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Abstract. Antimicrobial Resistance (AMR) refers to the ability of mi-
croorganisms to resist the effects of certain medicines. Medicines that
were previously known effective against diseases caused by different types
of microorganisms are now incompetent towards the same treatment be-
cause of AMR, which also increases the risk of severe illness. By un-
derstanding AMR and the potential factors that lead to it, we can see
how microorganism behaviour analysis has become a great tool. The
limitation of human visual capabilities requires automated image-based
solutions to analyse bacterial behaviour effectively. In this paper, we
exploit growth stage-based multiple images of bacteria, i.e. E. coli (Es-
cherichia coli) to Analyse bacterial behaviours to get valuable insight.
We have used the Deep Learning algorithms to get segmented images for
each of the growth stages. Our objective is to use U-net and StarDist
to get bacterial behavioural features and compare their performances in
terms of Ground Truth and predicted segmented masks. For both the
Ground Truth and predicted segmented mask, we have determined total
bacterial cell count, average bacteria volume, central distance from the
image center, total area, average aspect, average solidity, average extent,
average orientation, average Local Binary Patterns (LBP) and features
of Gray-Level Co-occurrence Matrix (GLCM) such as contrast, dissim-
ilarity, homogeneity, energy, and Angular Second Moment for each of
the images. Also, we have analysed area change and movement from one
frame to another frame, which represents bacterial growth over specific
periods. Analysing these features will allow the researcher to identify the
best-performing model for each of the calculating features of bacteria.
Comparing these features between the actual mask and predicted seg-
mented mask can help to identify valuable insights regarding bacterial
behaviour which can be useful to identify factors that contribute towards
AMR.

Keywords: Bacterial Behaviour Analysis · Image Segmentation · Deep
Learning · Antimicrobial Resistance,AMR.

1 Introduction

Analysis of microorganism images allows healthcare specialists to diagnose infec-
tious diseases caused by bacteria, fungi, or another microorganism [1]. However,
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microorganism image analysis is a critical approach because of the cell complex-
ity and structure of microorganisms [2]. Microorganisms play a vital role in our
ecological systems. It is estimated that there are nearly 10 million microorgan-
isms can be found in a single drop of water [3]. Bacteria, fungi, parasites, and
viruses are essential for the sustainability of our environment [4].

Some microorganisms such as viruses, bacteria, fungi, and others can spread
diseases to humans and living animals. These can cause minor infections, severe
infections, and even death. In the year 2019, there were 7.7 million people died
due to various bacterial infections which refers to the 13.6% of people or 1 in
every 8 people in the world on the other hand bacterial human pathogens are
increasing very rapidly every year [5].

AMR is a natural phenomenon that happens when microorganisms are ex-
posed to antibiotic drugs [6]. AMR is now considered a global health emergency
which makes treatment more and more difficult and requires an urgent global
response [7]. Therefore, it is necessary to study AMR and develop new antibi-
otics through global investments [8]. In this case, AI-based models to analyse
behaviours of bacteria can help to identify valuable insight regarding AMR and
allow the researcher to fight AMR. It is predicted that AMR could lead 10 mil-
lion people to death by the year 2050, which is alarming news [9]. We need to
identify other root causes of AMR such as overdose and misuse of antibiotics
and techniques to control AMR [10] [11].

To study AMR, analysis of bacterial images can be a great tool. Microscopic
images of bacteria can be used to identify features and behaviours of bacteria.
However, bacterial original images can be misleading in terms of noise generation.
Therefore, actual mask image is an excellent alternative to use for analysis. On
the other hand, generating an actual mask for each image is not only time-
consuming but also costly. Therefore, Deep Learning (DL)-based models can
be used to get predicted masks quickly and efficiently. Then those predicted
mask images can be used to identify valuable patterns and insights of bacterial
behaviours.

Analysing microscopic Images also needs a large number of datasets which
is expensive and time-consuming. It is necessary to extract important features
from images from small datasets to understand the nature of bacteria and the
process of resistance towards available drugs. So that researchers can focus more
on advancing the existing antibiotics rather than collecting and evaluating mi-
croscopic images. To make their work easier and focused on solving AMR-based
challenges we are using Deep Learning based models to do image analysis focus-
ing behaviour analysis of bacterial pathogens.

Figure 1 shows the overview of our explored work. In this study, we have
used DL models such as U-Net and StarDist to generate predicted masks from
datasets having both original images and actual masks for training and testing.
We have trained our U-Net model using original images and actual masks. After
that, we tested and measured accuracy over predicted masks.
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Fig. 1: Overview of our methodology.

Then we have identified some valuable properties of bacteria such as total
bacterial cell count, average bacteria volume, central distance from the image
center, total area, average aspect, average solidity, average extent, average orien-
tation, average Local Binary Patterns and features of Gray-Level Co-occurrence
Matrix such as contrast, dissimilarity, homogeneity, energy, and Angular Second
Moment for each of the actual images and predicted images generated from U-
Net and StarDist. We have also examined the area changes and movement from
one frame of the actual mask and predicted mask to another immediate frame
of the actual mask and predicted mask within a specific time duration.

This paper is divided as follows. Section 2 discusses a literature review fo-
cusing on both recent and previous works related to bacterial behaviours using
AI techniques. Section 3 shows data description and terminologies. Section 4 ex-
plains our methodology and Section 5 discusses result analysis. Finally, Section
6 concludes the paper focusing conclusion and future work.

2 Literature Review

In this section, we aim to discuss both recent works and previous works related
to bacterial image segmentation, and bacterial behaviours observations focusing
on AMR and AI.

In [12], authors focused more on increasing the accuracy of the result of
segmentation extending the StarDist algorithm. It also compared the results of
classical image processing models and deep learning models for segmentation
models. However, it was more focused on single-cell segmentation and it is hard
to use in 3D images.They did not analyse the behaviour of the bacteria.

In [13], the authors used DL approaches for Medical Modality Image Segmen-
tation. They have reviewed how Convolutional Neural Networks (CNN), Recur-
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rent Networks, Attention Models, and Generative Adversarial Networks (GANs)
can be used to perform medical modality image segmentation. However, we did
not find any attention towards microscopy image analysis, particularly for mi-
croorganisms. Besides, they did not mention any approach to identify image
features using these models. In this work, we used various approaches to identify
key bacterial behaviours from segmented images after using U-Net and StarDist.

On the other hand, in [14], authors proposed classification methods for phase
contrast time-lapse microscopy images using DL to classify four species of bacte-
ria which are (E. faecalis, E. coli, K. pneumoniae, and P. aeruginosa), which are
relevant to human health. They achieved more than 98% accuracy. But, we did
not find any specific comparison among models and which models work better
in terms of which type of bacterial behaviours identification. In this work, we
have done a vital comparison between two models that are U-Net and StarDist
demonstrating their performances in every specific case.

In [15], authors proposed a method using CNN in transmission electron mi-
croscope images to identify drug-resistant cells which leads to AMR.They used
Pearson’s Correlation Coefficient, to investigate the genes which are associated
with morphological features.

However, we did not find any explanation for finding bacterial behaviours
such as total aspect, total bacteria volume, and others as well as which approach
is suitable to identify specific bacterial behaviours.

From [16], we got motivation for this work. We have used a subject of their
dataset. The authors proposed DeepBacs for multitask bacterial image analysis
using Dl approaches. They showed image segmentation using various techniques,
worked on artificial labeling, denoising, enhanced image resolution, and more.
But, we did not find any specific approach for determining bacterial behaviours
such as central distance from the image centre, average solidity, average extent,
and more. In this work, we have analysed various bacterial behaviours which
may provide valuable insights towards bacterial study and AMR.

In [17], authors expressed their opinions about monitoring and investigat-
ing microorganisms using AI. The authors showed how researchers can use DL
methods to study the classification, detection, segmentation, and quantification
of microorganisms. However, we found a clear gap regarding analysing microor-
ganisms’ behaviours such as bacterial behaviours and movements in microscopic
image segmentation. In this paper, we analysed bacterial movement from frame
to frame in specific periods, which may help medicine researchers to examine
effects of antibiotics on bacteria that are antimicrobial on microorganisms.

3 Data Description and Terminologies

3.1 Data Description

In this study we have exploited Brightfield Images of E. coli bacteria from Deep-
Bacs open-source Dataset[16]. The dataset is a subset of a large dataset that
contains different bacteria images in various conditions. We have divided the
dataset into three fragments. Each fragment contains several growth-based time
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series image data of E. coli bacteria. The bacteria cell type is E. coli MG1655
wild type strain (CGSC #6300) Here, we have total two types of image data
in the dataset which are actual image data and actual mask data. Using our
selected models we have generated predicted segmented mask data.

Fig. 2: Several sample image of original images alongside their respective ground
truth masks.

The microscopy image data is in 2D, which are recorded at 1 min interval. To
capture image data the device was used, the Nikon Eclipse Ti-E, which equipped
with an Apo TIRF 1.49NA 100x oil immersion objective. Here image size is
1024x1024 (79nm / pixel), 19/14 individual frames. The generated file format is
8-bit ’.tif’. The raw image data were captured in 16-bit mode where image size
was 512x512. Figure 2 shows some of the original images and their corresponded
actual masks or ground truth from dataset.

3.2 Explored Attributes of Bacteria

Total Bacteria Count: To calculate the total bacteria number in an image we
need to follow some steps which include segmentation, contour detection, and
counting. We used the adaptive thresholding method for image segmentation and
then did Contour detection using OpenCV which uses the Suzuki-Abe algorithm
to find contouring in binary images after that we counted the number of con-
tourings considering them as a single bacteria. To enhance the understanding of
the behaviour of microbial organisms community total number of bacteria vital
parameters for image Analysis. The equation used for Adaptive Thresholding,

T (x, y) = mean or Gaussian mean of Ilocal(x, y)− C (1)

Isegmented(x, y) =

{
255 if I(x, y) > T (x, y)

0 otherwise
(2)
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where, T (x, y) is the threshold applied to each pixel (x, y), calculated as the
Gaussian-weighted or simple mean of the surrounding pixel values, µ(x, y), minus
a constant C to fine-tune the segmentation.

Average Bacteria Volume: From the contouring, the Bacteria volume is
calculated. It assumes that the bacterium is perfectly circulated. The most im-
portant reason to calculate this parameter is to Analyse and monitor growth
patterns for individual bacteria as in microscopy images it is very hard to accu-
rately differentiate the colony of bacteria. It will be crucial if the AI models are
not able to identify it precisely.

Total Area: To calculate the Total Area, which refers to the shape analyzing
feature we need three important properties of geometric which are Circularity
(understanding the morphological behavior of bacteria cell), Eccentricity (how
the bacteria is forming to compare its shape reformation from its original shape
which will be very useful to understand Antimicrobial Resistance cell that where
is the difference from normal cell) and Convexity (Analyse the physical features
and health of bacteria cell).

Centralization Distance from Image Center: Distance of the center of
the image to the bacterial centroid. Helps to understand the movement and
clustering behaviour of bacteria. To understand the dynamics of colony forma-
tion of bacteria and how and using which process bacteria become resistant to
antibiotics.

Average Aspect Ratio: This ratio represents the average of all detected
bacteria in the image. During bacterial infections, some bacteria change their
shape. To understand is stages of pathogenic bacterial infection Aspect Ratio is
required.

Average Extent: Collecting data to take microscopic images some bacteria
can be seen in irregular shapes due to stress or in the process of dying. To
Analyse the behaviour of bacteria it is very necessary to understand which are
important descriptors for Bacteria morphology.

Average Orientation: It helps to understand the interaction between bac-
terium, how it responses toward the environment it is surrounded by and most
importantly analyse the development direction of bacterial tissue.

Local Binary Pattern (LBP): It is used to extract the important features
from an image[18]. It generates accurate grouping result for different bacterial
types in automatic image processing program.
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Frame to Frame Area and Movement change: This Analysis play an major
role to find out insight about antimicrobial cure. By this exploration of changes
we can also monitor the bacterial growth stages according to AMR.

GLCM Features: GLCM is used for image analysis to understand the texture
feature in the image and extract it. Contrast, Dissimilarity, Homogeneity, Energy,
and ASM are the statistical measures that we extract from GLCM.
Contrast : It is defined as,

Contrast =
L−1∑
i,j=0

P (i, j)× (i− j)2 (3)

where, P (i, j) is the GLCM, L is the number of gray levels, and (i, j) represent
pixel intensities.
Homogeneity and Energy : The Homogeneity is defined as,

Homogeneity =
levels−1∑
i,j=0

P (i, j)

1 + (i− j)2
(4)

where, P (i, j) is the element at the ith row and jth column of the GLCM, and
levels represents the number of intensity levels in the image. The Energy is
defined as,

Energy =

levels−1∑
i,j=0

P (i, j)2 (5)

To analyse bacterial phenotype behaviour, to understand structural patterns
GLCM is important. Contrast is used for determining imbalances in bacterial
cell walls, while Dissimilarity measures the differences in the pathological state
of bacteria. Homogeneity helps cluster different types of bacteria. Energy focuses
on regular or normal bacteria that do not exhibit any irregularities, particularly
those influencing AMR, analyzing these can reveal which features protect the
bacterial cell wall that antibiotics cannot breach. Finally, ASM is employed to
study the density of bacterial colonies and identify areas where active bacteria
growth is observed.

4 Methodology

We divided our methodology into two parts. In the first part, we generated a
predicted mask using U-Net [19] and StarDist [20] from original bacterial images
and ground truth masks. We have separated the test input original images and
their ground truth masks into three divisions which contain continuous frames
in specific time delays. In the training part, we used a complete training dataset
containing both original and ground truth bacterial images. After training our
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U-Net model and StarDist, we tested our model using three-division original
image data. Here, U-Net and StarDist models generated predicted mask images
for each of the original corresponding images. Then we determined the accuracy
of the U-Net model and StarDist by comparing generated predicted masks and
their actual masks. Figure 3 shows the flow chart of the first part, which is
generating predicted masks using U-Net and StarDist.

Fig. 3: Flow chart of the first part: generation of predicted masks using U-Net
and StarDist.

In the second part of our work, we used all the generated predicted mask
images and their corresponding actual mask images to determine bacterial be-
haviours and features. For each of the actual masks, we calculated all the men-
tioned bacterial behaviours. Also, for each of the generated predicted masks, we
calculated all the mentioned bacterial behaviours.
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Table 1: Detailed Workflow of Bacterial Behaviour Analysis, Segmentation, and
Temporal Growth Dynamics.

Stage Description

Input Image Data: Series of grayscale images containing bac-
terial colonies.

Output Bacterial Behaviour Metrics: Cell count, average volume,
distance from image center, total area, texture features.
Temporal Growth Metrics: Changes in area and centroid
movements between consecutive frames.

Part 1: Image Pro-
cessing and Seg-
mentation
Data Preprocessing
and Transformation

Normalize images, apply data augmentation, extract im-
age patches, and use weighted loss functions for training
data.

Deep Learning (DL)
Models

Utilize U-Net and StarDist architectures for segmenting
bacterial colonies in the images.

Bacterial Segmenta-
tion

Generate predicted masks from the DL models.

Part 2: Bacterial
Behaviour Analy-
sis
Feature Extraction Detect contours, calculate cell count, volume, centroid

distance, and shape descriptors (aspect ratio, solidity,
extent, orientation). Apply LBP for texture and com-
pute GLCM features (contrast, dissimilarity, homogene-
ity, energy, ASM).

Data Aggregation Average the extracted features across all bacteria within
an image to provide a summary statistic per frame.

Part 3: Temporal
Growth Dynamics
Frame-to-Frame
Analysis

Calculate area change and centroid movements between
frames to assess bacterial growth dynamics.

Visualization Generate visual outputs to display original and processed
images with highlighted bacterial contours and centroids.

Then we compared and checked similarities and differences in behaviours
between outputs from actual masks and generated predicted masks. Manually
creating actual masks from original bacterial images is both time-consuming and
costly. Therefore, our comparison may justify using generated masks instead of
actual masks for bacterial behaviours analysis. Figure 4 shows the flow chart of
second part which is determining bacterial behaviours from actual masks and
generated predicted masks. Table 1 shows the Detailed Workflow of Bacterial
Behaviour Analysis, Segmentation, and Temporal Growth Dynamics.
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Fig. 4: Flow chart of second part: determining bacterial behaviours from actual
masks and generated predicted masks.

5 Result and Analysis

In this section, we discussed the performance of U-Net and StarDist approaches
in our work. Here Figure 6 shows some actual image and their corresponding
ground truth images. Besides it also shows generated predicted masks using
U-Net and generated predicted masks using StarDist.

Table 2 shows the performance metrics of DL models that is U-Net and
StarDist in this case. For each of the divisions (D1, D2, D3, D4 and D5) the table
shows Intersection over Union (IoU), Dice, Accuracy, Precision, recall, F1 Score,
Matthews correlation coefficient (MCC), Sensitivity, Specificity, Area Under the
Curve - Receiver Operating Characteristic (AUC-ROC), and Area Under the
Curve - Precision-Recall (AUC-PR). According to Table 2, we can notice that
U-Net consistently shows better performance in all metrics, especially in IoU,
Dice, Accuracy, Recall, F1 Score, MCC, and AUC-ROC, While StarDist has
better Specificity and high Precision. However, Stardist lower scores in IoU,
Dice, Recall, F1 Score, and AUC measures indicate that it is less effective at
segmenting compared to U-Net from our selected dataset.

Table 3 represents that StarDist perform better to calculate Central Dis-
tances, Avg. Aspect ratio, and Avg. Solidity than U-Net. U-Net outperforms
better in Total Bacteria Count, Avg. Bacteria Volume, and Avg. Orientation.
Even if StarDist does not generate good result for Total bacteria count like
U-Net, it is good at spotting bacteria until it get strong similarities between
Ground Truth and Predicted Masks. Other features generate almost similar re-
sult for both models. Here, average LBP is 0.10 for Ground Truth, U-Net and
StarDist.
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Fig. 5: Predicted Masks for U-net and Stardist

Table 2: Performance Metrics of DL Models

DL Model Io
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R

U-Net (D1) 0.85 0.92 0.99 0.87 0.98 0.92 0.92 0.98 0.99 0.99 0.92
U-Net (D2) 0.78 0.87 0.99 0.89 0.86 0.87 0.87 0.86 1.0 0.93 0.88
U-Net (D3) 0.84 0.91 0.99 0.88 0.95 0.91 0.91 0.95 0.99 0.97 0.92
StarDist
(D1)

0.45 0.62 0.97 0.95 0.46 0.62 0.65 0.46 1.0 0.73 0.72

StarDist
(D2)

0.29 0.43 0.98 0.94 0.29 0.43 0.51 0.29 1.0 0.64 0.63

StarDist
(D3)

0.46 0.62 0.97 0.95 0.47 0.62 0.65 0.47 1.0 0.73 0.72

Avg. U-Net 0.82 0.90 0.99 0.88 0.93 0.90 0.90 0.93 0.99 0.96 0.91
Avg. StarDist0.40 0.56 0.97 0.95 0.41 0.56 0.60 0.41 1.00 0.70 0.69
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Table 3: Comparison of Bacterial Behaviour for Frames 1-5.
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th 1 43 1504.43 29.91 64690.50 0.63 0.92 0.90 46.31
2 44 1810.74 47.41 79672.50 0.58 0.90 0.91 48.24
3 40 2392.96 41.09 95718.50 0.56 0.88 0.88 54.88
4 41 2876.85 47.95 117951.00 0.56 0.87 0.87 56.49
5 39 3791.56 67.66 147871.00 0.49 0.84 nan 53.24

U
-N

et

1 48 1461.14 33.08 69711.00 0.43 0.74 0.90 57.00
2 49 1706.69 25.41 83536.50 0.39 0.71 0.91 58.37
3 49 1961.80 33.20 100314.50 0.38 0.72 0.89 59.20
4 63 1787.39 111.43 116945.00 0.38 0.70 0.88 55.95
5 97 1468.16 26.77 146129.50 0.38 0.72 0.88 58.97

St
ar

D
is

t

1 78 653.37 45.35 50962.50 0.55 0.85 0.91 41.93
2 79 808.13 146.90 63842.50 0.51 0.83 0.92 48.97
3 85 890.91 41.68 75727.00 0.49 0.82 0.90 52.76
4 63 1600.79 52.03 100850.00 0.48 0.82 0.88 56.62
5 63 1975.81 52.89 124476.00 0.46 0.84 0.88 53.38

Table 4: Comparison Area Change and Movement for U-net and Stardist.
Area Change and Movement Ground Truth U-Net StarDist

Frame 1 to Frame 2 (14982.00,
253.17)

(13825.50,
317.08)

(12880.00,
439.70)

Frame 2 to Frame 3 (16046.00,
340.24)

(16778.00,
341.95)

(11884.50,
448.11)

Frame 3 to Frame 4 (22232.50,
244.30)

(16630.50,
343.72)

(25123.00,
336.89)

Frame 4 to Frame 5 (29920.00,
222.79)

(29184.50,
423.46)

(23626.00,
378.94)
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According to Table 4, StarDist generated better result for movement between
frames. On the other hand, U-Net shows better performance in Area Change
between frames. Here, we used only U-Net and StarDist in this work. We selected
U-Net because it excels at detailed localization for creating accurate masks. On
the other hand, StarDist’s shape-based optimization is ideal for distinguishing
overlapping bacteria.

6 Conclusion

Studying bacterial behaviours from microscopic images using AI can save both
time and effort. Also, medicine specialists could get valuable insights regarding
bacterial behaviours from any datasets within a short time after using DL ap-
proaches, which eventually will allow them to develop new medicines to fight
AMR. Finding to stop and delay AMR could save millions of lives worldwide.
This research work focused to identify bacterial behaviours from microscopic
images from both actual mask images and predicted mask images after using
U-Net and StarDist. We identified some of the vital bacterial behaviours such
as average bacteria volume, central distance from the image center, total area,
average aspect, average solidity, average extent, average orientation, and LBP.
Also, we determined other features of GLCM such as contrast, dissimilarity,
homogeneity, energy, and ASM for each of the actual mask images and pre-
dicted mask images. This analysis may provide valuable insight to researchers
to identify patterns and ways of experimenting with new antibiotics. Also, we
also analysed bacterial area changes and movement from one frame to another
considering certain periods. This may help medicine specialists to identify the
optimal point for administering antibiotics. Moreover, we provided comparisons
between U-Net and StarDist, focusing on which approach performs better for
specific behavior identification.

In our future work, we aim to increase dataset and data variability i.e. we will
work with other types of microorganisms. Also, we aim to use other approaches
such as V-Net, SegNet, and LinkNet and demonstrate a large comparison for
more precise recommendations. Finally, we will increase the number of way to
study bacterial behaviours and analyse how these behaviours contribute towards
Antimicrobial Resistance (AMR).
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