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Abstract:  The purpose of this paper is to assess the capability of an artificial neural network 

(ANN) to implement a nonlinear state feedback optimal control law for a double integrator 

plant.  In this case, the cost function to be minimised is the settling time subject to control 

saturation constraints.  The reason for selection of this cost function is that the control law is 

known in the analytical form and this will be used to form a benchmark.  The ultimate aim is 

to apply the method to form a new direct state feedback optimal position control law for 

mechanisms in which the frictional energy loss is minimised.  An analytical solution is not 

available in this case so first the time optimal control law is studied to enable straightforward 

comparison on the ANN and directly implemented closed loop control laws. Since 

Pontryagin‟s method will be used to compute the optimal state trajectories for the ANN 

training in the future investigation of the minimum energy loss control, this method is applied 

to derive the time optimal double integrator state trajectories to illustrate the method.  

Furthermore, a modification of the time optimal control law is made that avoids the control 

chatter following a position change that would occur if a practical implementation of the 

basic control law, which is bang-bang, were to be attempted.  Training the ANN with state 

and control data could be inaccurate due to the discontinuity of the control law on the 

switching boundary in the state space.  This problem is overcome by the authors by instead 

training the ANN with state and switching function data, as the switching function is 

nonlinear but continuous, the control function, i.e., the function relating the switching 

function output to the control variable, being externally implemented. The simulations 

confirm that the ANN can be trained to accurately reproduce the time optimal control.  

1. Introduction: 

The celebrated minimum (or maximum) 

principle of Pontryagin has been used to 

tackle various optimal control problems in 

the past for finding the “best” or the 

“optimal” solution according to a selected 

cost function while respecting control 

saturation constraints. The overall objective 

of the research programme to which this 

paper contributes is to minimise the 

frictional energy loss in motion control 

systems employing electric drives. In this 

case an analytical solution in the form of a 

nonlinear state feedback control law has not 

yet been derived and does not appear to be 

mathematically tractable. This would 

therefore be one of many problems in which 

Pontryagin‟s method would be used to 

compute optimal control trajectories off line 

and implement them open-loop in real time. 

This has worked sometimes in process 

control applications but is impracticable in 

high dynamic motion control applications. 

Hence the approach taken by the authors is 

to use the optimal trajectories computed by 

Pontryagin‟s method to train an artificial 

neural network to produce the optimal 

controls when presented with the 

corresponding plant state variables and 

reference inputs.  Then the ANN provides 
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the means of implementing closed loop 

optimal control whose feedback structure 

affords a degree of robustness against 

external disturbances and plant modelling 

errors.  As one of the first steps in achieving 

this goal, this paper is focused on 

establishing how well an ANN can 

implement a known nonlinear optimal state 

feedback control law, i.e., the time optimal 

control of a double integrator plant, an 

application example being the large angle 

slewing control about one axis of a rigid 

body spacecraft.  The reason for choosing 

this example is that the closed loop 

behaviour is very well known and can be 

computed independently of the ANN to form 

a benchmark for performance assessment of 

the corresponding ANN based control. 

Although the closed loop time optimal 

control of a double integrator plant is 

known, it is derived via Pontryagin‟s method 

in this paper to show how the computed 

optimal trajectories are used to train the 

ANN.  

2. Problem statement: 

The double integrator plant is governed by 

the state differential equations 

 
1 2

2

x t x t

x t bu t
  (1) 

where x1 and x2 are the state variables, b is a 

constant input coefficient and u is the 

control variable subject to the control 

saturation constraint 

 max maxu u u   (2)                                                                      

This plant has its title due to the fact that 

1 2x t x t dt  and 2x t b u t dt . 

The classical problem is to „move‟ the plant 

to the origin, 1 2, 0,0x x , of the state 

space from a given initial state, 

0 1 0 2 0,x t x tx  in the shortest 

possible time. In other words, the problem 

under consideration is the time optimal 

control one for the case where the terminal 

position is 1 1 1 2 1, 0,0x t x tx . 

 

3. Time optimal control Derivation: 

3.1. Application of Pontryagin’s method: 

The Hamiltonian function in this case has 

the form 

  (3)          

where 1p  and 2p  are the co-state variables 

satisfying the equations: 

 

1

1

2
1

2

0,

 

dp H

dt dx

dp H
p

dt dx

 (4) 

Hence, 1 1p c  and 2 2 1p c c t  where 1c  

and 2c  are arbitrary constants of integration. 

The control which minimises the 

Hamiltonian is given by 

 
2

2 1[ ]

opt max

max

u t u sgn p

u sgn c c t
 (5) 

It follows that every optimal control 

optu t , , is a piecewise constant 

function that takes on the values  and 

has at most two intervals on which it is 

constant (since the linear function  

changes sign at most once on the interval 

. 

3.2. Closed loop time optimal control by 

ANN training: 

Suppose at this stage an analytical solution 

in the form of a closed loop time optimal 

control law is not available.  Then the 

authors would adopt the following approach 

to obtain a practicable closed loop optimal 

control. For each initial state, 

1 0 2 0,x t x t , the corresponding initial 

co-state, 1 0 2 0 1 2, ,p t p t c c  (if 
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0 0t ) would have to be found for which 

the computed state trajectory, 

1 2,x t x t , obtained by computing the 

numerical solution of (1), (4) and (5), 

reaches the origin, 0,0 , of the state space.  

The result would be the optimal control 

trajectory, 1 2,x t x t , and the 

corresponding optimal control, optu t .  The 

ANN would then be trained to produce 

opt iu t  when presented with 

1 2,i ix t x t , for a selected set of points, 

1,2, ,i N , this being repeated for many 

different initial states, 1 0 2 0,x t x t , so 

that all the selected points spanned the 

operational region of the state space for the 

particular application.  

3.3. Closed loop time optimal control law: 

To form a benchmark for testing the closed 

loop ANN based time optimal controller 

described in subsection 3.2, an analytical 

solution to the problem of closed loop time 

optimal control of the double integrator 

plant will now be derived following the 

method of Dodds (2002). Using the 

information obtained by the application of 

Pontryagin‟s method, the closed loop time 

optimal control may be found from the 

solution of the state trajectory differential 

equations obtained from (1) as follows: 

 1 2 1 2

2 2

x x dx x

x bu dx bu
 (6) 

For any constant value of u, this equation 

may be solved analytically by the method of 

separation of variables. Cross-multiplying 

(6) yields 

 1 2 2

1
dx x dx

bu
 

Integrating then yields:  

2
1 2 2 1 2

1 1

2
dx x dx x x A

bu bu
 (7) 

where A is a constant of integration. 

The closed loop control law is derived by 

determining a switching boundary in the 

phase plane (a term used to describe the 

state space of a second order plant in which 

one state variable is the derivative of the 

other) that divides it into two distinctive 

regions, one in which the positive control 

value is applied and the other in which the 

negative one is applied. The implementation 

of this boundary closes the loop on the plant. 

The particular boundary is chosen for which 

at most one control switch occurs when 

implementing this closed loop system.  

The two phase portraits generated by (7) for 

maxu u  and maxu u  are sketched in 

Fig. 1. 
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Fig.1:  Phase portraits for bang-bang control of a double integrator plant. 

It is evident that the required switching 

boundary is the one comprising the two 

parabolic state trajectory segments that 

terminate at the origin of the phase plain, as 

shown in Fig. 2 and this yields the closed 

loop phase portrait sketched in Fig. 3 that is 

seen to have at most one control switch for 

an arbitrary initial state, as required. 

 
 

 Fig. 2: Time optimal switching boundary 

formed from two state trajectories that 

terminate at the origin. 

 

 
 

Fig. 3: Closed loop time optimal phase 

portrait. 

According to (7) and Fig. 2, the switching 

boundary equation can be determined by the 

combination of the following equations: 

 

which yields: 

2x  
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      (8) 

where . 

Since 2
2 2 2 2x sgn x x x , then the 

switching boundary equation may be written 

as follows: 

 1 2 2
1

2 max

x x x
bu

 (9) 

By inspection of Fig. 2(b), the 

corresponding equation for u, i.e., the 

required control law, may be found as 

follows.  

If then u=-umax    

 (10a)             

If   then u=+umax     

  (10b) 

Finally equations (10a) and (10b) can be 

combined into one equation for the time 

optimal control law: 

 1 2 2
1

[ ]
2

max
max

u u sgn x x x
bu

  (11)     

3.4. Elimination of control chatter: 

The time optimal control law (11) has the 

problem of limit cycling about the origin with 

digital implementation:  Instead of reaching 

the origin and stopping there, the control holds 

its last computed value until the next state 

sample and therefore repeatedly overshoots 

the origin of the phase plane. This problem is 

similar in nature to the control chatter 

experienced with sliding mode control (Utkin, 

1992), which is traditionally overcome by the 

boundary layer method. So this method will 

be applied here. First, control law (11) may be 

separated into a switching function,  

1 2 1 1 1 2 2
max

1
, ,

2
r rS x x x x x x x

bu
 

  (12a)  

and a control function 

 max 1 2 1sgn , , ru u S x x x  (12b) 

Then the switching boundary is replaced by 

a boundary layer, i.e., a region straddling the 

original switching boundary within which 

the control undergoes a smooth transition 

between maxu  and maxu  between its 

edges. This is implemented by replacing the 

signum function of (12b) with the saturation 

function as follows. 

max 1 2 1 maxs , , ,ru u at S x x x K u (13a) 

where  
for 1

s ,
sgn for 1

qx qx
at x q

x qx
. 

Also, the velocity feedback term, 

2 2 max2x x bu  in (12a) diminishes much 

faster than the position error, 1 1rx x  along 

the switching boundary as the origin of the 

phase plane is approached and therefore 

affords insufficient damping.  The position 

error would overshoot the constant reference 

input and thereafter oscillate about the 

required value and the state trajectory would 

travel around the origin of the phase plane 

spiralling in relatively slowly.  This further 

problem is overcome here by adding a linear 

velocity feedback term to the switching 

function (12a) as follows. 

 

1 2 1

1 1 2 2 2
max

, ,

1

2

r

r c

S x x x

x x x x T x
bu

 (13b) 

The system then becomes a sliding mode 

control system with a nonlinear switching 

boundary that gives near-time-optimal 

behaviour for large position demands and 

closely approximates stable first order 
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behaviour with time constant, cT , as the 

origin of the phase plane is approached. 

 

4. ANN training using the near-time-

optimal benchmark control system: 

For this investigation, rather than use 

Pontryagin‟s method directly, the ANN will 

be trained using the states and controls 

yielded by a simulation of the closed loop 

system that will be used as the benchmark, 

based on the near-time-optimal control law 

(13).  The control loop structure is shown in 

Fig. 4.  

u

x1

y

s(x1,x2,x1r)

u=-Umax*sgn(S)

x1

x2

second order plant

e

x2
Out1

controller

UUnn

Saturation

1
x1r

 

Fig. 4: The structure of the near time 

optimal control system used as the 

benchmark for assessing the performance of 

the ANN based controller. 

Table 1 shows the data used to train the 

ANN obtained from a simulation of the 

system of Fig. 4 with 1 1rx  and 

1 20 , 0 0,0x x .  The constant plant 

parameter is taken as 1b  in this 

preliminary investigation.  

 Since control law (13) yields a very sharp 

transition between maxu u  and 

maxu u , across the boundary layer, the 

ANN will not be used to reproduce control 

values directly to avoid potential 

inaccuracies of the inherent curve fitting 

process. Instead, the ANN will be trained to 

reproduce the S values yielded by (13b) and 

shown in Table 1, as the switching function 

is smooth without sharp transitions. Then 

the control function (13a) will be 

implemented external to the ANN. 

 

Table 1: Data used for the ANN training 
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Fig. 5 shows the Simulink block diagram of 

the training process. 

Fig. 5: ANN controller being trained in 

parallel with the benchmark controller.  

 

5. Results: 

The system variables for the step responses 

of the benchmark and ANN based 

controllers are compared in Figs. 6, 7 and 8.  

The corresponding control error of the ANN 

based controller relative to the benchmark 

controller is shown in Fig. 9. 

 

Fig. 6 position x1vs. x1nn 

 

Fig. 7: Superimposed position and velocity 

responses obtained with the benchmark and 

ANN based controllers. 

 

Fig. 8: Control inputs  

 

Fig. 9 error between u and unn 

 

Fig. 10:  Mean –square errors during the 

ANN training. 

  

 

 

Fig. 11:  Regression plot. 

 

6. Conclusion and recommendations: 

The ANN based controller was able to 

accurately reproduce the step response of the 

benchmark controller with a unit reference 

input. This is a strong indication that the 

approach should be successful for other 

nonlinear state feedback optimal controllers.  

First, however, further tests should be 

carried out with the near-time-optimal 

controller.  More than one step response 

should be used to train the ANN, with 
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different valued step reference inputs, both 

positive and negative. Then the ability of the 

ANN based controller to reproduce those 

step responses, and intermediate ones, 

without further training should be assessed 

by simulation.  Then, the degree of 

robustness against external disturbances and 

plant parameter mismatching, i.e., the 

constant, b, should be tested by simulation. 

Following this, the authors‟ next step is to 

use Pontryagin‟s method to generate state 

trajectories for the mechanical load of a 

motion control system subject to friction for 

the position control that minimises the 

frictional energy loss. These trajectories will 

be used to train an ANN, thereby forming a 

closed loop state feedback optimal controller 

whose robustness properties will be 

assessed. 
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