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a b s t r a c t

Detecting the elements of deception in a conversation takes years of study and experience, and it
is a skill set primarily used in law-enforcement agencies. In ever-growing business opportunities,
organisations employ teleoperators to provide support and services to their large customer base,
which is a potential platform for fraud. With technological advancements, it is desirable to have an
automated system that spots the deceptive elements in the conversation, and provides this information
to the teleoperators to better support them in their interactions. We propose the Decision Engine to
detect deceptive conversation based on the proximity of linguistic markers present, which produces a
deception score for a conversation and highlights the potential deceptive elements of the conversation.
In collaboration with behavioural experts, we have selected ten linguistic markers that potentially
indicate deception. We have built a variety of models to detect the trigger terms for selected linguistic
markers without ambiguity, using either regular expressions or the BERT model. The BERT model has
been trained on a conversational dataset that we collated and was labelled by our behavioural experts.
The proposed Decision Engine employs the BERT model and regular expressions to detect the linguistic
markers and compute the proximity features to further estimate the deception score. We evaluated
the proposed approach on the Columbia-SRI-Colorado (CSC) dataset and a real-world Financial Services
dataset. In addition to accuracy, we have also employed the True Positive Rate metric, with a high
enough threshold to avoid any false-positive cases, which we indicate as TPRF0. The Decision Engine
achieves 69% accuracy and 46% TPRF0 for the CSC dataset and 72% accuracy and 60% TPRF0 for the
Financial Services dataset. In contrast, a baseline model, which uses non-proximity features achieves
67% accuracy and 32% TPRF0 for the CSC dataset and 67% accuracy and 10% TPRF0 for the Financial
Services dataset. Furthermore, using the Decision Engine, the impact of the proximity of markers on
the deception score has been analysed by our behavioural experts to provide insight into linguistic
behaviour in relation to deception.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deception detection is a very challenging task. For an average
erson, the ability to detect a lie is only slightly greater than
hance, with about 54% accuracy [1,2]. The successful detection
f deception in human interactions has long been of interest
cross many domains and it has been studied in various sub-fields
elated to psychology and law enforcement. It takes years of study
o master the skills. To date, this skill set is primarily required for
nterrogation in law enforcement. However, the skill of detecting

∗ Corresponding author.
E-mail addresses: n.bajaj@uel.ac.uk, n.bajaj@qmul.ac.uk (N. Bajaj).
ttps://doi.org/10.1016/j.knosys.2023.110422
950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
suspicious behaviour or elements of deception is also highly use-
ful in financial and legal services. These organisations generally
employ teleoperators or customer service representatives to meet
the demand of a large customer base. These teleoperators are
not trained to spot the cues of deception, hence organisations
lose a large amount of money every year as a result of fraud [3].
With recent advances in Natural Language Processing (NLP), it is
desirable to have an automated system that flags the deceptive
elements in a conversation, with at least the same performance as
behavioural experts and experienced interrogators, if not better. A
system with the capability to flag deceptive cues in real-time, can
support teleoperators to navigate their enquiries to reach a better
conclusion, which can save organisations from potential fraud.

Most studies for preventing financial fraud are based on the
analysis of banking transaction patterns [4]. Irrespective of the
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ield, several studies exploit the linguistic approach to detect
eception in written opinions or transcribed conversations. There
s a difference between a written and an oral conversation. While
riting, a person can be careful with their choice of words to pre-
ent the leakage of any deception cues. Whereas, while speaking,
person has an additional limitation to responding in a timely

ashion, which impacts the freedom to choose words carefully.
istorically, several linguistic features for communication have
een explored, known as linguistic markers. Linguistic markers
re features that focus on specific terms (words/phrases) in oral
r written communication. A widely used linguistic approach is
ased on the Linguistic Inquiry and Word Count (LIWC) tool,
sing the Bag-of-Words (BoW) methodology, it counts the words
f different categories such as Negations, Pronouns, Emotions,
tc. [5]. To detect deception in written opinions, studies have
xplored datasets that contain deceptive reviews and essays, [6–
]. In addition to features from LIWC, lexical and context-free
rammar features were also employed. Using the same approach,
study also explored cross-cultural deception in essay writ-

ng [9]. Fake news is another platform to spread deceptive opin-
ons, and this has been explored with a variety of linguistic
eatures [10]. A recent study used a total of 16 linguistic markers
long with sentiment features to detect fraud in telephone con-
ersations [11]. Some of these linguistic markers overlap with the
inguistic features in LIWC.

Another mode for potential fraud is online chat rooms, a type
f fraud categorised as cybercrime. A few studies have used
imilar linguistic approaches to detect deception in online mes-
ages [12], and extend it to an environment including non-native
peakers [13]. MafiaScum [14] is a large dataset for deception
etection, based on the messages exchanged in an online game.
rom this dataset, a few selected linguistic features, e.g. pro-
ouns, sensory, and quantifiers, were demonstrated as the best
eatures for indicating deception [14]. A study [15], conducted
n experiment to collect examples of truth and lies online and
his showed that age and gender influence the choice of words,
hich potentially indicate deception. A few studies have explored
eyond linguistic features by including other modalities, such as
udio, video [16,17], electroencephalogram and eye gaze [18].
hese additional modalities allow the capture of detailed cues
f deceptive behaviour. However, it is impractical for many sit-
ations to employ these sensors, due to various reasons such as
rivacy.
Conversation is the most common means in organisations for

epresentatives and customers to communicate, and this is the
odality we are focused on in this work. To investigate decep-

ion detection in speech, a widely used dataset is the Columbia-
RI-Colorado (CSC) dataset [19], containing the audio and tran-
cribed conversations of 32 interviews. This dataset has been
xplored with linguistic features from the transcribed conver-
ations and acoustic features from the audio recordings [20].
ith additional datasets, it has been shown that deception is

nfluenced by individual and cultural differences [21,22]. There
re a few studies that have explored only the acoustic features
f the CSC dataset [23], which demonstrated the significance of
lottal waveform features [24] and pauses [25] in relation to
eception. Most of the findings in the above-mentioned studies
re consistent with widely accepted theories of deception [26].
To date, most of the work based on linguistic markers is

ependent on the frequency of the terms (words/phrases), in-
luding the LIWC tool, which counts specific words from different
ategories. Although counting the terms of linguistic markers is
ffective [6,9,11,12], the temporal relationship and interaction
etween linguistic markers is lost, such as the order in which
hey appear and their proximity to each other in a conversation.

he interaction of different markers in a conversation can inform e

2

about the cognitive state of the subject and potential cues of
deception, such as two Negation terms near to each other.

In this paper, we propose the Decision Engine that exploits the
temporal relationship of linguistic markers using the proximity
model. We use a set of 10 linguistic markers, all of which are po-
tential indicators of deception. These markers have been carefully
validated by linguists and expert interrogators. We have used the
Bidirectional Encoder Representations from Transformers (BERT)
model [27] to detect and remove the ambiguity of trigger terms
for a number of these selected linguistic markers. Based on the
proximity of linguistic markers, the Decision Engine estimates the
deception score for a given transcribed conversation. To evaluate
the Decision Engine, we have used (1) the CSC dataset [19] and
(2) a real-world Financial Services dataset [11]. It is critical to
evaluate a system that detects deception or fraud. While expect-
ing the system to have a high accuracy for detecting fraud, it
is also very important to minimise the False Positive Rate to
negligible for two reasons. Firstly, it is not desirable to have false
alarms that incorrectly classify a truth as deception and flags the
cases. Secondly, to avoid the Base Rate fallacy, also known as
the False Positive paradox [28]. To accommodate this, in addition
to accuracy as a performance metric, we use a metric TPRF0,
which is a true positive rate with a high enough threshold on
the deception score to eliminate any false positive cases. In other
words, TPRF0 reflects the fraction of deceptive cases that can be
detected without raising any false alarms, the False Positive Rate
becomes equal to zero.

The rest of the paper is organised as follows: Section 2 de-
cribes the linguistic markers and how they are detected. Sec-
ion 3 explains the formulation of the proximity model to extract
roximity-based features. The Decision Engine is explained in
ection 4. In Section 5, we outline the datasets used to evaluate
he Decision Engine, the experimental settings and discuss the
esults. Section 6 analyses the interaction between the markers
rom a linguistic perspective. Finally, we conclude the proposed
pproach and discuss future directions in Section 7.

. Linguistic markers and detection

In this section, we explain the selected linguistic markers and
heir unambiguous detection for the Decision Engine.

.1. Linguistic markers

In addition to physiological responses and body language,
nalysing linguistic cues in written or verbal communication is
ne of the techniques behavioural analysts use to spot deception
n forensic analysis [29]. Over the last century, the choice of words
nd phrases have been identified as linguistic cues, to indicate the
ognitive and emotional response of the subject. Several linguistic
arkers have been proposed in the literature [5,30], from which

n consultation with behavioural experts, we adopted a subset
f carefully selected markers that potentially indicate deception.
hese 10 markers are defined in Table 1, along with examples of
heir trigger terms.

For each marker in Table 1, a list of trigger terms (keywords
nd phrases) has been created by our behavioural experts. The
irst approach to identify the markers in a subject’s utterance
s to use a list of trigger terms to spot the respective marker
y employing Regular Expressions (RegEx). It is also known as a
oW or keyword spotting. For a few markers, such as Negation,
he RegEx approach works quite well. However, for markers such
s Hedging and Explainers, the RegEx produces a high False
ositive Rate (FPR) due to the ambiguity of the trigger terms,
.e. the context of the marker can vary. To illustrate, consider two

xamples: (1) I have about 10 million objects (2) We need to talk
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Table 1
Linguistic Markers.
k Marker Example

1. Disfluencies: Interrupts the flow of
conversation and can be used as a
stalling tactic, detectable as
hesitations or fillers, indicative of
potential deception [31].

Um, Er, Ah

2. Explainers: Statements that provide
an explanation for former context in
a conversation. A potential indicator
of deception is when the explanation
was not required or not relevant in
the current context [32].

Because,
Therefore, Since

3. Hedging: Denotes a doubt or a lack
of commitment to what is being said
[33].

About, Maybe, Like

4. Implied Repetition: Implies that the
following information was already
conveyed. The emphasis on repetition
can indicate the psychological need
to imply that something has been
said without necessarily having said
it. The speaker also shows a
particular awareness of the audience
at this point and seeks to convince of
the former [34].

As I mentioned,
Like I said, As I
told you

5. Memory Loss:a Feigning memory loss
or having no recollection of events, is
a potential sign of deception [33].

I forgot, I don’t
remember

6. Negation:a Anything which is
reported in the negative, especially
when related to time [35].

Not, Can’t, Didn’t,
Never

7. Temporal Lacunae: Unexplained
lapses of time, indicative of
deception when not expected [33].

Afterwards, Later

8. Uncertainty: Denotes imprecision,
vagueness, or incompleteness in a
conversation. A likely indication to
hide or create false information. [36].

Something,
Someone

9. Untruthful Words: Expresses some
level of uncertainty by overselling
[33]

Honestly, Cross
my heart, God
knows

10. Withheld Information: Omitting to
disclose vital information
intentionally [37].

Generally, Loosely,
Largely speaking

aTo avoid duplicates due to the inclusion of Negation terms in Memory Loss,
such instances are considered as Memory Loss only.

about Mark. In both examples a trigger term about is used, which
is indicative of Hedging, however, in example (2), the term about
is not Hedging. To remove such ambiguities in trigger terms, more
contextual information is needed. To achieve this, we created a
conversational dataset labelled by behavioural experts, which is
explained in the next subsection.

It is important to note that historically, linguistic markers are
defined and analysed based on native speakers. Although the
impact of most of the linguistic markers translates to non-native
speakers, a marker such as Disfluencies, could be less sensitive to
deception. A subject who is speaking a second language (non-
native) might be using more frequent fillers as compared to a
native speaker, which could indicate the cognitive load to form
sentences as opposed to hesitation or stalling tactics. In the case
of non-native speakers, it is suggested to consider the language
fluency of the subject.

2.2. Dataset

To remove the ambiguities in detecting linguistic markers,
we created a dataset, namely A Conversational Dataset to detect
Linguistic Markers (CDLM). As our focus is on oral communication
rather than written, the dataset was created from the Cornell
3

Table 2
Testing results of MTDNN-BERT for correctly detection of marker,
along with the respective FPR of RegEx.

Linguistic marker RegEx MTDNN-BERT

FPR Error rate F1

Hedging 0.59 0.11 0.87
Explainer 0.31 0.07 0.96
Memory Loss 0.50 0.07 0.93

movie dialogues corpus (600+ movie scripts) and an American
sitcom (TV series) Seinfeld [38,39]. From the dialogue scripts,
we extracted the utterances detected using the RegEx approach.
Each utterance was then examined by behavioural experts and
labelled to indicate whether the respective trigger term rep-
resents a marker, for example, Hedging or Non-Hedging labels
for an utterance with a Hedging keyword. From the analysis
performed on this expertly labelled data, it was observed that
the RegEx approach produces a very high FPR of 59%, 30%, and
50% for Hedging, Explainers, and Memory Loss, respectively. In
contrast, for the remaining seven markers, the FPR was quite low.
Because of this, we decided to train a BERT model to achieve more
accurate identification of these three markers. The final CDLM
dataset consists of labelled utterances for these three linguistic
markers, Hedging, Explainers, and Memory Loss. To improve the
performance of the MTDNN-BERT, the CDLM dataset was ex-
tended and populated with utterances that do not include any
trigger terms. The resulting CDLM dataset consists of 6,837, 4,151,
and 604 labelled utterances for Hedging, Explainers, and Memory
Loss, respectively.

2.3. Detection using BERT

BERT is a promising language model, which requires very little
training for a new NLP task to achieve state-of-the-art perfor-
mance [40]. To reduce the FPR for the Hedging, Explainers, and
Memory Loss markers, a pre-trained BERT model was used. To
avoid the use of multiple BERT models, i.e. one for each marker,
and the computational cost this would entail, the Multi-Task Deep
Neural Network (MTDNN) architecture is used. This uses BERT’s
shared transformer layers [41] followed by three output layers,
one for each marker (MTDNN-BERT). The 12-layers of BERT trans-
former output 768 features which are fed to three linear layers in
parallel to generate the probability score for the presence of each
marker. As this is a multi-task problem, each probability score is
independent of the others. The shared transformer layers allow
the knowledge learned in one task to be used for the other tasks.

With a 70-30 split on the extended CDLM dataset, for training
and testing, the MTDNN-BERT was trained (fine-tuned) using
Adamax optimiser, with a very low learning rate of 5e − 5 and

batch size of 16. Table 2 shows the error rate and F1-score
achieved on the test data for each class alongside the FPR of the
RegEx for the respective markers. From Table 2, it can be seen
that the MTDNN-BERT has reduced the FPR for each marker sig-
nificantly, i.e. in comparison to RegEx, the MTDNN-BERT achieves
a total error rate of 11% for Hedging, which also includes false
negative cases, thus FPR < 0.11.

Using the CDLM dataset, the MTDNN-BERT has been trained
to classify an utterance as containing a true marker or not, i.e. to
detect if the utterance contains true Hedging, Explainers, and/or
Memory Loss. However, the trigger terms within the utterance for
the respective markers are not identified by MTDNN-BERT itself.
One approach to identify the respective trigger terms is to apply
the RegEx as a post-processing step. For example, if MTDNN-BERT
classifies an utterance to be Hedging, the RegEx list for Hedging
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PFi,n(k) =

⎧⎨⎩
Tk(j) − Ti(n) where j = argminj(|Tk(j) − Ti(n)|) if k ̸= i and Tk ̸= ∅

T ′

i,n(j) − Ti(n) where j = argminj(|T ′

i,n(j) − Ti(n)|) if k = i and T ′

i,n ̸= ∅

∞ (dmax) else
for k = 1, 2..K (2)
can be applied to the processed utterance to identify the actual
Hedging term or phrase within the utterance.

To identify the trigger terms in an utterance for the respective
arkers, instead of using the RegEx as a post-processing step,
e exploited MTDNN-BERT’s language model functionality. As
ERT has been originally trained on a variety of datasets and
s it is a language model, MTDNN-BERT can also be used to
dentify further potential and similar trigger terms which were
ot present in the original list of trigger terms. We used the
ext Deconvolution by Occlusion (TDO) technique [42], which
llows us to find the weight for each word in the utterance with
espect to the overall prediction score, i.e. the probability score
or a class. This is achieved by masking one word at a time
nd observing the fluctuation in the prediction score. The weight
roduced by TDO corresponds to the importance of each word in
sentence towards the MTDNN-BERT prediction. The weights of
ll words are then normalised and with empirical observations, a
hreshold of 0.85 was set to identify the relevant term or phrase
n the utterance. Compare to RegEx step as post-processing, TDO
as found to much more effective. For example, MTDNN-BERT
as able to detect sentences as Hedging, where no trigger term

rom our list was present, however, with TDO, a word similar to
edging was revealed in given context. By using TDO, instead of
egEx as post-processing, we were able to surface more trigger
erms in complex context than we had originally identified. All
ew surfaced trigger terms for a particular marker were verified
y our behavioural team.

. Proximity model

The classical approach uses the frequency of all instances of
inguistic markers in a given text or piece of transcribed speech
o detect deception and fraud [6,11,14]. However, using the fre-
uency of all instances, we lose the information of the order
n which these markers appear in speech and their proximity
o one another, i.e. how the markers interact. For example, two
arkers appearing in a different order will still have the same
ount. To overcome this, we introduce the Proximity Feature. For
ase of explaination, all the notations used for proximity model
ormulation are tabulated in Table 3.

.1. Proximity feature

To capture the patterns in which different markers appear
n utterances, we designed a proximity model, which extracts
he patterns of how different markers appear by computing the
istance of closely appearing markers. An extracted pattern is
onsidered as a Proximity Feature (PF), which is further used for
redictive modelling by the Decision Engine. The PF is a vector
nd the formulation of the PF is explained as follows.
Consider there are K linguistic markers; M1, M2, . . .MK . There

can be multiple instances of a given marker Mi, detected at
different locations (word indices) in the utterance. For example,
I have not seen that object, never in my life. There are two Nega-
ion markers (emboldened) present, one at word location 3, and
nother at 7. For each marker Mi, a set of locations of marker

instances; Ti can be defined as:

M −→ T = {∀t ∈ Z | t location of marker M } (1)
i i i

4

Table 3
Notations for proximity model.

For K linguistic markers, and i = 1, 2, . . . K

Mi ith Linguistic Marker
Ti Location Set for ith Marker, (also considered as an

indexed list)
Ti(n) nth instance of ith Marker
t in Location of nth instance of ith Marker, i.e. Ti(n) = t in
T ′

i,n = Ti \ {t in} Location Set for ith Marker, excluding nth element
NTi Total number of instances of ith Marker, i.e. length of

Location Set Ti
PFi,n Proximity Feature Vector for nth instance of ith Marker.

The dimension of PF vector K , i.e. PFi,n ∈ ZK

PFηg
i,n Proximity Feature vector normalised by Gaussian kernel;

ηg (·)
PFηh

i,n Proximity Feature vector normalised by Tanh kernel;
ηh(·)

PFi Proximity Feature matrix for ith Marker, that is created
by concatenating PF vectors of all the instances. The
dimension of PF matrix PFi ∈ ZNTi ×K

dmax Maximum proximity range

such that, each marker Mi has a location set Ti.
By the definition of linguistic markers (see Table 1) and their

exclusive nature, the location sets of markers are such that: Ti ∩
Tj = ∅ for i ̸= j (non-overlapping). A location set Ti can be
an Empty set if no instance of marker Mi appeared in the given
utterance. Thus, the length of location set NTi = |Ti| is the total
number of instances of marker Mi in the utterance. The Proximity
Model is designed to compute a pattern for each instance of the
markers, such that for a given utterance, the number of PF vectors
will be equal to

∑K
i=1 NTi , i.e. sum of the number of instances of

all the markers. By abuse of notation, for simplicity, we consider
a set Ti also as a sequence, to index an element t ∈ Ti. From
given location sets T1, T2... TK , for K markers, consider that the
location of nth instance of marker Mi is t in, e.g. Ti(n) = t in. Then
the PF vector, PFi,n for t in can be computed as defined by Eq. (2).
The details of computation from Eq. (2) are explained below with
a help of Fig. 1. To compute PFi,n for t in, Eq. (2), iterates over K
markers (k = 1, 2 .. K ), and computes the distance of nearest
marker instance to t in (i.e. Ti(n)) from each marker, thus PFi,n ∈ ZK ,
a K -dimensional vector of integers. Eq. (2) has three cases to
compute PFi,n, which are explained as follows;

(1) While iterating over other markers Tk, (k ̸= i), if the
location set of another marker is not empty, i.e. Tk ̸= ∅

(the first case of Eq. (2)), the computation is straightfor-
ward. Finding a marker instance Tk(j), which has minimum
absolute distance to Ti(n) (i.e. t in), and assign kth element
of PFi,n(k) = Tk(j) − Ti(n), which is a signed distance to
closest instance of the kth marker. To keep the direction
of marker instance (before or after), we use distance with
sign Tk(j)−Ti(n), instead of absolute distance |Tk(j) − Ti(n)|,
where a positive value means, the nearest marker instance
appears after tkj , and vice-versa.

(2) Since PFi,n is computed for the nth element of the ith
marker, when (k = i) (e.g. computing over the same
marker), the first thing is to recreate the location set T
i
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Fig. 1. Illustration of Proximity Feature vector PFi,n from location sets Ti and construction of Proximity Feature matrix PFi .
Fig. 2. Proximity Feature patterns for all the markers in the given utterance. For explanation, two instances of Hedging and Uncertainty are highlighted in red and
blue, respectively.
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as the one to exclude the nth element from it, which is
T ′

i,n = Ti \ {t in}, as illustrated in Fig. 1. If a recreated location
set is not empty, T ′

i,n ̸= ∅ then we compute the minimum
distance for PFi,n(i) in the same way as we did in the first
case above.

(3) In the case of an empty location set, e.g. Tk = ∅, the
distance of the nearest marker is set to PFi,n(k) = ∞, which
indicates that the marker is present somewhere far away.
However for computational purposes, this far away value
is set to a predefined higher value (dmax), such as the total
length of the given utterance. The dmax can also be set to
a smaller value to restrict the proximity range to a shorter
temporal region.

sing Eq. (2) the PFi,n vector is computed for each marker instance
n the ith-marker, which further is concatenated and represented
s matrix PFi, PF for ith marker, as illustrated in Fig. 1. Since there
re NTi elements in Ti location set, PFi will have NTi , K -dimensional
ectors, PFi ∈ ZNTi×K . Finally, for K markers, we obtain a set of K
F matrices, i.e. PF1, PF2, . . . , PFK . However, due to the different
umber of instances in each marker, they can not be combined
s a 3D Tensor, which is shown in Fig. 1.
To further support the explanation of PF and its computation

rom Eq. (2), we present an example of a 140 word long utterance
rom a conversation. The linguistic markers for the utterance
re shown in Fig. 2. To keep the focus on computation, we
mit the actual conversation and only consider the location sets
xtracted for 10 linguistic markers, which are as follows; T1 =

18, 93, 125, 127}, T = {}, T = {3, 35, 96}, T = {}, T = {},
2 3 4 5

5

6 = {57, 62, 63, 106, 138}, T7 = {49}, T8 = {22, 74, 86, 99},
9 = {}, T10 = {}. The order of the location sets for linguistic
arkers is same as in Table 1 i.e. T1 is for k = 1, Disfluencies. The

nstances of each linguistic marker are shown as dots in Fig. 2,
here, the x-axis is the location (word index) of marker instances
nd the y-axis is the marker. Markers are identified and plotted
or only one speaker (customer) in a conversation. Note that for 5
arkers there are no instances, thus the respective location sets
re empty. As shown in Fig. 2, each marker instance is connected
o the nearest marker instance of every other category, including
tself, as computed by Eq. (2). Two instances are highlighted in
articular, the second instance of Hedging (T3(2) = t32 = 35) and
he third instance of Uncertainty (T8(3) = t83 = 86), with solid red
nd blue lines connecting these instances to the nearest instance
f every marker, respectively.
The computation of the Proximity Feature for the second in-

tance of Hedging (PF3,2), using Eq. (2) is as follows. For k = 1,
he nearest marker instance for second instance of Hedging from
1 is 18, so PF3,2(1) = 18 − 35 = −17 (case 1 in Eq. (2)). For
= 2, since T2 is the empty set, PF3,2(2) = ∞ (case 3 in Eq. (2)).
imilarly, for k = 4, 5, 9, 10, respective location sets are empty,
o PF3,2(4) = PF3,2(5) = PF3,2(9) = PF3,2(10) = ∞. For k = 3,
ince it is the same marker (i.e. Hedging, T3), we get a closet
arker instance of Hedging, excluding the second element 35,

T ′

3,2 = T3\{35} = {3, 96}), which is 3, so PF3,2(3) = 3−35 = −32.
case 2 in Eq. (2)). Similarly, for k = 6, PF3,2(6) = 57 − 35 = 22,
= 7, PF3,2(7) = 49−35 = 14, k = 8, PF3,2(8) = 22−35 = −13.
onsidering d = 100, the computation of PF can be written
max 3,2
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Fig. 3. Proximity Features extracted from location sets highlighted in Fig. 2
or instances of Hedging and Uncertainty from all the markers; Hedging (Hd),
xplainers (Exp), Disfluency (Dis), Withheld Information (WI), Untruthful Words
UW), Uncertainty (Un), Temporal Lacunae (TL), Negation (Neg), Memory Loss
ML) and Implied Repetition (IR).

s;

F3,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

18 − 35
∞

3 − 35
∞

∞

57 − 35
49 − 35
22 − 35

∞

∞

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−17
dmax
− 32
dmax
dmax
22
14

− 13
dmax
dmax

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−17
100
− 32
100
100
22
14

− 13
100
100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The PF vectors for the above-mentioned two highlighted in-
stances and vectors PF3,2 and PF8,3 are shown as radar charts in
Figs. 3(a) and 3(b) respectively. In Figs. 3(a) and 3(b), the positive
values of PF are shown as solid lines, the negative values as
dashed lines and ∞ as solid black lines.

3.2. Scaling of proximity feature

Furthermore, we scale the PF using a kernel function η : Z −→

R, with two options as defined by Eqs. (3) and (4), denoting ηg (·)
nd ηh(·) for Gaussian and Tanh kernel, respectively.

g (d) = exp(−(d/α)2) (3)

ηh(d) = tanh(αd) (4)

For the Gaussian kernel, Eq. (3), α = (−d2max/log(ε))
1
2 , satisfy-

ng ηg (dmax) = ε and for the Tanh kernel, Eq. (4), α = tanh−1(1−

ε)/dmax, satisfying ηh(dmax) = 1 − ε; for a small positive value of
ε > 0 ∼ 0.01 and a large dmax value.

The scaling characteristics of Gaussian and Tanh are shown in
Fig. 5, for dmax = 200 and ε = 0.01. The scaling function η is
an overloaded function and can be used on multi-dimensional
vectors or tensors, i.e. η : ZN×K

−→ RN×K , which allows us to
pply a selected scaling function directly on PFi, i.e. PF

η

i = η(PFi).
he objective of the scaling function is to accommodate two
mportant characteristics of the PFs:

(1) Exponential Decay: From a linguistic point of view, two
markers close to each other have a significant relationship
and this relationship fades away exponentially with dis-
tance, due to the change in the context of the conversation.
For example, a Negation and Hedging marker appearing
close to each other in the same utterance has a significant
relationship. However, if they are 100 words apart, they
have very little impact on each other. The distance be-
tween two markers is therefore mapped using a non-linear
(Gaussian or Tanh) scaling function.
6

Fig. 4. Scaled Proximity Features of a Hedging instance (as in Fig. 3(a)),
highlighted in Fig. 2, scaled with (a) Gaussian kernel (b) Tanh kernel. Markers:
Hedging (Hd), Explainers (Exp), Disfluency (Dis), Withheld Information (WI),
Untruthful Words (UW), Uncertainty (Un), Temporal Lacunae (TL), Negation
(Neg), Memory Loss (ML) and Implied Repetition (IR).

Fig. 5. Kernel functions for scaling. dmax = 200, ϵ = 0.01.

(2) Normalisation: The kernel function η, allows a mapping
of PF values between 0 to 1 (using a Gaussian kernel)
or −1 to 1 (using a Tanh kernel), a well-defined range
considered as normalisation of PF for any utterances. Note
that by using the Gaussian kernel, we only preserve dis-
tance between markers and lose the direction information
(+ve/−ve). However, the direction of markers in respect to
each other, is preserved if the Tanh kernel is used.

The scaled PF for the highlighted example of a Hedging in-
stance from Fig. 2 is shown in Figs. 4(a) and 4(b), with Gaussian
and Tanh kernel function respectively. The choice of the two ker-
nel functions, Gaussian and Tanh, is carefully selected to exploit
the important characteristics of kernel functions and to impose
them on the PFs. As shown in Fig. 5, the Tanh kernel preserves
the direction of markers whereas the Gaussian does not. This
allows us to control, whether we like to retain the directionality.
Gaussian and Tanh also map the values in opposite direction of
magnitude. For Gaussian, the proximity of two very close marker
instances will be mapped to a higher value (close to 1), while for
Tanh, this will be mapped close to zero.

Another distinction between the two kernel functions is the
slope. Unlike the Gaussian, for the Tanh the slope for smaller
magnitudes is higher (almost linear). These characteristics play an
important role when choosing one kernel over another to satisfy
the assumptions. For example, if we assume that the effect of
markers changes linearly with the distance between them when
they are in close proximity, and it changes very slowly when they
are far away, then the Tanh kernel is more suitable.
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Fig. 6. The Decision Engine, based on the proximity of detected linguistic markers.
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.3. Proximity range

While computing PF using Eq. (2), a predefined value dmax can
e set. Adjusting the value of dmax and enforcing max(Ti) ≤ dmax
by clipping), allows us to control the proximity range for the
arkers or restrict the range of proximity. In other words, how

ar we want a Proximity Model to look for other markers. Setting
low value of dmax will result in a small proximity range, which

will exploit all the relationships of markers under close proximity
only. For any marker above, the range will be considered as the
same as one at dmax or having no marker. These characteristics
can be exploited in conversations, where we know the rate of
change of context. If the context of conversation changes quickly,
then setting a small proximity is suitable, however for a full
conversation with the same context, the proximity range can be
set to the length of the conversation.

Considering dmax = 1 will be a special case, where an instance
of a marker carries only the presence of itself and no information
of other markers in its proximity. In this case, the PF vector will be
a constant for all the instances and the proximity model turns to
simply counting the trigger terms. This ensures that the Proximity
Model is a generalised model, where counting trigger terms is a
special case with dmax = 1.

4. Decision engine

The Decision Engine is designed to produce the final deception
score for a conversation. The schematic of the Decision Engine is
shown in Fig. 6. It consists of four processes: (a) Linguistic Marker
Detection (b) Proximity Model to extract features (c) K-Models
(d) and a Final Layer. The first two processes are explained in
Sections 2.3 and 3, respectively, considering the list of linguistic
markers in use (see Table 1). In this section, we will explain the
last two processes of the Decision Engine.

4.1. K-Models

A set of K -Models is designed, with respect to K linguistic
markers. The objective of Modeli in a set, is to estimate the likeli-
hood of an instance of a marker mi ∈ Mi being part of a deceptive
conversation, D, given its PF PFη

i,n, i.e. Pr(y = D|x = PFη

i,n).
onventionally, this deception likelihood can be simply estimated
y counting the frequency of detected markers in deceptive and
on-deceptive conversations. However, such an approach ignores
he order of the markers present, and it is this information that
he proximity model is based on. For marker Mi, Modeli generates
he deception likelihood score for each instance mi, and these are
ggregated to produce a single score for each marker Mi, denoted
s Dli. The aggregated score Dli indicates the overall deceptiveness
f the marker Mi. For example, a high value of Dli ∼ 1.0 indicates
hat all the marker instances of Mi are highly deceptive. For the
bsence of a marker Mi, i.e. Ti = ∅, the score is set to zero,
.e. Dl = 0. Similarly, when aggregate Dl is zero for n marker
i i

7

nstances, this indicates that none of the n marker instances are
art of a deceptive conversation. A set of K -Models generates
aggregated scores with respect to the K linguistic markers

or a given conversation, where each score indicates the overall
eceptiveness of each respective marker.

.2. Final layer model

The Final layer model is designed to estimate the final Decep-
ion Score Pr of a conversation, for a given K deceptive scores
l estimated by the K -Models. By design, the Final layer focuses
n only the deceptiveness of each marker in a conversation.
ach of the K -Models and the Final layer model is a pipeline
f polynomial feature extraction, followed by a classifier, such
s a Support Vector Machine (SVM), Decision Trees, Ensemble
odels, etc. The choice of polynomial degree and classifier are

he hyperparameters optimised by the Decision Engine.

. Experiment and results

In this section, we provide information on the datasets used
o evaluate the Decision Engine, the evaluation metrics used, the
xperimental settings, and finish with a discussion of the results.

.1. Datasets

For testing the proposed approach, we used two datasets;
1) the CSC Deceptive Speech dataset, which consists 32 h of
nterviews from 32 subjects (16 male, 16 female) in a lab set-
ing. Each interview includes questions based on performance
f interviewee in tests on different topics, a complete session
ased on a topic is labelled as either Truth, Lie-Down or Lie-
p. Interviewees were instructed to lie about their performance
or a few topics, either convincing as to have better (Lie-Up)
erformance or worst (Lie-Down) compared to their original per-
ormance. When combined, the Lie-Up and Lie-Down data are
abelled as Global Lie [19]. A total of 315 sessions were extracted.
e have used the two classes: Truth and Lie (Global Lie). To
alance the Truth and Lie classes, while training, we augmented
he location sets of the True class by varying the locations of
arkers with a small random value, which raises the chance level
erformance to 50%. (2) A Financial Services dataset, consisting of
eal-world fraudulent/non-fraudulent phone calls, collected from
wo different financial services institutions. This dataset contains
total of 56 transcribed calls, 24 Non-Fraud, and 32 Fraud calls

chance level 57%). The calls in this dataset were concernedw
ith accessing bank account details. Fraud and Non-fraud calls
ere labelled by respective institutions upon follow-up investiga-
ion to identify the legitimacy of a caller. The average number of
esponses were 19. For both datasets, the conversation transcripts
ere divided into training and testing sets using a 70-30 split.
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.2. Evaluation metrics and base rate fallacy

In the field of deception/fraud detection, in addition to ac-
uracy, false positives are critical to measure for two reasons.
1) A false positive is a very sensitive issue, as it corresponds to
rongly accusing someone of being deceptive or fraudulent. The
esired system, therefore, should be able to surface the deceptive
ases without any false positives, even if some of the deceptive
ases are classified as non-deceptive. (2) To mitigate the Base rate
allacy, also known as the False rate paradox [28]. According to
ase rate fallacy, the situation is misleading when the FPR of a
ystem trained on experimental data is higher than the TPR of a
eal world scenario.

To illustrate the Base Rate fallacy for a deception detection
ystem, consider a dataset of a 1000 examples with 500 as true
ositive cases (deceptive cases) resulting in a 50% True Positive
ate. A system evaluated on this dataset produces a 5% FPR and
% FNR, which means that for this dataset, the system will detect
45 cases as deceptive, of which 500 are true, and 25 are false
ositives, which means a case that is flagged by the system is
eceptive with 95% (500/525) confidence. However, if the same
ystem is used in a real-world scenario, where 100 out of 10,000
ases are truly deceptive (1% is a most likely scenario), the same
ystem with a 5% FPR will identify 100 + 10,000 × 0.99 × 0.05

= 595 cases as deceptive. In this scenario, a case is flagged by the
systems as deceptive with only 17% (100/595) confidence.

A simple approach to avoid this situation is to increase the
threshold on the probability score, which reduces the FPR of the
system. However, it also reduces the TPR of the system. Thus,
higher accuracy for a system does not translate to the real-
world scenario. This is the one reason why a higher AUC (area
under the curve) value for a system is preferred. Although this
approach does not guarantee that a threshold exists for which
all the examples (at least 1, > 0) above the threshold are true
positives. This depends on the distribution of the probability score
generated by the classifier.

Therefore, in addition to accuracy and the F1-score, we also
compute a score TPRF0, which is the TPR with a threshold high
enough to eliminate all the false positive cases, defined as:

TPRF0 =
1

|C+|

∑
x∈C+

(
Pr(x) > thr

)
?1 (5)

or threshold thr , such that∑
x∈C−

(
Pr(x) > thr

)
?1 = 0 (6)

which can be computed as

thr = max{Pr(x) : x ∈ C−} (7)

where Pr(x) is a probability score estimated by the Decision
Engine for an example x. C+ is a set of all positive examples,
i.e. the deceptive conversation (Fraud/Lie) class and C− is a set
of all negative examples, i.e. the Non-Fraud/Truth class. |C+| is
the length of set C+, a total number of examples in the positive
class (Fraud/Lie). The score TPRF0 is assumed to be a very impor-
tant criterion for the deception detection system. It allows us to
observe if there exists a threshold on the deception score of a
trained model that produces no false alarms. It is considered that
a system with a high TPRF0 is better than a system with a low
TPRF0, regardless of poorer accuracy.

5.3. Training and results

As explained in Section 5.1, two datasets (1) CSC and (2)

Financial Services, are used to evaluate the proposed approach.

8

Table 4
Testing results of the Decision Engine for deception detection using the Financial
Services dataset.

Model for RegEx +BERT

Acc. F1 TPRF0 Acc. F1 TPRF0

Disfluencies 0.75 0.84 0.36 0.68 0.78 0.06
Explainers 0.58 0.38 0.00 0.79 0.22 0.00
Hedging 0.71 0.46 0.00 0.14 0.00 0.00
Memory Loss 0.95 0.00 0.00 0.85 0.80 0.13
Negation 0.58 0.43 0.07 0.56 0.33 0.14
Temporal Lacunae 0.00 0.00 0.00 0.00 0.00 0.00
Uncertainty 0.61 0.00 0.00 0.78 0.50 0.00

Final Layer 0.67 0.77 0.50 0.72 0.76 0.60

Table 5
Testing results of the Decision Engine for deception detection using the CSC
Dataset.

Model for RegEx +BERT

Acc. F1 TPRF0 Acc. F1 TPRF0

Disfluencies 0.67 0.67 0.20 0.62 0.63 0.03
Explainers 0.65 0.67 0.25 0.63 0.67 0.06
Hedging 0.74 0.74 0.20 0.65 0.71 0.11
Memory Loss 0.70 0.80 0.13 0.68 0.72 0.02
Negation 0.67 0.66 0.18 0.64 0.63 0.05
Temporal Lacunae 0.33 0.50 1.00 0.33 0.50 1.00
Uncertainty 0.58 0.54 0.14 0.52 0.51 0.00
Untruthful Words 0.53 0.63 0.42 0.93 0.96 1.00
Withheld Infor. 0.67 0.73 1.00 0.67 0.77 0.57

Final Layer 0.72 0.72 0.43 0.69 0.68 0.46

First, the location sets for the linguistic markers, listed in Table 1,
are extracted from the interviewee and customer responses in
the conversational sessions. It is worth mentioning again, that
for each conversation, K = 10 location sets are extracted, one
for each marker, as described in Section 3. The location sets are
extracted using the RegEx and MTDNN-BERT model, as described
in Section 2.3. The experiment is conducted in two settings:
(a) RegEx, where all the location sets are extracted using only
the RegEx; and (b) +BERT, where the location sets of Hedging,
Explainers, and Memory Loss are extracted using MTDNN-BERT
and the remaining markers are extracted using RegEx. Once the
location sets are extracted for all the sessions and conversations,
the data is divided into training and testing sets, with a 70-30
split.

While training the K -Models and the Final Layer, a pipeline of
polynomial feature extractors with degree 2 and four different
classifiers, namely Logistic Regression, Naïve Bayes, SVM and
XGBoost, with their respective hyperparameters were explored
to achieve the maximum TPRF0. The testing results of the Deci-
sion Engine, including the performance of each model (K -Models
and Final Layer), are shown in Tables 5 and 4 for the CSC and
the Financial Services dataset, respectively. The classifiers and
respective hyperparameters for the Decision Engine to achieve
the above-mentioned results are tabulated in Table 6. For PF
extraction the Tanh kernel with ϵ = 0.01 and dmax = 500 is used.

For comparative analysis with a baseline, we also trained
the same four classifiers using only the frequency of linguistic
markers, the results are tabulated in Table 7.

5.4. Discussion

It is worth reiterating here that the objective of a model in a
set of K -Models is to estimate the deceptiveness of an individual

marker instance, and the objective of the Final Layer is to estimate
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Table 6
Classifiers and respective hyperparameters of the Decision Engine used to obtain
the results shown in Table 4 and 5. Here, Poly (2) is a polynomial feature
extractor with degree 2; for XGBoost, n is the number of estimators (trees)
and d is the maximum depth of a tree; SVM (rbf) is SVM with rbf kernel.

Model Financial services CSC dataset

RegEx +BERT RegEx +BERT

Poly (2)

K -Models XGBoost XGBoost XGBoost XGBoost
(n = 10, d = 5) (n = 10, d = 5) (n = 25, d = 10) (n = 15, d = 7)

Poly (2) Poly (2)

Final
layer

Naïve
Bayes

Logistic
Regression

SVM (rbf) SVM (rbf)

Table 7
Baseline testing results of deception detection for CSC and Financial Services
(FS) dataset.

Model RegEx +BERT

Acc. F1 TPRF0 Acc. F1 TPRF0

CSC

LR 0.57 0.41 0.11 0.56 0.33 0.08
SVM 0.55 0.26 0.11 0.54 0.21 0.06
NB 0.54 0.21 0.06 0.52 0.19 0.04
XGB 0.67 0.61 0.03 0.67 0.65 0.32

FS

LR 0.56 0.64 0.10 0.56 0.64 0.10
SVM 0.66 0.75 0.00 0.66 0.75 0.00
NB 0.67 0.75 0.10 0.67 0.75 0.10
XGB 0.56 0.64 0.40 0.56 0.64 0.40

the deceptiveness of the entire conversation given all the marker
instances. It can be observed that the performance of not all 10
markers (from Table 1) appeared in Tables 4 and 5. Specifically,

ithheld Information and Untruthful Words are missing in Ta-
le 4 and Implied Repetition is missing in both tables. Due to
ery few instances detected in the training set, the model for
uch markers were not trained, which, in effect, reduced the set
f K -Models to 9 and 7 for CSC and the Financial Services dataset,
espectively.

For the Financial Services dataset, the performance of the Final
ayer from Table 4 shows that when using the RegEx alone, the
Decision Engine is 67% accurate at predicting the fraud calls and
the TPRF0 score shows that 50% of the fraud calls can be detected
without any false alarms. The performance of the Decision Engine
improves when using MTDNN-BERT for the Hedging, Explainers
and Memory Loss markers. The accuracy increases to 72% and the
TPRF0 to 60%. For the CSC dataset (See Table 5), when using only
he RegEx, the accuracy of the Decision Engine is 72%, which goes
own to 69% using BERT, however, the TPRF0 score improves from
3% to 46%. Comparing the results of the Decision Engine with
he baseline models from Table 7, it can be observed that the
ecision Engine with RegEx achieves the same accuracy (67%) as
aïve Bayes, and +BERT is better. On the other hand, the TPRF0

of the Decision Engine is higher in both cases compared to all the
models in Table 7.

For the CSC dataset, the performance of the Final Layer from
Table 5 shows that when using the RegEx alone, the Decision
Engine is 72% accurate with 43% of TPRF0, which goes up to 46% by
using BERT for three markers. However, accuracy dropped to 69%.
Compared to the baseline models from Table 7, it can be observed
that the Decision Engine achieves better accuracy and performs
much better at TPRF0 for both cases RegEx and +BERT.

Although CSC is a widely used dataset for deception detection,
there is a lack of a well-defined benchmark to compare the results
9

among the studies due to different experimental settings. The
studies use different approaches, specifically different training
and testing strategies, to evaluate their performance. Using a
combination of lexical and prosodic features with a chance level
of 60.2%, a study [19] achieved 62.8% accuracy, which was further
improved to 66.4%, using speaker-dependent features with 5-fold
cross-validation over 90-10 split. With similar features, another
study [20] with a chance level of 60.4%, obtained 64.4% accu-
racy by averaging over 10-fold cross-validation. Using lexical and
acoustic features from critical segments of speech with global lie,
accuracy of 61.9% was achieved with a chance level of 50% [43].
Recent studies employing Deep Neural Networks have shown
similar results. One study used lexical features and a Recurrent
Neural Network (RNN) and achieved 61% accuracy [44]; another
used acoustic features and an auto-encoder and achieved 62.78%
accuracy [45]. In our study we employed 10 selected linguistic
markers from the transcription and with the proposed Decision
Engine, we achieved a testing accuracy of 72% and 69% with
RegEx and +BERT, respectively. It is worth mentioning that we
tuned the Decision Engine to maximise TPRF0, not the accuracy.
Although, our proposed approach cannot be directly compare to
above mentioned studies, due to different training and testing
strategies, compared to baseline models using only frequency
of selected 10 linguistic markers from our study (See Table 7),
proposed Decision Engine based on proximity of linguistic mark-
ers performed better. In terms of TPRF0, proposed approached
outperforms the baseline models with greater improvements.

Although the MTDNN-BERT model can detect three markers
with better accuracy than the RegEx, using the MTDNN-BERT
model does not always improve the performance of the respective
models in the set of K -Models, i.e. comparing the performance of
Hedging, Explainers and Memory Loss models in the RegEx and in
+BERT (See Table 5). This is because the correct identification of a
marker contributes to the PFs of all the other markers. Thus, using
MTDNN-BERT might not contribute to an improved performance
in the respective model, however, an improvement in the other
models can be attributed to MTDNN-BERT.

From Table 6, it can be observed that for the K -Models, an
ensemble approach based on Trees worked well, e.g. XGBoost.
However, for the Final Layer, Naïve Bayes, Logistic Regression and
SVM turned out to be a good choice. These classifiers, compared
to the Tree-based XGBoost, produce a better probability distribu-
tion of the deception score, i.e. the distribution of samples around
the decision boundary. This allows the Decision Engine to achieve
the improved TPRF0 score.

6. Linguistic analysis of marker interaction

Together with our behavioural experts, we undertook a lin-
guistic analysis of the trained Decision Engine to understand
how the proximity of different markers affects the deception
score, which has revealed several interesting observations. We
only considered the interaction between two marker instances, to
limit the complexity of interpretation, and this has been analysed
for a Decision Engine trained on the CSC dataset.

It is important to note that the following analysis is on the
pair of markers and the presence of 3 or more (multi-marker
interaction) could be extrapolated from this, however, that in-
creases the complexity of the analysis. Also, as mentioned, the
following analysis is based on the Decision Engine trained on the
CSC dataset, thus this is not representative of the population or
other settings. The objective of this analysis is to demonstrate the
richness and capacity of the proposed approach exploiting the
Proximity Model to take the interaction markers into account.

The impact of the proximity of two marker instances on the
deception score is computed by varying the distance of one
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Fig. 7. Interaction between an Explainer (Exp) and an Uncertainty (Unt) marker
instance.

marker instance with respect to another and keeping all the other
markers absent. As we used the Tanh kernel for training, which
preserves the direction of markers, the relative distance of one
marker was varied to cover both directions to another. Fig. 7
shows the interaction between an instance of Explainers (Exp)
and an instance of the Uncertainty (Unt) marker, by varying the
relative distance of Unt with respect to Exp. Since the objective
of the analysis is to observe the trend of impact, varying with
respect to proximity, smoothing is applied to the raw deception
score generated by the Decision Engine and plotted in Fig. 7. A
baseline deception score due to the presence of an individual
marker instance is shown by the horizontal line, i.e. only an
instance of a respective marker is present and all the other
markers are absent, which is 0.1 and 0.003 for Exp and Unt,
respectively, shown in Fig. 7. The area with the smooth score is
shaded to represent the impact of interaction on the deception
score, i.e. the orange area represents increased deceptiveness and
green represents decreased deceptiveness or increased truthful-
ness in comparison to the maximum of the baseline scores of the
individual markers. We analysed the interaction between all the
pairs, however, we will be discussing a few selected pairs in this
paper.

Fig. 7 suggests that in a conversation, the presence of an
Explainer followed by an Uncertainty marker is more likely to
be deceptive. However, an Uncertainty marker followed by an
Explainer is more likely to be truthful. This is consistent with our
linguistic understanding of the markers, which suggests that an
Explainer speaks to a perceived level of confidence and thereafter
we expect the conversation to flow. An Uncertainty following an
Explainer is more unexpected, and it lacks commitment to that
which had already begun to be conveyed. In contrast, an Explainer
following an Uncertainty is more expected, as to convey the
explanation of uncertain information. The following examples of
utterances, extracted from both CSC and CDLM datasets, demon-
strate the above two cases with an Explainer because and an
Uncertainty something. The first two examples are considered to
be more suspicious, and the last two examples are more expected
in a conversation. It is worth mentioning that these examples are
isolated utterances from conversations and the Decision Engine
was trained on samples of the entire conversation. Thus, such an
utterance is not enough to categorise a conversation as deceptive
or truthful. However, such events in the conversation do lead to
the overall score for deception.
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• Well, because I’m interested in local politics and I’m interested
in politics, my family was involved in politics since I was a
little girl, so I’ve always, it’s been something you know I’ve been
exposed to so I’ve kept that up.

• She said she killed him because he was in love with my Mom
or something.

• I think it was John or Jake or something. I remember, because
I would always joke and call him Lentil Bean.

• I had to do something, because it’s in violation of the building
code.

The interaction plot shown in Fig. 8(a) suggests that Disflu-
ncy and Explainers do not have much impact on the deception
core individually. However, together they contribute to a higher
eceptive score, indicating a more sensitive conversation towards
eception or fraud. Linguistically, a Disfluency interrupts the flow
f the conversation. It is used when the speaker needs time to
hink or articulate their response, which is a potential indicator
f deception. Thus, Disfluency around an Explainer can denote
reater sensitivity as it interrupts the flow of the explanation
eing conveyed. Disfluency following an Explainer is more sensi-
ive than an Explainer following Disfluency since prior to a pause,
eflected by the Disfluency, the subject knew the explanation and
he Disfluency further slows the pace of the conversation. It is
orth reiterating that the meaning of Disfluency could vary for
non-native speaker. In that case, Disfluency still indicates that
ubject is seeking time to articulate the response, however, the
urpose of it might not be deceitful but rather an articulation of
houghts in a second language.

The following two examples demonstrate the case of an Ex-
lainer followed by a Disfluency, which is less likely to be truth-
ul.

• I do know because my brother um is also a chef.
• I’ve always had a problem with that because speaking Italian

and having been uh a classical singer I want to say citarell.

Fig. 8(b) suggests that Disfluency closely preceding Hedging is
more likely to be deceptive and when it appears further away on
either side, it is not as sensitive. From an analytical perspective,
this impact depends on the type of question being asked. In
response to an open question, the closeness of these markers
indicates greater sensitivity towards deception. If both of these
markers appear close together, this can be indicative of either the
doubt or lack of commitment shown by the subject. However,
Hedging preceding Disfluency is more likely, depending on the
topic. If a subject is responding to a question where they go
into memory of an event then this is expected, thus indicating
a reduced level of sensitivity towards deception. The following
examples demonstrate a Disfluency preceding Hedging (guess,
actually), which is likely to be deceptive.

• Um I pay a lot of attention to politics so it was excellent I guess.
• Um actually it was last night my boyfriend asked me.

Fig. 8(c) shows the very interesting characteristics of Disflu-
ncy and Negation interaction. It shows that Negation following
isfluency is very likely to be very deceptive. However, Negation
ollowed by Disfluency is not very sensitive. Anything reported in
he Negative and preceded by a Disfluency weakens the assertion
hich the Negation may convey. Negation is itself a sensitive
erm and a weak assertion of Negation increases its sensitivity
reatly. In the examples below, the first example is not likely
o be deceptive and the second example is very likely to be
eceptive.

• Um I don’t go regularly and I go once in a while.
• Not anymore but in this weather um back in Illinois I used to

go camping.
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Fig. 8. Interaction between two marker instances from the following markers; Hedging (Hd), Explainers (Exp), Disfluency (Dis), Negation (Neg), Memory Loss (ML)
and Temporal Lacunae (TL).
Fig. 8(d) shows that Disfluency appearing close to a Temporal
acunae in either direction is highly sensitive. This combination
eeks to slow down the pace of conversation and provide thinking
ime before skipping over a specific piece of information, which
ould have been deliberately withheld.
The interaction of Explainers and Hedging is shown in Fig. 8(e)

and suggests that Hedging appearing before an Explainer is less
likely to be deceptive and when very close can negate deception
and be more truthful. The order of markers speaks to a priority.
An Explainer is the most sensitive indicator. Another sensitiv-
ity indicator following it will further increase the sensitivity.
A subject asserts a reason for something (Explainer) and then
expresses doubt (Hedging), whilst this is not a definitive indicator
of deception, but it is unexpected. The following two examples
demonstrate an Explainer and Hedging (rather than, really) close
ogether, which are more likely to be truthful.

• because I like to talk rather than listen.
• oh I did really good on that because I’m a tour guide.

ig. 8(f) shows that a Negation close to an Explainer or follow-
ng further away is more indicative of deception. Negation is a
ensitive indicator for several reasons, which could be towards
ruthful or deceptive. Negation with an Explainer reveals that the
peaker deems what they said to be very sensitive information in
heir mind, often without knowing and they start explaining, for

xample, someone reports why something did not happen. This
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is specifically more sensitive if a question with why wasn’t asked.
An example of such a case is as follows:

• I didn’t do that because ...

In Fig. 8(g), the interaction of Hedging and Negation shows
that Hedging appearing closely before Negation is less likely
to be deceptive. Negation before Hedging in context shows an
increased likelihood of deception being present in the utterance.
Hedging as the priority shows an element of uncertainty about
what is to follow with the negative term, which can be expected
in a conversation. A Negation preceding a Hedge term reflects
increased sensitivity as the speaker’s priority is to report in the
negative, which is then followed by doubt or lack of commitment,
weakening the assertion. Consider the following examples;

• I have not spent much time there
• I don’t know if I would say that
• I just moved back to new york so I was registered in texas and

I have not yet registered here in new york.
• I don’t think it was working.
• I think it was not working

The last two examples in the above list, essentially convey the
same information, but with a different order of Negation and
Hedging. In this case, the first example (I don’t think it was
working) is commonly used and flows well in a conversation,
whereas the second example (I think it was not working) takes

more cognitive load, and thus is less expected.
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The interaction between Memory Loss and Negation is shown
in Fig. 8(h), which primarily shows that Memory Loss in presence
of Negation is sensitive to deception, however, individually they
are not. Specifically; Memory Loss followed by Negation is more
likely to be deceptive than Negation following Memory Loss.
However, both cases are sensitive and they contribute to an
increased likelihood of deception. Even though some terms of
Memory Loss include the Negation itself, such as don’t remember
and don’t recall, our computation attributes these terms solely
to Memory Loss. Linguistically, a Memory Loss with a Negation
reflects a form of double negation. While recalling any past event,
when a subject is saying I don’t remember, this reflects that the
subject is in effect in the present tense saying, I remember I have
forgotten. It is unnecessary language.

• No ... I don’t remember that
• I don’t remember what you talking about, I didn’t do it.

Fig. 8(i) demonstrates the interaction of Negation with another
Negation, showing some interesting characteristics. The proxim-
ity of two Negation terms spikes the likelihood of deception.
Linguistically, a Negation term is sensitive itself. Though, Decision
Engine doesn’t show a very high deception score for a single
instance of Negation. However, a double Negation is extremely
sensitive. It is an overselling statement of Negation. It can be seen
in both truthful and deceptive conversations. It depends on the
question asked and a psychological need for the subject to either
persuade someone or a reliable denial such as:

• No, I did not do that ...
• I wouldn’t do it, never ever in my life

It may not necessarily be nefarious but is worthy of further
investigation.

From a linguistic perspective, the above analysis drawn from
a trained Decision Engine is expected in a conversation with
respect to deception and truth. Due to a small number of hits
(counts) for Untruthful Words, Withheld Information, and Im-
plied Repetition in the CSC dataset, the impact of proximity
relating to these markers cannot be used for linguistic analysis,
i.e. a small number of hits of any marker is not sufficient to
generalise the impact of its proximity with other markers on the
deception score. Thus, the analysis relating to these markers is
not reported in this paper.

7. Conclusion

For deception detection, a widely used approach is based on
counting the terms (words/phrases) of different linguistic fea-
tures (markers). This approach misses the interaction between
the markers. In this paper, we propose an approach for deception
detection based on the proximity of linguistic markers, which
captures the interaction of the markers. For linguistic marker
detection, in addition to RegEx, we use the MTDNN-BERT model
to minimise the ambiguity of markers. MTDNN-BERT was trained
on our CDLM dataset labelled by behavioural experts for three
markers. Our proposed approach extracts the proximity features
from the location set of linguistic markers and trains the Decision
Engine to estimate the deception score for a given transcribed
conversation. We evaluate the Decision Engine on two datasets:
the CSC dataset and a real-world Financial Services dataset of
fraudulent/non-fraudulent phone calls. We evaluated the perfor-
mance of the Decision Engine with an additional metric TPRF0,
which is a True Positive Rate with a high enough threshold to
eliminate any false-positive cases. With an accuracy of 69% and
72%, we achieve higher TPRF0, 46% and 60% for the CSC and
Financial Services datasets, respectively. These results show that
a trained Decision Engine can identify 46% of (60%) deceptive
12
(fraudulent) conversations for the CSC dataset (Financial Services)
without raising any false alarms. The results of the Decision
Engine are compared with a baseline model, which uses the
frequency of the markers. For both datasets, the proposed Deci-
sion Engine performs better than the respective baseline models.
Although there is a lack of a uniform test set for a benchmark,
when compared to other studies on the CSC dataset with various
models, including recent studies using a Deep Neural Network,
our testing accuracy is higher. Furthermore, we conducted a
linguistic analysis on the interaction of the markers, which pro-
vides a deeper insight into the nature of deceptive behaviour in
language, exposed by the interaction of linguistic markers. Since
the analysis is conducted using the Decision Engine trained on
the CSC dataset, the insights into deception are not representative
of the population, which might vary with non-native speakers
or in real-world scenarios. As our linguistic analysis suggests, for
some cases the sensitivity of a response can be dependent on the
question being asked, which we plan to further explore in the
future to improve the Decision Engine, along with acoustic cues
of deception.
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