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Abstract 
Physical exercise programmes are routinely prescribed in clinical practice to treat 

impairments, improve activity and participation in daily life because of their known 

physiological, health and psychological benefits (RCP, 2009). Progressive resistance 

exercise is a type of exercise prescribed specifically to improve skeletal muscle strength 

(Latham et al., 2004). The effectiveness of progressive resistance exercise varies 

considerably between studies and populations. This thesis focuses on how training 

parameters influence the delivery of progressive resistance exercise. In order to 

appropriately evaluate the influence of training parameters, this thesis argues the need to 

record training performance and the total work completed by participants as prescribed 

by training protocols. 

In the first study, participants were taken through a series of protocols differentiated by 

the intensity and volume of training. Training intensity was defined as a proportion of 

the mean peak torque achieved during maximal voluntary contractions and was set at 

80% and 40% respectively of the MVC mean peak torque. Training volume was defined 

as the total external work achieved over the training period. Measures of training 

performance were developed to accurately report the intensity, repetitions and work 

completed during the training period. A second study evaluated training performance of 

the training protocols over repeated sessions. These protocols were then applied to 3 

stroke survivors.  

Study 1 found sedentary participants could achieve a differentiated training intensity. 

Participants completing the high and low intensity protocols trained at 80% and 40% 

respectively of the MVC mean peak torque. The total work achieved in the high 

intensity low repetition protocol was lower than the total work achieved in the low 

intensity high repetition protocol. With repeated practice, study 2 found participants 

were able to improve in their ability to perform manoeuvres as shown by a reduction in 

the variation of the mean training intensity achieving total work as specified by the 

protocol to a lower margin of error. When these protocols were applied to 3 stroke 

survivors, they were able to achieve the specified training intensity but they were not 

able to achieve the total work as expected for the protocol. This is likely to be due to an 

inability in achieving a consistent force throughout the contraction. 

These results demonstrate evaluation of training characteristics and support the need to 

record and report training performance characteristics during progressive resistance 
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exercise, including the total work achieved, in order to elucidate the influence of 

training parameters on progressive resistance exercise. The lack of accurate training 

performance may partly explain the inconsistencies between studies on optimal training 

parameters for progressive resistance exercise. 
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1.0 Introduction 
 

The medical benefits to exercise were reviewed in the early 1990s by the Royal College 

of Physicians which highlighted the physiological benefits of physical activity (RCP, 

2009). Exercise programmes form part of medical intervention to manage illness and 

maintain health and well-being (RCP, 2012). Exercise programmes can come in a 

variety of forms including recreational sport, endurance training, circuit stations, 

stretching, and resistance training. Each of these are prescribed depending on the 

outcome that is desired. Progressive resistance exercise is a type of exercise which is 

specifically designed to improve skeletal muscle strength through the performance of 

movements against a progressively increasing resistance (Latham et al., 2004; ACSM, 

2009). In addition to forming part of recommendations for daily physical activity in 

healthy adults (DoH, 2011), progressive resistance exercise has been shown to be 

beneficial in a number of rehabilitation contexts. It has been recommended for patients 

with multiple sclerosis to manage fatigue (NICE, 2014), restoring physical function 

following musculoskeletal trauma such as hip fractures (NICE, 2011), and improving 

execution of activities of daily living for older people and stroke survivors (Liu & 

Latham, 2009; RCP, 2012).  

This thesis focuses on measuring training performance in training protocols 

differentiated in intensity and total work. It is well established that muscle strength can 

improve following progressive resistance exercise. However, outcomes vary 

considerably between studies (ACSM, 2009). The training stimulus of muscle 

adaptation is not fully understood (Crewther et al., 2006) and the observed variation 

may be due to many factors of which the training parameters utilised in the delivery of 

progressive resistance exercise is of particular interest. Research has focused on the 

influence of training parameters such as the training intensity (relative resistance) 

(Seynnes et al., 2004) and number of repetitions on the effectiveness of progressive 

resistance exercise (Carpinelli & Otto, 1998). In healthy young and elderly populations, 

there is conflicting evidence on the optimal training intensity and number of repetitions 

for progressive resistance exercise. More recently, it was reported that the total work 

(measured in joules), which is the integral force exerted by muscles during the training 

period, to be an encompassing measurement for the amount of training completed 

(Wernbom et al., 2007). However, this has not been consistently reported in previous 
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studies drawing question to whether participants in previous studies completed training 

as prescribed by the training protocols.  

To fully understand the influence of training parameters on the effectiveness of 

progressive resistance exercise, this thesis argues the need to examine training 

performance particularly the amount of training that is completed. Without recording 

training performance and total work, it is not known whether all participants completed 

the regime specified by the training protocol. 

Therefore, as part of this thesis, two studies were conducted to evaluate the use of 

isokinetic dynamometers to train groups of individuals at a differentiated training 

intensity and number of repetitions whilst recording the total work completed during the 

intervention. The protocols required participants to produce force that was equivalent to 

the target force using real-time visual feedback. Accurate performance therefore was 

dependent on the ability to not fall short of or exceed the target force during the muscle 

contractions. Measures of training performance were developed to accurately report the 

intensity, repetitions and work during the training period. 

The first study was conducted to determine whether participants could perform the 

training protocols at the target training intensity and also evaluate whether participants 

could achieve total work as specified by the protocol. The second study was conducted 

to determine whether training performance improved with repeated practice such that all 

participants were able to achieve the training intensity specified and total work expected 

for the protocol. Following this, the protocols were applied to three stroke survivors as 

case studies basis to determine the training performance in a clinical population.  

With increasing financial constraints on the National Health Service there has been a 

growing need for providing cost effective interventions that are evidence based (DoH, 

1997). Cost-effective and evidenced based practice involves the utilization of research 

to determine interventions that have shown to be effective in producing the desired 

effect on outcomes and bear the lowest cost to service delivery (Rosenberg, 1995). For 

rehabilitation purposes, the application of interventions in a way which optimises 

potential outcome has shown growing interest in recent years (Cook et al., 2010). To 

deliver effective exercise interventions in healthcare, there needs to be an improved 

understanding of the influence of training parameters on outcomes following 

progressive resistance exercise in order to identify optimal regimes.   
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2.0 Literature Review 

2.1 Introduction 
This literature review is divided into four main sections. Firstly, the structure and 

function of skeletal muscle is outlined, with reference to current understandings of how 

muscles contract to produce force exerted at a joint as well as how strength can be 

assessed and is influenced by the length of muscle and the velocity of movement. A 

large part of this thesis reviews current understanding in progressive resistance exercise. 

The concepts and training parameters that underpin progressive resistance exercise are 

defined. The evidence on the effectiveness of progressive resistance exercise, 

particularly the influence of the training parameters is reviewed, separately for three 

populations – a) healthy young sedentary, b) healthy elderly and c) stroke survivors. 

This identifies the need to record and report training performance parameters during the 

implementation of progressive resistance exercise. 

 

2.2 Muscle structure and function  

2.2.1 Structure of muscle and neuromuscular control 

Skeletal muscle is specialised tissue that serves the function of producing force 

(MacIntosh et al., 2006). Skeletal muscle attaches to the bones of skeletons via tendons, 

mainly passing over joints, to control posture and movement. Muscles vary in structure 

depending on functional characteristics. Muscle fibres, which are the contractile unit of 

muscle tissue, contain myofibrils which have the ability to reduce in length. Myofibrils 

consist of a string of sarcomeres connected longitudinally by Z lines and these form the 

basic contractile unit of muscle. Myofibrils can shorten in length causing a subsequent 

pull on the tendons attached to bone to produce force (Macintosh et al., 2006). 

The actin and myosin filaments overlap each other within sarcomeres by forming cross-

bridges (Huxley and Hanson, 1954). In relaxed muscle, the cross-bridge sites are 

covered by tropomyosin. They are uncovered by the release of Ca2+ ions from the 

sarcoplasmic reticulum (SR) when impulses are transmitted by the T-Tubules. These 

impulses are usually generated in the M1 motor cortex and transmitted via descending 

motor pathways to motor neurones in the ventral grey matter in the spinal cord. There 

are usually more than a hundred motor neurones supplying each muscle and therefore 
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maximal muscle activation depends on the ability to send impulses using all motor 

neurones associated with a particular muscle. 

 

2.2.2 Motor Unit 

A motor unit is composed of an alpha (α) motor neuron and the muscle fibres that are 

activated by it (MacIntosh et al., 2006). The motor unit has been described as the 

smallest functional unit of a muscle (Sherrington, 1925). Motor units were distinguished 

into two major types, type I and type II by Burke (1971).  Further research classified 

type II into three different types (type IIa, type IIb and type IIx), described below (Pette 

& Staron, 2000; Graziotti et al., 2001). The presence of type IIb fibres is believed to be 

in mammals only and not in human skeletal muscle (Smerdu et al., 1994). 

 Type I– These motor units have a slower twitch, the smallest twitch tension, are 

more fatigue resistant and contain oxidative enzymes compared to other types. 

 Type IIa– These motor units have a faster twitch, are fatigue resistant and can 

produce larger contractions in shorter times compared to type I. They metabolise 

both aerobically and anaerobically, can produce larger contractions in shorter 

times and are more prone to fatigue compared to type I.  

 Type IIb – These motor units have lower levels of myoglobin and mitochondria. 

They metabolise anaerobically and produce faster twitches but are prone to 

fatigue. 

 Type IIx- These motor units are similar to the other type II but contain a 

specific myosin heavy chain isoform. They can produce an intermittent speed of 

twitch compared to muscles that contain primarily type I or type IIa. 

Skeletal muscle fibres adapt to changes in activity pattern. In cat muscle, Buller et al. 

(1960) showed characteristics of slow muscle can change to characteristics of fast 

muscle when innervated with a nerve from a fast contracting muscle. Further work has 

shown that the physiological and morphological characteristics of skeletal muscle were 

determined by their innervations (Close, 1969; Dubowitz, 1967; Gordon et al., 1988). 

Although it was believed that the nerve influenced the muscle chemically, Salmons & 

Vrbova (1969) showed transformation of characteristics of the tibialis anterior and 

extensor digitorum longus muscles in a rabbit was achieved by altering its pattern of 

activity. 

To achieve muscle adaptability while muscle is in vivo, altered patterns of physical 

activity are required. A number of physiological changes have been reported when 

muscles undergo a period of decreased activity (such as immobilisation) (Hortobagyi et 

al., 2000; Ohira et al., 2006) and increased activity (Trappe et al., 2006; Widrick et al., 
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2002). Trappe et al. (2006) investigated muscle changes in young healthy adults 

participating in marathon training. They found an increase in strength in type IIa and an 

increase in twitch speed in type I muscle fibres. Although it is important to consider 

changes in muscle fibre types, the purpose of this work is to investigate the 

effectiveness of progressive resistance exercise on muscle strength and other functional 

outcomes. 

 

2.1.3 Assessment of muscle strength 

Muscle strength is a measure of the amount of the force produced during voluntary 

contractions (Macintosh et al., 2006). The amount of force exerted can vary depending 

on how the assessment is conducted and three of the key factors include the type of 

muscle contraction, length of the muscle during contraction and the velocity of 

movement.  

Muscle strength can be measured during isometric contractions where force is produced 

against a static external resistance with relatively no change in muscle length (Knuttgen 

and Komi, 2003). This can give an indication of the muscle’s force capacity at a specific 

length. It can be measured concentrically or eccentrically where there is a progressive 

reduction or increase respectively in the length of the muscle during the muscle 

contraction (Amiridis et al., 1996). Cress et al. (1992) evaluated the force generated by 

the quadriceps muscle during concentric and eccentric actions at varying velocities 

(between 30-210°.sec-1). Concentric contractions demonstrated progressive decline in 

maximum force at increasing velocities. Klopfer and Greig (1988) suggested this was 

potentially due to a reduction in motor unit recruitment whilst Jones et al. (2006) 

suggested this was due to less cross-bridges being formed at higher velocities. In 

addition to this, the cross-bridges which are made translate less force as the actin is 

moving along the myosin in the same direction that it contracts (Jones et al., 2006). 

Cress et al. (1992) found that eccentric contractions however show no reduction in force 

at increasing velocities with half of the participants even demonstrating a slight 

increase. The authors suggested this was due to elastic components in the muscle 

resisting the increase in muscle length which in turn contributes to the force generated. 

Jones et al. (2006) also suggested this was due to the increased transfer of force from 

the myosin head on the corresponding actin filament as it is moving in an opposing 

direction to the movement of the myosin head. The force produced during isometric 

contractions is higher than the force producing during concentric but not eccentric 
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contractions. The lack of change in muscle length means there is no loss of cross-bridge 

formation but equally there is little contribution of the muscle’s elastic components to 

generate force. 

The force exerted depends on the length of the muscle as governed by the length-tension 

relationship (ter Keurs et al., 1978). As force is generated by the formation of cross-

bridges between the actin and myosin, the amount of force that can be generated 

increases with the number of potential cross-bridges that can be formed. The force 

generated increases as muscles shorten from a lengthened position due to the increase in 

the number of cross-bridges that can be formed. A decline in force generation is then 

observed at the shortest muscle lengths, thought to be due to an interaction between 

adjacent sarcomeres (Jones et al., 2004). Muscle assessment must therefore take into 

consideration the muscle length at which the measurement of muscle strength was 

recorded. 

Muscle strength is also influenced by the velocity of movement, thought to be due to the 

biomechanical interactions between actin and myosin (Jones et al., 2004). For 

concentric contractions, the amount of force generated by muscles reduces with 

increasing velocity of movement relative to the amount of force generated during 

isometric contractions. For eccentric contractions, higher velocities generate greater 

forces until a failure is reached where no force is produced. This occurs when the 

velocity results in the failure of the actin-myosin cross-bridges to form (Jones et al., 

2004). 

These above factors therefore influence how muscle strength can be measured. The 

measurement of muscle strength must be taken into consideration in assessment to 

appropriately evaluate muscle strength. When evaluating muscle adaptation, the method 

of measurement will determine what conclusions can be drawn. The following section 

covers how muscle strength can be increased through exercise. 

 

2.3 Progressive Resistance Exercise 
The concept of strength training was introduced by Delorme (1945) who found muscle 

strength improved by limb movements against physical weights. Strength training or 

more specifically, progressive resistance exercise is a type of exercise designed to 

improve muscle strength (Latham et al., 2004; ACSM, 2009). The principle of 

progressive resistance exercise is to produce dynamic movement through the available 
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range against a resistive load and to repeat these movements over a period of time to 

achieve an increase in the maximal level of force muscle can produce. The prescription 

of progressive resistance exercise is guided by the following training parameters: 

 Training Intensity: The resistive load that is applied is proportional to the 

maximal resistive load against which the participant can perform the movement. 

The proportional value that is utilised is defined as the training intensity. A key 

principle of progressive resistance exercise is that as participants become 

stronger, the resistance used during training is increased so that participants train 

at the same relative proportion of their maximal load i.e. the same training 

intensity (ACSM, 2009). 

 Repetitions: The number of repetitions performed continuously in one set 

without rest. 

 Sets: The number of sets of repetitions performed in one session. 

 Training frequency: The frequency of training is defined as the number of 

sessions per week (Wernbom et al., 2007).  

 Duration: The total number of sessions completed over the training period.  

 Total work: The total external energy produced over the training period. 

Measured in joules, it is the summation of the total force, distance travelled per 

repetition and total repetitions completed over the training period. 

The training parameters outlined may independently and in relation to each other have 

an effect on the training stimuli and in turn influence the effectiveness of progressive 

resistance exercise. The following section examines these parameters in more detail 

outlining their relevance to exercise prescription. 

 

2.3.1 Training Intensity 

In isoinertial training, the amount of load used as resistance against movement is 

determined from the 1 repetition maximum (1RM), which is the maximal resistance 

load a participant is capable of moving in one repetition (ACSM, 2000). The load used 

is a relative percentage of the 1RM load. The percentage of 1RM prescribed is defined 

as the training intensity. Training intensity can also be defined using the number of 

repetitions. For example the 6RM defines the maximal resistance load a participant is 

capable of lifting in six repetitions but no more (ACSM, 2009). In such cases, the 

intensity is the repetition number used and the load is not apportioned during training. 

Norrbrand et al. (2008) theorised that the amount of resistance that is applied is key to 

achieving the training stimulus for muscle adaptation. They proposed that in order for 

the level of protein synthesis to exceed the level of protein degradation, participants 

must produce unaccustomed levels of muscle contraction during the training period. 
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The intensity of training has a direct influence on the acute physiological response as it 

determines the relative resistance against movement and thus the level of muscle force 

produced during the contraction. Higher intensities are associated with greater muscle 

activation (Komi & Vitasalo et al., 1976). 

Higher intensities are generally considered to be above 60% 1RM whilst low intensities 

are considered to be below 50% 1RM (Schoenfeld, 2013; Raymond et al., 2013). There 

has been a lot of focus on the amount of relative resistance applied per repetition during 

progressive resistance exercise. It is well established that applying resistance to 

movement is more effective than control interventions (such as passive movements) for 

improving strength (ACSM, 1998) but the optimal training intensity is unclear. The 

fundamental principle for progressive resistance exercise was to ‘overload’ the muscle. 

Without overloading the muscle, it has been hypothesised that not all muscle fibres will 

be recruited reducing the potential for muscle fibre adaptation and muscle hypertrophy 

(Delorme, 1945 from Michael, 1998; Kraemer & Fleck, 2007).  

There are obvious differences between training at high and low intensity in the amount 

of mechanical stimuli provided but it is more difficult to determine differences in the 

metabolic and hormonal stimuli. Robergs et al. (1991) compared glycogen metabolism 

during and after six sets of training between groups of participants training at high and 

low intensity (70% 1RM and 35% 1RM). They found at the end of training, although 

the level of glycogen degradation was similar between protocols (47.0 ± 6.6 mmol/kg 

wet wt training at 70% 1RM and 46.6 ± 6.0 mmol/kg wet wt training at 35% 1RM), the 

level of glycogenolysis was double in participants completing the 70% 1RM protocol. 

Such differences may influence the response to training.  

Kraemer et al. (1990) found that participants completing high intensity training (80% 

1RM) showed a 100-fold increase in plasma concentrations of growth hormone. 

However, the same exercise protocol with a 3-minute rest period between sets instead of 

1-minute did not demonstrate any change (Kraemer et al., 1990). Takarada et al. (2000) 

utilised a low intensity protocol (20% 1RM) with a shorter rest period (30 seconds) and 

evaluated the change in plasma concentrations of growth hormone with and without 

occlusion. Although there was a 250-fold increase in growth hormone with occlusion, 

there was no marked difference without occlusion. This indicates high intensity training 

but not low intensity training effectively increases plasma concentrations of growth 

hormone in studies utilising progressive resistance exercise without occlusion.   
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2.3.2 Repetition number 

Seynnes et al. (2004) defined the training volume as the number of repetitions 

completed per set. However, this does not take into account the number of sets 

completed which contributes to the total number of repetitions completed in each 

session. Wernbom et al. (2007) defines volume as the total amount of work (in Joules) 

for a given time period. They noted that as the training intensity utilised during the 

training period influenced the amount of force produced by the muscles, comparing 

programmes by the number of repetitions alone was not representative of the volume of 

training. 

For the purposes of this thesis, the training volume will be defined as the total work 

completed. The training volume can be increased by either increasing the number of 

repetitions per set, the number of sets completed per session, the total number of 

sessions completed or by increasing the intensity of training (Lorenz et al., 2010).  

 

2.3.3 Total Work 

Whilst training intensity can be an indirect measure of the amount of relative force 

generated, it does not encompass the total energy exerted by muscles during the training 

period. The number of repetitions completed, the range of movement and the velocity of 

movement may also affect the amount of contractile force produced by muscles during 

the training period. 

Isoinertial training, in which resistance is applied using an external weight (Frost et al, 

2010), involves dynamic movement against a fixed external mass. The actual force 

produced by muscles is not constant through the range due to the acceleration and 

deceleration phases of dynamic movements (Lander et al., 1985). Cronin et al. (2003) 

reported the acceleration phase lasting between 64% and 83% for loads of 30% 1RM 

and 80%1RM respectively. Given that muscle activity subsides (seen by reductions in 

agonist activity) during deceleration phases (Elliott et al., 1989) and given the isoinertial 

properties of physical mass, the actual force produced by muscles may be affected by 

the biomechanics of dynamic resisted movements. The amount of force produced is also 

influenced by the joint range over which the resistance is moved (Cheng and Rice, 

2013). As participants begin to fatigue, they may lose the ability to produce contractions 

through the full available joint range (Cheng and Rice, 2013), which in turn would 

result in less work completed.  
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This raises the importance of measuring total work during training. The external work 

produced is a summation of the total force exerted over the range of the movement. 

It can be viewed as an encompassing measurement for training intensity and the number 

of repetitions, sets and sessions completed as it is dependent on the amount of force 

applied over the range and number of repetitions completed. It can also be measured as 

a relative value by multiplying the intensity of training by the number of repetitions 

completed per session. High intensity training at 80% MVC would theoretically achieve 

double the work per repetition compared to training at 40% MVC, assuming the 

acceleration and deceleration phases are equal. Studies favouring high intensity training 

over low intensity training (Seynnes et al., 2004) have not appreciated that the 

difference in outcomes could be a result of  the higher intensity group completing more 

total work (Wernbom et al., 2010). Therefore, evaluating the influence of intensity when 

the total work is matched and when the total repetitions is matched is necessary to 

elucidate the factors which are responsible for the response to training. 

The total work completed during training has been considered by a number of authors 

when evaluating the results following intensity differentiated progressive resistance 

exercise (Holm et al., 2008; Mitchell et al., 2012; Ogasawara et al., 2013). However, 

aside from the protocol parameters utilised, reference to the actual work completed has 

not been reported. This could have been due to the difficulties in the measurement of 

total work using conventional resistance equipment. Finni et al. (1998) used an optic 

fibre, which was inserted into the muscle tendon, to directly measure the force exerted 

by muscle. However, this is an invasive technique that may affect muscle mechanics 

making it difficult to draw conclusions. Computational models have also been 

considered (Erdemir et al., 2007) but these essentially only provide an estimate of 

muscle force. Due to the difficulties in its measurement, total work has scarcely been 

reported in literature evaluating the effectiveness of progressive resistance exercise. 

Without this, it is difficult to elucidate the influence and interplay between training 

parameters on the effectiveness of progressive resistance exercise. The aim of this thesis 

is therefore to develop protocols which can measure total work. 
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2.4 Influence of Intensity and Volume on Effectiveness of 

Progressive Resistance Exercise 
One of the first studies to evaluate the effect of training parameters was conducted by 

Berger (1962). Berger (1962) compared outcomes in six training groups differentiated 

by the intensity of training (2RM – 12RM) and found training at 4RM, 6RM and 8RM 

more effective compared to training at 2RM, 10RM or 12RM. Studies following this 

reviewed the effect of total repetitions (typically differentiating the number of sets 

completed) on the effectiveness of progressive resistance exercise (Carpinelli & Otto, 

1998; Feigenbaum and Pollock, 1999). Carpinelli & Otto (1998) reviewed 16 studies 

which compared training groups completing 1 training set per session against training 

groups completing 3 sets. Only two studies found a significant difference between 

training groups favouring the higher set protocol whilst the others found no significant 

difference between training groups. However, Rhea (et al., 2002) cites that many of the 

earlier studies reviewed recruited a small number of participants. In order to compare 

interventions, particularly those which are similar, the sample size required to reach 

power is much greater (Wittes, 2002).  

In 2002, the American College of Sports Medicine (ACSM) published guidelines on the 

optimum training parameters for progressive resistance exercise. For healthy adults they 

recommended a minimum of 1 set of 8-12 RM for 2-3 days per week. Further to this, 

for novice individuals they recommended training at 8-12 RM whilst intermediate and 

advanced individuals should train at 1-12 RM in a periodised fashion. These guidelines 

were updated in 2009 (ACSM, 2009) with additional detail for achieving specific goals: 

muscle hypertrophy, power and endurance. However, the guidelines published by the 

ACSM have been criticised (Carpinelli et al., 2004; Carpinelli, 2009). Carpinelli (2009) 

argues that a number of prescription guidelines were inaccurate due to inappropriate use 

of evidence. For example, the claim that training at an intensity of 80% 1RM is required 

for neural adaptation in experienced lifters was based on a single study (Hakkinen et 

al.,1985) that recruited a low number of participants (n = 11) and varied intensity of 

training throughout the programme. The issues raised by Carpinelli (2009) identified the 

need for detailed evaluation of evidence to assess the influence of intensity and volume 

on the effectiveness of progressive resistance exercise. However, they do indicate that 

optimal parameters for progressive resistance exercise may be population dependent. 

This is also supported by Rhea et al. (2003) who conducted a meta-analysis of 140 

studies on the optimal training parameters. They reported effect sizes separately for 

untrained and trained individuals and recommended training at 60% 1RM, 4 sets a 
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session (per muscle group).Three days per week was found to be optimal for untrained 

individuals whilst utilising a higher intensity (80% 1RM), at a lower frequency (2 days 

per week) showed the greatest effect sizes in trained individuals. This indicates training 

at a lower intensity for more repetitions (and therefore potentially an equal amount of 

total work) is optimal for untrained individuals. However, without incorporating the 

total number of repetitions and total work into the analysis, it’s difficult to ascertain the 

contribution of individual parameters on the effectiveness of progressive resistance 

exercise. 

This meta-analysis was followed up by Peterson et al. (2004) from the same team who 

published meta-analysis of 177 studies on the optimal training parameters for untrained, 

recreationally active and athletic populations. In untrained populations, they found 

training at 60% 1RM for 4 sets per muscle group 3 days per week elicited the greatest 

strength gains. However, again the total number of repetitions per set and thus the total 

number of repetitions completed over the training protocol was not considered as part of 

the analysis. Thus it is uncertain whether a higher number of repetitions coupled with a 

lower intensity was more effective than training a high intensity for a lower number of 

repetitions. If it is, this is possibly due to an equivalent volume being completed. 

Wernbom et al. (2007) conducted a meta-analysis on the influence of training 

parameters (specifically intensity, repetitions, frequency and mode of training) on 

muscle hypertrophy (muscle cross sectional area). To compare studies of different 

duration, they calculated the mean increase in cross sectional area per day (%). Most of 

the studies (44 in total using isoinertial resistance to dynamically train the quadriceps 

muscle) evaluated trained participants at high intensity (>60% 1RM). Although it was 

concluded that moderate to high intensity training elicited the greatest changes in 

muscle cross-sectional area, only three studies were included that utilised a training 

intensity of less than 50% 1RM. Also, one of these studies achieved an increase in 

cross-sectional area of 0.75% per day (estimated from graphical data); equivalent to the 

changes observed in studies utilising high intensity training which makes the evidence 

equivocal. Low intensity may therefore be as effective as high intensity training for 

eliciting changes in muscle hypertrophy.  The article addresses the importance of 

looking at other assessment outcomes to evaluate muscle adaptation, not solely muscle 

strength. It also draws attention to the lack of experimental studies utilising low 

intensity for training. 
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There were only two reviews that included only studies which utilised multiple training 

groups differentiated by the intensity and repetitions (Steib et al., 2010; Raymond et al., 

2013). They reviewed the effects of progressive resistance exercise in the older adult 

population. In order to evaluate progressive resistance exercise, the following sections 

review the primary evidence by population type. Deschenes and Kraemer (2002) 

reported classifying training status is important as the potential for muscle adaptation 

may decline as participants’ progress during training programmes. The growing body of 

literature on progressive resistance exercise for trained/athletic individuals and athletes 

has focused on training for specific effects in performance in sport (Peterson et al., 

2004). This literature review will focus on the effectiveness of progressive resistance 

exercise for sedentary individuals to inform the basis of progressive resistance exercise 

for rehabilitation. 

 

2.4.1 Influence of Training Intensity and Repetitions on the 

Effectiveness of Progressive Resistance Exercise in healthy 

sedentary individuals 

Table 2.1 shows studies that have utilised progressive resistance exercise and compared 

outcomes between multiple training groups differentiated by intensity/repetitions in 

‘sedentary’ individuals. The age of participants, their training status, type of exercises 

utilised and training parameters set were all noted to indicate the variances in 

methodology between studies. Due to this variance, it is difficult to determine the 

effectiveness of progressive resistance exercise through comparison of studies. On the 

other hand, studies which have matched training groups may better inform optimal 

training parameters as characteristics between training groups would be homogenous. 

The following section provides an indication of the effectiveness of progressive 

resistance exercise in this population. 
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Table 2.1. Sampled population, training status, training methodology and parameters of s tudies evaluating PRE in healthy sedentary 

Author Age Tra ining s tatus  

Des ign Limbs  
tra ined Exercises  

Assess  
Method Intens i ty 

No. 
Session 

Sets . 
sess ion -1 Reps .set-1 

Muscle 

s trength/CSA 
(%∆) 

Campos et al. 

2002 

22.5 ± 

5.8 

No participation in regular 

exercise programme for at least 
6 months 

 
RCT 

Lower 

limb 

Leg press, squat, 

knee extension 
1RM 

3-5RM 
 
9-11RM 
 

20-28RM 

20 

4 
 

3 
 

2 

Until  

repetition 
failure 

13-20% 
 

13-20% 
 

5-17% 
  

Neils et al. 

2005 

23.2 ± 

2.9 

3 months prior training 

experience 

RCT 

Both 

Bench press, bicep 

curl, tricep ext, leg 
ext, leg curl, squat 

1RM 

50% 1RM 

 
80% 1RM 

24 1 6-8 

9.1% 

 
8.6% 

Lerger et al. 
2006 
 

36 ± 
4.9 

No more than 12 months 
participation in resistance 
training 

RCT 
Lower 
limb 

Leg press, squat, 
knee extension 
 

1RM 
3-5 RM 
 
20-28RM 

20 
4 
 

2 

Until  
repetition 
failure 

10% 
 

10% 

Candow et al. 
2007 

43 ± 
2.7 

No prior participation in 
resistance training 

RCT 
Lower 
limb 

Bench press, squat, 
pull down, knee 
ext/flex, seated row 

1RM 
60-90% 1RM 
69-90% 1RM 

18 
 

18 

2 
 

3 

10 
 

10 

29% 
 

28% 

Holm et al. 

2008 
25 ± 1 

No participation in sports for 

more than once a week 

Quasi-
experimental  

Lower 

limb 

Isolated knee 

extension 
1RM 

15.5% 
 

70% 
36 

5 
 

5 

36 
 

8 

19% 
 

36% 

Mitchell et al. 
2012 

21 ± 1 

No formal weightlifting 
experience or regular 
weightlifting activity for past 
year 

Quasi-
experimental  Lower 

limb 
Isolated knee 
extension 

Peak 
torque 

30% 
 

80% 
 

80% 

30 

3 
 

3 
 

1 

Until  
repetition 
failure 

27% 
 

36% 
 

29% 

Schuenke et 

al. 2012 

21.1 ± 

2.7 

No participation in exercise at 

least 6 months prior to the start 

RCT 
Lower 

limb 

Leg press, squats 

knee extensions 
1RM 

40-60% 

 
80-85% 

17  

20-30 

 
6-10 

 

 
38.8% 

Ogasawara et 
al. 2013 

25 ± 3 
 

Quasi-

experimental  Upper 
limb 

Bench press 1RM 
30% 
 
75% 

18 
4 
 

3 

Repetition 

failure 
 
10-12 

6.5% 
 

13.9% 

Ext – extension; Flex – flexion; CSA – Cross-sectional area
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Campos et al. (2002) evaluated the effect of low intensity (20-28 RM) and high 

intensity (3-5 RM) training on muscle cross-sectional area in untrained males. The 

repetition maximum of 20-28 RM indicates the load used was determined as the load at 

which participants fatigued between 20-28 repetitions. The high intensity group showed 

significant improvements in muscle cross-sectional area for all muscle fibre types whilst 

changes in the low intensity group did not reach significance. Using the same training 

protocols, Leger et al. (2006) also evaluated the effect of low intensity and high 

intensity on muscle cross-sectional area in untrained (less than 1 year participation in 

resistance training) participants. In contrast, both groups showed a 10% increase in 

muscle cross-sectional area and differences between groups were not significant. Leger 

et al. (2006) noted that participants were older than those reported in Campos et al. 

(2002) and may be of a different training status. 

Neils et al. (2005) evaluated outcomes between one group performing super slow 

contractions (90-120 seconds per set) and another performing fast contractions (20-45 

seconds per set). Although the main purposes of the study was to assess whether 

velocity has an influence on outcomes, differences in the intensity of training (50% 

1RM for slow contraction training group and 80% 1RM for fast contraction training 

group) may have had an additional effect on the effectiveness of progressive resistance 

exercise. They found both groups demonstrated similar changes in muscle 1RM for the 

bench press (8.6% and 9.1% for low and high intensity groups). As both groups 

completed the same number of repetitions (one set of 6-8 repetitions per exercise), the 

theoretical total work completed would have been almost double in the high intensity 

group. On the other hand, as the low intensity group performed contractions slower, the 

time that the muscle was under tension would have been greater than the low intensity 

group thus increasing total work. Without total work being reported, it is difficult to 

know whether the similarities in outcome were as a result of the two groups completing 

the same amount of work. 

Candow et al. (2007) compared outcomes following six weeks of progressive resistance 

exercise between groups of untrained individuals (no prior participation in resistance 

training). The first group trained for two sets per session three days per week and the 

second group three sets per session three days per week. Both groups trained at an 

intensity of 60-90% 1RM and in order to train participants to fatigue, they were 

instructed to select an intensity such that they began to fatigue at the end of the training 

set. Despite one group completing more sets per session and therefore a higher amount 



16 

of work over the training period, there was no difference in outcomes between groups. 

This could be due to the lower repetition group training at a higher intensity as they 

would generally require a higher intensity to reach fatigue over a smaller number of 

repetitions. However, without reporting the intensity of training or the total work 

completed, differences between groups with respect to outcomes against the training 

performed are unclear. 

Holm et al. (2008) employed a within subject design to evaluate the influence of 

intensity on muscle cross-sectional area when participants were trained at 70% 1RM on 

one limb and 15.5% 1RM on the opposite limb in sedentary males. Participants 

completed 8 repetitions per set for the high intensity protocol and 36 repetitions per set 

for the low intensity protocol. Muscle strength (1RM) increased significantly in both 

groups but was significantly higher (p < 0.001) in the high intensity group (36% ±5% in 

high intensity vs. 19% ±2% in low intensity).  

It could be argued that a within-subject design may better extrapolate the influence of 

training parameters on the effectiveness of progressive resistance exercise due to the 

inter-individual variability in the training response. However, there is evidence to 

suggest that neuromuscular adaptations in trained muscle (Carroll et al., 2001) can 

translate to the contra-lateral limb observed as an increase in voluntary force and neural 

activation (Farthing, 2009). Therefore employing a within subject design may 

incorporate cross-education between limbs (Howatson et al., 2013) making it difficult to 

evaluate the influence of intensity. 

Similarly, Mitchell et al. (2012) also employed a within subject design. Eighteen 

recreationally active (but with no experience of resistance training) males participated in 

a unilateral leg training programme for 10 weeks (3 times per week). Each leg was 

assigned to one of three training conditions: a) one high intensity set (80% 1RM) until 

repetition failure b) three high intensity sets (80% 1RM) until fatigue and c) three low 

intensity sets (30% 1RM) until fatigue. Following training, muscle cross-sectional area 

and isometric strength improved significantly in all groups but were not different (p = 

0.92). Despite there being no differences between groups for the change in isometric 

strength, isotonic strength was significantly higher in the high intensity 1-set and 3-set 

groups (p = 0.04). As the training was isotonic, changes in dynamic muscle strength for 

the high intensity group may have been over-estimated as it was similar to the muscle 

assessment. Therefore, the isometric outcomes may provide an indication of the effects 

of training muscle without the effects of previous practice.  
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Schuenke et al. (2012) evaluated changes in muscle cross-sectional area and fibre type 

in two groups of untrained females. The first completed 20-30 repetitions at 40-60% 

1RM and the second completed 6-10 repetitions at 80-85%. After six weeks the high 

intensity group demonstrated significant increase in cross sectional area for all three 

fibre types whilst the low intensity group did not demonstrate significant changes. 

These results are contradictory to Mitchell et al. (2012) who found similar changes 

between low intensity and high intensity training where the low intensity group 

completes more repetitions.  

Ogasawara et al. (2013) also compared training between high (75% 1RM) and low 

(30% 1RM) intensity in a within-subject design but for the upper limbs. All participants 

completed the high intensity protocol first and then the low intensity protocol 12 months 

later. The high intensity group completed 3 sets of 10 repetitions whilst the low 

intensity group completed 4 sets until volitional fatigue. The high intensity group 

(13.9%) demonstrated almost double the percentage change (p < 0.05) than the low 

intensity group (6.5%). Although a period of 12 months was elapsed between starting 

the next training protocol, participants’ strength had not returned to baseline values. 

This may have independently affected the response to training. Ogaswara et al. (2013) 

noted that it was possible that some participants may have changed their daily activities 

following participation in the first protocol. Hence, participants may have presented as a 

more active population following participation in the first protocol. 

In sedentary participants, the differences between high and low intensity training where 

the low intensity group completes more repetitions and theoretically an equal amount of 

work remain unclear. Some studies have found no difference between groups training at 

a different intensities (Leger et al., 2006; Neils et al., 2005; Mitchell et al., 2012;) whilst 

others favoured high intensity training (Campos et al., 2002; Holm et al., 2008; 

Schuenke et al., 2012; Ogasawara et al., 2013). 

There are distinct differences between studies in the populations used due to their 

definition of inactive or sedentary individuals. Firstly, despite being titled ‘Untrained 

Individuals’, Neils et al. (2005) selection of participants required them to have reported 

at least 3 months of previous resistance training experience. They noted that early 

changes following training in sedentary individuals were solely attributable to 

neuromuscular adaptation. Rather, they wanted to investigate comparisons following 

early adaptation.  However, it can be argued that neuromuscular changes are a 
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component to the changes in strength following progressive resistance exercise and 

must be reported as part of outcomes. 

With the exception of Neils et al. (2005), other studies used sedentary individuals by 

selecting criteria that limits participants according to the following criteria: 

 Leger et al. (2005) selected participants who had not participated in a resistance-

training programme for more than 12 months. However, it was noted that 

subjects were physically active. 

 Mitchell et al. (2012) selected participants who had no formal weightlifting 

experience or regular weightlifting activity for the past year. 

 Holm et al. (2008) selected participants on the basis that they had not 

participated in any sports more than once a week. 

 Schuenke et al. (2012) reported participants had not participated in exercise at 

least six months prior to the start. 

 Ogasawara et al. (2013), Campos et al. (2002) reported that participants were 

previously untrained but did not have a specific selection criterion. 

The definition of sedentary/untrained populations is inconsistent between studies. Leger 

et al. (2005) and Mitchell et al. (2012) defined sedentary through the exclusion of 

participants with a long history of participation in resistance training. However, given 

that a response to resistance training is observed after just a few sessions (Patten et al. 

2001), they may not have successfully recruited participants of the same training status 

with these criteria. Although Holm et al. (2008) selected participants on the basis that 

they had not participated in sports for more than once a week, participants’ daily 

activities were not considered as part of the selection criteria. Thus they may have 

recruited participants who were active, as part of their daily life, as opposed to 

participating in sport, which in turn may have contributed to recruitment of participants 

that were not homogenous in terms of training status. As previously noted, given that 

optimal training parameters vary between untrained and trained populations (Rhea et al., 

2003), consideration must be given to ensuring population selection criteria ensure 

recruitment of a homogenous population. 

Three of the studies used a within-subject design to assess the influence of intensity on 

outcomes (Holm et al., 2008; Mitchell et al., 2012; Ogasawara et al., 2013). To 

minimise the effects of limb dominance, half of the participants in Holm et al. (2008) 

completed the low intensity protocol on the dominant limb whilst the other half 

completed the high intensity protocol on the dominant limb. Despite this, the order of 

training was not taken into consideration as an additional factor. Although an equal 

number of participants in Holm et al. (2008) completed the high and low intensity 
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protocol in the dominant limb; the order in which the training was performed (dominant 

limb or non-dominant limb first) was not reported. The order of training may have had 

an additional effect on the training response. 

Mitchell et al. (2012) ensured that each limb assigned to one of the three conditions in a 

counterbalanced fashion. Although this may have minimised the effects of limb 

dominance on the response to training, the order in which the limbs were trained may 

not have been accounted for. In Ogasawara et al. (2014), all participants completed both 

protocols with a 12 months break between protocols. However, given that the high 

intensity protocol was completed first and that participants’ strength had not returned to 

baseline, the effect of prior experience in resistance training remained when the 

participants completed the low intensity protocol 12 months later.  

In some studies, participants were instructed to perform to repetition failure/fatigue or 

participants were instructed to train at an intensity range. As the intensity or total 

repetitions were not recorded nor the total work completed during the training period, it 

is difficult to extrapolate the influence of training parameters on the effectiveness of 

progressive resistance exercise. In addition, differences in training status and study 

design between studies also make it difficult to interpret outcomes. There is a separate 

body of literature focusing on healthy elderly participants. The optimal outcomes for 

this population may differ in this population and therefore these studies were also 

reviewed. 

 

2.4.2 Influence of Training Intensity and Repetitions on the 

Effectiveness of Progressive Resistance Exercise in healthy elderly 

Given that the dose-response relationship may be population dependent, the influence of 

training intensity and number of repetitions has been examined separately for 

populations of different training status, age and medical condition. Steib et al. (2010) 

conducted a meta-analysis on studies utilising progressive resistance exercise in healthy 

elderly participants. They evaluated the effect size of 22 studies that utilised multiple 

training groups that were differentiated by training intensity and found high intensity 

training was slightly favoured over low intensity (total effect size = 0.88, 95% CI = 

0.21, 1.55). However, the effect of repetitions completed or the training volume was not 

taken into consideration. 

In a later review, Raymond et al. (2013) conducted a similar meta-analysis but on a 

wider variety of variables including flexibility, falls and quality of life. They also found 
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high intensity was favoured over lower intensity for muscle strength (total effect size = 

0.83, 95% C.I. = -0.02, 1.68) but not other measures. However, this study also reported 

relative volume by multiplying the intensity by the total repetitions. Despite concluding 

high intensity training being more effective than low intensity training, they found 

studies where the low intensity group completed equivalent-training volumes found 

similar improvements in leg strength compared to the high intensity group. This 

supports that the total volume rather than the intensity to be the contributing factor in 

eliciting muscle strength improvements. Experimental studies utilising multiple training 

groups were evaluated below in order to elucidate the effect of training intensity, 

repetitions and volume. 

Hortobagyi et al. (2001) trained two groups of participants (high intensity – 80% 1RM; 

low intensity – 40% 1RM) 3 times a week for 10 weeks. The high intensity group 

completed 4-6 repetitions whilst the low intensity group completed 8-12 repetitions. No 

significant difference was found between the high (37%) and low (30%) intensity group 

for change in strength. Vincent et al. (2002) compared two training groups (n=18 in 

total) completing 24 weeks of training, 3 sessions per week. One group trained at 50% 

1RM for 1 set of 13 repetitions and the other at 80% 1RM for 1 set of 8 repetitions. 

Again, there was no difference in the change in leg extension strength between the high 

intensity (15%, p < 0.05) and low intensity (11%, p < 0.05) group. 

Seynnes et al. (2004) evaluated the influence of intensity in two groups of frail elders, 

the first training at high intensity (80% 1RM, n=8) and the other at low intensity (40% 

1RM, n=6). Although both groups improved knee extension muscle strength 

significantly (57% ± 4.8% and 37% ± 5.9%, p<0.001), the high intensity group showed 

greater change (p<0.001). As both groups completed the same training volume, defined 

here as the total number of repetitions per set, differences between groups may have 

resulted from the higher intensity group completing more work.  

Beneka et al. (2005) trained participants for 16 weeks, 3 times per week, utilising 

multiple knee extension exercises. The low intensity group (50% 1RM) completed 

almost double the repetitions per set (12-14) than the high intensity group (90% 1RM) 

which completed 4-6 repetitions per set.  Contrary to Hortobagyi et al. (2001), they 

found the changes in the high intensity group (11.2% in males and 15.2% in females) 

were significantly greater than the changes in the low intensity group (3.7% in males 

and 3% in females). However, the percentage change in the high intensity group was 

half of what was observed by Hortobagyi et al. (2001). Fatorous et al. (2005) trained 
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participants for a much longer period (24 weeks) utilising multiple exercises for the 

upper and lower limb muscle groups. They found much larger changes in muscle 

strength (1RM of the leg press) compared to the previous studies (63% for the high 

intensity group and 43% for the low intensity group) but contrary to Hortobagyi the 

changes in the high intensity group were significantly greater (p < 0.05). In a later study 

Fatorous et al. (2006) also reported the changes in flexibility of the participants in the 

training programme. 

There could be several reasons for why high intensity was significantly more effective 

than low intensity training in three studies but not in the others. The first is the 

differences in population sampling between studies as Beneka et al. (2005) and Fatorous 

et al. (2005) selected participants who were below the VO2 threshold of 25 ml/kg/min. 

These participants demonstrated limited aerobic capacity which could be due to 

limitations in cardiac output, pulmonary effusion and blood flow (Bassett & Howley, 

2000). These participants may therefore have impaired exercise performance as a result 

of a lower lactate threshold (Wilmore & Costill, 1999). The response to exercise may 

differ as a result, which indicates that high intensity is favoured in participants with a 

limited aerobic capacity.  

Secondly, it is unknown whether the differences in outcomes were a result of the high 

intensity group completing more work during the training period.  This is supported by 

Raymond et al. (2013) who found low intensity training resulted in similar changes 

compared to high intensity training when the low intensity group completed equivalent 

volumes. Both Hortobagyi et al. (2001) and Vincent et al. (2002) used equivalent 

training volumes between high and low intensity groups, according to Raymond et al. 

(2013). 

In addition to this, there is scope for evaluating the influence of intensity in the short 

term (less than 6 weeks) where improvements in strength are due to changes in 

neuromuscular activation rather than hypertrophy. Over a short period, with protocols 

that are matched for work, by having the low intensity group completing more 

repetitions, low intensity training could be as effective as high intensity training. 

The optimal parameters for progressive resistance exercise may also differ in 

neurological populations such as stroke, where the underlying condition may affect the 

response to training. This is reviewed in the next section. 
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2.4.3 Progressive Resistance Exercise in Stroke 

Populations with specific impairments may also demonstrate different responses to 

progressive resistance exercise depending on the parameters utilised. Stroke causes 

damage to neurons in the brain either by haemorrhage or ischemia. Damage to neurons 

from the motor cortex responsible for producing movement causes loss of function 

(Darling et al., 2011). The disability resulting from stroke varies between survivors 

depending on the location and size of the damage (Darling et al., 2011) and may be 

influenced by the amount of recovery following stroke. Loss of motor function is a 

predominant impairment in stroke (Wade, 1992). 

The main aims of stroke rehabilitation in Physiotherapy are to reduce the effects stroke 

has had on functional ability. Interventions aimed to reduce impairments may contribute 

to recovery of function. In addition, impairments themselves may have an effect on 

confidence in functional activities (Ouellette et al., 2004). Evaluating the effectiveness 

of progressive resistance exercise on muscle strength is important in stroke due to the 

muscle impairments stroke survivors present with as well as the association between 

muscle impairment and activity. The primary aim of progressive resistance exercise is 

to increase strength and the following section reviews studies using progressive 

resistance exercise in isolation, with muscle strength as a primary outcome measure in 

order to elucidate the sole effects of progressive resistance exercise. 

Five systematic reviews have examined the effectiveness of progressive resistance 

exercise in stroke survivors (Saunders et al., 2004; Morris et al., 2004; Ada et al., 2006; 

Lexell & Flansbjer, 2008; Saunders et al., 2013). Saunders et al. (2004) conducted a 

review of the effects of physical fitness training on stroke survivors. The focus of their 

review was the effectiveness of cardio respiratory training; studies included those that 

incorporated cardio respiratory training and progressive resistance exercise together and 

therefore the effectiveness of progressive resistance exercise as a single intervention 

was not differentiated. In a later update of the review (Saunders et al., 2013) the effects 

of resistance training as a single intervention were inconclusive due to the lack of 

sufficient trials that met their criteria. Morris et al. (2004) evaluated studies that utilised 

progressive resistance exercise in isolation. Of the 350 articles, eight articles met the 

inclusion criteria five measured changes in muscle strength and showed large effect 

sizes (d = 1.2-4.5). However, these studies varied considerably in the populations’ time 

since stroke, sample size and muscles trained.  
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Due to the decrease in muscle cross sectional area (Ryan et al., 2002) and muscle 

activation (Hara et al., 2000) in chronic stroke (> 6 months), the response to training 

may differ between acute and chronic stroke survivors. Later reviews presented the 

evidence for the effectiveness separately for acute and chronic stroke survivors as well 

as the level of strength (above or below grade 3 in oxford scale) (Ada et al., 2006). Ada 

et al. (2006) reported the effect sizes of studies with acute (less than 6 months following 

stroke) and chronic participants as well as very weak (lack of full range of movement 

against gravity) and weak participants separately. They found differences in the effect 

size between these four categories. However, splitting the studies in this way resulted in 

there being a small number of studies in each category. Lexell and Flansbjer (2008) 

conducted a systematic review of the effectiveness of progressive resistance exercise in 

stroke but these were limited to studies that utilised progressive resistance exercise at an 

intensity of 70% or more. Previous reviews have shown that progressive resistance 

exercise can be effective at improving muscle strength and activity in stroke survivors. 

However, the potential effects of training parameters on outcomes have seldom been 

cited. Further evaluation of experimental studies was conducted to determine whether 

there are indications of a differential response. 

Examining the experimental studies utilising progressive resistance exercise in stroke 

survivors, considerable variability is observed in the training regimes utilised. This may 

account for the differences in the outcomes following progressive resistance exercise. 

This is demonstrated in the table below. Table 2.2 shows the sampled population, 

training status as well as the methodology of studies evaluating progressive resistance 

exercise in isolation for chronic stroke survivors. Of the studies evaluating progressive 

resistance exercise in stroke participants: 3 studies trained participants on the isokinetic 

dynamometer at varying speeds (Engardt et al., 1995; Sharp & Brouwer, 1997) or at a 

single speed to a number of muscles (Kim et al., 2001); 2 studies trained participants 

using gym equipment (Teixeira-Samela et al., 1999; Cramp et al., 2006); and 2 studies 

used pneumatic resistance to train participants (Ouellette et al., 2004; Flansbjer et al., 

2008). Ouellette et al. (2004) and Flansbjer et al. (2008) who both used pneumatic 

resistance to train participants, had similar inclusion criteria, recruited participants of 

similar baseline strength, trained participants for a similar duration and utilised similar 

training intensities found very different changes in the magnitude of change.  Stroke 

participants in Flansbjer et al. (2008) achieved much higher changes in knee extension 

strength despite a lower theoretical work being completed (arbitrary work of 256) 

compared to Ouellette et al. (2004). However, without reporting of the total work 
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completed by participants, it’s difficult to ascertain whether stroke survivors in 

Ouellette’s study completed more work. 

Due to the differences in the sampled population, training methods used and baseline 

strength and duration of training, it is difficult to determine the influence of intensity 

and volume from meta-analysis. In addition, no studies have reported the total work 

completed over the training period. Overall, the available evidence shows that strength 

training has a positive effect in improving muscle strength after stroke, but it has been 

suggested that an optimal training intensity and volume have yet to be determined (Ada 

et al, 2006). There are a multitude of differences in the training parameters including 

the: intensity, velocity, volume, frequency. In addition to this, the type of exercises 

employed, the equipment used to deliver resistance and the baseline characteristics of 

participants vary between studies. Therefore it is not possible to draw definitive 

conclusions on the influence of intensity and volume on the effectiveness of progressive 

resistance exercise. Comparing training groups that are differentiated by the intensity 

and volume of training but matched for the total work completed over the training 

period may elucidate the influence of these parameters on the effectiveness of 

progressive resistance exercise. 
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Table 2.2. Sampled population, training status, training methodology and parameters of studies evaluating PRE in Stroke 

Author 

Stage 

of 
Stroke Training status 

Limbs 
trained 

Type of 
Training Exercises 

Assess 
Method 

Baseline 
KE torque 

(N·m) 
Inten
sity 

No. 
Session 

Sets. 
session

-1
 Reps.set

-1
 

Muscle 

strength 
(%∆) 

Gait 
velocity 

(%∆) 

Engardt 
(1995) 
  

Chronic 
Ambulatory with or without 
assistive devices 

Paretic 
LL only 

Concentric 
isokinetic 

KE/KF 
Isokinetic 
60°/s 

62.4 MVC 12 3 to 15 10 19.6* 

 

12.3 
 

Chronic 
 

Eccentric 

isokinetic 
KE/KF 

Isokinetic 

60°/s 
61.8 MVC 12 3 to 15 10 26.8* 

 

3.7 

Sharp 

(1997) 
Chronic 

Independent ambulators 

(min 12 m) 

Paretic 

LL only 

Concentric 

isokinetic 
KE/KF Isokinetic 15 MVC 18 3 6 to 8 16.7* 

 
 

5.3 

Teixeira-
Samela 
(1999) 

Chronic 

Independently ambulatory 

for 15 minutes & 45 minute 
tolerance for physical 
activity 

Both LL 
Conven-
tional 

Isometric, 
concentric, 
eccentric 

Isokinetic 
60°/s 

192.09 
80% 
1RM 

30 3 10 42.3* 

 

 
26.9 

Kim 
(2001) 

Chronic
, >50 
years 

old 

Independently ambulatory 
for 40 meters, 45 minute 
tolerance for physical 

activity 

Paretic 
LL only 

Concentric 
isokinetic 

KE/KF, Hip 
Ext/Flex, 

Ankle DF/PF 

1RM - MVC 18 3 10 50 

 
 
8.9 

Cramp 
(2006) 

Chronic 

(6-12 
months
) 

Community dwellers, 
independently ambulatory 

Both LL 
Conven-
tional 

KE, HIP 

Abd/Ext, 
Squats 

1RM 88 
50% 
1RM 

24 3 10 32* 

 

16 
(estimate
d) 

Ouellette 
(2004) 

Chronic
, >50 
years 

old  

Residual weakness, 
community dwelling, 
independently ambulatory, 

>1 limitation in PF10 of 
medical outcomes survey 

Both LL Pneumatic 
Leg press, 
KE, Ankle PF 

1RM 41.5 
70% 
1RM 

36 3 10 33.5* 

 
 
-1.5 

 
 

Flansbjer 
(2008) 

Chronic
, 40-70 
years 

>15% reduction in muscle 

strength in paretic l imb, 
independent ambulators for 
200m, able to 

independently move joint 

Both LL Pneumatic KE/KF 1RM 41 
80% 
1RM 

20 2 8 53.9* 

 

 
10 

Concentric/Eccentric isokinetic – Concentric/Eccentric contractions at constant speed; Conventional –Resistance equipment such as free weights, fixed movement machines; Pneumatic – Fixed movement machine which provides 
resistance to movement using pneumatic air pressure. LL – lower limb; KE – Knee extension; KF – Knee flexion; Ext – Extension; Flex – Flexion; Abd – Abduction; DF – Dorsiflexion; PF – Platerflexion; 1RM – 1 Repetition 

Maximum. *p<0.05
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2.5 Summary 
It is well established that muscle strength improves following progressive resistance 

exercise. However, outcomes vary considerably between studies. The variation may be 

due to many factors of which the training parameters utilised in the delivery of 

progressive resistance exercise is of particular interest. The training stimulus of muscle 

adaptation is not fully understood and research has focused on the influence of training 

parameters such as the intensity (relative resistance) and volume (total work) on the 

effectiveness of progressive resistance exercise.  

In healthy young sedentary participants, there is conflicting evidence on the influence of 

intensity and volume on the effectiveness of progressive resistance exercise. With the 

evidence of the influence of training status on outcomes, differences between studies 

and the general limitations in the definition of a sedentary population may have 

contributed to the conflicting results. Population sampling may also have been a reason 

for conflicting results in the studies on older adults. In both bodies of literature, total 

volume has not been reported and therefore it is unknown whether the differences in 

outcomes between groups training at a differentiated intensity are a result of the higher 

intensity group completing more work. It is also unclear whether participants trained at 

the intensity as specified by the protocol. In a stroke population, there have been no 

studies using multiple training groups differentiated by intensity and/or volume. Given 

the variability in training modalities, and parameters between studies, it is difficult to 

assess the influence of a single training parameter on the effectiveness of progressive 

resistance exercise. 

To fully understand the influence of training parameters on the effectiveness of 

progressive resistance exercise, training performance needs to be considered. Without 

measuring training performance, it is not known whether all participants completed the 

regime specified by the training protocol. Therefore, as part of this thesis, training 

protocols were evaluated to determine whether training can be performed at a 

differentiated intensity and volume whilst being matched for the total work completed.  
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3.0 Development of Three Sub-
maximal Isokinetic Training 
Protocols Differentiated By Training 
Intensity and Volume 

3.1 Introduction 
The literature review presented evidence that muscles are adaptable to demands placed 

on it. In summary, following progressive resistance exercise, skeletal muscles undergo 

neural and physiological adaptations that increase the maximal voluntary force 

generated by the muscle. The training parameters, namely the training intensity, 

repetitions and total work are important considerations for developing training protocols 

that can effectively strengthen skeletal muscle.  

A number of meta-analyses have shown that the degree of change may be influenced by 

the training parameters utilized during progressive resistance exercise (Rhea et al., 

2002; Peterson et al., 2004; ACSM, 2009; Wernbom et al., 2007). There is conflicting 

evidence on the optimal training parameters for progressive resistance exercise in 

healthy sedentary (Campos et al., 2002; Neils et al., 2005; Schuenke et al., 2012) and 

healthy older adults (Steib et al., 2010; Raymond et al., 2013). Training at a high 

intensity (80% of 1RM) has shown to be more effective than training at a low intensity 

(40% of 1RM) when both groups complete the same number of repetitions per set and 

sets per session (Seynnes et al., 2004). Wernbom et al. (2007) argued that a higher 

amount of work is completed per repetition when training at higher intensities compared 

to lower intensities. The higher work achieved may be responsible for the greater 

outcomes observed rather than training intensity. Theoretically, given that work is the 

integral of force and distance (Luna et al., 2012), training at an intensity of 80% should 

achieve double the total work compared to training at 40% over the same distance 

travelled. Therefore, in order to match the total work between high and low intensity 

training protocols, the lower intensity protocol must be completed for more repetitions. 

When the total work is theoretically matched between training groups, similar outcomes 

have been reported between high and low intensity training protocols (Hortobagyi et al., 

2001; Vincent et al., 2002).In a sedentary population, the results are conflicting. Some 

studies have found no difference between groups training at different intensities (e.g. 

Leger et al., 2006; Neils et al., 2005; Mitchell et al., 2012) whilst others favoured high 
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intensity training (e.g. Campos et al., 2002; Holm et al., 2008; Schuenke et al., 2012; 

Ogasawara et al., 2013). Lerger et al. (2006) found no significant difference in high 

intensity training (3-5RM) compared to low intensity training (20-28 RM) where the 

low intensity group completed more repetitions. Mitchell et al. (2012) compared high 

intensity (80% 1RM) training with low intensity training (30% 1RM). As the training 

was performed to repetition failure, it is expected that the low intensity group would 

have completed more repetitions per set compared to the high intensity training leading 

to equivalent training volumes between groups. However, they found high intensity 

training was favoured contradicting Lerger et al. (2006). Total work was not reported 

and it is difficult to ascertain whether the total work achieved in the low intensity group 

was equivalent to the total work achieved in the high intensity group, particularly as the 

repetitions were completed until repetition failure. In order to ascertain the influence of 

training intensity on the effectiveness of progressive resistance exercise, outcomes must 

be evaluated when the low intensity training is delivered equivalent to the total work 

completed in high intensity training as well as when both groups complete the same 

number of repetitions over the training period. These studies highlight the 

inconsistencies in outcomes between high and low intensity training when the total 

work is matched and there has been limited reporting of training performance. 

In order to measure work, the forces exerted by muscles during the resisted contractions 

must be measured (Finni et al., 1998). In dynamic manoeuvres, the distance travelled is 

also a factor in the total amount of force that is produced by muscles (Hislop & Perrine, 

1967). Muscles would complete more work if the dynamic contractions were completed 

over a larger range of movement. Therefore, the range of movement for each 

manoeuvre completed must also be standardised.  The majority of previous studies have 

used isoinertial training to administer progressive resistance exercise. As isoinertial 

training uses an external weight to deliver the resistance against movement, the relative 

forces produced by muscles during contraction and therefore the intensity of training is 

difficult to record. Participants may also produce higher forces at the beginning of the 

range to generate momentum in order to successfully complete the repetition although 

previous authors have attempted to control for this by limiting the time of each 

repetition (Beneka et al., 2005). Fatigue may also affect performance. This could be 

represented as a change in the velocity or the range of movement, which directly affects 

the amount of work performed by the muscles (Cronin et al., 2003). In addition to this, 

other factors such as stress levels (Wegner et al., 2014), and caffeine intake prior to 

participation (Astorino et al., 2011) may also affect training performance. Isokinetic 
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dynamometers have been used in training programmes and provide more information 

about training performance. They can indirectly measure the force exerted against 

resisted movements (Kannus, 1994). The range of movement can also be standardised 

to ensure that the muscle is trained throughout the range of movement. Isokinetic 

contractions are usually performed maximally (Engardt et al., 1995) producing a 

parabolic force curve. Taking the peak force as maximum, contractions which are 

produced sub-maximally at 80% and 40% could be used as the basis for intensity 

differentiated progressive resistance exercise.  

Figure 3.1 shows a parabolic maximal voluntary isokinetic contraction overlaid with 

high intensity (80% MVC) and low intensity (40% MVC) submaximal contractions. 

The work completed during the contraction would be equivalent to the area under the 

force curve (Hislop and Perrine, 1967).   

 

 

 

 

 

 

 

Figure 3.1. Hypothetical force curves produced during the MVC contraction and high 
(T1) and low (T2) intensity contraction 

 
 

Figure 3.2 shows two hypothetical submaximal contractions performed at 80% (T1 

force) and 40% (T2 force) of MVC. Theoretically, assuming that the force curve was 

rectangular, the total work completed per repetition in the high intensity contraction 

(80% of MVC) would be double the total work completed per repetition in the low 

intensity contraction. Due to the parabolic nature of the force curve, producing 

submaximal contractions at a specified intensity would be associated with an error, 

dependent on time to peak force. Such an error is expected to be higher at higher 

intensities as the target force is higher.  
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Figure 3.2. The degree of error between theoretical total work and actual work for the 
low and high intensity protocols 

 

Training at 40% MVC for 20 repetitions per set should be equivalent in total work when 

compared to training at 80% MVC for 10 repetitions per set. Therefore, over a 10 

repetition training set, the total work completed is expected to be relatively double in 

the high intensity training set compared to the low intensity. The performance of 20 

repetitions at 40% MVC should equate to a matched total work compared to a high 

intensity 80% MVC 10 repetition protocol. 

Submaximal isokinetic contractions could form the basis of evaluation of intensity-

differentiated training whilst recording training performance variables including total 

work. There is currently very limited information on performance characteristics of 

progressive resistance exercise training protocols. Although some studies have 

evaluated accuracy of force generation against a visual target (Tracy and Enoka, 2006), 

this has been limited to isometric contractions. 

This study aimed to measure training performance (intensity and total work) during 

progressive resistance exercise using sub-maximal isokinetic training sets performed by 

sedentary participants. This evaluated whether sub-maximal isokinetic training can be 

used to dynamically train participants at a differentiated intensity and volume. By 

recording the forces exerted during the muscle contractions this study evaluated whether 

participants could achieve the target training intensity and whether the total work can be 

matched between high intensity low repetition and low intensity high repetition 

protocols. 

 

 

error 

Time (s) 
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The hypotheses of this study are as follows: 

 It was hypothesised that participants will be able to train at a differentiated 

training intensity such that T1 will be performed at a higher intensity than T2 

and T3. Participants will perform T2 and T3 at the same training intensity.  

 It was hypothesised that there would be no difference between T1 and T2 for the 

total work completed. It was also hypothesised that the total work completed in 

T1 and T2 would be higher than the total work completed in T3. 

 It was hypothesised that there would be no difference between T1 and T2 for the 

total work completed. It was also hypothesised that the total work completed in 

T1 and T2 would be higher than the total work completed in T3. 

 It was expected that participants would be able to achieve the total work as 

expected for the protocol, such that there was a strong level of agreement 

between theoretical and achieved total work. 

 It was hypothesised that the force fluctuation would not differ between each of 

the three training protocols, T1, T2 and T3. 

3.2 Methods 

3.2.1 Study Design 

The study compared the training performance of three protocols, defined as the ability 

to train at the specified intensity and total work: T1 (high intensity low repetition 

protocol), T2 (low intensity high repetition protocol) and T3 (low intensity low 

repetition protocol) which are explained further below. In order to compare the training 

performance between these protocols, a within subject design was used to minimize 

inter-subject variation. An experimental design was utilized where each participant 

performed one set of each of the three protocols. The study design and procedures were 

approved by the University Ethics Committee (Appendix 8.1). 

 

3.2.2 Participants 

Participants were fully informed of study aims and procedures and gave their consent in 

writing (appendix 8.2). A convenience sample of staff and students at the University of 

East London was recruited. Participants who met the inclusion criteria were invited to 

the Human Motor Performance Laboratory on one occasion. 
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3.2.2.1 Inclusion Criteria 

Participants were included in the study if they were aged between 18 and 40 years. As 

outcomes following progressive resistance exercise are influenced by the training status 

of the participants involved (Rhea et al., 2003), this study recruited participants of a 

similar training status. This study aimed to recruit participants that were generally 

inactive in their daily life. This is because high activity levels may contribute to higher 

levels of training status despite an individual not being involved in structured exercise 

(Mikalacki et al., 2011). 

Participants were selected based on the short version International Physical Activity 

Questionnaire (Craig et al., 2003), a self-report questionnaire about physical activity in 

the last 7 days (Appendix 8.3). Those who were categorised as inactive, falling into 

category 1 of the questionnaire, were included as the inactive population. This was 

defined on the basis that they did not participate in 3 or more days of vigorous-intensity 

physical activity for a minimum of 20 minutes a day; or 5 or more days of moderate-

intensity activity and/or walking for a minimum of 30 minutes per day; or 5 or more 

days of any combination of walking, moderate-intensity or vigorous intensity activities 

that resulted in at least 600 MET-minutes.week-1 (IPAQ, 2004).  

 

3.2.2.2 Exclusion Criteria 

Participants were screened using a health questionnaire (Appendix 8.4) and excluded if 

they presented with history of heart conditions (including chest pain during exercise), 

anaemia, diabetes, or lower limb musculoskeletal injury exacerbated by exercise.  

 

3.2.3 Equipment 

Participants’ height was measured using a stadiometer (Hadlands Photonics, Australia). 

Weight was measured using standard weighing scales (UC-300 Tokyo, Japan) and was 

recorded in kilograms to the nearest one decimal place. A Lode Corival™ (Lode, 

Netherlands) electro-magnetically braked cycle ergometer was used to warm-up 

participants at the start of the session. A Kin-Com® 500H isokinetic dynamometer was 

used to test and train participants.  
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3.2.4 Procedures 

3.2.4.1 Height and weight  

Participants were asked to change into shorts and were barefooted throughout the 

testing period. To measure height, participants were asked to stand on the platform with 

their legs straight, heels close together and their back parallel to the vertical stand. The 

head beam was lowered until it came in contact with the crown of the participant’s head. 

Height was recorded in centimetres to the nearest one decimal place.  

The weighing scales were placed on a flat surface and the needle was zeroed. 

Participants’ weight was measured by asking participants to stand on the scale facing 

forwards. The measurement was taken when the measurement needle was steady against 

the scale. 

 

3.2.4.2 Warm Up 

Participants were seated on the stationary bicycle with the seat height adjusted for 

comfort. They were instructed to cycle between 50-60 repetitions.minute-1 using the 

cycle’s display as a guide. The resistance against movement was set at 20W and they 

cycled for five minutes.  

 

3.2.4.3 Dynamometry 

Participants were instructed to sit on the isokinetic dynamometer so that their lumbar 

spine was in contact with the backrest. The limb that was trained first was randomised. 

The bottom seat length was adjusted so that the calf muscle was approximately 0.5 cm 

from the edge of the seat. To isolate joint movement at the knee, their position was 

secured using a belt around the pelvis and another over the anterior aspect of the femur. 

The rotating arm was aligned with the axis of rotation of the knee joint. An ankle cuff, 

connected to the strain gauge, was fastened two finger’s breadth above the ankle joint 

(Figure 3.3). The correction for gravity was completed using the procedure reported by 

Finucane et al. (1994). A spirit level was used to position the lever arm parallel to the 

floor to provide knee point of reference.  

All manoeuvres were performed isokinetically at 60°.s-1 using concentric/concentric 

mode. The range of movement was set from 90˚ knee flexion to the full available range 

of knee extension. The acceleration and deceleration phase of the Kin-Com was set to 

‘medium’ and participants were required to exert a minimum force of 20N in order to 
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start the manoeuvres. The computer display was used to give real-time feedback of the 

force recorded at the strain gauge. 

 

 

 

 

 

 

 

Figure 3.3. Participant positioned on the Kin-Com Isokinetic Dynamometer 

 

3.2.4.4 MVC Procedure 

Once participants were positioned on the Kin-Com, they were taken through the 

procedure to assess maximal isokinetic strength. Participants were familiarised with the 

movement and were asked to perform concentric knee extension to the end of their 

available knee extension range and then perform concentric knee flexion back to the 

starting position (defined as one repetition) for two repetitions. They were instructed to 

push the cuff forwards & upwards (knee extension) with maximal effort to the end of 

their available range and then pull backwards & downwards (knee flexion) with 

maximal effort to the starting position. Verbal encouragement was given to all 

participants whilst doing the movements. Following the two repetitions for 

familiarisation, they given a one minute rest. During the rest period, they were given 

instructions that they would now be performing the same movement for five repetitions 

continuously. As soon as the rest period was over, they were then taken through five 

repetitions of concentric knee extension and concentric knee flexion movements.  

 

3.2.4.5 Training Procedure 

Once the MVC was been performed by the participant, they were then asked to rest 

whilst the experimenter retrieved the MVC performance data. This took less than three 

minutes but the participant was asked to rest for three minutes. 

The maximum intensity was derived from the peak torque achieved during maximal 

voluntary contractions. To account for variations, the mean of the peak torques from 
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five maximal voluntary contractions was defined as the maximum. The target torque for 

extension and flexion was calculated from the maximum and corresponding visual 

targets were set on the feedback screen. The visual gains of the targets were adjusted to 

the maximum possible whilst ensuring both were still visible. 

A visual display provided feedback of the force produced during movement. A visual 

target force was placed corresponding to the intensity of contraction and participants 

were instructed to produce a force to meet the target (Figure 3.4). The 40% and 80% 

intensity training protocols both incorporate a skill component where force is controlled 

through the range.  

 

Figure 3.4. Visual feedback of targets and force being produced by during knee 
extension and flexion 

 

Following this and as soon as the rest period finished, participants were taken through 

one set of each of the training protocols in a random order, with a one minute rest 

period between protocols. Before the start of each protocol, participants undertook two 

practice repetitions to familiarise them with the target training intensity. The procedure, 

including evaluation of MVC was then repeated on the contralateral limb. 

The training protocols were as follows: 

 T1 – Ten contractions at 80% mean peak torque 

 T2 – Twenty contractions at 40% mean peak torque 

 T3 – Ten contractions at 40% mean peak torque 

The protocols were designed to be theoretically differentiated by intensity and volume 

such that: 

 T2 and T3 was performed at half the intensity compared to T1 

 T1 and T2 completed an equal amount of work per set  

 Participants completed half the amount of work in T3 compared to T1 and T2 

 T1 and T3 completed the same number of repetitions 

Extension target

Flexion target

Force exerted
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3.2.5 Measurement of training performance 

The isokinetic dynamometer recorded the force, velocity and angle of each millisecond 

of the training set. This allowed measurement of the forces produced during the muscle 

contractions. The force exerted during the contraction was used to assess the intensity of 

training and the total work completed. The continuous force trace was then analysed to 

assess whether participants achieved the target force consistently during the training 

sets. 

 

3.2.5.1 The ability to train at the specified intensity 

In order to account for the different muscle groups/actions involved, training 

performance of the knee extensors and flexors was analysed separately. Due to the 

variability in the force produced over a contraction, the peak torque of each contraction 

was recorded as the representative force of the contraction. To ensure all peak torque 

measures were recorded during the dynamic part of the contraction, parts of the 

contraction where the velocity was less than 55°.s-1 were removed before analysis. This 

ensured the peak torque was not derived for example if the dynamometer had stopped 

mid-way during a contraction - there were isolated instances where the participant 

changed direction too quickly. 

The peak torque of a contraction was defined as representative of the force produced 

during the contraction. Two measures were used to determine whether participants 

trained at the specified intensity: 

 Training intensity: The peak torque of each contraction within a training set was 

measured and divided by the maximum torque determined from the MVC set. This 

provided a measure of the intensity of each contraction. The training intensity of each 

contraction was averaged across all contractions within the training set to give the 

mean training intensity.  

 Target accuracy: The peak torque of each contraction recorded within a training set 

was compared to the target torque. Contractions were considered acceptable if the peak 

torque value was within ±10% of the target torque. The number of acceptable 

contractions was reported as a proportion of all contractions within a training set. In 

addition to this, descriptive statistics were reported on the number of contractions 

produced above and below the target range. 
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It is possible that the target accuracy measure may not reflect the intensity of training in 

contractions where the peak torque falls outside the target range for a brief period 

during the contraction, as illustrated in the figure below but all instances were recorded 

as exceeding training intensity.  

 

Figure 3.5. An example of an extension contraction where the peak torque exceeded the 
target range 

 

Previous studies have used coefficient of variation about an isometric contraction to 

assess participants ability accurately produce force against a target. As there are no 

previous studies evaluating performance of sub-maximal isokinetic training, this study 

also explored the possible ways in which to capture training performance and continued 

with the analysis of target accuracy. The coefficient of variation of individual force 

contractions was not measured as it was considered that such variation would be 

captured in the measure of total work.  

 

 

3.2.5.2 The total work in a training set 

The total work in a training set was recorded as the integral for all contractions, for 

extension and flexion separately. A theoretical total of work done for a training set was 

determined from the amount of joules that would be achieved if the target torque was 

maintained over the distance travelled regardless of training intensity. This was 

calculated as below: 
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Figure 1.  An Example Of An Extension Contraction During A Training Set



38 

Target torque = intensity of the protocol x mean of peak torques 

Distance travelled = (no. of repetitions x (lever arm length x 2 x x (angular 

displacement / 360)) 

The distance travelled was determined from the range of movement in radians 

multiplied by the lever arm length and the number of repetitions completed. This 

provided the theoretical work value for each participant in kiloJoules. 

 

3.2.5.3 Force fluctuation during training 

The variation in the peak torque of each contraction was measured to assess the ability 

for participants to train consistently at the specified intensity. The coefficient of 

variation was used as a measure of variability, for both the extension and flexion forces 

produced during the sub-maximal isokinetic training sets. The standard deviation of the 

peak torques in a training set was divided by the mean peak torque and multiplied by a 

hundred to calculate the coefficient of variation. This is referred to as force fluctuation, 

where a higher value means the variation in the intensity of between contractions was 

larger.  

 

3.2.6 Data Analysis 

Training performance of the left and right limbs were analysed separately to account for 

potential differences in training performance due to limb dominance. As the order of the 

training was randomised between sides, no potential effect of cross-education between 

limbs was expected (Howatson et al., 2013). Four measures were taken to assess the 

performance of the sub-maximal training protocols: total work, training intensity, target 

accuracy, and force consistency. In addition to this, the number of contractions below 

and above the target range was recorded for each training set. The training performance 

of extension and flexion was analysed separately to account for the different muscle 

groups involved. Due to the differences in muscle composition between quadriceps and 

hamstrings, particularly with the high prevalence of hamstring injury in performance 

sport (Orchard and Seward, 2002) raises the importance of looking at these muscle 

groups separately. 

Descriptive statistics were presented to explore the target accuracy, training intensity, 

force consistency and total work performed by participants in the three training 

protocols. IBM® SPSS® Statistics Version 20 was used to conduct repeated measures 
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ANOVA in order to determine whether there was a difference in the target accuracy, 

training intensity, total work and force fluctuation between training programmes. 

Mauchly’s test was used to test the assumption of sphericity and Greenhouse-Geisser 

values were used where this assumption was violated. 

Where there was a significant difference between training protocols, post-hoc t-tests 

were conducted to determine whether there was a difference between: T1 and T2; T2 

and T3; T1 and T3. Bonferroni correction was applied which adjusted for the 

significance value for p to account for the number of statistical tests performed. Intra-

class correlation coefficient (ICC3,1) was used to determine the level of agreement 

between the theoretical work and total achieved work for each training set completed 

(Shrout et al., 1979). 

 

3.3 Results 

3.3.1 Participant characteristics 

Fifteen adult participants (10 female, 5 male) were recruited from the staff and student 

cohort at the University of East London that fulfilled the criteria of being in category 1 

of the International Physical Activity Questionnaire (Craig et al, 2003). Table 3.1 shows 

the demographic characteristics of the participants in study 1.  

 

Table 3.1. Physical characteristics of the participants (n=15) in study 1 (mean ±SD) 

Age 

(years) 

Height 

(cm) 

Mass 

(kg) 

Mean Peak Torque (N·m) at 60°.s-1 

Left 
Extension 

Right 
Extension 

Left 
Flexion 

Right 
Flexion 

28 ± 6 167 ± 6 67 ± 10 112 ± 40 127 ± 37 65 ± 18 65 ± 19 

 

3.3.2 Training Intensity  

The reported training intensity of each training set was averaged across all training sets 

completed for extension (Figure 3.6) and flexion manoeuvres (Figure 3.7). 

Repeated measures ANOVA showed that there was a significant difference in the 

training intensity between protocols, (F(1.12, 15.72) = 425.00, p < 0.001) but not between 

right and left side (F(1.00, 14.00) = 0.74, p = 0.79) or the interaction of side and protocol 

(F(1.12, 15.71) = 1.64). On average, participants performed T1 (Left: 77.63 ±11.16; Right: 
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79.85 ±16.00) at a significantly higher intensity than T2 (Left: 46.54 ±4.91; Right: 

44.54 ±3.59), t(14) = 10.66-31.43, p < 0.001 for left and right sides. T1 was also 

performed at significantly higher intensity than T3 (Left: 44.03 ±4.90; Right: 42.52 

±4.19), t(14) = 10.99-38.07, p < 0.001 for left and right sides. There was a significant 

difference between T2 and T3 for the left (t(14) = 3.71, p < 0.005) and right sides (t(14) = 

3.31, p < 0.01). 

 

Figure 3.6. Mean (±SD) extension Training Intensity (%) by protocol and limb  
* T1 vs. T2, p < 0.001; T1 vs. T3, p < 0.001; **T2 vs. T3 p < 0.01 

 

 

For the flexion manoeuvres, on average participants performed T1 (Left: 77.21 ±16.00; 

Right: 76.23 ±12.25) at a significantly higher intensity than T2 (Left: 48.12 ±13.29; 

Right: 45.53 ±10.75), t(14) = 6.07-14.82, p < 0.001 for the left and right sides. T1 was 

also performed at significantly higher intensity than T3 (Left: 47.14 ±13.40; Right: 

46.08 ±11.31), t(14) = 6.33-17.76, p < 0.001 for the left and right sides. There was no 

significant difference between T2 and T3 for the left (t(14) = 1.12, p = 0.281) and right 

sides (t(14) = -0.416, p = 0.683).  
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* T1 vs. T2, p < 0.001; T1 vs. T3, p < 0.001; **T2 vs. T3 p < 0.05 

Figure 3.7. Mean (±SD) flexion Training Intensity (%) by protocol and limb  

 

3.3.3 Target Accuracy 

Figure 3.8 shows the mean extension target accuracy achieved by participants in each of 

the three training protocols for each side. On average, half of the contractions were 

performed within  ±10% of the target force (T1: 50 ± 33% for left and 63 ± 22 for right 

sides; T2: 42 ± 26% for left and 50 ± 26% for right sides; T3: 56 ± 30% for left and 60 

± 29% for right sides). There was high variation in the proportion of contractions within 

the target zone as reflected in the standard deviations shown in Figure 3.8. For example 

target accuracy ranged from 20 to 100 % for participants in T1. 
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Figure 3.8.  Mean extension target accuracy by protocol and limb 

 

The mean flexion target accuracy was lower than extension (Figure 3.9). The mean 

target accuracy for T1 was 32 ± 25% for left and 35 ± 34% for right sides. For T2, this 

was 37 ±33% for left and 47 ± 27% for right sides. For T3 this was 51 ± 30% for left 

and 45 ± 31% for right sides. 

 

Figure 3.9.  Mean flexion target accuracy by protocol and limb 
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The number of contractions below and above the target range was explored to determine 

whether there was a difference in attainment of target force between the high and low 

intensity protocols and presented descriptively. Table 3.2 shows the average number of 

contractions below and above the target range for each protocol. A higher number of 

contractions were above the target range in the low intensity protocols for all 

conditions.  

Table 3.2. Average (±SD) number of contractions that were below or above the ±10% 

target range by protocol for each side and direction 

Side/ 

Direction 
Protocol 

No. contractions 
below range 

No. contractions 
above range 

Left Extension 

T1 – 10 repetitions 3 ± 3 2 ± 3 

T2 – 20 repetitions 1 ± 1 11 ± 6 

T3 – 20 repetitions 1 ± 4 4 ± 3 

Right Extension 

T1 – 10 repetitions 2 ± 2 2 ± 2 

T2 – 20 repetitions 1 ± 1 9 ± 5 

T3 – 20 repetitions 1 ± 1 3 ± 3 

Left Flexion 

T1 – 10 repetitions 4 ± 4 2 ± 4 

T2 – 20 repetitions 3 ± 4 9 ± 8 

T3 – 20 repetitions 1 ± 1 4 ± 4 

Right Flexion 

T1 – 10 repetitions 4 ± 4 2 ± 3 

T2 – 20 repetitions 4 ± 4 7 ± 7 

T3 – 20 repetitions 2 ± 3 4 ± 4 
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3.3.4 Total Work 

The total work completed in each training set was reported together with the theoretical 

work. Theoretical work is a predicted amount of work expected for each individual and 

is calculated from participants’ target torque, number of repetitions and lever arm length 

(table 3.3).  

For extension, one-way repeated measures ANOVA showed that there was a significant 

difference in the total work completed between training protocols (F(1.14, 15.97) = 141.43, 

p < 0.001). Post-hoc t-test showed that there was a significant difference between all 

three training protocols in the total work completed for the left (T1 vs T2: t(14) = -6.93, p 

< 0.001; T1 vs T3: t(14) = 7.457, p < 0.001; T2 vs T3: t(14) = 10.488, p < 0.001) and right 

sides (T1 vs T2: t(14) = -9.018, p < 0.001; T1 vs T3: t(14) = 14.04, p < 0.001; T2 vs T3: 

t(14) = 15.565, p < 0.001). The average total work completed by participants in T1 (Left: 

859 ±378 kJ; Right: 923 ±246 kJ) was similar to the average total work completed in T2 

(Left: 987 ±375 kJ; Right: 1040 ±267 kJ). The average total work completed in T3 

(Left: 476 ±188 kJ; Right: 507 ±139 kJ) was approximately half (48-55%) of the total 

work completed in T1 and T2. 

The Intraclass correlation coefficient was performed to assess the level of agreement 

between theoretical work and total work achieved over the training set. For extension, 

there was a moderate level of agreement between theoretical and total work (ICC3,1 = 

0.48-0.84). The level of agreement was weaker in T1 compared to T2 and T3 for both 

sides. 

For flexion, one-way repeated measures ANOVA showed that there was a significant 

difference in the total work completed between training protocols (F(2, 28) = 67.78, p < 

0.001). Post-hoc paired t-test showed that there was a significant difference between all 

three training protocols for the total work completed for the left (T1 vs T2: t(14) = -

2.275, p < 0.05; T1 vs T3: t(14) = 5.759, p < 0.001; T2 vs T3: t(14) = 13.631, p < 0.001) 

and right sides (T1 vs T2: t(14) = -2.626, p < 0.05; T1 vs T3: t(14) = 8.552, p < 0.001; T2 

vs T3: t(14) = 6.982, p < 0.001). The average total work completed by participants in T1 

(Left: 490 ±178 Kj; Right: 490 ±188 kJ) was similar to the average total work 

completed in T2 (Left: 564 ±130 kJ; Right: 562 ±248 kJ). The average total work 

completed in T3 (Left: 280 ±61 kJ; Right: 272 ±98 kJ) was around half of the total work 

completed in T1 and T2. 

The level of agreement between calculated theoretical work (regardless of velocity) and 

total work achieved over the training set was lower than for extension but there was a 
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moderate level of agreement between theoretical and total work (ICC3,1 = 0.53-0.73). 

Again, the level of agreement was weaker in T1 compared to T2 and T3 for both sides. 

 

Table 3.3. Mean (±SD) Total Work (J) Completed per Training Set for Each Side and 

Direction 

Side/ 
Direction 

Protoco
l 

Theoretical Work 
Per Set 

Total Work 
(kJ) 

ICC3,1 

 

% of T1 
Total Work 

Left 

Extension 

T1 1167 ± 434 859 ± 378 0.74 - 

T2 1167 ± 434 987 ± 375 0.88 121 ±21% 

T3 584 ± 217 476 ± 188 0.84 58 ±9% 

Right 
Extension 

T1 1325 ± 405 923 ± 246 0.48 - 

T2 1325 ± 405 1040 ± 267 0.61 113 ±6% 

T3 622 ± 202 507 ± 139 0.59 55 ±4% 

Left 

Flexion 

T1 675 ± 185 490 ± 178 0.56 - 

T2 675 ± 185 564 ± 130 0.60 124 ±37% 

T3 338 ± 93 280 ± 61 0.53 62 ±21% 

Right 

Flexion 

T1 677 ± 198 490 ± 188 0.60 - 

T2 677 ± 198 562 ± 248 0.73 114 ±17% 
T3 339 ± 99 272 ± 98 0.69 56 ±7% 

 

3.3.5 Force Fluctuation 

Table 3.4 shows the mean extension force fluctuation achieved for T1, T2 and T3. One-

way repeated measures ANOVA showed that there was no significant difference in the 

force fluctuation between the training protocols (F(2.00, 28.00) = 1.25, p = 0.303). 

Table 3.4. Mean (±SD) Extension Force fluctuation (%) Per Training Set for Each Side 
and Direction 

Protocol Left Extension Right Extension 

T1 13 ± 8 11 ± 4 

T2 14 ± 7 14 ± 6 

T3 13 ± 10 11 ± 6 

*T1 vs. T2, p < .05; T1 vs. T3, p < 0.05 

 

Table 3.5 shows the mean flexion force fluctuation achieved for T1 (Left: 9 ±3%; Right: 

10 ±5%), T2 (Left: 13 ±7%; Right: 15 ±5%) and T3 (Left: 13 ±6%; Right: 14 ±6%). 

One-way repeated measures ANOVA showed that there was a significant difference in 

the force fluctuation between the training protocols (F(2.00, 28.00) = 12.49, p < 0.001).  
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On average, participants achieved lower force fluctuation for T1 (Left: 9 ±3%; Right: 10 

±5%) than T2 (Left: 13 ±7%; Right: 15 ±5%) t(14) = -2.46, p = 0.028 (left side) and t(14) 

= -4.80, p < 0.001 (right side). T1 was also performed at significantly lower force 

fluctuation than T3 (Left: 13 ±6%; Right: 14 ±6%), t(14) = -3.25, p < 0.01 (left side) and 

t(14) = -2.92, p = 0.011 (right side). 

Table 3.5. Mean (±SD) Flexion Force Fluctuation (%) Per Training Set for Each Side 
and Direction 

Protocol Left Flexion Right Flexion 

T1 9 ± 3* 10 ± 5* 

T2 13 ± 7 15 ± 5 

T3 13 ± 6 14 ± 6 

*T1 vs. T2, p < 0.05; T1 vs. T3, p < 0.05 

 
 

3.3.6 Summary of Results 

The results showed that participants could perform the protocols at the intensity 

specified by the protocol. T1 (80% MVC 10 repetition protocol) was performed at an 

average intensity of 77-80% whilst T2 (40% MVC 20 repetition protocol) and T3 (40% 

MVC 10 repetition protocol) were performed at an average intensity of 43-48%. The 

average extension total work completed in T1 was 18% and 12% lower than the total 

work completed in T2 for the left and right side respectively. The average extension 

total work completed in T3 was on average 48-49% and 54-55% the total work 

completed in T1 and T2 respectively. There was a moderate level of agreement (Portney 

and Watkins, 2009) between the theoretical and total work completed for all three 

protocols but there remained an average variation of 15% in the intensity of contractions 

within a training set.  
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3.4 Discussion 
Study 1 aimed to assess the performance characteristics of sub-maximal isokinetic 

training sets performed by sedentary participants. Participants’ performance of training 

sets was evaluated using three measures to determine whether participants trained at the 

specified intensity, achieved the total work expected and produced contractions at a 

consistent intensity.  

The first aim of this study was to determine whether participants trained at the specified 

training intensity. There is currently limited information on performance characteristics 

of progressive resistance exercise training protocols reported in the literature. Two 

measures were used to determine whether participants produced a force that was 

equivalent to the target: training intensity and target accuracy. In both cases, the peak 

torque of each contraction was used as a representative indicator of the intensity that 

each contraction was performed in. It was found that participants performed T1 at a 

significantly higher intensity than T2 and T3 for all conditions. The mean training 

intensity of training was double in the high intensity protocols compared to the low 

intensity protocols. However, although the mean training intensity for all participants 

was close to 80% for the T1 protocol and 40% for the T2 and T3 protocol, there was 

variation in the mean training intensity between participants. In order to assess the 

influence of intensity on progressive resistance exercise, the protocols must be 

performed such that there is sufficient differentiation in the intensity between high and 

low intensity protocol. However, mean training intensity was below 70% MVC for 2 of 

the 30 extension training sets and 10 of the 30 flexion training sets for T1. For T2, the 

mean training intensity was above 50% for 5 of the extension training sets and 6 of the 

flexion training sets. For T3, this was observed in 3 of the extension and 7 of the flexion 

training sets. Therefore, although the intensity of training was significantly different 

between training protocols, some participants did not complete the protocols with 

sufficient differentiation. This indicates some participants were not able to perform the 

protocols accurately.  

Measurement of target accuracy showed that on average 40-60% of the contractions 

were within ±10% of the target range. However, the level of force exerted may have 

fluctuated throughout the contraction. Schiffman and Luchies (2001) evaluated the 

variability of isokinetic contractions in young adults tasked with maintaining a 60% 

MVC target force. They found that the mean standard deviation of the force was 8 ± 13 

(estimated from graphical data). Therefore, target accuracy may not be representative of 

the force produced throughout the entire duration of the contraction. The measure will 
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not identify occasions where the contraction force exceeds the target force for only a 

short period of time before returning to the target. Further investigation into the force 

curves producing during the sub-maximal contractions was conducted. This showed 

instances where contractions were categorized as being outside the target range where 

the peak torque exceeded the target range for just a short duration. In addition, there 

were instances where the peak torque was within the target range despite the majority of 

the contraction performed below the target range. The effect of classifying contractions 

in this way may therefore have led to misleading results. 

Force fluctuation may better explain the variance in training intensity between 

participants. There was a variation of 9-15% in the peak torque produced between 

contractions. The level of variation indicates that, although most participants trained at 

the specified intensity, it was not consistently achieved for all contractions within a 

particular training set. The ability to produce a consistent force equivalent to the target 

may have depended on the ability of participants to use visual feedback to modulate the 

descending neural drive as visual feedback is processed by the parietal and premotor 

areas of the cortex as well as the basal ganglia and cerebellum (Vaillancourt et al., 

2006). This is supported by Proedoehl and Vaillancourt (2010) who evaluated force 

fluctuation in healthy adults during an isometric force matching task under different 

visual gain conditions. They defined visual gain as the relative visual distance created 

by the display when force was applied. They found force steadiness was greater at 

higher visual gains, when the visual display showed larger increments of force, 

suggesting participants used visual feedback to correct the force that was being applied. 

Visual gain was not standardized in the present study. The settings were adjusted to the 

maximum available gain before the target forces disappeared off the display. However, 

the gain depended on participant’s target forces. The gain was lower in participants with 

larger target forces as they were not adjustable to the same degree. 

There may also be other factors that may have affected the training performance of 

participants. The variability in the training intensity performed may be explained also 

by the lack of practice to learn how to produce a force that is equivalent to the target. 

Participants needed to learn how to interpret the visual input to produce an appropriate 

motor command and given that this was a new task, the lack of prior experience seemed 

to have manifested as poorly executed performance. Motor skills are consolidated even  

after practice of a motor task has ended as demonstrated by Brashers-Krug et al. (1996) 

who found that the accuracy of a target reaching task was retained and improved when 

repeated one day after it was originally performed. However, this was based on a 
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practice task of 192 targets per set. The current participants performed 10-20 repetitions 

over 3 conditions and it is possible more practice was needed for accurate performance. 

Salonikidis et al. (2009) evaluated the force variability of isometric sub-maximal wrist 

contractions of the wrist flexors between highly skilled tennis players and sedentary 

individuals. They measured the variability of force as the coefficient of variation of the 

force produced during the force-matching task at varying sub-maximal target intensities 

(5-75% MVC) and joint angles. At 130° for example, sedentary participants 

demonstrated a coefficient of variation from 4.5% to 2.0% (estimated from graphical 

data) between 5 and 75% MVC whilst the highly skilled group demonstrated a 

coefficient of variation from 2.8% to 1.5%. The coefficient of variation was consistently 

higher by around 0.5-1-5% (estimated from graphical data) in the sedentary group at all 

target intensities and joint angles. Given that there was no difference in isometric 

strength or normalized EMG activity between the two groups (p > 0.05); this suggests 

that prior practice may have beneficial effects on controlling the force output.  

Therefore, the type of activity participants usually perform may also have an influence 

on training performance. As the activities prescribed by the protocols are novel to 

typical activities of daily living repeated practice may therefore improve training 

performance but the amount of practice required is not fully understood. 

This study also found that participants performed T2 training sets at a higher intensity 

than T3. This was not expected as both protocols instructed participants to train at the 

same intensity and the order of the training protocols was randomised. The skill 

components and therefore the explicit learning processes were similar for both protocols 

(Gentile, 1998). However, given that T2 training sets have more repetitions, it is 

possible that some participants may have begun to lose concentration. It is possible that 

the strategy for maintaining the target force changed due to this. In order to investigate 

whether this was the case, the training intensity for the first half of T2 training set was 

compared to the second half but no difference (p > 0.3) in the training intensity between 

the first half and second half of the T2 training set was found. Given that the mean 

difference in training intensity between T2 and T3 was small, the differences could be 

considered negligible.  

The results of this study suggested that the mean training intensity was more variable 

for the left limb compared to the right. This may be due to the effect of limb dominance, 

as observed in previous findings on motor control between dominant and non-dominant 

limbs for the upper limbs (Sainburg & Kalakanis, 2000). In right handed participants, 

Sainburg & Kalakanis (2000) evaluated the reaching strategies of the left and right arm 
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under varying conditions of restricted target paths. They found that although both limbs 

demonstrated similar accuracy in reaching the target, there were differences in muscle 

force timing, magnitude and direction. When participants had to adapt the path to reach 

the target, the right limb showed higher levels of co-ordination to reach the target. The 

results indicate distinct neural mechanisms between dominant and non-dominant limbs 

as supported by the findings that limb muscles are controlled primarily the contralateral 

cortex (Holsetege and Kuypers, 1982). Although hand dominance is indicative of leg 

dominance (Balogun and Onigbinde, 1992), these findings may not directly 

transferrable as the ability to control force differs between the upper and lower limbs 

(Christou et al., 2003).  

The variation in the mean training intensity was also higher for the flexion manoeuvres 

compared to the extension manoeuvres. For T1, only two of the extension training sets 

were performed below 70% MVC compared to 10 of the flexion training sets. Similarly, 

8 of the low intensity extension training sets were performed above 50% MVC as 

opposed to 13 of the flexion training sets. The current study results indicate the knee 

flexors are not able to consistently perform sub-maximal isokinetic contractions. The 

differences may be accountable due to the different muscle group involved in 

performing the manoeuvres. Knee extension manoeuvres are produced primarily by the 

quadriceps muscle group whilst knee flexion manoeuvres are produced primarily by the 

hamstrings muscle group. There are distinct differences in muscle architecture between 

these groups (Wickiewicz et al., 1983). The hamstrings have more sarcomeres (4.3x104 

vs 3.12x104) and have a larger fibre length to muscle length ratio (56 x102 vs 22x102) 

compared to the quadriceps. In addition, the hamstrings have a lower proportion of type 

I muscle fibre (44-54%) (Dahmane et al., 2005) than the quadriceps (Travnik et al., 

1995). 

Such differences in muscle architecture appear to influence functional characteristics 

such as rate of force development and fatigue resistance (Brughelli et al., 2010; Abe et 

al., 2001; Alegre et al., 2006; Kanehisa et al., 2003). 

It was expected that the poor performance of knee flexors to accurately achieve target 

forces would also be manifested in studies evaluating the reliability of maximal strength 

measurements. However, studies on the repeatability of maximal voluntary knee 

extension and flexion contractions have found high reliability (ICC > 0.95) for both 

(Sole et al. 2007, Harding et al. 1999, Philips et al. 2000). Therefore there is no full 

explanation for the observations in this study. 
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The second aim of this study was to evaluate whether participants were able to achieve 

the theoretical total work and whether the total work was equivalent between T1 and 

T2. Although the total work achieved in T1 was lower than T2 the actual difference in 

was small. T2 produced on average 128 ± 72 J more work than T1. This represents a 

mean difference of 13% for the total work completed in T1 compared to T2. This is 

unlikely to have an additional influence on the training response. For example, Krieger 

(2010) in a meta-analysis found that there was no difference in the effect size of 

outcomes following strength training between groups performing 2 and 3 sets per 

exercise or between 4 and 5 sets (difference =  0.10 +/- 0.10; CI: -0.09, 0.30; p = 0.29), 

equivalent to an extra third of the total work completed over the training period.  In 

addition, such differences in the total work between T1 and T2 are expected to lower 

with repeated practice. It is possible that, with repeated practice, participants performing 

T1 will improve in their ability to reach the target quicker and maintain the target force 

over the duration of the contraction.  

There was a high level of agreement between the total work achieved against theoretical 

work calculated. However, as the assessment of total work was made against theoretical 

work as opposed to an assessment for repeated measure, there exists the potential for a 

ceiling effect. As discussed in the methods, theoretical work was calculated from a flat 

force curve. But the training contractions were parabolic in nature and therefore it’s 

unlikely that a stronger agreement could be achieved.  

In addition to this, the level of agreement between theoretical work and total work 

achieved was lower for T1 than T2 and T3. This may be due to the inherent differences 

in the hypothetical sub-maximal force curves between the high and low intensity 

protocols as described in the introduction. It was also found that participants 

demonstrated higher than 10% variation in the peak force between contractions. This 

may partly explain why participants produced less work than theoretical work. 

Hortobagyi et al. (2001) and Tracy & Enoka (2006) also found participants were not 

able to maintain a consistent target force at baseline. As progressive resistance exercise 

has shown to improve rate of force development (Oliveira et al., 2013) and force 

fluctuation (Hortobagyi et al., 2001) it is hypothesised that the agreement between 

theoretical work and total work achieved may improve with repeated practice. 

The training performance of the flexion manoeuvres was consistently poorer than that of 

the extension manoeuvres. This was observed through higher variation in the mean 
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training intensity, lower agreement with theoretical work and higher force fluctuation. 

This may have impeded in the differentiation of training intensity between protocols. 

3.5 Study Limitations 
The study aimed to investigate whether the sub-maximal training protocols could be 

performed such that they were theoretically differentiated by intensity and volume. A 

single session quasi-experimental trial was used to investigate this. This allowed 

comparison of training performance between training protocols performed by the same 

individual. However, as each of the protocols was performed once, training performance 

cannot be inferred over a longer period. Training performance may improve with 

repeated sessions and therefore would need to be investigated over a longer period, 

particularly as progressive resistance exercise is typically performed over 8 sessions. 

This study did not monitor or control for participants’ behaviour before participating in 

the study which may have affected their performance. Factors such: as the time of day 

the testing was undertaken (Souissi et al., 2013), the types of daily physical activity 

undertaken (Jindo et al., 2016), the amount of sleep obtained the night before (Suppiah 

et al., 2016) was not considered. In addition to this, as many of the participants were 

students, some may have been studying prior to participation which may have affected 

their ability to concentrate during the sessions. All these factors may have contributed to 

the variability in performance between participants. 

As sedentary participants were used in this study, the results cannot be inferred to other 

populations such as active young and older adults. Given the differences in training 

response between individuals of different training status (Rhea et al., 2003), it is 

expected that active young individuals would demonstrate a higher level of performance 

and sedentary individuals may demonstrate similar levels of training performance as 

older individuals of the same activity levels. On the other hand, the effects of ageing 

may contribute individually to the ability to perform these protocols.  

It was observed that limb dominance had an effect on training performance due to the 

differences between left and right limbs. Training performance of the left limbs of 

participants in this study was poorer than the right limbs. However, as this was not 

determined, it cannot be elucidated for certain.  
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3.5 Summary 
Study 1 evaluated the training performance of sedentary participants undertaking sub-

maximal isokinetic exercise. Participants performed T1 at an intensity of around 80% 

and T2 and T3 at an intensity of around 45%. Despite this, there was a high level of 

variation between participants in the mean training intensity performed. These variances 

were consistent with the force fluctuation measure which showed variation in the peak 

torque between contractions within a training set.  

The amount of work completed between T1 and T2 over a training set was similar. The 

total work completed in T3 was approximately half that of that of the total work 

completed in T1 and T2. This shows scope for the use of these protocols to evaluate the 

influence of intensity and volume. However, further evaluation is required to determine 

whether repeated sessions lead to a higher level of agreement between the total work 

performed and theoretical work.  

The ability of participants to control the level of force equivalent to the target may be 

influenced by limb dominance, lack of practice and the training status of participants. It 

is noted that a single session may be insufficient to perform sub-maximal contractions 

consistently and at the intensity specified. It is expected that with repeated practice, 

participants will be able to improve their ability to control the level of force exerted 

during the sub-maximal voluntary contractions. The effect of practice is examined in 

Chapter 4.0. 
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4.0 The Effect of Repeated Practice 
of Sub-maximal Isokinetic Training 
Protocols on Training Performance 

4.1 Introduction 
The first study evaluated the training performance of sedentary individuals completing 

three sub-maximal isokinetic training protocols. This showed that sedentary participants 

were able to complete high and low intensity protocols at differentiated intensities but 

matched for the total work completed over the training set. However, there was 

variation in the intensity performed between participants and some were not able to 

train at a high intensity for the high intensity protocol or train at a sufficiently low 

intensity for the low intensity protocol. This was partly explained by the variability 

between contractions in the force produced. It was noted that the participants were 

sedentary individuals with no prior experience in performing sub-maximal isokinetic 

contractions. Previous studies have found this ability is impaired in untrained 

individuals as demonstrated by Salonikidis et al. (2009), They reported that sedentary 

individuals demonstrated higher force variability in sub-maximal isometric contractions 

of the wrist flexors compared to skilled tennis players. The training performance of 

individuals completing sub-maximal isokinetic protocols must therefore be evaluated 

over repeated sessions.  

It has been established previously that muscles undergo neurological changes during the 

early phase of progressive resistance exercise (Moritani et al., 1979). These include the 

summation of motor unit forces and synchronicity of motor neurone discharge (Enoka 

et al., 2003; Taylor et al., 2003). Tracy et al. (2004) argues that such changes are 

independent of the changes in force fluctuation as they were not proportional to the 

change in strength. It is expected that, with repeated practice, sedentary individuals 

would improve their ability to consistently achieve and maintain forces equivalent to the 

target force during the sub-maximal isokinetic contractions. Previous work has found 

the force fluctuation of isometric contractions improve with strength training (Tracy & 

Enoka, 2006; Hortobagyi et al., 2001). 

The main aim of this study was to assess whether sedentary participants improved in 

their training performance of sub-maximal isokinetic training protocols with repeated 

practice. This study assessed whether with repeated practice of a single protocol, 
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sedentary participants were more accurately able to achieve the target training 

intensities, with lower force fluctuation and improve accuracy against theoretical work. 

In addition to this, the study measured whether participants’ strength changes following 

repeated practice to determine whether there are indications of a differential response to 

training between the protocols. 

The hypotheses of this study are as follows: 

 It was hypothesised that with repeated practice, the mean training intensity 

would be closer to the training intensity as specified by the protocol. 

 Following repeated practice, it was hypothesised that there would be an 

improvement in the level of agreement between theoretical and total work for T1 

training group such that it was equivalent to the level of agreement achieved in 

T2 and T3 training groups. 

 Following repeated practice, it was hypothesised that there was a reduction in 

force fluctuation between set 1 and set 12 for each of the three training groups 

(T1, T2 and T3). 

 It was hypothesised that T1 and T2 would show an improvement in muscle 

strength and there would be no difference for the change in strength between 

these two groups. Also, it was hypothesised that the change in strength for T1 

and T2 was higher than the change in strength in T3. 

 

4.2 Methods 

4.2.1 Study Design 

In order to determine whether training performance improved with repeated practice of 

the training protocols, two study designs were considered. It was considered whether 

repeated practice could be undertaken where all participants complete one set of each 

protocol in each session over repeated sessions (within-subject experimental design). 

This would show whether the training protocols were differentiated by intensity and 

volume regardless of variations in participant performance. However, the practice of 

one protocol may have had a compounding effect on the performance of another 

protocol making it difficult to assess the performance of a single protocol. As 

previously discussed, neuromuscular adaptations in trained muscle (Carroll et al., 2001) 
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may translate to the contra-lateral limb (Farthing, 2009). Ogaswara et al. (2013) 

attempted to minimise for such effects by leaving a period of 12 months for the within-

subject design. However, even after this period strength had not returned to baseline.  

Therefore it was decided to conduct a repeated sessions design where participants were 

randomly allocated to one of three training groups each completing their respective 

assigned protocol (between-subject experimental design).  

It was decided that there would be four sessions over two weeks for each protocol. Two 

weeks is the typical time before strength is re-measured as part of a progressive exercise 

programme (Wernbom et al., 2007). This study aimed to investigate only the initial 

changes that occur without the additional effect of target adjustment. Therefore, the 

main aim of study 2 was to assess whether there was a change in training performance 

with repeated practice of sub-maximal isokinetic training protocols and whether there 

are indications of a differential response to training between training protocols. A 

randomized design was employed to determine the change in training performance over 

repeated sessions. Participants were block-randomised into one of three training groups 

(T1, T2 and T3 – identical to the training protocols utilised in the first study, see 

3.2.4.5) and performed three sets of their allocated training protocol per session on each 

limb. They attended four sessions of training completing a total of 12 training sets on 

each limb.  

 

4.2.2 Participants 

Thirty participants completed the second study. The study design and procedures were 

approved by the University Ethics Committee (appendix 8.5). Participants were fully 

informed of study aims and procedures and gave their consent in writing (appendix 8.6). 

A convenience sample of staff and students at the University of East London that 

fulfilled the criteria of being in category 1 of the International Physical Activity 

Questionnaire (Craig et al, 2003) were recruited. Participants who met the inclusion 

criteria were invited to the human movement performance laboratory. The inclusion and 

exclusion criteria were identical to study 1 (see section 3.2.2). 

 

4.2.3 Procedures 

Participants attended the Human Motor Performance Laboratory at the University of 

East London on four occasions. In the first session, baseline characteristics were 
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recorded as described in study 1 (see section 3.2.4). They were then randomly allocated 

to one of three training groups using a block randomized procedure. Following the 

warm-up procedure, participants were positioned on the isokinetic dynamometer, with 

the order of limb training randomised. They performed five MVC to determine their 

maximal strength which was used to determine their target force. They then performed 

three sets of their allocated training programme with a one minute rest period between 

training sets. This procedure was then repeated on the contralateral limb. 

Another session was scheduled in the same week, at least one day apart. During the 

second session, participants completed the warm-up and three sets of their allocated 

protocol on each limb. Two further identical sessions were scheduled the following 

week, at least one day apart. On the fourth session, when participants completed the 

three training sets, they also completed five MVC following a one minute rest on each 

limb. 

 

4.2.4 Data Analysis 

The training performance of 24 sets completed by the two limbs over the 4 sessions was 

recorded to analyse the training performance measures as reported in study 1. 

Measurement of the left and right limb was recorded separately due to the potential 

effect of limb dominance on training performance.  

Descriptive statistics were presented to explore the training intensity, force fluctuation 

and total work performed by participants in each training set completed. A direct 

comparison of the total work completed between training groups could not be 

conducted as participants were independent of each other. Evaluation of the total work 

completed was conducted by comparing the total work completed against the theoretical 

work for each participant. 

IBM® SPSS® Statistics Version 20 was used to conduct repeated measures ANOVA to 

compare training performance between the first set and the last set completed by 

participants. Intra-class correlation coefficient (ICC3,1) was used to determine the level 

of agreement between the theoretical total work and total work. Independent t-tests were 

conducted to assess whether the total work was different between groups and paired t-

tests were conducted to assess whether there was a change in strength following 

repeated sessions for each group. A one-way ANOVA was conducted to assess whether 

the change in strength following repeated sessions was different between groups.  
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4.3 Results 

4.3.1 Participants 

Thirty participants (15 female, 15 male) were recruited from the staff and student cohort 

at the University of East London. Table 4.1 shows baseline characteristics. One-way 

ANOVA showed there was no significant difference between training groups in age, 

height, mass (p ranged from 0.11-0.21) or baseline strength (as measured by the mean 

peak torque to five MVC) for each side and direction (p ranged from 0.64-0.86). 

 

Table 4.1. Physical characteristics of the participants in study 2 (mean ±SD) 

Group 
Age 
(years) 

Height 
(cm) 

Mass 
(kg) 

Mean Peak Torque (N·m) at 60°.s-1 

Left 

Extension 

Right 

Extension 

Left 

Flexion 

Right 

Flexion 

T1 n=10 32 ± 4 173 ± 8 77 ± 14 120 ± 23 127 ± 24 65 ± 17 65 ± 15 

T2 n=10 28 ± 7 166 ± 8 67 ± 13 112 ± 24 118 ± 36 62 ± 16 60 ± 18 

T3 n=10 27 ± 7 169 ± 8 65 ± 12 123 ± 36 122 ± 36 61 ± 16 60 ± 23 

 

4.3.2 Training Intensity 

The training intensity for all training sets was examined and the results for set 1 and 12 

are considered in this section. Figure 4.1 shows the mean extension training intensity 

completed in set 1 and set 12 of the training protocols for the left and right limbs, 

regardless of the order of training (as the order was randomised). For the left limb, both 

the first and twelfth set was completed by T1 at the target intensity and was not 

significantly different (t(9) = 0.0, p = 1.00) with lower variation in set 12 (set 1: 81 ±8%; 

set 12: 81 ± 4%). For the right limb, T1 was completed at a significantly (t(9) = -2.325, p 

< 0.001) higher intensity on average with lower variation (set 1: 79 ±7%; set 12: 83 

±4%). For T2, paired t-test showed the left limb trained at a significantly (t(9) = 4.644, p 

< 0.01) lower intensity in set 12 than set 1 (set 1: 46 ±3%; set 12: 41 ±2%). A similar 

trend was observed for the right limb, although differences were not significant (set 1: 

46 ±8%; set 12: 41 ±2%, t(9) = 1.457 p = 0.18). For T3, paired t-test showed the left 

limb trained at a lower intensity in set 12 than set 1 (set 1: 45 ±8%; set 12: 42 ±2), 

although differences were not significant (t(9) = 2.236, p = 0.052). A similar trend was 

observed for the right limb, but differences were not significant (set 1: 45 ±8%; set 12: 

42 ±2%, t(9) = 1.708, p = 0.122).  The number of high intensity training sets completed 

below 70% MVC and low intensity training sets completed above 50% MVC was 
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analysed. For extension, 3 of the T1, 2 of the T2 and 6 of the T3 training sets completed 

were outside such thresholds in the first set. In the last set completed, none of the 

training sets were outside threshold.  

   A)                                                                                   B) 

*p < 0.01 

Figure 4.1. Mean (±SD) Extension Training Intensity (% of MPT) Achieved in Set 1 
and Set 12 for A) left limb and B) right limb 

 

Figure 4.2 shows the mean flexion training intensity completed in set 1 and set 12 of the 

training protocols for the left and right limbs. For the left limb, training intensity 

increased significantly (t(9) = -2.656, p < 0.05) following repeated sessions but the level 

of variation remained high (Set 1: 70 ±13%; Set 12: 80 ±11%). This was also the case 

for the right limb, although differences were not significant (Set 1: 76 ±18%; Set 12: 78 

±8%, t(9) = -2.80, p = 0.786). For T2, the mean training intensity did not change (t(9) = 

1.183, p = 0.267) for the left limb (Set 1: 48 ±6%; Set 12: 46 ±6%) and although there 

was a significant (t(9) = 2.422, p < 0.05) reduction in the right limb (Set 1: 60 ±18%; Set 

2: 47 ±8%) training intensity remained above 45% following repeated sessions for both 

limbs. For T3, the mean training intensity there was no change following repeated 

sessions in the left limb (Set 1: 47 ±9%; Set 12: 44 ±5%, t(9) = 1.387, p = 0.199) and the 

right limb (Set 1: 50 ±11%, Set 12: 52 ±15%, t(9) = -0.405, p = 0.695). 

The number of high intensity training sets completed below 70% MVC and low 

intensity training sets completed above 50% MVC was analysed. For flexion, 8 of the 

T1, 10 of the T2 and 9 of the T3 training sets were completed outside the threshold in 
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the first set. In the last set completed, 5 of the T1, 6 of the T2 and 4 of the T3 training 

sets completed were outside the threshold. 

   A)                                                                                   B) 

*p < 0.05 

Figure 4.2. Mean (±SD) Flexion Training Intensity (% of MPT) Achieved in Set 1 and 
Set 12 for A) left limb and B) right limb 

 

4.3.3 Total Work 

There was no significant difference in the total work achieved between T1 and T2 for 

any of the training sets completed (p = 0.17 – 0.90). The total work achieved in T3 was 

approximately half (44-53%, calculated as T3 total work / T1 (or T2) total work) the 

total work achieved in T1 and T2 for all conditions. 

To determine whether participants improved in their ability to achieve the expected total 

work, the level of agreement between total work and theoretical work was examined for 

the first set of the first session and last set of the last session. Table 4.2 shows the 

extension total work and theoretical work for set 1 and set 12 of the training sets 

completed. For T1, the level of agreement between theoretical and total work was 

greater in set 12 than set 1 for the left (Set 1: ICC3,1 = 0.35; Set 12: ICC2,1 = 0.58) and 

right (Set 1: ICC3,1 = 0.42; Set 12: ICC3,1 = 0.63) limbs. A good level of agreement was 

observed in set 1 and set 12 in T2 for the left (Set 1: ICC3,1 = 0.77; Set 12: ICC3,1 = 

0.64) and right (Set 1: ICC3,1 = 0.73; Set 12: ICC3,1 = 0.70) limbs. This was also the 

case for T3 for both left (Set 1: ICC3,1 = 0.79; Set 12: ICC3,1 = 0.83) and right (Set 1: 

ICC3,1 = 0.76; Set 12: ICC3,1 = 0.83) limbs. 
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Table 4.2. Mean (±SD) Extension Total Work (J, Theoretical and Actual) Completed 
for Set 1 and Set 12 for each side  

Side Protocol Theoretical Work Set 1 ICC3,1 Set 12 ICC3,1 

Left  

T1 – 80% 10 

repetitions 
1243 ± 255 1003 ± 197 0.35 1016 ± 191 0.58 

T2 – 40% 20 

repetitions 
1160 ± 259 1046 ± 184 0.77 1010 ± 167 0.64 

T3 – 40% 10 
repetitions 

634 ± 186 527 ± 158 0.79 535 ± 133 0.83 

Right  

T1 – 80% 10 
repetitions 

1322 ± 305 1016 ± 232 0.42 1099 ± 220 0.63 

T2 – 40% 20 

repetitions 
1223 ± 362 998 ± 394 0.73 988 ± 279 0.70 

 
T3 – 40% 20 

repetitions 
623 ± 169 501 ± 91 0.76 504 ± 131 0.83 

 

Table 4.3 shows the flexion total work and theoretical work for set 1 and set 12 of the 

training sets completed. For T1, the level of agreement between theoretical and total 

work was greater in set 12 compared to set 1 for the right limb (Set 1: ICC3,1 = 0.51; Set 

12: ICC3,1 = 0.68). The left limb also showed greater agreement in set 12, but not to the 

same degree (Set 1: ICC3,1 = 0.26; Set 12: ICC3,1 = 0.37). For T2, the level of agreement 

was lower in set 12 (ICC3,1 = 0.64) than set 1 (ICC2,1 = 0.82) for the left limb. The right 

limb for T2 showed greater agreement in set 12 compared to set 1 (Set 1: ICC3,1 = 0.57; 

Set 12: ICC2,1 = 0.72). T3 demonstrated greater agreement in set 12 compared to set 1 

for the left (Set 1: ICC3,1 = 0.72; Set 12: ICC3,1 = 0.77) and right limbs (Set 1: ICC3,1 = 

0.75; Set 12: ICC3,1 = 0.85). 

Table 4.3. Mean (±SD) Flexion Total Work (J, Theoretical and Actual) Completed for 

Set 1 and Set 12 for each side  

Side Protocol Theoretical Work Set 1 ICC3,1 Set 12 ICC3,1 

Left  

T1 669 ± 167 485  ± 125 0.26 562 ± 123 0.37 

T2 641 ± 152 563 ± 154 0.82 513 ± 111 0.64 

T3 314 ± 75 264 ± 78 0.72 247 ± 47 0.77 

Right 

T1 678 ± 150 563 ± 183 0.51 562 ± 129 0.68 

T2 618 ± 170 670 ± 288 0.57 503 ± 138 0.72 

T3 306 ± 109 241 ± 76 0.75 264 ± 64 0.85 
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4.3.4 Force Fluctuation 

Figure 4.3 shows the mean extension force fluctuation (%) for each protocol over the 12 

sets completed. Force fluctuation values reduced with repeated sessions for T1 (Set 1: 

12 ±3%; Set 12: 6 ±2%), T2 (Set 1: 17 ±8%; Set 12: 7 ±3%) and T3 (Set 1: 22 ±12%; 

Set 12: 9 ±4%). Repeated measures ANOVA showed there was a significant effect of 

set (F(1, 27) = 82.794, p < 0.001) and set*training group (F(2, 27) = 4.143, p < 0.05). 

Further analysis showed set 2 and subsequent sets were significantly different to set 1 (p 

< 0.001). There was also a significant difference between T1 and T3 (p = 0.03) for the 

change in set 12 compared to the first set. 

 

Figure 4.3. Mean Extension Force Fluctuation Achieved in Sets 1-12 

 

Figure 4.4 shows the mean flexion force fluctuation (%) for each protocol over the 12 

sets completed. Force fluctuation reduced with repeated sessions for T1 (Set 1: 11 ±5%; 

Set 12: 9 ±3%), T2 (Set 1: 17 ±5%; Set 12: 12 ±3%) and T3 (Set 1: 17 ±9%; Set 12: 11 

±4%). Repeated measures ANOVA showed there was a significant effect of set (F (1, 27) 

= 17.583, p < 0.001) only. Further analysis showed set 4 and subsequent sets were 

significantly different to set 1 (p < 0.001).  
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Figure 4.4. Mean Flexion Force Fluctuation Achieved in Sets 1-12 

 

4.3.5 Strength Changes 

Table 4.4 shows the peak torque achieved during the five maximal voluntary 

contractions recorded at baseline and after four sessions of training. The change in 

strength was compared between training groups using a one-way ANOVA. This showed 

that there was a significant difference for the change in peak torque between training 

groups for left extension (F(2, 27) = 3.46, p < 0.05) and flexion (F(2, 27) = 4.63, p < 0.05) 

but not right extension (F2, 27) = 3.02, p = 0.065) or flexion (F(2, 27) = 0.11, p = 0.90). 

Post-hoc paired t-test showed there was a significant difference for the change in peak 

torque between T1 and T3 for left extension (p = 0.043) and flexion (p = 0.036). There 

was a significant difference between T1 and T2 for left flexion (p = 0.047) but not left 

extension (p = 0.90).  
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Table 4.4. Mean (±SD) MVC Peak Torque before and after training for each side and 
direction 

Side/ 

Direction 

Protocol Peak Torque (N·m) 

% Change 
Baseline 

After 4 

sessions 

Left 
Extension 

T1 130 ± 22 150 ± 28** 18 ± 17 

T2 124 ± 25 135 ± 42 8 ± 20 

T3 136 ± 39 130 ± 38 -3 ± 9 

Right 

Extension 

T1 141 ± 24 153 ± 23* 10 ± 12 

T2 128 ± 40 133 ± 38 6 ± 15 

 T3 135 ± 38 130 ± 43 -4 ± 8 

Left 
Flexion 

T1 71 ± 19 85 ± 18** 22 ± 19 

T2 69 ± 18 70 ± 20 2 ± 22 

T3 67 ± 18 67 ± 16 1 ± 9 

Right 

Flexion 

T1 72 ± 18 78 ± 19 9 ± 17 

T2 67 ± 18 71 ± 18 7 ± 14 

T3 69 ± 32 73 ± 25 11 ± 24 

*p < 0.05; **p < 0.01 

 

4.4 Discussion 
The main aim of study 2 was to assess whether there was a change in training 

performance with repeated practice of sub-maximal isokinetic training protocols and 

whether there were indications of a differential response to the training protocols. 

Following repeated sessions, the mean training intensity for extension was closer to the 

target training intensity for all training groups with lower variation between 

participants. In set 12, all participants performed the extension training set within 10% 

of target training intensity. The total work achieved in T1 was in greater agreement with 

the theoretical work, equivalent to the level of agreement for the low intensity training 

protocols. This shows that there was sufficient differentiation in the training intensity 

between high and low intensity training protocols. The improvement in the ability of all 

participants to train at the target intensity indicates that they were able to meet the target 

force during the resisted contractions. It’s possible that this was due to an improvement 

in the ability to modulate the neural drive (Hodson-Tole & Wakeling, 2009).  

For flexion, participants in the low intensity groups trained at an intensity above 45% on 

average, despite repeated practice. However, there was a moderate level of agreement 
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between theoretical and total work for the low intensity groups. There was an 

improvement in the force fluctuation with repeated sessions compared to the first set 

completed for both extension and flexion. 

The improved ability to maintain a target force was previously examined by Hortobagyi 

et al. (2001) by evaluating the effect of strength training on the force error during 

submaximal isometric contractions in healthy elderly. They found low and high 

intensity training reduced the absolute force error in maintaining a concentric target 

force of 25N by 28% and 35% respectively. Interestingly, the high intensity group 

achieved a greater improvement in maintaining the target force than the low intensity 

group despite the measure of target accuracy, of using a 25N target force, more closely 

replicated the low intensity training. However, Hortobagyi et al. (2001) found the force 

error arose from exclusively overshooting the target force. This can be attributable to 

the low target force used to measure target accuracy.  

In the current study, the variation in training intensity for the high intensity protocol 

resulted from performing a number of training sets below 70% MVC whilst for the low 

intensity protocol a number of training sets were performed above 50% MVC. With 

repeated practice, all participants were able to generate the forces required for the high 

intensity target for extension and given the lower variation in the mean training intensity 

shows that this was achieved more consistently. The changes are likely to have resulted 

from the neural changes associated with progressive resistance exercise.  

Previous studies have shown an improvement in motor unit recruitment and firing 

frequency as shown by an increase in the amplitude of surface electromyography 

following training (Moritani and de Vries, 1979). As these changes are observed 

without changes in muscle cross-sectional area in the early stages of progressive 

resistance exercise (Hickson et al., 1994; Akima et al., 1999), it is suggested that 

changes in the neural drive are solely responsible for the improvement in achieving the 

training intensity. As neural activity has been shown to increase in the primary motor 

cortex as greater force is exerted (Dettmers et al., 1996), Caroll et al. (2001) suggested 

fewer motor neurons would need to be recruited following training to achieve the same 

level of force. In terms of motor control they suggested that this would reduce the 

magnitude of cortical activation which in turn would reduce the extent of activation of 

neural elements that interfere with motor task performance leading to more efficient 

task performance (Caroll et al., 2001). The current study adds evidence to the potential 

effect of resistance training on motor control. However the exact mechanisms 
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responsible for the transfer of increased muscle strength to an improvement in motor 

control are uncertain due to a lack of evidence. 

As sedentary participants were used in this study, it is likely that some of them may not 

have been able to fully activate their muscles voluntarily. Several studies have shown, 

using the interpolated twitch technique, that healthy individuals are not able to activate 

all available motor units at an optimal firing frequency (Dowling et al., 1994; Knight & 

Kamen, 2001). Hartman et al. (2011) found that participants who were experienced in 

resistance training were able to maintain their ability to activate their muscles, as 

measured by the interpolated twitch technique, following bouts of fatiguing exercise 

whilst untrained participants could not. Although the trained participants in their study 

had years of experience, the results of the current study suggest the improvement in the 

ability to achieve target forces may have resulted from an improvement in muscle 

activation, even over a short training period. 

The synchronicity of motor unit activation as described by Gabriel et al., (2006) may 

provide another explanation for the improvement in achieving the target training 

intensity. Single muscle action potentials can have significant effects on the force 

produced by muscles (Clamann and Schelhorn, 1988). The ability to simultaneously 

activate motor units and modulate activation may have improved following repeated 

practice resulting in the ability to produce a consistent force throughout the contraction. 

It was previously observed the untrained individuals demonstrated lower synchronicity 

than trained individuals (Semmler and Nordstrom, 1998) and training resulted in the 

improved ability to activate motor units synchronously (Milner-Brown, 1975). 

However, some studies have found increased synchronicity increases the force 

fluctuation during isometric contractions (Halliday et al., 1999; Yao et al., 2000) 

Improved performance during training may also be attributable to improved resistance 

to fatigue. Muscle fatigue is characterized by a reduction in maximal force following the 

performance of activity due to various physiological factors, such as the accumulation 

of metabolites within muscle fibres (Enoka & Duchateau, 2008). Accumulation of 

metabolites may have restricted the ability to perform sub-maximal contractions at the 

beginning of training. Lorist et al. (2002) described fatigue as a decline in an 

individual’s ability to produce force after performing motor task for relatively long 

periods (typically 7 minutes). They noted that sub-maximal contractions are sustained 

by progressively increasing central drive as shown by a reduction in cognitive 

performance during fatiguing protocols. Given that the protocols involved sub-maximal 
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contractions and the extent to which participants demonstrated a change in central drive 

was not measured, it is unclear how fatigue influenced the ability to perform the 

protocols. However, it is likely that the neuromuscular changes during training would 

have improved participants ability to be resistant to fatigue.    

Improvements were observed for extension contractions but large variation in the mean 

training intensity of flexion contractions remained with repeated practice. A number of 

training sets for flexion were performed at intensity lower than 70% for T1 and higher 

than 50% for T2. The poorer training performance may be attributable to the differences 

in muscle composition and anatomy between the quadriceps and hamstrings, as noted in 

chapter 3. Concentric motor control of the hamstrings may be poorer than the 

quadriceps due to differences in the way these muscles are used in activities of daily 

living. The quadriceps are frequently used concentrically activities of daily living such 

as the sit to stand movement. However, the hamstrings are typically utilized 

eccentrically during the late swing phase of walking, to decelerate the distal limb (Perry 

and Burnfield, 2010). Montgomery et al. (1994) investigated EMG patterns of the 

hamstrings and found that hamstrings are most active during the late swing phase. 

Therefore control of force in a sitting position, with the hips and knees flexed where the 

length of the muscle is much shorter may be more difficult to achieve. In addition to 

this, impairment in motor control in the hamstrings may also be responsible for this. 

Cameron et al. (2003) found that the high prevalence of hamstring injury in sport 

(Orchard and Seward, 2002) may be explained by the lack of ability to control the limb 

during the swing phase of gait as they found movement discrimination predicted 

hamstring injury. 

The main finding in study 1 was that there was a larger deficit in the total work relative 

to theoretical work in T1 compared to T2.  This was also the case in the first set of study 

2, where the total work produced by T1 group was much lower than the theoretical total 

work with an agreement of 0.35-0.51 (ICC3,1). With repeated practice however, the level 

of agreement for the extension training sets improved from 0.35 to 0.58 for the left limb 

and from 0.42 to 0.63 for the right limbs. With the exception of left flexion, all 

conditions showed, through its agreement with theoretical work, that the T1 and T2 

protocols were matched for the total work completed whilst T3 produced relatively half 

the total work per training set. An improvement in the agreement between total and 

theoretical work indicates participants improved in their ability to meet the target force 

and/or maintain this for a longer period for over the contraction. This is supported by 
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Tracy & Enoka (2006) and Hortobagyi et al. (2001) who found force fluctuation of an 

isometric contraction around a fixed target reduced following strength training. 

However, as previously discussed, potential ceiling effects may be present using ICC to 

compare theoretical work and total work due to the parabolic nature of the force curve. 

This study shows indications of this as there was no apparent increase in ICC for T2 or 

T3 training groups. 

There remained a difference between the left and right limbs for the agreement between 

total work achieved and theoretical work. Although there was an improvement in the 

agreement between total and theoretical work for the left limb, the level of agreement at 

baseline was lower in the left limb and subsequently the agreement in the last set 

completed was also lower when compared to the right limb. This indicates that both 

limbs showed equivalent improvements in the ability achieve the specified total work 

but the actual agreement is lower in the left limb. 

The differences observed may have been due to the effect of limb dominance. Limb 

dominance is characterized by the ability to execute movements with more accuracy and 

consistency with the dominant limb (Grouios, 2006). In terms of neuromuscular control, 

Bagesteiro and Sainburg (2002) found that the dominant upper limb has greater 

anticipation of planned movements with distinct neural control compared to the non-

dominant limb. This may contribute to the ability to control the level of force exerted 

during the sub-maximal isokinetic contractions. Although hand dominance is indicative 

of leg dominance (Balogun and Onigbinde, 1992), these findings may not directly 

transferrable as the ability to control force differs between the upper and lower limbs 

(Christou et al., 2003). 

Following repeated sessions, the force fluctuation reduced. For extension, the force 

fluctuation immediately reduced following first set as the force fluctuation in set 2 and 

subsequent sets were significantly lower. For flexion, this occurred slightly later as set 4 

and subsequent sets demonstrated significantly lower force fluctuation. 

Participants were instructed to control the level of force produced during the dynamic 

contractions. This process relies on the afferent feedback mechanisms (such as muscle 

visco-elasticity, feedback from muscle spindles and Golgi tendon organs), which give a 

sense of how much force is being exerted as well as central processing to modulate the 

force according to the visual target. As such, the ability to perform these protocols 

depended on the ability of participants to use these systems to accurately control the 

level of force exerted. This is achieved through the synchronous mechanical summation 
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of motor unit forces and the pattern of output from the motor neurone pool (Enoka et 

al., 2003; Taylor et al., 2003). The results in the current study concur with previous 

findings where resistance training resulted in a reduction in force fluctuation for 

dynamic contractions (Tracy, 2004). 

The improvement in force fluctuation with repeated sessions shows a learning effect 

where participants improve their ability to control the force that is exerted during the 

dynamic contractions. Instructing participants to control the level of force exerted may 

have an additional effect on the neural adaptations following PRE due to this learning 

effect.  This is consistent with Tracy et al. (2004) who, in a sample of older adults (65-

80 years old) found larger improvements in MVC for their high intensity group that 

were instructed to control the velocity of movement through visual feedback (31%) 

compared to their high intensity group without the visual feedback (25%) following 16 

weeks (48 sessions) of training. 

Following four sessions of training, participants in the T1 group observed an increase in 

extension strength of 18 ± 17% for the left side and 10 ± 12% for the right side. These 

changes are large considering the short duration of the training programme which may 

be explained by the participants’ low training status. It should also be considered 

whether the explicit learning processes involved had an additional positive effect on 

outcomes. This is supported by Tracy et al. (2004) who found resistance training by 

older adults who were asked to produce steady resistive contractions, by controlling the 

velocity of movement, achieved larger strength gains than older adults producing 

resistive contractions without controlling the velocity of movement. 

Short term improvements in progressive resistance exercise are seldom reported despite 

strength commonly being re-evaluated every 2 weeks as part of adjustment of load to 

maintain the intensity of training. In older adults, Tracey et al. (2004) reported a similar 

improvement of 12% (estimated from graphical data) in knee extension MVC after 6 

sessions of training over 2 weeks. In untrained males, Ogasawara et al. (2013) reported 

an improvement of 7% (estimated from graphical data) in strength in the high intensity 

group after 9 sessions over 3 weeks. However, this study conducted progressive 

resistance exercise on the upper limb so results are not directly comparable.   

Due to the short training period, improvement in muscle strength is likely to have 

resulted from neural adaptation rather than muscle hypertrophy (Aagaard et al., 2002). 

Hickson et al. (1994) and Akima et al. (1999) only found overt changes in muscle 

hypertrophy after the eighth and subsequent weeks of training. 
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There were indications of a differential response to training between the protocols 

which favoured T1 in some conditions. However, differences between training groups 

were not always significant. The changes observed in the T1 protocol are indicative of 

task-specificity, as the T1 protocol more closely replicates the MVC. This may account 

for the differences observed between T1 and T2 over the four sessions. Over a longer 

period however, participants performing T2 could show similar changes to T1. In the 

study by Ogasawara et al. (2013), the authors did not observe an increase in strength in 

the low intensity group at 3 weeks, but did observe a significant increase at the end of 

training after 6 weeks, although the change observed in the high intensity group was 

significantly higher. 

 

4.5 Study Limitations 
This study raises the importance of measuring training performance in the evaluation of 

the effects of training parameters on outcomes. However, within the results there were 

also indications of other factors that may affect the response to training. Training status 

is a key factor identified in the literature reviews when considering dose response. 

Therefore capturing participants’ activities levels as an additional variable should be 

considered when evaluating outcomes. As previously cited in 3.5 there are many factors 

which could affect the potential outcomes which should also be considered and brought 

into the evaluation of training parameters on outcomes. 

As this study was conducted over four sessions, there was no re-evaluation of MVC and 

adjustment of target forces as conducted in progressive resistance exercise programmes 

performed for over 2 weeks. It’s therefore unknown whether the training performance 

would be maintained when targets are re-evaluated after the second week. Although the 

relative intensity of training would remain the same after readjustment, the initial 

improvements in neural drive may have contributed to the ability to maintain target 

forces. Evaluation of training performance over a longer period is therefore 

recommended. 

It is also important to note that there was real-time visual feedback to participants and 

the experimenter on participants training performance. This may have had a behavioural 

effect where participants were influenced to maintain their training performance. These 

results cannot therefore be applied to the traditional forms of resistance training using 

physical weights. It is therefore expected that the training performance in previous 
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studies using isoinertial equipment was inconsistent between participants and so not all 

participants trained at the intensity and volume as specified by the protocol. 

Although there were indications of a differential response to training, it must be noted 

that the five MVC contractions recorded at the end of training were recorded at the end 

of session 4. They therefore may have had an impaired ability to generate maximal 

forces. Given that participants had completed three sets of training prior to the MVC 

and only one minute of rest was provided after the three sets of training, the actual 

changes may have been larger if they had been recorded in a separate session. 

4.6 Summary 
With repeated practice, all participants improved in their ability to perform extension 

manoeuvres more accurately at the intensity specified by the protocol. This resulted 

from an improvement in the consistency of the achieved training intensity between 

contractions. The high intensity training protocol was performed such that there was a 

greater level of agreement in total work with theoretical work indicating participants 

learnt how to control the level of force exerted so they improved in the ability to achieve 

and maintain the target force throughout the contraction. Therefore there is a need to 

measure and monitor training performance when evaluating the effectiveness of 

progressive resistance exercise. Without reporting training performance, it is difficult to 

evaluate whether participants performed the training according to the training protocols. 

It may explain the lack of consistency in the evaluation of optimal training parameters 

as well as the magnitude of change observed following progressive resistance exercise. 

This is particularly relevant for older adults and those with specific impairments as they 

may demonstrate a much lower ability to perform training as specified by the training 

protocol. 

Training performance may also vary between different types of muscle groups involved 

as well as limb dominance. For flexion manoeuvres, many participants were still not 

able to train at the specified intensity or produce consistent force contractions in a set. 

Although outcomes for flexion muscle strength have consistently been reported 

separately to outcomes for extension muscle strength, the outcomes between non-

dominant and dominant limbs have not been reported separately. Limb dominance may 

have an effect on training performance and as such the response to training may differ. 

It is therefore recommended that outcomes for left and right limbs be reported 

separately. 
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5.0 Evaluating the Training 
Performance of Stroke Survivors 
Completing Three Sub-maximal 
Isokinetic Training Protocols 

5.1 Introduction 
Stroke is a common neurological disorder where interruption of the blood supply to the 

brain causes damage to the neural tissue (WHO, 2001). Muscle weakness is a common 

impairment resulting from stroke (Knutsson & Martensson, 1980, Bohannon, 1995). 

Despite the spontaneous recovery which occurs in the first six months following a 

stroke (Cramer, 2008), those affected are significantly weaker than healthy matched 

controls (Clark et al, 2006). A number of studies have reported that muscle strength 

correlates with timed activity measures (Kim & Eng, 2003; Canning et al., 2004; Lin 

2005; Flansbjer et al., 2006) leading researchers to investigate the importance of 

strength training to improve physical activity (Ada et al., 2006). Progressive resistance 

exercise forms part of a number of interventions that can be utilized post-stroke 

depending on observed impairments such as: sensory intervention, arm re-education, 

gait retraining, fall prevention, speech therapy and management of spasticity (RCP, 

2012).  

Studies that have evaluated the effectiveness of progressive resistance exercise in stroke 

survivors have utilised a range of different training methods and parameters making it 

difficult to determine the influence of training parameters. Identifying the training 

parameters that give the optimal training response is important for effective service 

delivery. However optimal strength training regimes that deliver the most beneficial 

effect on strength and activity have yet to be understood (Ada et al., 2006).  

In order to evaluate optimal training parameters, recording training performance is a key 

factor. Recording training performance during intervention will aid in the evaluation of 

progressive resistance exercise. The previous two studies have shown that training 

performance can be recorded using submaximal isokinetic training programmes. 

Although training performance improved with repeated practice, stroke survivors may 

present with an impaired ability to train at the intensity and work specified. This is 

because they present with motor impairments that may limit the ability to control motor 
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unit recruitment and firing frequency. In a pilot study, using a surface electromyogram 

Suresh et al. (2011) reported the paretic limb demonstrated a lower mean motor unit 

firing rate and motor unit recruitment range compared to the non-paretic limb.  

The training protocols established allow for the evaluation of intensity and volume on 

the effectiveness of progressive resistance exercise whilst recording the training 

performance during the intervention. The main aim of this study was to evaluate 

whether stroke survivors could perform sub-maximal isokinetic training protocols and 

explore whether training performance changed with repeated practice. The second aim 

of this study was to assess whether impairments and activity limitations were altered 

following participation in the progressive resistance exercise programme. This required 

the evaluation and selection of outcome measures to form an assessment battery. 

 

5.1.1 Selection of outcome measures  
Normal function and life role participation is the goal of rehabilitation (Daly, 2007). 

Exercise interventions target impairments and activity limitations which in turn are 

intended to improve functioning in daily life. The selection of outcome measures should 

therefore be guided by the intended effect of the intervention (Barak and Duncan, 

2006). As stroke survivors present with multiple deficits in health and functioning 

(RCP, 2012), no single outcome measure is able to capture all aspects of disability as 

well as the effects of an intervention. 

The International Classification of Functioning and Disability (ICF) is a globally agreed 

framework which classifies outcomes into the three categories: impairment (reported 

problems in body functions), activity limitations (reported problems activities of daily 

living) and participation restrictions (reported problems in participating in societal 

situations) (WHO, 2001). It is used to guide the identification of measures so that the 

assessment battery together measures all aspects of functioning and disability relevant 

to stroke survivors. For the purposes of this study, measures of impairment and activity 

limitations were the main focus. 

Progressive resistance exercise is specifically designed to improve muscle strength and 

has been shown to be effective at increasing strength in stroke participants (Ada et al, 

2006). Therefore, the first and most obvious group of measures for assessing for 

impairment of muscle strength and function were identified (ICF group b730). Studies 

have evaluated changes in strength isometrically (Cramp et al., 2006), and isokinetically 

at different speeds (Engardt et al. 1995; Cramp et al., 2006). This provided a 
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comprehensive view of how progressive resistance exercise had an effect on the 

different muscle functions. 

Activity measures have commonly been utilised in studies utilising progressive 

resistance exercise in stroke survivors (see chapter 2). The lower limb musculature is 

responsible for providing the forces necessary to perform mobilisation activities such as 

getting out of bed, sit to stand and walking (Perry and Burnfield, 2010). In walking, 

lower limb musculature is activated in a specific pattern to cause forward movement. 

The quadriceps are activated during the loading phase of gait to maintain knee extension 

whilst the hamstrings are activated at terminal swing to decelerate the extending knee 

(Perry and Burnfield, 2010). Targeted training of these muscles has shown to lead to 

changes in walking such as gait velocity (Engardt et al., 1995; Sharp, 1997; Teixeira-

Samela, 1999; Cramp et al., 2006).   

Gait is a major problem for stroke survivors. It is described under level 3 in the ICF 

(d450), which is further split into walking: short distances (d4500), long distances 

(d4501), on different surfaces (d4502), around obstacles (d4503) or other/unspecified. A 

variety of measures can be used to measure gait (ICF, 2004). Gait velocity has been the 

most commonly used measure for walking function which can predict health status and 

service use (Studenski et al., 2003). Although initially thought of as an ideal measure 

for function (Wade, 1992), recent reports show dissociation between gait velocity and 

the quality of gait. In a cross-sectional study, Patterson et al. (2010) measured gait 

velocity and gait symmetry (as measured by swing time and step length) in groups of 

stroke survivors 0-3, 3-12, 12-24, 24-48 and >48 months following stroke.  They found 

no difference in gait velocity between the different stages (p = 0.36) but swing time 

symmetry and step length symmetry were significantly worse in the later stages 

following stroke. Therefore, in addition to gait velocity, measures that are able to record 

the gait symmetry may also be of interest as they show improvements in the pattern of 

walking which may not directly translate to improvements in gait velocity. Teixeira-

Samela et al. (2001) found stroke survivors improved spatial-temporal parameters of 

gait such as cadence, strength length and the symmetry ratio following progressive 

resistance exercise.  

Measurement of walking distance over long durations is a useful indicator of 

community ambulation. When ambulating outside to reach a particular destination, the 

physical ability to walk for long periods may be a limiting factor and thus successful 

community integration. It should be noted that the measurement of walking distance 
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alone does not reflect ability to walk in the community, especially as it does not 

measure the ability to negotiate uneven terrain or attentional demands which are 

environmental factors faced by individuals walking in the community (Haggard et al., 

2000; Bowen et al., 2001). However, improving walking distance may be important for 

individuals that are limited in this capacity. 

Changes in sit to stand performance has been observed by Flansbjer et al. (2008) who 

utilised progressive resistance exercise in stroke survivors. Sitting to standing is a 

complex task as it involves transition from a 3-point support to a 2-point support (Galli 

et al., 2008) and is one of the frequently reported activities associated with falls 

(Hyndman et al., 2002). The timed up and go was used to measure sit to stand 

performance. The sit-to-stand and stand-to-sit tasks performed in the TUG are an 

essential aspect of activities of daily living (Dehail et al., 2007). Goulart & Valls-Solé 

(1999) investigated EMG patterns of the leg, trunk and neck muscles in different 

patterns of sit to stand movement. They found for all conditions, only the paraspinal, 

quadriceps and hamstring muscles were consistently activated denoting that these 

muscles were the prime movers for performing the sit to stand movement. Moving from 

sitting to standing positions and vice versa is accompanied by movements of centre of 

mass in the coronal and sagittal planes simultaneously. Therefore muscle strength as 

well as the ability to coordinate muscle actions could influence time to task completion.  
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5.2 Methods 

5.2.1 Participants 

Ethical approval was obtained from the University of East London Ethics Committee 

(appendix 8.7) and the East London REC-3 National Research Ethics Service (appendix 

8.8). Stroke survivors were identified from the Newham University NHS Hospital Trust 

and community stroke registers. Potential participants were identified by clinicians 

based on the inclusion/exclusion criteria (see below) and were given an invitation letter 

(appendix 8.9). Potential participants expressing interest were contacted by the 

researchers to explain the study and obtain written consent (appendix 8.10).  

 

5.2.1.1 Inclusion Criteria 

Potential participants were recruited according to the following inclusion criteria: 

 Able to provide informed consent and follow simple instructions 

 Suffered their first ever stroke incident which occurred 6 months to 5 years prior to the 

study 

 Mobile without human instance either with or without assistive devices such as a 

walking stick 

 

5.2.1.1 Exclusion Criteria 

Potential participants who presented with any of the following conditions were excluded 

from the study: 

 Uncontrolled: hypertension, diabetes, cardiac disease 

 Implanted devices such as cardiac pacemaker  

 Myocardial infarction or cardiac surgery in last 3 months 

 Known untreated aortic stenosis 

 Any other cardiac condition precluding them from exercising 

 Pulmonary embolism or deep vein thrombosis in last 3 months 

 Known untreated aneurysms 

 Musculoskeletal condition exacerbated by exercise 

 History of other neurological conditions 

 

5.2.2 Study Procedures 

Participants attended the Human Movement Performance laboratories at the University 

of East London on 15 occasions. The first occasion was a familiarisation session where 

participants undertook assessment of muscle performance, gait velocity and spatial and 

temporal parameters. This session also incorporated recorded assessment of the Berg 
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Balance scale. On the second occasion, participants undertook the assessment 

procedures by a blinded assessor including repeat assessment of muscle performance 

and also of gait velocity, spatio-temporal parameters, timed up and go test and the six 

minute timed walk test. 

Participants were then randomly allocated to a training programme (T1, T2 or T3 – 

identical to the protocols utilised in the first two studies) and undertook 12 supervised 

sessions of progressive resistance exercise over 6 weeks. Following this, they undertook 

a final assessment session incorporating all the timed performance measures previously 

reported. For the purposes of illustration, the participant undertaking T1 protocol will be 

labelled P1, the participant undertaking T2 protocol will be labelled P2 and the 

participant undertaking T3 protocol will be labelled P3. 

 

5.2.3 Assessment Procedures 

Literature that maps the content of outcome measures to the categories of the ICF was 

used to identify and group potential outcome measures currently used in stroke 

rehabilitation research (Salter et al, 2005a; Salter et al., 2005b; Mudge et al, 2007). The 

outcome measures used in studies in stroke participants completing progressive 

resistance exercise were also identified and grouped.  Given there is no general 

consensus for the battery of measures used in clinical stroke trials, Barak and Duncan 

(2006) give guidelines for the selection of outcome measures. This includes evaluation 

of psychometric properties including floor and ceiling effects, their results in the 

population of interest and administrative issues. Specifically for the current study, 

measures that have demonstrated responsiveness to progressive resistance exercise were 

given preference to final selection. 

 

5.2.3.1 Equipment 

Participants’ height was measured using a stadiometer (Hadlands Photonics, Australia). 

Weight was measured using standard weighing scales (UC-300 Tokyo, Japan) and was 

recorded in kilograms to the nearest one decimal place. A Lode Corival™ (Lode, 

Netherlands) electro-magnetically braked cycle ergometer was used to warm-up 

participants at the start of the session. A Biodex Multi-Joint System II isokinetic 

dynamometer was used to assess muscle strength and function whilst the Kin-Com® 

500H isokinetic dynamometer was used for the training procedure. The 

electromyography equipment consisted of a Neurolog NL824 pre-amplifier NL820 4 
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channel isolator and NL135 low pass filter. The low pass filter was set to 1 kHz, high 

pass was set to 10Hz, with the 50Hz notch turned on. The gains started at x1 and were 

increased as necessary. The EMG signals were recorded using a single disc ground 

electrode and two adhesive electrodes 2 cm apart. The signals were passed through an 

analogue to digital signal converter (CED 1401, Cambridge electronic design Ltd) and 

collecting on a computer using Spike 5.2 software. 

 

5.2.3.2 Muscle Impairment Measures 

Muscle performance of the paretic and non-paretic limbs was assessed using the Biodex 

Multi-Joint System II isokinetic dynamometer. As training was conducted on the Kin-

Com, use of another dynamometer for muscle assessment minimised the effect of 

familiarity. With the knee in 90˚ flexion, isometric muscle strength of the knee extensor 

and flexor muscles were recorded for two repetitions each with a one minute rest 

between repetitions. Isokinetic muscle strength was recorded from five repetitions, at 

each of the three speeds: 30, 60 and 90˚s-1 (Cramp et al, 2006). Electrical activity of the 

agonist (vastus lateralis) and antagonist (biceps femoris) was measured during these 

muscle contractions, using electromyography (Engardt et al, 1995). Voluntary 

activation of the knee extensor muscles, of the paretic and non-paretic limbs, was then 

recorded by electrically stimulating the muscle using single twitch stimulation at 1Hz 

(Rutherford et al, 1986). Only the muscle strength assessments are reported in this 

study. 

 

5.2.3.3 Activity Measures 

Balance performance was assessed using the Berg Balance Scale (Berg et al., 1992) and 

was only recorded at the beginning of the study to establish baseline activity levels. A 

range of timed performance measures were used to assess the effect of progressive 

resistance exercise on activity limitations (gait velocity, six minute timed walk, time up 

and go). Spatial and temporal parameters of gait were recorded using the GaitRite mat 

(Youdas et al., 2006). Gait velocity was measured during a self-selected speed of walk 

over a 10m walkway with the GaitRite mat forming part of this walkway. Sit to stand 

performance was measured using the standardised timed up and go test (Podsialdo & 

Richardson, 1991). Walking endurance was measured using the 6 minute timed walk 

test (Enright, 2003).  
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5.2.4 Training Procedure 

Participants were allocated randomly to one of the three training programmes (T1, T2 

and T3 – identical to the training protocols utilised in the first study, see 3.2.4.5). They 

were asked to attend 12 training sessions over 6 weeks. A minimum of 10 training 

sessions were required for the results to be included in the analysis. It was important 

that participants completed, as much as possible, an equal number of sessions to 

standardise the volume between groups in regards to the training frequency. 

Participants cycled for 5 minutes at 20W at the beginning and end of each session for a 

warm up and cool down. Participants then completed three sets of their allocated 

training protocol for the paretic and non-paretic limb knee extensor and flexor muscles 

on the Kin-Com isokinetic dynamometer. Participants trained isokinetically at 60˚s-1 at 

a percentage of the peak force they produced during the isokinetic assessment at 60˚s-1. 

Similar to the previous studies, T1 protocol involved training for ten repetitions per set 

at 80% of the peak force produced during maximal voluntary contractions. T2 trained 

for twenty repetitions per set at 40% of the peak force. T3 trained for ten repetitions per 

set at 40% of the peak force. Isokinetic muscle strength at 60°s-1 was re-assessed every 

two weeks and the targets adjusted to maintain them at the specified training intensity.  

 

5.2.5 Data Analysis 

Training performance for the extension and flexion manoeuvres were reported 

separately for all performance measures to account for the different muscle groups 

involved. The measures were also reported separately for the non-paretic and paretic 

limbs. 

As previously reported, three measures were recorded to assess the performance of the 

sub-maximal training protocols: training intensity, total work and force fluctuation. 

These variables were recorded for each set completed in the training protocol. As 

muscle assessment was repeated every two weeks, calculation of these measures was 

based on the last available recorded assessment of muscle strength. Each participant was 

assessed for their ability to train within ±5% of the target training intensity. Training 

performance after the 12th set was of particular interest as it had taken the healthy 

sedentary individuals this long to perform at the specified intensity consistently.  

The force fluctuation was also recorded as previously reported and represented as a time 

series for each set completed. Participants were assessed with how consistent they were 
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able to perform the protocols in comparison to healthy sedentary individuals and 

whether there were any apparent trends over repeated sessions. 

The total work completed over the training period was compared to the theoretical work 

over the training period as an integral of the total work and theoretical work for each 

training set completed. The percentage difference in total and theoretical work was 

reported. 

Due to the lack of sufficient data to conduct statistical analysis, observations were made 

as to whether there was a differentiation in the training intensity achieved and 

judgement was made as to whether stroke survivors completed the training as specified 

by the protocol. 

 

5.3 Results 
It was intended that a minimum of 8 participants would be recruited to each training 

group. During the first year of recruitment, 90 stroke survivors were identified by 

clinicians. Of these survivors, 13 expressed interest and of these, four survivors 

consented to participate. Three stroke survivors completed the training programme and 

are presented as individual case studies.  

 

5.3.1 Participant Characteristics 

Table 5.1 shows the physical characteristics of the three stroke participants. Table 5.2 

shows the baseline training target values set for each participant and following 

reassessment. Participant P1, who was female, suffered a left hemiplegic stroke 11 

months before commencement of the studies. P1 was independently mobile and able to 

independently extend and flex their paretic and non-paretic limbs against resistance. P1 

achieved a score of 50 on the Berg Balance Scale. Due to data corruption, set 3 of 

session 1 for the paretic limb and set 3 of session 10 of the non-paretic limb was not 

available for subsequent analysis. 

Participant P2, who was male, had suffered a right hemiplegic stroke 21 months before 

commencement of the studies. P2 was independently mobile and able to independently 

extend and flex their paretic and non-paretic limbs against resistance. P2 achieved a 

score of 56 on the Berg Balance Scale. At the time of the study, P2 was also 
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participating in martial arts three times a week. During the study, this participation 

reduced to 1 time per week.  

Participant P3, who was female, had suffered a left hemiplegic stroke 28 months before 

commencement of the studies. P3 was independently mobile and was able to 

independently extend and flex their paretic and non-paretic limbs against resistance. P3 

achieved a score of 56 on the Berg Balance Scale. P3 was not participating in any 

routine exercise but was working part time up to 20 hours per week. Due to data 

corruption, data for sessions 2, 4, 11 and 12 were not available for subsequent analysis. 

 

Table 5.1. Physical characteristics of the three stroke participants 

 

Partic-

ipant 
Age 

(years) 

Height 

(cm) 

Mass 

(kg) 

 

BBS 

Gait 

velocity 

(m.s-1) 

Isometric Non-

paretic Strength 

(N·m) Extension 

(Flexion) 

Isometric 

Paretic 

Strength 

(N·m) 

Extension 

(Flexion) 

P1 69 159.5 99 50 0.91 117 (34) 55 (11) 

P2 48 181.5 81 56 1.64 184 (103) 188 (104) 

P3 42 166.5 98 56 0.77 103 (32) 113 (36) 
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Table 5.2 Target values (N·m) for training at baseline and following re-assessment 

Participant Direction Limb Target 1 Target 2 Target 3 

P1 Extension Non-paretic 35 64 65 

Paretic 28 36 35 

Flexion Non-paretic 28 28 32 

Paretic 16 21 22 

P2 Extension Non-paretic 53 53 62 

Paretic 44 58 66 

Flexion Non-paretic 30 32 35 

Paretic 26 32 34 

P3 Extension Non-paretic 28 30 31 

Paretic 28 36 35 

Flexion Non-paretic 19 14 9 

Paretic 14 15 11 

 

 

5.3.2 Training Performance  

5.3.2.1 Training Intensity 

The mean training intensity for each set was measured for each set, limb and direction. 

Figure 5.1 - 5.4 shows the mean training intensity of each participant for the extension 

and flexion manoeuvres respectively. Training intensity was differentiated between the 

high and low intensity protocols for the extension manoeuvres but not for the flexion 

manoeuvres. Accurate performance of training intensity was achieved from session 5 

onwards.  
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Figure 5.1. Mean non-paretic extension training intensity for participant P1, P2 and P3 

 
 

Figure 5.2. Mean paretic extension training intensity for participant P1, P2 and P3 
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Figure 5.3. Mean non-paretic flexion training intensity for participant P1, P2 and P3 
 

 

Figure 5.4. Mean paretic flexion training intensity for participant P1, P2 and P3 
 

5.3.2.2 Force Fluctuation 

Force consistency, measured as the coefficient of variation of the peak torques in each 

training set is reported below. Figure 5.5 – 5.8 show the force fluctuation for each 

training set for the extension and flexion manoeuvres respectively. There was no 
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Figure 5.5. Non-paretic extension force fluctuation for participant P1, P2 and P3

 
Figure 5.6. Paretic extension force fluctuation for participant P1, P2 and P3 
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Figure 5.7. Non-paretic flexion force fluctuation for participant P1, P2 and P3 

 
Figure 5.8. Paretic flexion force fluctuation for participant P1, P2 and P3 
 

5.3.2.3 Total Work  

The total work performed in each training set was recorded for each limb and direction. 

The total work completed over the training period was compared to the theoretical work 

over the training period (Table 5.3). As expected, participants completed less work over 

the training period than theoretical work. Participant P1 and P3 achieved 30- 32% less 

work than expected over the training period for non-paretic extension manoeuvres 

whilst P2 achieved 15% less. For paretic extension this difference was 41% for P1 and 

P3.  
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Side and direction Participant Theoretical Work (kJ) Total Work (kJ) Difference (%)

P1 28259 21693 -30

P2 60823 52871 -15

P3 10715 8119 -32

P1 16701 11873 -41

P2 56115 49936 -12

P3 10478 7453 -41

P1 14997 9287 -61

P2 36356 28883 -26

P3 5115 4003 -28

P1 9312 5314 -75

P2 37180 24787 -50

P3 4862 5541 12

Non-paretic 

extension

Paretic extension

Non-paretic 

flexion

Paretic flexion

Table 5.3. The theoretical work (kJ) and total work (kJ) achieved over the training 
period and percentage difference 

 

As the three stroke survivors improved in their ability to train at the specified intensity 

for the extension manoeuvres, total work and theoretical work was calculated for the 

first and second half of training separately. Table 5.4 shows the total and theoretical 

work for the first and second half of training sets. As there was limited data available 

for participant T3, these data were split by the first 12 and last twelve training sets 

completed. 

For non-paretic and paretic extension manoeuvres P1 and P3 completed more work in 

the second half of training than the first half. This was attributed to the higher targets set 

following re-assessment of muscle strength, as opposed to increased target accuracy 

because theoretical work was also higher whilst the difference between theoretical and 

total work remained high. For non-paretic extension all participants achieved less total 

work relative to theoretical work in the second half of training sets completed. This 

indicates that although they were able to train at the intensity specified, they were not 

able to achieve the total work and this was attributed to not achieving the target force 

consistently throughout the contraction. For paretic extension, participant P1 and P3 

showed a small improvement in achieving the total work expected in the second half of 

training. However, for P1 and P3the difference between total and theoretical work 

remained over 30%.  
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Theoretical Work (kJ) Total Work (kJ) Difference (%) Theoretical Work (kJ) Total Work (kJ) Difference (%)

P1 11942 9360 -28 16318 12334 -32

P2 28329 26578 -7 32494 26293 -24

P3 5230 4042 -29 5485 4077 -35

P1 8332 5645 -48 8369 6228 -34

P2 24425 22333 -9 31690 27603 -15

P3 4407 2969 -48 6071 4484 -35

P1 7370 4568 -61 7627 4719 -62

P2 17272 14948 -16 19084 13935 -37

P3 2985 2241 -33 2129 1762 -21

P1 4109 2357 -74 5202 2957 -76

P2 17236 13625 -27 19944 11162 -79

P3 2544 3650 30 2318 1891 -23

Paretic 

flexion

First half Second half

Non-paretic 

extension

Paretic 

extension

Non-paretic 

flexion

Side and 

direction

Partici-

pant

Table 5.4. The theoretical work (kJ) and total work (kJ) achieved in the first and second 
half of training as well as the percentage difference 
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5.3.2.5 Summary of training intensity and total work achieved  

The table below summarises whether there was sufficient differentiation in the training 

intensity performed by participants. With repeated practice, all participants were able to 

train at the specified training intensity for the extension manoeuvres on the non-paretic 

and paretic limbs. However, despite being able to train at the specified intensity in these 

conditions, participant P1 and P3 completed much less total work over the training 

period compared to the theoretical work. The high force fluctuation observed for these 

conditions may explain why these participants did not complete the amount of work that 

was expected.  

As participants could not achieve the specified intensity for the flexion manoeuvres, 

assessment changes for the hamstrings are not presented. As participants P1 and P3 did 

not achieve the expected total work for the extension manoeuvres, this may have 

impacted on their degree of change. 

Table 5.5. Summary of training performance for the three participants across all 
conditions 

 

OK – Achieved the specified training intensity or total work 

X – Did not achieve the specified training intensity or total work 

 

 

  

Participant Side and direction Training Intensity Total Work

Non-paretic extension OK X

Paretic extension OK X

Non-paretic flexion X X

Paretic flexion X X

Non-paretic extension OK OK

Paretic extension OK OK

Non-paretic flexion X X

Paretic flexion X X

Non-paretic extension OK X

Paretic extension OK X

Non-paretic flexion X X

Paretic flexion X OK

P2

P3

P1
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5.3.3 Assessment Outcome Measures 

5.3.3.1 Baseline performance  

5.3.3.1.1 Baseline muscle performance 

Only assessment of extension manoeuvres is presented as no differentiation in flexion 

training performance measures was achieved. Figure 5.9 shows the extension isometric 

and isokinetic strength at baseline for the non-paretic and paretic limbs. Participant P2 

demonstrated the highest isometric extension peak torque at baseline for both limbs. 

Participant P1 demonstrated a large non-paretic to paretic extension peak torque ratio. 

The peak torque was lower at increasing velocities for all participants but this was much 

more apparent for participant P1 and P3. 

 

Figure 5.9 Non-paretic and paretic isometric and isokinetic extension peak torque at 30, 

60 and 90°.s-1 

 

5.3.3.1.2 Baseline activi ty measures 

Table 5.6 shows the baseline activity measures and spatial and temporal parameters 

recorded for the three stroke survivors. 

Table 5.6 Baseline recorded activity and spatial temporal parameters. 

Participant 
Gait Velocity 

(m.s-1) 
6MTW 

(m) 
TUG 
(s) 

Cadence 
(steps.min-1) 

Non-Paretic Stride 
Length (mm) 

Paretic Stride 
Length (mm) 

P1 0.91 376.5 7.0 111 108 107 

P2 1.64 581.7 12.1 115 173 175 

P3 0.77 283.5 12.2 81 113 112 
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5.3.3.2 Changes following training  

5.3.3.2.1 Strength Changes 

Figure 5.10 shows the percentage change in isometric and isokinetic extension peak 

torque of the non-paretic limbs and paretic limbs following training for isometric (0˚.s-1) 

and concentric strength measures (30˚.s-1, 60˚.s-1, and 90˚.s-1). Participant P1 and P2 

showed a small positive change in isometric peak torque whilst participant P3 showed a 

reduction. Participant P1 and P3, who were weaker than P2, demonstrated a positive 

increase in isokinetic strength following training whilst participant P2 demonstrated 

little change. Although participant P1 and P3 completed much less total work than the 

expected theoretical work, they demonstrated a large increase in isokinetic extension 

peak torque at 60 and 90˚.s-1. 

Despite completing much less total work than expected, participant P1 showed much 

larger changes paretic isometric extension strength compared to participant P2. A 

similar pattern was also observed for isokinetic peak torque at increasing speeds. 

Participant P3 demonstrated very little change for all conditions in the paretic limb.  

 

Figure 5.10. Percentage change in extension isokinetic peak torque of non-paretic and 

paretic limbs 

 

5.3.3.2.2 Activi ty Changes 

The percentage change in gait velocity, six minute timed walk, cadence, step length and 

stride length was calculated for each participant (table 5.7). Participant P1 showed an 

improvement in gait velocity of 15%. However, they did not improve in the six minute 

timed walk and were 2.2 seconds slower performing the timed up and go. Their spatial 
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temporal parameters improved and they were able to take longer steps with the paretic 

and non-paretic limbs. Participant P2 showed a slower gait velocity and traversed a 

shorter distance in the 6MTW following training but were 0.5 seconds faster in 

completing the timed up and go. Their spatial temporal parameters showed little change. 

Participant P3 also traversed a much shorter distance in the 6MTW following training 

and took 0.4 seconds longer completing their timed up and go. However, they showed 

the greatest improvement in gait velocity. However, their spatial temporal parameters 

improved and they were able to take longer steps with the paretic and non-paretic limbs. 

 

Table 5.7. Percentage change in the activity and spatial-temporal measures for each 
participant 

 

 

Measure P1 P2 P3

Gait Velocity (m.s
-1

) 15.3 -4.4 16.3

6MTW (m) -0.1 -29.9 -19.4

TUG (s) 17.3 -5.5 -3.5

Cadence (footfalls.min
-1

) 3.5 0.5 12.5

Non-Paretic Stride Length (m) 7.8 -2.3 9.6

Paretic Stride Length (m) 9.7 -4.1 9.9
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5.4 Discussion 
The main aim of these case studies was to explore whether stroke survivors could 

perform the sub-maximal isokinetic training protocols at the specified training intensity 

and do this consistently. This study also applied a number of outcome measures and the 

relevance of these was looked at.  Three stroke survivors were recruited from Newham 

and participated in a 6 week training period accompanied by assessments on muscle 

performance, activity and participation. Training performance was measured for each 

training set completed by the stroke survivors, for extension and flexion as well as non-

paretic and paretic limbs separately accounting for the different muscle groups involved 

and the generally unilateral effect of stroke on motor control.  

In line with the studies presented in chapter 3 and 4, training performance for the 

flexion manoeuvres was worse than the extension manoeuvres.  This was more apparent 

for P1 and P3 in comparison to the healthy sedentary population. There was a lack of 

differentiation in the training intensity performed for these two participants. Of the last 

three training sets in which data was available, P1 performed the training sets at an 

intensity less than 65% for non-paretic flexion and at intensity greater than 88% for 

paretic flexion. P3 performed the last three training sets at an intensity above 72% for 

the non-paretic and paretic limbs. A reason for this could be due to the known reduction 

in motor control after stroke, which affects both the ipsilateral and contralateral limbs 

(Arene and Hidler, 2009). Compared to older adults, stroke survivors present with 

impaired force-velocity relationships (Clark et al. 2006). They also present with 

impaired rate of strength development in the paretic limb compared to the non-paretic 

limb (Pohl et al., 2002). Although this was not measured in the current study, the high 

force fluctuation achieved by these participants support this.  

For the extension manoeuvres, with repeated practice all of the participants trained at 

the specified training intensity. For the first half training sets completed for non-paretic 

extension (first 18 for P1 and P2 and first 12 for P3 due to loss of data), only 52% of the 

training sets achieved a mean training intensity ±5% of the target intensity. For the 

second half of training sets, 98% of the training sets achieved a mean training intensity 

±5% of the target intensity. Similarly, for the first half training sets completed for 

paretic extension, only 48% of the training sets achieved a mean training intensity ±5% 

of the target intensity. For the second half of training sets, 88% of the training sets 

achieved a mean training intensity ±5% of the target intensity. This shows that the three 

stroke survivors demonstrated the ability to learn new motor skills. This is supported by 
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Boyd et al. (2010) who found that stroke survivors who undertook repeated task-

specific practice of the upper limb showed neuroplastic changes compared to a control 

group performing general upper limb exercises. However, consistent achievement of the 

target training intensity in this study was observed much later compared to the previous 

study in chapter 4 where sedentary participants achieved consistent training intensity 

after 4 sessions. This may be due to the impaired ability of stroke learn new motor 

skills. Due to the neuron damage caused by stroke, learning of new motor skills 

involves the functional reorganization of the undamaged part of the motor cortex 

adjacent to the infarct (Nudo et al., 2006). Although many regions of the brain attribute 

to motor learning (Poldrack et al., 2005), both the severity of the stroke and regions that 

are affected impact on learning capability (Boyd et al., 2009). It was observed that the 

stroke survivors required more repeated instruction of how perform the protocols, which 

should be considered in future studies.  

As it took nearly 6 sessions for the stroke survivors to train at the target intensity raises 

question on whether stroke survivors in previous studies trained at the intensity 

specified by the protocol. For the paretic limb, consistent practice was not observed 

until the 16th training set. This is equivalent to around half of the sessions completed in 

studies by participants in Flansbjer et al. (2008), a third of session completed by 

participants in Kim (2001), and a quarter of sessions completed by participants in 

Cramp et al. (2006). Therefore, the prolonged time to learn how to train at the specified 

intensity raises question as to whether the stroke survivors in previous studies trained at 

the intensity specified by the protocol during training, particularly when there is no 

visual feedback on training performance.  

While the participants learned how to train at the specified training intensity for the 

extension manoeuvres, the total work completed over the training period was lower than 

the theoretical work for extension, particularly for participant P1 and P3. These 

participants completed 30-41% less total work than the theoretical work over the 

training period. Although it was expected for total work to be lower than theoretical 

work, sedentary participants achieved a smaller deficit (13-20%).  

The additional deficit in total work was not explained by the mean training intensity of 

the set. The primary reason for the deficit in total work completed could be due to the 

lack of ability to produce a force equivalent to the target force throughout the 

contraction and achieve this consistently for all contractions in the training set. Figure 

5.5 shows that the force curves for the stroke survivors. It is possible that the increased 
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time to peak torque, as observed by Pohl et al. (2002) and Gerrits et al. (2009), was 

responsible for not being able to achieve the target force at the beginning of the 

manoeuvres.  

Higher force fluctuation was observed in stroke survivors compared to the healthy 

sedentary participants. Chow & Stokic (2011) evaluated the coefficient of variation of 

isometric extension at submaximal intensities (10-50% MVC) in subacute stroke 

survivors compared to healthy matched controls. At 50% MVC they found the 

coefficient of variation was significantly greater in stroke survivors (5.1%) compared to 

healthy matched controls (1.7%). It should be noted that their measure of force 

fluctuation was taken as the fluctuation in force about a target measured from within a 

sustained isometric whilst the current study evaluated the fluctuation in peak torque 

between contractions in a training set. However, it can be seen that the findings are 

similar with stroke participants showing higher force fluctuation and therefore poorer 

performance than the healthy sedentary participants. In addition to this, there was no 

apparent improvement in the force fluctuation with repeated sessions. Therefore, 

although the mean extension training intensity was consistent for the second half of 

training, there remained a high variation (above 10%) in the peak force over all 

contractions.  

Tracy & Enoka (2006) evaluated whether training improved the coefficient of variation 

of a steady isometric force with a 30% MVC target in healthy elderly adults. They 

found the coefficient of variation of the force improved from 3.9% at baseline to 2.3% 

after 16 weeks of steadiness training.  This was a modest improvement and it is possible 

that the participants in this study also showed only modest improvements in the ability 

to maintain the target force that was difficult to detect with the variance in performance. 

Although this study did not measure force fluctuation of a single contraction, rather the 

variation in peak torque of each contraction, there was no apparent improvement in any 

of the three participants. Most of the training sets achieved a force fluctuation above 

10% for the extension manoeuvres. As such, not all of the contractions were performed 

consistently. In addition to this, it is likely that participants learnt to achieve a force 

close to the target force at one point during the contraction rather than maintain the 

target force throughout the contraction despite verbal encouragement. Further 

investigation is required to explore and elaborate on these observations. 

Training status may have affected potential outcomes in strength and activity. 

Participants P1 and P3 demonstrated large increases in isokinetic extension strength, 
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particularly at 60 and 90 ˚.s-1. However, participant P2 who was able to perform the 

training at the specified intensity quickly and who achieved total work close to the 

theoretical total work showed little change in strength and activity following training. 

Their isometric and isokinetic peak torque at 30˚ and 60˚.s-1 only showed a 1-6% 

change following training in the non-paretic and paretic limbs. This could be due to the 

lower level of impairment demonstrated by this participant. At baseline, their isokinetic 

peak torque at 60˚.s-1 was 164N·m and 156N·m for the non-paretic and paretic limbs 

respectively. This was within the 95% CI normal values of isokinetic peak torque for 

males of 154-172 N·m established by Ostchega et al. (2004).  Their gait velocity (1.6 

m.s-1) was also in line with normative values observed in healthy males in their forties 

(Bohannon, 1997). This is supported by previous findings that the response to training 

differs between individuals of different training status. Participant P2 was the only 

participant who participated in regular exercise.  

P1 and P3 demonstrated weaker isokinetic extension strength even when compared to 

other independently ambulatory stroke survivors. For example, P1 and P3 non-paretic 

limbs demonstrated extension peak torque of around 29N·m at 60°.s-1 whilst Flansbjer 

et al. (2006) found strength at 60°.s-1 to be 101 ±26N·m for their female participants. 

The lower training status of these participants compared to P2 may explain why they 

demonstrated a large response to training.  If training status has such a large effect on 

training response, this may explain the variation in outcomes in the sedentary and older 

adult literature where there has been a lack of description in the criteria for population 

sampling. 

In both the non-paretic and paretic limbs, participant P3 demonstrated a reduction in 

isometric strength of 21-23% following training. Although there were improvements in 

isokinetic strength, this was only observed in the non-paretic limb. This indicates that 

the intensity/volume of the protocol may have been insufficient to elicit changes. 

Participant P1 on the other hand demonstrated an improvement of 9% and 43% in 

isometric extension strength for the non-paretic and paretic limbs respectively. 

Therefore, despite completing 30-40% less total work as specified by the protocol, it 

was sufficient to elicit an improvement in muscle strength.   

Despite completing less work than specified by the protocol and showing a reduction in 

isometric muscle strength following training, participant P3 improved gait velocity and 

spatial and temporal parameters of gait similar to that of P1. The improvement in non-

paretic dynamic knee extension strength alone may have contributed to the 
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improvement in activity observed. But there could also be a number of other reasons for 

this such as: an increase in daily physical activity associated with attending training 

sessions, individual variability in the training response, or due to repeated exposure of 

the assessment task. General activity levels have been found to be very low in in 

community dwelling stroke survivors (2837 steps/d vs 5000 in sedentary older adults) 

(Michael et al., 2005). Participating in training sessions involved walking outside, 

taking a taxi and walking in University campus to the laboratory. This may have 

increased activity levels, which in turn may have improved gait as a result of repetitive 

practice (Eng, 2011). On the other hand, participating may have resulted in participating 

less in other activities – either due to clashes in scheduling or due to not physically 

being able to. For example, P2 noted they were unable to participate in martial arts 

whilst they were participating in the training. 

 

5.4.1 Study Limitations 

Case studies are generally utilised in research to aid in the development of theory of 

complex scenarios, or to develop a qualitative perspective of a phenomenon (Domholdt, 

2005). However, by nature there are limits to how conclusive the findings are due to the 

lack of power, particularly where individual variability is expected. As this was a case-

study design, the findings cannot be generalised to the wider population.  

Comparison of the results of P1 and P3 against P2 is difficult, as the training status of 

participant P2 was much higher at the start of the study as they were participating in 

martial arts sessions three times a week. This study highlights the individual variability 

in baseline strength and activity between stroke survivors. Selecting independently 

ambulatory stroke survivors, commonly used as a criterion in stroke studies utilising 

progressive resistance exercise (e.g. Flansbjer et al., 2008), may therefore be insufficient 

to recruit participants of a similar training status. Also, the degree of strength 

impairment may have on training performance and subsequent outcomes which needs to 

be explored. Considering also the region and extent of the stroke, individual variability 

makes it ever more difficult to extrapolate optimal parameters in this population.  

In addition to monitoring training performance, measuring other activity performed 

during the training period may also be required, particularly where participants attend 

other forms of exercise. However, accurate measurement of such activities may prove 

very difficult. On the other hand, a randomised controlled trial with a sufficiently large 

sample should account for these differences. 
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It is also worth considering the types of participants recruited. Participation requires 

commitment and may have interfered with daily lifestyles. For example, participant P2 

and P3 said that participation made it difficult to keep up with other leisure and work 

activities. Their stroke had affected how much they could do in a week and participation 

in the programme meant they needed to prioritise key activities a lot more.  This may 

have an influence on the consistency of training sessions completed but there is little 

reported evidence on this.  

 

5.4.2 Summary 

All three stroke survivors successfully completed the training programme. There 

remained a significant deficit in the total work completed by participants compared to 

the theoretical work. This deficit was much larger than that seen in the studies 

undertaken on sedentary individuals. The larger deficit could be explained by the 

prolonged time needed for stroke survivors to learn how to achieve the target force, the 

lack of ability to reach the target force at the beginning and end of the range of the 

movement and the inability to learn how to produce a consistent force between 

contractions within a training set. This draws question as to whether stroke survivors 

can perform progressive resistance exercise as specified by the protocol. The large 

deficit in total work observed in these case studies may explain the variation in 

outcomes between studies utilizing progressive resistance exercise in stroke survivors. 

Measurement of the intensity of training and total work completed may be necessary to 

fully extrapolate the influence of training parameters on the effectiveness of progressive 

resistance exercise and explain differences in outcomes. 
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6.0 General Discussion 
 

Physical activity is prescribed in the form of exercise as part of medical interventions to 

manage illness and improve quality of life (RCP, 2012). It has been shown to have 

direct impact on many aspects functioning, disability and health, as defined by the ICF 

(WHO, 2001). This thesis has focused on one type of exercise, progressive resistance 

exercise and examined training performance.  Progressive resistance exercise is 

specifically designed to improve skeletal muscle strength through the performance of 

movements against a progressively increasing resistance (Latham et al., 2004; ACSM, 

2009). It is widely used in physical rehabilitation but there is a lack of consensus on the 

optimal training regimes that are effective and elicit the greatest improvements. 

Identification of optimal training regimes may be specific to various populations but the 

principles of examining training performance may be similar.  

Despite a number of studies evaluating the influence of training parameters on the 

effectiveness of progressive resistance exercise, optimal training parameters remain 

equivocal. Even in studies utilising almost identical training regimes (Ouellette et al., 

2004; Flansbjer et al., 2008), there remained a difference in outcomes following 

training. One possible explanation for the variability was attributed to the performance 

of training protocols by participants. There are differences between high and low 

intensity training protocols in the length of the acceleration phase during dynamic 

isotonic manoeuvres (Cronin et al., 2003), which may affect the total external work 

produced during the training period.  

Training performance of progressive resistance exercise has seldom been reported in 

literature. Previous authors have attempted to match the theoretical work produced 

between high and low intensity protocols (Hortobagyi et al., 2001). Hortobagyi et al. 

(2001) cited that the total work lifted between the high and low intensity groups were 

equal. However, this seems to be assumed on the basis of the theoretical work, which is 

calculated by multiplying the intensity of training and total repetitions (Wernbom et al., 

2007). But without recording the actual force produced during the training period, it is 

not known for certain whether participants achieved the expected total work. Finni et al. 

(1998) attempted to measure the actual force exerted by muscles using an optic fibre 

inserted into the muscle tendon (Finni et al., 1998). But this was considered invasive 

and it may have an effect on muscle mechanics making it difficult to draw conclusions. 
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Computational models have also been considered (Erdemir et al., 2007) but these 

essentially only provide an estimate of muscle force. 

This thesis developed training protocols using isokinetic dynamometers which could 

record the forces exerted during resisted manoeuvres allowing measurement of training 

performance including the training intensity and total work. The first study was 

conducted to assess whether sedentary participants could perform training at the 

intensity and work as specified by the training protocols using real-time visual 

feedback. A second study was conducted, also on sedentary participants, taking them 

through allocated training protocols over 4 repeated sessions. These protocols were then 

applied to three stroke survivors, over 12 training sessions and using a battery of 

assessments. These studies uncovered a number of issues surrounding the evaluation of 

training performance in progressive resistance exercise but the applicability of sub-

maximal isokinetic training to other forms of resistance training is limited, because the 

biomechanical characteristics of isokinetic and isotonic manoeuvres are inherently 

different (Guilhem et al., 2011).  

The first study focused on the training performance measurements recorded by the 

sedentary participants completing three training protocols differentiated by training 

intensity and/or total work. This showed that assessment of training performance was 

possible and could form essential part of evaluating the effectiveness of progressive 

resistance exercise. The variability in training performance observed is concurrent with 

the literature looking at the variability in force during isometric contractions (Tracy et 

al., 2004) and shows that some participants may not be able to achieve the external 

force as prescribed by the training protocol. This may partly explain the variability in 

outcomes in previous training studies and why there is a lack of consensus on the 

optimal training parameters for progressive resistance exercise (Raymond et al., 2013). 

Despite the variability in training performance, the second study showed that with 

repeated practice sedentary participants were able to demonstrate an improvement in the 

ability to train at the specified intensity and achieve the expected total work.  

For the extension manoeuvres only, these protocols demonstrated that they could be 

used to train participants at a sub-maximal intensity in a consistent way. Therefore, 

these protocols could be used to train participants at differentiated intensities and 

specified volumes of work.  This can be useful for future research concerned with the 

effects of training parameters on various outcomes. For example, these protocols could 
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be used to compare the effects of intensity on acute metabolic and hormonal responses 

to progressive resistance exercise. 

However, these findings were limited to the extension manoeuvres only. Despite 

repeated practice, the second study showed that some of the sedentary participants were 

not able to achieve the intensity specified by the protocol and there was only a small 

improvement in force fluctuation. This was not expected as both muscle groups have 

shown to be reliable in the production of maximal voluntary isokinetic contractions 

(Flansbjer et al., 2005). In addition to this, there were also indications that training 

performance varies between the left limb and right limb. This thesis has therefore 

shown potentially a number of factors that can affect training performance which in turn 

affects the interpretation of optimal training parameters in published guidelines. There 

has been a lack of reporting of training performance in previous studies and an 

acceptance that participants performed training as specified by the protocol. Future 

research utilising progressive resistance exercise should therefore aim to record and 

report participant training performance. In addition, outcomes should be evaluated 

separately for dominant and non-dominant limbs. 

Previous guidelines on progressive resistance exercise indicate optimal training 

parameters are population dependent with untrained individuals advised to train at a 

lower intensity for more sets compared to trained individuals (Rhea et al., 2003). The 

first two studies indicated untrained individuals may initially struggle to achieve high 

intensity training. Therefore, differences in outcomes of training may be explained by 

the poorer training performance and deficit in total work when untrained populations 

completed high intensity exercise.  

There is a sensorimotor element of performing training accurately (Thaler and Goodale, 

2011). There was a learning component where participants learnt how to control the 

force exerted during resisted contractions. Instructing participants to control the level of 

force exerted may have an additional effect on the outcomes due to this learning effect.  

This is consistent with Tracy et al. (2004) who, in a sample of older adults (65-80 years 

old) found larger improvements in MVC for their high intensity group that were 

instructed to control the velocity of movement through visual feedback (31%) compared 

to their high intensity group without the visual feedback (25%).  

This implicates how results from future studies should be inferred. The majority of 

previous resistance training studies have compared outcomes between baseline and 

following the training period. Although this is in accordance with standard research 
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protocol (Carter et al., 2010), the lack of accurate training performance from the start of 

training suggests that previous studies may have made comparisons of training groups 

that did not necessarily perform the training as specified by the protocol. Therefore, it is 

recommended that outcomes should be interpreted on the basis of the actual training 

achieved, and not solely the training protocol that was prescribed. One approach could 

be to analyse results of only the participants who were able to achieve the target training 

intensity and work. 

Nonetheless, these studies showed that there was a considerable learning effect and 

repeated practice was required to improve training performance. As these protocols used 

real-time visual feedback of the force produced during the training manoeuvres, it was 

expected that participants would have been able to rectify their performance by 

adjusting the level of force exerted to more accurately achieve the target force. This did 

seem to occur, but the learning effect was much longer and gradual than anticipated. As 

such feedback is not given to participants in studies utilising isotonic resistance 

equipment this draws question as to whether participants in previous studies conducted 

training as specified by the protocol.  

Only one study (Beneka et al. 2005) attempted to control for training performance 

factors. Beneka et al. (2005) instructed participants to control the time that each 

repetition was completed. But there is no evidence that this may have normalised the 

differences in the acceleration phase between high and low intensity protocols as 

demonstrated by Cronin et al. (2003). Without recording the force exerted and total 

work achieved there can be no real confirmation of whether all participants completed 

training as specified by the protocol. . The second study showed that the learning effect 

was gradual over the over four sessions of training. Therefore, it is hypothesised that the 

variability in training performance between participants is partly responsible for the 

variability outcomes observed in previous studies.  

A third study was conducted to assess the training performance of stroke survivors 

conducing sub-maximal isokinetic training. Given that these protocols required repeated 

practice to perform accurately, clinical populations such as stroke survivors may also 

present with difficulty in achieving accurate training performance. This would have 

implications on studies evaluating progressive resistance for such populations. It was 

intended that thirty stroke survivors would be recruited but the study only achieved 

recruitment of three and thus analysis was conducted on a case study basis. Despite 

repeated practice there remained a deficit in the total work achieved relative to the total 
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work expected. The three stroke survivors took longer to achieve the target training 

intensity than sedentary participants, and for the paretic limb consistent performance not 

achieved until the 16th training set. The deficit in total work was partly explained by the 

inability to achieve the target training intensity for the duration of the contraction. A 

reason for this could be due to the known reduction in motor control after stroke, which 

affects both the ipsilateral and contralateral limbs (Arene and Hidler, 2009). The period 

of learning is equivalent to around half of the sessions completed in studies by 

participants in Flansbjer et al. (2008). The prolonged learning period, which appears 

attenuated in the three stroke survivors, draws question as to whether stroke survivors in 

previous studies completed training as specified by the training protocol, particularly 

when there was no visual feedback on training performance. These findings have 

implications on clinical practice as currently there are no clear guidelines on how to 

monitor training performance following prescription. Prescribing training according to 

optimal training protocols may not be sufficient to ensure that the training is delivered 

effectively. There should be some form of feedback following exercise prescription 

which captures whether participants are performing training as specified by the 

protocol.  

The findings from these studies suggest that lack of accurate training performance may 

partly explain the differences in outcomes in previous studies. It is recommended that 

training performance is recorded and reported in future studies utilising progressive 

resistance exercise.  
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8.0 Appendices 

8.1 Ethics Approval 
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8.2 Participant information sheet and consent form 
University of East London, School of Health and Biosciences, Stratford Campus, 
Romford Road, London, E15 4LZ 
University Research Ethics Committee  

 
If you have any queries regarding the conduct of the programme in which you are 
being asked to participate please contact the Secretary of the University Research 
Ethics Committee: Ms D Dada, Administrative Officer for Research, Graduate School, 
University of East London, Docklands Campus. London E16 2RD (telephone 0208 223  
2976 e-mail d.dada@uel.ac.uk)  
 
The Principal Investigators 

 
Pritesh Barchha 
University of East London 
School of Health & Biosciences 
Romford Road 
Stratford 
London 
E15 4LZ 
0208 223 4260 
 
Consent to Participate in a Research Study  

The purpose of this letter is to provide you with the information that you need to 
consider in deciding whether to participate in this study.  
Project Title  

  
The feasibility of strength training procedures on healthy individuals. 
 
Project Description  
What is the purpose of this study? 

This study will evaluate the feasibility of muscle training procedures we would like to 
use in a future study to strengthen muscles of people who have had a stroke. We want 
to measure how strong your muscles are, and how well you can perform exercises at 
varying levels of work on a machine designed to test and train muscle performance. 
We are looking to recruit participants who are in good health but who do not participate 
in regular exercise or sporting activities.  
 
What will I have to do if I take part? 

You will be asked to attend the Human Motor Performance Laboratory at the University 
of East London on one occasion lasting approximately one hour.  
 
The procedures you will be doing have been used previously to assess and train muscle 
strength. To determine whether it is suitable for you to complete the tests, you will be 
asked to complete a medical screening questionnaire and a questionnaire to determine 
your current level of physical activity. We will test both legs and you will be asked to 
wear a pair of shorts which we can provide if you wish.  
 
To start with, strength of the muscles around the knee will be tested using the machine 
and you will push or pull your leg against a moving resistance. You will then be taken 
through resistance exercises for three different training protocols which will include high 
resistance and low number of repetition exercise, low resistance and high repetition 
exercise and low resistance and low repetition exercise. You will need to do warm-up 
and cool down exercises at the start and end of the session and there will be rest 
intervals between the testing and exercise bouts.   
 
What are the possible advantages of taking part? 
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There are no direct benefits to you of taking part in this study but you will gain a better 
idea of the strength of the muscles controlling your knee joint movement.  
 
What are the possible disadvantages of taking part? 

During the session, you will feel as if you are working your muscles hard. You may 
experience some muscle discomfort or muscle fatigue whilst performing the exercises. 
After the session, you may experience some muscle soreness/heaviness for a day or 
so, just like after any unaccustomed exercise. It should only last about one to two days.  
 
Do I have to take part? 

You are under no obligation to take part in this study.  If you do decide to take part, you 
are free to withdraw at any time. This will not affect your future relationship with the 
researcher if you are involved with them professionally in other circumstances i.e. in 
teaching and assessment.  If you do decide to withdraw part way through the study, it 
will not disadvantage you in any way. 
 
Who should I contact for further information? 

We are very happy to discuss any causes for concerns or to answer any of your 
questions relating to this study.  If at any time you are concerned about your 
participation or you feel that you are experiencing any adverse effects, please contact 
Kim Hastings or Pritesh Barchha (see details below). 
 
What will happen to the information collected? 

All of the information gathered in this study will be kept strictly confidential.  Where 
appropriate, the personally identifiable information will be coded.  It is our intention to 
use the information from this research to confirm the robustness of the protocols in 
order to use them in future research projects. 
 
What happens if something goes wrong? 

We believe that this study is safe and that we have taken all necessary precautions to 
make it so by way of the completion of a risk assessment.  We have rigorous 
procedures in place should first aid or medical assistance be required. 
 
The University of East London Research Ethics Committee has reviewed and approved 
this study.  If you are interested in taking part in this research, please contact one of 
the researchers below: 
 
Confidentiality of the Data  
The data that is collected will be kept confidential by the researchers – no other people 
will have access to this information as it will be kept in a locked cupboard. In addition to 
this, any data that is made public will be anonymous. 
  
Once the data has been collected and analysed, the results may be published. On the 
date eleven years after publication, data sheets will be destroyed. For the time period 
before this happens, the data sheets will be securely locked. 
 
Location  

All sessions will be carried out at the University of East London – Stratford Campus in 
the human movement performance laboratory (UH207). 
 
Disclaimer  

You are not obliged to take part in this study, and are free to withdraw at any time 
during the tests.  Should you choose to withdraw from the programme you may do so 
without disadvantage to yourself and without any obligation. 
 
 
Contact details: 
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Mr Pritesh Barchha 0208 223 4256; mobile: 07872960135; email p.barchha@uel.ac.uk 
 
University of East London 
School of Health and Bioscience 
Romford Road 
Stratford 
London 
E15 4LZ 
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Written Consent Form 
Project title: The feasibility of strength training using the Kin-Com isokinetic 

dynamometer  
 
Name of participant: 
 
Address: 
 
Have been given a copy of the information sheet to keep? Yes/No 
Do you understand the details provided in the information sheet and feel 
sufficiently informed? 

Yes/No 

Have you been given the chance to talk about the study and ask questions? Yes/No 
Do you understand the procedures and time involved in this study? Yes/No 
Have you been given the information and do you understand the risks 
involved in participating? 

Yes/No 

Have you recently (past 1 month) been involved or are simultaneously 
involved in another research study? 

Yes/No 

Have you been informed of the confidentiality procedures and do you accept 
them to be adequate? 

Yes/No 

I understand that my personal information may be stored on a computer.  If 
this is done then it will not affect the confidentiality of this information.  All 
such storage of information must comply with the 1998 Data Protection Act. 

Yes/No 

Do you consent to taking part in this study? Yes/No 
Are you aware of your right to withdraw from the study at any time without 
having to give reasons? 

Yes/No 

Do you know who to contact if there are problems? Yes/No 
 
Participant Name: (block capitals) …………………………………………….. 
Participants signature: …………………………………………………………… 
Date & Time:  ……………………………………………………………………………… 
 
 
Investigators name: (block capitals) ………………………………………….. 
Investigators signature: …………………………………………………………. 
Date & Time: ………………………………………………………………………………  
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8.3 Physical Activity Questionnaire 
 

INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 

 

We are interested in finding out about the kinds of physical activities that people 
do as part of their everyday lives.  The questions will ask you about the time you 
spent being physically active in the last 7 days.  Please answer each question 

even if you do not consider yourself to be an active person.  Please think about 
the activities you do at work, as part of your house and yard work, to get from 

place to place, and in your spare time for recreation, exercise or sport. 
Think about all the vigorous activities that you did in the last 7 days.  

Vigorous physical activities refer to activities that take hard physical effort and 

make you breathe much harder than normal.  Think only about those physical 
activities that you did for at least 10 minutes at a time. 

 
1. During the last 7 days, on how many days did you do vigorous physical 

activities like heavy lifting, digging, aerobics, or fast bicycling?  
 

_____ days per week  

 
   No vigorous physical activities  Skip to question 3 

 
2. How much time did you usually spend doing vigorous physical activities 

on one of those days? 

 
_____ hours per day  

_____ minutes per day  

 
  Don’t know/Not sure  

 

 
Think about all the moderate activities that you did in the last 7 days.  
Moderate activities refer to activities that take moderate physical effort and 

make you breathe somewhat harder than normal.  Think only abo about those 

physical activities that you did for at least 10 minutes at a time. 
 
 
3. During the last 7 days, on how many days did you do moderate 

physical activities like carrying light loads, bicycling at a regular pace, or 

doubles tennis?  Do not include walking. 
 

_____ days per week 

 
   No moderate physical activities  Skip to question 5 
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4. How much time did you usually spend doing moderate physical activities 

on one of those days? 
 

_____ hours per day 
_____ minutes per day 

 
  Don’t know/Not sure  

 

 
Think about the time you spent walking in the last 7 days.  This includes at 

work and at home, walking to travel from place to place, and any other walking 
that you have done solely for recreation, sport, exercise, or leisure. 
 
5. During the last 7 days, on how many days did you walk for at least 10 

minutes at a time?   

 
_____ days per week 

  

   No walking     Skip to question 7 
 

 
6. How much time did you usually spend walking on one of those days? 

 
_____ hours per day 
_____ minutes per day  

 
  Don’t know/Not sure  
 

 
The last question is about the time you spent sitting on weekdays during the 
last 7 days.  Include time spent at work, at home, while doing course work and 

during leisure time.  This may include time spent sitting at a desk, visiting 
friends, reading, or sitting or lying down to watch television. 

 
7. During the last 7 days, how much time did you spend sitting on a week 

day? 

 
_____ hours per day  

_____ minutes per day  

 
  Don’t know/Not sure  

 
 

This is the end of the questionnaire, thank you for participating. 
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8.4 Health and Medical questionnaire 
 

Health and Medical Questionnaire 

Study ID: ……..……   DOB: …………   Age: … Gender: ……   Date: …………… 

 

Please give the following information to help us assess your current health status.  This 

will help us assess your suitability to participate in this research. 

 

1.  Have you been told by your GP that you suffer from any cardiovascular 

complaint e.g. heart condition, high or low blood pressure etc?  

  

 If yes, please give details ………………………………………………….. 

 ………………………………………………………………………………… 

 ……………………………………………………………………………....... 

2.  Have you been told by your GP that you are anaemic?      

 If yes, how are you being treated for it? ………………………………… 

 

3.   In the past month have you experienced shortness of breath or difficulties with 

your breathing?           

 If yes, please give details ………………………………………………… 

 

4.   Have you been told by a doctor you have asthma?       

 If yes, please give details: ………………………………………………... 

 

5. Do you experience dizziness or loss of balance? 

If yes, please give details: ………………………………………………... 

  

      

6.   Have you been told by your GP that you have diabetes, epilepsy or eczema?
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 If yes, please give details ………………………………………………….

 ………………………………………………………………………………. 

7.   Have you been told by your GP that you have high cholesterol?    

 

8.   Have you been told by your GP that you have any form of cancer?   

 

9.   Have you had a neurological problem that has been diagnosed by your Doctor 

and/or hospital?             

 If yes, please give details including date, type and resultant effects: 

 ……………………………………………………………………………… 

 ………………………………………………………………………………. 

  

10.  Have you suffered any injury in the past six months?      

 If yes, please give details …………………………………………………… 

 …………………………………………………………………………………. 

 

11.   Have you visited a Doctor in the past six months?        

 If yes, please give details …………………………………………………… 

 …………………………………………………………………………………. 

12.    Do you take regular drugs or medication?    

  

         If Yes: Do they affect your ability to take part in physical activity?  

If yes, please give details …………………………………………………… 

 …………………………………………………………………………………. 

13.      Is there any other information regarding your health that you think that we 

should know, or might affect your ability to exercise?   
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 If yes, please give details …………………………………………………… 

 …………………………………………………………………………………. 

 ………………………………………………………………………. 

 
 Date 
  

Medical and health screening questions completed  ………….. 

IPAQ completed    …………..

  

Declaration: 

To the best of my knowledge and belief, the answers I have given above are true and 

accurate.   

Name  ………….………..     Signature …………………………………. 



131 

8.5 Ethics Approval 
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8.6 Participant information sheet and consent form 
University of East London, School of Health and Biosciences, Stratford Campus, 

Romford Road, Stratford, London, E15 4LZ 

University Research Ethics Committee  

If you have any queries regarding the conduct of the programme in which you are being 

asked to participate please contact the Secretary of the University Research Ethics 
Committee: Ms D Dada, Administrative Officer for Research, Graduate School, 

University of East London, Docklands Campus. London E16 2RD (telephone 0208 223 
2976 e-mail d.dada@uel.ac.uk)  

 

The Principal Investigators 

Pritesh Barchha & Kim Hastings 

University of East London 

School of Health & Biosciences 

Stratford Campus 

Romford Road 

Stratford 

London 

E15 4LZ 

0208 223 4260 / 0208 223 4515 

 

Consent to Participate in a Research Study  

The purpose of this letter is to provide you with the information that you need to 
consider in deciding whether to participate in this study.  

 

Project Title  

The feasibility of strength training procedures on healthy individuals. 

 

Project Description  

What is the purpose of this study? 

This study will evaluate the feasibility of muscle training procedures we would like to 
use in a future study to strengthen muscles of people who have had a stroke. We want to 

measure how strong your muscles are, and how well you can perform exercises at 
varying levels of work on a machine designed to test and train muscle performance. We 
are looking to recruit participants who are in good health but who do not participate in 

regular exercise or sporting activities.  

 

What will I have to do if I take part? 

You will be asked to attend the Human Motor Performance Laboratory at the University 
of East London twice a week for two weeks making a total of four individual sessions. 

Each session should last less than an hour each. 



133 

 

The procedures you will be doing have been used previously to assess and train muscle 
strength. To determine whether it is suitable for you to complete the tests, you will be 

asked to complete a medical screening questionnaire and a questionnaire to determine 
your current level of physical activity. We will test both legs and you will be asked to 

wear a pair of shorts which we can provide if you wish.  

 

To start with, strength of the muscles around the knee will be tested using the machine 

and you will push or pull your leg against a moving resistance. You will be asked to do 
this using your maximum effort for five repetitions. You will then be taken through 

resistance exercises using a selected target load. These can be explained to you on the 
day. You will be asked to complete three sets of these exercises. You will need to do 
warm-up and cool down exercises at the start and end of the session and there will be 

rest intervals between the testing and exercise bouts.   

 

What are the possible advantages of taking part? 

There are no direct benefits to you of taking part in this study but you will gain a better 
idea of the strength of the muscles controlling your knee joint movement.  

 

What are the possible disadvantages of taking part? 

During the session, you will feel as if you are working your muscles hard. You may 
experience some muscle discomfort or muscle fatigue whilst performing the exercises. 
After the session, you may experience some muscle soreness/heaviness for a day or so, 

just like after any unaccustomed exercise. If this occurs, it should not last more than one 
or two days.  

 

Do I have to take part? 

You are under no obligation to take part in this study.  If you do decide to take part, you 

are free to withdraw at any time. This will not affect your future relationship with the 
researcher if you are involved with them professionally in other circumstances i.e. in 

teaching and assessment.   

 

Who should I contact for further information? 

We are very happy to discuss any causes for concerns or to answer any of your 
questions relating to this study.  If at any time you are concerned about your 

participation or you feel that you are experiencing any adverse effects, please contact 
Kim Hastings or Pritesh Barchha (see details below). 

 

What will happen to the information collected? 

All of the information gathered in this study will be kept strictly confidential.  Where 

appropriate, the personally identifiable information will be coded.  It is our intention to 
use the information from this research to confirm the robustness of the protocols in 
order to use them in future research projects. 
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What happens if something goes wrong? 

We believe that this study is safe and that we have taken all necessary precautions to 
make it so by way of the completion of a risk assessment.  We have rigorous procedures 

in place should first aid or medical assistance be required. 

 

The University of East London Research Ethics Committee has reviewed and approved 
this study.  If you are interested in taking part in this research, please contact one of the 
researchers below: 

 

Confidentiality of the Data  

The data that is collected will be kept confidential by the researchers – no other people 
will have access to this information as it will be kept in a locked cupboard. In addition 
to this, any data that is made public will be anonymous. 

  

Once the data has been collected and analysed, the results may be published. On the 

date eleven years after publication, data sheets will be destroyed. For the time period 
before this happens, the data sheets will be securely locked. 

 

Location  

All sessions will be carried out at the University of East London – Stratford Campus in 

the human movement performance laboratory (UH207). 

 

Disclaimer  

You are not obliged to take part in this study, and are free to withdraw at any time 
during the tests.  Should you choose to withdraw from the programme you may do so 

without disadvantage to yourself and without any obligation. 

 

 

Contact details: 

Miss Kim Hastings 0208 223 4515; mobile: 07904103545; email k.hastings@uel.ac.uk 

Mr Pritesh Barchha 0208 223 4256; mobile: 07928555458; email p.barchha@uel.ac.uk 

 

University of East London 

School of Health and Bioscience 

Romford Road 

Stratford 

London 

E15 4LZ 
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Written Consent Form 

 

Project title: The feasibility of strength training using the Kin-Com  isokinetic 
dynamometer  

 

Name of participant: 

 

Address: 

 

Have been given a copy of the information sheet to keep? Yes/No 

Do you understand the details provided in the information sheet and feel 
sufficiently informed? 

Yes/No 

Have you been given the chance to talk about the study and ask questions? Yes/No 

Do you understand the procedures and time involved in this study? Yes/No 

Have you been given the information and do you understand the risks 

involved in participating? 

Yes/No 

Have you recently (past 1 month) been involved or are simultaneously 
involved in another research study? 

Yes/No 

Have you been informed of the confidentiality procedures and do you accept 
them to be adequate? 

Yes/No 

I understand that my personal information may be stored on a computer.  If 
this is done then it will not affect the confidentiality of this information.  All 
such storage of information must comply with the 1998 Data Protection Act. 

Yes/No 

Do you consent to taking part in this study? Yes/No 

Are you aware of your right to withdraw from the study at any time without 

having to give reasons? 

Yes/No 

Do you know who to contact if there are problems? Yes/No 

 

Participant Name: (block capitals) …………………………………………….. 

Participants signature: ………………………………………………………….. 

Date & Time:  …………………………………………………………………… 

 

 

Investigators name: (block capitals) ………………………………………….. 

Investigators signature: ………………………………………………………... 

Date & Time: ……………………………………………………………………  
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8.7 Ethics approval 
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8.8 NHS ethics approval 
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140 
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8.9 Invitation letter 
On University Headed Paper 

Date 

 

Dear 

A group of people who have had a stroke and received their care from Newham 
University Hospital NHS Trust Stroke Services are being invited to take part in a 

research study. The research is being undertaken at the University of East London in 
conjunction with Newham University Hospital NHS Trust. The research will look at the 
effects of progressive resistance exercise and how training parameters influence 
outcomes. It is hoped that the information from this study will help with developing 
advice about exercise prescription for people who have had a stroke.  

We are contacting you because we think that you may be suitable to take part in the 
study and we would like to provide your details to the researchers so that they can 
contact you about the study. If you would like more information about the study, 
please tick the appropriate statement on the next page, fill in your name and contact 
number and return this letter in the envelope provided in the next 14 days. The 
researchers will provide you with more information about the study and you will have 
the opportunity to think about whether or not you would like to take part. Any 
decision you make about participation in this study will not affect any future treatment 
you may require. 

If you prefer not to be contacted, please tick the appropriate statement and return this 

letter in the envelope provided in the next 14 days. 

 

Yours Sincerely 

 

Pritesh Barchha 

Principal Investigator 

 

Tel: 0208 223 4260

Email: p.barchha@uel.ac.uk 
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 I am interested in finding out about the study, please 

send me more information. 

 

 

My Name is:               ______________________ 

 

My Phone Number is: ______________________ 

 

My Home Address is:  ______________________ 

         ______________________ 

         ______________________ 

         ______________________ 

         ______________________ 

 

 

     I am not interested in finding out more about the 

study. 

 

 



143 

8.10 Participant information sheet consent form 
[On letter headed paper] 

Dear 

 

We would like to invite you to participate in our research study. The study will be 

conducted by physiotherapists at the University of East London. It will investigate what 

the best way is to make muscles in the leg stronger for people who have had a stroke. 

To help you know more about the study, please read the question and answer section 

below. It should help you decide if you would like to be part of our study. Ask us if you 

would like more information. 

 

What is the purpose of the study? 

People who have had a stroke may have weak muscles as a result of the stroke. Previous 

research has shown strength training can improve muscle strength but the amount of 

improvement that has been reported varies markedly.  We believe that improvements in 

muscle strength is influenced by the volume of exercise completed. The purpose of this 

study is to identify the optimal volume of strength training for people who have had a 

stroke. We want to compare improvement in muscle strength between groups doing 

different volumes of training. 

We have invited you to take part in the study because you have had a stroke which has 

resulted in your leg muscles being weak. We want to pilot the research to see if it is 

feasible so we will only be recruiting a small number of people. The research is part of a 

PhD research programme for Mr Pritesh Barchha. 

 

What will I be asked to do if I decide to take part? 

You will be asked to attend the University of East London for assessment of your 

muscle strength and function and for regular strength training exercise. On the first two 

occasions you attend, we will familiarise you with the equipment and take you through 

the assessment procedures. We will take measurements of muscle strength, and in 

particular the strength of the muscles that move your knee, by asking you to move your 

legs as hard as you can against a resistance using a specialised chair. To see whether you 

are able to fully use your knee muscles, we will also stimulate your muscles using a small 

electrical current that makes your muscle contract. We will measure your functional 

ability such as your walking speed, walking endurance and getting out of a chair. We will 

also ask you to fill out questionnaires that assess your current activity and how your 

stroke has affected your life. Following the assessment procedures, you will participate in 

an exercise programme, aimed to strengthen your knee muscles. You will be randomly 

allocated to one of the three training groups. Whichever group you’re allocated to, you 

will be doing strength training. The groups will do different variations of the 

strengthening programme. 
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To participate in the training programme you will be asked to attend the University twice 

a week for six weeks where you will be guided through your structured exercise 

programme. For your results to be useful, we will need you to attend at least ten training 

sessions. There will be another assessment session after completion of training identical 

to the initial assessment. We will also ask you return for one further session after 3 

months. 

 

Do I have to take part? 

It is entirely up to you whether or not you would like to take part. Any participation in 

this study does not affect the care you would normally receive outside the study. If you 

decide to take part but change your mind, you are still free to withdraw at any time.  

 

What are the possible advantages of taking part? 

You should feel that your muscles are stronger because of the training. Some people 

also notice that activities such as walking and climbing stars are improved after strength 

training. 

 

What are the possible disadvantages or risks of taking part? 

Because you will be doing unaccustomed exercise, you may experience some muscle 

stiffness or soreness a day or so after the first assessment and training sessions. This 

should be short-lasting (1-2 days) and will not stop you doing your everyday activities. 

When people exercise, the risk of having a heart attack is increased. The risk of having a 

heart attack is increased from 1 in 1,000,000 when not exercising to 3 in 1,000,000 

when people are exercising. Overall, this risk is small and previous studies doing 

strength training in stroke participants have not reported such events.  

During the assessment of your muscle function, we will be using small electrical 

currents for a very short time (5 to 15 seconds). This causes a tingling sensation that 

makes your muscles contract. Some people find this uncomfortable but it will be set at a 

level that is tolerable to you. There is a small risk of a trip or fall but the room is set up 

to be a safe environment to walk in and the researcher will be there to assist you.  

 

What happens if something goes wrong? 

We believe that this study is basically safe and do not expect you to suffer any harm or 

injury because of your participation in it. In the unlikely event that something does go 

wrong and through our negligence, you are harmed, you will be compensated. However, 

you may have to pursue your claim through legal action.  The University will consider 

any claim sympathetically. If you are not happy with any proposed compensation, you 

may have to pursue your claim through legal action. If you would like further information 

on our insurance cover, please contact: 
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Martin Longstaff, University of East London, Docklands Campus, Knowledge Dock, 

London, E16 2RD. Telephone number: 0208 223 7485. 

 

Who should I contact for further information or if I have any problems/concerns? 

If you are interested in taking part in this study but you have further questions, please 

contact me and I’ll be very happy to help.  If at any time you are concerned about your 

participation in this study or note any untoward effects, please contact Pritesh Barchha 

(details below).  Alternatively, you may contact Dr Mary Cramp (Research Supervisor at 

the University of East London), on 0208 223 4544 or by email on m.c.cramp@uel.ac.uk. 

 

If you are unhappy about any aspect of your participation in the study and wish to report 

a complaint, please contact: 

Martin Longstaff, University of East London, Docklands Campus, Knowledge Dock, 

London, E16 2RD. Telephone number: 0208 223 7485.v 

Where will this study take place? 

The study will take place in University House at the University of East London in 

Romford Road, London. There is a room with the equipment for undertaking this type 

of research. 

 

How will I travel there and get back home? 

We will discuss with you the best means of transport for you and help with these 

arrangements and the costs of your travel. 

 

What will happen to the information collected? 

All of your personal information that we collect will be confidential. Only the 

researchers will have access to this information. The data that we gather about your 

health will be anonymous. 

Once you complete the study, we can tell you about your individual results and what we 

found from doing the study when it is completed. We will keep your information 

securely for ten years after the study is completed and then the data will be destroyed. 

 

Involvement of the General Practitioner/Family doctor (GP)   

If you agree to participate, your GP will be informed of your participation and we will 

send them a copy of this information sheet. However, this will not affect any current 

and future consultation or treatment you have with your GP. 
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Who should I contact for further information? 

We are happy to talk to you about our study. Please feel free to contact Dr Mary Cramp, 

Dr Jane Culpan or Mr Pritesh Barchha (details below). 

 

 

Contact details: 

Dr Mary Cramp; 0208 223 4544; email m.c.cramp@uel.ac.uk 

Dr Jane Culpan; 0208 223 4566; email j.culpan@uel.ac.uk 

Mr Pritesh Barchha; 0208 223 4260; email p.barchha@uel.ac.uk 

 

Research Ethics Committee  

The NRES East London Ethics Committee has given their approval for this study to 

take place. If you would like to speak to the regulators, please contact: 

Laura Keegan, Research Ethics Co-ordinator, REC Offices, Block A, South House, 

Royal Free Hospital, Pond Street, London, NW3 2QG 

 

 

Thank you for your time. 

 

Yours Faithfully, 

 

Pritesh Barchha 

Principal Investigator 

  

mailto:m.c.cramp@uel.ac.uk
mailto:p.barchha@uel.ac.uk
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Project title: Training parameters for optimal progressive resistance 

exercise after stroke 

REC Number:  

Name of participant (Print):  

Allocated participant number:  

Have been given a copy of the information sheet to keep? Yes/No 

Do you understand the details provided in the information sheet and feel 

sufficiently informed? 

Yes/No 

Have you been given the chance to talk about the study and ask questions? Yes/No 

Do you understand the procedures and time involved in this study? Yes/No 

Have you been given the information and do you understand the risks 

involved in participating? 

Yes/No 

Have you recently (past 1 month) been involved or are simultaneously 

involved in another research study? 

Yes/No 

Have you been informed of the confidentiality procedures and do you accept 

them to be adequate? 

Yes/No 

I understand that my personal information may be stored on a computer.  If 

this is done then it will not affect the confidentiality of this information.  All 

such storage of information must comply with the 1998 Data Protection Act. 

Yes/No 

Do you consent to taking part in this study? Yes/No 

Are you aware of your right to withdraw from the study at any time without 

having to give reasons? 

Yes/No 

Do you know who to contact if there are problems? Yes/No 

Do you agree for your GP to be informed of your participation? Yes/No 

 

Participant Name: ………………………………………………………………… 

Participants signature: ………………………………………………………………… 

Date & Time: ………………………………………………………………… 

Researcher Name: ………………………………………………………………… 

Researcher signature: ………………………………………………………………… 

Date & Time: ………………………………………………………………… 

Witness Name (participants that cannot sign): ………………………………………………………………… 

Participants signature: ………………………………………………………………… 

Date & Time: ………………………………………………………………… 

 


