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Abstract 
 

Research towards an innovative solution to the 
problem of automated updating of road network 
databases is presented. It moves away from existing 
methods where vendors of road network databases 
either go through the time consuming and 
logistically challenging process of driving along 
roads to register changes or use update methods that 
rely on remote sensing images. The solution 
presented here would allow users of road network 
dependent applications (e.g. in-car navigation 
system or NavSat) to passively collect characteristics 
of any “unknown route” (departure from the known 
roads in the database) on behalf of the provider. 
These data would be processed either by an on-
board neural network or transferred back to the 
NavSat provider and input to a neural net (ANN) 
along with similar track data provided by other 
service users, to decide whether or not to 
automatically update (add) the “unknown road” to 
the road database. This would be performed ‘on 
probation’, allowing subsequent users to see the 
road on their system and use it if need be. At a later 
stage, when sufficient information on road geometry 
and other characteristics has accumulated in order 
to have confidence in the classification, the 
probationary flag would be lifted and the new road 
permanently added to the road network database. To 
investigate this novel approach, GPS-based 
trajectory data collected in London are analysed 
using a Snap-Drift Neural Network (SDNN) and 
categorised into different road class segments. The 
performance of the SDNN and the key variables 
required are presented. 

 
1. Introduction 
 

Keeping the road network database up-to-date is 
important to many Geographic Information System 
(GIS) applications. Various existing and emerging 
applications require in particular up-to-date, accurate 
and sufficiently detailed road databases. Examples 
are in-car navigation, tourism, traffic and fleet 
management and monitoring, intelligent 
transportation systems, internet-based map services, 
and location-based services [1, 2]. Due to increasing 
traffic density, automatic navigation systems for cars 
and trucks are gaining in popularity [3]. So too is the 
need for the road network databases to be kept up-to-
date. At present a number of methods are being used 
to update these databases including ground survey, 
driving along roads with GPS and analysing satellite 
images to register changes. Previous research aimed 
at addressing three update functions: road extraction, 
change detection and change representation [4]. 
Different types of image processing algorithms have 
been developed for each purpose. While image-based 
road updating approaches have had success, their 
accuracy is directly tied to the quality of the images 
[5] and object model used for road extractions [6]. 

 An alternative approach investigated here uses 
the trajectory of moving vehicles to automate the 
detection of new roads and thus update a road 
network database. It is envisaged that users of in-car 
navigation system or NavSat would passively collect 
characteristics of any “unknown route” (departure 
from the known roads in the database) using the on-
board GPS. These data would then be processed 
either by an on-board neural network or 



transferred back to the NavSat provider and input to 
a neural net (ANN) along with similar track data 
provided by other service users In this approach, 
Artificial Neural Network (ANN) is used to group 
the recorded trajectories into their natural patterns. 
Most of the patterns found by the SDNN match 
classes of road and other road network related 
features. In this paper we present some key 
methodological issues of the investigation, a 
discussion of the variables and some preliminary 
results from the SDNN and its prospects as a solution 
to automated road network updating. 

The following sections of this paper is organised 
as follows: in Section 2, a short overview of related 
work on vehicle trajectory analysis is given. This is 
followed in Section 3 by the general strategy of the 
approach. In Section 4, Snap-Drift Neural Network 
(SDNN) is described and in Section 5 the data 
description, data processing and input presentation to 
SDNN are described. In Section 6 the results, 
performance of the SDNN and comparison with a 
typical LVQ neural network are presented. Finally 
Section 7, gives the conclusions and discusses future. 
 
2. Related work on trajectory similarity 
grouping 
 

Early research on vehicle trajectory similarity 
modelling assumed Euclidean space, where the 
distance is limited to the space adjacent to the roads 
[7]. For instance, Ramaswamy and Toyama [8] 
proposed a model for vehicle trajectory based on 
Markovian and non-Markovian probability models 
arguing that these models are effective in extracting 
important information from trajectory data. In [9] a 
model which considered the lifeline of multiple 
trajectories was proposed. Similarly in [10], an 
approach for measuring the similarity between 
trajectories based on shape taking into account the 
spatiotemporal aspect of the trajectories was 
proposed. These methods are based on Euclidean 
space and Euclidean distance is not valid in road 
network spaces where the distance is limited to the 
space adjacent to the roads [7]. Hwang et al., [7] 
further argue that clustering similar trajectories is 
highly dependent on the definition of distance, the 
similarity measurements as defined for Euclidean 
space are inappropriate for road network space and 
consequently the methods based on Euclidean space 
are not suitable for trajectory similarity grouping. 
They proposed a method to retrieve similar 
trajectories in road network space. Trajectory 
similarities were also clustered by means of temporal 
distances. For our purpose clustering trajectory 
information using only temporal distances would not 
be suitable. Liu and Karimi [11] rely on existing road 

network to define a model that utilizes both 
geometry and topology of roads and users’ historical 
trajectories information to predict user trajectory. 

For our approach we exploit the concept that 
trajectory information is an abstraction of user 
movement. The characteristics of this movement 
should in most cases be influenced by the road type 
or road feature the user is travelling on. We rely on 
ANN to group these movements based on the road 
features thereby determining when user (movement) 
is on a “new road” that needs to be added into 
existing road network database. 
 
3. General Strategy 
 

An alternative approach being investigated here 
is where service users of in-vehicle navigation 
systems might passively collect characteristics of any 
“unknown road” (roads not in the database) based on 
their trajectories as measured by the on-board GPS. 
These data are either processed by an on-board 
neural network or transferred back to the provider 
and input to a neural net (ANN) which decides, 
along with similar track data provided by other 
service users, whether to automatically update (add) 
the “unknown road” to the road database. This is 
initially performed ‘on probation’, allowing 
subsequent users to see the road on their system and 
use it if need be. At a later stage, when sufficient 
information on road geometry and other 
characteristics has accumulated to have a high level 
of confidence in the classification, the probationary 
flag can be lifted and the new road permanently 
added to the road network database. The ANN would 
rely on road and neighbourhood attributes to predict 
whether any “unknown road” is actually a road that 
needs to be added to the central database as opposed 
to long driveways, car parks or off-road tracks which 
would generally not. Potentially, this approach could 
be applied not only in road network update scenarios 
but also in road network related feature collection, 
geo-marketing and insurance industries. 
Initial studies with simulated data to inform the 
choice ANN demonstrated that Snap-Drift Neural 
Network (SDNN) is able to group road related 
features into distinct road classes [12], hence suitable 
for our solution. To inform the choice of key 
variables needed and suitability of Snap-Drift Neural 
Network (SDNN) for this proposed solution using 
real data, we collect GPS-based trajectory data 
during a drive along a range of road types in London 
(Figure 2). The trajectory data are an abstraction of 
the road segments travelled and we assume for the 
sake of experimentation that these road segments are 
not present in a GIS road coverage and we seek to 
group the GPS-based trajectory data using a SDNN. 



This will establish the extent to which drive 
characteristics naturally fall into road feature classes 
(A roads, B roads, minor roads, local streets, 
roundabouts and traffic lights stops).In this way, 
characteristics of “new” (candidate) roads could be 
collected and inputted into a trained SDNN which 
would then decide if it’s a thoroughfare of interest 
and how to classify it. The performance of the 
SDNN is compared with that of a typical LVQ neural 
network. 
 
4. Snap-Drift Neural Network 
 

Different types of neural networks have been 
employed in the past for map matching, road 
extraction purposes and navigational satellite 
selection. For example, Barsi et al [13], Jwo and Lai 
[14], Winter and Taylor [15], and Jwo and Lai [16]. 
In this study the neural network is unsupervised 
Snap-Drift (SDNN), developed by Lee and Palmer-
Brown [17]. One of the strengths of the SDNN is the 
ability to adapt rapidly in a non-stationary 
environment where new patterns (new candidate 
road attributes in this case) are introduced over time. 
The learning process utilises a novel algorithm that 
performs a combination of fast, convergent, 
minimalist learning (snap) and more cautious 
learning (drift) to capture both precise sub-features in 
the data and more general holistic features. Snap and 
drift learning phases are combined within a learning 
system (Figure 1) that toggles its learning style 
between the two modes. 

 

 
 

Figure 1: Snap-Drift Neural Network (SDNN) 
architecture [18] 

 
On presentation of input data patterns at the input 

layer F1, the distributed SDNN (dSDNN) will learn 
to group them according to their features using snap-
drift [18]. The neurons whose weight prototypes 
result in them receiving the highest activations are 
adapted.  Weights are normalised weights so that in 
effect only the angle of the weight vector is adapted, 

meaning that a recognised feature is based on a 
particular ratio of values, rather than absolute values. 
The output winning neurons from dSDNN act as 
input data to the selection SDNN (sSDNN) module 
for the purpose of feature grouping and this layer is 
also subject to snap-drift learning. 

The learning process is unlike error minimisation 
and maximum likelihood methods in MLPs and other 
kinds of networks which perform optimization for 
classification or equivalents by for example pushing 
features in the direction that minimizes error, without 
any requirement for the feature to be statistically 
significant within the input data. In contrast, SDNN 
toggles its learning mode to find a rich set of features 
in the data and uses them to group the data into 
categories. Thus SDNN was used to group GPS-
based trajectory data into the road types based on 
point-to-point properties like speed, horizontal and 
vertical curvature, acceleration, bearing and change 
in drive direction. 

Each weight vector is bounded by snap and drift: 
snapping gives the angle of the minimum values (on 
all dimensions) and drifting gives the average angle 
of the patterns grouped under the neuron.  Snapping 
essentially provides an anchor vector pointing at the 
‘bottom left hand corner’ of the pattern group for 
which the neuron wins. This represents a feature 
common to all the patterns in the group and gives a 
high probability of rapid (in terms of epochs) 
convergence (both snap and drift are convergent, but 
snap is faster). Drifting, which uses Learning Vector 
Quantization (LVQ), tilts the vector towards the 
centroid angle of the group and ensures that an 
average, generalised feature is included in the final 
vector. The angular range of the pattern-group 
membership depends on the proximity of 
neighbouring groups (natural competition), but can 
also be controlled by adjusting a threshold on the 
weighted sum of inputs to the neurons. The output 
winning neurons from dSDNN act as input data to 
the selection SDNN (sSDNN) module for the 
purpose of feature grouping and this layer is also 
subject to snap-drift learning. 
 
5. Data Description 
 

GPS based trajectory data was gathered from a 
31.2 km drive over a range of road types in London 
(Figure 2). The points were collected every 5 
seconds. Voice data was also concurrently collected 
noting road segment characteristics that could affect 
the data like stops at junctions, traffic lights, GPS 
carrier lost and other delays. The voice data was used 
to identify collected points features that do not match 
any road related features from the Ordnance Survey 
MasterMap data. 



 

 
Figure 2: Trajectory data collected during 

data collection 
 
A total of 983 point-based trajectory data was 

collected, 214 were on A roads, 400 on Local streets, 
51 on Minor roads, 92 points on private roads with 
public access and 63 points on car parks (Table 1). 
Using the Ordnance Survey road class naming 
conventions, roundabout features are normally part 
of other road classes say A roads, Local streets or 
minor roads. But for our purpose we treat roundabout 
features and points collected at traffic lights stops as 
unique classes considering the fact that we are 
grouping the trajectory data based on geometry and 
topology information between successive points. 
 

Table 1: composition of the GPS-based 
trajectory data within the different road 

classes 
Road feature GPS points 
A road 214 
Local street 400 
Minor road 51 
Private road public access 92 
Car park 62 
Roundabout 103 
Traffic lights 61 
Total 983 
 
5.1. Data processing 
 

The geographical distance between successive 
GPS points are calculated using the Haversine 
solution [19] as presented: 
∆lat = lat2 – lat1  (1) 

 
∆long = long2 – long1  (2) 

 

a = sin2(∆lat/2) + cos(lat1) * cos(lat2) * 
sin2(∆long/2)  (3) 

 
C = 2 * atan2 (√a, √(1-a))  (4) 

 
D = R*C  (5) 

 
Where R = 6.371 Km; presuming a spherical earth 
with radius R, and that the locations of the two points 
in spherical coordinates. Given the distance and time, 
the speed between successive points is easily 
derived. The bearing from successive points to the 
previous was calculated using the rhumb line 
solution [20] presented below: 
 
∆φ = ln [tan(lat2/2 + π/4)/tan(lat1/2 + π/4)]  (6) 

 
α = atan2(∆long, ∆φ)  (7) 

 
Where ln is the natural log and α is the bearing. 
 

 
 

Figure 3: Derivation of horizontal curvature 
using three successive GPS points 

 
The radius of horizontal curvature between three 

successive points (example shown in Figure 3) was 
calculated as presented. 
Consider three points A, B and C as shown in Figure 
3; 
αhor = (bearing from B to A) – (bearing from B to C) (8) 
 

Using circle properties that opposite angles in a 
cyclic quadrilateral add up to 180 and angle at the 
centre of a circle is double the size of the angle at the 
edge, we can calculate the radius of horizontal 
curvature of points A, B and C as: - 

 

Radius of horizontal curvature =   (9) 

 



The radius of vertical curvature between three 
successive points using the elevation information 
was calculated as presented: 

From Figure 4, 
 

β1= tan-1(distA-B/∆H1)  (10) 
 

Where distA-B is the distance from point A to B, 
∆H1 is the absolute height difference between points 
A and B. 

 
 

Figure 4: Derivation of vertical curvature 
using three successive GPS points 

 
Consequently,  
β2= tan-1(distB-C/∆H2)  (11) 

 
Then, 
αver = β1+ β2  (12) 

 
Like in equations 9, 
 

Radius of vertical curvature =  (13) 

 
A 1-minute (12 successive points) moving 

average was carried on each data variable to remove 
sharp bumps (peaks or dips) caused by periods when 
there is insufficient satellites for GPS to function. 
 
5.2. Input Representation for SDNN 
 

The input dataset used for the snap-drift neural 
network (SDNN) is composed of 5 variables 
represented by separate fields in the input vector. 
These are the speed between successive points, rate 
of acceleration between successive points, radius of 
horizontal and vertical curvature between three 
successive points and change in direction between 
successive points. Table 2 shows the values ranges of 
the 5 variables used. 

 

Table 2: Value ranges of input patterns 
Road segment properties Range 
Speed 0.5 - 43.8Mph 
Rate of acceleration 0.0 – 4.10Mph/s 
Radius of horizontal curvature 6.2 – 193.7m 
Radius of vertical curvature 0.0 – 193.8m 
Change in travel direction 00 – 3530 
 
Coarse coding was used to represent the proportional 
differences between the changes in travel direction 
information since angle information span from 00 to 
3600. Thus the representation of angle 30 must be the 
same as that of say angle 3570; and similarly the 
representation 400 must be closer in input space to 
450 than that of say 550. Figure 5 shows the coarse 
coding implementation for the travel direction 
variable. 
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Figure 5: Coarse coding of change in 

direction 
 
As shown in Figure 5, 12 bit input coarse coding 

was used to represent the change in travel direction. 
For example 40 - 450 is represented as 000011100000 
and 460 – 860 is represented as 000001110000. In 
total 971 inputs were available as input to the SDNN 
(initially 982 but reduced to 971 as a result of 
moving average implementation). The input patterns 
are arranged in a 971 x 16 matrix. The first four rows 
each represent the properties of a point such as 
speed, acceleration, radius of vertical and horizontal 
curvature. The remaining 12 rows represent the 
coarse coded angle information of each point. Out of 
the 971 inputs, half were used for training while the 
remaining half was used for testing. The training and 
test patterns were presented in a random order. This 
simulates the real world scenarios whereby travelled 
road pattern measured by GPS-based trajectory data 
varies depending on the travel speed, geometry of the 
road and nature of the road such that a given road 



type might be repeatedly encountered while other are 
not encountered at all. 

 

6. Results  
 
Results are presented in Figure 6, 7 and 8(a-h) and in 
Table 3. Figure 6 shows the winning nodes and the 
road feature composition on each node. For instance, 
winning node 1 is made up of 35% A roads and local 
streets, 3% minor roads, 8% private roads with 
public access, 12% roundabout, and 4% traffic lights 
stops (Figure 6). 
 
6.1. Sequences (Combinations) Grouping 
 

On inspection of the dSDNN nodes, most of them 
have unique d-nodes sequences (dSeq) that in the 
majority of cases represent unique road related 
features (Figure 7). In this case winning node 1 is 

separable, based on its d-node sequence, into 1-
dSeqA for A roads and 1-dSeqL for Local streets and 
1-dSeqR for roundabout features. Only the correctly 

mapped (unique) d-node sequences are plotted in 
Figure 7. Based on the d-node output, the SDNN 
achieved overall grouping accuracy of 79.5%. Table 
3 shows the grouping accuracy for each road class. 
 
Table 3: Grouping accuracy of SDNN results 

Road Features Group accuracy 
A road 97.2% 
Local street 99.0% 
Private road 43.2% 
Minor road 29.4% 
Roundabout 14.6% 
Traffic Lights stop 95.7% 
Car  park 82.0% 

 
 
 

Figure 6: Plot of SDNN output showing the composition of different road feature in each winning node 

Figure 7: Plot showing distribution of correctly mapped road feature classes across the winning nodes 



6.3. SDNN trajectory grouping 
 

Figures 8(a-g) shows the spatial distribution of 
some of the SDNN grouped GPS-trajectory data. 
Only the correctly grouped points are shown. Figure 
8a shows the distribution of those features that 
matched the Roundabout features. As can be seen in 
most of the point clusters, the distribution of the 
points does not quite make a “complete circle” 
feature like roundabout. Likely reason might be that 
the speed of travel while negotiating this feature was 
greater than the successive 5s time period adopted 
during the data collection. Another source of error 
could be due to the GPS carrier availability and 
precision which affects the position of collected 
points. 

 

 
Figure 8a: Distribution of the correctly 

grouped roundabout features. 
 

 
Figure 8b: Distribution of the unique d-

nodes sequences from winning node 1. 

 
Figure 8c: Distribution of the unique d-

nodes sequences from winning node 2. 
 

 
Figure 8d: Distribution of the unique d-

nodes sequences from winning node 3. 
 

 
Figure 8e: Distribution of the unique d-

nodes sequences from winning node 6. 
 



 
Figure 8f: Distribution of the unique d-

nodes sequences from winning node 7. 
 

 
Figure 8g: Distribution of the unique d-
nodes sequences from winning node 8. 
 

Figure 8b shows the unique d-nodes sequences 
from winning node 1. This was made up of the A 
roads and Local street road types. The points in this 
category were more in the north-western directions. 
Similarly, Figure 8c shows those of winning node 2. 

Figure 8d shows the unique d-nodes sequences 
from winning node 3. This was made up of the A 
roads, local streets and private road types. Also 
Figure 8e shows the distribution of points for the 
unique d-nodes sequences from winning node 6. The 
grouping is made up of input patterns corresponding 
to the A roads and local street. 

Figure 8f shows the unique d-nodes sequences 
from winning node 7. This is made up of A roads 
and local streets. Also figure 8g shows the 
distribution of points for the unique d-nodes 
sequences from winning node 8. Input patterns from 
local street and A roads were grouped into this 
winning node. Majority of the patterns grouped in 
this node are those of local street road types. Only 
two input pattern from the A road types are grouped 
into this node. 
 
6.4. Comparison with LVQ 
 

Figure 9 shows a comparison of the correct 
SDNN grouping with that of a typical LVQ neural 
network for each road class. For instance, 82% of car 
park input patterns are correctly classified by SDNN 
compared to 19.7% by LVQ. The SDNN achieved an 
overall class accuracy of 79.51%, compared to 
51.78% for LVQ grouping. This result shows that the 
SDNN is able to recognise finer features of the road 
classes’ input patterns compared to a typical LVQ.   
 

 
 

Figure 9: Plot showing comparison of 
correctly grouped between the SDNN and 

LVQ neural network 
 
For example, none of the points collected while 

travelling on Roundabout, Private roads and Minor 
roads were correctly grouped by the LVQ compared 
to SDNN with 14.6%, 43.2% and 29.4% accuracy 
respectively (Figure 9). Most of the errors in SDNN 
were largely between private roads, minor roads and 
traffic light stops. 



Figure 10 shows the distribution of all correctly 
grouped points. Visual inspection of the distribution 
of the points shown in Figure 10 shows that the 
SDNN is able to group the trajectory data in such a 
way that it corresponds to different road feature 
classes. Most of the errors were largely due to 
confusion between private roads, minor roads and 

traffic light stops. This is explained by the fact that 
the road inputs for the aforementioned classes are 
characterised by similar variables and in reality 
variables like speed regimes and acceleration on 
these road classes rarely differ. For instance, on most 
of these roads, cars were parked along the roads 
thereby causing a reduction in the drive speed 
(increase in collected GPS points). In addition the 
small number of inputs for these classes available for 
training compared to other classes (Table 1) could 
also affect the grouping accuracy of these classes. 
Errors in the roundabout features were mostly 
attributed to the travel speed and GPS precision 
during data collection. 
 
7. Conclusions and future work 
 

The result of the vehicle trajectory similarity 
grouping using SDNN offers a fast method of 
learning that preserves feature discovery and is 
capable of grouping moving object characteristics 
according to their local context information. 

Consequently these groupings can inform whether 
the road feature travelled is new road feature that 
needs to be added to existing road database. 
Although using only GPS-related information as 
shown in this work has achieved grouping accuracy 
above 70%, another option still to be exploited is to 
incorporate neighbourhood information of GPS 

trajectory data. However, it is also clear that simply 
performing unsupervised learning to find the most 
natural groupings is insufficient to classify all 
trajectory information to reflect the different road 
types accurately. The result represents a positive first 
step towards automated updating of road networks 
by using a candidate road’s local context 
information. The value of this unsupervised approach 
is that it discovers the natural groupings in the data 
and allows us to access the extent to which these 
groupings in the data provide the basis for a 
categorisation into road feature classes. The results 
have shown that whilst there are many features in the 
data that support categorisation, it also necessary to 
impose a different structure on the features in other 
to perform a full classification of the data. On-going 
work is exploring the performance of supervised 
snap-drift neural network (SSDNN) on this dataset, 
which involves incorporating the delta rule for the 
output layer weights whilst retaining snap-drift 
learning for the first layer of weights. Initial results 

Figure 10: Distribution of correctly grouped points on travelled routes 



have shown improved classification accuracy of 
about 93%.  
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