

Software Protection with Code Mobility

Alessandro Cabutto, Paolo Falcarin
University of East London

School of Architecture, Computing and Engineering
E16 2RD London (UK)

{a.cabutto, falcarin} @uel.ac.uk

Bert Abrath, Bart Coppens, Bjorn De Sutter

Ghent University
Sint Pietersnieuwstraat 41, 9000 Ghent (Belgium)

{bert.abrath, bart.coppens, bjorn.desutter}
@elis.ugent.be

ABSTRACT

The analysis of binary code is a common step of Man-At-The-End

attacks to identify code sections crucial to implement attacks, such

as identifying private key hidden in the code, identifying sensitive

algorithms or tamper with the code to disable protections (e.g.

license checks or DRM) embedded in binary code, or use the

software in an unauthorized manner. Code Mobility can be used

to thwart code analysis and debugging by removing parts of the

code from the deployed software program and installing it at run-

time by downloading binary code blocks from a trusted server.

The proposed architecture of the code mobility protection

downloads mobile code blocks, which are allocated dynamically

at addresses determined at run-time; control transfers into and out

of mobile code blocks are rewritten using the Diablo binary-

rewriter tool.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General – Protection

mechanisms.

General Terms

Security, Reverse engineering.

Keywords

Code Mobility, Binary Code, Binary Rewriting.

1. INTRODUCTION
One of the main goals of software protection is to prevent code

from being observed and analysed, and then eventually illicitly

modified and tampered with. To protect against code analysis,

developers usually try to make reverse-engineering harder, by

applying different obfuscating transformations [1]; attackers can

use binary code inspection tools like IDA Pro [2] and binary

instrumentation tools [3] to extract run-time information such as

execution traces and memory dumps.

To protect against illicit modifications, anti-tampering approaches

are utilized to detect when code has been tampered with and to

react by stopping or delaying program execution. Tamper-

resistant software typically uses built-in integrity checks to detect

code tampering by guarding the code being executed [4] or by

checking that the flow of control through the program confirms to

the expected flow [5].

Binary obfuscation techniques have been proposed to increase

reverse engineering complexity: Linn et al. [6] proposed a tool for

inflating binary code with redundant and/or garbage instructions

to defeat disassemblers or to produce a very complex assembly

code: they evaluate obfuscation strength with their confusion

factor, as the percentage of instructions not correctly disassembled

because of binary obfuscation.

Aucsmith [22] proposed encryption to resist to code observation:

his technique break a binary program into individually encrypted

segments, so that the hash value of a block is the secret key for

decrypting the next block; if the program was altered the hash

value is changed and then the next block cannot be decrypted

properly and the program cannot continue to run; in this case

finding the first key allows recovering the full chain of keys.

Kanzaki et al. [7] used self-modifying binary code to thwart static

analysis and disassembling, while Birrer et al. [8] provide

metamorphic binary code by means of program fragmentation,

and Giffin et al. [9] used self-modifying code for code guards

hardening.

Online protections techniques aim at extending state-of-the-art

static protection techniques by leveraging on software updates and

trusted network services.

Different online protections use dynamic code replacement to

periodically replace the copy of the program running on the

untrusted machine with the goal of limiting the amount of time

that the attacker has to reverse engineer the application.

The replacement may be implemented for the functional part of

the program, and/or for the protection techniques used to protect

it [10]. Collberg et al [11][12] and Falcarin et al [13] proposed

the continuous replacement of Java and binary code respectively,

in which the remote trusted entity frequently sends a set of new

code fragments to the untrusted machine.

The technique of Collberg et al [12] has some limitations has it

relies on CIL (Common Intermediate Language): this bounds the

scenarios in which the technique is usable (e.g., not with

dynamically linked libraries), their composability with other

protections, and the granularity of the code blocks.

Previous works in Java implemented dynamic replacement of

protection code implementing code mobility features on top of

dynamic aspect-oriented platforms [14] [14]or by ad-hoc JVM

extensions [15].

In this paper, we present the Code Mobility framework, an online

protection technique that aims to overcome the drawbacks of local

protection techniques by introducing mobile code. A mobile code

block is a piece of binary code removed from an application

before deployment. A trusted server placed on the network, is in

charge of providing mobile code blocks to the untrusted client.

To protect against code analysis, the Code Mobility framework

delivers binary code to the client at run-time; the client

application self-modifies its own code layout to install the

downloaded code blocks, in order to thwart static analysis and

increase the difficulty of dynamic analysis.

The Code Mobility framework has been developed within the

ASPIRE project [21], and it is compliant to the software

protection reference architecture designed in the project and

documented in deliverable D1.04 [16], which is available on the

project website.

The main novel contributions of this work are:

1. design and prototype implementation with demonstration on

standard Android code;

2. integration with compilers commonly used for native code

development, including in the Android NDK;

3. integration in a whole tool-flow (of the ASPIRE project) to

ensure as much as possible composability with other

protections;

4. very fine-grained code blocks (albeit with a performance

overhead);

5. convenient way to specify and control deployment via source

code annotations;

6. evaluation on real networks, ranging from local networks, to

3G mobile networks.

The paper is structured as follows: in section 2 we introduce the

Code Mobility architecture and all its components, then in section

3 we describe how to create offset-independent mobile code. In

section 4 we introduce the automated tools support to instrument

and split binary code in code blocks before run-time; then in

section 5 we describe the performance analysis of our framework

on different network settings, while section 6 draws the

conclusions and discusses future work.

2. CODE MOBILITY ARCHITECTURE
In the code mobility architecture we designed and the prototype

tool support we developed, a client application (which may also

be a dynamically linked library) is stored on the user device as an

incomplete executable that does not contain all the application's

code. Two components, Downloader and Binder, are introduced

for this technique: They are able, respectively, to fetch binary

code blocks from a trusted server at run-time, and to patch these

into the running process' memory, in a dynamically allocated

memory area. These components are not part of the original

application and they have to be injected into the protected version.

This approach aims for mitigating reverse engineering: instead of

preventing analysis of code by making the code complex, we

make sure that the code is not available for static analysis on the

client-side as long as possible, and deliver the necessary code only

when it is actually needed by the control flow. The Code Mobility

framework's architecture is depicted in Figure 1: it can be seen as

a dynamic binary obfuscation approach based on the deployment

of an incomplete application whose code arrives from a trusted

network entity (the Code Mobility Server) as a flow of mobile

code blocks; such blocks are fetched by the Downloader

component and arranged in memory by the Binder component at

run-time, with an unpredictable memory layout. The Code

Mobility framework is compliant to the ASPIRE project reference

architecture [16], defining the ASPIRE portal, which acts as a

common entry point for all online protections developed in the

ASPIRE project, and the ASPIRE communication control logic

(ACCL) library in the client host, which provides native socket

support to Android apps.

Original application server

A
S

P
IR

E
 p

o
rt

a
l

A
C

C
L

Application logic

Code Mobility

Code Mobility

Code Mobility
Server

Binder

Code
block

n

Code
block

1

Code
block

2

Code
Section

D
o

w
n

lo
a

d
e

r

Figure 1 - Code Mobility High-Level Architecture

Mobile code blocks coming from the Code Mobility Server will

not be placed in a statically known location in the binary code

section, but will instead be placed in dynamically allocated

memory. So the location of the code blocks will not be fixed. This

implies that the mobile code needs to be position-independent

code (PIC) that can be dynamically relocated, and independently

from the non-mobile code part of the client's binary code. Thus,

indirections need to be inserted in the transformed code to deal

with these variable code locations, both in the static, non-mobile

parts of the client application and in the mobile code. Fortunately,

only local code transformations are required for this: instructions

will be replaced with small code snippets that can deal with the a

priori unknown addresses at which the code has been loaded.

Our current design only supports mobile code blocks with a single

entry point. These can be entire procedures or parts of their

control flow graphs (CFGs). This significantly simplifies the

implementation of the Binder and its book-keeping data

structures.

We should also point out that we only make code mobile. Data

allocated statically in the binary's data sections is left static,

including statically allocated data that is accessed by the mobile

code.

2.1 Binder

The client-side Binder component is in charge of invoking the

Downloader when required. The Binder is invoked by the

application when the control flow reaches a mobile code block. If

that block has not been downloaded from the server yet, the

Binder asks the Downloader to retrieve the requested missing

code block. Through the ACCL communication library,

implementing a socket API in native code, the Downloader

queries the Code Mobility server in order to obtain such a block

and finally the Code Mobility Server sends the proper block back

to the Downloader.

After the fetch process the Binder places the block in memory and

makes sure that the just downloaded block will not be

downloaded again, reducing the overhead effort introduced by the

protection technique. Eventually the Binder redirects the control

to the entry point of the downloaded code, where the application

can continue normally.

In the original client application, control flow transfers (such as

procedure calls) to mobile procedures need to be transformed

such that:

1. Upon the first execution of a call to a mobile procedure, the

Binder and Downloader components are properly invoked in

order to obtain the code from the server;

2. Upon subsequent calls to the same mobile procedure, the

control is immediately transferred to the already downloaded

mobile code.

By avoiding going through the Binder again, the performance

overhead of mobile code can be limited. Figure 2(a) shows the

original control flow without mobile code: procedure f() is

selected to become mobile. In the transformed program, shown in

Figure 2(b), our tools inserted a look-up table with procedure

pointers. Look-up table accesses are depicted with dashed arrows

whereas control flow transfers are depicted with regular arrows.

The pointers in the look-up table either point to stubs that invoke

the Binder to start the mobile code downloading process, or they

point directly to the already downloaded code. All calls to mobile

functions are transformed into a code snippet consisting of a table

lookup and an execution control redirection to the address loaded

from the table.

A:
...
call f

f:

B:
….

A:
...
call table[idx]

stub ptr

stub

...

...

...

table:

Binder
· invoke Downloader
· update program base address
· overwrite stub ptr

updates

f:
downloaded
mobile code

B:
….

accesses

(a) (b)

Figure 2 – Function Call: Before (a) and After (b) Code

Mobility Transformations

Initially, when the called mobile function f() has not yet been

downloaded and bound, the address in the look-up table is that of

a stub that invokes the Binder.

This stub calls into the Binder, providing as argument the index at

which this stub is installed in the look-up table. This index is then

used as an identifier of the mobile function to be downloaded. The

Downloader component is then invoked to retrieve the mobile

(PIC) version of the function's code body from the Code Mobility

Server, and stores this code body in a dynamically allocated

buffer.

Finally, the Binder updates the entry in the pointer look-up table

by overwriting the address of the stub with the address of the

downloaded code, after which it redirects the control to this code,

and normal code continues.

Subsequent calls to the already downloaded procedure f() then

proceed as indicated in Figure 3. Since the Binder has already

updated the pointer in the look-up table at the used index to let it

point to the downloaded code, the inserted code snippet (in block

A in Figure 3) now loads this procedure pointer and thus transfers

control immediately to the previously downloaded mobile code.

So for subsequent calls, the overhead is limited to the table look-

up, and the necessary spilling and restoring of registers.

A:
...
call table[idx]

mobile code ptr

...

...

...

table:

f:
downloaded
mobile code

B:
….

Figure 3 – Calling Function f() passing through already

downloaded mobile code

The Binder contains three tables: the GMRT (Global Mobile

Redirection Table), a mutex table, and a table that stores whether

a certain mobile block is present or not (if it's not, the entry is

zero). At program start-up for a certain mobile block its GMRT

entry contains the address of the associated stub, the mutex entry

is initialized, and the entry in the last table is zero. When control

is transferred to the stub through the GMRT, it will itself invoke

the Binder with the index for the mobile block as an argument.

The Binder locks the corresponding mutex and checks whether

the block is present. This is very unlikely to happen, unless

another thread just downloaded it.

If the block is not present the Binder instructs the Downloader to

download the block. It then writes the base address of the

protected binary onto the first four bytes of the mobile block,

maps all the pages the block resides on as executable, backs up

the current GMRT entry (which is the address of the stub) to the

last table, replaces the GMRT entry with an address in the mobile

block, and unlocks the mutex. As a small aside: the locking and

subsequent unlocking of a mutex is not actually done in single-

threaded applications, avoiding unnecessary cost.

2.2 Downloader
The Downloader is invoked by the Binder to request a specific

mobile code block (identified by an index) when needed by the

client application. After a mobile code block is correctly received

a suitable heap-allocated memory area is prepared, filled with

mobile code, and passed back to the Binder. The returned memory

area must be allocated with respect to a few constraints:

· It must be memory page aligned so that the Binder can

apply the proper access rights (execution) later

· Every mobile block must be allocated in one or more

dedicated memory pages so that there are no access

right conflicts: after a page is declared as execution-only

it should not be accessed in write mode to avoid

segmentation faults

The first constraint is respected by using the posix_memalign

system call which allocates page aligned memory. The latter is

respected by simply allocating the minimum number of memory

pages able contain to the full mobile code block. These

constraints result in an additional overhead (in terms of time and

memory consumptions) because, after receiving the buffer

containing the mobile block, the Downloader must copy it into a

new memory-aligned one. This overhead could be avoided

introducing a new parameterization that instructs the ACCL API

to allocate page aligned buffers natively. Furthermore reserving

full memory pages for single mobile blocks lead to an additional

overhead in memory allocation. This overhead can be computed

as:

where, N is the total number of mobile code blocks transferred

over time, ps is the single memory size, mbsi is the ith mobile

block size. In a scenario where one hundred blocks are extracted

from the original application the additional overhead is upper

limited by the page size times one hundred. As an example if the

page size is 4kB the “wasted memory” would be less than 400 kB.

Tuning the amount of original binary code made mobile can

mitigate this.

2.3 Server-Side Components
This component reachable by the client via a network link and is

trustable by hypothesis. The Code Mobility Server is the back-end

invoked by the Downloader component on the client-side. It is in

charge of delivering requested mobile code blocks by accessing a

repository using a given index.

3. OFFSET-INDEPENDENT MOBILE

CODE

When a mobile code block is mapped into the address space of the

binary or library, this is done on a randomized address on the

heap because of ASLR. The statically allocated, non-mobile code

and data of the binary or library is randomized as well. This

implies that the offset between the mobile code block and the non-

mobile code and data is unknown at compile time. This differs

from standard position-independent code, where the offsets

between elements in a statically allocated segment are still fixed.

Position-dependent code or position-independent code (PIC) in

the original binary therefore needs to be rewritten into so-called

offset-independent code.

On architectures like the x86, this rewriting is straightforward, as

one of the registers is used (by convention) as a so-called global

pointer (GP) to the global offset table (GOT) that contains

pointers to all code and data fragments of which the absolute

address might be needed at some point.

On architectures like ARMv7, however, position-independent

code makes heavy use of the visible program counter (PC) register

and of PC-relative addressing. So there is no fixed register

holding a GP, and PIC code is full of PC-relative offsets.

Figure 4(a) shows an ARMv7 assembly PIC fragment. To load the

value at label .Ldata into memory with the instruction at .Lins2, a

PC-relative address stored in a so-called literal pool in the .text

section is first loaded into a register at .Lins1, and then used in

the PC-relative memory access at .Lins.1 All edges in the code

1 The +8 in the PC-relative address is due to the ARM

specification that a used PC equals the PC of the instruction that

uses it plus eight.

fragments of Figure 4 correspond to offsets that are known at

compile time. For that reason, they can be computed by the linker

or protection tool, and stored as entries in the literal pools, or they

can be encoded as immediate operands of instructions.

Suppose that the three instructions in red become mobile. Figure

4(b) shows the transformed static PIC. In this example, we assume

that enough registers are available (like r6 in this fragment) to

store temporary values. If not, additional spill code would be

needed.

Instead of the original code, the first two inserted instructions in

red produce the address of the GMRT. The next instruction loads

the address of the mobile block from its (fixed) index in the

GMRT, and then control is transferred to that address. When the

mobile code block is not yet present, control will be transferred to

a stub that invokes the Binder with the requested block index

instead. The binder then invokes the downloader and overwrites

the address of the stub in the GMRT with that of the downloaded

block.

Please notice that in the remaining static code of the shown

example, there is absolutely no need to place the instruction at

.Lins4 right after the inserted instructions, since the control

transfer from the mobile code to that instruction will happen

indirectly. Besides hiding the mobile code, this also opens up

opportunities to obfuscate the control flow in the code that

remains static. When code mobility is combined with code layout

randomization in which independent code fragments (i.e.,

fragments that do not need to be allocated consecutively because

there are no fall-through execution paths between the fragments)

are reordered and spread throughout the whole text section, the

fact that .Lins0 and .Lins4 belonged to the same basic block will

no longer be apparent in the static code.

Figure 4(c) shows the offset-independent mobile code block that

replaces the three instructions extracted from the static code. The

single entry point of this code block (i.e., the address that will be

stored in the GMRT by the Binder) is actually the third word in

this block (marked by the .Lins1 label). The second word is an

instruction that restores some registers and the first word is a kind

of GP. In our current implementation, it points to the start of the

statically allocated code and data of the binary or library in

memory, i.e., to the .Ltext label that marks the start of the .text

section. As this address is randomized by ASLR, it is unknown at

compile time. Therefore it is the Binder's job to fill in this address

in the blocks first word at run time, i.e., when the mobile code

block is placed in the process' memory space.

Rather than relying on the PC and a PC-relative address loaded

from a literal pool to access statically allocated data as the

instruction at .Lins2 did in the original code fragment, the

rewritten code in Figure 4(c) uses the .text GP stored in the first

word of the block, and an .Ltext-relative address loaded from the

literal pool. Likewise, to facilitate the jump from the end of the

mobile code back to .Lins4 in the static code, that address of

.Lins4 is computed using an .Ltext-relative address.

Figure 4: Example of offset-independent code

By combining the different redirection mechanisms discussed

above, it is possible to rewrite all direct references, be it in direct

memory accesses or in direct control flow transfers from mobile to

static code or data, from static code to mobile code and even from

mobile to mobile code.

To handle indirect references from static data to mobile code, we

require another mechanism, however. This case occurs when

pointers to mobile code are stored inside static data sections or

when they are computed on the fly to be used in indirect control

flow transfers to mobile code. Fundamentally, the problem with

such references is that while the origin of the reference can

accurately be identified (in source code or in binary code, as we

will discuss in the next section), the points of use of those

references cannot easily be identified accurately: Once some

procedure pointer has been computed and stored in memory, it is

very hard if not impossible in most programs (due to aliasing) to

decide exactly where that pointer will be used in an indirect

transfer. Run-time solutions to rewrite all potential indirect

transfers where code pointers are used have been proposed in the

SecondWrite binary code rewriting system and in other designs

[20], but all of them introduce a significant amount of code and

data bloat, which we consider unacceptable in many usage

scenarios.

So rather than rewriting the code fragments that indirectly use

references to mobile code, we propose to limit code mobility to

regions that can only be reached through direct control flow

transfers. In practice, this is straightforward: When we detect that

a region we want to make mobile is accessed indirectly, an

indirection pre-header is generated for this region. This pre-

header consists simply of a direct branch to the original entry

point of the region, which will later on be converted into an

indirect branch. It then suffices to replace all indirect references to

the region's original entry point (i.e., statically allocated code

pointers or code pointer computations) by references to the

indirection pre-header instead. This pre-header then remains

static, thus avoiding the whole problem, while the whole region

itself can still become mobile.

With the discussed transformation, the code mobility protection

can be applied widely. It is clear that rewriting mobile code

references to static code or data into offset-independent code can

introduce significant overhead, in particular when additional

registers will have to be freed. We will evaluate this overhead in

the evaluation section.

4. AUTOMATED TOOL SUPPORT

It is not trivial to make the described form of code mobility

generally applicable and usable for developers that may not have

the time to invest in complex tools and that may have to operate in

industrial environments that put a lot of restrictions on the used

compilers and development tools.

In the ASPIRE project, we therefore designed a plugin-based tool

flow that allows a developer to annotate the source code that he

wants to make mobile, and that can be used in combination with

open source compilers like LLVM and GCC, as well as with

proprietary compilers such as ARM RVDS.

In this tool flow, we make use of three sets of tools, which

corresponds to three phases as depicted in Figure 5.

Figure 5: Code mobility tool flow

4.1 Specifying the regions to become mobile
First, we use source code analysis tools based on TXL [17] to

extract annotations from the C source code.2 The annotations are

inserted by the programmer in the form of _Pragma directives as

defined in the C standard since C99. Figure 6 depicts an example.

The ASPIRE begin and ASPIRE end pragmas denote a code

region to be protected, in this case with the code mobility

protection. Many other protections are also supported by the full

ASPIRE tool chain, but are out of scope for this paper. The

regions mark by the pragmas have to follow the scoping rules of {

... } blocks in C, but this is not problem, since C programmers are

obviously very familiar with this scoping.

The analysis tool extracts the annotations from pre-processed

source code, and produces a JSON file that identifies the regions

by means of their path and file names, their line numbers, the

functions in which the regions were found, as well as the

protections that were specified for each region. The tool also

removes the ASPIRE pragmas, such that compilers will not

complain about unknown pragmas.

In addition, the user can edit the JSON file, for example to mark

additional functions that need to be made mobile. Wildcards can

be used to denote multiple functions and multiple files. This eases

experimenting with regions, for example to find a good balance

2 For the time being, we only support C code because the TXL

grammar we use is limited to C. C++ grammars exist as well,

however, so this is no fundamental limitation.

between overhead and protection. Moreover, it also allows the

user to specify that functions need to be made mobile that are not

part of the original application, but that are injected into the

application to implement other protections, such as code guards,

by other plugin components in a protection tool flow. A range of

such components is documented in some of the public ASPIRE

deliverables available on the ASPIRE website [21].

int f(x) {

 int y,z,i;

 y = 2 * x;

 z = 0;

 _Pragma(“Aspire begin protection(mobility)”);

 for (i=0; i<y; i++)

 z += x << i;

 _Pragma(“ASPIRE end”);

 z /= 2;

}

Figure 6: Annotation code example

4.2 Compilation with standard compilers
In the second phase, the pre-processed code without the pragma is

compiled, assembled and linked into a binary or library. The

compiler, assembler and linker are instructed to generate debug

information in the produced object files and in the final

binary/library, as well as a linker map file. All compilers and

linkers we know can do so. The linker map and the debug

information, as well as sufficient relocation and symbol

information need to be available in support of the third step,

which consists of a link-time rewriting process.

Sufficient relocation and symbol information needs to be present

to allow the link-time rewriter to rewrite the generated code

conservatively, i.e., without breaking the original program

behaviour. For example, so-called mapping symbols are needed

that identify data present in the code sections. As another

example, relocations should not be relaxed because important

information is lost during the relaxation process. A standard linker

does not suffer from that loss, but an advanced link-time rewriter

does. Some compilers and binary utilities already produce

sufficient information, such as ARM's proprietary compilers.

Others, like GCC, LLVM and the GNU binutils do not do

produce it out of the box. However, about 10 small patches,

touching only few lines of code in total, suffice to make them

produce it.

4.3 Binary code rewriting
The third phase then consists of the actual extraction of mobile

code blocks and the rewriting of all code to insert the necessary

indirections. For this, we rely on the Diablo link-time rewriter

from Ghent University (http://diablo.elis.ugent.be) [23]. This

rewriter has already been used for many different applications,

incl. fault injection mitigation; obfuscation; kernel customization;

memory safety; software diversity; and program compaction,

optimization and instrumentation. In the ASPIRE project and tool

chain, it applies many protections besides code mobility, incl.

control flow obfuscation, code guards, ISA randomization, and

anti-debugging techniques.

The internal program representation in Diablo is a so-called

whole-program control flow graph (WPCFG). This WPCFG

includes the CFGs of all functions in the program, as well as call

and return edges, and additional so-called hell nodes and hell

edges that can conservatively model unknown code (such as

library code) and unknown (or at least not precisely known)

control flow (such as calls through function pointers).

Diablo first builds the WPCFG of the original application or

library by disassembling it with the help of the linker map file and

the original object files (and the relocation and symbol

information contained in them). After this it annotates the nodes

in the WPCFG with line number information that it extracts from

the debugging information.

In the WPCFG, it then identifies the regions specified in the

JSON configuration file. If a region has multiple entry points, it is

split in multiple single-entry regions. Moreover, if a region is

reachable through indirect control flow transfers such as calls

through function pointers, the already mentioned form of pre-

headers is inserted in the code. At that point, all regions are

single-entry regions that are only entered through direct control

flow transfers. Diablo then rewrites all those direct transfers into

indirect ones that go through the Binder's redirection tables.

Next, the code inside each region is rewritten to replace all

transfers and references to other mobile code regions or to static

code and data by indirect, offset-independent references.

Typically, the offset-independent references require more

instructions, and often they need to store temporary (relative and

absolute) addresses in registers. Diablo relies on its bi-directional,

inter-procedural, context-sensitive liveness analysis to maximally

find available registers in the code. If none are available at some

point, the necessary number of registers is freed by inserting

registers spills to the stack.

The rewritten regions are then extracted from the WPCFG, and

migrated to separate WPCFGs, one per region. Entries and exits

to and from these separate WPCFGs are modelled conservatively

with hell edges, as if each region corresponds to a library that can

be called by unknown application code. Once the original

WPCFG has been split in multiple ones this way, each of them

can still be transformed independently: The hell edges insure that

dependencies between the blocks are respected automatically.

For each extracted regions, multiple WPCFGs can actually be

translated, which are then diversified with the stochastic

diversification techniques previously documented in literature

[18][19], incl. opaque predicates, branch functions, flattening, and

code layout randomization. Obviously, those protections can also

be applied to the application code that remains static, including

the binder and the downloader.

4.4 Current Status and Limitations
While most Diablo transformations, including the aforementioned

diversification transformations can handle both the fixed-width

32-bit ARM code and mixed-width Thumb2 instruction sets of the

ARMv7 architecture, as well as combinations of the two sets, the

current tool support for producing offset-independent code only

handles the 32-bit ARM subset. This is not a fundamental

limitation however, only a matter of engineering effort.

Diablo in general can handle position-dependent as well as

position-independent code, and so can the mobile code support

we implemented on top of Diablo. There is one exception,

however. The current tool cannot yet convert position-dependent

switch tables (a.k.a. branch tables) into position-independent or

offset-independent ones. WPCFG fragments containing such

tables are therefore excluded. This is also a matter of engineering

effort, not a fundamental issue.

The whole tool flow, including the code mobility support, has

already been extensively tested with LLVM 3.3 and 3.4, as well as

with GCC 4.8.1 and 4.6.4, and binutils 2.23.2 for ARMv7

software executed on Linaro Linux, as well as with the Android

NDK API level 18 (incl. the already mentioned compilers and

binutils) for software running on Android JellyBean (4.3). Both

standalone binaries (from the SPEC2006 benchmark suite, as well

as system utilities) as well as libraries have been tested, incl.

security-sensitive plugins for the Android DRM Framework. In

terms of structure and other requirements, such as the use of

GNU_STACK and GNU_RELRO segments, the generated

binaries and libraries conform to the strict security requirements

of SELinux.

For the moment mobile blocks can't share pages yet. This is

because when a new mobile block has to be loaded into memory,

the page(s) it would be placed on would have to be mapped first

to non-executable and then back to executable; in Android

systems this would require a rooted device.

In case the code from another mobile block present on one of

these pages is being executed in another thread at the same

moment, this thread would generate a segmentation fault. A future

solution for this problem would be to install a signal handler for

segmentation faults in the binary that suspends this thread and

resumes it when the page is executable again. For this same

reason there is also no support yet for removing mobile blocks

from memory, but this feature can be eventually added with

minimal effort.

A basic version of the tool flow, including the mobile code

support, will be open sourced during the course of the ASPIRE

project (Nov 2013 - Oct 2016).

4.5 Testing
To make sure rewriting binaries with Diablo and splitting off

mobile blocks didn't introduce any bugs it was verified whether

rewritten applications still work correctly. For this purpose a stub

downloader without an actual network connection was used,

which simply maps the requested mobile block from the disk. The

testing was done both for ARM Linux and Android, using

Position Independent Executables. The applications used are

those from the SPEC CPU 2006 benchmark. The testing was done

by simply making mobile every named function present in the

binary (if that was possible). As an example more than 3000

functions were made mobile for the 403.gcc benchmark.

5. PERFORMANCE ANALYSIS

Our performance analysis was carried out for our Code Mobility

framework on three case studies written in the C and C++

languages, taken from SPEC CPU 2006 benchmark, namely

libquantum, namd and milc. Library. Tests were performed on a

SABRE Lite i.MX6 board with a Quad-Core ARM Cortex A9

processor at 1 GHz clock speed, with 1 GByte of 64-bit wide

DDR3 at 532 MHz.

To evaluate the steady-state overhead of the mobile code

transformations, i.e., the performance overhead on an application

in which all executed mobile code blocks have already been

downloaded, we used a customized version of Diablo. It

transform the applications by applying the GMRT indirection and

by making all mobile code offset-independent as described in

Section 3, but it leaves the mobile code blocks in the binary's

static code sections, but avoiding mobile blocks dumping.

To evaluate the latency that the downloading of the blocks might

incur, we tested four different network scenarios: Localhost, LAN,

WiFi, and 3G. In the localhost scenario, all components were

configured such that the server, the client, and the code mobility

server reside on the same test virtual machine: all communications

took place locally, in order to exclude influence of transmission

delays from collected data and have to reference measures for the

other configurations.

In the LAN configuration, we tested the code on a 100 Mbps

wired network; in the WiFi configuration we tested the code on a

54 Mbps wireless network, while in the 3G scenario we tested it

on a HSDPA mobile network.

We measured the latency, i.e. the time required to establish a new

TCP connection, whenever a new code block has to be

downloaded; then we calculated the blocks download time to

measure the time needed to download a mobile block on different

network configurations. For the block download we made an

arbitrary function mobile and measured the time needed to

transfer it from the server to the client. The chosen function has a

code footprint of 412 bytes.

Each experiment was repeated 500 times to collect data and we

calculated average value and standard deviation of latency and

time to download a mobile code block (see Table 1); for latency

measures we run the code only 100 times. The last column of

Table 1 represents the total execution time of a mobile version of

the libquantum application. In this case we made a hot function

mobile that represents by itself circa 50% of the executed

operations.

Table 1. Summary of Performance Overhead (in ms)

Config Latency
Block

download
Libquantum
50% mobile

Localhost

Average

Std Dev

Overhead

0.12

0.03

9.36

6.63

369.37

66.28

+1.97%

LAN

Average

Std Dev

Overhead

0.32

0.02

6.98

1.46

370.45

65.74

+2,27%

Wifi

Average

Std Dev

Overhead

3.43

2.81

29.64

24.49

401.56

68.36

+10,86%

3G

Average

Std Dev

Overhead

134.27

119.58

228.87

154.44

659.54

173.42

+82,08%

Since most of the overhead comes from downloading blocks,

which happens only once per mobile code block in our current

implementation, and because our Android boards are relatively

slow, we used the test SPEC inputs in our experiments. As

expected, the worst overhead (82%) is found in case of mobile

network connection while in a LAN scenario the overhead is as

low as 2%.

Table 2 shows the performance once all mobile code blocks have

been downloaded, i.e., when the redirection via the Binder's

GMRT table is applied to all the fragments of an application.

For each benchmark application scenario the average total

execution time and its standard deviation are provided, overhead

is computed as the increment of execution time with respect to the

original application, where no functions have been instrumented

to become mobile. Each row indicates a different experiment with

a significant percentage (20%, 50%, and 100%) of

indirection/mobility, evaluated as the number of instructions

executed in mobile functions over total number of executed

instructions.

Table 2. Summary of Computational Overhead (in ms)

Execution time Average Std Dev Overhead

libquantum

original

20%

50%

100%

362.23

363.18

355.73

394.80

63.11

67.93

67.14

62.06

+0.26%

-1.80%

+8.99%

milc

original

20%

50%

100%

85,697.45

85,417.24

85,985.24

88,557.82

29.98

46,73

46.73

133.17

-0,33%

+0,34%

+3,34%

namd

original

20%

50%

100%

92,729.70

93,403.56

94,383.00

95,503.73

107.89

124.05

115.48

119.98

+0.73%

+1.78%

+2.99%

In both the 20% and 50% coverage example we can see that the

overhead is very low and sometimes even less than zero. This is

due to the optimizations made to the code by Diablo. Only when

100% of the application’s functions are made “mobile” forcing

the indirection we can see a significant overhead occur.

6. CONCLUSIONS AND FUTURE WORK

The main contribution of our work is the definition of a new

software protection relying on code mobility and the full

automation of mobile code blocks generation. Our solution shows

that splitting program in code blocks transmitted via network by a

trusted server is a suitable and low-cost software protection that

can be useful in defending software programs from reverse-

engineering. Our protection creates problems for common reverse

engineering tools and makes the code comprehension task more

difficult for the attacker.

The proposed solution provides stronger protection than the one

described in previous works. First of all, the addresses at which

the mobile code is downloaded will differ from one run of the

program to another. This makes all kinds of dynamic attacks more

difficult. Secondly, almost all the necessary support is already

available to free the allocated memory of mobile code blocks, and

to restore the addresses in the look-up table to their original

values, i.e., the stub addresses. Once this is implemented, it will

allow us to make sure that not all mobile code is present at once,

and to let multiple different mobile code blocks occupy the same

memory addresses during a single run of a program. The fact that

addresses in the program's address space then no longer map onto

instructions in a one-to-one mapping, also complicates many

dynamic and hybrid attacks, e.g., because many tools such as IDA

Pro are engineered around the central notion that every code byte

and address corresponds to at most one instruction.

Further research will be devoted to integrate code mobility with

remote attestation in order to integrate tamper-detection

techniques to improve the level of protection. Another line of

research we want to explore is the combination of code mobility

and software diversity. Software diversity creates many different

copies from an initial version of a program: each copy of the

protected program is different in its binary shape, but is

functionally equivalent to other copies [24]. Thus, attacks

designed to work with one version might not work with other

customized versions. Along with parameterizing the binary layout

(diversity in space) we will explore how to extend it with diversity

in time, by making Code Mobility even more configurable, by

randomizing the binary structure [25] and parameterizing the

number and size of code blocks and their duration in the client

code before expiring and being replaced by a new version.

7. ACKNOWLEDGMENTS
The ASPIRE project runs until October 2016 and has received

funding from the European Union Seventh Framework

Programme (FP7/2007-2013) under grant agreement number

609734.

8. REFERENCES
[1] Collberg, C., and Nagra, J. 2009. Surreptitious Software:

Obfuscation, Watermarking, and Tamper-proofing for

Software Protection. Addison-Wesley.

[2] IDA Pro Disassembler - multi-processor, disassembler and

debugger. Online at http://www.hex-rays.com/idapro/

[3] Madou, M., Anckaert, B., De Sutter, B., and De Bosschere,

K. 2005. Hybrid static-dynamic attacks against software

protection mechanisms. In Proceedings of the 5th ACM

Workshop on Digital Rights Management, 75–82.

[4] Chang, H., and Atallah, M.J. 2001. Protecting Software Code

by Guards. In Proceedings of the ACM Workshop on

Security and Privacy in Digital Rights Management,

Springer LNCS 2320, 160–175.

[5] Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., and

Jakubowski, M.H. 2002. Oblivious hashing: a stealthy

software integrity verification primitive. In the 5th

International Workshop on Information Hiding, 400–414.

[6] Linn, C., and Debray, S. 2003. Obfuscation of executable

code to improve resistance to static disassembly. In ACM

proceedings of Computer and Communications Security

Conference. CCS-03. ACM, 290–299.

[7] Kanzaki, Y., Monden, A., Nakamura, M., and Matsumoto, K.

2003. Exploiting self-modification mechanism for program

protection. In Proceedings of the 27th Annual International

Conference on Computer Software and Applications.

COMPSAC 2003, 170–179.

[8] Birrer, B. D., Raines, R. A., Baldwin, R. O. , Mullins, B. E.,

and Bennington, R.W. 2007. Program fragmentation as a

metamorphic software protection. In Proceedings of Third

IEEE International Symposium on Information Assurance

and Security.IAS 2007. 369-374.

[9] Giffin, J. T., Christodorescu, M., and Kruger, L. 2005.

Strengthening software self-checksumming via self-

modifying code. In 21st IEEE Annual Computer Security

Applications Conference. ACSAC-05. 18-27.

[10] Jakobsson, M., and Reiter, M.K. 2002. Discouraging

software piracy using software aging. In Security and

Privacy in Digital Rights Management: 1st ACM Workshop

on Digital Rights Management. Springer. 1-12.

[11] Collberg, C., Nagra, J., and Snavely, W. 2008. bianlian:

Remote Tamper-Resistance with Continuous Replacement.

Technical Report TR08-03, Department of Computer

Science, University of Arizona.

[12] Collberg, C., Martin, C., Myers, J., and Nagra, J. 2012.

Distributed application tamper detection via continuous

software updates. In Proceedings of the 28th ACM Annual

Computer Security Applications Conference. 319-328.

[13] Falcarin, P., Di Carlo, S., Cabutto, A., Garazzino, N., and

Barberis, D. 2011. Exploiting Code Mobility for Dynamic

Binary Obfuscation. In Proceedings IEEE World Congress

on Internet Security. WorldCIS. 114-120.

[14] Falcarin, P., Scandariato, R., and Baldi, M. 2006. Remote

trust with aspect oriented programming. In Proceedings of

the 20th IEEE International Conference on Advanced

Information Networking and Applications. AINA. 451–458.

[15] Scandariato, R., Ofek, Y., Falcarin, P., and Baldi, M. 2008.

Application-Oriented Trust in Distributed Computing. In

Proceedings of the IEEE 3rd International Conference on

Availability, Reliability and Security. ARES. 434–439.

[16] ASPIRE project deliverable D1.04: Reference Architecture.

Online at https://aspire-fp7.eu/project-deliverables

[17] Cordy, J. R. The TXL source transformation language. 2006.

Science of Computer Programming 61, 3. Elsevier. 190-210.

[18] Coppens, B., De Sutter, B., and Maebe, J. 2013. Feedback-

Driven Binary Code Diversification. ACM Transactions on

Architecture and Code Optimization 9, 4, (Jan. 2013).

[19] Coppens, B., De Sutter, B., and De Bosschere, K. 2013.

Protecting your software updates. IEEE Security & Privacy.

11, 2. 47-54.

[20] O'Sullivan, P., Anand, K., Kotha, A., Smithson, M., Barua,

R., and Keromytis, A.D. 2011. Retrofitting Security in COTS

Software with Binary Rewriting. In Future Challenges in

Security and Privacy for Academia and Industry. Springer

Berlin Heidelberg. 154-172

[21] ASPIRE project website: https://www.aspire-fp7.eu

[22] Aucsmith, D. 1996. Tamper resistant software: An

implementation. In Proceedings of the First International

Workshop on Information Hiding. Springer. 317–333.

[23] Van Put, L., Chanet, D., De Bus, B., De Sutter, B., and De

Bosschere, K. 2005. DIABLO: a reliable, retargetable and

extensible link-time rewriting framework. In Proceedings of

the Fifth IEEE International Symposium on Signal

Processing and Information Technology, 7-12.

[24] Larsen, P., Homescu, A.. Brunthaler, S., and Franz, M. 2014.

SoK: Automated Software Diversity. In Proceedings of the

35th IEEE Symposium on Security and Privacy. 276-291.

[25] Wartell, R., Mohan, V., Hamlen, K. W., and Lin, Z. 2012.

Binary stirring: self-randomizing instruction addresses of

legacy x86 binary code. In Proc. of the ACM conference on

Computer and communications security. CCS-12. 157-168.

