 7 56% 

Region No. of 
buildings 

Landmarks 
identified 

by J48 

Landmarks 
identified by the 
framework with 
total significance 

> 0 

Landmarks 
matched 
with the 

framework 

Landmarks 
mismatched 

with the 
framework 

Percentage of 
landmarks 

matched with 
the framework 

1 149 33 35 16 17 48% 
2 206 32 45 14 18 44% 
3 123 36 30 25 11 69% 
4 237 64 52 39 25 61% 
5 93 41 30 22 19 54% 

Table 8.6  Evaluation of landmark saliency of the focus map with the framework of  Raubal and 
Winter (2002) in the regions depicted in Figure 8.13, page 261 of Tower Hamlets area. 
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When analysing the results obtained from this framework, a building with a total 

significance value greater than zero is identified to be a feature with some salience for a 

landmark. It is also important to note that the selection of a threshold value to detect a 

salient landmark is a subjective process where a value is to be determined for the whole 

area or for a specific region by investigating the results. 

When observing the results of the derived salient landmarks in the Newham area (Table 

8.5), 50% or more of the results match with that of obtained using the framework of 

Raubal and Winter (2002). However, matching percentages vary from one region to the 

other (see the visual comparison of the results of region 5 in Figure 8.25). The main reason 

that the results of the J48 implementation are not matched with that of the framework 

consistently is due to the two methods working in the opposite direction in detecting 

outliers. In the J48 implementation, data are subjected to a process of transformation 

with an equal binning approach which is very sensitive in detecting outliers as mentioned 

in Section 6.2.2, page 185. The reason is that it makes data asymmetric to detect outliers. 

When the decision criterion for outliers is chosen in the framework, it is assumed that the 

distribution of the data is normal. It is likely that the mean and the standard deviation of 

each attribute is strongly impacted by outliers thus affecting the interval of the decision 

criterion, causing building objects not to be selected as outliers. This is also impacted by 

the sample size of the data set and their varying values in each region as emphasised by 

the poor results indicated in the region 6. This is further emphasised by the comparison of 

the J48 results in the main region with its sub-regions discussed under the subsection - 

deriving landmark saliency with the J48 implementation - on page 277. 

When observing the results of the derived salient landmarks in Tower Hamlets area (Table 

8.6), the results are not as good as for Newham (only 45% or more are matched with the 

results of the J48 implementation) due to the same reasons mentioned above. Visual 

comparison of the results of region 1 of Tower Hamlet area is depicted in Figure 8.26. 
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Figure 8.25  Landmark saliency results (highlighted in yellow colour) of region 5 of 
Newham area: (a) results by the J48 implementation and (b) results by the framework 
of Raubal and Winter (2002). 

Figure 8.26  Landmark saliency results (highlighted in yellow colour) of region 1 of Tower 
Hamlets area: (a) results by the J48 implementation and (b) results by the framework of 
Raubal and Winter (2002). 

(a) (b) 

(a) (b) 
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Validation of the results with the method developed in this research 

The new measure of salience is developed in this research using the MAD based on the 

decision criterion proposed by Leys et al. (2013) (see Appendix F.6 for the prototype). 

According to Leys et al. (2013), the MAD is defined as follows, citing Huber (1981). 

MAD = b mediani (|Xi – medianj (Xj)|)  (6) 

Where, b is a constant (scalar), Xi is an attribute value of an object, Xj is the n original 

observations and mediani is the median of the series. According to Leys et al. (2013), b is 

usually a constant of 1.4826 used to assume normality of data, which is the scalar inverse 

of 0.6745 used by Nothegger, Winter and Raubal (2004) to make data asymptotically equal 

to the standard deviation of the standard normal distribution. 

The criterion used to detect outlier values in this research is based on the following 

equation: 

Xi > median + 2.5 * MAD  (7) 

Where Xi is an attribute value of an object and b is assigned the same value of 1.4826 in 

the equation (6) for the assumption of normality of the data. 

In detecting outliers according to this equation (7), only higher values of a particular 

attribute of an object are chosen as outliers. If a value of a particular attribute of a 

building is an outlier, such an attribute is assigned the binary value 1 and the value 0 is 

assigned if it is not an outlier in calculating the overall score of all the attributes of an 

object. 
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The reason to detect landmark saliency based on the values that are above the upper 

region of the decision criterion is that the values below the lower limit tend to stand out 

as building features that have no discerning values to become salient (e.g. buildings of 

smaller size) as observed from the results obtained with this method. Further, the higher 

the values of attributes such as the minimum distance to road, neighbourhood density 

and elongation used in this research, the lower is the ability to identify a building as salient 

with these attributes (for example, according to elongation defined in Table 6.1, page 166, 

the higher the value of elongation index, the more square is the building). Therefore, 

before applying the criterion based on the upper limit to calculate a salience score, all 

values of these three attributes are transformed by getting the inverse of the values so 

that the lower values of these attributes tend to stand out (see attributes 5, 6 and 7 in 

Table 8.7). Then, the ordinal values used in this research for attributes - ‘diversely oriented 

edges’, ‘orthogonality index’ and ‘building importance’ - as described in Section 6.1.1, 

pages 168 and 179 and attribute - ‘orientation to road’ - (Section 6.11, page 170) with 

nominal values (see Figure 6.5, page 177) are transformed to true or false {0,1} binary 

ordinal values and not included in the statistical significance measure since they do not 

tend to be sensitive (as outliers) in the decision criterion used with the MAD (see 

attributes 1, 2, 3 and 4 in Table 8.7). Instead, such binary ordinary values are combined 

with the salience measure given by the numeric values in terms of a binary value as 

explained in Table 8.8. Apart from the attributes given in Table 8.7, all the other attributes 

given in Table 6.1, page 166, are used in this new method with no transformation. 

Table 8.8 shows the method of deriving an individual score for each characteristic 

(measure), as well as the total weighted significance. The significance of attributes that is 

highlighted in the table (also see Table 8.7 for their details) is directly derived and thus not 

subjected to the statistical test with the MAD because they were binary {0, 1} values as 

depicted in Table 8.7. All the other values are assigned either a value of 1 or 0 based on 

the statistical test using the formula (7). 
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Table 8.7  Attributes and their transformed values to be compatible with the new 
landmark saliency measure. 

# Attribute Description Transformed 
value(s) 

1 
Building importance 

(Priority) (ϒ1) 

Attraction (Cultural and Historical, 
Botanical and Zoological, 

Recreational, Tourism, Pubs and 
Retail shops) 

1 
Health 

Educational 
Public Infrastructure 

Transport 
Sports and Entertainment 

Commercial 
0 Manufacturing 

Residential 

2 Orientation to road (β4) Corner or angular 1 
Parallel or across 0 

3 Diversely oriented edges
(α6) 

Yes 1 
No 0 

4 Orthogonality index(α5) Non orthogonal 1 
Orthogonal 0 

5 Minimum distance to road Distance between building and the 
closest road (DST) 1 / DST 

6 Elongation Ratio between width / length (e) 1 / e 

7 Neighbourhood density 
Ratio between number of buildings 

divided by the area of the region 
around a building (d) 

1 / D 
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In this method, by observing the individual significance score of each measure, it can be 

directly identified how many attributes have contributed to making a particular building 

salient. The combination of the total weighted significance and the individual significance 

measure is used to decide the criteria to be formulated to make a particular building a 

salient landmark. However, the total significance measure can be calculated with different 

weights depending on the context of wayfinding (mode of travel or according to the user 

preference). 

Table 8.8  Deriving a total significance measure for landmark saliency for a building to be 
applied to the new method based on the MAD. 
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Visual 
attraction 

α1 --- S α1 

Svis = S α1 + S α2 

+ S α3 + S α4 + S 
α5 + S α6 

Wvis 

[(Svis * Wvis) + (Sstr * Wstr) + 
(Ssem + Wsem)] / [Wvis + Wstr + 

Wsem] 

α2 --- S α2 
α3 --- S α3 
α4 --- S α4 
α5 --- S α5 

α6 --- S α6 

Structural 
attraction 

β1 --- S β1 

Sstr = S β1 + S β2 

+ S β3 + S β4 + S 
β5 + S β6 + S β7  

Wstr 

β2 --- S β2 
β3 --- S β3 
β4 --- S β4 
β5 --- S β5 
β6 --- S β6 

β7 --- S β7 

Semantic 
attraction ϒ1 --- S ϒ1 Ssem = S ϒ1 Wsem 

 α1 – DEM height, α2 – size, α3 – Number of corners, α4 – Inverse of elongation, α5 – orthogonality index and α6 – 
diversely oriented edges, β1 – Inverse of minimum distance to road, β2 – No. of adjacent neighbours, β3 – 
orientation to North, β4 – Orientation to road, β5 – Average orientation to neighbours, β6 – Minimum distance to 
neighbour and β7 – Inverse of neighbourhood density and ϒ1 – Importance (priority). 
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The criteria used in this research to derive a salient landmark with this new method are as 

follows: 

 A building becomes salient if its total weighted significance > 1 and at least the sum of 

individual scores of the two measures (characteristics) >= 2 (equal weight of 1 is assigned 

in this research). In applying the criteria, the attributes removed based on the sensitivity 

analysis on the J48 implementation are ignored in generating results using the framework 

in order to keep the consistency. Further, in the use of the framework, equal weights are 

assigned to the three visual, structural and semantic characteristics of the attribute 

values. 

Tables 8.9 and 8.10 give a summary of the results of the J48 implementation in the two 

test data sets matched with the new method developed based on the MAD. 

Table 8.9 Evaluation of landmark saliency with the new method developed on the MAD in the 
Newham data set. 

Region No. of 
buildings 

Landmarks 
identified 

by J48 

Landmarks 
identified by the 

new method  

Landmarks 
matched 
with the 

new 
method 

Landmarks 
mismatched 

with the 
new method 

Percentage of 
landmarks 

matched with the 
new method  

1 311 42 16 11 31 26% 
2 214 32 28 20 12 63% 
3 73 17 4 2 15 12% 
4 322 19 15 9 10 47% 
5 72 28 11 11 17 39% 
6 406 38 39 26 12 68% 
7 285 16 9 7 9 44% 

Table 8.10 Evaluation of landmark saliency with the new method developed on the MAD in 
Tower Hamlets data set. 

Region No. of 
buildings 

Landmarks 
identified 

by J48 

Landmarks 
identified by the 

new method 

Landmarks 
matched 
with the 

new 
method 

Landmarks 
mismatched 

with the 
new method 

Percentage of 
landmarks 

matched with the 
new method  

1 149 33 16 9 24 28% 
2 206 32 39 8 24 25% 
3 123 36 16 13 23 36% 
4 237 64 44 39 25 61% 
5 93 41 14 13 28 32% 
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Figures 8.27 and 8.28 give a visual comparison of the results in region 5 of Newham area 

and region 1 of Tower Hamlets area respectively. When analysing the results, it is found 

that the percentage of the matching results between the J48 implementation and the new 

method has further dropped down in comparison to the matching between the same J48 

implementation and the framework by Raubal and Winter (2002). This is mainly due to the 

following couple of reasons: 

• Attribute values used in the J48 implementation to generate results are 

transformed before applying the new method as given in Table 8.7. 

• A constraint is applied (see page 289) in the new method to make a landmark 

salient with the sum of the individual significance of the two measures 

(properties). This is to particularly to avoid a building with ‘priority’ value 1 (the 

only semantic measure) being qualified as a salient feature even if there is no 

significance based on the two other visual and structural properties. 

 

 

 

 

 

 

 

 

Figure 8.27  Landmark saliency results (highlighted in yellow colour) of region 5 of 
Newham area: (a) results by the J48 implementation and (b) results by the new method 
on the MAD developed in this research. 

 

(a) (b) 
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The validation of landmark saliency is further evaluated using the graphical visualisation of 

specific decision points representing both test areas with the Google street view. A 

crosscheck of the evaluation is carried out with the focus map results obtained from the 

J48 implementation, the framework by Raubal and Winter (2002) and the new method 

developed on the MAD in this research. 

Figure 8.28  Landmark saliency results (highlighted in yellow colour) of region 1 of 
Tower Hamlets area: (a) results by the J48 implementation and (b) results by the new 
method on the MAD developed in this research. 

(a) (b) 
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In Figures 8.30 to 8.33, each example is first shown in an inset on the focus map in Figure 

8.29 (Inset A depicts the map in Figure 8.30, B depicts the map in Figure 8.31, C depicts 

the map in Figure 8.32 and D depicts the map in Figure 8.33), giving generalized 

background and salient landmarks at specific locations in Newham area, along with the 

photographs from the Google street view depicting the numbered salient landmarks. The 

calculations of the salient landmarks using the framework of Raubal and Winter (2002) 

and the new method developed using the MAD in this research are also given. 

 

  

Figure 8.29  Focus map of Newham area with the insets A, B, C and D of the specific 
locations considered in the validation of the landmark saliency. Note: Map is not 
printed to scale.  
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Salient landmark results - I: Newham area 

LM IDN 
Discerning attribute and its 
value for landmark saliency 

with  J48 

Framework by Raubal and  Winter  (2002) Method using the MAD 

α1 α2 α3 ε α1 α2 α3 ε 
1 Orientation: 3530 0.40 0 0 0.40 2 1 0 1 
2 Orientation to road: Parallel 0.33 0 0 0.33 3 2 0 1.67 
3 DEM height: 7m 0.40 0.20 0 0.60 3 4 0 2.33 
4 DEM height: 16m 0 0.20 0 0.20 2 3 0 1.67 
5 DEM height: 20m 0.20 0 0 0.20 2 1 0 1 

Figure 8.30  Salient landmark visualization on Swete Street: (a) map (b) view towards A to B (c) 
view towards B to A (d) view towards A to B on the inset map and (e) calculations of salient 
landmarks. α1: visual significance, α2: structural significance, α3: semantic significance and ε: 
total significance. 
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Salient landmark results - II: Newham area 

LM IDN 
Discerning attribute and its 
value for landmark saliency 

with J48 

Framework by Raubal and Winter (2002) Method using the MAD 

α1 α2 α3 ε α1 α2 α3 ε 

1 Neighbourhood density: 
0.0013m-2 0 0.14 0 0.14 2 4 1 2.33 

2 Neighbourhood density: 
0.0014m-2 0.17 0 1 1.17 1 3 1 1.67 

3 Size: 645m2 0.4 0.25 0 0.65 2 2 0 1.33 
4 DEM height: 10m 0.4 0.25 0 0.65 2 3 0 1.67 
5 DEM height: 43m 0.6 0.25 0 0.85 3 3 0 2 

Figure 8.31  Salient landmark visualization on Ballam Street and Dongola Road West: (a) map 
(b) view towards A to B (c) view towards B to C (d) view towards B to D on the inset map and 
(e) calculations of salient landmarks. α1: visual significance, α2: structural significance, α3: 
semantic significance and ε: total significance. 

(e) 
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Salient landmarks 

Salient landmarks considered in street view 

(a) (b) 

(c) (d) 

2 

1 

3

4 

5 
A

B

C

D

294 



Salient landmark results - III: Newham area 

LM IDN 
Discerning attribute and its 
value for landmark saliency 

with J48 

Framework by Raubal and Winter (2002) Method using the MAD 

α1 α2 α3 ε α1 α2 α3 ε 
1 Size: 442m2 0 0.2 1 1.2 2 3 1 2 

Figure 8.32  Salient landmark visualization on Whitwell Road and Grant Street: (a) map (b) view 
from A to B (c) view from C to B on the inset map and (d) calculations of salient landmarks. α1: 
visual significance, α2: structural significance, α3: semantic significance and ε: total 
significance. 

Coarse background 
Salient landmarks 

Salient landmarks considered in 
street view 

(a) 

(b) (c) 

1 

B

C

A

(d) 

295 



Salient landmark results - IV: Newham area 

LM IDN 
Discerning attribute and its 
value for landmark saliency 

with J48 

Framework by Raubal and Winter (2002) Method using the MAD 

α1 α2 α3 ε α1 α2 α3 ε 

1 Orientation to road: 
‘angular’ 0 0.25 1 1.25 1 2 1 1.33 

2 Diverse sides: ‘yes’ 0.40 0 1 1.40 4 2 1 2.33 

Figure 8.33  Salient landmark visualization on Barking Road: (a) map (b) view from A to B on 
the inset map and (c) calculations of salient landmarks. α1: visual significance, α2: structural 
significance, α3: semantic significance and ε: total significance. 
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Salient landmark results - I: Newham area 

All five (5) buildings on the Swete Street in Figure 8.30(a) identified as salient landmarks 

by the J48 implementation have significance scores with the framework of Raubal and 

Winter (2002) used for validation, implying such buildings to be landmarks. However, 

structural characteristics of discerning attributes of buildings with IDNs 1 and 2 emphasised 

by the J48 implementation do not provide any direct clue to be prominent when viewing 

the Google street view. 

The characteristics used to identify a particular building as a landmark with these three 

methods are not the same (For example, J48 uses structural characteristic - orientation - 

while the framework uses visual characteristics in the case of buildings with IDNs 1 and 2). 

The new method based on the MAD identified both visual and structural characteristics of 

all landmarks as significant. The framework has not identified any visual characteristic of 

the building with IDN 4 while the method based on the MAD has given a visual significance 

for this building. This could be further appreciated when viewing the street view (Figure 

8.30(d)) that the building with IDN 4 stands out because of its height. The reason is that 

the framework does not identify its height value as an outlier because of its less sensitivity 

to outlier detection. 

According to the landmark saliency on the Google street view images of these buildings 

along the road, when moving from A to B as shown in Figure 8.30(a), buildings with IDNs 3 

and 4 in the Figure 8.30(a) appear to be landmarks. When travelling in the opposite 

direction from B to A, building with IDN 1 appears to be a landmark in Figure 8.30(c). All 

these three buildings have been identified as salient landmarks by the method based on 

the MAD. The method on the MAD has not identified buildings with IDNs 1 and 5 as 

landmarks because of their fewer structural characteristics. 

However, all the three methods have not identified the white building at the corner of 

Figure 8.30(b), which appears to be a landmark due to its visual characteristic - colour. 

This is due to the non-consideration of the colour attribute in this work for the generation 

of landmarks saliency. The value of the colour attribute cannot be taken as a permanent 
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measure to retrieve landmark saliency since it can be changed over time due to natural 

and physical effects. At night, the value of colour does not provide any significance to 

determine landmark saliency of a building. 

Salient landmark results - II: Newham area 

The five (5) buildings near Ballam Street and Dongola Road West (see Figure 8.31(a)) 

identified as salient by the J48 implementation have significant scores by the framework 

and the method based on the MAD, emphasising the results of the J48 implementation. 

One of the distinctions in the results is that the method based on the MAD has identified 

that both visual and structural characteristics of all five (5) buildings have had significance 

in determining the landmark saliency which the two other methods have not been able to 

identify. The significance of both characteristics is also emphasised when viewing the map 

and the Google street view. 

 The building with IDN 5 at Dongalla Road West is also emphasised to be a strong 

landmark because of its height as shown in the street view in Figure 8.30(d). According to 

the street view in Figure 8.31(b), building with IDN 1 appears to be a landmark since it is 

isolated at the junction (corner). In general, when visually assessed on the street view, the 

strongest landmark while moving in the direction of A to B is building with IDN 1 while 

building with IDN 5 becomes the strongest in the direction of B to D. Buildings with IDNs 1 

and 5 appear to be strong landmarks when observing the significance scores by the 

method based on the MAD as well. 

Out of all five (5) buildings, the weakest building to be considered as a landmark is the 

building with IDN 3 when viewing the street views in Figure 8.31. This is more emphasised 

when observing the significance score of this building assigned by the method based on 

the MAD. 

Salient landmark results - III: Newham area 

The building located at the corner to the left of Whitewell Road when moving from A to B 

is shown in Figure 8.32(a) is a salient landmark based on its size which is a visual 
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characteristic according to the J48 implementation. The framework has also identified it to 

be a landmark, indicating more significance of its structural (located at the junction) and 

semantic characteristics (priority value of 2 as its function is a community centre) as 

shown in Figure 8.32(d). However, the method based on the MAD has identified the 

significance of both its visual and structural characteristics compared with the two other 

methods as emphasised by the street view. 

When viewing the street view in Figure 8.32(b), moving from A to B along the Whitewell 

Road would make no prominent clue to identify building with IDN 1 as a salient landmark 

other than its smaller height compared to other high-rise buildings. When moving from C 

to B along Grant Street, it appears to be at the junction (corner) with a smaller height as 

compared to other buildings in the vicinity when viewing the street view in Figure 8.32(c). 

Further, it is made salient with its sign board describing its function, appearing on the 

street view (not very clear), which is one of the semantic characteristics. However, the 

enrichment of the attributes that describes the function of each building was not part of 

this research due to the inadequacy of relevant information in the data sets used for 

deriving landmark saliency. 

Salient landmark results - IV: Newham area 

The landmark saliency of the two buildings shown in Figure 8.33(a) identified by the J48 

implementation on Barking Road has been identified by the framework and the method 

based on the MAD with their significance scores (see Figure 8.33(c)). When moving in the 

direction from A to B along the Barking Road, buildings with IDNs 1 and 2 (Figure 8.33(a)) 

appear salient when viewing the street view in Figure 8.33(b). According to the street 

view, building with IDN 1 becomes salient with its sign describing its function ‘Dental 

surgery’ while building with IDN 2 becomes salient because of its location (situated at the 

corner) and its shape. The discerning attribute used to identify building with IDN 2 by the 

J48 implementation is also the same - ‘diverse sides’ - indicating that it has differently 

oriented walls. The building with IDN 1 has been identified as salient by the J48 

implementation based on the attribute ‘orientation to road’ which is one of the structural 

properties. This is also evident from the significance score of the structural property by 
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the framework. Out of the two buildings, the most significant building is the one with IDN 

2, which is further evident in the street view from the high score given in the framework 

and the method based on the MAD. The method based on the MAD has identified both 

buildings as landmarks using both visual and structural characteristics which the two other 

methods have not been able to identify. 

In Figures 8.35 to 8.37, each example is first shown in an inset on the focus map in Figure 

8.34 (inset A depicts the map in Figure 8.35, B depicts the map in Figure 8.36 and C depicts 

the map in Figure 8.37), giving generalized background and salient landmarks at specific 

locations in Tower Hamlets area, along with the photographs from Google street view 

depicting the numbered salient landmarks. The calculations of the salient landmarks using 

the framework of Raubal and Winter (2002) and the new method developed using the 

MAD are given. 

 

Figure 8.34 Focus map of Tower Hamlets area with the insets A, B and C of the specific locations 
considered in the validation of the landmark saliency. Note: Map is not printed to scale.  
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Salient landmark results - I: Tower Hamlets area 

LM IDN 
Discerning attribute and its 
value for landmark saliency 

with J48 

Framework by Raubal and Winter (2002) Method using the MAD 

α1 α2 α3 ε α1 α2 α3 ε 
1 Elongation: 0.8 0.33 0.25 0 0.58 3 2 0 1.67 

Figure 8.35  Salient landmark visualization on Goldsmith’s Row: (a) map (b) view towards A to B 
on the map and (c) calculations of salient landmarks. α1: visual significance, α2: structural 
significance, α3: semantic significance and ε: total significance. 
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Salient landmark results - II: Tower Hamlets area 

LM IDN 
Discerning attribute and its 
value for landmark saliency 

with J48 

Framework by Raubal and Winter (2002) Method using the MAD 

α1 α2 α3 ε α1 α2 α3 ε 
1 Size: 678m2 0.33 0 0 0.33 4 2 0 2 
2 Size: 1001m2 0.33 0 0 0.33 2 2 0 1.33 

3 Importance : 2 (public) 0.17 0.2 1 1.37 2 2 1 1.67 

Figure 8.36  Salient landmark visualisation on St. Peter’s Close: (a) map (b) view from A to B on 
the map and (c) calculations of salient landmarks. α1: visual significance, α2: structural 
significance, α3: semantic significance and ε: total significance. 
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Salient landmark results - III: Tower Hamlets area 

LM IDN 
Discerning attribute and its 
value for landmark saliency 

with J48 

Framework by Raubal and Winter (2002) Method using the MAD 

α1 α2 α3 ε α1 α2 α3 ε 

1 Minimum distance to 
neighbour:5m 0.33 0 0 0.33 3 3 0 2 

2 Number of corners :10 0 0.20 0 0.20 1 2 0 1 
3 DEM height : 31m 0.17 0.20 0 0.37 4 1 0 1.67 

4 DEM height : 65m 0.5 0 0 0.5 3 3 0 2 

Figure 8.37  Salient landmark visualisation on Centre Street: (a) map (b) view from A to B (c) 
view from B to A on the map and (d) calculations of salient landmarks. α1: visual significance, 
α2: structural significance, α3: semantic significance and ε: total significance. 
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Salient landmark results - I: Tower Hamlets area 

The landmark saliency of the single building with IDN 1 shown in Figure 8.35(a) identified 

by the J48 implementation at the junction (corner) on the Goldsmith’s Row has also 

emphasised by the framework and the method based on the MAD with their significance 

scores in terms of both visual and structural characteristics (see Figure 8.35(c)). When 

moving in the direction from A to B along the Goldsmith’s Row, this building appears 

salient when viewing the street view in Figure 8.35(b) mainly due to its shape and colour. 

The discerning attribute used to identify building with IDN 1 by the J48 implementation is 

the elongation which is one of the criteria to describe its shape (it is a value between 0 

and 1). When this value equals to 1, the building is very less elongated. 

Salient landmark results - II: Tower Hamlets area 

The landmark saliency of the three buildings in the vicinity of St. Peter’s Close shown in 

Figure 8.36(a) as identified by the J48 implementation have been emphasised by the 

framework of Raubal and Winter (2002) and the method based on the MAD with their 

significance scores (see Figure 8.36(c)). The J48 implementation has identified building 

with IDN 3 to be salient with its ‘priority’ value. The two other buildings with IDNs 2 and 3 

are identified as salient due to their size by the J48 implementation. This is further evident 

when viewing the street view, although they are residential buildings in terms of function 

(use). 

The most salient feature identified by the framework is the building with IDN 3, which is a 

church with more emphasis on its structural characteristics (see Figure 8.36(c)). The 

framework has added a high weight to its semantics. This is due to the existence of only 

one semantic attribute - priority - in the data, which does not have any effect on the 

averaging of the attribute values of each salient measure derived from this framework as 

described in Table 8.4. However, when analysing the significance measures given by the 

new method on the MAD for building with IDN 3, it has assigned equal significance for 

both visual and structural measures of building with IDN 3 (a church). Its saliency in terms 

of visual characteristics is further evident when viewing the street view in Figure 8.36(b) in 

the direction from A to B along St. Peter’s Close. The most salient feature identified by the 
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method based on the MAD is the building with IDN 1 as evident when viewing the Google 

street view due to its size and height, although it is a residential building. 

 Salient landmark results - III: Tower Hamlets area 

The landmark saliency of the four (04) buildings visible from Centre Street shown in Figure 

8.37(a) as identified by the J48 implementation have been emphasised by the framework 

with its significance scores (see Figure 8.37(c)). However, the method based on the MAD 

has identified only buildings with IDNs 1, 3 and 4 as salient. It has not identified building 

with IDN 2 as salient due to its fewer visual characteristics. The most significant salient 

feature identified by the framework and the method based on the MAD is building with 

IDN 4 which appears to be a global landmark due to its height when viewing the street 

view in Figure 8.37(c), moving along the road from B to A. The J48 implementation too has 

identified it with its discerning attribute - height. Building with IDN 3 too is identified as a 

landmark due to its height by the J48 implementation, although it is not apparent to be an 

immediate local landmark on the road. Building with IDN 2 is identified as salient by the 

J48 implementation based on the number of corners of a building, which is a visual 

characteristic while the framework has identified it to be salient due to its structural 

characteristics (this building is located at the corner). In this situation, the structural 

characteristic - corner - appears to be more prominent than the visual characteristic, 

number of corners. However, when viewing the street view, it can be identified as salient 

because of both characteristics - visual (height is very low compared to other buildings in 

the vicinity) and structural (its location at the corner). The residential building with IDN 1 

has been identified as a salient landmark by the J48 implementation, considering its 

minimum distance to neighbouring buildings, which is one of the structural characterises 

while the framework has identified it as a landmark due to its shape (its shape is non-

orthogonal in the ‘orthogonal’ attribute). However, when viewing this building in the 

street view, it becomes salient due to both visual and structural characteristics. It has 

been identified by the method based on the MAD as one of the two most salient 

landmarks. Further, the method based on the MAD has identified both visual and 
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structural characteristics of all the four buildings to be significant while the two other 

methods have not been able to identify both of those characteristics of each building. 

All long buildings appear as salient landmarks to the right of the road when moving from A 

to B in Figure 8.37(a) due to their size and height (the method based on the MAD has only 

identified a few of those buildings as landmarks - see the focus map derived from this 

method in Figure 8.44, page 322). These buildings do not appear to be landmarks on the 

ground because they all look the same in shape and height (see Figure 8.38 to visualise 

part of such buildings from the middle of the Centre Street). Collectively, they are very 

noticeable as a group, which would help a wayfinder to orient in the right direction. 

However, there are limitations in the automatic derivation of landmarks, especially in 

areas where all the buildings are high-rise buildings/structures with the same height. 

Figure 8.38  Google street view of high-rise buildings with the same shape and 
the height visualized from the middle of the Centre Street. 
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Validation of landmark saliency on a decision point – Tower Hamlets area 

Figure 8.39 depicts the decision point (circled in black colour) used to validate landmark 

saliency. The selection of this decision point is due to it being in a corner of the four 

intersecting regions - 2, 3, 4 and 5 - used in deriving landmark saliency with the J48 

implementation of the focus map above in Figure 8.39. The J48 implementation is applied 

to each of these regions separately by dealing with sensitivity analysis and attribute 

discretization (transformation) based on the characteristics of data. Therefore, it is 

important to see how the J48 implementation derives landmark saliency of buildings 

Figure 8.39  Focus map of Tower Hamlets area with the decision point circled, and the 
regions (1 to 5) used in deriving landmark saliency. Note: Map is not printed to scale.  

 

Generalized amalgams 

Salient landmarks 

A road 
B road 
Minor road 
All other roads 

meters 

1 

2 

4 

3 

5 

307 



around a buffer of 50m from the junction (decision point), falling within all of these four 

regions. 

When the J48 implementation is applied to the buildings chosen within a radius of 50 m 

from the decision point (see Figure 8.40(a)) without attribute discretization 

(transformation), none of the buildings are selected as salient at the topmost level (zero 

level) of the decision tree because the J48 implementation of the C4.5 algorithm has not 

detected any of the outliers based on the gain ratio as discussed in Section 2.5.1, page 55. 

However, at the first level of the tree, 19 buildings are identified as salient though it does 

not give any prominent information at the decision point. When the attributes - DEM 

height, size and the minimum distance to road - are discretized, it identifies four buildings 

shown highlighted in Figure 8.40(b) to be salient at the zero level of the decision tree. 

Highlighted values in Table 8.11 are the attribute values, the J48 implementation chooses 

to make each of the four landmarks salient. When comparing the salient landmarks 

derived in regions with that of derived at the junction around a buffer, it can be seen that 

the results are different (see Figure 8.40). Building with IDN 20 identified as salient at the 

decision point has not been identified as a landmark when the J48 implementation has 

derived landmarks in region 3. This further emphasises that the application of the J48 

implementation is region dependent. 

Figure 8.40  Evaluation of salient landmarks at a decision point with the J48 implementation: (a) 
Salient landmarks falling within the buffer of 50m, derived from each region separately (regions 2, 
3, 4 and 5 in Figure 8.39 and (b) salient landmarks derived from all the buildings within the same 
buffer at the decision point during focus map generation in Tower Hamlets area. 
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The framework by Raubal(2002) with the J48 implementation 

When observing the total significance (ε) of these four buildings identified by the J48 

implementation as landmarks in Figure 8.41 (b), each building has a significant value > 0 

according to the results given in Table 8.11. This indicates that these four buildings are 

potential landmarks at the decision point, although discerning attributes chosen provide 

Figure 8.41  Evaluation of the landmark saliency at a decision point in Tower Hamlets area: (a) 
all the buildings around the decision point within a radius of 50m (b) salient landmarks chosen 
by the J48 implementation and (c) salient landmarks chosen by the implementation of the 
framework of Raubal and Winter (2002) from the buildings with a total significance >= 0.75 
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no clear clue about their salience. However, all these buildings are in the residential 

category with a less building importance (a ‘priority’ value of 5). 

When the implementation of the framework for deriving landmark saliency on these 

buildings is applied at the decision point with equal weight assigned to each of the three 

characteristics, it gives different results to that of the J48 implementation. Table 8.12 lists 

the attribute values and the corresponding significance values of the four buildings with a 

total significance > 0.75. Figure 8.41(c) depicts these four buildings overlaid on the coarse 

background. The most salient landmark is the building with IDN 21 with a total significance 

Table 8.11  Landmark significance together with attributes and their values of the four 
chosen salient landmarks with the J48 implementation. 

IDN α1 α2 α3 α4 α5 α6 β1 β2 β3 β4 β5 β6 β7 ϒ1 σ1 σ2 σ3 ε 

26 29 67 6 0.6 1 0 15.1 2 342 corner 1 0 0.0032 5 0.33 0 0 0.33 

23 17 6 4 0.2 1 0 8 0 72 corner 0 3.2 0.0031 5 0.33 0.14 0 0.48 

6 31 175 4 0.8 1 0 8 2 342 corner 1 0 0.0036 5 0.33 0 0 0.33 

20 13 207 4 0.4 1 0 6 1 73 corner 1 0 0.0037 5 0.33 0 0 0.33 

Table 8.12  Landmark significance together with attributes and their values of the four 
chosen salient landmarks with a total significance >= 0.75 based on the framework by 
Raubal and Winter (2002). 

IDN α1 α2 α3 α4 α5 α6 β1 β2 β3 β4 β5 β6 β7 ϒ1 σ1 σ2 σ3 ε 

5 29 404 8 0.4 1 0 12.1 1 72 corner 0 0 0.0031 1 0.33 0 1 1.33 
8 34 570 24 0.9 1 0 17.5 4 72 corner 1 0 0.0033 3 0.67 0.14 0 0.81 

21 23 290 17 0.4 1 0 8.5 5 343 corner 0 0 0.0028 1 0.33 0.14 1 1.48 
22 25 47 8 0.4 1 0 4.7 1 73 corner 0 0 0.0027 1 0.33 0 1 1.33 

α represents visual properties: α1 – DEM height, α2 – size,  α3 – no. of corners, α4 – elongation, α5 – orthogonal, 
and α6 – diverse sides. 
β represents structural properties: β1 – minimum distance to road, β2 – no. of adjacent neighbours, β3 – 
orientation to North, β4 – orientation to road, β5 – average orientation to neighbours, β6 – minimum distance to 
neighbour, and β7 – neighbourhood density. 
ϒ represents semantic properties: ϒ1 – Importance. 
σ1 – Visual significance,  σ2 – Structural significance, σ3 – Semantic significance, and ε – Total significance.. 

α represents visual properties: α1 – DEM height, α2 – size,  α3 – no. of corners, α4 – elongation, α5 – orthogonal, 
and α6 – diverse sides. 
β represents structural properties: β1 – minimum distance to road, β2 – no. of adjacent neighbours, β3 – 
orientation to North; β4 – orientation to road, β5 – average orientation to neighbours, β6 – minimum distance to 
neighbour, and β7 – neighbourhood density. 
ϒ represents semantic properties: ϒ1 – Importance. 
σ1 – Visual significance, σ2 – Structural significance, σ3 – Semantic significance , and ε – Total significance. 
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of 1.48 according to the Table 8.12. It is a wholesale store (attribute Name: G B Wholesale 

Ltd). When investigating the function of the other three buildings; building with IDN 5 is a 

car sales (attribute Name: Lees cars), building with IDN 22 is a café (attribute Name: Billy’s 

Café) and building with IDN 8 is a property sale company (attribute name: Columbia 

Estates Ltd). However, all these four buildings seem to be important landmarks at this 

decision point. The selection of landmark saliency at a decision point can be a group of 

buildings based on a criterion using higher total significance values of buildings rather 

than selecting the building with the highest significance score. When comparing the 

results of landmark saliency with the results obtained from the J48 implementation at the 

decision point, the framework of Raubal and Winter (2002) gives promising results 

excluding all the four buildings chosen as salient landmarks by the J48 implementation. 

Comparing the method using the MAD developed in this research 

When further validating the results of the J48 implementation with the results obtained 

using the method based on the MAD developed in this research, the new method has 

derived potential landmarks at the decision point. The framework of Raubal and Winter 

(2002) has identified building with IDN 21 as the most salient landmark at the decision 

point when observing the significance scores (see Tables 8.12 and 8.13) while the new 

method has identified two buildings with IDNs 21 and 8 as the most salient landmarks. 

These two buildings serve as the most salient features when observing the three measures 

of visual, structural and semantic characteristics. 

When observing the structural significance of buildings with IDNs 5, 10 and 22 (see Table 

8.13) given by the framework and the new method, it is evident that the framework has 

not detected their structural measure (orientation to the road - corner) while the new 

framework has identified this measure. The reason is that the ordinal values assigned to 

the attribute ‘orientation to road’, considered in the statistical decision criterion used in 

this framework, have not become sensitive in outlier detection. In the calculation of the 

significance measure of the attribute ‘orientation to road’, the significance has been 

directly assigned a binary significance value (see Table 8.7, page 287) without considering 

the statistical decision criterion by the new method based on the MAD. 
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Framework  by Raubal and 
Winter(2002) Method using on the MAD by this research 

IDN α1 α2 α3 ε1 β1 β2 β3 ε2 

5 0.33 0 1 1.33 1 (size) 1 (orientation to 
road) 1 (priority) 1 

8 0.67 0.14 0 0.81 2 (size / no. of 
corners) 

1 (orientation to 
road) 1 (priority) 1.33 

10 0.33 0 0 0.33 1 (size) 1 (orientation to 
road) 1 (priority) 1 

21 0.33 0.14 1 1.48 2 (size / no. of 
corners) 

1 (orientation to 
road) 1 (priority) 1.33 

22 0.33 0 1 1.33 0 1(orientation to 
road) 1 (priority) 0.67 

When further observing the significance measures of the building with IDN 5 in Table 8.13, 

given by the framework, its semantic measure has got a higher significance. The reason is 

that the semantic measure has only one attribute - ‘priority’ - in detecting landmark 

Figure 8.42  Evaluation of the landmark saliency at a decision point in Tower Hamlets area 
with all the buildings around the decision point within a radius of 50m: (a) salient landmarks 
chosen by the framework of Raubal and Winter (2002) from the buildings with a total 
significance >= 0.75 and (b) salient landmarks chosen by the new method on the MAD from 
the buildings with a total significance >= 1 and the significance contribution from two or more 
significance measures (see Appendix F.7 for the attributes and the significance scores of each 
building considered at the decision point with the new method on the MAD). 

Table 8.13  Comparison of landmark significance together with individual significance scores 
of each measure of the most prominent salient landmarks chosen based on the framework by 
Raubal and Winter (2002) and the new method based on the MAD. 

α1, β1– visual properties, α2, β2 – structural properties, α3, β3 – semantic properties and 
ε1, ε2 – total significance. 
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saliency. Hence, when averaging the significance score of the semantic measure of the 

building with IDN 5 with the number of attributes according to the framework, the 

significance score remains the same (i.e. value - 1). When averaging the scores of two 

other measures, they have a higher number of attributes (visual - 6 attributes and 

structural - 7 attributes). As a result, they tend to get lower significance scores (i.e. values 

< 1). Therefore, the total significance score of this building in the framework has given 

more emphasis due to the semantic measure. However, in calculating the individual score 

in the method based on the MAD, averaging is not considered (see Table 8.8, page 288). 

As a result, the building with IDN 5 has not become more emphasised as a salient feature 

based on the new method, although this is not the only reason for the lack of emphasis. 

8.3   Discussion 

This research has been able to identify issues in spatial data structuring with Delaunay 

triangulation, data enrichment for spatial clustering and cluster shape enrichment for 

subsequent automatic generalization process, and extraction of required attributes for 

deriving salient landmarks. The salient landmarks are identified using the J48 

implementation of the C4.5 decision tree algorithm under data mining together with 

automatic map generalization of building polygon data to generate coarse background on 

focus maps. These fill the gaps in understanding the processes of generating focus maps 

for wayfinding. 

In generating the results, the first step is the creation of building clusters for the 

subsequent building generalization process to create a coarse background of building 

geometry to form the basis for generating focus maps automatically. The spatial clustering 

algorithm developed in this research can create building polygon clusters based on the 

hierarchical application of the Gestalt factors - proximity, orientation and similarity in 

shape. In this process, more emphasis is given to the context of buildings such as the road 

network and the hydrographic features in regions delineated by the user in order to avoid 

clustering of buildings across contextual features so as to reduce complexity of data 

handling and to improve the efficiency of data processing. However, when applied to the 
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test data sets, the triangulation algorithm gave an exception, terminating the automatic 

clustering process. A fix was made to rectify this issue as explained in Section 8.1.1. 

Qi and Li (2008) have carried out the hierarchical clustering on building features using the 

Gestalt factors - proximity with the CDT, orientation with the MBR, and similarity with the 

overlap ratio between a pair of buildings. The CDT used by them does not create explicit 

adjacency relationships between buildings, depending on the configuration of shape and 

position of buildings as discussed by Ware and Jones (1996) and Ai et al. (2007), although 

most of the researchers have used this triangulation structure for building clustering as 

discussed in Section 2.4.5, page 52. Further, the application of the MBR for deriving 

orientation is not a satisfactory measure when the shape of the building is square or 

terraced (Duchêne et al., 2003). However, the MBR is consistent with buildings of irregular 

shape. Qi and Li (2008) have initially partitioned buildings into regions using contextual 

features, applying a clustering process to the buildings within a particular region, ignoring 

contextual features existing in a region such as hanging roads (roads with dead ends). If all 

or some of the inner contextual features are to be retained at the target scale, 

reclustering of buildings is required in instances where such inner contextual features 

cross the generated clusters. The most important fact is that they have not tested the 

results of their clustering approach. The hierarchical clustering process developed in this 

research has provided solutions to all these shortcomings in the approach of Qi and Li 

(2008). The research has developed an improved constrained triangulation algorithm 

termed as DCT to deal with implicit neighbourhood relations caused by the CDT in the 

proximity calculation between building polygons. The statistical wall orientation 

developed by Duchêne et al. (2003) has been used for the calculation of the orientation 

difference between each pair of buildings, since the MBR cannot deal with buildings of 

square or terraced shape (see Section 5.2.1, page 115). However, the statistical wall 

orientation is not consistent with circular or irregular shaped buildings according to 

Duchêne et al. (2003). They have suggested using a combination of the MBR and the wall 

statistical weighting for deriving orientation. However, this does not provide consistent 

results in the case of clustering in this work. Therefore, the wall statistical weighting is 

used since circular or irregular shaped buildings occur very rarely in the data sets.  The 
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wall statistical weighting gives promising results in cluster generation in the test data sets 

(except the circular building like structures existing in region 2 depicted in Figure 8.13 in 

Tower Hamlets test data where an arbitrary value is assigned to all circular shaped 

buildings in the clustering process). It is important to note that an intelligent cluster 

classification system has been developed based on the three Gestalt factors and the MST 

segmentation in this research. Based on the internal evaluation of the results of the visual 

perception test in the generated clusters, carried out using the secondary data obtained 

from the NMA of Sri Lanka as explained in Section 5.3.3, page 133, it is identified that the 

incorporation of contextual features is necessary to avoid cluster formation across these 

features. Thus, the developed DCT algorithm has been replaced with the CNDT algorithm 

by Ruppert (1995) described in Section 4.2, page 85 since it cannot presently deal with 

linear features. This algorithm has been further customised to apply constraints on 

building edges and deal with Steiner points. The other advantage of using the CNDT is that 

it creates Steiner points to make the triangulation Delaunay stable where all explicit 

topological links between buildings and contextual features are captured. These links are 

necessary to the clustering process as well as for the extraction of attributes required to 

mining landmark saliency. That these Steiner points are not created physically on the data 

is another advantage of keeping the original data intact during the triangulation process. 

The improvement of the clustering algorithm to deal with contextual features has made it 

very convenient to partition the regions without excluding inner contextual features such 

as roads with dead ends (only roads are available in the test data sets for the context). 

Only Regnauld and Revell (2007) have taken into consideration roads as contextual 

features in generating clusters with the proximity graphs out of all the triangulation 

approaches for building clustering discussed in the literature in Section 2.3.3, page 35. 

They have used the CDT with splitting the road network at regular intervals (densification 

of points) in order to ensure each building is hooked to a nearby road. However, in this 

approach the topological relations between buildings can be lost since the CDT can create 

implicit topological relations as discussed above. The other issue is that there is no 

guarantee that all the buildings are linked to the closest road segment in the densification 

process of the road network, depending on the distance applied for densification. Such 
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densification affects the original data by adding new vertices in the data set as well. 

Further, the clustering approach does not generate intelligent knowledge about each 

cluster created with a cluster classification system using the Gestalt factors. They have 

only considered proximity in the approach. 

A further enrichment in terms of cluster shape and its orientation is carried out after the 

clustering process based on the statistical wall orientation algorithm by Duchêne et al. 

(2003) to select the choice of aggregation generalization operations developed to deal 

with clusters with the orthogonal and the non-orthogonal shapes defined as described in 

Section 5.4.2, page 154. This enables the ability to give an enhanced visualisation and 

meaning to the building amalgams (orthogonality of edges are retained as much as 

possible in the aggregation and narrow corridors and juts are exaggerated) after 

aggregation as depicted in the generalized results in Section 8.2 and in the validation 

results in Section 8.2.2. 

The second step after clustering and shape enhancement is to extract all the geometrical 

and the structural information given in Table 6.1, page 166 automatically from the two 

topographical data sets used as the test areas and store them in the PostgreSQL database 

coupled with PostGIS extension to handle spatial data. The only attribute considered to 

enrich thematic values (semantics) of a building is the building priority ranking measure 

assigned in terms of an ordinal value based on the building function and use as given in 

Table 6.2, page 179. Also, methods and algorithms have been developed for extracting 

geometric (visual) and spatial (structural) attribute values based on the topological 

information between the building geometries and the contextual data using the CNDT 

customised for the building clustering process. A fix was required to deal with null pointer 

values in the algorithm developed to derive building orientation in relation to the closest 

road segment when applying to the test data set of Newham area as mentioned in Section 

8.1.2. It should be noted that although this algorithm derived results automatically, some 

incorrect assignment of orientation values occurred to buildings located at corners as 

already discussed in Section 8.1.2. Such unexpected results had to be investigated and 

rectified interactively before proceeding to the next step of deriving landmark saliency. 
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However, there were a very few such exceptions that had to be dealt with. Further work 

would be necessary to make it completely automated. 

The third step is the application of the J48 implementation of the C4.5 decision tree 

algorithm by Quinlan (1993) on the test data sets that have been enriched with 

geometrical (visual), spatial (structural) and thematic (semantic) attributes for the 

identification of salient landmarks. According to the literature, the ID3 decision tree 

algorithm and the COBWEB clustering have already been tested to drive landmark saliency 

at decision points (Elias, 2003; Elias, Hampe and Sester, 2005). The J48 implementation of 

the C4.5 decision tree supervised classification method is used in this work after 

comparing and evaluating its results together with the results obtained from the ID3 and 

the COBWEB implementations as described in Section 6.2.4, page 195 using the open 

source WEKA Java library. This testing and evaluation is carried out at a decision point as 

well as in a region delineated by the road network. For this purpose, the three methods 

are customised to traverse through the levels of the tree to capture salient landmarks 

with Java object-oriented programming language. 

The test data in Tower Hamlet area are very complex, comprising of a variety of shapes of 

building geometries with small and narrow attachments including structures which are 

identified as single entities with all the attributes. Some of these small and/or narrow 

attachments have very discerning heights either much lower or higher than the 

surrounding buildings. These buildings tend to stand out as salient landmarks during the 

landmark derivation process. Thus, buildings with such exceptions are pre-processed 

before the application of the salient landmark derivation process. For example, if a small 

building attached to the main building has a height greater than the main building, the 

height of the small building is assigned to the main building (in another attribute column, 

keeping the original height of the building intact) and the small building is removed from 

the salient landmark derivation process. However, before removing such a building from 

the derivation process in a particular region, its building priority value is checked with that 

of the main building. If the priority is higher than the main building, it is not removed, and 

even the height value of the main building is not changed.  
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There were some buildings in the data sets that did not have any orientation or the 

minimum distance to a road (null values) in relation to the road network after data 

enrichment. The reason was that these were all in between other buildings, thereby not 

having a direct link to a nearby road within a region. Such buildings were removed from 

the salient landmark derivation process since they too tended to stand out as salient 

landmarks when the dummy values were assigned during the landmark derivation 

process.  

The visibility of a building is an important visual property in determining landmark 

saliency. In order to derive a visibility factor for a building, topography in the vicinity of the 

building, its height and observer’s height and position (viewpoint) need to be taken into 

account. Work on visibility has already been carried out by Brenner and Elias (2003) and 

Nothegger, Winter and Raubal (2004). However, the visibility check has not been 

performed in the two test areas since they have almost flat topography, hence not 

incorporated in deriving landmark saliency. The observer's viewpoint is also an important 

visual measure in a wayfinding application where any position on a road is potentially a 

viewpoint. Especially in pedestrian wayfinding, this is the public street area. Raubal and 

Winter (2002) have defined this in terms of 2D visibility. However, this is not included in 

the attribute derivation under data enrichment, considering the time involved in 

developing another algorithm for this purpose. With the building links and their 

corresponding road network links, a measure for each building on 2D visibility can be 

developed. 

When the results of salient landmarks obtained using the J48 implementation are 

analysed with those obtained using the framework to derive landmark saliency by Raubal 

and Winter (2002) and the new method developed in this research based on the MAD, it is 

identified that the J48 implementation provides rather satisfactory results when applying 

to regions (see Tables 8.5 and 8.6 for the comparison of the J48 implementation results 

with the framework of Raubal and Winter (2002), and Tables 8.9 and 8.10 for the 

comparison of the same with the method based on the MAD in the previous section). This 

is further emphasised by the visualisation of salient buildings with the Google street view 
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in chosen cases under the validation of salient landmarks in the previous section. The 

attribute discretization plays an important part in determining the quality of results, even 

though, the J48 implementation can deal with both nominal and numeric data. Also, it is 

necessary to partition data into meaningful regions such that a region does not contain a 

large number of buildings. A region with a large number of buildings may lead to making 

discretization of the attributes difficult to achieve satisfactory results as experienced in 

region 6 in the test data set of Newham area. 

The evaluation of the J48 implementation at a particular decision point which includes a 

few important landmarks in the Tower Hamlet area within a radius of 50m reveals that in 

order to get the results, attribute discretization is necessary, even though the data set is 

very small (only 26 buildings around the decision point as depicted in Figure 8.41 in 

Section 8.2.3). The salient results are given in this instance at the topmost level (0 level) in 

the decision tree. However, when analysing these results with those obtained from the 

framework by Raubal and Winter (2002) and the new method based on the MAD, the 

results are entirely different. The framework and the method based on the MAD identify 

most important landmarks (see buildings with IDNs 5, 8 and 21 in Figure 8.42 in Section 

8.2.3) at the junction (decision point) while the J48 implementation cannot identify them. 

The results of significance measures of the new method based on the  MAD prove to 

reflect all the three characteristics (visual, structural and semantic) of a landmark while 

the framework cannot identify structural characteristics of some salient landmarks at the 

junction (see Table 8.13 in Section 8.2.3). 

Further, when analysing the discerning attributes the J48 implementation has chosen to 

define a particular building as a landmark, comparing with the results from the method 

based on the MAD and the Google street view, it is hard to identify a direct clue in some 

instances as to why some attributes are made discerning. Thus, the outcome of the 

validation of the results of the J48 implementation has shown that the J48 

implementation needs further to be improved or even abandoned in favour of an 

approach using the MAD to identify salient buildings on topographic data sets, although 

the ID3 decision tree, which is the predecessor of the J48 implementation (J48 can be 
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treated as the improved version of ID3), has already been employed by Elias (2003) and 

Elias, Hampe and Sester (2005) for derivation of landmark saliency in wayfinding. 

However, they have not conducted any usability test in order to validate the results 

obtained from the ID3 decision tree. The implementation of the framework developed by 

Raubal and Winter (2002) can identify landmark saliency in a region and at a decision 

point where it does not often reflect the significance of visual, structural and semantic 

measures in order to provide a reliable significance score to detect landmark saliency. The 

reason is that its decision criterion based on the mean and the standard deviation is 

impacted by the presence of outliers. The saliency measure proposed by Nothegger, 

Winter and Raubal (2004) using the MAD provides some scores with a value of infinity for 

buildings (it can give division by zero in their equation used to calculate the significance 

score) when applying in this research as discussed in Section 8.2.3. 

The new method developed to detect landmark saliency provided improved results when 

applied to regions and decision points in this research. In order to detect outliers, only the 

upper limit of the decision criterion (see equation 7 in Section 8.2.3, page 285) was 

considered in order to avoid selecting buildings with small values of attributes (especially 

the size) of a building as outliers. However, one of the limitations of this approach was 

that it eliminated the significance of buildings with low heights. In some instances, a 

building with a low height at a decision point with all high-rise buildings around would 

stand out as a landmark (see street view map in landmark results – III: Tower Hamlets area 

in Section 8.2.3, page 303 for such a building (building with IDN 2)). One of the solutions 

was to classify the size of buildings into a new range of values in a meaningful way so as to 

clearly distinguish the buildings visually using data transformation and apply a decision 

criterion for both limits. This approach would add significance to buildings with low 

heights as well. It would need further testing with different data sets in future research. 

Figures 8.43 and 8.44 depict the focus maps reproduced region based with the method 

based on the MAD in Newham and Tower Hamlets areas respectively for the validation of 

landmark saliency derived from the J48 implementation as described in Section 8.2.3. 
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The Focus map produced with the method MAD – Newham area 

Figure 8.43  Focus map with salient building landmarks highlighted with graphical variable - 
colour - portrayed in the original shape on the coarse background of the generalized buildings at 
the target scale of 1 : 8K, derived from the source data at the scale of 1 : 1.25K in Newham area 
(part of).  Note: Map is not printed to scale. Data source: OS MasterMap, Crown copyright. 
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The Focus map produced with the method MAD – Tower Hamlets area 

Figure 8.44  Focus map with salient building landmarks highlighted with graphical variable - 
colour - portrayed in the original shape on the coarse background of the generalized amalgams 
of buildings at the target scale of 1 : 8K, derived from the source data at the scale of 1 : 1.25K in 
Tower Hamlets area (part of).  Note: Map is not printed to scale. Data source: OS MasterMap, 
Crown copyright. 
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The fourth and the final step is the application of the automatic generalization on 

enriched building clusters in the two test areas to generate coarse background in order to 

support and enhance the visualisation of salient landmarks on the focus maps using the 

generalization algorithms developed and/or modified in this research. This method of 

generalization of features is called the object transformation technique according to 

Bereuter and Weibel (2010) as described in Section 2.1, page 13. 

The main generalization operation considered in this research is the aggregation 

operation to create amalgams of buildings with coarse details. This operation is required 

when a group of buildings appears merged on the target scale of a data set due to the 

scale reduction in the application of the map generalization. However, after the creation 

of amalgams at the generalized scale, the two other generalization operations applied are 

simplification and exaggeration. The simplification is used to remove the edges of 

buildings that are hardly visible in the target scale. The exaggeration is performed to 

eliminate narrow juts and/or corridors of the amalgam created as a result of building 

aggregation applied to a cluster. More emphasis is given to deal with existing issues in 

creating amalgams from building clusters, identified from the literature review in this 

research. Two types of aggregation algorithms have been developed in this research: (a) 

building aggregation with orthogonal sides and (b) building aggregation with non-

orthogonal sides where the former is to aggregate cluster of buildings with orthogonal 

sides and similar orientation and the latter is to deal mainly with clusters of buildings with 

non-orthogonal edges/and or dissimilar orientations in the cluster outline (see 

generalization specification used in this work given in Section 8.2.1, page 265). Both 

algorithms were revised during the results generation process using the test data sets to 

fix the bugs encountered as explained in Section 8.1.3. 

The aggregation algorithm with orthogonal sides can handle buildings at any exceptional 

position as illustrated in Figures 7.4 and 7.5 in Section 7.2.1, pages 203 and 204. It has the 

ability to fill the gaps between buildings with buffer operation and create a single 

amalgam. If the output of buffer operation is not a single amalgam (this happens when 

buildings are located at exceptional positions), adjacent pairs of polygons are tracked first 
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with the DCT developed in this research and then subjected to the CNDT with constraint 

edges between each pair of buildings as described in Section 7.2.8, page 224 in order to 

create a single amalgam. Then, squaring the edges is performed with fusing the amalgam 

using the ear polygons followed by exaggerating the juts and the narrow corridors and 

finally simplifying the edges as described in Sections 7.2.5 and 7.2.6, pages 210 to 217. The 

final algorithm is the revised version of a series of algorithms subject to testing, evaluation 

of the results, and the refinement of the algorithms in the development process. Regnauld 

and Revell (2007) have developed a similar type of algorithm to deal with the exceptional 

positions of buildings in the clusters with squaring and bridging the gaps by identifying the 

adjacent pairs of buildings using the MST as discussed in Section 2.2.8, page 29. One of the 

drawbacks of their algorithm compared to the one developed in this research is that it 

tends to simplify each building of the cluster with its MBR after orienting the cluster along 

the x-y axes with its GOBR described in Section 7.1, page 200. This simplification produces 

overgeneralized squared amalgams. The other drawback identified is that their algorithm 

relies on the use of the MST to find the adjacent pairs of buildings. This may lead to a loss 

of some important adjacent relations between the buildings. The ideal solution would 

have been to use triangulation coupled with the MST. Further, the algorithm cannot deal 

with exaggerating narrow corridors of the generalized amalgams. 

The aggregation algorithm with non-orthogonal sides can also handle buildings at any 

exceptional position as described above. The algorithm first applies the dilation and 

erosion operation on the building cluster to create an initial amalgam. If the initial 

amalgam is not a single polygon, the algorithm first identifies adjacent pairs of polygons 

using the DCT and then re-triangulates each adjacent pair with the same triangulation and 

identifies all the triangles between each pair of buildings. Then all these adjacent triangles 

are spatially sorted to capture adjacent triangles to each single triangle. The gap between 

each pair of buildings is bridged with the triangles based on the space triangle edge 

distance threshold (see Section 7.3.1, page 230 for the algorithm) using the pairing 

algorithm developed in this research. Finally, using the OpenCarto simplification algorithm 

described in Section 7.3.2, smaller edges of the amalgam are removed based on the 

distance tolerance (see Section 8.2.1 for specification for simplification). 
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In the application of the simplification algorithm in the amalgams created using the two 

test data sets, the algorithm produced some exceptions in simplifying the edges, and a fix 

was made as described in Section 8.1.4. 

The same application of aggregating natural objects (e.g. buildings with irregular shape) by 

initially finding triangles between a pair of objects and further selecting the final candidate 

triangles for filling by identifying bridging edges of the initial triangles subject to a distance 

tolerance with Delaunay triangulation has been described by DeLucia and Black (1987). 

Based on their technique of choosing candidate triangles to fill the gap between natural 

objects on a distance threshold, further work has been carried out by Jones, Bundy and 

Ware (1995) and Ware et al. (1995) using the CDT. This approach can leave holes (even 

triangular holes can be created) between a pair of objects, depending on the shape of the 

bridging space since no adjacent information of triangles has been taken into account. 

Since their algorithm considers triangles between a pair of buildings, if ‘false’ triangles 

(see Figure 4.11 in Section 4.4.2) exist in the space region between the two objects, they 

appear as triangular holes in the final amalgam (Figure 7.21 in Section 7.3.1 depicts such 

an instance). All these issues have been resolved when developing the aggregation 

algorithm to deal with clusters of non-orthogonal shape in this research. It can either 

retain or remove inner holes using an area threshold. Further, the initial dilation and 

erosion algorithm applied to the cluster preserves orthogonal sides if available in the 

cluster outline. Thus, if all buildings in a cluster are orthogonal and oriented in the same 

direction, the application of this algorithm can also create an amalgam, preserving 

orthogonal sides of the original buildings only if the initial dilation and erosion algorithm 

creates a single amalgam. 

 It should be noted that if the cluster has all or some attached buildings in the application 

of both algorithms to a cluster, they are initially fused before applying the aggregation 

algorithm. If the area of inner holes is less than a particular threshold, such holes are 

removed. Further, if the GOBR of a cluster is smaller than a given edge distance threshold 

based on the target scale, such clusters are symbolized using the algorithm developed in 

this research as described in Section 7.1, page 200. 

325 



In the symbolization process, if topological conflicts are created, such clusters with small 

areas are removed from the data set because the model of generalization considered in 

this research is the statistical generalization where no conflicts are dealt with as described 

in Section 8.2, page 255. 

Finally, the validation of the two algorithms has been carried out using the ArcGIS 

software as the benchmark. When comparing the results obtained from the algorithms in 

the two test areas with that of produced by the ArcGIS software in terms of legibility and 

preservation constraints based on the qualitative criteria used by the generalization 

evaluation framework by Stoter et al. (2009), the generalized results are more enhanced 

than that of produced by the proprietary ArcGIS software as discussed in Section 8.2.2. 

However, the aggregation algorithm developed to deal with non-orthogonal shaped 

clusters in this research is not suitable to apply on clusters comprising of circular buildings 

(see Figure 8.23 in Section 8.2.2). The results of ArcGIS software are not satisfactory either 

in this case. 

8.4   Conclusion 

The chapter presents the results of focus maps generated in the two test areas - Newham 

and Tower Hamlets - using the methods and tools implemented in this research in the four 

fields of spatial data structuring with Delaunay triangulation, data enrichment for 

subsequent automatic map generalization and salient landmark derivation, data mining 

for salient landmark derivation and finally automatic map generalization to generate 

coarse background information in producing the focus maps. The validation of the results 

of the automatic map generalization and the salient landmarks on the focus maps is 

carried out using the existing frameworks and the software. A new method based on the 

MAD is developed to validate landmark saliency in addition to existing methods. Finally, 

the work done in each field is critically evaluated in relation to existing literature and the 

results described. The next chapter will present concluding remarks reaffirming results 

and answers to research questions given in Section 2.8, including remarks on what has 

been achieved, the overall significance and the areas in the direction for future research. 
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Chapter 9   Conclusions 

This chapter summarises the achievements of the thesis by reaffirming the results and the 

answers to the research questions. It describes the significance of what has been achieved 

during the investigation of the processes for generating focus maps for wayfinding. Finally, 

it presents the areas of future research that have emerged as a result of this research. 

9.1   Findings 

It is emphasised from the existing work as discussed in Section 2.4.5, page 52 that the CDT 

algorithm does not provide explicit neighbourhood relationships between polygon objects 

as it weakens the Delaunay property in applying the edges of polygons as constraints in 

the data enrichment and the map generalisation applications. There are partial solutions 

available to this issue according to the existing work: (a) densifying the edges of polygons 

and apply the CDT and (b) application of the CNDT (see Section 2.4.5, page 53). The first 

method does not guarantee that the explicit neighbourhood relations are maintained 

since the densification depends on the distance applied. In the second method, additional 

points (Steiner points) are added enabling more hooks between polygons to create rich 

and explicit  neighbourhood relations. However, the Steiner points do not exactly lie on 

the original edges. Thus, if triangles with Steiner points are used to fill the gaps between 

polygons as discussed in Section 8.1.3, topological exceptions that may be created will 

have to be resolved. Considering these issues, a new algorithm has been developed and 

tested in this research to derive explicit neighbourhood relationships between polygon 

objects without densification or using Steiner points, preserving the Delaunay property 

thereby retaining original geometries of polygons intact as discussed in Section 4.4. This is 

achieved initially by applying the Delaunay triangulation on all the vertices (site points) of 

polygons followed by re-triangulation on the areas created due to the removal of triangle 

edges that run across polygon edges used as constraints in the triangulation. Since this 

triangulation algorithm preserves Delaunay property while applying constraints between 

the edges, it has been termed as DCT in this research. This algorithm is used in the 

development of two aggregation algorithms in the research as discussed in Sections 7.2.8, 
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7.3.1 and 8.1.3. However, the DCT is not used in the final clustering algorithm that takes 

into account linear contextual features such as roads, railways and hydrographic features, 

as it can only deal with polygon objects. This is despite the DCT having initially been used 

in clustering buildings during the testing phase of the data enrichment process. Instead, 

the modified CNDT with the enforcement of edge constraints (see Section 4.2) is used, 

both on the polygon and the linear features in the clustering process. 

In the hierarchical clustering approach developed in the research, the basis has been to 

derive an adjacency matrix using the Gestalt factors - proximity (the minimum distance), 

orientation difference and similarity in shape - between each pair of buildings identified 

using the CNDT with edge constraints. In this process, each node of the triangle edge is 

enriched with an object IDN that it is connected to derive the relationships between 

buildings, and between buildings and contextual features by filtering links between them. 

The algorithm first calculates the Euclidian distance between each known pair of buildings. 

Then it uses the statistical wall orientation algorithm to derive the orientation difference 

between each pair of buildings, which has still not been used in the application of building 

clustering in the literature. Finally, a new similarity index has been developed based on a 

combination of three measures - overlapping ratio, area to perimeter ratio and discrete 

Hausdorff distance - between each pair of buildings, depending on the target scale. These 

pairs of buildings are initially organised into three columns in the adjacency matrix based 

on the use of the MST segmentation using the proximity as a weight on three ranges of 

threshold distances (very close, medium and very far) depending on the target scale. 

Further, the hierarchical splitting is applied to the pairs of buildings in the medium range 

distance with the MST segmentation with the orientation difference and the similarity 

index used as weights in order to derive two separate adjacency matrices for holding 

segmented pairs in terms of the orientation and the similarity differences. Finally, the 

clustering algorithm developed in this research derives clusters with intelligent cluster 

classification based on the three values of the Gestalt factors - proximity, orientation 

difference, and similarity index - between each adjacent pair of buildings as described in 

Section 5.2.2, page 120. This algorithm has been tested and validated with an experiment 

of visual cluster perception of buildings with the subjects as discussed in Section 5.3.3. It 
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can be concluded that the automatic clustering provides improved results in the 

application of hierarchical clustering when comparing the automatic results generated 

with this method and the results of the subjects. The results of both expert and lay groups 

of subjects have not been very satisfactory. This reveals that the hierarchical clustering 

approach by the subjects involves the retention of considerable information in the mind 

(high cognitive load) to apply the Gestalt values in an order of sequence in deriving 

clusters. 

When considering the aggregation of building polygons in map generalisation, it is 

important to preserve the orthogonal shape of the original buildings as well as the shape 

of the building cluster that is subject to aggregation to provide a meaningful visualisation 

at the target scale. The other important factor is the way of bridging gaps between 

building objects when they are placed at exceptional locations such as corner touching, 

almost overhanging and/or total overhanging positions. Finally, the bridged gaps should 

be exaggerated so that the amalgam is visually enhanced at the target scale. The two 

aggregation algorithms developed in this research have provided solutions to all these 

important factors during aggregation. The aggregation algorithm with orthogonal sides 

can aggregate buildings in orthogonal clusters (clusters that have buildings with similar 

orientation and orthogonal sides, touching the cluster outline), preserving orientation and 

orthogonality in the aggregated building. Further, the aggregation algorithm developed to 

deal with non-orthogonal shaped clusters (clusters of buildings with non-orthogonal sides 

and/or dissimilar orientations in the cluster outline) can aggregate buildings, preserving 

the orthogonality of the edges of buildings (if available) that touch the cluster outline. The 

most effective capability of both algorithms is that they can aggregate buildings at any 

exceptional position, exaggerating the narrow corridors and the juts created in bridges 

during aggregation using a distance threshold in order to provide an enhanced 

visualisation at the target scale. 

As discussed in Section 2.5.3, page 57, the COBWEB unsupervised clustering algorithm and 

the ID3 supervised classification algorithms have already been used for deriving landmark 

saliency in existing work. However, they have not been thoroughly tested with real data 
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sets for this purpose. This research has tested three data mining algorithms - COBWEB, 

ID3 and J48 (J48 is the implementation of the C.4.5 algorithm in WEKA software) - by 

developing a prototype, modifying the source code of these algorithms given in the WEKA 

software to traverse through the classification trees in order to derive landmark saliency 

of building features. It has been identified that C4.5 is the most suitable algorithm to 

derive landmark saliency when testing with both synthetic and real data sets. Further, the 

C4.5 algorithm is an improved decision tree over a series of improvements to ID3 as 

discussed in Section 2.5.1, page 55. Thus, the J48 implementation of C4.5 has been used 

with real data sets to derive salient landmarks of building features in this research. 

However, when validating the results as discussed in Section 8.2.3, it has been found that 

the generated results are not so satisfactory when applied to regions of the test data sets 

and at a decision point. Therefore, the overall implication is that this decision tree 

algorithm is to be further improved and modified for deriving landmark saliency. 

The results of focus maps are validated in two phases. In the first phase, the evaluation of 

the results of the generalized background of building features on the focus maps 

produced in the two test areas is compared to that generated using the ArcGIS proprietary 

software in terms of the preservation and the legibility constraints based on the existing 

framework by Stoter et al. (2009) as discussed in Section 3.3.3, page 73. When observing 

the evaluated results as discussed in Section 8.2.2, it can be concluded that the results of 

generalisation produced in this research have been very promising and much more 

satisfactory than that produced by the ArcGIS software. 

In the second phase, the derived landmark saliency with the J48 implementation is 

evaluated with three frameworks - two existing frameworks by Raubal and Winter (2002) 

and Nothegger, Winter and Raubal (2004), and the new framework developed in this 

research. In the first framework by Raubal and Winter (2002), the data are assumed to be 

normally distributed while the other two frameworks consider non-normality of data. As a 

cross-check of the results, the Google street views of the salient landmarks in the two test 

areas are used to compare the results given by each framework. In the application of the 

framework by Raubal and Winter (2002), it is found that the results are impacted by the 
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outliers since the data is assumed to be normally distributed. Further, when validating 

with the framework by Nothegger, Winter and Raubal (2004), the saliency score (which is 

equivalent to a Z-score) based on the MAD of data provides incorrect results - scoring of 

infinity - when applied to the test data, although this framework is more resistant in 

outlier detection as discussed in Section 8.2.3. Further, the values derived with this score 

tend to be higher for the overall significance measure. This measure can be used to 

identify the most salient features at a decision point. In the case of detecting landmarks in 

a region, it is difficult to choose a particular critical threshold with these higher values of 

the significance measure to detect landmark saliency. However, the new method 

developed on the MAD proves to give promising results for deriving landmark saliency 

over all the other methods, including the J48 implementation both in the regions and at 

decision points as discussed in Section 8.2.3. However, the decision criterion of the MAD 

used in this research checks only outliers in the upper limit in order to avoid selecting 

buildings as outliers over attributes sensitive to smaller values such as the small size of 

buildings. As a result, the important buildings due to low heights would not be chosen as 

outliers to represent salient buildings. Further testing is necessary to improve this 

framework with the decision criterion on the MAD to detect outliers. 

9.2    Contribution 

• How is the CDT data structure used and validated to derive explicit neighbourhood

relationships between building polygons?

The triangulation algorithm developed can be used to retrieve explicit adjacency 

relationships between polygons with complex geometries such as properties of shared 

edges and holes and their proximity relations for applications involving data enrichment 

and automatic map generalisation. 

• How building objects are clustered with the hierarchical application of Gestalt factors,

considering contextual features with an intelligent cluster classification for the

subsequent generalisation process?
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The hierarchical polygon clustering algorithm developed to support subsequent automatic 

map generalisation enables the choice of application of different generalisation operators 

based on the characteristics of each cluster. It has the ability to constrain the clustering 

process using contextual features such as roads, railways and hydrographic features. 

Further, since the clustering approach is hierarchical, different clustering results can be 

generated based on the representation of the same phenomena by applying different 

threshold values to support generalisation at different resolution levels. This clustering 

algorithm can also be used for the automatic map generalisation in other applications 

involving clustering of polygon objects based on their characteristics assigned to each 

polygon. The characteristics used in this research are only the Gestalt factors - proximity, 

orientation difference and the similarity difference in shape - between polygons. 

• Which generalisation algorithms are the most influential for the merging

(aggregation) of building clusters depending on their outline shape (orthogonal or

irregular) in order to provide a meaning to merging at coarser representation levels?

The two building aggregation algorithms developed in this research can be used to 

aggregate building clusters, taking into consideration of the cluster characteristics to 

generate building amalgams, preserving the characteristics of shape and orientation of the 

source clusters in any generalisation application involving building aggregation. These two 

algorithms have been developed to handle almost every exception of building positions in 

a cluster such as corner touching and overhanging positions of buildings. Further, both 

algorithms have the facility to exaggerate the gaps filled during aggregation, taking into 

account the target scale of the amalgams in order to enhance their legibility at the target 

generalized scale. 

• Which data mining algorithm is the most appropriate to emphasise building landmark

saliency?

The J48 implementation of the C4.5 decision tree algorithm used to derive landmark 

saliency in the regions and at decision points is not satisfactory when compared to the 

method based on the MAD developed to validate the results of the J48 implementation. 
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Finding the statistical significance based on the MAD is a promising method to derive both 

on-route landmarks and landmarks at decision points over the data mining algorithms 

according to the analysis of the results of this research. The research has also developed 

algorithms and methods to extract, especially the visual and the structural characteristics 

of building features, taking into consideration the context for the subsequent derivation of 

salient buildings to be incorporated as landmarks in wayfinding focus maps. 

• How are the focus maps validated in terms of the generalized results and the derived

landmark saliency?

There are two types of validation involved in this research - one is to validate the results of 

the generalized output used as coarse background on focus maps and the other is to 

validate the saliency of the derived landmarks. Only a qualitative evaluation is carried out 

based on the visual comparison of the generalized results produced using the developed 

algorithms and the tools available in the proprietary ArcGIS software for similar 

generalization. This evaluation is one of the three methods given in the generalisation 

evaluation framework of Stoter et al. (2009). The two other methods - a qualitative 

evaluation by cartographic experts and an automated constrained-based evaluation - are 

promising methods. However, considering the time and the cost involved, the research 

does not use these two methods. A thorough validation is carried out by implementing the 

two existing frameworks by Raubal and Winter (2002) and Nothegger, Winter and Raubal 

(2004) for the evaluation of landmark saliency derived from the J48 implementation. A 

new method based on the MAD is also developed and implemented for the landmark 

validation. In addition, a further cross-check of the landmark saliency results using the J48 

implementation, the framework of Raubal and Winter (2002) and the method based on 

the MAD is carried out with the Google street view. 

Finally, with the combination of all the algorithms and the methods developed at each 

stage of the four fields: triangulation data structure, data enrichment, automatic map 

generalisation and knowledge discovery of salient landmarks, this research has been able 

to fill in the gaps in generating focus maps through the investigation of the processes 

involved. 
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9.3    Future research 

The DCT algorithm developed and used here can only deal with retrieving adjacency 

relationships between polygon features. This structure should further be extended to deal 

with both polygon and linear features. 

The aggregation algorithm developed to merge buildings in orthogonal shaped clusters 

presently cannot deal with squaring and simplification of holes that need to be retained in 

the target scale, depending on their size (area) using a threshold. Therefore, the present 

algorithms should be extended to incorporate and generalize holes if they are significant 

to be represented on the target scale. The aggregation algorithm developed to deal with 

buildings belonging to non-orthogonal clusters currently may fill concave corners in the 

building outline with self-connecting bridges when applying the buffering technique with a 

distance equal to the building clustering threshold (see Section 7.3.1, page 230). Further 

work should be carried out as to how such corners are to be preserved without filling such 

corners during the aggregation process. 

Although the decision tree algorithm (C4.5) used in this research for deriving landmark 

saliency is robust in terms of dealing with all the types of attributes, further work is 

necessary to modify the tree structure so that it can identify the most discerning salient 

features, taking into consideration visual, structural and semantic measures of features. 

The framework developed to validate saliency results given by the J48 implementation of 

the C4.5 algorithm using the application of the MAD suggested by Leys et al. (2013) should 

further be tested on building features with different threshold values for the Z-score 

(value 2.5 has been used in this research) for outlier detection using both lower and upper 

limits of the decision criterion by considering the attribute transformation to enable the 

effective detection of outliers for deriving salient landmarks in wayfinding applications. 
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Appendices 

A    Prototypes of Graphical User Interfaces with proprietary software 

This section provides a description of the prototypes developed in the form of GUIs using 

the proprietary Visual C# 2008 object-oriented programming language. These prototypes 

can connect to the open source PostgreSQL database coupled with the PostGIS extension 

(http://postgis.refractions.net/) to read building geometries stored therein using the open 

source NPGSQL data adaptor (http://npgsql.projects.pgfoundry.org/). 

A.1 Input file creation for constrained Delaunay triangulation 

Figure A.1  (a) Dialogue menu with the coordinate values of the MBB of the building 
data set retrieved automatically for generating outer polygon of the input data 
structure and (b) input building geometries in ASCII format where polygon IDN of the 
outer polygon (MBB) is assigned -1. 

(a) (b) 
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A.2  Input file creation for the conforming Delaunay and the Delaunay 

constrained triangulations 

Figure A.2  (a) Dialogue menu to extract and save  building polygon geometries in ASCII 
format and (b) extracted building outer polygon geometries with respective building IDNs. 

(a) (b) 
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B    Prototypes of Graphical User Interfaces with open source software 

This section provides a description of the prototypes developed in the form of GUIs using 

open source Java object-oriented programming language. Geographic features can be 

either stored in ASCII format or in the open source PostgreSQL database with the PostGIS 

extension (http://postgis.refractions.net/) to handle spatial data.  

B.1  Constrained Delaunay triangulation 

Once the constrained triangulation is executed with the GUI (Figure A.1 (a)), all building 

links of adjacency information with building IDNs [Building_IDN_From, Building_IDN_To] is 

written to a comma separated ASCII file (Figure A.1 (b)). These adjacency links are derived 

from the building IDNs attached to each triangle node as depicted in Figure 4.2, page 81. 

Figure B.1  (a) CDT output with rectangular buildings outlined in red colour and their IDNs 
on the GUI and (b) adjacency links between buildings where Polygon IDN 1 is the IDN of 
the outer polygon. 

1 

5 
3 

2 

4 

1 

(a) (b) 
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B.2  Conforming Delaunay triangulation and polygon triangulation 

Both algorithms on CNDT and polygon triangulation have been implemented in the same 

GUI (Figure B.2) to read building geometries from ASCII files, view constrained 

triangulation result and write adjacency links between building geometries with building 

IDNs. 

Figure B.2  (a) CNDT output and (b) output on polygon triangulation based algorithm with 
the edges of building polygons set as constraints, both implemented on the same GUI. 

 (a)   (b) 
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B.3  Constrained algorithm on Delaunay triangulation and spatial 

clustering 

Algorithms on constrained triangulation, spatial clustering of building polygon geometries 

and the cluster shape enrichment have been implemented in the following GUI (Figure 

B.3). Data can be input into the GUI region-wise either in ASCII format or by directly 

reading data stored in the PostgreSQL database coupled with the PostGIS extension. The 

main functions of the prototype consist of generating triangulation in a particular region 

with the use of the regional IDN (known as the global_id field in the GUI), finding the 

Gestalt relations such as proximity, orientation difference and similarity difference in 

shape and size between building polygons with the adjacency information, creating 

building clusters, cluster shape enrichment and finally writing clustering results back to 

the spatial database. 

Figure B.3  GUI for spatial clustering of building polygon geometries in the data 
enrichment process with the use of constrained algorithm on Delaunay triangulation. 
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Figure B.4  Distance weighted initial MST in thick black lines used for clustering of 
building geometries. 

355 



B.4  Polygon cluster matching 

This user interface writes cluster matching results in each region (partition) for each 

subject in both expert and lay groups. Clustering data is called from the PostGIS database, 

and the results are output in ASCII format and stored in tables (see Annex D.6). 

Figure B.5  UI for matching automatic clustering results with that of manual clustering 
by the subjects in both expert and lay groups. 
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B.5  Spatial clustering considering the context 

Automatic clustering of building geometries, taking into consideration of context 

(contextual features: roads and hydrographic geometries) has been implemented with the 

use of the modified CNDT in the following GUI (Figure B.6). Further, the prototype is 

equipped with the functions to enhance cluster shape characteristics required for 

automatic map generalization and other geometric and spatial characteristics required in 

the data mining process for deriving salient building landmark geometries with the help of 

triangulation. Data can be input into the GUI region-wise either in ASCII format or by 

directly reading data stored in the PostgreSQL database coupled with the PostGIS 

extension. Finally, the enhanced results can be written back to the spatial database. 

Figure B.6  GUI for spatial clustering of building polygon geometries with the consideration 
of the contextual features (roads in black colour) using the CNDT with edge constraints. Blue 
thick lines are the generated MST with the weight chosen as the adjacent distance of each 
pair of buildings. 
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Figure B.7  Cluster shape enrichment of building clusters. 
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B.6  Generalization of building geometries 

Algorithms for building aggregation developed in this research have been implemented in 

the following GUI (Figure B.8). Data can be input into the GUI region-wise either in ASCII 

format or by directly reading data stored in the PostgreSQL database coupled with the 

PostGIS extension. The main functions of the prototype consist of building polygon 

symbolization, aggregation, squaring, enlargement and simplification. The results can also 

be written back to the PostGIS database. 

Figure B.8  Generalization GUI for building geometries. 
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C    Existing algorithms 

This section provides a description of the existing algorithms used in this research for 

implementing necessary tools and functions for generating focus maps.  

C.1  Prim’s algorithm for creating the Minimum Spanning Tree  

Prim() 

// cost[1..n][1..] is a cost adjacency matrix. 

// n: number of vertices in the graph. 

// cost [ i ][ j ] =∞ , if there is no edge between I and j. 

// cost [ i ][ j ] =∞ , if i=j 

// cost [ i ][ j ] = cost [ i ][ j ] = positive number if it is edge. 

// t [1..n-1][1..2] has all the edges of minimum spanning tree 

// mincost is the minimum cost 

// near[ ] is an array which stores vertex in tree 

// such that cost [ j ][ near[ j ] ] is minimum among all choices for near[ j ]. 

1. mincost =0; 

2. For (i=2 to n) do near[ i ]=1; 

3. Near[1]=0 //vertex 1 is initially in ‘t’ . 

4. For(i=1 to n-1) do 

5. { // find n-1 edges of tree. 

6. Let j be an index such that 

7. Near[ j ] !=0 & cost[ j ][ near[ j ] ] is minimum. 

8. // computation of j requires linear loop  

9. // not shown above. 

10. t[ i ][1] = j; t[ i ][2]= near[ j ]; 

11. mincost=mincost + cost[ j ][near [ j ] ]; 
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12. Near[ j ] =0;

13. For( k= 1 to n ) do //update near[ ]

14. If(near[ k ] !=0) && (cost[ k ][ near[ k ] ] > cost[ k ][ j ])

15. Near[ k ]=j;

16. }

17. return mincost.
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C.2  Orientation of building polygons on the wall statistical weighting 

• Select a series of candidate orientations between 0 and π/2 with a step depending

on the required precision (e.g. 1 degree, i.e. π/180).

• For each candidate orientation, a weight is computed. This weight is the sum of all

the edge contributions of a building. The contribution of an edge is computed as

described in Figure C.1.

• The edge only contributes if its orientation is within a maximum deviation of δ

from the candidate orientation and δ is a parameter empirically fixed at π/12. In

this method, the orientation of an edge and the difference between orientations of

the edges are considered modulo π/2. Thus an orientation of an edge not only

contributes to the candidate orientations that are almost parallel to it, but also to

the candidate orientations that are almost perpendicular to it (Figure C.1: edge (c)

of the building contributes to candidate orientation α i).

• Finally, get the wall statistical orientation which is the candidate orientation of the

maximum weight.

Figure C.1  Contribution of an edge of a building to a candidate orientation α i on modulo 
π/2, from Duchêne et al. (2003). 
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C.3  Building simplification algorithm  

• If the two connected edges are almost orthogonal, the shorter edge is

removed, and the two other connected edges are extended until they

intersect (Figure C.2(a)).

• If the two connected edges are almost parallel with the same orientation, the

three edges are replaced with a single edge passing through the middle of

the shorter edge with an average orientation (weighted by their length) of

the two connected edges (Figure C.2(b)).

• If the two connected edges are almost parallel to the opposite orientations,

it removes the three edges (Figure C.2(c)).

• After the edge removal operation, the validity of the geometry is checked. If

it is not valid, the algorithm tries to delete another shorter edge, or else, it

re-computes a new list of shorter edges and loop to the beginning. The

algorithm stops if no shorter edges are present, or if there are no shorter

edges to delete without breaking the validity of the geometry.

Figure C.2  Simplification of shorter edges: Two edges connecting a shorter edge in 
blue colour (a) almost perpendicular (b) almost parallel and (c)  almost parallel to 
each other in the opposite direction. Edges in red colour are the replacements in 
the simplification. 

^ 

^ 

^ 

^ 

(a) (b) (c) 
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D    Clustering 

This section provides resources and instructions given to the subjects regarding the 

clustering process in the user testing phase, and the subsequent data used to evaluate the 

building polygon clustering process.  

D.1 Topographic maps used for the clustering experiment: Phase I 

The topographic map (left) covering an area of 1Km x 0.75Km below represents building 

data and transport data in polygon and line formats respectively, printed at the scale of 

1 : 4K from the 1 : 1K digital source data of the NMA of Sri Lanka. Right is the target map 

reduced and printed in 1 : 10K from the same digital source data with no generalization 

applied. These two printed maps on the original scales were given to each subject during 

the experimentation. 

Figure D.1  Source map at 1 : 4K (left) and the target map reduced and printed at 1 : 10K 
(right), both not shown at the original scales. 
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D.2 Regions of the digital topographic data used for clustering  

 

  

Figure D.2  Regions surrounded by the road network where the inner roads with 
dead ends are ignored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 

2 3 1 

5 5 

5 

6 

7 

9 
8 

19 

14 

15 
16 

17 10 

7 

11 

12 
13 

18 

20 
21 22 

365 
 



Figure D.3  Building features in each region depicted by a unique colour. 
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D.3 Instruction to subjects in the clustering experiment: Phase I 

Automatic hierarchical clustering approach with cluster classification adopted in this 

research was explained to the subjects in both groups in the beginning. Also, an idea 

about the map scale in order to measure ground distances of corresponding features on a 

map was given especially to the subjects in the lay group. 

Clustering procedure to be adopted: 

1. Identify the regions completely enclosed by the road network.

2. Consider a minimum separation distance between two objects to be 0.5mm (Note:

see scale bar with 0.5mm graduation on the source map for your assistance).

3. Determine and write down distance threshold values (medium and very far) you use

on the map in mm (as you perceive on the target map at the scale of 1 : 10K with the

use of printed map at the reduced scale of 1 : 10K).

4. Write down the threshold values for orientation difference and similarity in shape

and size.

5. Within each region given on the map in the consecutive order, perform clustering on

your own, neglecting the inner roads with dead-ends and/or closed roads, bearing in

mind the clustering hierarchy and the threshold values.

6. Delineate each cluster with pencil on the source map at the scale of 1 : 4K (Appendix
D.1) and label them according to the cluster classification used in the automatic
clustering.

7. Leave isolated buildings as single clusters on the source map.
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D.4 Manual clustering output of a subject from the expert group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.4  Manual clustering output of a subject from the expert group. 
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D.5 Manual clustering output of a subject from the lay group 

Figure D.5  Manual clustering output of a subject from the lay group. 
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D.6 Automatic and manual cluster matching results 

Source clusters in Table D.1 are the clusters generated by the automatic clustering 

method, and the target clusters are the clusters created manually by the subjects. The 

classification of clusters (VC, ML, MS and MDS) is described in Chapter 5, Section 5.2.2. 

Classification label M denotes clusters of buildings in the medium range distance, labelled 

by the subjects. 

Table D.1  Results of the expert group in each partitioned region. 

Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

E1 

1 

2 1 0 0 0 0 0 1 
E2 2 0 0 0 0 0 0 2 
E3 2 1 0 0 0 0 0 1 
E4 2 0 0 0 0 0 0 2 
E5 2 1 0 0 0 0 0 1 
E6 2 0 0 0 0 0 0 2 
E7 2 0 0 0 0 0 0 2 
E8 2 1 0 0 0 0 0 1 
E9 2 1 0 0 0 0 0 1 

E10 2 1 0 0 0 0 0 1 
E11 2 1 0 0 0 0 0 1 
E12 2 1 0 0 0 0 0 1 
E13 2 0 0 0 0 0 0 2 
E14 2 1 0 0 0 0 0 1 
E15 2 0 0 0 0 0 0 2 

E1 

2 

6 1 0 0 0 0 1 4 
E2 6 0 0 0 0 0 1 5 
E3 6 2 0 0 0 0 0 4 
E4 6 0 0 0 0 0 1 5 
E5 6 2 0 0 0 0 0 4 
E6 6 1 0 0 0 0 1 4 
E7 6 2 0 0 0 0 0 4 
E8 6 1 0 0 0 0 0 5 
E9 6 0 0 0 0 0 0 6 

E10 6 0 0 0 0 0 2 4 
E11 6 1 0 0 0 0 0 5 
E12 6 2 0 0 0 0 0 4 
E13 6 1 0 0 0 0 0 5 
E14 6 2 0 0 0 0 1 3 
E15 6 0 0 0 0 0 0 6 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

E1 

3 

8 1 0 0 0 0 0 7 
E2 8 2 0 0 0 1 2 3 
E3 8 2 0 0 0 1 0 5 
E4 8 1 0 0 0 1 0 6 
E5 8 3 0 0 0 1 1 3 
E6 8 0 0 0 0 1 2 5 
E7 8 2 0 0 0 0 2 4 
E8 8 1 0 0 0 0 0 7 
E9 8 1 0 0 0 0 0 7 

E10 8 2 0 0 0 0 0 6 
E11 8 4 0 0 0 1 1 2 
E12 8 3 0 0 0 0 0 5 
E13 8 0 0 0 0 0 3 5 
E14 8 0 0 0 0 0 4 4 
E15 8 0 0 0 0 0 2 6 

E1 

4 

9 1 0 0 0 0 0 8 
E2 9 2 0 0 0 0 0 7 
E3 9 4 0 0 0 0 0 5 
E4 9 0 0 0 0 0 1 8 
E5 9 3 0 0 0 0 1 5 
E6 9 0 0 0 0 0 2 7 
E7 9 2 0 0 0 0 1 6 
E8 9 2 0 0 0 0 0 7 
E9 9 0 0 0 0 0 1 8 

E10 9 2 0 0 0 0 0 7 
E11 9 4 0 0 0 0 0 5 
E12 9 3 0 0 0 0 0 6 
E13 9 1 0 0 0 0 0 8 
E14 9 1 0 0 0 0 0 8 
E15 9 0 0 0 0 0 1 8 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

E1 

5 

52 3 0 0 0 0 0 49 
E2 52 13 0 0 0 2 7 30 
E3 52 8 0 0 0 0 1 43 
E4 52 6 0 0 0 0 6 40 
E5 52 21 0 0 0 1 1 29 
E6 52 3 0 0 0 0 17 32 
E7 52 6 0 0 0 0 7 39 
E8 52 6 0 0 0 0 1 45 
E9 52 2 0 0 0 0 1 49 

E10 52 4 0 0 0 0 3 45 
E11 52 15 0 0 0 0 15 22 
E12 52 16 0 0 0 0 4 32 
E13 52 0 0 0 0 0 7 45 
E14 52 2 0 0 0 0 6 44 
E15 52 4 0 0 0 0 3 45 

E1 

6 

2 0 0 0 0 0 0 2 
E2 2 2 0 0 0 0 0 0 
E3 2 0 0 0 0 0 0 2 
E4 2 1 0 0 0 0 0 1 
E5 2 0 0 0 0 0 1 1 
E6 2 0 0 0 0 0 0 2 
E7 2 1 0 0 0 0 0 1 
E8 2 0 0 0 0 0 0 2 
E9 2 0 0 0 0 0 0 2 

E10 2 0 0 0 0 0 0 2 
E11 2 1 0 0 0 0 0 1 
E12 2 1 0 0 0 0 1 0 
E13 2 0 0 0 0 0 0 2 
E14 2 0 0 0 0 0 0 2 
E15 2 0 0 0 0 0 0 2 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

E1 

7 

23 3 0 0 0 0 1 19 
E2 23 7 0 0 0 0 4 12 
E3 23 8 0 0 0 0 2 13 
E4 23 2 0 0 0 0 3 18 
E5 23 13 0 0 0 0 1 9 
E6 23 2 0 0 0 0 11 10 
E7 23 3 0 0 0 0 4 16 
E8 23 2 0 0 0 0 0 21 
E9 23 0 0 0 0 0 1 22 

E10 23 3 0 0 0 0 1 19 
E11 23 12 0 0 0 0 5 6 
E12 23 9 0 0 0 0 2 12 
E13 23 1 0 0 0 0 5 17 
E14 23 4 0 0 0 0 0 19 
E15 23 2 0 0 0 0 2 19 

E1 

8 

1 0 0 0 0 0 1 0 
E2 1 1 0 0 0 0 0 0 
E3 1 1 0 0 0 0 0 0 
E4 1 0 0 0 0 0 0 1 
E5 1 1 0 0 0 0 0 0 
E6 1 1 0 0 0 0 0 0 
E7 1 0 0 0 0 0 0 1 
E8 1 0 0 0 0 0 0 1 
E9 1 1 0 0 0 0 0 0 

E10 1 0 0 0 0 0 1 0 
E11 1 1 0 0 0 0 0 0 
E12 1 1 0 0 0 0 0 0 
E13 1 0 0 0 0 0 1 0 
E14 1 1 0 0 0 0 0 0 
E15 1 1 0 0 0 0 0 0 
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Subject 
Region

 IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

E1 

9 

8 1 0 0 0 0 0 7 
E2 8 5 0 0 0 0 0 3 
E3 8 5 0 0 0 0 0 3 
E4 8 0 0 0 0 0 0 8 
E5 8 5 0 0 0 0 0 3 
E6 8 0 0 0 0 0 3 5 
E7 8 3 0 0 0 0 0 5 
E8 8 1 0 0 0 0 0 7 
E9 8 0 0 0 0 0 0 8 

E10 8 0 0 0 0 0 0 8 
E11 8 5 0 0 0 0 0 3 
E12 8 1 0 0 0 0 2 5 
E13 8 1 0 0 0 0 1 6 
E14 8 2 0 0 0 0 0 6 
E15 8 1 0 0 0 0 2 5 

E1 

10 

15 2 0 0 0 0 0 13 
E2 15 2 0 0 0 0 4 9 
E3 15 4 0 0 0 0 0 11 
E4 15 1 0 0 0 0 2 12 
E5 15 7 0 0 0 1 1 6 
E6 15 2 0 0 0 0 5 8 
E7 15 1 0 0 0 0 5 9 
E8 15 2 0 0 0 0 0 13 
E9 15 0 0 0 0 0 0 15 

E10 15 5 0 0 0 0 3 7 
E11 15 6 0 0 0 0 4 5 
E12 15 6 0 0 0 0 1 8 
E13 15 3 0 0 0 0 2 10 
E14 15 3 0 0 0 0 1 11 
E15 15 0 0 0 0 0 0 15 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters 

VC ML MS MDS M 
E1 

11 

1 1 0 0 0 0 0 0 
E2 1 0 0 0 0 0 0 1 
E3 1 0 0 0 0 0 0 1 
E4 1 0 0 0 0 0 0 1 
E5 1 0 0 0 0 0 0 1 
E6 1 1 0 0 0 0 0 0 
E7 1 0 0 0 0 0 0 1 
E8 1 1 0 0 0 0 0 0 
E9 1 0 0 0 0 0 1 0 

E10 1 0 0 0 0 0 0 1 
E11 1 1 0 0 0 0 0 0 
E12 1 0 0 0 0 0 0 1 
E13 1 0 0 0 0 0 1 0 
E14 1 1 0 0 0 0 0 0 
E15 1 0 0 0 0 0 0 1 

E1 

12 

1 0 0 0 0 0 0 1 
E2 1 0 0 0 0 0 0 1 
E3 1 0 0 0 0 0 0 1 
E4 1 0 0 0 0 0 0 1 
E5 1 0 0 0 0 0 0 1 
E6 1 0 0 0 0 0 0 1 
E7 1 0 0 0 0 0 0 1 
E8 1 1 0 0 0 0 0 0 
E9 1 0 0 0 0 0 1 0 

E10 1 0 0 0 0 0 0 1 
E11 1 1 0 0 0 0 0 0 
E12 1 0 0 0 0 0 0 1 
E13 1 0 0 0 0 0 0 1 
E14 1 1 0 0 0 0 0 0 
E15 1 0 0 0 0 0 0 1 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

E1 

13 

2 1 0 0 0 0 0 1 
E2 2 0 0 0 0 0 1 1 
E3 2 1 0 0 0 0 0 1 
E4 2 0 0 0 0 0 0 2 
E5 2 1 0 0 0 0 0 1 
E6 2 1 0 0 0 0 0 1 
E7 2 1 0 0 0 0 0 1 
E8 2 1 0 0 0 0 0 1 
E9 2 0 0 0 0 0 1 1 

E10 2 1 0 0 0 0 0 1 
E11 2 1 0 0 0 0 0 1 
E12 2 1 0 0 0 0 0 1 
E13 2 1 0 0 0 0 0 1 
E14 2 1 0 0 0 0 0 1 
E15 2 0 0 0 0 0 1 1 

E1 

14 

1 0 0 0 0 0 0 1 
E2 1 1 0 0 0 0 0 0 
E3 1 1 0 0 0 0 0 0 
E4 1 0 0 0 0 0 0 1 
E5 1 1 0 0 0 0 0 0 
E6 1 1 0 0 0 0 0 0 
E7 1 0 0 0 0 0 0 1 
E8 1 1 0 0 0 0 0 0 
E9 1 1 0 0 0 0 0 0 

E10 1 0 0 0 0 0 0 1 
E11 1 1 0 0 0 0 0 0 
E12 1 1 0 0 0 0 0 0 
E13 1 1 0 0 0 0 0 0 
E14 1 1 0 0 0 0 0 0 
E15 1 1 0 0 0 0 0 0 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched

source 
clusters VC ML MS MDS M 

E1 

15 

1 0 0 0 0 0 0 1 
E2 1 1 0 0 0 0 0 0 
E3 1 1 0 0 0 0 0 0 
E4 1 0 0 0 0 0 0 1 
E5 1 1 0 0 0 0 0 0 
E6 1 1 0 0 0 0 0 0 
E7 1 0 0 0 0 0 0 1 
E8 1 1 0 0 0 0 0 0 
E9 1 1 0 0 0 0 0 0 

E10 1 0 0 0 0 0 0 1 
E11 1 1 0 0 0 0 0 0 
E12 1 1 0 0 0 0 0 0 
E13 1 1 0 0 0 0 0 0 
E14 1 1 0 0 0 0 0 0 
E15 1 1 0 0 0 0 0 0 

E1 

16 

3 0 0 0 0 0 0 3 
E2 3 1 0 0 0 0 1 1 
E3 3 0 0 0 0 0 0 3 
E4 3 0 0 0 0 0 2 1 
E5 3 1 0 0 0 0 0 2 
E6 3 0 0 0 0 0 0 3 
E7 3 0 0 0 0 0 1 2 
E8 3 0 0 0 0 0 0 3 
E9 3 0 0 0 0 0 0 3 

E10 3 0 0 0 0 0 0 3 
E11 3 1 0 0 0 0 1 1 
E12 3 0 0 0 0 0 0 3 
E13 3 0 0 0 0 0 0 3 
E14 3 2 0 0 0 0 0 1 
E15 3 1 0 0 0 0 0 2 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched

source 
clusters VC ML MS MDS M 

E1 

17 

6 1 0 0 0 0 0 5 
E2 6 2 0 0 0 1 0 3 
E3 6 2 0 0 0 0 0 4 
E4 6 0 0 0 0 0 1 5 
E5 6 3 0 0 0 0 0 3 
E6 6 0 0 0 0 0 2 4 
E7 6 0 0 0 0 0 1 5 
E8 6 1 0 0 0 0 0 5 
E9 6 0 0 0 0 0 0 6 

E10 6 2 0 0 0 0 1 3 
E11 6 2 0 0 0 0 1 3 
E12 6 1 0 0 0 0 1 4 
E13 6 0 0 0 0 0 2 4 
E14 6 0 0 0 0 0 1 5 
E15 6 0 0 0 0 0 1 5 

E1 

18 

1 1 0 0 0 0 0 0 
E2 1 0 0 0 0 0 0 1 
E3 1 1 0 0 0 0 0 0 
E4 1 0 0 0 0 0 0 1 
E5 1 1 0 0 0 0 0 0 
E6 1 1 0 0 0 0 0 0 
E7 1 1 0 0 0 0 0 0 
E8 1 1 0 0 0 0 0 0 
E9 1 0 0 0 0 0 1 0 

E10 1 0 0 0 0 0 1 0 
E11 1 1 0 0 0 0 0 0 
E12 1 1 0 0 0 0 0 0 
E13 1 0 0 0 0 0 0 1 
E14 1 1 0 0 0 0 0 0 
E15 1 1 0 0 0 0 0 0 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched

source 
clusters VC ML MS MDS M 

E1 

19 

3 0 0 0 0 0 0 3 
E2 3 0 0 0 0 1 1 1 
E3 3 0 0 0 0 0 1 2 
E4 3 0 0 0 0 0 0 3 
E5 3 1 0 0 0 1 0 1 
E6 3 0 0 0 0 1 0 2 
E7 3 0 0 0 0 0 0 3 
E8 3 1 0 0 0 0 1 1 
E9 3 0 0 0 0 0 0 3 

E10 3 0 0 0 0 0 0 3 
E11 3 0 0 0 2 0 1 0 
E12 3 0 0 0 0 0 1 2 
E13 3 0 0 0 0 0 0 3 
E14 3 1 0 0 0 0 0 2 
E15 3 0 0 0 0 0 1 2 

E1 

20 

6 1 0 0 0 0 0 5 
E2 6 2 0 0 0 0 1 3 
E3 6 3 0 0 0 0 0 3 
E4 6 1 0 0 0 0 0 5 
E5 6 4 0 0 0 0 1 1 
E6 6 0 0 0 0 0 2 4 
E7 6 0 0 0 0 0 0 6 
E8 6 0 0 0 0 0 0 6 
E9 6 0 0 0 0 0 0 6 

E10 6 1 0 0 0 0 0 5 
E11 6 2 0 0 0 0 3 1 
E12 6 2 0 0 0 0 0 4 
E13 6 0 0 0 0 0 1 5 
E14 6 0 0 0 0 0 0 6 
E15 6 0 0 0 0 0 0 6 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

E1 

21 

1 0 0 0 0 0 0 1 
E2 1 0 0 0 0 0 0 1 
E3 1 0 0 0 0 0 0 1 
E4 1 0 0 0 0 0 0 1 
E5 1 1 0 0 0 0 0 0 
E6 1 0 0 0 0 0 1 0 
E7 1 0 0 0 0 0 0 1 
E8 1 1 0 0 0 0 0 0 
E9 1 0 0 0 0 0 0 1 

E10 1 0 0 0 0 0 0 1 
E11 1 1 0 0 0 0 0 0 
E12 1 1 0 0 0 0 0 0 
E13 1 0 0 0 0 0 0 1 
E14 1 1 0 0 0 0 0 0 
E15 1 0 0 0 0 0 0 1 

E1 

22 

4 1 0 0 0 0 0 3 
E2 4 1 0 0 0 0 2 1 
E3 4 2 0 0 0 0 0 2 
E4 4 0 0 0 0 0 0 4 
E5 4 0 0 0 0 0 0 4 
E6 4 0 0 0 0 0 3 1 
E7 4 1 0 0 0 0 0 3 
E8 4 0 0 0 0 0 0 4 
E9 4 0 0 0 0 0 0 4 

E10 4 1 0 0 0 0 0 3 
E11 4 3 0 0 0 0 0 1 
E12 4 3 0 0 0 0 0 1 
E13 4 2 0 0 0 0 0 2 
E14 4 2 0 0 0 0 0 2 
E15 4 0 0 0 0 0 1 3 
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Table D.2  Results of the lay group in each partitioned region. 

Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

1 

2 1 0 0 0 0 0 1 
L2 2 1 0 0 0 0 0 1 
L3 2 1 0 0 0 0 0 1 
L4 2 0 0 0 0 0 0 2 
L5 2 1 0 0 0 0 0 1 
L6 2 1 0 0 0 0 0 1 
L7 2 1 0 0 0 0 0 1 
L8 2 1 0 0 0 0 0 1 
L9 2 1 0 0 0 0 0 1 

L10 2 0 0 0 0 0 1 1 
L11 2 0 0 0 0 0 0 2 
L12 2 0 0 0 0 0 0 2 
L13 2 1 0 0 0 0 0 1 
L14 2 1 0 0 0 0 0 1 
L15 2 0 0 0 0 0 1 1 

L1 

2 

6 0 0 0 0 0 0 6 
L2 6 1 0 0 0 0 0 5 
L3 6 2 0 0 0 0 0 4 
L4 6 0 0 0 0 0 0 6 
L5 6 0 0 0 0 0 0 6 
L6 6 1 0 0 0 0 0 5 
L7 6 2 0 0 0 0 0 4 
L8 6 0 0 0 0 0 1 5 
L9 6 2 0 0 0 0 1 3 

L10 6 0 0 0 0 0 1 5 
L11 6 2 0 0 0 0 0 4 
L12 6 0 0 0 0 0 0 6 
L13 6 2 0 0 0 1 2 1 
L14 6 1 0 0 0 1 1 3 
L15 6 0 0 0 0 0 1 5 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

3 

8 0 0 0 0 0 0 8 
L2 8 4 0 0 0 0 0 4 
L3 8 3 0 0 0 1 0 4 
L4 8 1 0 0 0 0 0 7 
L5 8 1 0 0 0 1 0 6 
L6 8 1 0 0 0 0 1 6 
L7 8 2 0 0 0 0 2 4 
L8 8 0 0 0 0 0 3 5 
L9 8 3 0 0 0 0 0 5 

L10 8 0 0 0 0 0 0 8 
L11 8 0 0 0 0 0 0 8 
L12 8 0 0 0 0 0 0 8 
L13 8 4 0 0 0 0 0 4 
L14 8 0 0 0 0 0 0 8 
L15 8 0 0 0 0 0 0 8 

L1 

4 

9 2 0 0 0 0 0 7 
L2 9 5 0 0 0 0 0 4 
L3 9 3 0 0 0 1 0 5 
L4 9 1 0 0 0 0 0 8 
L5 9 1 0 0 0 0 0 8 
L6 9 2 0 0 0 0 2 5 
L7 9 1 0 0 0 0 1 7 
L8 9 0 0 0 0 0 1 8 
L9 9 3 0 0 0 0 0 6 

L10 9 0 0 0 0 0 1 8 
L11 9 2 0 0 0 0 0 7 
L12 9 1 0 0 0 0 1 7 
L13 9 2 0 0 0 0 0 7 
L14 9 2 0 0 0 0 0 7 
L15 9 1 0 0 0 0 0 8 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

5 

52 0 0 0 0 0 3 49 
L2 52 21 0 0 0 1 0 30 
L3 52 12 0 0 0 0 1 39 
L4 52 0 0 0 0 0 1 51 
L5 52 6 0 0 0 0 1 45 
L6 52 9 0 0 0 0 5 38 
L7 52 4 0 0 0 0 1 47 
L8 52 3 0 0 0 0 0 49 
L9 52 2 0 0 0 0 2 48 

L10 52 2 0 0 0 0 4 46 
L11 52 5 0 0 0 0 2 45 
L12 52 1 0 0 0 0 0 51 
L13 52 15 0 0 0 2 1 34 
L14 52 1 0 0 0 0 1 50 
L15 52 0 0 0 0 0 1 51 

L1 

6 

2 1 0 0 0 0 0 1 
L2 2 1 0 0 0 0 0 1 
L3 2 1 0 0 0 0 0 1 
L4 2 0 0 0 0 0 1 1 
L5 2 0 0 0 0 0 0 2 
L6 2 0 0 0 0 0 0 2 
L7 2 0 0 0 0 0 1 1 
L8 2 0 0 0 0 0 0 2 
L9 2 0 0 0 0 0 0 2 

L10 2 1 0 0 0 0 0 1 
L11 2 0 0 0 0 0 1 1 
L12 2 0 0 0 0 0 0 2 
L13 2 0 0 0 0 0 1 1 
L14 2 0 0 0 0 0 0 2 
L15 2 0 0 0 0 0 0 2 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

7 

23 0 0 0 0 0 2 21 
L2 23 10 0 0 0 1 0 12 
L3 23 3 0 0 0 0 0 20 
L4 23 1 0 0 0 0 0 22 
L5 23 0 0 0 0 0 0 23 
L6 23 5 0 0 0 0 0 18 
L7 23 1 0 0 0 0 1 21 
L8 23 5 0 0 0 0 1 17 
L9 23 2 0 0 0 0 1 20 

L10 23 1 0 0 0 0 4 18 
L11 23 1 0 0 0 0 3 19 
L12 23 1 0 0 0 0 0 22 
L13 23 6 0 0 0 0 1 16 
L14 23 1 0 0 0 0 0 22 
L15 23 0 0 0 0 0 0 23 

L1 

8 

1 0 0 0 0 0 1 0 
L2 1 1 0 0 0 0 0 0 
L3 1 1 0 0 0 0 0 0 
L4 1 0 0 0 0 0 1 0 
L5 1 1 0 0 0 0 0 0 
L6 1 0 0 0 0 0 1 0 
L7 1 0 0 0 0 0 1 0 
L8 1 0 0 0 0 0 0 1 
L9 1 1 0 0 0 0 0 0 

L10 1 1 0 0 0 0 0 0 
L11 1 0 0 0 0 0 1 0 
L12 1 0 0 0 0 0 1 0 
L13 1 0 0 0 0 0 1 0 
L14 1 0 0 0 0 0 1 0 
L15 1 0 0 0 0 0 1 0 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

9 

8 1 0 0 0 0 0 7 
L2 8 6 0 0 0 0 0 2 
L3 8 1 0 0 0 0 0 7 
L4 8 2 0 0 0 0 0 6 
L5 8 0 0 0 0 0 0 8 
L6 8 0 0 0 0 0 0 8 
L7 8 1 0 0 0 0 1 6 
L8 8 3 0 0 0 0 0 5 
L9 8 3 0 0 0 0 0 5 

L10 8 0 0 0 0 0 3 5 
L11 8 2 0 0 0 0 0 6 
L12 8 0 0 0 0 0 0 8 
L13 8 6 0 0 0 0 0 2 
L14 8 1 0 0 0 0 0 7 
L15 8 0 0 0 0 0 0 8 

L1 

10 

15 0 0 0 0 0 0 15 
L2 15 10 0 0 0 0 0 5 
L3 15 0 0 0 0 0 0 15 
L4 15 2 0 0 0 0 2 11 
L5 15 0 0 0 0 0 1 14 
L6 15 5 0 0 0 0 1 9 
L7 15 3 0 0 0 0 2 10 
L8 15 0 0 0 0 0 1 14 
L9 15 2 0 0 0 0 0 13 

L10 15 0 0 0 0 0 0 15 
L11 15 0 0 0 0 0 0 15 
L12 15 0 0 0 0 0 1 14 
L13 15 2 0 0 0 1 1 11 
L14 15 0 0 0 0 0 0 15 
L15 15 0 0 0 0 0 1 14 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

11 

1 0 0 0 0 0 1 0 
L2 1 1 0 0 0 0 0 0 
L3 1 1 0 0 0 0 0 0 
L4 1 0 0 0 0 0 0 1 
L5 1 0 0 0 0 0 0 1 
L6 1 0 0 0 0 0 0 1 
L7 1 1 0 0 0 0 0 0 
L8 1 0 0 0 0 0 0 1 
L9 1 0 0 0 0 0 0 1 

L10 1 1 0 0 0 0 0 0 
L11 1 1 0 0 0 0 0 0 
L12 1 0 0 0 0 0 1 0 
L13 1 0 0 0 0 0 0 1 
L14 1 0 0 0 0 0 0 1 
L15 1 0 0 0 0 0 0 1 

L1 

12 

1 0 0 0 0 0 1 0 
L2 1 1 0 0 0 0 0 0 
L3 1 1 0 0 0 0 0 0 
L4 1 0 0 0 0 0 0 1 
L5 1 0 0 0 0 0 0 1 
L6 1 0 0 0 0 0 0 1 
L7 1 0 0 0 0 0 0 1 
L8 1 0 0 0 0 0 0 1 
L9 1 0 0 0 0 0 0 1 

L10 1 0 0 0 0 0 0 1 
L11 1 0 0 0 0 0 1 0 
L12 1 0 0 0 0 0 1 0 
L13 1 0 0 0 0 0 0 1 
L14 1 0 0 0 0 0 0 1 
L15 1 0 0 0 0 0 0 1 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

13 

2 0 0 0 0 0 1 1 
L2 2 1 0 0 0 0 0 1 
L3 2 1 0 0 0 0 0 1 
L4 2 0 0 0 0 0 0 2 
L5 2 0 0 0 0 0 0 2 
L6 2 0 0 0 0 1 0 1 
L7 2 0 0 0 0 0 0 2 
L8 2 1 0 0 0 0 0 1 
L9 2 0 0 0 0 0 0 2 

L10 2 0 0 0 0 0 1 1 
L11 2 1 0 0 0 0 1 0 
L12 2 0 0 0 0 0 1 1 
L13 2 0 0 0 0 0 1 1 
L14 2 0 0 0 0 0 0 2 
L15 2 0 0 0 0 0 1 1 

L1 

14 

1 1 0 0 0 0 0 0 
L2 1 1 0 0 0 0 0 0 
L3 1 1 0 0 0 0 0 0 
L4 1 1 0 0 0 0 0 0 
L5 1 1 0 0 0 0 0 0 
L6 1 1 0 0 0 0 0 0 
L7 1 1 0 0 0 0 0 0 
L8 1 1 0 0 0 0 0 0 
L9 1 1 0 0 0 0 0 0 

L10 1 1 0 0 0 0 0 0 
L11 1 1 0 0 0 0 0 0 
L12 1 1 0 0 0 0 0 0 
L13 1 1 0 0 0 0 0 0 
L14 1 1 0 0 0 0 0 0 
L15 1 1 0 0 0 0 0 0 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

15 

1 1 0 0 0 0 0 0 
L2 1 1 0 0 0 0 0 0 
L3 1 1 0 0 0 0 0 0 
L4 1 1 0 0 0 0 0 0 
L5 1 1 0 0 0 0 0 0 
L6 1 1 0 0 0 0 0 0 
L7 1 0 0 0 0 0 1 0 
L8 1 1 0 0 0 0 0 0 
L9 1 1 0 0 0 0 0 0 

L10 1 1 0 0 0 0 0 0 
L11 1 1 0 0 0 0 0 0 
L12 1 1 0 0 0 0 0 0 
L13 1 1 0 0 0 0 0 0 
L14 1 1 0 0 0 0 0 0 
L15 1 0 0 0 0 0 0 1 

L1 

16 

3 0 0 0 0 0 0 3 
L2 3 0 0 0 0 0 0 3 
L3 3 0 0 0 0 0 2 1 
L4 3 0 0 0 0 0 0 3 
L5 3 0 0 0 0 0 0 3 
L6 3 0 0 0 0 0 2 1 
L7 3 0 0 0 0 0 0 3 
L8 3 0 0 0 0 0 0 3 
L9 3 2 0 0 0 0 0 1 

L10 3 0 0 0 0 0 0 3 
L11 3 0 0 0 0 0 0 3 
L12 3 0 0 0 0 0 0 3 
L13 3 0 0 0 0 0 0 3 
L14 3 0 0 0 0 0 0 3 
L15 3 0 0 0 0 0 0 3 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

17 

6 0 0 0 0 0 0 6 
L2 6 2 0 0 0 0 0 4 
L3 6 1 0 0 0 0 0 5 
L4 6 0 0 0 0 0 0 6 
L5 6 0 0 0 0 0 0 6 
L6 6 0 0 0 0 0 2 4 
L7 6 1 0 0 0 0 0 5 
L8 6 0 0 0 0 0 0 6 
L9 6 0 0 0 0 0 0 6 

L10 6 0 0 0 0 0 2 4 
L11 6 1 0 0 0 0 1 4 
L12 6 0 0 0 0 0 0 6 
L13 6 1 0 0 0 0 2 3 
L14 6 0 0 0 0 0 0 6 
L15 6 0 0 0 0 0 0 6 

L1 

18 

1 0 0 0 0 0 0 1 
L2 1 1 0 0 0 0 0 0 
L3 1 1 0 0 0 0 0 0 
L4 1 0 0 0 0 0 0 1 
L5 1 0 0 0 0 0 0 1 
L6 1 1 0 0 0 0 0 0 
L7 1 0 0 0 0 0 0 1 
L8 1 0 0 0 0 0 0 1 
L9 1 0 0 0 0 0 0 1 

L10 1 0 0 0 0 0 0 1 
L11 1 0 0 0 0 0 0 1 
L12 1 0 0 0 0 0 0 1 
L13 1 1 0 0 0 0 0 0 
L14 1 0 0 0 0 0 0 1 
L15 1 0 0 0 0 0 0 1 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

19 

3 0 0 0 0 0 0 3 
L2 3 0 0 0 0 0 0 3 
L3 3 0 0 0 0 1 0 2 
L4 3 0 0 0 0 1 0 2 
L5 3 0 0 0 0 0 0 3 
L6 3 0 0 0 0 0 0 3 
L7 3 0 0 0 0 0 1 2 
L8 3 0 0 0 0 0 0 3 
L9 3 0 0 0 0 0 0 3 

L10 3 0 0 0 0 0 0 3 
L11 3 0 0 0 0 0 0 3 
L12 3 0 0 0 0 0 0 3 
L13 3 0 0 0 0 0 0 3 
L14 3 0 0 0 0 2 0 1 
L15 3 0 0 0 0 1 0 2 

L1 

20 

6 0 0 0 0 0 0 6 
L2 6 2 0 0 0 0 0 4 
L3 6 0 0 0 0 0 0 6 
L4 6 0 0 0 0 0 1 5 
L5 6 1 0 0 0 0 0 5 
L6 6 1 0 0 0 0 1 4 
L7 6 0 0 0 0 0 0 6 
L8 6 1 0 0 0 0 0 5 
L9 6 0 0 0 0 0 0 6 

L10 6 1 0 0 0 0 0 5 
L11 6 0 0 0 0 0 1 5 
L12 6 0 0 0 0 0 0 6 
L13 6 0 0 0 0 0 1 5 
L14 6 0 0 0 0 0 0 6 
L15 6 0 0 0 0 0 0 6 
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Subject Region 
IDN 

No. of 
source 
clusters 

No. of correctly classified 
target clusters with source 

clusters 

No. of source 
clusters 

matched but 
misclassified 

No. of 
unmatched 

source 
clusters VC ML MS MDS M 

L1 

21 

1 0 0 0 0 1 0 0 
L2 1 1 0 0 0 0 0 0 
L3 1 1 0 0 0 0 0 0 
L4 1 0 0 0 0 0 0 1 
L5 1 0 0 0 0 0 0 1 
L6 1 0 0 0 0 0 0 1 
L7 1 0 0 0 0 0 1 0 
L8 1 0 0 0 0 0 0 1 
L9 1 0 0 0 0 0 0 1 

L10 1 0 0 0 0 0 0 1 
L11 1 0 0 0 0 0 0 1 
L12 1 0 0 0 0 0 0 1 
L13 1 0 0 0 0 0 0 1 
L14 1 0 0 0 0 0 0 1 
L15 1 0 0 0 0 0 1 0 

L1 

22 

4 0 0 0 0 0 1 3 
L2 4 2 0 0 0 0 0 2 
L3 4 0 0 0 0 0 0 4 
L4 4 1 0 0 0 0 0 3 
L5 4 0 0 0 0 0 0 4 
L6 4 3 0 0 0 0 0 1 
L7 4 0 0 0 0 0 1 3 
L8 4 2 0 0 0 0 0 2 
L9 4 0 0 0 0 0 0 4 

L10 4 0 0 0 0 0 1 3 
L11 4 2 0 0 0 0 0 2 
L12 4 1 0 0 0 0 0 3 
L13 4 3 0 0 0 0 0 1 
L14 4 0 0 0 0 0 0 4 
L15 4 0 0 0 0 0 0 4 
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D.7 Questionnaire for evaluating the automatic clustering 

USER SATISFACTION SURVEY on the RESULTS of AUTOMATIC CLUSTERING of BUILDING 
FEATURES to be COMPARED with the MANUAL CLUSTERING OUTPUT 

I. Introduction 

Dear participant, 

The automatic clustering approach you have already known is dedicated to improving 

quality of map generalization, enabling the application of the right choice of generalization 

operations such as selection, removal, aggregation, simplification, enlargement, etc. This 

brief survey under Phase - II, which is a continuation of the Phase – I, is to gather your vital 

answers based on the comparison you made between the results obtained from the 

automatic clustering and your manual clustering output of the same data at Phase - I 

based on the same clustering algorithm. Your answers will be helpful in evaluating the 

algorithm further to achieve promising results in automatic map generalization. Your 

response will only be used for survey purposes. Attached is your  manual clustering results 

on the 1 : 4K topographic map you performed in Phase - I of the experiment together with 

the same data printed at the scale of 1 : 10K; the target scale on which data is to be 

produced by generalization. The results of the automatic clustering will be presented to 

you at the beginning of the survey. Thank you very much for your time and suggestions. 

Note: The results of the automatic clustering for producing a generalized map at the 

target scale 1 : 10K is based on the following threshold values for the three (03) criteria 

used hierarchically - distance, orientation difference and similarity difference in shape -

between building features. 

Distance range: 

Very Close (dc): vc <= 0.5mm on map 

Medium distance range (md): 2.0mm >= md > 0.5mm 

Very Far (vf): vf > 2.0mm 
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Orientation difference (od): 70.  If od > 70 (degrees), orientation difference is considered to 

be large, or else is considered to be small. 

Similarity difference in shape (sd) <0 – very similar, 1 – dissimilar>: If sd <= 0.25, a pair of 

buildings is considered to be similar in shape and if sd > 0.25, a pair of buildings is 

considered to be dissimilar. 

 

II. Questions       

Directions: Please indicate your level of agreement or disagreement with each of these 

statements regarding automated and manual clustering approach. Place an “X” mark in 

the box for your answer. 

Q1: How do you rate the output of the automated clustering algorithm?  

Excellent             Good            Fair               Poor    

 

Q2: Do you think that the classification used in identifying clusters is very much useful for 

subsequent map generalization?  

Strongly agree            Agree             Disagree              Strongly Disagree   

 

Q3: When comparing automated results with your results of the manual clustering 

approach, do you observe that the both results comply each other?  

Strongly match                     Match                Mismatch              Strongly mismatch 

(Please give reasons)  

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------- 
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Q4: How do you feel about the application of the algorithm to cluster building polygons 

manually with the hierarchical perception of Gestalt constraints; distance, orientation and 

similarity in shape?  

Very easy               Easy            Difficult            Very difficult 

(Please give reasons)  

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------- 

Q5: To what extent do you agree that the distance threshold values used for medium 

range in the automated clustering (i.e. between 0.5mm – 2.0mm on map) and very far 

value (i.e. > 2mm on map) comply with the range you used for manual clustering 

application of the algorithm when analysing your output with the automated result?  

Strongly agree              Agree                Disagree                    Strongly disagree 

(Please write down your own threshold range/value,  if your values do not agree with the values used in automated 
clustering above)  

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------- 

Q6: Do you agree with the threshold value (i.e. 70 degrees) used to distinguish the 

difference in orientation between a neighbouring pair of buildings when observing the 

results of the automated clustering?  

Yes                  No          

If your answer is ‘No’, which of the following values in degrees you perceive to be the 

best?        

3.50                      100                140                       7.50 

(If any other value, please specify)  

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
-------------- 
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Q7: Do you agree with the threshold value (i.e. 0.25) used to distinguish the similarity in 

shape between a neighbouring pair of buildings when observing the results of the 

automated clustering?  

Yes                  No         

If your answer is ‘No’, which of the following values in degrees you perceive to be the 

best?        

0.1 0.15  0.3 0.4 

(If any other value, please specify) 

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
-------------- 

Q8: When analysing your manual clustering results with the automated results, do you 

feel that the attempt you made in manual clustering in the Phase I had the general idea of 

hierarchical clustering?  

Yes   No 

Q9:  Do you find a significant difference between your cluster perception and the 

automated clustering  when comparing your manual results with the automated results?       

Yes   No 

(Please give reasons, if your answer is ‘Yes’)  

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------- 

Q10: How would you rate your overall experience in the hierarchical clustering approach? 

Satisfactory                  Neutral           Unsatisfactory           Highly unsatisfactory 
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III. DEMOGRAPHIC DATA

Name (optional):_________________________________ 

Age:   18 -30  31-40  41-54 55 and over 

Sex:   male female 

Email Address (optional): _______________________________ 

IV. CLOSE

Thank you for sharing your thoughts in this survey. Enjoy in the field of research. 
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E    SQL Queries 

E.1 Handling PostGIS geometries in the PostgreSQL database 

(1)  Retrieve Bounding Box of a Polygon data set 

SELECT gid, ST_XMin(BOX2D((ST_Dump(the_geom)).geom)) as XMin, 

ST_YMin(BOX2D((ST_Dump(the_geom)).geom)) as YMin, 

ST_XMax(BOX2D((ST_Dump(the_geom)).geom)) as XMAX, 

ST_YMax(BOX2D((ST_Dump(the_geom)).geom)) as YMAX 

from building_poly; 

(2)  Retrieving PostGIS geometry of each building polygon in the Well-Known Text 
(WKT) representation of the geometry/geography without SRID metadata where 
gid field represents the building feature IDN: 

NpgsqlCommand command5 = new NpgsqlCommand("select 

gid,ST_AsText(St_geometryn(the_geom,1)) from topo_area where gid 

<= 14", conn); 

(3) Obtaining union geometry within a region defined by glblId = 1 without null and 
non-single clusters 

SELECT ST_Union(the_geom),cluster_id FROM experiment.rpoly 

WHERE cluster_id is not null and cluster_id NOT LIKE '%-0' and 
glbl_id = 1 

GROUP BY cluster_id; 

397 



(4)  Finding neighbourhood density around a building with a buffer 

/* 
This query is to calculate and write the immediate neighbourhood 
density of each building within a radius of 5m from the centre of 
each building. 
Result is written to an attribute field called "neigh_density" 
with decimal places rounding to four 
*/ 
UPDATE my_schema.testbuildings SET neigh_density = round(t1.nv,4) 

from 

(SELECT a.gid as id, count(*)/(3.14159 * 100 * 100) as nv 

FROM my_schema.testbuildings a, my_schema.testbuildings b 

WHERE ST_DWithin(ST_Centroid(a.the_geom), b.the_geom, 100) 

GROUP BY a.gid) t1 

WHERE t1.id = my_schema.testbuildings.gid; 

(5)  Creating a table in PostgreSQL with PostGIS geometry handling to store generalized 
results 

/* 
This query is to create a table with the geometry column to handle 
geometry polygons (two-dimensional) in PostGIS 2.0 
*/ 

CREATE TABLE generalized_polys ( 

  gid serial NOT NULL, 

  PRIMARY KEY(gid),  

  cluster_id varchar(12) 

); 

SELECT AddGeometryColumn('generalized_polys', 'the_geom', 0, 
'POLYGON', 2 ); 
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(6)  Creating ConcaveHull with PostGIS 2.0 on building clusters 

SELECT (ST_cleangeometry((ST_ConcaveHull(ST_Collect(the_geom), 
0.99)))), cluster_id 

FROM concavepoly 

GROUP BY cluster_id; 

(7)  Creating a union of each building cluster of orthogonal shape characteristics within a 
region (glbl_id = 1) with PostGIS 2.0 

SELECT ST_Union(the_geom), cluster_id FROM experiment.rpoly 

where glbl_id = 1 AND cluster_shape = 1 AND cluster_id NOT LIKE '%-0' 

GROUP BY cluster_id; 

(8)  Creating UnaryUnion of adjoining buildings in a cluster with non-orthogonal shape 
characteristics within a region (glbl_id = 1) with PostGIS 2.0 

SELECT ST_UnaryUnion(ST_Collect(the_geom)), cluster_id FROM 
experiment.rpoly 

where glbl_id = 1 AND cluster_shape = 0 AND cluster_id NOT LIKE '%-0' 

GROUP BY cluster_id; 
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F    Data mining 

F.1 Sensitivity analysis workflow in the WEKA software 

Figure F.1  Sensitivity analysis workflow in the WEKA GUI. 

Preprocess 

Open CSV data file 
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Choose filtered 
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F.2 Results of the sensitivity analysis in the WEKA software 

Figure F.2  Output of the sensitivity analysis in the WEKA GUI. 
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F.3 Attribute transformation in the WEKA software 

Figure F.3  Attribute transformation with the unsupervised discretization using the 
equal-width binning as shown in the input parameter menu. 
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F.4 Data mining user interface 

Figure F.4 Data mining UI for extracting the salient landmarks using the algorithms - 
CobWeb, ID3 and J48 - implemented with the open source WEKA Java APIs. 
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F.5 Enriched real test data (part of) 

Table F.1  Enriched test data (part of) of a region surrounded by the road network. Data source: OS 
MasterMap. 
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F.6 User interface for the salient landmark evaluation 

Figure F.5  User interface for the salient landmark evaluation based on the two  
frameworks of (a) Raubal and Winter (2002) and (b) Nothegger, Winter and Raubal 
(2004), and the method on the MAD developed in this research. 
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F.7 Results of the salient landmark evaluation at a decision point 

(Tower Hamlets area)  

Table F.2  Results of the salient landmarks at a decision point. 

idn α1 α2 α3 α4 α5 α6 β1 β2 β3 β4 β5 β6 β7 ϒ1 σ1 σ2 σ3 ε 

1 12 82 8 3.33 0 0 0.098 2 344 0 1 0 312.5 0 0 0 0 0 

2 21 40 4 2 0 0 0.105 2 68 0 0 0 181.82 0 0 0 0 0 

3 23 62 6 2 0 0 0.128 1 68 0 2 0 196.08 0 0 0 0 0 

4 23 61 6 2 0 0 0.13 2 68 0 0 0 188.68 0 0 0 0 0 

5 29 404 8 2.5 0 0 0.083 1 72 1 0 0 322.58 1 1 1 1 1 

6 31 175 4 1.25 0 0 0.125 2 342 1 1 0 277.78 0 1 1 0 0.67 

7 26 335 4 3.33 0 0 0.167 1 72 1 3 0 256.41 0 1 1 0 0.67 

8 34 570 24 1.11 0 0 0.057 4 72 1 1 0 303.03 1 2 1 1 1.33 

9 31 603 14 1.43 0 0 0.125 3 340 1 1 0 357.14 0 2 1 0 1 

10 31 270 12 2 0 0 0.061 2 342 1 1 0 312.5 1 1 1 1 1 

11 21 50 4 1.67 0 0 0.161 1 68 0 0 0 238.1 0 0 0 0 0 

12 24 101 6 3.33 0 0 0.238 1 338 0 2 0 256.41 0 0 1 0 0.33 

13 21 99 5 2.5 0 0 0.238 2 342 1 3 0 256.41 0 0 2 0 0.67 

14 25 77 6 3.33 0 0 0.092 3 343 0 0 0 344.83 0 0 0 0 0 

15 13 54 6 5 0 0 0.147 1 342 1 1 0 243.9 0 0 1 0 0.33 

16 13 65 4 3.33 0 0 0.11 2 342 1 1 0 256.41 0 0 1 0 0.33 

17 13 46 8 5 0 0 0.132 2 342 1 1 0 256.41 0 0 1 0 0.33 

18 13 54 4 2.5 0 0 0.1 2 344 0 1 0 303.03 0 0 0 0 0 

19 13 68 4 2.5 0 0 0.106 3 343 1 0 0 357.14 0 0 1 0 0.33 

20 13 207 4 2.5 0 0 0.167 1 73 1 1 0 270.27 0 1 1 0 0.67 

21 23 290 17 2.5 0 0 0.118 5 343 1 0 0 357.14 1 2 1 1 1.33 

22 25 47 8 2.5 0 0 0.213 1 73 1 0 0 370.37 1 0 1 1 0.67 

23 17 6 4 5 0 0 0.125 0 72 1 0 3.2 322.58 0 0 2 0 0.67 

24 21 49 10 1.25 0 0 0.116 3 343 0 0 0 322.58 0 0 0 0 0 

25 13 76 4 3.33 0 0 0.208 2 343 0 0 0 344.83 0 0 0 0 0 

26 29 67 6 1.67 0 0 0.066 2 342 1 1 0 312.5 0 0 1 0 0.33 

α represents visual properties: α1 – DEM height, α2 – size, α3 – No. of corners, α4 – Inverse of elongation, α5 – 
orthogonal and α6 – diverse sides. 
β represents structural properties: β1 – Inverse of minimum distance to road, β2 – No. of adjacent neighbours, β3 – 
orientation to North, β4 – Orientation to road, β5 – Average orientation to neighbours, β6 – Minimum distance to 
neighbour and β7 – Inverse of neighbourhood density. 
ϒ represents semantic properties: ϒ1 – Importance. 

σ1 – Visual significance, σ2 – Structural significance, σ3 – Semantic significance, ε – Total significance.
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G    Pseudo codes of the developed algorithms 

This  section  presents  pseudo  codes  of  the  developed  algorithms  that  contribute  to  

generating focus maps. 

Input: 

Building polygon geometry array: barray 

Output: 

Delaunay triangle array: delArray with enforcement of building edges as constraints 

Main method: ConstrainedTriangulation(barray) 

(1) create a Point array: Point_dt[] //Point is the data type 

(2) int i = 0 

(3) for each building geometry:bgeom in barray { 

(4) Coordinate[] ca = bgeom.getCoordinates() 

(5) for (j = ca.getLength() – 2, j >= 0, j--) { 

(6) double X = ca[j].x 

(7) double Y = ca[j].y 

(8) arrpt[i] =new Point_dt[X, Y, 0.0] 

(9) sitepoints[i] = new Point_dt[X, Y, 0.0] 

(10) } 

(11) } 

(12) Geometry ch =  calculateConvexHull(sitepoints) //creating convex hull of all building vertices 

(13) STRtree indx = buildSTRtreeIndex(bgeom) //creating an index of all building geometries 

(14) Triangle_dt[] triarray = DelaunayTriangulation(arrpt[i]) //invoking Delaunay triangulation library 

(15) for each triangle:triang in triarray { 

(16) boolean chk = checkPolygonIntersection(triang, indx) //check if edges intersect buildings 

(17) if (chk = false) then { 

(18) add triang into delArray 

(19) } 

(20) } 

(21) add buildings in barray and triangles in delArray into a single array:geomarray 

(22) union geometries in geomarray into a multi-geometry:mgeom 

(23) Geometry spcae = ch.getDifference(mgeom)//get the difference between convex hull and mgeom 

(24) if (space.getNumGeometries > 0) then { 

(25) for each polygon:poly in space 
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(26) get poly.getCoordinates():pc 

(27) if (pc.getLength() >= 5) then {  //polygon other than a triangle 

(28) for (j = pc.getLength() – 1, j >= 0, j--) { 

(29) double X = ca[j].x 

(30) double Y = ca[j].y 

(31) arrpt[i] =new Point_dt[X, Y, 0.0] 

(32) sitepoints[i] = new Point_dt[X, Y, 0.0] 

(33) } 

(34) //invoke Delaunay triangulation library 

(35) Triangle_dt[] triarray = DelaunayTriangulation(arrpt[i]) 

(36) for each triangle:triang in triarray { 

(37) boolean chk = checkPolygonIntersection(triang, indx) 

(38) if (chk = false) then { 

(39) add triang into delArray 

(40) } 

(41) } 

(42) } 

(43) } 

(44) return delArray 

Procedure buildSTRtreeIndex(Geometry geom) 

(1) STRtree bldgindx = new STRtree() //instantiate bldgindx

(2) insert bounding box of geom into bldgindx 

(3) return bldgindx 

Procedure calculateConvexHull(Array Coordinate[] ca) 

(1) create Geometry:geom from ca

(2) ConvexHull ch = new ConvexHull(geom)//instantiate ch 

(3) Geometry gh = ch.getConvexHull() //creating convexhull geometry 

(4) return gh 
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Procedure checkPolygonIntersection(Triangle_dt triang, STRtree indx) 

(1) boolean av = false

(2) get coordinates of triang into an Arraylist:alcoord 

(3) create triangle polygon geometry: trigeom  

(4) Arraylist indxlst = indx.query(trigeom.getEnvelopeinternnal()) //retrieve close buildings 

(5) Iterator itl = indxlst.iterator() 

(6) while (itl.hasNext) { 

(7) Geometry bldg_poly = itl.Next() 

(8) if (trigeom.intersect(bldg_poly) = true then { 

(9) av = true 

(10) break 

(11) } 

(12) } 

(13) return av 
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G.2 Clustering algorithm 

Input: 

Building polygon geometry array: barray 

Minimum distance threshold between buildings: vcdst 

Medium distance threshold between buildings: mdst 

Orientation difference threshold: odth 

Similarity difference threshold: simdth 

Target scale: double sf  

Member: 

Map med0  

Map hmVCCluster 

Map hmVFCluster 

Map hmpMCluster 

Output: 

hmVCCluster with bid and cluster_id: VC-i / MS-i/ MDS-I //re-assignment of values in a map 

med0 with bid and label: “MD-0”/ ”ML-0”/ “MDS-0” // re-assignment of values in a map 

hmVFCluster with bid and label “VF-0” in a map 

Main method: Clustering(barray) 

(1) ArrayList<String> gestalt = new ArrayList()//instantiate 

(2) Array Triarray = ConstrainedTriangulation(barray) 

(3) ArrayList<String> blnk = create adjacency relations between triangles //[bid_from, bid_to,dst] 

(4) for (i = 0, i < blnk.size(), i++) { 

(5) String lst = blnk.get(i) 

(6) split lst and get three values: bid1, bid2 and dst 

(7) get bgeom1and bgeom2 from bid1 and bid2 

(8) //get following Gestalt factors between two building geometries: bgeom1 and bgeom2 

(9) get orientation difference:ordiff using wall statistical algorithm by Duchene(2003) 

(10) get the similarity difference:simdiff using overlap ratio, compactness and Hausdorff 
distance 

(11) // using target scale:sf 

(12) add Gestalt values [bid1,bid2,dst,ordiff,simdiff] into ArrayList: gestalt 

(13) } 

(14) ArrayList<String[ ]> mst = create Minimum Spannig Tree from gestalt 
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(15) for (j = 0, j < mst.size(), j++) { 

(16)  ArrayList<String> str = mst.get(i) 

(17)  split str and get bid1, bid2 and dst  

(18)  add bid1 and bid2 into String[] gf  

(19)  ///creating Adjacency Matrix with proximity limits 

(20)  String AdjMAT [ ] [ ] = createAdjacencyMatrix(vcdst, mdst, dst, gf) 

(21) }//end for 

(22) Map map0 = iterateFirstColumn (AdjMat[ ] [ ]) //mapping 1st column ids 

(23) refineAdjMatColumn23 (AdjMat[ ] [ ], map0) 

(24) Map map1= iterateSecondColumn (AdjMat[ ] [ ]) //mapping 2nd column ids 

(25) refineMapMed0 (map1,med0) 

(26) refineAdjMatColumn3 (AdjMat[ ] [ ], map1) //This completes refining matrix for proximity 

(27) hmpVCCluster = ClusterColumnArray(0) 

(28) hmpMCluster = ClusterColumnArray(1) 

(29) hmpVFCluster = ClusterColumnArray(2) 

(30) ArrayList<ArrayList<String>> array_r = createDynamicMatrix (string AdjMat[ ] [ ])  

(31) //using hmpMcluster 

(32) for each cluster in array_r { 

(33)  enrich missing adjacency links using blnk array 

(34)  ArrayList<String[ ]> mst1 = create Minimum Spannig Tree from cluster: weight: ordiff 

(35)  run similar steps above from (15) to (28) based on orientation difference: small and large 

(36)  //using threshold: odth 

(37) } 

(38) create dynamicMatrix: ArrayList<ArrayList<String>> array_or for smaller orientations 

(39) for each cluster in array_or { 

(40)  enrich missing adjacency links using blnk array 

(41)  ArrayList<String[ ]> mst2 = create Minimum Spannig Tree from cluster:weight simdiff 

(42)  run similar steps above from (15) to (28) based on the similarity difference: similar and 

(43)  // dissimilar using threshold: simdth 

(44) } 
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Procedure createAdjacencyMatrix(double vcdst, double mdst, double dst, String[] gf) 

(1) List<String> alst = new ArrayList<String>() // instantiation 

(2) String AdjMat [ ][ ] = new String [alst.size()] [ ] 

(3) String[ ]  gfa = new String [3] 

(4) if (dst <= vcdst) then { 

(5)  gfa[0] = gf 

(6)  gfa[1] = “0,0” 

(7)  gfa[2] = “0,0” 

(8) } 

(9) else if (dst > vcdst) then { 

(10)  gfa[0] = “0,0” 

(11)  gfa[1] = gf 

(12)  gfa[2] = “0,0” 

(13) } 

(14) else { 

(15)  gfa[0] = “0,0” 

(16)  gfa[1] = “0,0” 

(17)  gfa[2] = gf 

(18) } 

(19) add gfa into alst 

(20) AdjMat[ ] [ ] = alst.toarray(AdjMat[ ] [ ]) 

(21) return AdjMat[ ] [ ]  

 

Procedure iterateFirstColumn (string AdjMat[ ] [ ]) 

(1) for (j = 0, j < AdjMat.length-1, j++)  { 

(2)  String fce = AdjMat [j] [0] //first column 

(3)  split fce 

(4)  String bid1 = val[0], String bid2 = val[1] 

(5)  put (bid1,”1C”) and (bid2,”1C”) in Map:map0 

(6) } 

(7) return map0 
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Procedure void refineAdjMatColumn23 (string AdjMat[ ] [ ], Map map0) 

(1) for (j = 0, j < AdjMat.length-1, j++)  { 

(2)  String ce3 = AdjMat [j] [2] 

(3)  String[] gf3 = split ce3 

(4)  String bid1_3 = gf3[0] 

(5)  if (bid1_3 not equals (“0”)) then { 

(6)   String bid2_3 = gf3[1] 

(7)   boolean b1_3 = map0.containskey(bid1_3) 

(8)   boolean b2_3 = map0.containskey(bid2_3) 

(9)   if (b1_3 = true and b2_3 = false) then { 

(10)    AdjMat [j] [2] = bid2_3 + “,” + “0” 

(11)   } 

(12)   if (b1_3 = false and b2_3 = true) then { 

(13)    AdjMat [j] [2] = bid1_3 + “,” + “0” 

(14)   } 

(15)   if (b1_3 = true and b2_3 = true) then { 

(16)    AdjMat [j] [2] = “0” + “,” + “0” 

(17)   } 

(18)  } 

(19)  //now compare 2nd column with 1st column 

(20)  String ce2 = AdjMat [j] [1] 

(21)  String[] gf2 = split ce2 

(22)  String bid1_2 = gf2[0] 

(23)  if (bid1_2 not equals (“0”)) then { 

(24)   String bid2_2 = gf2[1] 

(25)   boolean b1_2 = map0.containskey(bid1_2) 

(26)   boolean b2_2 = map0.containskey(bid2_2) 

(27)   if (b1_2 = true and b2_2 = false) then { 
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(28)    AdjMat [j] [1] = “0” + “,” + “0” 

(29)    put (b1_2,”0”) in Map: med0 

(30)   } 

(31)   if (b1_2 = false and b2_2 = true) then { 

(32)    AdjMat [j] [2] = bid1_2 + “,” + “0” 

(33)    put (b2_2,”0”) in Map: med0 

(34)   } 

(35)   if (b1_2 = true and b2_2 = true) then { 

(36)    AdjMat [j] [2] = “0” + “,” + “0” 

(37)   } 

(38)  } 

(39) }//end for 

 

Procedure iterateSecondColumn (string AdjMat[ ] [ ]) 

(1) for (j = 0, j < AdjMat.length-1, j++)  { 

(2)  String sce = AdjMat [j] [1] //second column 

(3)  split sce 

(4)  String bid1 = val[0], String bid2 = val[1] 

(5)  put (bid1,”2C”) and (bid2,”2C”) in Map:map1 

(6) } 

(7) return map1 
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Procedure void refineMapMed0 (Map map1, Map med0) 

(1) while (med0)  { 

(2)  get mapkey: String med0.key 

(3)  boolean bidex = map1.containskey(med0.key) 

(4)  if (bidex = true) then { 

(5)   remove med0.key and med0.value 

(6)  } 

(7) }//end while 

 

Procedure void refineAdjMatColumn3 (string AdjMat[ ] [ ], Map map1) 

(1) for (j = 0, j < AdjMat.length-1, j++)  { 

(2)  String ce3 = AdjMat [j] [2] 

(3)  String[] gf3 = split ce3 

(4)  String bid1_3 = gf3[0] 

(5)  if (bid1_3 not equals (“0”) and bid2_3 not equals(“0”) then { 

(6)   String bid2_3 = gf3[1] 

(7)   boolean b1_3 = map1.containskey(bid1_3) 

(8)   boolean b2_3 = map1.containskey(bid2_3) 

(9)   if (b1_3 = true and b2_3 = false) then { 

(10)    boolean mz0 = med0.containsKey(bid2_3) 

(11)    if (mz0 = false) then  { 

(12)                         AdjMat[j][2] = bid2_3 + "," + "0" 

(13)                    } 

(14)                   else 

(15)                   { 

(16)                           AdjMat[j][2] = "0" + "," + "0" 

(17)    } 

(18)                        } 

(19)   if (b1_3= false and b2_3= true)  then { 
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(20)                         boolean mz0 = med0.containsKey(bid1_3) 

(21)                   if (mz0 = false) then {                       

(22)                         AdjMat[j][2] = bid1_3 + "," + "0" 

(23)                       } 

(24)                  else     { 

(25)                             AdjMat[j][2] = "0" + "," + "0" 

(26)                    } 

(27)                    } 

(28)   if (b1_3 = true and b2_3= true)  then { 

(29)                        AdjMat[j][2] = "0" + "," + "0"; 

(30)                 } 

(31)   //This is to check both ids of column 3 non-available on column 2 

(32)                //are available in hmpMzero// new 

(33)   if (b1_3 = false and b2_3= false)  then  { 

(34)                       boolean bhmpMEx = med0.containsKey(b1_3) 

(35)                       boolean bhmpMEx1 = med0.containsKey(b2_3) 

(36)                       if (bhmpMEx = true and bhmpMEx1 == false) then { 

(37)                            AdjMat[j][2] = bid2_3 + "," + "0" 

(38)                       } 

(39)                       if (bhmpMEx1 = true and bhmpMEx = false) then {                     

(40)                            AdjMat[j][2] = bid1_3 + "," + "0" 

(41)                       } 

(42)                       if (bhmpMEx = true and bhmpMEx1 = true) then { 

(43)                                               AdjMat[j][2] = "0,0"; 

(44)                       } 

(45)    } 

(46)  } 

(47)  //This is to check links like e.g. "9,0". Check if the first id available in the second column.    
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(48)                 //If available, the whole element is set to zero in the2nd column 

(49)  else if (bid1_3 not equals("0") and bid2_3 equals("0")) then 

(50)   boolean b1_3Exists = map1.containsKey(bid1_3)                 

(51)                  if (b1_3Exists = true)  then { 

(52)                             AdjMat[j][2] = "0,0"                       

(53)                   } 

(54)  //This is to check if first id of column 3 exists in a single cluster values of the second 

(55)   //column in med0 (all values checked) 

(56)                      boolean bhmpMEx = med0.containsKey(bid1_3) 

(57)                 if (bhmpMEx = true) then { 

(58)                         AdjMat[j][2] = "0,0" 

(59)                                        } 

(60)  } 

(61) }//end for 

 

//Grouping of buildings into clusters: Input Parameter is the column id which is either 0, 1 or 2;  

//0 = First column, 1 =  second column and 2 = third column by applying on refined AdjMat 2D Matrix.          

procedure ClusterColumnArray(Integer ci)  

 (1)           Map hmapCluster = new HashMap() //instantiation 

 (2)          int kk = 1 

 (3) int k = 0 

 (4)           for (j= 0,  j <= AdjMat.length-1,j++) { 

 (5)           String fc = AdjMat [j] [ci] 

 (6)           String[] vc = split fc 

 (7)           String sbid1 = vc[0],  String sbid2 = vc[1] 

 (8)           convert sbid1 and sbid2 into integers: ibid1and ibid2 

 (9)           if (ibid1 not equal 0 and ibid2 not equal 0)   then { 

 (10)                 boolean id1_bool = hmapCluster.containsKey(ibid1) 
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(11)                 boolean id2_bool = hmapCluster.containsKey(ibid2) 

(12)                 if (id1_bool = false and id2_bool = false) then  { 

(13)                          if (kk = 1) then {                             

(14)                           k++                             

(15)                           } 

(16)                                                        put (ibid1, k) and (ibid2, k) in hmapCluster   

(17)                                       } 

(18)                          else     { 

(19)                              if (id1_bool = false) then {                                 

(20)                                   int kt = (Integer)hmapCluster.get(ibid2) 

(21)                                   put (ibid1, kt) in hmapCluster 

(22)                                    } 

(23)                                if (id2_bool = false) then { 

(24)                   int kt = (Integer)hmapCluster.get(ibid1) 

(25)                                                 put (ibid2, kt) in hmapCluster   

(26)                                           } 

(27)                                        }     

(28)  }  else if (ibid1 not equal 0 and ibid2 equals 0) then { 

(29)                          put (ibid1, 0) in hmapCluster 

(30)                         } 

(31)              else //denotes 0,0 {              

(32)                    kk = 1 

(33)                 } 

(34) }//end for 

(35)        return hmapCluster 
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Procedure createDynamicMatrix (string AdjMat[ ] [ ]) //2D dynamic matrix 

(1) ArrayList<ArrayList<String>> array_r = new ArrayList<ArrayList<String>>() 

(2) get the number of medium clusters: nc from map: hmpMCluster 

(3) for (i = 1, i <= nc, ++i)  { 

(4)  ArrayList<String> array_c = new ArrayList<String>() 

(5)  for(j=0, j<=AdjMat.length-1, j++) { 

(6)   String sc = AdjMat[j][1] //second column 

(7)   String[ ] vc = split sc  

(8)   get int bid1 from vc[0] 

(9)   while (hmpMCluster)  {//iterate 

(10)    get key:v1 //building_id 

(11)    get value:v2 //cluster_id 

(12)    if (v2 = i and ibid1 =v1) then { 

(13)                                         add sc into array_c 

(14)    } 

(15)   }//end while 

(16)  }//end for 

(17)  add array_c  into array_r 

(18) }//end for 

(19) return array_r //2D array 

  

419 
 



G.3 Cluster shape enrichment 

Input: 

Building cluster multipolygon geometry: cgeom 

Orientation threshold:orthold 

Angle precision: angpr 

Output: 

 boolean chkortho {false – non-orthogonal, true – orthogonal} 

Main method: Clustershape (Geometry cgeom, double orthold, double angpr) 

(1) for each cluster:cgeom in PostGres database { 

(2)  select cluster:cgeom where cluster_label = ‘VC’ or ‘MS’ or ‘MDS’ 

(3)  ArrayList<Geometry> algeom = EnrichCluster(cgeom) 

(4)  boolean chkortn = CheckOrientation(cgeom, angpr, ortn) 

(5)  if (chkortn = true) then { 

(6)   boolean chkortho = CheckOrthogonality(cgeom, angpr) 

(7)  } 

(8)  else { 

(9)   chkortho = false 

(10)  } 

(11) } 

(12) return chkortho  

 

Procedure EnrichCluster(Geometry mgeom) 

(1) explode mutipolygon geometry: mgeom into polygon geometry array:ArrayList<algeom> 

(2) ArrayList<Geometry> alg = new ArrayList<Geometry>() //instantiate ArrayList 

(3) create concave hull: geometry chull from algeom with Java library 

(4) for (i = 0, i < algeom.size(), i++) { 

(5)  Geoemtry bldg = algeom.get(i) 

(6)  if (bldg touches chull by a point or line) then { 

(7)   add bldg into alg  

(8)  } 

(9) } 

(10) return alg 
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Procedure CheckOrientation (ArrayList<Geometry> ageom, double angpr, double orthold) 

(1) boolean smalldiff = true 

(2) int countover45 = 0, countless45 = 0 

(3)  List<Double> lstortn = new List<Double>() //object instantiation 

(4) for (i = 0, i < ageom.size(), i++) { 

(5)  Geoemtry geom = ageom.get(i) 

(6)  double bortn = get orientation on wall statistical algorithm by Duchene (2003) 

(7)  if (bortn > 45) then { 

(8)   countover45++ 

(8)  } 

(9)  else { 

(10)   countless45++ 

(11)  } 

(12)  add bortn into lstorn 

(13) } 

(14) lstortn = sort lstortn in ascending order 

(15) get the difference in orientation: diffort using min and max values from lstortn 

(16) if (diffort > 45) then { 

(17)  List<Double> lstnew = new ArrayList<Double>() 

(18)  for (i = 0, i < lstortn.size(), i++) { 

(19)   double tval = lstortn.get(i) 

(20)   if (cntover45 >= cntless45) then { 

(21)    if (tval < 45) then { 

(22)     tval = tval + 90 

(23)    } 

(24)    else { 

(25)     add tval into lstnew 

(26)    } 

(27)   else { 

(28)    if (tval > 45) then { 

(29)     tval = 90 – tval 

(30)    } 

(31)    else { 

(32)     add tval into lstnew 

(33)    } 

(34)  } 

(35) sort lstnew in ascending order 
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(36) get the difference in orientation: diffort using min and max values from lstnew 

(37) } 

(38) if (diffort > orthold) then { 

(39)  smalldiff = false 

(40) } 

(41) return smalldiff 

 

Procedure CheckOrthogonality (ArrayList<Geometry> ageom, double angpr) 

(1) boolean orthocheck = false 

(2) if (ageom.isEmpty() = false) then { 

(3)  for (i = 0, i < ageom.size(), i++) { 

(4)   get double:confidence_indct from wall statistical algorithm by Duchene (2003) 

(5)   if (confidence_indct < 80) then { 

(6)    orthocheck = false 

(7)    break 

(8)   } 

(9)  } 

(10) } 

(11) return orthocheck 
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G.4 Symbolization algorithm 

Input: 

Building cluster geometry: bclust 

Minimum side length:mlength 

Output: 

 Symbolized polygon: spoly 

Main method: symbolization(bclust) 

(1) create concave hull:chull on building cluster:bclust 

(2) for each building edge in bclust { 

(3)  find the edge:bedge that touches chull by a line 

(4)  add bedge into Arraylist<edge>:edges 

(5) } 

(6) geomX-Y, BBX-Y, rotang = create_geom_and_bounding_box_X-Y(edges, bclust) 

(7) if (both length and width of BBX-Y < mlength) then { 

(8)  create a square polygon:sqpoly with a minimum length:mlength 

(9)  rotate sqpoly around its centroid with –rotang back: spoly 

(10) } 

(11) if (length of BBX-Y < mlength) then { 

(12)  Geometry poly = enlargealongY(BBx-y, mlength) 

(13)  rotate poly around its centroid with –rotang back: spoly 

(14) } 

(15) if (width of BBX-Y < mlength) then { 

(16)  Geometry poly = enlargealongX(BBx-y, mlength) 

(17)  rotate poly around its centroid with –rotang back: spoly 

(18) } 

(19) return spoly 
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Procedure create_geom_and_bounding_box_X-Y(Arraylist<edge> edges, geometry bclust) 

(1) Object obj[] = new Object[3]//creating an array of objects 

(2) calculate centrod:gcen of cluster geometry:bclust 

(3) calculate maximum local weighted orientation of edges:rotang 

(4) rotate bclust around point:gcen by rotang to orient cluster in X-Y direction 

(5) calculate minimum bounding box of the oriented geom in X-Y: BBX-Y 

(6) obj[0] = geomX-Y 

(7) obj[1] = BBX-Y 

(8) obj[2] = rotang 

(9) return obj //return multiple values: geomX-Y, BBX-Y, rotang 

 

Procedure enlargealongY(Geometry BBx-y, double dist) 

(1) get min and max coordinates of BBX-Y 

(2) create an adjoining polygon:tpoly on top of BBX-Y with min and max coordinates and 0.5 * dist 

(3) create an adjoining polygon:bpoly at bottom of BBX-Y with min and max coordinates and 0.5 * dist 

(4) union BBX-Y, tpoly and bpoly to create a polygon symbol:sym 

(5) return sym 

 

Procedure enlargealongX(Geometry BBx-y, double dist) 

(1) get min and max coordinates of BBX-Y 

(2) create an adjoining polygon:rpoly to the right of BBX-Y with min and max coordinates and 0.5 * dist 

(3) create an adjoining polygon:lpoly to the left of BBX-Y with min and max coordinates and 0.5 * dist 

(4) union BBX-Y, rpoly and lpoly to create a polygon symbol:sym 

(5) return sym 
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G.5 Squaring algorithm 

Input: 

Building amalgam polygon: geom 

Output: 

 Squared building amalgam polygon: sqgeom 

Main method: squaring(geom) 

(1) geomX-Y, BBx, rotang- = create_geom_and_bounding_box_X-Y(geom) 

(2) calculate orientations along X and Y in BBX-Y 

(3) coordinate array:carray = geomX-Y.getcoordinate() 

(4) for (i = 0; i < carry.length-1, i++) { 

(5)        //starting and end point coordinates of an edge 

(6)         p1_x = getcoordinate.carray[i].x 

(7)                   p1_Y = getcoordinate.carray[i].y 

(8)         p2_x = getcoordinate.carray[i+1].x 

(9)                   p2_Y = getcoordinate.carray[i+1].y 

(10)                calculate edge distance:edst = len(p1,p2) 

(11)                create four line strings each along X and Y directions from points p1 and p2 with distance: edst 

(12)                add line strings at point p1 into an array:ap1 

(13)        add line strings at point p2 into an array:ap2 

(14)        coordinate array:carray = get_two_new_points(linestring array:lsa1, linestring array:lsa2) 

(15)        Point: np1 = create point carray[0] 

(16)        Point:np2 = create point carray[1] 

(17)        if (p1 != NULL and p2 != NULL) then { 

(18)  create three line strings joining p1, p2 and np1 

(19)  polygonize line strings to create ear-polygon:ep1 with points p1, p2, np1 

(20)  create three line strings joining p1, p2 and np2 

(21)  polygonize line strings to create ear-polygon:ep2 with points p1, p2, np2 

(22)  find ear-polygon: ep that is outside geomX-Y out of ep1 and ep2 

(23)  add ep into an geometry array:ageom } 

(24)  }//end for       

(25)  add geomX-Y into ageom   

(26)  merge ear-polygons in ageom:mgeom 

(27) rotate mgeom with –rotang around its centroid back:sqgeom 

(28) return sqgeom 
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Procedure create_geom_and_bounding_box_X-Y(geom) 

(1) Object obj[] = new Object[3]//creating an array of objects 

(2) calculate centrod:gcen of polygon geometry:geom 

(3) calculate maximum local weighted orientation:rotang 

(4) rotate geom around point:gcen by rotang to orient in X-Y direction 

(5) calculate minimum bounding box of the oriented geom in X-Y: BBX-Y 

(6) obj[0] = geomX-Y 

(7) obj[1] = BBX-Y 

(8) obj[2] = rotang 

(9) return obj //return multiple values: geomX-Y, BBX-Y, rotang  

 

Procedure get_two_new_points(linestring array:lsa1, linestring array:lsa2) 

(1) for each linestring:ls1 in lsa1 { 

(2)  for each linestring:ls2 in lsa2 { 

(3)         if ls1.intersects(ls2) then { 

(4)   get coordinate of intersecting point:c1 

(5)   add c1 into a coordinate array:carray 

(6)          } 

(7)  } 

(8) } 

(9) for each linestring:ls2 in lsa2 { 

(10)  for each linestring:ls1 in lsa1 { 

(11)         if ls2.intersects(ls1) then { 

(12)   get coordinate of intersecting point:c2 

(13)   add c2 into a coordinate array:carray 

(14)        } 

(15)  } 

(16) } 

(17) return carray 
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G.6 Enlargement algorithm 

Input: 

Squared building amalgam polygon: sqgeom 

Filling width: fw 

Minimum width of narrow sections:minw 

Output: 

 Squared and enlarged building amalgam polygon: famalgam 

Main method: enlargement(sqgeom, fw) 

(1)  Object[] obj = create_geom_and_bounding_box_X-Y(sqgeom) 

(2) Geometry geomX-Y = obj[0], Geoemtry BBX-Y = obj[1], double rotang = obj[2] 

(3) Geometry array:ipgeom = create_inner_poly(geomX-Y) 

(4) Sorted array<Double> xlst =  sort_centroid_X_strips(ipgeom) 

(5) Sorted array<Double> ylst =  sort_centroid_Y_strips(ipgeom) 

(6) Arraylist<Arraylist<Geometry>> X_stack = store_X_strip_stack (ipgeom, ylst, minw) 

(7) Arraylist<Arraylist<Geometry>> Y_stack = store_Y_strip_stack (ipgeom, xlst, minw) 

(8) Arraylist<Geometry> opgeom = create_outer_poly(geomX-Y, BBX-Y) 

(9) Arraylist<Arraylist<Geometry>> fillX = getFillingStack_X(X_stack, opgeom, minw) 

(10) Arraylist<Arraylist<Geometry>> fillY  = getFillingStack_Y(Y_stack, opgeom, minw) 

(11) union all filling slices in fillX and fillY Arrraylists together: ufslices 

(12) union ufslices with geomX-Y:amal 

(13) rotate amal with –rotang back around its centroid:famalgam 

(14) return fmalgam 

 

Procedure create_geom_and_bounding_box_X-Y(geom) 

(1) Object obj[] = new Object[3]//creating an array of objects 

(2) calculate centrod:gcen of polygon geometry:geom 

(3) caluculate maximum local weighted orientation:rotang 

(4) rotate geom around point:gcen by rotang to orient in X-Y direction 

(5) calculate minimum bounding box of the oriented geom in X-Y: BBX-Y 

(6) obj[0] = geomX-Y 

(7) obj[1] = BBX-Y 

(8) obj[2] = rotang 

(9) return obj //return multiple values: geomX-Y, BBX-Y, rotang 
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Procedure create_inner_poly(geomX-Y) 

(1) for each edge:bedge in geomX-Y { 

(2)  extend bedge from both ends to intersect polygon:geomX-Y 

(3) } 

(4) polygonize all extended line strings to create polygon strips:ips inside geomX-Y 

(5) add polygon strips:ips into a geometry array:ipgeoma 

(6) return ipgeoma 

 

Procedure sort_centroid_X_strips(geometry array:ipgeom) 

(1) create an arraylist<Double>:xlst  

(2) for (i=0, i < ipgeom.length, i++) { 

(3)  Geometry ig = ipgeom.get(i) 

(4)  X = ig.getCentroid.x 

(5)  add X into array:xlst 

(6) } 

(7) sort xlst in ascending order 

(8) return xlst 

 

Procedure sort_centroid_Y_strips(geometry array:ipgeom) 

(1) create an arraylist<Double>:ylst  

(2) for (i=0, i < ipgeom.length, i++) { 

(3)  Geometry ig = ipgeom.get(i) 

(4)  Y = ig.getCentroid.y 

(5)  add Y into array:ylst 

(6) } 

(7) sort ylst in ascending order 

(8) return ylst 
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Procedure store_X_strip_stack (Arraylist<Geometrey> ipgeom, Arraylist<Double> xlst, doubke minw) 

(1) create Arraylist<Arraylist<Geometry>> x_stack_geom 

(2) for (i=0, i < ylst.size, i++) { 

(3)  create Arraylist<Geometry> algeom 

(4)  Cen_Y = ylst.get(i) 

(5)  for (j=0, j < ipgeom.length, j++) { 

(6)   Y_gcen = ipgeom.getCentrid.Y 

(7)   wdth = ipgeom.getwidth 

(8)   if (Cen_Y = Y_gcen and wdth < minw) then { 

(9)    algeom.add(ipgeom) 

(10)   } 

(11)  } 

(12)  if (algeom.size > 1) then { 

(13)   x_stack_geom.add(algeom) 

(14)  } 

(15) } 

(16) return x_stack_geom 

 

Procedure store_Y_strip_stack (Arraylist<Geometrey> ipgeom, Arraylist<Double> ylst, doubke minw) 

(1) create Arraylist<Arraylist<Geometry>> y_stack_geom 

(2) for (i=0, i < xlst.size, i++) { 

(3)  create Arraylist<Geometry> algeom 

(4)  Cen_X = xlst.get(i) 

(5)  for (j=0, j < ipgeom.length, j++) { 

(6)   X_gcen = ipgeom.getCentrid.X 

(7)   wdth = ipgeom.getwidth 

(8)   if (Cen_X = X_gcen and wdth < minw) then { 

(9)    algeom.add(ipgeom) 

(10)   } 

(11)  } 

(12)  if (algeom.size > 1) then { 

(13)   Y_stack_geom.add(algeom) 

(14)  } 

(15) } 

(16) return Y_stack_geom 
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Procedure getFillingStack_X(Arraylist<Arraylist<Geometrey>>X_stack_geom, Arraylist<Geometry> opgeom, 
double minw) 

(1) Arraylist<Arraylist<Geometry>> fillstack_X 

(2) for each strip in X_stack_geom  { 

(3)  Arraylist<Geometry> fillslice 

(4)  for each slice in strip  { 

(5)   for each outerstrip in opgeom  { 

(6)    if (two outstrips exist on top and bottom on slice) then { 

(7)     union slices in strip:ustrip 

(8) create two strips on either side of the ustrip //to satisfy  

(9) //minimum filling width 

(10)     add strip_t into fillslice 

(11)     add strip_b into fillslice      

(12)     break 

(13)    } 

(14)    if (only one outstrip exist on top of slice) then { 

(15)                union slices in strip:ustrip 

(16)                 if (a point just outside bottom of slice is out of BBX-Y  = true) then { 

(17)      create a strip on top of the slice //to satisfy minimum  

(18)      // filling width 

(19)      add strip_b into fillslice 

(20)     } 

(21)    } 

(22)    if (only one outstrip exists on bottom of slice) then { 

(23)     union slices in strip:ustrip 

(24)     if (a point just outside right of slice is out of BBX-Y  = true) then { 

(25)      create a strip on top of slice //to satisfy minimum filling 

(26)      //width    

(27)      add strip_t into fillslice 

(28)     } 

(29)    } 

(30)   } 

(31)  } 

(32) }   

(33) add fillslice into fillstack_X  //2D Arraylist  

(34) return fillstack_X 
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Procedure getFillingStack_Y(Arraylist<Arraylist<Geometrey>>Y_stack_geom, Arraylist<Geometry> opgeom, 
double minw) 

(1) Arraylist<Arraylist<Geometry>> fillstack_Y 

(2) for each strip in Y_stack_geom  { 

(3)  Arraylist<Geometry> fillslice 

(4)  for each slice in strip  { 

(5)   for each outerstrip in opgeom  { 

(6)    if (two outstrips exist to left and right of slice) then { 

(7)     union slices in strip:ustrip 

(8) create two strips on either side of the ustrip //to satisfy  

(9) //minimum filling width 

(10)     add strip_l into fillslice 

(11)     add strip_r into fillslice      

(12)     break 

(13)    } 

(14)    if (only one outstrip exist on left of slice) then { 

(15)     union slices in strip:ustrip 

(16)     if (a point just outside right of slice is out of BBX-Y  = true)  then { 

(17)      create a strip on left of  slice //to satisfy minimum  

(18)      // filling width 

(19)      add strip_l into fillslice 

(20)     } 

(21)    } 

(22)    if (only one outstrip exists on right of slice) then { 

(23)     union slices in strip:ustrip 

(24)     if (a point just outside left of slice is out of BBX-Y  = true) then { 

(25)      create a strip on right of slice //to satisfy minimum  

(26)      //filling width    

(27)      add strip_r into fillslice 

(28)     } 

(29)    } 

(30)   } 

(31)  } 

(32) }   

(33) add fillslice into fillstack_X  //2D Arraylist  

(34) return fillstack_X 
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G.7 Simplification algorithm 

Input: 

Building geometry polygon: geom 

Simplification edge distance threshold: bethv 

Output: 

 Simplified building geometry polygon: sgeom 

  Main method: simplification(geom, bethv) 

(1) Object[] obj- = create_geom_and_bounding_box_X-Y(geom) 

(2) Geometry geomX-Y = obj[0], Geometry BBx-y = obj[1], double rotang = obj[2] 

(3)           boolean running = true 

(4) while(running) { 

(5)           Map<Vertex,Coordinate> pmap = concave_identifier(geomX-Y) 

(6)           Geometry array:Cp = create_outer_poly(geomX-Y, BBx-y) 

(7)           ArrayList<Geometry> ageom = polygons_to_merge(pmap, Cp, bethv) 

(8)           if (ageom is not empty) then   { 

(9)            ugeom = union array of polygons:ageom with initial polygon:geomX-Y 

(10)           } 

(11)          else { 

(12)          running = false 

(13)          } 

(14) }//end while 

(15) rotate ugeom by value: -rotang around its centroid back to the original orientation to get sgeom 

(16) return sgeom 

 

Procedure create_geom_and_bounding_box_X-Y(geom) 

(1) Object obj[] = new Object[3]//creating an array of objects 

(2) calculate centrod:gcen of polygon geometry:geom 

(3) calculate maximum local weighted orientation:rotang 

(4) rotate geom around point:gcen by rotang to orient in X-Y direction 

(5) calculate minimum bounding box of the oriented geom in X-Y: BBX-Y 

(6) obj[0] = geomX-Y 

(7) obj[1] = BBX-Y 

(8) obj[2] = rotang 

(9) return obj //return multiple values: geomX-Y, BBX-Y, rotang 
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Procedure concave_identifier(geomX-Y) 

(1) Array<Coordinates> ac = get coordinates.geomX-Y 

(2) temp_angdiff = -1; vid = 0//vertex id 

(3) for each coordinate in ac  { 

(4)        get angle difference:angdiff  between the two edges connecting the coordinate 

(5)        if angdiff = 900 and temp_angdiff != 900 then  { 

(6)         map.put(k,coordinate)//concave vertex_id and its coordinate 

(7)         temp_angdiff = angdiff 

(8)        } 

(9) } 

(10) return map 

 

Procedure create_outer_poly(geomX-Y,BBX-Y) 

(1) get the difference between source geometry:geomX-Y and its BBX-Y to output polygon:dp 

(2) create inner line strings of dp by extending its each edge to meet opposite edge if intersected 

(3) polygonize line strings to form inner polygons:ips 

(4) add ips into a geometry array: ipgeom 

(5) return ipgeom 

         

Procedure polygons_to_merge(Map<Vertex,Coordinate> pmap, geometry array Cp, bethv) 

(1) iterator it pmap 

(2) while (it.hasNext()) { 

(3)  get coordinate:value 

(4)  for each geometry in Cp 

(5)          if (value is on cP)  then { 

(6)   get envelope: envp 

(7)   if (envp.length <= bethv or envp.width <=bethv) then 

(8)   { 

(9)   add envp into a geometry array: aenvp 

(10)   } 

(11)                         } 

(12)  } 

(13) }//end while 

(14) return aenvp 
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G.8 Building aggregation with orthogonal sides 

Input: 

Building cluster (orthogonal) multipolygon geometry: cgeom 

Minimum distance threshold between buildings:mindst 

Minimum side length of a building: minlength 

Filling threshold:fth 

Simplification threshold:simth 

Output: 

 Building amalgam array: ArrayList<Geometry> bamal 

 

  Main method: OrthogonalAmalgam(bclust, mindst, minlength, fth, simth) 

(1)     ArrayList<String> blnk = new ArrayList<String>() 

(2) ArrayList<Geometry> triarray = new ArrayList<Geometry>() 

(3) ArrayList<Geometry>:bamal 

(4) for each cluster:cgeom in PostGIS database { 

(5)            Geometry symbol  = symbolization(cgeom) 

(6)  if (symbol = null) then { 

(7)             Geometry buffout = buffer_operation(cgeom,mindst,-mindst) 

(8)             if (buffout.GeometryType = “Polygon”) then { 

(9)    Geometry sqgeom = squaring(buffout) 

(10)    Geometry engeom = enlargement(sqgeom,fth) 

(11)    Geometry simpg = simplification(engeom,simth) 

(12)    add simpg into ArrayList<Geometry>:bamal 

(13)             } 

(14)   else if (buffout.GeometryType = “Multipolygon”) then { 

(15)    explode buffout into separate polygon array:ArrayList<Geometry> alg 

(16)              Object[] val4 = recreatingGeometry(alg) 

(17)    Map idgeom = val4[0] 

(18)    Map geomid = val4[1] 

(19)    Map coordid = val4[2] 

(20)    Map STRindx = val4[3] 

(21)    clear blnk //empty building link array 

(22)    clear triarray //empty building link array 

(23)    ArrayList<Geometry> triarray = ConstrainedTriangulation(alg) 

(24)    get adjacency relations between each pair of buildings in blnk array 
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(25)    remove duplicate links in blnk 

(26)   ArrayList<Geometry> spacetri = getBridges4Squaring(blink, coordid,  

(27)   STRindx, geomid, idgeom, mindst) 

(28)   ArrayList<Geometry> candidate_tris = getCandidateTriangles(spacetri,  

(29)     mindst) 

(30)    ArrayList<ArrayList<Geometry>> brdg_clusters  =  

(31)                                                getBridgingClusters(candidate_tris) 

(32)    ArrayList<ArrayList<Geometry>> filter_brdg =  

(33)                  filterBridges(brdg_clusters) 

(34)    convert filter_brdg array into a single ArrayList<Geometry>: tribrdgs  

(35)    Geometry uamal = union tribrdgs 

(36)    if (uamal = “Multipolygon”) then { 

(37)     Geometry buffg = bufferplus(uamal, +0.1) 

(38)     get outergeom: outgeom of buffg 

(39)     Geometry sqgeom = squaring(outgeom) 

(40)     double fthv = fth + 2 * (0.1) 

(41)     Geometry enlarge = enlargement(sqgeom,fthv) 

(42)     Geometry refenlg = bufferplus(uamal,-0.1) 

(43)     remove inter vertices if any between edges of refenlg 

(44)     Geometry simpg = simplification(refenlg,simth) 

(45)     add simpg into ArrayList<Geometry>:bamal 

(46)    } else { 

(47)     extract outer plygon:outpoly of simpg 

(48)     Geometry sqgeom = squaring(outpoly) 

(49)     Geometry enlg = enlargement(sqgeom,fth) 

(50)     Geometry simpg = simplification(enlg) 

(51)     add simpg into ArrayList<Geometry>:bamal 

(52)    } 

(53)   } 

(54)  } 

(55)  else { 

(56)   add Geometry:symbol into ArrayList<Geometry>:bamal  

(57)  } 

(58) } 

(59) return bamal 
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Procedure buffer_operation(Geometry geom, double dst1, double dst2) 

(1) BufferParameter bp = new BufferParameter()//instantiate buffer parameter:bp 

(2) set bp.EndCapStyle(cap_square) 

(3) set bp.JoinStyle(flat_edge_corners) 

(4) BufferBuilder buffb = new BufferBuilder(bp)// instantiate buffer builder:buffb 

(5) Geometry buffgeom = buffb.buffer (geom, dst1)//positive buffer 

(6) Geometry fbp = buffb.buffer (buffgeom, dst2)//dst2 = -dst1 (negative buffer) 

(7) return fbp //return buffered amalgam 

 

Procedure recreatingGeometry(ArrayList<Geometry> ageom) 

(1) //object instantiation 

(2) Object obj = new Object[4] 

(3) Map<String,Geometry> idgeom = new HashMap<String,Geometry>() 

(4) Map<Geometry,String> geomid = new HashMap<Geometry,String>() 

(5) Map<Coordinate, List<String>> cid = new HashMap<Coordinate, List<String>>() 

(6) STRtree strIndx = new STRtree() 

(7) //iterating geometries 

(8) for (i=0, i < ageom.size(), i++) { 

(9)  put poygon_id: (i+1) and polygon  geometry:ageom.get(i) into map:idgeom 

(10)  put polygon  geometry:ageom.get(i) and poygon_id: (i+1) into map:geomid 

(11)  get outer polygon:geom_outer 

(12)  insert geom_outer into strIndx  

(13)  Coordinate[] gcoords =  geom_outer.getCoordinates() 

(14)   for (j = gcoords.length-2, j >= 0, j--) { 

(15)    if (cid = null) then { 

(16)     add Stirng(i+1) into new List:nl  

(17)     put gcoords[j] and nl into map: cid 

(18)    } else 

(19)    { 

(20)      get String(i+1) from map: cid from gcoords[j] 

(21)     add Stirng(i+1) into new List:nl  

(22)    } 

(23)   }//end for 

(24) }//end for 

(25) return obj 
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Procedure getBridges4Squaring(ArrayList<Stirng> blink, Map<Coordinate, List<String> clst, STRtree indx, 
Map<Geometry,String> geomid, Map<String,Geometry> idgeom, double mindst) 

(1) ArrayList<Geometry> spaceTri = new ArrayList<Geometry>()//instantiate array geometry 

(2) for (i=0, i < bkink.size(), i++) { 

(3)  get bid1, bid2 and distance:dst between bid1 and bid2 form blink array 

(4)  Geometry bldg1 = idgeom.get(bid1) 

(5)  Geometry bldg2 = idgeom.get(bid2) 

(6)  Geometry ugeom = union bldg1 and bldg2 

(7)  if (dst <= mindst) then { 

(8)   ArrayList<Geometry> alg = run Conforming Delaunay triangulation on ugeom 

(9)   for each triangle: tri in alg { 

(10)    if (tri_ver1 =! tri_ver2) then { 

(11)     add triangle:tri into spaceTri 

(12)    } 

(13)   }  

(14)  } 

(15) } 

(16) return spaceTri 

 

Procedure getCandidateTriangles(ArrayList<Geometry> spacegeom, double mindst) 

(1) ArrayList<Geometry> can_tri = new ArrayList<Geometry>()//instantiate geometry array 

(2) for each triangle:tri in spcegeom { 

(3)  if (side1 <= mindst or side2 <= mindst or side3 <= mindst) then { 

(4)   add tri into ArrayList<Geometry> can_tri 

(5)  } 

(6) } 

(7) return can_tri 

 

Procedure getBridgingClusters(ArrayList<Geometry> candidate_tri) 

(1) ArrayList<ArrayList<Geometry>> brdg_tri = new ArrayList<ArrayLisy<Geometry>>()//instantiation 

(2) Geometry ugeom = union candidate_tri 

(3)  if (ugeom = “Polygon”) then { 

(4)   add candidate_tri into brdg_tri 

(5)  } 

(6)  else if (ugeom = “Multipolygon”) then { 

(7)   explode ugeom into separate polygons: ArrayList<Geometry> tricluster 

(8)   add tri_cluster into brdg_tri 
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(9)  } 

(10) return brdg_tri 

 

Procedure bufferPlus(Geometry geom, double dst) 

(1) BufferParameters bufp = new BufferParameters() 

(2) set bp.EndCapStyle(cap_square) 

(3) set bp.JoinStyle(flat_edge_corners) 

(4) BufferBuilder buffb = new BufferBuilder(bp)// instantiate buffer builder:buffb 

(5) Geometry buffg = buffb.buffer(geom,dst) 

(6) return buffg 

 

Procedure filterBridges(ArrayList<ArrayList<Geometry>>alg) 

(1) ArrayList<ArrayList<Geometry>> falg = new ArrayList<ArrayList<Geometry>>() //instantitation 

(2) if (alg.size() = 1) then { 

(3)  if (alg.get(0).size() <= 2) then { //only a single or two triangle polygons exist 

(4)   add alg.get(0) into falg 

(5)  } 

(6)  else { //more than one bridging gaps 

(7)   ArrayList<Geometry> falgm = new ArrayList<Geometry>()//instantitation 

(8)   Object[] robj = EdgeTrigraph(alg.get(0) //crreating triangle edge graph 

(9)   Map mapdat = Map<String,List> robj[0] 

(10)   Map<Double,List> nmap = getSharedeEdgeTris(mapdat) 

(11)   double edst = getMindstEdgeTriList(nmap) 

(12)   List tripair = nmap.get(edst) //pair of triangles with the edge with min dst 

(13)   tri_id1 = tripair.get(0) 

(14)   tri_id2 = tripair.get(1) 

(15)   Map nodgeom = Map<String, Geometry> robj[2] 

(16)   Geometry tri_geom1 = nodgeom.get(tri_id1) //retrieving geometry for tri_id 

(17)   Geometry tri_geom2 = nodgeom.get(tri_id2) //retrieving geometry for tri_id 

(18)   //Adding two geometries into geometry array 

(19)   add tri_geom1 into ArrayList<Geometry> :falgm 

(20)   add tri_geom2 into ArrayList<Geometry> :falgm 

(21)   add falgm into ArrayList<ArrayList<Geometry>>:falg 

(22)  } 

(23) }  

(24) else { 

(25)  for (i=0, i < alg.size(), i++) { 
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(26)   ArrayList<Geometry> falgm = new ArrayList<Geometry>()//instantitation 

(27)   if (alg.get(i).size() <= 2) then { //only a single or two triangle polygons exist 

(28)    add alg.get(i) into falg 

(29)   } 

(30)   else  

(31)   {  

(32)    Object[] robj = EdgeTrigraph(alg.get(0) //crreating triangle edge graph 

(33)    Map mapdat = Map<String,List> robj[0] 

(34)    Map<Double,List> nmap = getSharedeEdgeTris(mapdat) 

(35)    double edst = getMindstEdgeTriList(nmap) 

(36)    List tripair = nmap.get(edst) //pair of triangles with the edge with min dst 

(37)    tri_id1 = tripair.get(0) 

(38)    tri_id2 = tripair.get(1) 

(39)    Map nodgeom = Map<String, Geometry> robj[2] 

(40)    Geometry tri_geom1 = nodgeom.get(tri_id1) //retrieving geometry 

(41)    Geometry tri_geom2 = nodgeom.get(tri_id2) //retrieving geometry 

(42)    //Adding two geometries into geometry array 

(43)    add tri_geom1 into ArrayList<Geometry> :falgm 

(44)    add tri_geom2 into ArrayList<Geometry> :falgm 

(45)    add falgm into ArrayList<ArrayList<Geometry>>:falg 

(46)   } 

(47)  } 

(48) } 

(49) return falg 

 

Procedure EdgeTrigraph(ArrayList<Geometry> alg) 

(1) //object instantiation 

(2) Object obj = new Object[4] 

(3) Map<String,List> hmp = new HashMap<String,List>() 

(4) Map<String,Geometry> igeom = new HashMap<Geometry,String>() 

(5) Map<Geometry,String> geomi = new HashMap<Geometry,String>() 

(6) for (i = 0, i < alg.size(), i++) { 

(7)  Geometry tri_geom = alg.get(i) 

(8)  normalize three line segments:ls1, ls2 and ls3 in tri_geom 

(9)  String l1 = ls1_coordinates_start + ls1_coordinates_end //concatante coords 

(10)  String l2 = ls2_coordinates_start + ls2_coordinates_end //concatante coords 

(11)  String l3 = ls3_coordinates_start + ls3_coordinates_end //concatante coords 
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(12)  if (hmp.get(l1) = null) then 

(13)               { 

(14)                 List nl = new ArrayList() 

(15)                   nl.add(i+1) 

(16)                     hmp.put(l1, nl) 

(17)                } 

(18)               else  

(19)                {                   

(20)                     if (hmp.get(l1).contains(i+1) = false) 

(21)                          hmp.get(l1).add(i+1) 

(22)                }        

(23)  if (hmp.get(l2) = null) then 

(24)               { 

(25)                 List nl = new ArrayList() 

(26)                   nl.add(i+1) 

(27)                     hmp.put(l1, nl) 

(28)                } 

(29)               else  

(30)                {                   

(31)                     if (hmp.get(l1).contains(i+1) = false) 

(32)                          hmp.get(l1).add(i+1) 

(33)                }        

(34)  if (hmp.get(l3) = null) then 

(35)               { 

(36)                 List nl = new ArrayList() 

(37)                   nl.add(i+1; 

(38)                     hmp.put(l1, nl) 

(39)                } 

(40)               else  

(41)                {                   

(42)                    if (hmp.get(l1).contains(i+1) = false) 

(43)                          hmp.get(l1).add(i+1) 

(44)                }        

(45) }//end for 

(46) obj[0] = hmp 

(47)        obj[1] = igeom 

(48)         obj[2] = geomi 
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(49)         obj[3] = alg.size() 

(50)        return obj 

         

Procedure GetEdgeDistandTriIDs(Hashmap<String,List> map) 

(1) Map <Double,List>dmap = new HashMap<Double,List>()//object instantiation 

(2) Iterator it  = map.entrySet().iterarator 

(3) while (it.hasNext()) { 

(4)  String key = (String)entry.getKey() 

(5)           List value = (List)entry.getValue()// this consists of triangle ids 

(6)  split coordinate pair in key 

(7)  get the distance:edst between coordinate pair  

(8)  if (value.size() > 1) then { 

(9)   put edst and value in dmap 

(10)  } 

(11 } 

(12) return dmap 

 

Procedure GetMinDstEdgeandTriIDPair(Hashmap<Double,List> map) 

(1) Set set = map.keySet() 

(2) Treeset treeset = new Treeset() 

(3) add set to treeset 

(4) double mindst = treeset.first() 

(5) return mindst 
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G.9 Building aggregation with non-orthogonal sides 

Input: 

Building cluster (non-orthogonal) multipolygon geometry: cgeom 

Minimum distance threshold between buildings:mindst 

Minimum side length of a building: minlength 

Space triangle edge distance threshold:sedgth 

Inner hole area threshold:areath 

Simplification threshold:simth 

 

Output: 

 Building amalgam array: ArrayList<Geometry> bamal 

 

Main method: NonorthogonalAmalgam(bclust, mindst, sedgth, minlength, fth, areath, simth) 

(1)     ArrayList<String> blnk = new ArrayList<String>() 

(2) ArrayList<Geometry> triarray = new ArrayList<Geometry>() 

(3) ArrayList<Geometry>:bamal 

(4) int i = 0 

(4) for each cluster:cgeom in PostGIS database { 

(5)            Geometry symbol  = symbolization(cgeom) 

(6)  if (symbol = null) then { 

(7)             Geometry buffout = buffer_operation(cgeom,mindst,-mindst) 

(8)             if (buffout.GeometryType = “Polygon”) then {  

(9)    if (buffout has inner holes) then { 

(10)     Geometry newg = IncludeInnerHoles(buffout, areath) 

(11)     remove inner vertices of newg: rnewg 

(12)     Geometry simpg = simplification(rnewg,simth) 

(13)     add simpg into ArrayList<Geometry> bamal 

(14)    } 

(15)    else { 

(16)     remove inner vertices of newg: rnewg 

(17)     Geometry simpg = simplification(rnewg,simth) 

(18)     add simpg into ArrayList<Geometry> bamal 

(19)    } 

(20)   } 
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(21)   else if (buffout.GeometryType = “Multipolygon”) then { 

(22)    Geometry densgeom = Densifier.densify(buffout,mindst) //densification 

(23)    explode buffout into separate polygons: ArrayList<Geometry> splitgeom 

(24)    Object[] val4 = recreatingGeometry(splitgeom) 

(25)    Map idgeom = val4[0] 

(26)    Map geomid = val4[1] 

(27)    Map clst = val4[2] 

(28)    Map STRindx = val4[3] 

(29)    clear blnk //empty building link array 

(30)    clear triarray //empty building link array 

(31)    ArrayList<Geometry> triarray = ConstrainedTriangulation(splitgeom) 

(32)    get adjacency relations between each pair of buildings in blnk array 

(33)    remove duplicate links in blnk 

(34)   ArrayList<Geometry> spacetri = pairwise2candAggre(blink, clst,  

(35)   STRindx, geomid, idgeom, mindst) 

(36)   Object[] robj = EdgeTrigraph(spacetri) 

(37)   Map mapdat = (Map<String,List>) robj[0] //edge vs tri_id list 

(38)                                  Map geomnode = (Map<Geometry,String>) robj[1] // Geom vs tri_id 

(39)   Map nodegeom = (Map<String,Geometry>) robj[2] // tri_id vs geom 

(40)                          Integer numt = (Integer) robj[3]   //Getting Number of triangles 

(41)   remove edges that share only single triangle id from mapdat 

(42)   get adjacent triangle pairs: List<List<String>> adjpair from mapdat 

(43)   sort adjacent triangle pairs in a sequence: List<List<String>> spair 

(44)   get the sorted triangle ids: List<String> stri  in a sequence from spair 

(45)   get the topologically sorted trangle geometry:ArrayList<Geometrry> aslg 

(46)   //from spair and nodegeom 

(47)   map trid vs geometry //triid -> dummy_id 

(48)   map geometry vs trid 

(49)   ArrayList<Geometry> ageompair = pairwisecandidateTriangles(aslg, clst, 

(50)   bid1, bid2, sedgth) //selected candidate tris based on edge distance 

(51)   get the traingle ids:ArrayList<String> dummyids from ageompair in 

(52)   // ascending order 

(52)   check trids order (sequential or not) with boolean: chk 

(53)   if (ageompair.size() = 1) then { //only one triangle 

(54)    if (first id of dummyids = 1) then { 

(55)     iterate adjoining triangles ascending unitil invert  

(56)     //triangle is found and add triangles to bamal array 
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(57)     } 

(58)    if (first id of dummyids = ageompair(size) - 1) then { 

(59)     iterate adjoining triangles descending until invert  

(60)     //triangle is found and add triangles to bamal array 

(61)    } 

(62)   }   

(63)   else if (chk = true) then { 

(64)    if (ageompair.size() = 2 then {     

(65)     pair dummyids 

(66)     if (triangle_pair is invertible) then { 

(67)      add both triangles to bamal array 

(68)     } 

(69)     else { 

(70)      get two invertible triangles adjoing tri pair 

(71)      add triangle:trif with minimum area together 

(72)      // with initial triangulation pair to bamal array 

(73)     } 

(74)    else (  

(75)     add all triangles to bamal array  

(76)    } 

(77)   } 

(78)   else { 

(79)    pair dummyids 

(80)    get filling triangles of gaps between adjacent triangle clusters 

(81)                                  //from both ends of each cluster using invert selection method 

(82)    add filling triangles to bamal array 

(83)   } 

(84) } 

(85)                         } 

(86)                        else { 

(87) add Geometry: symbol to bamal array 

(88)                         } 

(89)       } 

(90)       return bamal 
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Pocedure IncludeInnerHoles(Geometry geom, double ath)  

(1)  Geometry result = null 

(2) convert geometry:geom into polygon:p 

(3) create the exterior ring:extrng of Polygon:p  

(4) get the number of inner rings:nring from polygon:p 

(5) for (i = 0, i < nring, i++) { 

(6)  LineString lsring = get interior of nring(i) 

(7)  get Coordinates[]:lscoord of lsring 

(8)  create linear ring:lrhole from lscoord 

(9)  create geometry:ingeom from lrhole 

(10)  if (ingeom.getArea() >= ath) then { 

(11)   lrarray[i] = lrhole 

(12)  } 

(13) } 

(14) result = new GeometryFactory().createPolygon(extrng, lrarray) 

(15) return result 

 

Procedure pairwise2candAggre(ArrayList<Stirng> blink, Map<Coordinate, List<String> clst, STRtree indx, 
Map<Geometry,String> geomid, Map<String,Geometry> idgeom, double mindst) 

(1) ArrayList<Geometry> spaceTri = new ArrayList<Geometry>()//instantiate array geometry 

(2) for (i=0, i < bkink.size(), i++) { 

(3)  get bid1, bid2 and distance:dst between bid1 and bid2 form blink array 

(4)  Geometry bldg1 = idgeom.get(bid1) 

(5)  Geometry bldg2 = idgeom.get(bid2) 

(6)  Geometry ugeom = union bldg1 and bldg2 

(7)  if (dst <= mindst) then { 

(8)   ArrayList<Geometry> alg = ConstrainedTriangulation(ugeom) 

(9)   for each triangle: tri in alg { 

(10)    if (tri_ver1 =! tri_ver2) then { 

(11)     add triangle:tri into spaceTri 

(12)    } 

(13)   }  

445 
 



(14)  } 

(15) } 

(16) return spaceTri 

 

Procedure pairwisecandidateTriangles(ArrayList<Geometry> aslg, Map<Coordinate, List<String> clst, String 
bid1, String bid2, double thdst) 

(1) ArrayList<Geometry> calg = new ArrayList<Geometry>()//instantiate array geometry 

(2) for (i=0, i < aslg.size(), i++) { 

(3)  Coordinate[] tric = aslg.get(i).getCoordinates() 

(4)  get id lists lst1, lst2 and lst3 linked to each node of the triangle 

(5)  get three edge distances: dst1, dst2 and dst3 in the triangle between bid1 and bid2 

(6)  if (dst1 <= thdst or dst2 <= thdst or dst3 <= thdst) then { 

(7)   calg.add(aslg.get(i) 

(8)   create STRtree index of aslg.get(I) 

(9)  } 

(10) } 

(11) return calg  
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H    Terminology 

A list of words often used in the dissertation is defined to avoid misunderstanding. 

Attribute discretization 

It is the transformation of numeric attributes into a smaller number of distinct ranges of 
nominal values. 

Conforming Delaunay triangulation 

It is the process of Delaunay stable mesh generation with a set of input planar points and 

vertices of Steiner points. In this process, splitting the triangles at the circumcentre and 

the edges that need to be served as constraints by adding Steiner points is adopted to 

generate a quality mesh by a refinement process with some shape criteria applied to 

triangles. As a result of splitting triangles and edges, the Steiner points may be added to 

the interior, the boundary and outside the boundary of the convex hull of the input planar 

point set. 

Constrained Delaunay triangulation 

It is the process of generalizing the conventional Delaunay triangulation with constraining 

a set of planar edges among a set of input planar points, respecting no longer the empty 

circle criterion adopted in the Delaunay triangulation. As a result, this triangulation is not 

Delaunay stable. 

Delaunay constrained triangulation 

It is the process of generating Delaunay triangulation with constraining a set of planar 

edges among a set of input planar points. 

Delaunay triangulation 

It is the most optimized triangulation in terms of the shape of triangles such that the 

triangulation maximizes the minimum angle of its triangles. When the triangulation is 

Delaunay, it has the property that no point in a planar input point set is inside the 

circumcircle of any triangle (empty circumcircle criterion). 
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Densification of edges 

It is the process of splitting existing planar line segments into several sub-segments at 

regular intervals. 

Granular edges 

Detail edges of a building geometry formed due to the application of squaring the edges 
followed by the enlargement of a building in the automatic map generalization. 

Polygon triangulation 

It is the process of decomposition of a simple polygon into triangles. The definition of a 

simple polygon is that it does not have any vertex shared by more than two edges nor does 

it have new vertices created by the intersection of two non-consecutive edges of the 

polygon. 

Steiner point 

It is a point with a particular geometric relation to a triangle, although it is not part of the 
input set of planar points used to generate triangulation. 

 
Steiner triangulation 

It is the process of deriving a triangular mesh with some optimal shape criteria in 

generating triangles by adding Steiner points. In this process, such Steiner points may be 

added to the interior, the boundary and outside the boundary of the convex hull of the 

input point set. 
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