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ABSTRACT 

The analysis of binary code is a common step of Man-At-The-End 

attacks to identify code sections crucial to implement attacks, such 

as identifying private key hidden in the code, identifying sensitive 

algorithms or tamper with the code to disable protections (e.g. 

license checks or DRM) embedded in binary code, or use the 

software in an unauthorized manner. Code Mobility can be used 

to thwart code analysis and debugging by removing parts of the 

code from the deployed software program and installing it at run-

time by downloading binary code blocks from a trusted server. 

The proposed architecture of the code mobility protection 

downloads mobile code blocks, which are allocated dynamically 

at addresses determined at run-time; control transfers into and out 

of mobile code blocks are rewritten using the Diablo binary-

rewriter tool.    

Categories and Subject Descriptors 

D.2.0 [Software Engineering]: General – Protection 

mechanisms. 

General Terms 

Security, Reverse engineering. 

Keywords 

Code Mobility, Binary Code, Binary Rewriting. 

1. INTRODUCTION 
One of the main goals of software protection is to prevent code 

from being observed and analysed, and then eventually illicitly 

modified and tampered with. To protect against code analysis, 

developers usually try to make reverse-engineering harder, by 

applying different obfuscating transformations [1]; attackers can 

use binary code inspection tools like IDA Pro [2] and binary 

instrumentation tools [3] to extract run-time information such as 

execution traces and memory dumps.  

To protect against illicit modifications, anti-tampering approaches 

are utilized to detect when code has been tampered with and to 

react by stopping or delaying program execution. Tamper-

resistant software typically uses built-in integrity checks to detect 

code tampering by guarding the code being executed [4] or by 

checking that the flow of control through the program confirms to 

the expected flow [5].  

Binary obfuscation techniques have been proposed to increase 

reverse engineering complexity: Linn et al. [6] proposed a tool for 

inflating binary code with redundant and/or garbage instructions 

to defeat disassemblers or to produce a very complex assembly 

code: they evaluate obfuscation strength with their confusion 

factor, as the percentage of instructions not correctly disassembled 

because of binary obfuscation.  

Aucsmith [22] proposed encryption to resist to code observation: 

his technique break a binary program into individually encrypted 

segments, so that the hash value of a block is the secret key for 

decrypting the next block; if the program was altered the hash 

value is changed and then the next block cannot be decrypted 

properly and the program cannot continue to run; in this case 

finding the first key allows recovering the full chain of keys. 

Kanzaki et al. [7] used self-modifying binary code to thwart static 

analysis and disassembling, while Birrer et al. [8] provide 

metamorphic binary code by means of program fragmentation, 

and Giffin et al. [9] used self-modifying code for code guards 

hardening.  

Online protections techniques aim at extending state-of-the-art 

static protection techniques by leveraging on software updates and 

trusted network services.  

Different online protections use dynamic code replacement to 

periodically replace the copy of the program running on the 

untrusted machine with the goal of limiting the amount of time 

that the attacker has to reverse engineer the application. 

The replacement may be implemented for the functional part of 

the program, and/or for the protection techniques used to protect 

it [10]. Collberg et al [11][12] and Falcarin et al [13] proposed 

the continuous replacement of Java and binary code respectively, 

in which the remote trusted entity frequently sends a set of new 

code fragments to the untrusted machine.  

The technique of Collberg et al [12] has some limitations has it 

relies on CIL (Common Intermediate Language): this bounds the 

scenarios in which the technique is usable (e.g., not with 

dynamically linked libraries), their composability with other 

protections, and the granularity of the code blocks. 

Previous works in Java implemented dynamic replacement of 

protection code implementing code mobility features on top of 

dynamic aspect-oriented platforms [14] [14]or by ad-hoc JVM 

extensions [15]. 

In this paper, we present the Code Mobility framework, an online 

protection technique that aims to overcome the drawbacks of local 

protection techniques by introducing mobile code. A mobile code 

block is a piece of binary code removed from an application 

before deployment. A trusted server placed on the network, is in 

charge of providing mobile code blocks to the untrusted client. 

To protect against code analysis, the Code Mobility framework 

delivers binary code to the client at run-time; the client 

application self-modifies its own code layout to install the 



downloaded code blocks, in order to thwart static analysis and 

increase the difficulty of dynamic analysis. 

The Code Mobility framework has been developed within the 

ASPIRE project [21], and it is compliant to the software 

protection reference architecture designed in the project and 

documented in deliverable D1.04 [16], which is available on the 

project website.  

The main novel contributions of this work are: 

1. design and prototype implementation with demonstration on 

standard Android code; 

2. integration with compilers commonly used for native code 

development, including in the Android NDK; 

3. integration in a whole tool-flow (of the ASPIRE project) to 

ensure as much as possible composability with other 

protections; 

4. very fine-grained code blocks (albeit with a performance 

overhead);  

5. convenient way to specify and control deployment via source 

code annotations;  

6. evaluation on real networks, ranging from local networks, to 

3G mobile networks.  

The paper is structured as follows: in section 2 we introduce the 

Code Mobility architecture and all its components, then in section 

3 we describe how to create offset-independent mobile code. In 

section 4 we introduce the automated tools support to instrument 

and split binary code in code blocks before run-time; then in 

section 5 we describe the performance analysis of our framework 

on different network settings, while section 6 draws the 

conclusions and discusses future work. 

2. CODE MOBILITY ARCHITECTURE  
In the code mobility architecture we designed and the prototype 

tool support we developed, a client application (which may also 

be a dynamically linked library) is stored on the user device as an 

incomplete executable that does not contain all the application's 

code. Two components, Downloader and Binder, are introduced 

for this technique: They are able, respectively, to fetch binary 

code blocks from a trusted server at run-time, and to patch these 

into the running process' memory, in a dynamically allocated 

memory area. These components are not part of the original 

application and they have to be injected into the protected version. 

This approach aims for mitigating reverse engineering: instead of 

preventing analysis of code by making the code complex, we 

make sure that the code is not available for static analysis on the 

client-side as long as possible, and deliver the necessary code only 

when it is actually needed by the control flow. The Code Mobility 

framework's architecture is depicted in Figure 1: it can be seen as 

a dynamic binary obfuscation approach based on the deployment 

of an incomplete application whose code arrives from a trusted 

network entity (the Code Mobility Server) as a flow of mobile 

code blocks; such blocks are fetched by the Downloader 

component and arranged in memory by the Binder component at 

run-time, with an unpredictable memory layout. The Code 

Mobility framework is compliant to the ASPIRE project reference 

architecture [16], defining the ASPIRE portal, which acts as a 

common entry point for all online protections developed in the 

ASPIRE project, and the ASPIRE communication control logic 

(ACCL) library in the client host, which provides native socket 

support to Android apps.   
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Figure 1 - Code Mobility High-Level Architecture 

Mobile code blocks coming from the Code Mobility Server will 

not be placed in a statically known location in the binary code 

section, but will instead be placed in dynamically allocated 

memory. So the location of the code blocks will not be fixed. This 

implies that the mobile code needs to be position-independent 

code (PIC) that can be dynamically relocated, and independently 

from the non-mobile code part of the client's binary code. Thus, 

indirections need to be inserted in the transformed code to deal 

with these variable code locations, both in the static, non-mobile 

parts of the client application and in the mobile code. Fortunately, 

only local code transformations are required for this: instructions 

will be replaced with small code snippets that can deal with the a 

priori unknown addresses at which the code has been loaded. 

Our current design only supports mobile code blocks with a single 

entry point. These can be entire procedures or parts of their 

control flow graphs (CFGs). This significantly simplifies the 

implementation of the Binder and its book-keeping data 

structures.  

We should also point out that we only make code mobile. Data 

allocated statically in the binary's data sections is left static, 

including statically allocated data that is accessed by the mobile 

code. 

2.1 Binder 
 

The client-side Binder component is in charge of invoking the 

Downloader when required. The Binder is invoked by the 

application when the control flow reaches a mobile code block. If 

that block has not been downloaded from the server yet, the 

Binder asks the Downloader to retrieve the requested missing 

code block. Through the ACCL communication library, 

implementing a socket API in native code, the Downloader 

queries the Code Mobility server in order to obtain such a block 

and finally the Code Mobility Server sends the proper block back 

to the Downloader.  

After the fetch process the Binder places the block in memory and 

makes sure that the just downloaded block will not be 

downloaded again, reducing the overhead effort introduced by the 

protection technique. Eventually the Binder redirects the control 

to the entry point of the downloaded code, where the application 

can continue normally. 

In the original client application, control flow transfers (such as 

procedure calls) to mobile procedures need to be transformed 

such that: 

1. Upon the first execution of a call to a mobile procedure, the 

Binder and Downloader components are properly invoked in 

order to obtain the code from the server; 



2. Upon subsequent calls to the same mobile procedure, the 

control is immediately transferred to the already downloaded 

mobile code.  

By avoiding going through the Binder again, the performance 

overhead of mobile code can be limited.  Figure 2(a) shows the 

original control flow without mobile code: procedure f() is 

selected to become mobile. In the transformed program, shown in 

Figure 2(b), our tools inserted a look-up table with procedure 

pointers. Look-up table accesses are depicted with dashed arrows 

whereas control flow transfers are depicted with regular arrows. 

The pointers in the look-up table either point to stubs that invoke 

the Binder to start the mobile code downloading process, or they 

point directly to the already downloaded code. All calls to mobile 

functions are transformed into a code snippet consisting of a table 

lookup and an execution control redirection to the address loaded 

from the table.   

A:
...
call f

f:

B:
….

A:
...
call table[idx]

stub ptr

stub

...

...

...

table:

Binder
· invoke Downloader
· update program base address
· overwrite stub ptr

updates

f: 
downloaded
mobile code

B:
….

accesses

(a) (b)
 

Figure 2 – Function Call: Before (a) and After (b) Code 

Mobility Transformations 

 

Initially, when the called mobile function f() has not yet been 

downloaded and bound, the address in the look-up table is that of 

a stub that invokes the Binder. 

This stub calls into the Binder, providing as argument the index at 

which this stub is installed in the look-up table. This index is then 

used as an identifier of the mobile function to be downloaded. The 

Downloader component is then invoked to retrieve the mobile 

(PIC) version of the function's code body from the Code Mobility 

Server, and stores this code body in a dynamically allocated 

buffer.  

Finally, the Binder updates the entry in the pointer look-up table 

by overwriting the address of the stub with the address of the 

downloaded code, after which it redirects the control to this code, 

and normal code continues.  

Subsequent calls to the already downloaded procedure f() then 

proceed as indicated in Figure 3. Since the Binder has already 

updated the pointer in the look-up table at the used index to let it 

point to the downloaded code, the inserted code snippet (in block 

A in Figure 3) now loads this procedure pointer and thus transfers 

control immediately to the previously downloaded mobile code. 

So for subsequent calls, the overhead is limited to the table look-

up, and the necessary spilling and restoring of registers. 

A:
...
call table[idx]

mobile code ptr

...

...

...

table:

f:
downloaded
mobile code

B:
….

 

Figure 3 – Calling Function f() passing through already 

downloaded mobile code  

 

The Binder contains three tables: the GMRT (Global Mobile 

Redirection Table), a mutex table, and a table that stores whether 

a certain mobile block is present or not (if it's not, the entry is 

zero). At program start-up for a certain mobile block its GMRT 

entry contains the address of the associated stub, the mutex entry 

is initialized, and the entry in the last table is zero. When control 

is transferred to the stub through the GMRT, it will itself invoke 

the Binder with the index for the mobile block as an argument. 

The Binder locks the corresponding mutex and checks whether 

the block is present. This is very unlikely to happen, unless 

another thread just downloaded it.  

If the block is not present the Binder instructs the Downloader to 

download the block. It then writes the base address of the 

protected binary onto the first four bytes of the mobile block, 

maps all the pages the block resides on as executable, backs up 

the current GMRT entry (which is the address of the stub) to the 

last table, replaces the GMRT entry with an address in the mobile 

block, and unlocks the mutex. As a small aside: the locking and 

subsequent unlocking of a mutex is not actually done in single-

threaded applications, avoiding unnecessary cost. 

2.2 Downloader 
The Downloader is invoked by the Binder to request a specific 

mobile code block (identified by an index) when needed by the 

client application. After a mobile code block is correctly received 

a suitable heap-allocated memory area is prepared, filled with 

mobile code, and passed back to the Binder. The returned memory 

area must be allocated with respect to a few constraints: 

· It must be memory page aligned so that the Binder can 

apply the proper access rights (execution) later 

· Every mobile block must be allocated in one or more 

dedicated memory pages so that there are no access 

right conflicts: after a page is declared as execution-only 

it should not be accessed in write mode to avoid 

segmentation faults 

The first constraint is respected by using the posix_memalign 

system call which allocates page aligned memory. The latter is 

respected by simply allocating the minimum number of memory 

pages able contain to the full mobile code block. These 

constraints result in an additional overhead (in terms of time and 



memory consumptions) because, after receiving the buffer 

containing the mobile block, the Downloader must copy it into a 

new memory-aligned one. This overhead could be avoided 

introducing a new parameterization that instructs the ACCL API 

to allocate page aligned buffers natively. Furthermore reserving 

full memory pages for single mobile blocks lead to an additional 

overhead in memory allocation. This overhead can be computed 

as: 

 

where, N is the total number of mobile code blocks transferred 

over time, ps is the single memory size, mbsi is the ith mobile 

block size. In a scenario where one hundred blocks are extracted 

from the original application the additional overhead is upper 

limited by the page size times one hundred. As an example if the 

page size is 4kB the “wasted memory” would be less than 400 kB. 

Tuning the amount of original binary code made mobile can 

mitigate this. 

 

2.3 Server-Side Components 
This component reachable by the client via a network link and is 

trustable by hypothesis. The Code Mobility Server is the back-end 

invoked by the Downloader component on the client-side. It is in 

charge of delivering requested mobile code blocks by accessing a 

repository using a given index. 

3. OFFSET-INDEPENDENT MOBILE 

CODE 

When a mobile code block is mapped into the address space of the 

binary or library, this is done on a randomized address on the 

heap because of ASLR. The statically allocated, non-mobile code 

and data of the binary or library is randomized as well. This 

implies that the offset between the mobile code block and the non-

mobile code and data is unknown at compile time. This differs 

from standard position-independent code, where the offsets 

between elements in a statically allocated segment are still fixed. 

Position-dependent code or position-independent code (PIC) in 

the original binary therefore needs to be rewritten into so-called 

offset-independent code.  

On architectures like the x86, this rewriting is straightforward, as 

one of the registers is used (by convention) as a so-called global 

pointer (GP) to the global offset table (GOT) that contains 

pointers to all code and data fragments of which the absolute 

address might be needed at some point.  

On architectures like ARMv7, however, position-independent 

code makes heavy use of the visible program counter (PC) register 

and of PC-relative addressing. So there is no fixed register 

holding a GP, and PIC code is full of PC-relative offsets.  

Figure 4(a) shows an ARMv7 assembly PIC fragment. To load the 

value at label .Ldata into memory with the instruction at .Lins2, a 

PC-relative address stored in a so-called literal pool in the .text 

section is first loaded into a register at .Lins1, and then used in 

the PC-relative memory access at .Lins.1 All edges in the code 

                                                                 

1 The +8 in the PC-relative address is due to the ARM 

specification that a used PC equals the PC of the instruction that 

uses it plus eight. 

fragments of Figure 4 correspond to offsets that are known at 

compile time. For that reason, they can be computed by the linker 

or protection tool, and stored as entries in the literal pools, or they 

can be encoded as immediate operands of instructions.  

Suppose that the three instructions in red become mobile. Figure 

4(b) shows the transformed static PIC. In this example, we assume 

that enough registers are available (like r6 in this fragment) to 

store temporary values. If not, additional spill code would be 

needed.  

Instead of the original code, the first two inserted instructions in 

red produce the address of the GMRT. The next instruction loads 

the address of the mobile block from its (fixed) index in the 

GMRT, and then control is transferred to that address. When the 

mobile code block is not yet present, control will be transferred to 

a stub that invokes the Binder with the requested block index 

instead. The binder then invokes the downloader and overwrites 

the address of the stub in the GMRT with that of the downloaded 

block. 

Please notice that in the remaining static code of the shown 

example, there is absolutely no need to place the instruction at 

.Lins4 right after the inserted instructions, since the control 

transfer from the mobile code to that instruction will happen 

indirectly. Besides hiding the mobile code, this also opens up 

opportunities to obfuscate the control flow in the code that 

remains static. When code mobility is combined with code layout 

randomization in which independent code fragments (i.e., 

fragments that do not need to be allocated consecutively because 

there are no fall-through execution paths between the fragments) 

are reordered and spread throughout the whole text section, the 

fact that .Lins0 and .Lins4 belonged to the same basic block will 

no longer be apparent in the static code.  

Figure 4(c) shows the offset-independent mobile code block that 

replaces the three instructions extracted from the static code.  The 

single entry point of this code block (i.e., the address that will be 

stored in the GMRT by the Binder) is actually the third word in 

this block (marked by the .Lins1 label). The second word is an 

instruction that restores some registers and the first word is a kind 

of GP. In our current implementation, it points to the start of the 

statically allocated code and data of the binary or library in 

memory, i.e., to the .Ltext label that marks the start of the .text 

section. As this address is randomized by ASLR, it is unknown at 

compile time. Therefore it is the Binder's job to fill in this address 

in the blocks first word at run time, i.e., when the mobile code 

block is placed in the process' memory space. 

Rather than relying on the PC and a PC-relative address loaded 

from a literal pool to access statically allocated data as the 

instruction at .Lins2 did in the original code fragment, the 

rewritten code in Figure 4(c) uses the .text GP stored in the first 

word of the block, and an .Ltext-relative address loaded from the 

literal pool. Likewise, to facilitate the jump from the end of the 

mobile code back to .Lins4 in the static code, that address of 

.Lins4 is computed using an .Ltext-relative address. 



 

Figure 4: Example of offset-independent code 

By combining the different redirection mechanisms discussed 

above, it is possible to rewrite all direct references, be it in direct 

memory accesses or in direct control flow transfers from mobile to 

static code or data, from static code to mobile code and even from 

mobile to mobile code.  

To handle indirect references from static data to mobile code, we 

require another mechanism, however. This case occurs when 

pointers to mobile code are stored inside static data sections or 

when they are computed on the fly to be used in indirect control 

flow transfers to mobile code. Fundamentally, the problem with 

such references is that while the origin of the reference can 

accurately be identified (in source code or in binary code, as we 

will discuss in the next section), the points of use of those 

references cannot easily be identified accurately: Once some 

procedure pointer has been computed and stored in memory, it is 

very hard if not impossible in most programs (due to aliasing) to 

decide exactly where that pointer will be used in an indirect 

transfer. Run-time solutions to rewrite all potential indirect 

transfers where code pointers are used have been proposed in the 

SecondWrite binary code rewriting system and in other designs 

[20], but all of them introduce a significant amount of code and 

data bloat, which we consider unacceptable in many usage 

scenarios. 

So rather than rewriting the code fragments that indirectly use 

references to mobile code, we propose to limit code mobility to 

regions that can only be reached through direct control flow 

transfers. In practice, this is straightforward: When we detect that 

a region we want to make mobile is accessed indirectly, an 

indirection pre-header is generated for this region. This pre-

header consists simply of a direct branch to the original entry 

point of the region, which will later on be converted into an 

indirect branch. It then suffices to replace all indirect references to 

the region's original entry point (i.e., statically allocated code 

pointers or code pointer computations) by references to the 

indirection pre-header instead. This pre-header then remains 

static, thus avoiding the whole problem, while the whole region 

itself can still become mobile.  

With the discussed transformation, the code mobility protection 

can be applied widely.  It is clear that rewriting mobile code 

references to static code or data into offset-independent code can 

introduce significant overhead, in particular when additional 

registers will have to be freed. We will evaluate this overhead in 

the evaluation section.  

4. AUTOMATED TOOL SUPPORT 
 

It is not trivial to make the described form of code mobility 

generally applicable and usable for developers that may not have 

the time to invest in complex tools and that may have to operate in 

industrial environments that put a lot of restrictions on the used 

compilers and development tools.  

In the ASPIRE project, we therefore designed a plugin-based tool 

flow that allows a developer to annotate the source code that he 

wants to make mobile, and that can be used in combination with 

open source compilers like LLVM and GCC, as well as with 

proprietary compilers such as ARM RVDS.  

In this tool flow, we make use of three sets of tools, which 

corresponds to three phases as depicted in Figure 5. 

 



 

Figure 5: Code mobility tool flow 

4.1 Specifying the regions to become mobile 
First, we use source code analysis tools based on TXL [17]   to 

extract annotations from the C source code.2 The annotations are 

inserted by the programmer in the form of _Pragma directives as 

defined in the C standard since C99. Figure 6 depicts an example. 

The ASPIRE begin and ASPIRE end pragmas denote a code 

region to be protected, in this case with the code mobility 

protection. Many other protections are also supported by the full 

ASPIRE tool chain, but are out of scope for this paper. The 

regions mark by the pragmas have to follow the scoping rules of { 

... } blocks in C, but this is not problem, since C programmers are 

obviously very familiar with this scoping.  

The analysis tool extracts the annotations from pre-processed 

source code, and produces a JSON file that identifies the regions 

by means of their path and file names, their line numbers, the 

functions in which the regions were found, as well as the 

protections that were specified for each region. The tool also 

removes the ASPIRE pragmas, such that compilers will not 

complain about unknown pragmas.  

In addition, the user can edit the JSON file, for example to mark 

additional functions that need to be made mobile. Wildcards can 

be used to denote multiple functions and multiple files. This eases 

experimenting with regions, for example to find a good balance 

                                                                 

2 For the time being, we only support C code because the TXL 

grammar we use is limited to C. C++ grammars exist as well, 

however, so this is no fundamental limitation.  

between overhead and protection. Moreover, it also allows the 

user to specify that functions need to be made mobile that are not 

part of the original application, but that are injected into the 

application to implement other protections, such as code guards, 

by other plugin components in a protection tool flow. A range of 

such components is documented in some of the public ASPIRE 

deliverables available on the ASPIRE website [21]. 

int f(x) { 

  int y,z,i; 

  y = 2 * x; 

  z = 0; 

  _Pragma(“Aspire begin protection(mobility)”); 

  for (i=0; i<y; i++) 

    z +=  x << i; 

  _Pragma(“ASPIRE end”); 

  z /= 2; 

} 

Figure 6: Annotation code example 

4.2 Compilation with standard compilers 
In the second phase, the pre-processed code without the pragma is 

compiled, assembled and linked into a binary or library. The 

compiler, assembler and linker are instructed to generate debug 

information in the produced object files and in the final 

binary/library, as well as a linker map file. All compilers and 

linkers we know can do so.  The linker map and the debug 

information, as well as sufficient relocation and symbol 

information need to be available in support of the third step, 

which consists of a link-time rewriting process.  

Sufficient relocation and symbol information needs to be present 

to allow the link-time rewriter to rewrite the generated code 

conservatively, i.e., without breaking the original program 

behaviour. For example, so-called mapping symbols are needed 

that identify data present in the code sections. As another 

example, relocations should not be relaxed because important 

information is lost during the relaxation process. A standard linker 

does not suffer from that loss, but an advanced link-time rewriter 

does. Some compilers and binary utilities already produce 

sufficient information, such as ARM's proprietary compilers. 

Others, like GCC, LLVM and the GNU binutils do not do 

produce it out of the box. However, about 10 small patches, 

touching only few lines of code in total, suffice to make them 

produce it.  

4.3 Binary code rewriting 
The third phase then consists of the actual extraction of mobile 

code blocks and the rewriting of all code to insert the necessary 

indirections. For this, we rely on the Diablo link-time rewriter 

from Ghent University (http://diablo.elis.ugent.be) [23]. This 

rewriter has already been used for many different applications, 

incl. fault injection mitigation; obfuscation; kernel customization; 

memory safety; software diversity; and program compaction, 

optimization and instrumentation. In the ASPIRE project and tool 

chain, it applies many protections besides code mobility, incl. 

control flow obfuscation, code guards, ISA randomization,  and 

anti-debugging techniques.  

The internal program representation in Diablo is a so-called 

whole-program control flow graph (WPCFG). This WPCFG  

includes the CFGs of all functions in the program, as well as call 

and return edges, and additional so-called hell nodes and hell 

edges that can conservatively model unknown code (such as 

library code) and unknown (or at least not precisely known) 

control flow (such as calls through function pointers).  



Diablo first builds the WPCFG of the original application or 

library by disassembling it with the help of the linker map file and 

the original object files (and the relocation and symbol 

information contained in them). After this it annotates the nodes 

in the WPCFG with line number information that it extracts from 

the debugging information.  

In the WPCFG, it then identifies the regions specified in the 

JSON configuration file. If a region has multiple entry points, it is 

split in multiple single-entry regions. Moreover, if a region is 

reachable through indirect control flow transfers such as calls 

through function pointers, the already mentioned form of pre-

headers is inserted in the code. At that point, all regions are 

single-entry regions that are only entered through direct control 

flow transfers. Diablo then rewrites all those direct transfers into 

indirect ones that go through the Binder's redirection tables.  

Next, the code inside each region is rewritten to replace all 

transfers and references to other mobile code regions or to static 

code and data by indirect, offset-independent references. 

Typically, the offset-independent references require more 

instructions, and often they need to store temporary (relative and 

absolute) addresses in registers. Diablo relies on its bi-directional, 

inter-procedural, context-sensitive liveness analysis to maximally 

find available registers in the code. If none are available at some 

point, the necessary number of registers is freed by inserting 

registers spills to the stack.  

The rewritten regions are then extracted from the WPCFG, and 

migrated to separate WPCFGs, one per region. Entries and exits 

to and from these separate WPCFGs are modelled conservatively 

with hell edges, as if each region corresponds to a library that can 

be called by unknown application code.  Once the original 

WPCFG has been split in multiple ones this way, each of them 

can still be transformed independently: The hell edges insure that 

dependencies between the blocks are respected automatically.  

For each extracted regions, multiple WPCFGs can actually be 

translated, which are then diversified with the stochastic 

diversification techniques previously documented in literature 

[18][19], incl. opaque predicates, branch functions, flattening, and 

code layout randomization. Obviously, those protections can also 

be applied to the application code that remains static, including 

the binder and the downloader.  

4.4 Current Status and Limitations 
While most Diablo transformations, including the aforementioned 

diversification transformations can handle both the fixed-width 

32-bit ARM code and mixed-width Thumb2 instruction sets of the 

ARMv7 architecture, as well as combinations of the two sets, the 

current tool support for producing offset-independent code only 

handles the 32-bit ARM subset. This is not a fundamental 

limitation however, only a matter of engineering effort. 

Diablo in general can handle position-dependent as well as 

position-independent code, and so can the mobile code support 

we implemented on top of Diablo. There is one exception, 

however. The current tool cannot yet convert position-dependent 

switch tables (a.k.a. branch tables) into position-independent or 

offset-independent ones. WPCFG fragments containing such 

tables are therefore excluded. This is also a matter of engineering 

effort, not a fundamental issue.  

The whole tool flow, including the code mobility support, has 

already been extensively tested with LLVM 3.3 and 3.4, as well as 

with GCC 4.8.1 and 4.6.4, and binutils 2.23.2 for ARMv7 

software executed on Linaro Linux, as well as with the Android 

NDK API level 18 (incl. the already mentioned compilers and 

binutils) for software running on Android JellyBean (4.3). Both 

standalone binaries (from the SPEC2006 benchmark suite, as well 

as system utilities) as well as libraries have been tested, incl. 

security-sensitive plugins for the Android DRM Framework. In 

terms of structure and other requirements, such as the use of 

GNU_STACK and GNU_RELRO segments, the generated 

binaries and libraries conform to the strict security requirements 

of SELinux. 

For the moment mobile blocks can't share pages yet. This is 

because when a new mobile block has to be loaded into memory, 

the page(s) it would be placed on would have to be mapped first 

to non-executable and then back to executable; in Android 

systems this would require a rooted device.  

In case the code from another mobile block present on one of 

these pages is being executed in another thread at the same 

moment, this thread would generate a segmentation fault. A future 

solution for this problem would be to install a signal handler for 

segmentation faults in the binary that suspends this thread and 

resumes it when the page is executable again. For this same 

reason there is also no support yet for removing mobile blocks 

from memory, but this feature can be eventually added with 

minimal effort. 

A basic version of the tool flow, including the mobile code 

support, will be open sourced during the course of the ASPIRE 

project (Nov 2013 - Oct 2016).  

4.5 Testing 
To make sure rewriting binaries with Diablo and splitting off 

mobile blocks didn't introduce any bugs it was verified whether 

rewritten applications still work correctly. For this purpose a stub 

downloader without an actual network connection was used, 

which simply maps the requested mobile block from the disk. The 

testing was done both for ARM Linux and Android, using 

Position Independent Executables. The applications used are 

those from the SPEC CPU 2006 benchmark. The testing was done 

by simply making mobile every named function present in the 

binary (if that was possible). As an example more than 3000 

functions were made mobile for the 403.gcc benchmark.  

 

5. PERFORMANCE ANALYSIS 
 

Our performance analysis was carried out for our Code Mobility 

framework on three case studies written in the C and C++ 

languages, taken from SPEC CPU 2006 benchmark, namely 

libquantum, namd and milc. Library. Tests were performed on a 

SABRE Lite i.MX6 board with a Quad-Core ARM Cortex A9 

processor at 1 GHz clock speed, with 1 GByte of 64-bit wide 

DDR3 at 532 MHz. 

To evaluate the steady-state overhead of the mobile code 

transformations, i.e., the performance overhead on an application 

in which all executed mobile code blocks have already been 

downloaded,  we used a customized version of Diablo. It 

transform the applications by applying the GMRT indirection and 

by making all mobile code offset-independent as described in 

Section 3, but it leaves the mobile code blocks in the binary's 

static code sections, but avoiding mobile blocks dumping.  



To evaluate the latency that the downloading of the blocks might 

incur, we tested four different network scenarios: Localhost, LAN, 

WiFi, and 3G. In the localhost scenario, all components were 

configured such that the server, the client, and the code mobility 

server reside on the same test virtual machine: all communications 

took place locally, in order to exclude influence of transmission 

delays from collected data and have to reference measures for the 

other configurations. 

In the LAN configuration, we tested the code on a 100 Mbps 

wired network; in the WiFi configuration we tested the code on a 

54 Mbps wireless network, while in the 3G scenario we tested it 

on a HSDPA mobile network.  

We measured the latency, i.e. the time required to establish a new 

TCP connection, whenever a new code block has to be 

downloaded; then we calculated the blocks download time to 

measure the time needed to download a mobile block on different 

network configurations. For the block download we made an 

arbitrary function mobile and measured the time needed to 

transfer it from the server to the client.  The chosen function has a 

code footprint of 412 bytes. 

Each experiment was repeated 500 times to collect data and we 

calculated average value and standard deviation of latency and 

time to download a mobile code block (see Table 1); for latency 

measures we run the code only 100 times. The last column of 

Table 1 represents the total execution time of a mobile version of 

the libquantum application. In this case we made a hot function 

mobile that represents by itself circa 50% of the executed 

operations. 

Table 1. Summary of Performance Overhead (in ms) 

Config  Latency 
Block 

download 
Libquantum 
50% mobile 

Localhost 

Average 

Std Dev 

Overhead 

0.12 

0.03 

 

9.36 

6.63 

 

369.37 

66.28 

+1.97% 

LAN 

Average 

Std Dev 

Overhead 

0.32 

0.02 

6.98 

1.46 

370.45 

65.74 

+2,27% 

Wifi 

Average 

Std Dev 

Overhead 

3.43 

2.81 

29.64 

24.49 

401.56 

68.36 

+10,86% 

3G 

Average 

Std Dev 

Overhead 

134.27 

119.58 

228.87 

154.44 

659.54 

173.42 

+82,08% 

 

Since most of the overhead comes from downloading blocks, 

which happens only once per mobile code block in our current 

implementation, and because our Android boards are relatively 

slow, we used the test SPEC inputs in our experiments. As 

expected, the worst overhead (82%) is found in case of mobile 

network connection while in a LAN scenario the overhead is as 

low as 2%. 

Table 2 shows the performance once all mobile code blocks have 

been downloaded, i.e., when the redirection via the Binder's 

GMRT table is applied to all the fragments of an application. 

For each benchmark application scenario the average total 

execution time and its standard deviation are provided, overhead 

is computed as the increment of execution time with respect to the 

original application, where no functions have been instrumented 

to become mobile. Each row indicates a different experiment with 

a significant percentage (20%, 50%, and 100%) of 

indirection/mobility, evaluated as the number of instructions 

executed in mobile functions over total number of executed 

instructions. 

Table 2. Summary of Computational Overhead (in ms) 

Execution time Average Std Dev Overhead 

libquantum 

original 

20% 

50% 

100% 

 

362.23 

363.18 

355.73 

394.80 

 

63.11 

67.93 

67.14 

62.06 

 

 

+0.26% 

-1.80% 

+8.99% 

milc 

original 

20% 

50% 

100% 

 

85,697.45 

85,417.24 

85,985.24 

88,557.82 

 

29.98 

46,73 

46.73 

133.17 

 

 

-0,33% 

+0,34% 

+3,34% 

namd 

original 

20% 

50% 

100% 

 

92,729.70 

93,403.56 

94,383.00 

95,503.73 

 

107.89 

124.05 

115.48 

119.98 

 

 

+0.73% 

+1.78% 

+2.99% 

 

In both the 20% and 50% coverage example we can see that the 

overhead is very low and sometimes even less than zero. This is 

due to the optimizations made to the code by Diablo. Only when 

100% of the application’s functions are made “mobile” forcing 

the indirection we can see a significant overhead occur. 

6. CONCLUSIONS AND FUTURE WORK 
 

The main contribution of our work is the definition of a new 

software protection relying on code mobility and the full 

automation of mobile code blocks generation. Our solution shows 

that splitting program in code blocks transmitted via network by a 

trusted server is a suitable and low-cost software protection that 

can be useful in defending software programs from reverse-

engineering. Our protection creates problems for common reverse 

engineering tools and makes the code comprehension task more 

difficult for the attacker.  

The proposed solution provides stronger protection than the one 

described in previous works. First of all, the addresses at which 

the mobile code is downloaded will differ from one run of the 

program to another. This makes all kinds of dynamic attacks more 

difficult. Secondly, almost all the necessary support is already 

available to free the allocated memory of mobile code blocks, and 

to restore the addresses in the look-up table to their original 

values, i.e., the stub addresses. Once this is implemented, it will 

allow us to make sure that not all mobile code is present at once, 

and to let multiple different mobile code blocks occupy the same 

memory addresses during a single run of a program. The fact that 

addresses in the program's address space then no longer map onto 

instructions in a one-to-one mapping, also complicates many 

dynamic and hybrid attacks, e.g., because many tools such as IDA 

Pro are engineered around the central notion that every code byte 

and address corresponds to at most one instruction. 

Further research will be devoted to integrate code mobility with 

remote attestation in order to integrate tamper-detection 

techniques to improve the level of protection. Another line of 

research we want to explore is the combination of code mobility 



and software diversity. Software diversity creates many different 

copies from an initial version of a program: each copy of the 

protected program is different in its binary shape, but is 

functionally equivalent to other copies [24]. Thus, attacks 

designed to work with one version might not work with other 

customized versions. Along with parameterizing the binary layout 

(diversity in space) we will explore how to extend it with diversity 

in time, by making Code Mobility even more configurable, by 

randomizing the binary structure [25] and parameterizing the 

number and size of code blocks and their duration in the client 

code before expiring and being replaced by a new version. 
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