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A B S T R A C T

A reduced-order semi-analytic model of multiple zonal jets in the Southern Ocean is proposed based on the
statistical approach and scale decomposition. By introducing two dominant scales in the vorticity equation,
the model describes the large-scale and mesoscale dynamics using the explicit momentum dissipation in the
horizontal and vertical directions. For validation and physical insights, the results of the reduced-order model
are compared with solutions of two eddy-resolving ocean models: (i) a realistic primitive-equation HYCOM
(HYbrid Coordinate Ocean Model) simulation of the Southern Ocean and (ii) an idealized quasi-geostrophic
model of a shear-driven channel flow.
1. Introduction

Multiple zonal jets, oriented in the east–west direction while alter-
ating in the latitudinal direction, are observed in different regions of
he global oceans as reported from velocity observations and satellite
ltimetry data (Cravatte et al., 2012; Maximenko et al., 2005; Huang
t al., 2007; Maximenko et al., 2008). The emergence of zonal jets is
imilarly confirmed by numerical ocean models run in eddy-resolving
egimes (Richards et al., 2006; Sinha and Richards, 1999; Berloff et al.,
2009b; Kamenkovich et al., 2009; Berloff et al., 2011). A similar
persistent pattern of zonal jets is also observed in atmospheres of giant
planets such as Jupiter and Saturn (Galperin et al., 2004; Condie and
Rhines, 1994). In addition to visual resemblance, the analysis on energy
spectra in these cases indicates the same underlying dynamics (Sukori-
ansky et al., 2002). Development of physically insightful mathematical
models of the structure and dynamics of zonal jets remains one of the
active research directions in planetary sciences.

Among other techniques, linear stability and nonlinear perturbation
methods are popular tools in the literature to analyze the dynamics of
zonal jets in the literature. For example, Kaspi and Flierl (2007) consid-
ered baroclinic instability and nonlinear interactions between eddies as
the formation mechanism of jets in the atmosphere of gaseous planets
using a nonlinear analytical model (Kaspi and Flierl, 2007). Farrell
and Ioannou (2008) used the stochastic structural stability theory to
study the interaction of jets with turbulence for a two-layer baroclinic
model and explain the physical mechanism behind the formation and
maintenance of baroclinic jets (Farrell and Ioannou, 2008). Along a
similar line of thought, Berloff et al. (2009a) considered a two-stage
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development process of the formation of zonal jets (Berloff et al.,
2009a). First, the energy of the background flow is released to long
meridional and short zonal length scales via a linear mechanism. Then
a secondary instability occurs, which sets the meridional scale of the
zonal jets (Berloff et al., 2009a). Furthermore, Connaughton et al.
(2010) studied modulational instability of geophysical Rossby and
plasma drift waves as a formation mechanism of zonal jets both theo-
retically and numerically using Charney–Hasegawa–Mima model (Con-
naughton et al., 2010).

At the other end of the spectrum, there are statistical models of
zonal jets such as those considering the inverse energy cascade in beta
plane turbulence. The focus of these models tends to be in the zonal
jet structure and their maintenance mechanism at an advanced stage
once the jets reach the state of statistical stationarity. The key concept
here pioneered by (Rhines, 1975) is the so-called halting length scale,
which emerges from the analysis of the wavenumber spectrum for
turbulence energy. This scale divides the beta plane turbulence into
isotropic small scales and highly anisotropic large scales that form the
zonal jets. The Rhines scale depends on r.m.s. velocity and the gradient
of the Coriolis parameter. In a further study (Scott and Dritschel, 2012),
the Rhines scale together with a second length scale, which describes
the forcing strength with respect to the background potential vorticity
gradient, were reported to determine the structure of zonal jets. In
the work by Danilov and Gurarie (2002), Rhines’ theory was further
extended to account for bottom friction effects. In addition, Nadiga
(2006) related the development of zonal jets to a detention of the
turbulent inverse-cascade of energy by free Rossby waves, which are
subsequently redirected into zonal modes (Nadiga, 2006).
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A different approach was considered by Huang and Robinson (1998)
ho showed that the persistent jets are mainly maintained by the shear
training between small-scale eddies and large-scale zonal jets. This
ork demonstrated an evident scale separation between the small eddy
cale and the large jet scale. It was also shown that despite a similarity
etween the Rhines scale and the jet scale, they are not obviously linked
tatistically (Huang and Robinson, 1998).
The current work exploits the separation between the long scale

f the background flow and the short jet scale to develop a close-
orm semi-analytical model, which is amenable to fast turn-around
olution ideally suitable for parametric studies. The goal of the model
s to explicitly capture interactions between spatial scales in a realistic
low regime with strong vertical shear and mixing and non-negligible
ertical velocities. The balance at each scale is preserved due to vis-
osity, thereby explicitly illustrating the importance of momentum
issipation. The balance serves as an equilibration mechanism for
urbulence generated by large-scale forcing, which maintains zonal jets
n a statistically stationary regime. Section 2 shows how the assumed
scale separation allows to reduce the governing equations into two
separate sets of equations, one for the large-scale background flow and
the other for the small-scale zonal jets, each of which is solved semi-
analytically. It is shown that the wind-stress forcing and the bottom
friction dissipation mainly govern the large-scale vorticity dynamics,
which can be solved separately from the zonal jets equation. The
parameters of the semi-analytical statistical model are derived from
the time- and zonally-averaged dynamics of the Southern Ocean as
simulated by general circulation HYCOM model. In Section 3, the
developed model is first validated in comparison with the HYCOM
solution. To examine how robustly the semi-analytical model captures
the fundamental underlying physics, the same calibration process is
then further applied to the quasi-geostrophic solution of the zonal
channel.

2. Methodology

2.1. Primitive equation model

The governing equations for ocean dynamics in z-level coordinates
can be described by the conservation laws for momentum, temperature,
salinity and mass, as well as the equation of state:
𝜕𝐯
𝜕𝑡

+ (𝐯.∇) 𝐯 + 2𝝎 × 𝐯 = 𝐠 − ∇𝑃
𝜌

+ ∇.𝝉
𝜌
,

𝜕𝑇
𝜕𝑡

+ ∇. (𝑇 𝐯) = ∇. (𝜅∇𝑇 ) + 𝐹 𝑇 ,

𝜕𝑆
𝜕𝑡

+ ∇. (𝑆𝐯) = ∇. (𝜅∇𝑆) + 𝐹𝑆 ,

.𝐯 = 0,

= 𝜌 (𝑇 , 𝑆, 𝑃 ) ,

(1)

here 𝐯 is the velocity vector, 𝝎 = (0, 0, 𝛺) is the Earth’s angular
velocity, 𝑃 is pressure, 𝐠 is the gravitational acceleration and 𝝉 is a
stress tensor (which includes viscosity). 𝑇 and 𝑆 are temperature and
salinity with 𝐹 𝑇 and 𝐹𝑆 being the corresponding source terms in their
conservation equations, 𝜅 is diffusivity tensor and 𝜌 is the density.

In this study, we use solutions from a general ocean circulation HY-
COM (HYbrid Coordinate Ocean Model). The model simulation results
were downloaded from the HYCOM data portal (hycom.org), where
they had been interpolated to z-level coordinates. The hybrid coordi-
nates in the original simulation are isopycnal in the open, stratified
ocean and smoothly transition to terrain-following sigma-coordinates
in shallow coastal regions and to z-level coordinates in the mixed
layer and unstratified seas (Wallcraft et al., 2009). The advection of
heat and salt was computed using the improved advection scheme MP-
DATA (Smolarkiewicz and Clark, 1986; Smolarkiewicz and Grabowski,
1990). Following Brydon et al. (1999), an approximation of the
UNESCO equation of state was used. The Mellor–Yamada Level 2.5
turbulence closure algorithm was utilized to account for mixing from
2

surface to bottom (Mellor, 1998; Mellor and Yamada, 1982). The hor-
izontal grid resolution was 1/12 degree in the longitude and latitude,
and there were 41 vertical layers used.

Of particular interest in this work is the HYCOM solution in a sector
of the Southern Ocean between latitudes of 37◦S to 60◦S (𝜃1 = 2.2162
and 𝜃2 = 2.6182 rad in spherical coordinates (𝑟, 𝜃, 𝜙) used in the
reduced-order model) and in the longitudes, approximately between
Montagu Island to Tasmania (20◦W to 140◦E i.e. 𝜙1 = −0.3491 and 𝜙2 =
2.4435 rad). This sector is carefully selected to avoid the continental
boundaries, the effect of which would be difficult to include in low
fidelity models.

Typical velocity solutions of HYCOM extracted over one-year pe-
riod (January–December 2014) using five-day snapshots are shown in
Fig. 1. According to our analysis of HYCOM solution in a 5-year period
(January 2013–December 2018), main spatial characteristics of zonal
jets, which are the focus of this study, do not change with longer
averaging period. It can be noted that the HYCOM-simulated currents in
the selected region of interest are nearly zonal and can be approximated
by a zonally-re-entrant flow in a channel, which is discussed next.

2.2. Quasi-geostrophic model

A quasi-geostrophic model was configured for a flow in a mid-
latitude zonally re-entrant channel, with solid southern and northern
walls and periodic conditions at west and east. The size of the computa-
tional domain corresponded to 3000 km ×12,000 km in latitudinal and
longitudinal directions, respectively. The governing equations were the
conservation of potential vorticity (PV) in the Cartesian coordinates for
each of the three isopycnal layers considered. Dissipation was modeled
by lateral viscosity and bottom friction in accordance with:

𝜕𝑡𝑞𝑖 + 𝐽
(

𝜓𝑖, 𝑞𝑖
)

= 𝜈 𝛥2𝜓𝑖 − 𝛿𝑖3𝛾 𝛥𝜓𝑖, 𝑖 = 1, 2, 3, (2)

here 𝛾 = 4.6×10−8 m2 s−1 and 𝜈 = 10 𝑚2 s−1 are bottom friction and lat-
ral viscosity coefficients, respectively. 𝛿𝑖𝑗 is the Kronecker symbol, 𝜓𝑖
s quasi-geostrophic stream function, 𝑞𝑖 is the quasi-geostrophic poten-
ial vorticity, and 𝐽 (𝑓, 𝑔) = 𝑓𝑥𝑔𝑦 − 𝑓𝑦𝑔𝑥. The three horizontal isopycnal
layers were dynamically coupled through interface displacements. The
flow was decomposed into the large-scale uniform background flow
𝑈𝑖 and perturbations (Berloff et al., 2009b; Kamenkovich et al., 2009;
erloff et al., 2011), so that

𝑖 = ∇2𝜓𝑖 + 𝛽𝑦 −
(

1 − 𝛿𝑖1
)

𝑆𝑖1
[

𝜓𝑖 − 𝜓𝑖−1 +
(

𝑈𝑖 − 𝑈𝑖−1
)

𝑦
]

−
(

1 − 𝛿𝑖3
)

𝑆𝑖2
[

𝜓𝑖 − 𝜓𝑖+1 +
(

𝑈𝑖 − 𝑈𝑖+1
)

𝑦
]

, 𝑖 = 1, 2, 3, (3)

here 𝛽 = 1.3 × 10−11 m−1 s−1 is the Coriolis parameter gradient and
he stratification parameters 𝑆𝑖1 and 𝑆𝑖2 were selected so that the first
nd second Rossby deformation radii would be 𝑅𝑑1 = 20 km and
𝑑2 = 12 km, respectively. The depths of the layers were 𝐻1 = 300,
2 = 1100 and 𝐻3 = 2600 𝑚 numbered from the top and background
elocities were 𝑈1 = 6, 𝑈2 = 3, 𝑈3 = 0 𝑐𝑚 s−1, respectively. On the zonal
alls, no-slip boundary conditions were applied. The equations were
umerically solved using the high-resolution CABARET scheme on a
niform Cartesian grid of 512 × 2048 cells (Karabasov and Goloviznin,
009; Karabasov et al., 2009).
The results were obtained for a 10-year simulation after 4000 days

f spinout time and stored every 10 days for the subsequent analysis.
or illustration, the computed instantaneous vorticity distribution in
he top layer is shown in Fig. 2.

.3. Reduced-order model

.3.1. Governing equations and assumptions
In this section, the reduced order model is derived from primitive

quations, by first averaging the vorticity equation in time and in the
onal direction. The derivation process is then completed by formulat-
ng a closure model for the eddy viscosity and replacing the top and
ottom boundary conditions with the equivalent body forces.

http://hycom.org
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Fig. 1. Top panel: instantaneous distribution of the top-layer zonal velocity (m s−1) in HYCOM, where the Southern Ocean region under study is shown in a box. Bottom panel:
a schematic of the solution domain and the spherical coordinate system.
Fig. 2. Quasi-geostrophic model of the shear-driven zonal channel: instantaneous distribution of potential vorticity (s−1) in the top layer.
Following Pedlosky (2013), let us take the curl of the momentum
equation in Eq. (1). This leads to elimination of pressure gradients and
conservative body forces and results in the equation for the relative
vorticity vector, 𝜻 ,

𝜕𝜻
𝜕𝑡

+ (𝐯.∇) 𝜻 + 2 (𝐯.∇)𝝎 = ∇ ×
(

∇.𝝉
𝜌

)

+ (𝜻 .∇) 𝐯 + 2 (𝝎 .∇) 𝐯. (4)

Here, spherical coordinates, (𝑟, 𝜃, 𝜙) are used where 𝑟 is the radial
distance from the Earth’s center, and 𝜃 and 𝜙 are respectively co-
latitudinal (north to south) and azimuthal (west to east) angles as
shown in Fig. 1. The velocity vector components in spherical coordi-
nates are 𝐯 =

(

𝑣𝑟, 𝑣𝜃 , 𝑣𝜙
)

.
The continuity equation is given by

1
𝑟2
𝜕
(

𝑟2𝑣𝑟
)

𝜕𝑟
+ 1
𝑟 sin 𝜃

𝜕
(

sin 𝜃𝑣𝜃
)

𝜕𝜃
+ 1
𝑟 sin 𝜃

𝜕𝑣𝜙
𝜕𝜙

= 0. (5)

The radial component of Eq. (4) describes the evolution of the
ertical vorticity component, 𝜁 = 1

(

𝜕 (

sin 𝜃𝑣
)

− 𝜕𝑣𝜃
)

:
𝑟 sin 𝜃 𝜕𝜃 𝜙 𝜕𝜙

3

𝜕𝜁
𝜕𝑡

= 2𝛺
𝑟

[

sin 𝜃𝑣𝜃 +
cos 𝜃
𝑟

𝜕
(

𝑟2𝑣𝑟
)

𝜕𝑟

]

+ 𝐼conv
(

𝑣𝜃 , 𝑣𝜙
)

+
𝑎𝐿ℎ

𝑟2 sin 𝜃
𝜕
𝜕𝜃

(

sin 𝜃
𝜕𝜁
𝜕𝜃

)

+
𝑎𝐿ℎ

𝑟2 sin 2𝜃
𝜕2𝜁
𝜕𝜙2

+
𝑎𝑣
𝑟3

𝜕
𝜕𝑟

[

𝑟2 𝜕
𝜕𝑟

(𝑟𝜁 )
]

, (6)

where the nonlinear term is

𝐼conv
(

𝑣𝜃 , 𝑣𝜙
)

= 1
𝑟2 sin 𝜃

(

𝜕𝑣𝜃
𝜕𝜙

𝜕𝑣𝜃
𝜕𝜃

+ 𝑣𝜃
𝜕2𝑣𝜃
𝜕𝜃𝜕𝜙

+ 1
sin 𝜃

𝜕𝑣𝜙
𝜕𝜙

𝜕𝑣𝜃
𝜕𝜙

+
𝑣𝜙
sin 𝜃

𝜕2𝑣𝜃
𝜕𝜙2

− sin 𝜃
𝜕𝑣𝜃
𝜕𝜃

𝜕𝑣𝜙
𝜕𝜃

− sin 𝜃𝑣𝜃
𝜕2𝑣𝜙
𝜕𝜃2

− cos 𝜃𝑣𝜙
𝜕𝑣𝜃
𝜕𝜃

+ sin 𝜃𝑣𝜙𝑣𝜃

−2 cos 𝜃𝑣𝜃
𝜕𝑣𝜙 −

𝜕𝑣𝜙 𝜕𝑣𝜙 − 𝑣𝜙
𝜕2𝑣𝜙 − 2𝑣𝜙 cot 𝜃

𝜕𝑣𝜙
)

.

(7)
𝜕𝜃 𝜕𝜃 𝜕𝜙 𝜕𝜃𝜕𝜙 𝜕𝜙
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In Eq. (6), 𝑎𝐿ℎ and 𝑎𝑣 are horizontal and vertical viscosity coefficients
which represent the effect of small-scale mixing processes, not explicitly
resolved by the model.

Next, Eq. (6) is integrated in time and in the zonal direction:

∬

{

2𝛺
𝑟

[

sin 𝜃𝑣𝜃 +
cos 𝜃
𝑟

𝜕
(

𝑟2𝑣𝑟
)

𝜕𝑟

]

+ 𝐼conv
(

𝑣𝜃 , 𝑣𝜙
)

+
𝑎𝐿ℎ

𝑟2 sin 𝜃
𝜕
𝜕𝜃

(

sin 𝜃
𝜕𝜁
𝜕𝜃

)

+
𝑎𝐿ℎ

𝑟2 sin 2𝜃
𝜕2𝜁
𝜕𝜙2

+
𝑎𝑣
𝑟3

𝜕
𝜕𝑟

[

𝑟2 𝜕
𝜕𝑟

(𝑟𝜁 )
]

−
𝜕𝜁
𝜕𝑡

}

r sin 𝜃 d𝜙 d𝑡 = 0. (8)

We then decompose the vorticity and all velocity components into
he time- and zonal-mean and fluctuation parts denoted by the overbar
nd primes, respectively:

(𝑟, 𝜃, 𝜙, 𝑡) = 𝜁 (𝑟, 𝜃) + 𝜁 ′ (𝑟, 𝜃, 𝜙, 𝑡) , 𝑣𝜃 (𝑟, 𝜃, 𝜙, 𝑡)

= 𝑣𝜃 (𝑟, 𝜃) + 𝑣′𝜃 (𝑟, 𝜃, 𝜙, 𝑡) , 𝑣𝜙 (𝑟, 𝜃, 𝜙, 𝑡) = 𝑣𝜙 (𝑟, 𝜃) + 𝑣′𝜙 (𝑟, 𝜃, 𝜙, 𝑡) . (9)

By definition, the mean fields satisfy

𝜕𝜁
𝜕𝑡

=
𝜕𝑣𝜙
𝜕𝑡

=
𝜕𝑣𝜃
𝜕𝑡

= 0,

𝜕𝜁
𝜕𝜙

=
𝜕𝑣𝜙
𝜕𝜙

=
𝜕𝑣𝜃
𝜕𝜙

= 0,
(10)

and the zonally averaged vorticity is expressed in terms of zonal
velocity only

𝜁 = 1
𝑟 sin 𝜃

( 𝜕
𝜕𝜃

(

sin 𝜃𝑣𝜙
)

)

. (11)

The difference between the time- and zonally averaged nonlinear
erm

𝐼conv
(

𝑣𝜃 , 𝑣𝜙
)

= 1
𝑟2 sin 𝜃

⎛

⎜

⎜

⎝

𝜕𝑣𝜃
𝜕𝜙

𝜕𝑣𝜃
𝜕𝜃

+ 𝑣𝜃
𝜕2𝑣𝜃
𝜕𝜃𝜕𝜙

+ 1
sin 𝜃

𝜕𝑣𝜙
𝜕𝜙

𝜕𝑣𝜃
𝜕𝜙

+ 1
sin 𝜃

𝑣𝜙
𝜕2𝑣𝜃
𝜕𝜙2

− sin 𝜃
𝜕𝑣𝜃
𝜕𝜃

𝜕𝑣𝜙
𝜕𝜃

− sin 𝜃 𝑣𝜃
𝜕2𝑣𝜙
𝜕𝜃2

− cos 𝜃 𝑣𝜙
𝜕𝑣𝜃
𝜕𝜃

+ sin 𝜃 𝑣𝜙𝑣𝜃

−2 cos 𝜃 𝑣𝜃
𝜕𝑣𝜙
𝜕𝜃

−
𝜕𝑣𝜙
𝜕𝜃

𝜕𝑣𝜙
𝜕𝜙

− 𝑣𝜙
𝜕2𝑣𝜙
𝜕𝜃𝜕𝜙

− 2 cot 𝜃 𝑣𝜙
𝜕𝑣𝜙
𝜕𝜙

⎞

⎟

⎟

⎠

,

(12)

nd the nonlinear term calculated from time- and zonally averaged
elocities 𝐼conv

(

𝑣𝜃 , 𝑣𝜙
)

represents a contribution of the fluctuations
‘‘eddies’’) to the mean vorticity balance and is approximated using the
urbulence eddy viscosity

𝑇
ℎ

[

1
𝑟2 sin 𝜃

𝜕
𝜕𝜃

(

sin 𝜃
𝜕𝜁
𝜕𝜃

)]

= 𝐼conv
(

𝑣𝜃 , 𝑣𝜙
)

− 𝐼conv
(

𝑣𝜃 , 𝑣𝜙
)

, (13)

where 𝑎𝑇ℎ is the turbulent eddy viscosity coefficient, which character-
izes the effects of fluctuations (‘‘eddies’’) on the large-scale flow as
observed in high-Reynolds eddy-resolving simulations (Berloff et al.,
2011). This coefficient is approximated using the classical Smagorinsky
model (Smagorinsky, 1963),

𝑎𝑇ℎ =
(

𝐶𝑠𝛥
)2 |

|

|

𝑆||
|

=
(

𝐶𝑠𝛥
)2

√

2𝑆 𝑖𝑗𝑆𝑖𝑗 . (14)

In the above, 𝐶𝑠 is the standard dimensionless calibration parameter
f the Smagorinsky model, 𝑆𝑖𝑗 is the rate of deformation tensor, which
s an explicit function of velocity gradients, and 𝑆𝑖𝑗 is its time- and
zonally-averaged value. The dynamic length scale 𝛥 is used as the
cut-off scale of the Smagorinsky model, which corresponds to the
smallest scale explicitly resolved. The cut-off scale has been specif-
ically adjusted for the considered ocean model. For example, if the
velocity spectrum is dominated by a single meridional wavenumber 𝐾𝜃
i.e. 𝑣𝜙 ≈ 𝐴𝑘𝜃 𝑒

𝑖𝐾𝜃𝑅(𝜃−𝜃1), the largest dominant length scale is equal to the
corresponding wavelength 𝜆 , which sets up the cut-off scale equal to
𝜃

4

Fig. 3. Time, layer and zonally averaged profiles of the zonal and meridional velocity
components in the HYCOM solution.

𝜆𝜃∕2 (Lilly, 1967),

𝛥 =
𝜆𝜃
2

= 𝜋
𝐾𝜃

=
|

|

|

|

|

𝜋𝑣𝜙∕
(

1
𝑅
𝜕𝑣𝜙
𝜕𝜃

)

|

|

|

|

|

, (15)

where 𝑅 = 6371 𝑘𝑚 is the Earth’s mean radius. Additionally, because
the meridional geostrophic velocity is zero when averaged zonally
above the topography and is generally much smaller than the zonal
velocity in a channel configuration (Fig. 3), the former can be subse-
quently neglected. Given this and Eqs. (10), the nonlinear convection
term 𝐼conv

(

𝑣𝜃 , 𝑣𝜙
)

is approximately zero. Hence, using the eddy vis-
cosity model of Eq. (14), the mean vorticity equation (Eq. (8)) reduces
to

2𝛺
𝑟

[

sin 𝜃𝑣𝜃 +
cos 𝜃
𝑟

𝜕
(

𝑟2𝑣𝑟
)

𝜕𝑟

]

+
𝑎𝐿ℎ + 𝑎𝑇ℎ
𝑟2 sin 𝜃

𝜕
𝜕𝜃

(

sin 𝜃
𝜕𝜁
𝜕𝜃

)

+
𝑎𝑣
𝑟3

𝜕
𝜕𝑟

[

𝑟2 𝜕
𝜕𝑟

(𝑟𝜁 )
]

= 0, (16)

or in an expanded form,

2𝛺
𝑟

[

sin 𝜃𝑣𝜃 +
cos 𝜃
𝑟

𝜕
(

𝑟2𝑣𝑟
)

𝜕𝑟

]

+
𝑎ℎ
𝑟2

(

𝜕2𝜁
𝜕𝜃2

+ cot 𝜃
𝜕𝜁
𝜕𝜃

)

+ 𝑎𝑣

(

𝜕2𝜁
𝜕𝑟2

+ 4
𝑟
𝜕𝜁
𝜕𝑟

+
2𝜁
𝑟2

)

= 0, (17)

where bars are dropped for simplicity in presentation and 𝑎ℎ = 𝑎𝐿ℎ +𝑎
𝑇
ℎ .

Since the ocean depth is much smaller than the average radius of
he Earth (𝐻max

𝑅 ≪ 1), Eq. (17) is simplified by neglecting the terms 4
𝑟
𝜕𝜁
𝜕𝑟

and 2𝜁
𝑟2

2𝛺
𝑟

[

sin 𝜃𝑣𝜃 +
cos 𝜃
𝑟

𝜕
(

𝑟2𝑣𝑟
)

𝜕𝑟

]

+
𝑎ℎ
𝑟2

(

𝜕2𝜁
𝜕𝜃2

+ cot 𝜃
𝜕𝜁
𝜕𝜃

)

+ 𝑎𝑣
𝜕2𝜁
𝜕𝑟2

= 0. (18)

By filtering out zonal and temporal fluctuations, Eq. (18) describes
the spatial structure of zonal- and time-mean relative vorticity sub-
ject to wind forcing and bottom friction. The Cartesian equivalent of
Eq. (18) on a beta plane is derived in Appendix A highlighting the key
ifferences of our model with the classical quasi-geostrophic equations.
The above equation needs to be simplified further to make it

menable to fast-turn-around-time and physically insightful semi-
nalytical solution methods. As the first step, the top and bottom
oundary conditions are incorporated thereby simplifying the original
oundary value problem. The velocity strain term is approximated by
he wind stress assuming that in the top oceanic surface the momentum
tress is determined by the zonal wind stress 𝜏𝜙:

𝑣
𝜕𝑣𝜙
𝜕𝑟

|𝑟=𝑅 = 𝜏𝜙, (19)

which corresponds to the surface sink/source of vorticity as follows:

𝑎
𝜕𝜁

| = 1 [ 1 ( 𝜕 (

sin 𝜃𝜏
)

)]

. (20)
𝑣 𝜕𝑟 𝑟=𝑅 𝑟 sin 𝜃 𝜕𝜃 𝜙
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Fig. 4. Latitude profiles of the wind stress curl (NAVGEM 0.5◦) and the vertical
radient of vorticity in the top layer from the HYCOM solution (units are in N m−3).

In the above equation 𝑎𝑣 is taken to be 5 × 10−3 𝑚2 s−1 following
the vertical diffusivity nominal value in HYCOM description (Wallcraft
et al., 2009) and 𝜏𝜙 = −𝜏𝜙max

cos 2𝜋 𝜃−𝜃1
𝜃2−𝜃1

with 𝜏𝜙max
= 1 × 10−4 𝑚2 s−2

derived from the NAVGEM (Navy Global Environmental Model) 0.5-
degree simulations. Fig. 4 confirms that the balance is well preserved
for the HYCOM solution for the period January–December 2014.

Notably, the transfer of momentum from the wind acting on the
surface to the ocean depth is governed by Ekman boundary layer.
However, following (Dijkstra et al., 2001) and similar low-resolution
ocean models, the surface forcing is represented here by a body force
𝑄𝜏 distributed over a depth of 𝐻𝑤 in the upper ocean

𝑄𝜏 =
𝑓 (𝑟)
𝑟𝐻𝑤

[ 1
sin 𝜃

( 𝜕
𝜕𝜃

(

sin 𝜃𝜏𝜙
)

)]

, 𝑟𝑤 < 𝑟 < 𝑅, (21)

where the top vertical profile function 𝑓 (𝑟) = H
(

𝑟𝑤
)

−H (𝑅) is equal to
unity in the interval 𝑟𝑤 < 𝑟 < 𝑅, with 𝑟𝑤 = 𝑅 −𝐻𝑤 and 𝐻𝑤 = 7.5 𝑚,
and H denotes the Heaviside step function.

Similarly, the effect of the bottom friction boundary condition
is approximated by a distributed bottom friction body force with a
coefficient 𝛾 non-zero in a certain depth range (𝑟min < 𝑟 < 𝑟𝑏).

With incorporating the boundary conditions as the source terms,
Eq. (18) becomes

2𝛺
𝑟

[

sin 𝜃𝑣𝜃 +
cos 𝜃
𝑟

𝜕
(

𝑟2𝑣𝑟
)

𝜕𝑟

]

+
𝑎ℎ
𝑟2

(

𝜕2𝜁
𝜕𝜃2

+ cot 𝜃
𝜕𝜁
𝜕𝜃

)

+ 𝑎𝑣
𝜕2𝜁
𝜕𝑟2

−𝑄𝜏 − 𝛾𝑔 (𝑟) 𝜁 = 0. (22)
5

Here the bottom vertical profile function 𝑔 (𝑟) = H
(

𝑟min
)

− H
(

𝑟𝑏
)

s non-zero in the interval 𝑟min < 𝑟 < 𝑟𝑏 (𝑟min = 𝑅 − 𝐻max, 𝑟𝑏 =
−𝐻𝑏, 𝐻max = 5000,𝐻𝑏 = 2500 𝑚) and H is the Heaviside function.

.3.2. Scale separation
The HYCOM solution is further analyzed next, with the goal to

xtract most significant features which will be amenable to reduced-
rder modeling. The scaling of parameters is derived directly from the
YCOM simulation.
First, as illustrated in Fig. 5, the time-, vertically (layer-), and zon-

lly averaged zonal velocity component of the HYCOM solution reveals
structure with two leading meridional wavenumbers. By defining a
ormalized meridional wave number, 𝑘𝜃 = 𝐾𝜃

𝐾min
= 𝜆max

𝜆𝜃
= 𝑅(𝜃2−𝜃1)

𝜆𝜃
,

where 𝑅 is the Earth’s mean radius, 𝜆𝜃 is the corresponding wavelength
n the meridional direction, 𝐾min = 2𝜋

𝜆max
, and 𝜆max = 𝑅

(

𝜃2 − 𝜃1
)

, the
two leading wavenumbers of the velocity distribution correspond to a
large scale component, 𝑘𝜃 = 1 and a small-scale component, 𝑘𝜃 = 10.
It can be remarked that the emergence of such a distinct structure
with low leading wavenumbers is due the fact the Fourier transform
is performed after averaging the flow in the time and zonal direction.
Instantaneous snapshots of the wavenumber spectrum do not show
the same leading wavenumbers. Since the instantaneous flow field is
noisier than the time-averaged one, a longer time averaging of the
instantaneous wavenumber spectra would be required to obtain the
same spectrum as by first applying the time averaging and then the
spatial Fourier transform operation.

A further detailed analysis of the vorticity and its meridional gradi-
ent shows the same two length scales in the meridional wavenumber
spectra. The amplitude of the vorticity spectra of the small- and the
large-scale peaks are of the same order of magnitude (Fig. 6, top panel).
However, the peak in the vorticity gradient spectra corresponding to
the small scale is an order of magnitude larger than that of the large
scale (Fig. 6, bottom panel). This is expected since small-scale vorticity
varies more rapidly with respect to the meridional coordinate and,
hence, has a larger derivative (𝑘𝜃 = 10 vs 𝑘𝜃 = 1 in small-scale
and large-scale components, respectively). Denoting the small-scale
vorticity component by 𝜁 (𝑙) and the large-scale component by 𝜁 (𝐿),
ig. 6 results can be summarized as
(𝑙) ∼ 𝜁 (𝐿),

𝜕𝜁 (𝐿)

𝜕𝜃
∼ 𝜀

𝜕𝜁 (𝑙)

𝜕𝜃
,

(23)

where 𝜀 is 10−1 and reflects the ratio of wavenumbers (𝑘𝜃) in the two
vorticity components.

In addition, the vertical layer structure of the HYCOM solution
reveals that the peak amplitude associated with the large-scale vorticity
strongly depends on the layer (depth) while the peak associated with
the small-scale is nearly independent of the depth (Fig. 7). This suggests
Fig. 5. Distributions of the zonal velocity from the HYCOM solution: (a) the time and vertically (layer-) averaged zonal velocity (m s−1) within the solution domain, (b) the time-,
onally and layer-averaged zonal velocity profile, and (c) the meridional wavenumber spectrum of the time-, zonally and layer-averaged zonal velocity anomaly. The time and
ertical averaging corresponds to a one-year period, using 5-day snapshots, and 41 ocean layers.
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Fig. 6. Two meridional scales emerging from vorticity in the HYCOM simulations. Top: time, layer and zonally averaged vorticity versus meridional coordinate (a) and the
wavenumber spectrum of the same (b). Bottom: time, layer and zonally averaged values of the vorticity meridional gradient versus meridional coordinate (c) and its wavenumber
spectrum (d).
that the bottom friction is mostly affecting the large-scale component
of the vorticity solution in comparison with its small-scale counterpart.
The latter effect is a consequence of the linear bottom friction used
in the HYCOM simulation (Wallcraft et al., 2009). As extracted from
the numerical HYCOM solution, the difference between the values of
the second-order vertical derivative in the small-scale and large-scale
vorticity components is approximately one order of magnitude

𝜕2𝜁 (𝑙)

𝜕𝑟2
∼ 𝜀

𝜕2𝜁 (𝐿)

𝜕𝑟2
, (24)

here 𝜀 is 10−1.
Inspired by HYCOM simulations shown in Figs. 5–7, we decompose

he vorticity solution into a small-scale and a large-scale component

= 𝜁 (𝑙) + 𝜁 (𝐿), (25)

nd substitute Eq. (25) in Eq. (22). Eq. (22) is then rendered dimen-
ionless as follows

2𝛺𝐻2𝑉𝜃
𝑎𝑣𝑅𝑍

1
𝑟∗

sin 𝜃𝑣∗𝜃 +
2𝛺𝐻𝑉𝑟
𝑎𝑣𝑍

cos 𝜃
𝑟∗2

𝜕
(

𝑟∗2𝑣∗𝑟
)

𝜕𝑧∗

+
𝑎ℎ
𝑎𝑣
𝐻2

𝑙2
1
𝑟∗2

(

𝜕2𝜁∗(𝑙)

𝜕𝜃∗2
+ 𝑙
𝑅

cot 𝜃
𝜕𝜁∗(𝑙)

𝜕𝜃∗
+
𝜕2𝜁∗(𝐿)

𝜕𝜃∗2
+ 𝑙
𝑅

cot 𝜃
𝜕𝜁∗(𝐿)

𝜕𝜃∗

)

+

+
(

𝜕2𝜁∗(𝑙)

𝜕𝑧∗2
+
𝜕2𝜁∗(𝐿)

𝜕𝑧∗2

)

−
𝜏𝜙max

𝐻

𝑎𝑣𝑍𝑙
𝑓 ∗ (𝑟∗)
𝑟∗

[ 1
sin 𝜃

𝜕
𝜕𝜃∗

(

sin 𝜃𝜏∗𝜙
)]

−
𝛾𝐻𝐻𝑏
𝑎𝑣

𝑔∗
(

𝑟∗
)

𝜁∗(𝐿) = 0,

(26)

using the variable 𝑧 = 𝑟 − 𝑟min = 𝑟 −
(

𝑅 −𝐻max
)

( 𝑧𝑅 ≪ 1) for depth and
y introducing the following dimensionless variables

= 𝑅𝑟∗, 𝑑𝑧 = 𝐻dz∗,

=

(

𝜃2 − 𝜃1
)

𝑘𝜃
𝜃∗, 𝑟d𝜃 =

𝑅
(

𝜃2 − 𝜃1
)

𝑘𝜃
𝑟∗d𝜃∗ = 𝑙 𝑟∗d𝜃∗,

(𝑙) = 𝑍𝜁∗(𝑙), 𝜁 (𝐿) = 𝑍𝜁∗(𝐿),

(𝑟) =
𝐻𝑤
𝐻

𝑓 ∗ (𝑟∗
)

, 𝑔 (𝑟) =
𝐻𝑏
𝐻
𝑔∗

(

𝑟∗
)

,

𝑣𝜃 = 𝑉𝜃 𝑣
∗
𝜃 , 𝑣𝑟 = 𝑉𝑟 𝑣

∗
𝑟 , 𝜏𝜙 = 𝜏𝜙max 𝜏

∗
𝜙,

(27)

here, 𝑍, 𝑉𝜃 , 𝑉𝑟 are maximum values of vorticity, meridional velocity
nd radial (vertical) velocity, respectively, 𝐻 is a length scale in the
6

Fig. 7. Dependence of the time and zonally-averaged vorticity spectrum on the model
layer.

vertical direction and 𝑙 is the meridional length scale of the zonal jets
(𝑘𝜃 = 10). Here, we assume 𝑎𝑣 = 5 × 10−3 𝑚2 s−1, 𝑎𝐿ℎ = 118 𝑚2 s−1, 𝛾 =
10−7 s−1 as provided by the HYCOM description (Wallcraft et al.,
2009). The magnitudes of meridional velocity 𝑉𝜃 and vorticity 𝑍 ∼ 𝑉𝜙

𝑙
(Eq. (11)) are derived from the HYCOM solution. The magnitude of
zonal velocity 𝑉𝜙 is also linked to wind forcing amplitude in NAVGEM

solution by 𝜏𝜙max ∼
𝑎𝑣𝑉

top surface
𝜙
𝐻𝑤

(Eq. (19)) where 𝑉 top surface
𝜙 ∼ 𝑉𝜙𝐻

𝐻𝑤
and

we have
𝜕𝜏∗𝜙
𝜕𝜃∗ ∼ 1

𝑘𝜃
. In addition, the vertical velocity magnitude is related

to the meridional velocity magnitude through 𝑉𝑟
𝐻 ∼ 𝑉𝜃

𝑅(𝜃2−𝜃1)
according

to the continuity equation in a periodic channel configuration (Eq. (5)).
It should be that 𝑉𝜃 ∼ 𝜀𝑉𝜙 as previously shown in Fig. 3.

Using the above definitions, the order of magnitude analysis of
the coefficients in the governing vorticity equation (26) based on the
maximum velocity, vorticity, and dissipation values delineates two
groups of terms
𝜏𝜙max

𝐻

𝑎𝑣𝑍𝑙
1
𝑘𝜃

≈
𝛾𝐻𝐻𝑏
𝑎𝑣

≈ 𝑂
(

100
)

,

𝑎ℎ
𝑎𝑣
𝐻2

𝑙2
≈

2𝛺𝐻𝑉𝑟
𝑎𝑣𝑍

≈
2𝛺𝐻2𝑉𝜃
𝑎𝑣𝑅𝑍

≈ 𝑂
(

10−1
)

.
(28)

The first group includes the dissipative term involving the second-
order vorticity derivative in the vertical direction, the wind stress,
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and the bottom friction. The second group includes the Coriolis and
meridional derivative terms.

By combining all the above arguments and following the multiscale
approach of Naghibi et al. (2019) and Naghibi et al. (2017), the
overning vorticity equation (22) is decomposed into two parts, the
arge-scale and the small-scale vorticity equations:

𝜕2𝜁∗(𝐿)

𝜕𝑧∗2
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜏𝜙max
𝑎𝑣

𝐻
𝑍𝑙

1
𝑟∗

[

1
sin 𝜃

𝜕
𝜕𝜃∗

(

sin 𝜃𝜏∗𝜙
)]

, 𝑟𝑤 < 𝑟 < 𝑅,

0, 𝑟𝑏 < 𝑟 < 𝑟𝑤,
𝛾𝐻𝐻𝑏
𝑎𝑣

𝜁∗(𝐿), 𝑟min < 𝑟 < 𝑟𝑏,

(29)

2𝛺𝐻2𝑉𝜃
𝑎𝑣𝑅𝑍

1
𝑟∗

sin 𝜃𝑣∗𝜃 +
2𝛺𝐻𝑉𝑟
𝑎𝑣𝑍

cos 𝜃
𝑟∗2

𝜕
(

𝑟∗2𝑣∗𝑟
)

𝜕𝑧∗

+
𝑎ℎ𝐻2

𝑎𝑣𝑙2
1
𝑟∗2

(

𝜕2𝜁∗(𝑙)

𝜕𝜃∗2
+ 𝑙
𝑅

cot 𝜃
𝜕𝜁∗(𝑙)

𝜕𝜃∗

)

+
𝜕2𝜁∗(𝑙)

𝜕𝑧∗2
= 0. (30)

Reverting the large-scale and small-scale equations back to their
dimensional forms, the following equations can be obtained

𝑎𝑣
𝜕2𝜁 (𝐿)

𝜕𝑟2
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑟𝐻𝑤

[

1
sin 𝜃

𝜕
𝜕𝜃

(

sin 𝜃𝜏𝜙
)

]

, 𝑟𝑤 < 𝑟 < 𝑅, (𝑎)

0, 𝑟𝑏 < 𝑟 < 𝑟𝑤, (𝑏)

𝛾𝜁 (𝐿), 𝑟min < 𝑟 < 𝑟𝑏, (𝑐)

(31)

2𝛺
𝑟

[

sin 𝜃𝑣𝜃 +
cos 𝜃
𝑟

𝜕
(

𝑟2𝑣𝑟
)

𝜕𝑟

]

+
𝑎ℎ
𝑟2

(

𝜕2𝜁 (𝑙)

𝜕𝜃2
+ cot 𝜃

𝜕𝜁 (𝑙)

𝜕𝜃

)

+ 𝑎𝑣
𝜕2𝜁 (𝑙)

𝜕𝑟2
= 0.

(32)

Eq. (31) states that the vertical dissipation of the relative vorticity is
balanced by the vorticity input from surface winds and bottom friction.
The equation is solved by integration in the vertical direction. For
integration, a factorization 𝜁 (𝐿) (𝑟, 𝜃) = 𝑅𝐿 (𝑟)𝛩𝐿 (𝜃) is applied where
the meridional function 𝛩𝐿 (𝜃) is assumed to be the same as in the
wind stress curl and is, thus, derived from the NAVGEM solution (see
Eqs. (20)–(21) and Fig. 4). This substitution reduces the governing
problem to an ordinary differential equation in the vertical direction,
which can be integrated numerically using the boundary conditions in
accordance with the NAVGEM model.

The small-scale vorticity equation (32) involves advection of plan-
etary vorticity, vertical stretching and small-scale vorticity dissipation.
From a technical point of view, the solution of (32) is more complicated
han the solution of the large-scale balance. It requires solving the
on-homogeneous partial differential equation

𝑎ℎ
𝑟2

(

𝜕2𝜁 (𝑙)

𝜕𝜃2
+ cot 𝜃

𝜕𝜁 (𝑙)

𝜕𝜃

)

+ 𝑎𝑣
𝜕2𝜁 (𝑙)

𝜕𝑟2
= 𝐹 , (33)

epresenting a traditional linear vorticity balance where the term

= 𝐹1 + 𝐹2, (33a)

ncludes the advection of planetary vorticity (beta-term), 𝐹1 = − 2Ωsin𝜃𝑣𝜃
𝑟

and the vertical stretching term, 𝐹2 = − 2Ωcos𝜃
𝑟2

𝜕
(

𝑟2𝑣𝑟
)

𝜕𝑟 .
It should be noted that the latter source term includes important non

uasi-geostrophic effects, which result in additional fine-scale mixing.
he effects of mixing will be balanced by viscous dissipation, as will be
iscussed in the numerical results section.
To eliminate the radial velocity component from the equation, the

atter term can be rewritten in terms of the meridional velocity 𝑣𝜃 ,
2 = 2Ωcot𝜃

𝑟
𝜕(sin 𝜃𝑣𝜃)

𝜕𝜃 , using the continuity equation (5) in a zonally
averaged periodic channel.

First, to find a solution to the homogeneous part of Eq. (33), we use
eparation of variables 𝜁 (𝑙) (𝑟, 𝜃) = 𝑅𝑙 (𝑟)𝛩𝑙 (𝜃) to obtain
𝑎ℎ (

𝑅 𝛩′′ + cot 𝜃𝑅 𝛩′) + 𝑎 𝑅′′𝛩 = 0. (34)

𝑟2 𝑙 𝑙 𝑙 𝑙 𝑣 𝑙 𝑙

7

After a rearrangement, (34) reduces to

𝑎ℎ
𝑎𝑣𝑟2

𝛩′′
𝑙 + cot 𝜃𝛩′

𝑙
𝛩𝑙

= −
𝑅′′
𝑙
𝑅𝑙

= − 1
𝜆2
. (35)

The resulting solution components 𝑅𝑙 (𝑟) and 𝛩𝑙 (𝜃) satisfy the ordi-
ary differential equations as follows:
𝑎ℎ
𝑟2

(

𝛩′′
𝑙 + cot 𝜃 𝛩′

𝑙
)

+
𝑎𝑣
𝜆2
𝛩𝑙 = 0, (36)

𝑅′′
𝑙 − 1

𝜆2
𝑅𝑙 = 0, (37)

where the constant parameter 𝜆 is computed by fitting the exponen-
tial function to the vertical distribution obtained from the small-scale
vorticity component in the HYCOM simulations,

𝑅𝑙 = 𝑅◦
𝑙 𝑒

𝜆(𝑟−𝑅). (38)

By substituting (38) into the small-scale equation (33) the latter is
earranged to an ordinary differential form,
𝑎ℎ
𝑟2

(

𝜕2𝜁 (𝑙)

𝜕𝜃2
+ cot 𝜃

𝜕𝜁 (𝑙)

𝜕𝜃

)

+
𝑎𝑣
𝜆2
𝜁 (𝑙) = 𝐹 . (39)

Since 𝑎ℎ is a non-linear function of the zonal velocity gradient, using
Eq. (11), the vorticity equation (39) is rearranged in terms of the single
dependent variable 𝑣(𝑙)𝜙 for solution,

𝑎ℎ
𝑟3

⎡

⎢

⎢

⎣

𝜕3𝑣(𝑙)𝜙
𝜕𝜃3

+ 2 cot 𝜃
𝜕2𝑣(𝑙)𝜙
𝜕𝜃2

− (2 + cot 2𝜃)
𝜕𝑣(𝑙)𝜙
𝜕𝜃

+ cos 𝜃
sin 3𝜃

𝑣(𝑙)𝜙
⎤

⎥

⎥

⎦

+
𝑎𝑣
𝜆2𝑟

⎛

⎜

⎜

⎝

𝜕𝑣(𝑙)𝜙
𝜕𝜃

+ 𝑣(𝑙)𝜙 cot 𝜃
⎞

⎟

⎟

⎠

= 𝐹 . (40)

Once the term F is known from HYCOM data, the resulting ordinary
differential equation (40) is solved numerically as an initial-value
problem using the 5th order Runge–Kutta scheme.

In the solution process, the northern boundary condition corre-

sponds to an inflection point where
𝜕2𝑣(𝑙)𝜙
𝜕𝜃2

|𝜃=𝜃1 = 𝑣(𝑙)𝜙 |𝜃=𝜃1 = 0 and

the first-order derivative
𝜕𝑣(𝑙)𝜙
𝜕𝜃 |𝜃=𝜃1 is evaluated from the small-scale

orticity component of the HYCOM solution.
Notably, Eq. (40) permits harmonic-type solutions similar to the
eridionally distributed alternating jets shown in Fig. 5b. Such alter-
ating zonal jets were observed in shear driven channel flows in the
revious literature (Berloff et al., 2009b; Kamenkovich et al., 2009;
erloff et al., 2011).
The solutions to Eqs. (31) and (40) are obtained by multiply-

ng corresponding 𝑟 and 𝜃 functions following separation of variables
𝜁 (𝐿) (𝑟, 𝜃) = 𝑅𝐿 (𝑟)𝛩𝐿 (𝜃) and 𝜁 (𝑙) (𝑟, 𝜃) = 𝑅𝑙 (𝑟)𝛩𝑙 (𝜃)) and finally need
o be superposed to obtain the total vorticity (Eq. (25)).
To summarize, guided by the scale separation observed in the spec-

ral analysis of HYCOM solution and using scale analysis, we derived
qs. (31) and (40) from the vorticity equation (18) for large- and
mall-scale vorticity components. To complete the two-scale model,
oupling of the large- and the small-scale components is achieved
hrough the nonlinear eddy viscosity closure for 𝑎𝑇ℎ , which involves the
otal velocity (Eq. (14), 𝑆𝑖𝑗 = 𝑆

(𝐿)
𝑖𝑗 + 𝑆

(𝑙)
𝑖𝑗 and 𝑆

(𝐿)
𝑖𝑗 ∼ 𝑆

(𝑙)
𝑖𝑗 ). Hence, the

small-scale zonal jets described by (40) are coupled to the background
large-scale flow through eddy viscosity.

3. Numerical results

3.1. Comparison with HYCOM simulations

First, the semi-analytical solution for the large-scale vorticity com-
ponent (31) is compared with the distribution of the first peak in
he vorticity wavenumber spectrum as a function of depth extracted
rom HYCOM simulations. Fig. 8 shows in all three depth regions the
reduced-order model is in good agreement with the HYCOM data.
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Fig. 8. The large-scale vorticity as a function of depth in the reduced-order model and HYCOM simulations.
Fig. 9. Comparison of the reduced-order model solutions with the HYCOM data for the time-, vertically- and zonally averaged zonal velocity (a) and the corresponding wavenumber
spectrum (b).
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Next, Eq. (40) is solved where the source terms, 𝐹1 = − 2Ωsin𝜃𝑣𝜃
𝑟 and

2 = 2Ωcot𝜃
𝑟

𝜕(sin 𝜃𝑣𝜃)
𝜕𝜃 are computed from the time and zonally averaged

meridional velocity 𝑣𝜃 of the HYCOM solution (Fig. 3). Notably, the
direct computation of 𝜕𝑣𝜃

𝜕𝜃 in the 𝐹2 term involves numerical differen-
iation of a small-amplitude quantity (|

|

𝑣𝜃|| ≪
|

|

|

𝑣𝜙
|

|

|

), which is a noisy
peration due to the fine scales involved. The noise occurs due to
he insufficient vertical resolution of the HYCOM solution, which was
nterpolated into z-level coordinates while varying locally in the zonal
nd meridional directions depending on the bottom topography.

To counteract the fine-scale vertical stretching term 𝐹2 in the frame-
ork of the reduced-order model, the coefficients 𝑎𝑣 and 𝑎ℎ are adjusted

so that the viscous balance is explicitly preserved. Specifically, we
represent the source term F by a random noise forcing with the variance
xtracted from the meridional velocity distribution in the HYCOM data
nd this reduces Eq. (40) to a Langevin model. The latter model was
riginally developed to describe the Brownian motion of particles in
iscous liquids, where the balance of deterministic dissipation and ran-
om fluctuation due to particle–particle collisions fully determines how
he variance of the particle coordinate evolves in time (Van Kampen,
992). In the present case, the meridional ocean coordinate is used as
he homogeneous evolution variable of the Langevin equation instead
f time and the small-scale vorticity is used instead of the particle
oordinate. Then the values of dissipation coefficients 𝑎 and 𝑎 , which
𝑣 ℎ

8

re required to preserve the desired meridional variance of vorticity
n accordance with the HYCOM data, are evaluated following the
angevin theory (see details in the Appendix). After this, the computed
issipation coefficients 𝑎𝑣 and 𝑎ℎ are substituted in Eq. (40), which
is integrated numerically with the Runge–Kutta method as outlined in
Section 2.3.2.

Figs. 9 and 10 compare results of the two-scale model (31) and
(40), using the turbulence eddy viscosity coefficient 𝐶𝑠 = 0.2, with
the HYCOM solution. Fig. 9a shows the time-, vertically- and zonally-
averaged zonal velocity profiles and Fig. 9b shows the wavenumber
spectra of the velocity fluctuations for the reduced-order model and
the reference HYCOM solution. The fluctuations are calculated with
respect to the mean flow (i.e. the meridional average). Fig. 10 show
the same comparisons as Fig. 9 but for the vorticity. Figs. 11 and 12
present time- and zonally averaged profiles and wavenumber spectra
for the zonal velocity and vorticity in the top layer in comparison with
the corresponding solution components of the HYCOM dataset.

It can be noted that the velocity and vorticity profiles predicted by
the reduced-order model are in good agreement with the HYCOM sim-
ulations. Furthermore, the first peak, corresponding to the large-scale
solution component, and the 10th peak, corresponding to the small-
scale solution component (wavelength of 256 km), in the velocity and
vorticity spectra of the reduced-order model are in excellent agreement
with reference HYCOM data.
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Fig. 10. Comparison of the reduced-order model solutions with the HYCOM data for the time-, vertically- and zonally averaged vorticity profile (a) and the corresponding
avenumber spectrum (b).
Fig. 11. Comparison of the reduced-order model solutions with the HYCOM data for the time- and zonally averaged zonal velocity (a) and the corresponding wavenumber spectrum
(b) in the top layer.
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Good agreement for the velocity and vorticity distributions in the
top layer between the model predictions and the HYCOM data also
confirms that the dissipation coefficients 𝑎ℎ and 𝑎𝑣 and boundary
conditions in Eq. (40) have been defined consistently.

3.2. Comparison with the quasi-geostrophic model of the zonal channel

To test the robustness of the suggested reduced-order model as well
as obtain further insights into the importance of non quasi-geostrophic
effects such as those included in the large vertical stretching term
extracted from the HYCOM simulation, the same model is also applied
to reconstruct the solution of an idealized quasi-geostrophic model. In
contrast to the HYCOM model, the quasi-geostrophic model consid-
ers an idealized flow domain corresponding to a shear-driven zonal
re-entrant channel. As outlined in Section 2.2, the quasi-geostrophic
model includes three vertical layers and a flat bottom topography and
is designed to represent main features of the flow in the HYCOM
simulations.

Specifically, large-scale forcing in the quasi-geostrophic model was
imposed by a background shear rather than wind stress. This back-
ground flow corresponds to the large-scale zonal velocity in the reduced
order-model, 𝑣(𝐿)𝜙 = constant, and hence Eq. (31) is not required in
his case. In addition, the quasi-geostrophic model simulates zonal
9

ets (Fig. 2) that are similar to their counterparts in the more com-
lex HYCOM model. With a suitable recalibration of parameters, the
mall-scale equation in the reduced order model (Eq. (40)) can de-
cribe the zonal jet structure in the quasi-geostrophic model as well as
YCOM.
To solve Eq. (40), 𝑎𝐿ℎ is directly replaced by the lateral viscosity

arameter 𝑣 = 10 𝑚2 s−1 in Eq. (2) and the turbulence eddy viscosity
oefficient is adjusted to 𝐶𝑠 = 0.75. Similar to the HYCOM case, the
ddy viscosity term couples the small-scale equation to the background
onstant flow. The advection of planetary vorticity 𝐹1 and the vertical
tretching term 𝐹2 are computed from the time and zonally averaged
eridional velocity 𝑣𝜃 and its meridional gradient as well as the con-
tant 𝛽 = 1.3×10−11 m−1 s−1 in the quasi-geostrophic model. Consistent
ith the flat bottom topography in the quasi-geostrophic model, the
onal mean meridional velocity and the 𝐹1 term are almost zero. The
agnitude of the vertical velocity is also less than Ro𝑉𝜙𝐻

𝐿 (where Ro
is the Rossby number) and hence the zonal-mean vertical stretching
term 𝐹2 is much smaller than in the HYCOM solution. As a result, no
fine-scale Langevin adjustment of the effective viscosity parameters is
applied to the viscous balance of the quasi-geostrophic effects.

Similar to the procedure used for the analysis of the HYCOM simu-
lations, the vertical distribution parameter 𝜆 is computed by matching
the solution of the quasi-geostrophic model as shown in Fig. 13 from
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Fig. 12. Comparison of the reduced-order model solutions with the HYCOM data for the time- and zonally averaged vorticity (a) and the corresponding wavenumber spectrum
(b) in the top layer.
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Fig. 13. Validation of the reduced-order model for the small-scale vorticity solution
versus depth in comparison with the quasi-geostrophic model.

which the effective length scale 𝜆 = 400 m is obtained. In the quasi-
geostrophic model, the dependence of zonal jets on parameters such
as bottom friction and background velocity (Berloff et al., 2011) is
agglomerated in the parameter 𝜆. Furthermore, since the vertical dis-
sipation term does not enter the quasi-geostrophic governing equation,
the corresponding coefficient is assumed to have the same value as in
HYCOM, 𝑎𝑣 = 5×10−3 𝑚2 s−1. Notably, the same value of the coefficient
was also reported in other primitive equation models (Dijkstra et al.,
2001).

After the recalibration of the parameters of the semi-analytical
model (Eq. (40)) for the quasi-geostrophic zonal channel case, it is
solved numerically using Runge–Kutta method as for the HYCOM
model previously. Results of the semi-analytical model for the quasi-
geostrophic zonal channel are shown in Figs. 14 and 15. It can be noted
that the solution of the reduced-order model captures the meridional
structure of zonal jets of the quasi-geostrophic model very well. In
particular, the reduced-order model accurately predicts the dominant
peaks of the velocity and vorticity spectra.

4. Conclusion

Time- and zonally averaged properties of multiple zonal jets in the
Southern Ocean are examined through developing a semi-analytical
model that is based on the two-scale flow decomposition approach.
10
The development of the model is informed by a high-fidelity HY-
COM numerical simulation of the Southern Ocean region. The results
of the semi-analytic model are further compared with an idealized
quasi-geostrophic model configured for the same ocean region. The
semi-analytical quasi-linear model captures the main two features of
the flow: the large-scale zonal current and multiple alternating zonal
jets. To implicitly represent nonlinear effects in the HYCOM model, the
suggested two-scale model uses a combination of suitably calibrated
Smagorinsky eddy-viscosity and Langevin dissipation model. The latter
is especially important for capturing non-quasi-geostrophic effects such
as those due to the vertical stretching term.

This framework allows preserving important features of the sim-
ulated flow such as the spatial distribution of zonal jets and their
wavenumber spectra in a semi-analytical model ideally suitable for
parametric studies. To probe the robustness of the suggested semi-
analytical model and obtain physical insights on the importance of
non-quasi-geostrophic effects, the reduced-order model is further ap-
plied to a quasi-geostrophic model of the same oceanic region. Despite
significant differences between assumptions and numerical approxima-
tions used in HYCOM and the quasi-geostrophic channel model, the
current reduced-order model can capture pertinent features of the zonal
jets and elucidate the viscous balance in each case.

In contrast to several existing dynamical models of zonal jets based
on idealized linear and nonlinear dynamics (Kaspi and Flierl, 2007;
Farrell and Ioannou, 2008; Berloff et al., 2009a; Rhines, 1979) the sug-
ested semi-analytical model is derived from full solutions. It combines
orrelated large-scale and uncorrelated small-scale forcing to explicitly
onsider the viscous balance at each scale, which is required to main-
ain zonal jets in a statistically stationary regime. Following this ap-
roach, it is shown that, despite complexity of the underlying physics,
onal jets effectively exhibit a quasi-linear harmonic behavior, where
he advection of planetary vorticity and the vertical stretching term are
alanced by horizontal and vertical viscous mixing. This results in a
iscous balance driven by both quasi-geostrophic effects, such as those
nduced by the large-scale wind forcing and non-quasi-geostrophic
ffects, due to the vertical motions and dissipation.
In future work, the suggested reduced-order model may be extended

o elucidate the importance of viscous effects at different spatial scales
n closed or semi-closed ocean basins, such as the Pacific Ocean where
onal jets coexist with gyre circulations.
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Fig. 14. Comparison of the reduced-order model solutions with the quasi-geostrophic model for the time, layer and zonally-averaged zonal velocity profile (a) and the corresponding
wavenumber spectrum (b).
Fig. 15. Comparison of the reduced-order model solutions with the quasi-geostrophic model for the time, layer and zonally-averaged vorticity profile (a) and the corresponding
avenumber spectrum (b).
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ppendix A. A cartesian representation of the reduced-order model
n beta plane

Here, we present the reduced-order governing equations in the
artesian coordinate system (𝑥, 𝑦, 𝑧) attached to the local beta-plane
ncompassing 𝑥 (west to east) and 𝑦 (south to north) directions and
erpendicular to the vertical axis 𝑧. The 𝑧 coordinate is related to
he radial coordinate in spherical coordinate system according to 𝑧 =
− 𝑟min = 𝑟−

(

𝑅 −𝐻max
)

. The velocity vector components are given by
𝐯 = (𝑢, 𝑣,𝑤) satisfying the continuity equation
𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

= 0. (A.1)

The evolution of the vertical vorticity component, 𝜁 = 𝜕𝑣
𝜕𝑥 −

𝜕𝑢
𝜕𝑦 , is given

by the 𝑧 component of Eq. (4) according to

𝜕𝜁
𝜕𝑡

= −2𝛺
𝑟

sin 𝜃 𝑣+ 2Ωcos𝜃 𝜕𝑤
𝜕𝑧

+ 𝐼conv (𝑢, 𝑣) + 𝑎𝐿ℎ

(

𝜕2𝜁
𝜕𝑥2

+
𝜕2𝜁
𝜕𝑦2

)

+ 𝑎𝑣
𝜕2𝜁
𝜕𝑧2

,

(A.2)

where the nonlinear term is 𝐼conv (𝑢, 𝑣) = −𝑢 𝜕𝜁𝜕𝑥 − 𝑣 𝜕𝜁𝜕𝑦 and 𝑎𝐿ℎ and
𝑎𝑣 are the horizontal and vertical viscosity coefficients. Using the
variable change 𝜏 = 𝜋

2 − 𝜃 for the latitudinal angle and linearizing the
trigonometric terms around the midlatitude, Eq. (A.2) can be written
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as
𝜕𝜁
𝜕𝑡

= −𝛽 𝑣+
(

𝑓0 + 𝛽𝑦
) 𝜕𝑤
𝜕𝑧

−𝑢
𝜕𝜁
𝜕𝑥

−𝑣
𝜕𝜁
𝜕𝑦

+𝑎𝐿ℎ

(

𝜕2𝜁
𝜕𝑥2

+
𝜕2𝜁
𝜕𝑦2

)

+𝑎𝑣
𝜕2𝜁
𝜕𝑧2

, (A.3)

here 𝛽 = 2𝛺
𝑅 , 𝑓0 = 2Ωsin𝜏0 and 𝜏0 =

𝜋−(𝜃1+𝜃2)
2 .

Despite similarities with the quasi-geostrophic formulation such as
he low Rossby number assumption, we do not consider any restriction
n vertical velocity in Eq. (A.3) and hence the term 𝛽𝑦 𝜕𝑤𝜕𝑧 is not
neglected in the equation. Eq. (A.3) also has a vertical dissipation
term 𝑎𝑣

𝜕2𝜁
𝜕𝑧2

which is not typically considered in the quasi-geostrophic
odel while it agglomerates nonlinear effects in the term 𝑎𝑇ℎ . Eq. (3)

allows for smooth derivatives in the vertical direction and is neither
barotropic nor stratified. Notably, our original formulation in spherical
coordinates does restrict the meridional size of the domain in contrast
to beta-plane approximation which is one of the key idealizations in
the quasi-geostrophic model.

Eq. (A.3) is next integrated in time and in the zonal direction 𝑥:

∬

{

𝜕𝜁
𝜕𝑡

+ 𝛽 𝑣 −
(

𝑓0 + 𝛽𝑦
) 𝜕𝑤
𝜕𝑧

+ 𝑢
𝜕𝜁
𝜕𝑥

+𝑣
𝜕𝜁
𝜕𝑦

− 𝑎𝐿ℎ

(

𝜕2𝜁
𝜕𝑥2

+
𝜕2𝜁
𝜕𝑦2

)

− 𝑎𝑣
𝜕2𝜁
𝜕𝑧2

}

d𝑥 d𝑡 = 0, (A.4)

and the vorticity and all velocity components are decomposed into the
time- and zonal-mean and fluctuation parts denoted by the overbar and
primes, respectively:

𝜁 (𝑥, 𝑦, 𝑧, 𝑡) = 𝜁 (𝑦, 𝑧) + 𝜁 ′ (𝑥, 𝑦, 𝑧, 𝑡) , 𝑣 (𝑥, 𝑦, 𝑧, 𝑡)

= 𝑣 (𝑦, 𝑧) + 𝑣′ (𝑥, 𝑦, 𝑧, 𝑡) , 𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢 (𝑦, 𝑧) + 𝑢′ (𝑥, 𝑦, 𝑧, 𝑡) . (A.5)

By definition, the mean fields satisfy

𝜕𝜁
𝜕𝑡

= 𝜕𝑢
𝜕𝑡

= 𝜕𝑣
𝜕𝑡

= 0,

𝜕𝜁
𝜕𝑥

= 𝜕𝑢
𝜕𝑥

= 𝜕𝑣
𝜕𝑥

= 0,
(A.6)

and the zonally averaged vorticity is expressed in terms of zonal
velocity only 𝜁 = − 𝜕𝑢

𝜕𝑦 .
The difference between the time- and zonally averaged nonlinear

erm 𝐼conv (𝑢, 𝑣) = −𝑢 𝜕𝜁𝜕𝑥 −𝑣
𝜕𝜁
𝜕𝑦 and 𝐼

conv (𝑢, 𝑣
)

is approximated using the
turbulence eddy viscosity

𝑎𝑇ℎ

(

𝜕2𝜁
𝜕𝑦2

)

= 𝐼conv (𝑢, 𝑣) − 𝐼conv
(

𝑢, 𝑣
)

, (A.7)

where 𝑎𝑇ℎ is the turbulent eddy viscosity coefficient computed using the
classical Smagorinsky model (Smagorinsky, 1963) (see Eqs. (14) and
(15)).

Given Eq. (A.6) and the small value of the zonal-mean meridional
velocity in comparison with the zonal velocity in a periodic chan-
nel configuration (Fig. 3), 𝐼conv

(

𝑢, 𝑣
)

is neglected. Hence, the mean
vorticity equation (A.3) reduces to

−𝛽 𝑣 +
(

𝑓0 + 𝛽𝑦
) 𝜕𝑤
𝜕𝑧

+
(

𝑎𝐿ℎ + 𝑎𝑇ℎ
) 𝜕2𝜁
𝜕𝑦2

+ 𝑎𝑣
𝜕2𝜁
𝜕𝑧2

= 0, (A.8)

where bars are dropped for simplicity in presentation.
With incorporating surface and bottom boundary conditions as body

forces, Eq. (A.8) becomes

𝛽 𝑣 +
(

𝑓0 + 𝛽𝑦
) 𝜕𝑤
𝜕𝑧

+
(

𝑎𝐿ℎ + 𝑎𝑇ℎ
) 𝜕2𝜁
𝜕𝑦2

+ 𝑎𝑣
𝜕2𝜁
𝜕𝑧2

−𝑄𝜏 − 𝛾𝑔 (𝑧) 𝜁 = 0, (A.9)

where 𝑄𝜏 = 𝑓 (𝑧)
𝐻𝑤

𝜕𝜏𝑥
𝜕𝑦 is the surface wind forcing, 𝜏𝑥 is the wind stress in

onal direction, 𝑓 (𝑧) = H
(

𝐻max −𝐻𝑤
)

− H
(

𝐻max
)

is the top vertical
rofile function in the interval 𝐻max − 𝐻𝑤 < 𝑧 < 𝐻max(𝐻max =
000,𝐻𝑤 = 7.5 𝑚), and H denotes the Heaviside step function. 𝛾 is
he bottom friction coefficient and 𝑔 (𝑧) = H (0) − H

(

𝐻𝑏
)

is the bottom
ertical profile function in the interval 0 < 𝑧 < 𝐻 (𝐻 = 2500 𝑚).
𝑏 𝑏 a

12
Inspired by the scale separation in the spectral analysis of HYCOM
olution and using an order of magnitude analysis as detailed in Sec-
ion 2.3.2, Eq. (A.9) can be decomposed into two governing equations
or large-scale (𝜁 (𝐿)) and small-scale (𝜁 (𝑙)) vorticity components as
elow:

𝑣
𝜕2𝜁 (𝐿)

𝜕𝑧2
=

⎧

⎪

⎨

⎪

⎩

1
𝐻𝑤

𝜕𝜏𝑥
𝜕𝑦 , 𝐻max −𝐻𝑤 < 𝑧 < 𝐻max, (𝑎)

0, 𝐻𝑏 < 𝑧 < 𝐻max −𝐻𝑤, (𝑏)

𝛾𝜁 (𝐿), 0 < 𝑧 < 𝐻𝑏, (𝑐)

(A.10)

ℎ
𝜕2𝜁 (𝑙)

𝜕𝑦2
+ 𝑎𝑣

𝜕2𝜁 (𝑙)

𝜕𝑧2
= 𝛽 𝑣 −

(

𝑓0 + 𝛽𝑦
) 𝜕𝑤
𝜕𝑧

= 𝐹1 + 𝐹2, (A.11)

here 𝑎ℎ = 𝑎𝐿ℎ + 𝑎𝑇ℎ .

Appendix B. A Langevin model of the effective dissipation for the
small-scale vorticity distribution

By assuming that the multiple jet structure in the 𝜃–direction is
quasi-periodic, the second-order vorticity derivative is approximated by
𝜕2𝜁 (𝑙)

𝜕𝜃2
≈ −𝑚2𝜁 (𝑙). With this approximation, Eq. (33) becomes

𝑎ℎ
𝑟2

(

−𝑚2𝜁 (𝑙) + cot 𝜃
𝜕𝜁 (𝑙)

𝜕𝜃

)

+
𝑎𝑣
𝜆2
𝜁 (𝑙) = 𝐹 , (B.1)

which can be expressed in terms of 𝜏 = 𝜋
2 − 𝜃 as

𝑎ℎ
𝑟2

(

−𝑚2𝜁 (𝑙) − tan 𝜏
𝜕𝜁 (𝑙)

𝜕𝜏

)

+
𝑎𝑣
𝜆2
𝜁 (𝑙) = 𝐹 . (B.2)

Eq. (B.2) can be re-arranged to the Langevin equation form,

𝜕𝜁 (𝑙)

𝜕𝜏
= −𝛼1𝜁 (𝑙) + 𝑓, (B.3)

here 𝛼1 =
(

𝑚2 − 𝑎𝑣𝑟2

𝑎ℎ𝜆2

)

cot 𝜏 > 0 and 𝑓 = − 𝑟2 cot 𝜏
𝑎ℎ

𝐹 , wherein 𝐹 is given
y (33a).
According to the Langevin model, the first term, −𝛼1𝜁 (𝑙) corre-

ponds to the energy dissipation and the second term, 𝑓 corresponds
o the stochastic forcing, which generates energy to be balanced by the
issipation.
In accordance with HYCOM data, the random forcing has approxi-
ately zero mean, ⟨𝑓 (𝜏)⟩ = 0 and is uncorrelated, i.e.

⟨

𝑓 (𝜏) 𝑓
(

𝜏′
)⟩

=
𝛿
(

𝜏 − 𝜏′
)

with 𝛤 being the strength of the Langevin force term.
Following Van Kampen (1992), the solution of Eq. (B.3) is

𝜁 (𝑙) (𝜏) = 𝜁 (𝑙)0 𝑒
−𝛼1𝜏 + 𝑒−𝛼1𝜏 ∫

𝜏

0
𝑒𝛼1𝜏

′
𝑓
(

𝜏′
)

𝑑𝜏′, (B.4)

where 𝜁 (𝑙) (0) = 𝜁 (𝑙)0 corresponds to vorticity at 𝜏 = 𝜏1 = 𝜋
2 − 𝜃1 and the

variance of 𝜁 (𝑙) (𝜏) is given by

𝜁 (𝑙) (𝜏)
⟩2 =

(

𝜁 (𝑙)
2

0 − 𝛤
2𝛼1

)

𝑒−2𝛼1𝜏 + 𝛤
2𝛼1

. (B.5)

To ensure that
⟨

𝜁 (𝑙) (𝜏)
⟩2 is bounded, the condition 𝛤 = 2𝛼1𝜁

(𝑙)2
0 must be

atisfied. This means that, in equilibrium, the strength of the fluctuating
orce is balanced by the dissipation according to

(𝑙)2
0 =

var (𝐹 )

2
(

𝑎ℎ
𝑟2

)2 (
𝑚2 − 𝑎𝑣𝑟2

𝑎ℎ𝜆2

)

cot 𝜃
. (B.6)

Notably, to obtain the meridional vorticity variance in accordance with
the HYCOM dataset, the denominator in (B.6) needs to be adjusted
accordingly. It follows that the ratio of dissipation parameters, 𝑎𝑣

𝑎ℎ
can

e kept the same as in the HYCOM description (Wallcraft et al., 2009)
hile simultaneously scaling 𝑎𝑣 and 𝑎ℎ to attain the same vorticity
ariance as the HYCOM data. The scaling of 𝑎ℎ applies to both linear
nd nonlinear parts 𝑎𝐿 and 𝑎𝑇 .
ℎ ℎ
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The dissipation coefficient value 𝑎ℎ which is needed to balance the
effect of the forcing 𝐹 = 𝐹1 + 𝐹2 in the solution of the small-scale
vorticity equation (33) is then given by

𝑎ℎ =
√

√

√

√

√

var (𝐹 )

2
𝜁 (𝑙)

2
0
𝑟4

(

𝑚2 − 𝑎𝑣𝑟2

𝑎ℎ𝜆2

)

cot 𝜃

. (B.7)
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