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Aquaculture 4.0: hybrid neural 
network multivariate water quality 
parameters forecasting model
Elias Eze 1,2*, Sam Kirby 3, John Attridge 3 & Tahmina Ajmal 2

This study examined the efficiency of hybrid deep neural network and multivariate water quality 
forecasting model in aquaculture ecosystem. Accurate forecasting of critical water quality parameters 
can allow for timely identification of possible problem areas and enable decision-makers to take pre-
emptive remedial actions that can significantly improve water quality management in aquaculture 
industry. A novel hybrid deep learning neural network multivariate water quality parameters 
forecasting model is developed with the aid of ensemble empirical mode decomposition (EEMD) 
method, deep learning long-short term memory (LSTM) neural network (NN), and multivariate linear 
regression (MLR) method. The presented water quality forecasting model (shortened as EEMD–MLR–
LSTM NN model) is developed using multivariate time-series water quality sensor data collected from 
Loch Duart company, a Salmon offshore aquaculture farm based around Scourie, northwest Scotland. 
The performance of the novel hybrid water quality forecasting model is validated by comparing the 
forecast result with measured water quality parameters data and the real Phytoplankton data count 
from the aquaculture farm. The forecast accuracy of the results suggests that the novel hybrid water 
quality forecasting model can be used as a valuable support tool for water quality management in 
aquaculture industries.

Harmful Algal Blooms (HAB) is a global issue, spanning across oceans, rivers, lakes, and ponds, especially with 
regarding aquaculture industry. Many countries worldwide have documented occurrences of HABs, and their 
frequency may increase due to global warming and human impact on marine environments. The international 
community is alarmed by HABs because they not only endanger human health and marine ecosystems but also 
have a detrimental impact on local and regional economies. Studies have shown that precision aquaculture 
system can be adopted for early detection of HAB and allow ample time for aquafarmers and decision-makers 
to take precautionary measures1,2.

A precision aquaculture system requires an efficient system for quick decision making using continuous 
water quality parameter data1,2. However, continuous and accurate water quality parameters measurement using 
conventional methods is usually an expensive and labour-intensive process3. With the conventional sampling and 
testing techniques, aquaculture water quality parameters are usually approximated through laboratory analyses 
which are both expensive and time-consuming. These conventional aquaculture water quality monitoring and 
management techniques involve the collection of water samples from the relevant site of interest, water sample 
storage and transportation to the laboratory, as well as chemical tests and analysis at the laboratory. All these 
processes from water sample collection to laboratory analysis require the usage of expensive equipment and a 
fair amount of time before obtaining the actual water quality parameter results. In the course of these tedious and 
time-consuming processes, room for inefficiency and error usually arises4. This delays any corrective measures 
that can be taken. A precision aquaculture system relies not only on sophisticated online water quality monitoring 
of farm but using the data to design early warning systems5. If the water quality parameters dataset is automati-
cally monitored and analysed through the artificial neural network (ANN) technique.

Research has shown that the adverse effects of aquaculture water quality pollution can be efficiently tack-
led with the automation of water quality parameters dataset analysed and timely prediction of water quality2. 
Therefore, it is essential to devise new aquaculture water quality data variation trends analysis and forecast-
ing approaches and methodologies to promote high productive aquaculture businesses. Several studies have 
attempted to devise ways of coping with water quality contamination using both conventional numerical 
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modelling methods, least squares support vector regression (LSSVR), NNs methods like Radial Basis Function 
NN (RBFNN), Back Propagation NN (BPNN) algorithms, and machine learning methods to forecast future 
water quality changes6–9. However, addressing the seasonal variation of aquaculture water quality for high yield 
aquaculture industry, a temporal dimension to the data analysis must be considered to guarantee an effective and 
efficient aquaculture water quality parameters dataset analysis and prediction of future water quality parameters. 
Hence, multivariate statistical approaches such as Principal Component Analysis (PCA) has been applied to 
determine relationship among various water quality parameters10. These geo-statistical approaches that have been 
applied include multivariate interpolation, multiple linear regression analysis, transitional probability, kriging, 
etc.11. Some of the algorithms applied for water quality parameters dataset analysis and forecasting also include 
Artificial Intelligence (AI) approaches such as Bayesian Networks (BN)12, Support Vector Regression (SVR)13, 
Neuro-Fuzzy Inference10, Decision Support System (DSS), Auto-Regressive Moving Average (ARMA)14, hybrid 
Sparse Auto-encoder (SAE) and LSTM (SAE-LSTM), SAE and BPNN (SAE-BPNN)15, and piecewise multi-
variate imputation (PWIMP) method16. However, the challenge with traditional numerical and geo-statistical 
approaches, LSSVR, NNs such as RBFNN and BPNN techniques is the inherent weakness of long-term depend-
ency problem. Similarly, research has shown that the non-linear nature of water quality parameters dataset makes 
it rather complicated to map input/output (I/O) dataset and forecast future water quality parameters17. But 
further studies have shown that deep learning long-short term memory (LSTM) NN can overcome the above-
mentioned weakness and can provide efficient applicability and reliability for aquaculture water quality parameter 
prediction18–22. Additionally, combining ensemble empirical mode decomposition (EEMD) method with deep 
learning LSTM NN has demonstrated clear advantages over traditional LSTM NNs in terms of improved water 
quality parameter prediction accuracy in the aquaculture environment9,21.

In seeking solution to the above-mentioned challenges associated with tackling the prevailing water quality 
contamination in aquaculture industry, more research must be done in areas of effectiveness, efficiency, prediction 
accuracy, reliability and usability of the existing water quality prediction models and management methodologies 
in the precision aquaculture ecosystem. In this study, a novel hybrid deep learning-based forecasting model for 
aquaculture industry is proposed. The proposed forecasting model combines the EEMD and multivariate regres-
sion methods to decompose, learn the temporal dimensional features of the measured water quality parameters 
dataset signals, and establish a relationship among the different parameters before applying deep learning LSTM 
NN to predict the water quality. This will allow the decision-makers in aquaculture industry to better understand 
and manage water contamination in aquaculture environment and improve the farm productivity. In this paper 
we present the design of a precision aquaculture system that monitors water quality data at an aquaculture site 
(Loch Duart) using a dedicated Multi-parameter Trilux sensor developed by Chelsea Technologies Ltd which 
monitors and measures only three key Algal parameters such as Chlorophyll-a (measured at two different exci-
tations—CHL470 and CHL530), and Turbidity. This data forms the basis for the multivariate prediction model 
that can predict the occurrence of HAP events at the Salmon aquafarm.

The rest of the paper is organised as follows. Section presents the "Methods and materials". Section dis-
cussed the "Multivariate linear regression" method applied in this study. Section "Proposed hybrid forecasting 
model design" contains the proposed novel hybrid EEMD–MLR–LSTM NN model design. Section presents the 
"Performance evaluation metrics". Section contains the "Results and discussions", while Section “Conclusion” 
concludes the paper.

Methods and materials
Study area description, aquaculture dataset acquisition and analysis
Loch Duart is an independent Scottish salmon aquafarm industry, which has its’ headquarter in Scourie, Suther-
land in north-west Scotland. The Salmon farming company owns and operates 8 sea-sites (see Fig. 1) and 2 
hatcheries in Sutherland and the Outer Hebrides. In Loch Duart, Salmon are hatched and grown in the cold, 
clear freshwater of North-west Scotland. The salmon farming company annually harvests approximately 5000 

Figure 1.   The eight (8) sea-sites at the Loch Duart salmon aquaculture farm.
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tons of fresh salmon. Chlorophyll-a (µg/L) measured at two different excitations (CHL470 and CHL530) and 
Turbidity time series data were collected with the aid of a TriLux multi-parameter sensor probe, a 3-in-1 fluo-
rometer designed and developed by Chelsea Technologies Ltd23. The sensor deployment took place at one of 
their sheltered sites along the coast. The sensor probes installation location is depicted in Fig. 2 and equipped 
with solar powered telemetry system to allow for remote data transmission to cloud platform for storage and 
analysis. The telemetry unit was secured to the metal walkway around the outside of the net pens and the sensor 
was situated on the outside of one of the outermost pens, nearest to the feed barge. Table 1 shows the list of other 
sensors developed by Chelsea Technologies Ltd and the corresponding parameters that each of them monitors.

The TriLux multi-parameter fluorometer (see Figs. 3 and 4) was used for monitoring and collection of a total 
of 22,708 sets of non-stationary, non-linear water quality parameters time-series data at Loch Duart Salmon 
aquafarm between May and October 2020. This TriLux multi-parameter fluorometer is a low cost, compact sen-
sor that monitors three key algal parameters in a single, highly sensitive probe. The 3-in-1 fluorometer allows for 
widespread water quality monitoring in a variety of applications, including harmful algal blooms, aquaculture, 
water treatment works, river catchments and coastal studies25. These water quality parameters are Chlorophyll-a 
(470 nm), Turbidity, and Chlorophyll-a (530 nm).

At the Loch Duart offshore aquaculture farms, water quality dataset for the three parameters is collected every 
ten (10) minutes using the TriLux sensor. The collected time series dataset for Chlorophyll-a (470), Chlorophyll-a 
(530), and Turbidity parameters using Chelsea Technologies’ TriLux multi-parameter sensor are plotted as line 
graphs in Fig. 5a–c which show the water quality trends variations between May and October 2020. Although, 
Fig. 5a and b show that there are some erratic trend variations of Chlorophyll-a (470) (mg/L) and Chlorophyll-
a (470) (mg/L), respectively, between May and October 2020, Fig. 5c show that most outliers were seen in the 
time-series data trend variations of Turbidity between May and October 2020. Further investigation by the sensor 
installation team from Chelsea Technologies Ltd revealed that the high presence of outliers as seen in the sensor-
measured time-series data was caused by biofouling incident which adversely affected the TriLux sensor readings. 
The biofouling challenge was immediately resolved through the integration of a low-cost wiper to the installed 
Chelsea Technologies’ multi-parameter algal fluorometer at the study cite of Loch Duart Salmon aquafarm in 
Scotland. For our study, the already collected time-series datasets were cleaned through pre-processing, while 
filling of missing data was done as described in 2.3, and outliers removed by a function of the hybrid model that 
detects and removes outliers.

Generally, the 470 channel measures chlorophyll fluorescence from direct excitation of chlorophyll-a that 
usually strongly correlate with phytoplankton biomass in freshwater. On the other hand, CHL530 channel meas-
ures Chlorophyll fluorescence from the excitation of an accessory pigment that is found in cyanobacteria. Under 
normal conditions with no cyanobacteria present, there is likely to be a low level of CHL530 fluorescence emis-
sion that tracks with the CHL470 emission because Chlorophyll-a does absorb some green light (at 530 nm). 
Therefore, when there is a cyanobacteria bloom occurrence in the aquaculture water body, it is expected to notice 
a divergence in these signals. The high correlations between these three data signals and the cyanobacteria in 
freshwater, as shown in Section "Data correlation analysis" is used in devising a multivariate linear regression 
equation that can be applied to determine the presence of harmful green biomass (Algae) bloom occurrence in 
the Scottish salmon aquaculture water body.

Data pre‑treatment, filling and correction
Non-linear, non-stationary water quality parameters time-series dataset defects usually result in excessive devia-
tion between the measured original water quality parameters values and the forecast results. The basis of accurate 
time-series analysis and the development of effective and reliable predictive models is high-quality sample data. 
To provide concise, accurate dataset for the forecasting model and improve forecasting accuracy, the measured 
water quality parameters dataset was carefully pre-processed. Usually, the issue of missing data is inevitable 

Figure 2.   Chelsea Technologies’ multi-parameters Trilux sensor deployment site—Loch Duart Salmon offshore 
aquaculture farms based around Scourie, northwest Scotland24.
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Table 1.   Chelsea Technologies Ltd Fluorometers/sensors and parameters monitored26.

Fluorometers Active fluorometers Optical sensors

UniLux TriLux UviLux
VLux 
AlgaePro

VLux 
TPro

VLux 
FuelPro

VLux 
OilPro LabSTAF

FastOcean 
APD FastOcean

Act2 
Lab FastBallast

PAR 
Sensor GlowTracka

UniLux 
Turbidity

Fluorometers

Chloro-
phyll-a  ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   × 

Phyco-
bilipro-
teins

 ×   ×   ×   ×   ×   ×   ×   ×   ×   ×   × 

Fluores-
cein  × 

Rhoda-
mine  × 

BTEX  ×   × 

PAH  ×   × 

Trypto-
phan  ×   × 

CDOM  ×   ×   ×   × 

Active fluorometers

Variable 
Fluores-
cence

 ×   ×   ×   ×   × 

Fluores-
cence 
Light 
Curves 
(FLC)

 ×   × 

Phyto-
plankton
Primary
Produc-
tivity

 ×   ×   × 

Phyto-
plankton 
Cell 
Count-
ing

 × 

Optical sensors

PAR  × 

Biolumi-
nescence  × 

Turbidity  ×   ×   ×   ×   ×   ×   × 

Absorb-
ance  ×   ×   × 

Figure 3.   Chelsea Technologies’ TriLux multi-wavelength fluorometer with solar powered telemetry system.
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with automatic water quality sensor monitoring systems. In this case, the water quality parameters such as 
Chlorophyll-a (470), Chlorophyll-a (530), and Turbidity were automatically measured throughout the days and 
nights at 10 min’ intervals. To fill in any missing data, filling-in approach called linear interpolation algorithm27 
is applied to achieve a better estimation effect that can accurately approximate the missing data values. In data 
analysis, linear interpolation algorithm takes the ratio of two known data-points and one unknown data-point 
as a linear relationship. Therefore, to obtain the missing, unknown water quality parameter value, linear inter-
polation technique applies the slope of the presumed line to compute the time-series dataset increment. Hence, 
the dataset is completed.

Definition 1.  The nature of the measured parameters.

An installed automated freshwater TriLux multi-parameters sensor monitoring system at the Loch Duart 
Salmon offshore aquaculture farms measures time series water quality parameters at a constant time interval 
everyday which can be denoted as β , then n length time-series of the measured water quality parameters datasets 
is defined as (1);

where Xi,l represents the value of the measured ith time-series water quality factor by the automatic sensory 
monitoring system at time Tl (1 ≤ i ≤ β , 1 ≤ l ≤ n) , and at other given Tl , the time interval is constant at 
�T =

(
Tl+1 − Tl

)
= 10 minutes. Therefore, if the original value Xi,l is missing, its estimated value X̂i,l can be 

obtained with the problem of minimum which is given as 
∣∣∣X̂i,l − Xi,l

∣∣∣ changed into the missing value estimation 
problem. Based on the measured data Xi,x and Xi,y at time Ti,x and Ti,y , respectively, the linear imputation func-
tion L(t) could be formulated for the time series water quality parameters sensor monitoring system as:

For any missing time series water quality parameters data at any given moment, the linear interpolation algo-
rithm firstly finds the two closest moments Ti,x and Ti,y 

(
Ti,x < t < Ti,y

)
 , and estimates the lost data value at time 

t with the help of the known measured data Xi,x and Xi,y of Ti,x and Ti,y moments based on Eq. (2), i.e., X̂n = L(t).

Data correlation analysis
This study applied the Pearson’s correlation coefficient technique to analyse the existing correlations between the 
TriLux multi-parameters sensor measured time series aquaculture water quality parameters such as Chlorophyll-
a (470), Chlorophyll-a (530), Turbidity, and the Phytoplankton data count at the Loch Duart Salmon offshore 
aquaculture farms. To better understand the existing correlations between two variables, the Pearson’s correlation 
coefficient technique28 has been widely used as a data analysing technique, which is also described as the quotient 
of co-variance and standard deviation between two variables. The Pearson’s correlation coefficient system was 
used after cleaning and pre-processing the TriLux multi-parameters sensor measured time series water quality 
parameters, to analyse the existing correlations between the required parameters. Table 2 contains the correla-
tions between the measured Chlorophyll-a (470), Chlorophyll-a (530), Turbidity, and the Phytoplankton data 

(1)Si,n =
{(

Xi,1,T1

)
,
(
Xi,2,T2

)
, . . . ,

(
Xi,n,Tn

)}

(2)L(t) = Xi,x +

(
Xi,x − Xi,y

Ti,x − Ti,y

)
·
(
t − Ti,x

)
.

Figure 4.   Chelsea Technologies’ TriLux multi-parameter fluorometer which monitors three key algal 
parameters in a single probe24.
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count obtained through data analysis and calculations for the months of May and June of 2020. Similarly, Fig. 6 
shows the plotted correlations graphs of the measured Chlorophyll-a (470), Chlorophyll-a (530), Turbidity, and 
the Phytoplankton data count.

Both Table 2 and Fig. 6 show that the three monitored and measured water quality parameters have a posi-
tive correlation with the green biomass (Phytoplankton) presence in the freshwater. These clearly indicate that 
while CHL470, CHL530, and Turbidity show a positive correlation with Phytoplankton, CHL470 maintains an 
extremely positive correlation with CHL530. This is expected because the 470 channel measures Chlorophyll 
fluorescence from direct excitation of Chlorophyll-a that usually strongly correlate with the presence of Phyto-
plankton biomass in freshwater. Similarly, 530 channel measures Chlorophyll fluorescence from the excitation 
of an accessory pigment that is generally present in Cyanobacteria—which is a specie of Phytoplankton. In other 
words, under normal conditions, where there is absence of Cyanobacteria in the freshwater, there is likely to be 
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Figure 5.   The trend variation of the time-series contents of: (a) CHL470 (µg/L), (b) CHL530 (µg/L), and (c) 
Turbidity.

Table 2.   Data correlation analysis result.

CHL70 Turbidity CHL530 Phytoplankton

CHL70 1

Turbidity 0.925066 1

CHL530 0.972895 0.974055 1

Phytoplankton 0.394222 0.223068 0.32407 1
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an extremely low level of CHL530 fluorescence emission that tracks with the CHL470 emission because Chlo-
rophyll does absorb some green light (at 530 nm). However, in this case, with traces of Phytoplankton presence 
in the freshwater as indicated by the data count from the water body housing the fish-cages, there is a positive 
correlation values of 0.39 and 0.32 between the two key algae parameters (Chlorophyll-a (470) and Chlorophyll-a 
(530)), respectively, which is clearly demonstrated in both Table 2 and Fig. 6.

On the other hand, Turbidity maintains an extremely strong positive correlation of 0.9251 with CHL470 and 
0.9741 with CHL530 as shown in both Table 2 and Fig. 6. This is also expected because the presence of biomass 
in freshwater tends to strongly affect the overall water colouration which can results in high level of Turbidity 
in the water body.

Multivariate linear regression
Studies have shown that statistical methods like regression models are the best tools for studying any existing 
relationship between independent and dependent variables, especially with a diminutive data size29,30. The mul-
tivariate linear regression method is a technique widely applied to estimate any linear relationship that exists 
between one or more independent variables and a dependent variable. In this study, the multivariate linear 
regression was applied to model and establish the relationship between the multiple independent water quality 
parameters and the dependent parameter. A general multivariate linear regression equation represented by the 
model below was used:

where Y denotes the dependent water quality parameter, β represents the regression coefficients, X1,X2,X3, . . . ,Xi 
are the ith independent water quality parameters, and the error term is represented by ǫ . For multiple observa-
tions, the multiple linear regression equation was rewritten as shown below:

By applying Matrix form, the above multiple linear regression equations can be represented as shown below:

where

Y = β0 + β1X1 + β2X2 + β3X3 + · · · + +βiXi + ǫ

Y1 = β0 + β1X11 + β2X12 + β3X13 + · · · + +βiX1i + ǫ

Y2 = β0 + β1X21 + β2X22 + β3X23 + · · · + +βiX2i + ǫ

Y3 = β0 + β1X31 + β2X32 + β3X33 + · · · + +βiX3i + ǫ

.

.

.

Yj = β0 + β1Xj1 + β2Xj2 + β3Xj3 + · · · + +βiXij + ǫi

.

.

.

Yn = β0 + β1Xn1 + β2Xn2 + β3Xn3 + · · · + +βiXni + ǫn

(3)Y = Xβ + ǫ

Figure 6.   Correlations graphs plot of the measured Chlorophyll-a (470), Chlorophyll-a (530), Turbidity, and 
the Phyto data count.
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The matrix Y  contains the information about the dependent water quality parameter and matrix X contains 
the information about the independent water quality parameters. By applying the least square method31, the 
regression coefficients β of equation (3) can be obtained as shown below:

From the known regression coefficient β in equation (4) , future water quality parameters can be predicted by 
applying the multivariate linear regression equation shown below in equation (5):

Therefore, given a historical water quality parameters dataset, Ŷ  becomes the prediction result of Y  , where the 
difference between Y  and Ŷ  is the prediction error which directly affects the overall prediction accuracy of the 
developed model. When the future independent water quality parameters matrix Xf  is collected, a prediction of 
the dependent water quality parameter Yf  is obtained as shown in equation (6) below:

Proposed hybrid forecasting model design
The EEMD method and deep learning LSTM NN were merged to form the Hybrid multivariate water quality 
parameters forecasting model. The basic implementation processes of EEMD method and LSTM deep learning 
NN technique are described in detail in Sections "EEMD method" and "Deep learning LSTM NNs", respectively.

EEMD method
EEMD is a noise-assisted time-series dataset analysis method. In EEMD technique of time-series dataset analysis, 
Gaussian white noise is added to enable the separation of contrasting time-series scales, which in turn, leads to 
improved decomposition efficiency of the EMD method. The introduced white-noise comprises of components of 
disparate scale which would systematically fill the entire time–frequency space. The disparate scale components 
of the signal are spontaneously projected onto proper scales of reference initiated by the Gaussian white-noise as 
the systematically distributed white-noise is introduced to the signal. Since all the decomposed components of 
the introduced Gaussian white-noise consists of both the signal and the introduced white noise, all the individual 
trials usually end up with noisy results. However, the white-noise can be almost completely cancelled out with 
the aid of ensemble mean of whole trials because the white-noise in each of the trials are unique in different 
trials27. Therefore, the actual underlying components of the water quality time series data can be represented 
by the ensemble mean. In other words, EEMD method sums up the components and adopts the average as the 
true decomposition results. Finally, the result of decomposition solves the mode mixing drawbacks associated 
with conventional EMD method. It is a useful method for extracting underlying and crucial components from 
the water quality time series data.

For the CHL470, CHL530, and Turbidity time-series data, the EEMD method follows certain procedure 
which can be described as follows.

Stage 1: Initialize an ensemble number M and the amplitude of the introduced Gaussian white-noise.
Stage 2: Perform the mth trial for introducing disparate white-noise Wm(t) to x(t) in order to generate the 

noise-augmented time series data xm(t) , where

Stage 3: Determine all the local minima and maxima of xm(t) and use them to generate both lower and upper 
envelopes with the help of cubic spline interpolation functions.

Stage 4: Compute the mean m1(t) of both lower and upper envelopes.
Stage 5: Calculate the difference h1(t) that exists between the mean computed in stage 4 and the signal xm(t) , 

using, 

Stage 6: If the properties of the intrinsic mode function (IMF) are satisfied by the h1(t) , that is, from the signal 
xm(t) , C1(t) = h1(t) becomes the first IMF component. Otherwise, replace xm(t) with h1(t) and return to Stage 3.

Y =





Y1

Y2

Y3

.

.

.

Yn




, X =





1 X11 X12

1 X21 X22

1 X31 X32

X13 · · · X1i

X23 · · · X2i

X33 · · · X3i

.

.

.
.
.
.

.

.

.

1 Xn1 Xn2

.

.

. · · ·
.
.
.

Xn3 · · · Xni





β =





β0
β1
β2
.
.
.

βi




, and Y =





ǫ0
ǫ1
ǫ2
.
.
.

ǫn





(4)β = X ′Y
(
X ′X

)−1

(5)Ŷ = βX

(6)Yf = βXf

(7)xm(t) = x(t)+Wm(t)

(8)h1(t) = xm(t)−m1(t)
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The two properties of IMF are described as follows: (i) the number of the zero crossing and extrema must 
either equal or differ at most by 1 over the entire data x(t) and (ii) at any given point, the mean value h1(t) of the 
generated envelopes given by both local minimum and local maximum must be zero.

Stage 7: Separate the residue R1(t) from the rest of the dataset using,

Let the residue R1(t) be a new signal and sift out the remaining IMFs by repeating Stage 3 through Stage 7 
n times until the stopping criterion is satisfied. The applied stopping criterion can be either of the following: (i) 
when the residue Rn(t) is reduced to a monotonic function such that no more IMF can be extracted from it. (ii) 
when the residue Rn(t) or IMF component C1(t) becomes smaller than the predetermined value. Then, after 
EEMD decomposition process, the original signal xm(t) can be mathematically expressed as the sum total of 
each of the IMFs C1(t) components and the residue R1(t) . Hence, 

where n and Ci(t) denote total number of the IMFs C1(t) components and the ith IMF, respectively; and R1(t) 
represents the final residue.

Stage 8: By adding a different noise in each trial, repeatedly execute Stage 2 to Stage 7 until m = M if m < M , 
through consecutive increment of the value of m by using m = m+ 1.

Stage 9: Determine the ith ensemble mean Ci  of the M trials for individual IMF, by way of expression,

and the ensemble residue Rn can be expressed as

Therefore, the original Chlorophyll-a time series data is efficiently decomposed through EEMD method into 
n ensemble IMFs and a single ensemble residue. In each frequency band, the contained IMF components are 
individually different and can change with the variation of the Chlorophyll-a time series dataset x(t) . Addition-
ally, the ensemble residue denotes the general trend of the Chlorophyll-a dataset x(t).

Deep learning LSTM NNs
Deep Learning LSTM NN is a special type of Recurrent NN (RNN) with significant improvement and the abil-
ity to learn long-term dependencies which gives it an advantage over other ANNs such as BPNN, RBFNN, etc. 
RNN is a deep learning model specifically designed to handle the analysis and processing time-series datasets. 
Figure 7a and b illustrate typical schematic diagrams of traditional RNN node and deep learning LSTM NN, 
respectively, with the previous hidden state represented by ht−1 , activation tanh function, current input sample 
by Xt , current output by ht , and the current hidden state by ht . As depicted in Fig. 7a, all RNNs generally have 
the form of a chain repeating modules of NNs. These repeating modules generally have a very basic structure 
in standard RNNs like a single tanh layer only. However, deep learning LSTM which stores information with 
the aid of purpose-built memory cells maintains similar chain-like structure, but with a different structured 
repeating module (see Fig. 7b). As illustrated in Fig. 7b, there are four distinct interacting layers in deep learn-
ing LSTM architecture32. Equations below illustrates the calculation processes involved in deep learning LSTM 
NN architecture.

(a)	 Forget gate equation:

where Ft is a vector with values from 0 to 1, with σ , Wf  , and bf  represent the logistic sigmoid function, 
weight matrices and bias of the forget gate, respectively. The sigmoid layer determines if the new informa-
tion is necessary to be used for update or unnecessary and ignored. Then, tanh function adds weight to 
each value that passed and decides their level of importance ranging from − 1 to 1. Similar operations are 
repeated in input and output gates shown in (14) through (17).

(b)	 Input gate equations:

(c)	 Output gate equations:

(9)R1(t) = xm(t)− C1(t)

(10)xm(t) =

n∑

i=1

Ci(t)+ R1(t)

(11)Ci =
1

M

M∑

m=1

Ci ,mi = 1, 2, 3, . . . , n

(12)Rn =
1

M

M∑

m=1

Rn,m.

(13)Ft = σ
(
Wf × [ht−1,Xt]+ bf

)

(14)It = σ(Wi × [ht−1,Xt]+ bi)

(15)Ît = tanh(Wi × [ht−1,Xt]+ bi)

(16)Ot = σ(Wo × [ht−1,Xt]+ bo)
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(d)	 Cell state equation:

where Wi and Wo denote the weight matrixes, bi and bo represent the network’s bias vectors, of the input 
and output gates. Tanh represents the hyperbolic tangent function.

Hybrid water quality parameters forecasting model
The proposed hybrid EEMD-LSTM deep learning NN based water quality parameters forecasting model is 
shown in Fig. 8. With the proposed novel water quality prediction model, measured real water quality parameters 
concentration data set is first decomposed through EEMD method into several components to improve the pre-
diction accuracy of the proposed model. The detailed procedures demonstrated in Fig. 8 shows the four crucial 
stages that lead to the development of the new hybrid EEMD-LSTM based water quality parameters prediction 
Model. In the first stage (stage 1), water quality parameters time series data x(t) is pre-processed, followed by 
the decomposition of x(t) into several IMFs and a residual item RN (t) in stage 2 by the applied EEMD algorithm 
in the input layer of the deep learning LSTM NN. The data set decomposition is performed through an iterative 
sifting process which is expressed as

Then, each IMF and residual item is normalized and used for forecasting at the hidden layer of the deep 
learning LSTM NN as demonstrated in Fig. 8. Finally, reverse normalization of individual forecast results of 
the deep learning LSTM NN is carried out prior to efficiently combine all of them together through summation 
operation with the aid of summation function to get the final predicted values in the output layer of the NN as 
shown in stage 4 of Fig. 8. In stage 3 of the proposed hybrid forecasting model, there are multiple hidden layers 
in the LSTM (LSTM1,1, LSTM1,2, …, LSTMm,1, up to LSTMm,n). Individual hidden layer of the stacked LSTM is 
equipped with numerous memory cells which earns the proposed forecasting model deep learning NN technique.

Performance evaluation metrics
For the evaluation of the proposed hybrid EEMD-LSTM deep learning water quality prediction model, four 
performance evaluation metrics were introduced to evaluate its prediction accuracy. These metrics include MAE, 
MSE, RMSE, and MAPE. The mathematical formulae are expressed as follows:

(17)ht = Ot × tanh(Ct)

(18)Ct =

{
(Ft × Ct−1)+

(
It × Ît

)}

(19)x(t) =

N∑

i=1

IMFi(t)+ RN (t).

Figure 7.   (a–b) Typical schematic diagram of (a) Traditional RNN node, and (b) Chained (deep learning) 
LSTM blocks.
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In (20), (21), (22), and (23) above, n denotes the number of data points in the dataset, Mi and Fi represent 
the measured real values and the predicted values, respectively. The closer the values of these four performance 
evaluation metrics tend towards 0, the higher the overall prediction and fitting accuracy of the proposed model.

Results and discussions
An hourly centred moving average values is applied in this study to the real water quality parameters time-series 
dataset from Loch Duart Salmon offshore aquaculture farms. Additionally, decomposing the TriLux multi-
parameter sensor measured Chlorophyll-a (470), Turbidity, and Chlorophyll-a (530) contents time-series data 
with the EEMD technique is an integral part of the developed novel hybrid forecasting model. The EEMD method 
is a reliable and efficient technique for non-stationary, non-linear time-series signal decomposition. The steps 
involved in EEMD technique of time-series data signal decomposition processes as described in Section "EEMD 
method" decomposes the real measured Chlorophyll-a (470), Turbidity, and Chlorophyll-a (530) concentration 
sensor time-series data signals into four (4) relatively stable IMFs (IMF 1–4) and one residual item as shown 
in Fig. 9. All the obtained different stable IMFs and the corresponding residue from the original Chlorophyll-a 
(470), Turbidity, and Chlorophyll-a (530) data signal decomposition with EEMD method is shown in Fig. 9a–c. 
For an improved forecasting performance, the amplitude of the added White-Gaussian noise in the EEMD 
process was set to 0.233. During the data signals decomposition process, summation of the low-frequency IMFs 
was used to extract the EEMD trend. Finally, the EEMD technique extracts strongly correlated set of sub-band 
signals which are used in decomposition process of the novel hybrid forecasting model.

The pre-processed real measured dataset is divided into two sets: seventy-five percent (75%) as a learning 
data sample (training dataset) and twenty-five percent (25%) for testing of the proposed novel hybrid forecasting 

(20)MAE =
1

n

n∑

i=1

|Mi − Fi|

(21)MSE =
1

n

n∑

i=1

(Mi − Fi)
2

(22)RMSE =

√√√√ 1

n

n∑

i=1

(Mi − Fi)
2

(23)MAPE =
1

n

n∑

i=1

∣∣∣∣
Mi − Fi

Mi

∣∣∣∣.

Figure 8.   Proposed hybrid water quality parameters forecasting model.
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model. Figure 10 shows the actual measured independent water quality parameters containing Chlorophyll-a 
(470), Turbidity, and Chlorophyll-a (530) after pre-processing.

The forecast results were compared with the real monitored water quality parameters data from the Salmon 
offshore aquaculture farms. Figure 11 presents the achieved result showing the outcome of the novel hybrid 
forecasting model. The comparison of the forecasted Phytoplankton data with the real Phytoplankton data 
obtained from laboratory green biomass data count from Loch Duart Salmon offshore aquaculture farms as 
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Turbidity, and (c) Chlorophyll-a (530).
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demonstrated in Fig. 11 clearly show that the novel hybrid forecasting model provided good results for the 
forecast horizon that covers the existing 50 Phytoplankton data points. With the actual measured independent 
water quality parameters concentration dataset containing Chlorophyll-a (470), Turbidity, and Chlorophyll-a 
(530), the matching trends between the real and forecasted Phytoplankton data points as shown in Fig. 11 further 
indicates that the proposed model can successfully forecast, with a high-level of accuracy, the presence of algal 
bacterial in aquaculture ecosystem.

The improved forecasting accuracy of the proposed novel hybrid forecasting model is due to the applied 
EEMD technique which allows the forecasting model to reflect the temporal characteristics of the measured 
time-series Chlorophyll-a (470), Turbidity, and Chlorophyll-a (530) concentration dataset. This is achieved with 
the aid of the multi-feature selection process used by the EEMD technique which enables the selection of a set of 
stable IMFs which strongly correlate with the actual measured Chlorophyll-a (470), Turbidity, and Chlorophyll-a 
(530) data and integrate them into inputs for the deep learning LSTM NN. The forecast error statistics of the 
proposed novel hybrid model were obtained from (20), (21), (22), and (23) for MAE, MSE, RMSE, and MAPE, 
respectively, as shown in Table 3 and Fig. 12. These marginal errors have further demonstrated the efficiency and 
reliability of the proposed novel hybrid model. However, the overall forecasting accuracy of the proposed novel 
hybrid model could be further improved with increased data availability because the complex chain structure 
of the deep learning LSTM NN tends to perform even better with Big data.
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In Table 4, the performance of the proposed hybrid EEMD–MLR–LSTM NN model is compared with other 
closely related hybrid water quality forecasting models based on SAE-LSTM NN, SAE-BPNN, single LSTM and 
BPNN15. The tabulated error statistics indicate that our proposed novel hybrid EEMD–MLR–LSTM NN model 
outperformed the other closely related hybrid models as shown in Table 4 in terms of the error margin of the 
predicted data. This performance gain over the other related hybrid prediction models is because our proposed 
hybrid EEMD–MLR–LSTM NN model applied the high potential EEMD method which allows for effective 
decomposition of the original data signal into its constituent multiple intrinsic sub-sequences. Consequently, 
our proposed hybrid, multi-scale EEMD–MLR–LSTM NN model can get more features through the decomposi-
tion process for the predicted data signals, which further leads to improved prediction accuracy of the model as 
opposed to the other closely related hybrid models. Among the similar water quality prediction models proposed 
in15, the hybrid SAE-LSTM model demonstrated the least error in terms of prediction accuracy. However, the 
tabulated error statistics in Table 4 indicate that our proposed novel hybrid EEMD–MLR–LSTM NN model 
outperformed the hybrid SAE-LSTM model due to the potentials of the applied EEMD technique.

Conclusion
This study presents the development of a novel hybrid water quality forecasting model based on monitored 
TriLux multi-parameter sensor water quality parameters through the application of specialised EEMD method, 
MLR, and deep learning LSTM NN. The actual experimental real water quality data from Loch Duart Salmon 
aquaculture farms show that the proposed model provides useful future water condition forecast outcome with 
high accuracy. The forecast result in Fig. 11 has indicated and buttressed the importance of applying the pro-
posed novel hybrid EEMD–MLR–LSTM NN model to aquaculture water quality management. It also shows that 
early forecasting of harmful green biomass (Algal blooms) with the aid of the actual TriLux multi-parameters 
sensor-monitored Chlorophyll-a (470), Turbidity, and Chlorophyll-a (530) contents time-series data in fresh-
water ecosystem can provide useful information for the effective operation and management of aquaculture 
industry. For future work, more water quality parameters measuring sites will also be considered to expand the 
proposed model.

Table 3.   Forecast error statistics for the proposed novel hybrid model.

Error statistics 6 hour prediction

MAE 0.0375

MSE 0.0024

RMSE 0.0489

MAPE 0.0072

MAE MSE RMSE MAPE
0

0.02

0.04

0.06

0.08

Figure 12.   Bar Chart representation of the forecast error statistics for the proposed novel hybrid model.

Table 4.   Performance comparison with closely related water quality forecasting models.

Error
Statistics

LSTM
NN BPNN SAE-LSTM NN SAE-BPNN EEMD–MLR–LSTM NN

Run Time (s) 23.2 3.6 29.6 9.1 3.7

MAE 0.1590 0.4530 0.1260 0.4060 0.0375

MSE 0.0398 0.3013 0.0242 0.2428 0.0024

RMSE 0.1995 0.5489 0.1556 0.4927 0.0489

MAPE 0.0160 0.0450 0.0130 0.0419 0.0072



15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16129  | https://doi.org/10.1038/s41598-023-41602-7

www.nature.com/scientificreports/

Received: 31 January 2023; Accepted: 29 August 2023

References
	 1.	 Razmkhah, H., Abrishamchi, A. & Torkian, A. Evaluation of spatial and temporal variation in water quality by pattern recognition 

techniques: A case study on Jajrood River (Tehran, Iran). J. Environ. Manag. 91, 852–860 (2010).
	 2.	 Eze, E., Kirby, S., Attridge, J. & Ajmal, T. Time series Chlorophyll-A concentration data analysis: A novel forecasting model for 

aquaculture industry. Eng. Proc. 5(1), 1–10 (2021).
	 3.	 Dheda, D. & Cheng, L. A multivariate water quality parameter prediction model using recurrent neural network. arXiv preprint 

arXiv:​2003.​11492, 25 March (2020).
	 4.	 Ahmed, U. et al. Efficient water quality prediction using supervised machine learning. Water 11(11), 1–14 (2019).
	 5.	 Khan, Y. & See, C. S. Predicting and analyzing water quality using Machine Learning: A comprehensive model. In 2016 IEEE Long 

Island Systems, Applications and Technology Conference (LISAT), 1–6 (2016).
	 6.	 Shumway, S. E. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquacult. Soc. 21(2), 65–104 (1990).
	 7.	 Shin, Y. et al. Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods. Water 12(6), 

1–18 (2020).
	 8.	 Wang, X., Wang, G. & Zhang, X. Prediction of Chlorophyll-a content using hybrid model of least squares support vector regression 

and radial basis function neural networks. In 2016 Sixth International Conference on Information Science and Technology (ICIST), 
Dalian, China, 366–371 (2016)

	 9.	 Syariz, M. A., Lin, C.-H., Nguyen, M. V., Jaelani, L. M. & Blanco, A. C. WaterNet: A convolutional neural network for chlorophyll-a 
concentration retrieval. Remote Sens. 12(12), 1–16 (2020).

	10.	 Farrell-Poe, K. Water Quality & Monitoring. pp. 1–18 (2000).
	11.	 Taskaya-Temizel, T. & Casey, M. C. A comparative study of autoregressive neural network hybrids. Neural Netw. 18(5–6), 781–789 

(2005).
	12.	 Babu, C. N. & Reddy, B. E. A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl. Soft 

Comput. 23, 27–38 (2014).
	13.	 . Wang et al. Identifying potential pollution sources in river basin via water quality reasoning based expert system. In 2013 Fourth 

International Conference on Digital Manufacturing & Automation, 671–674 (2013).
	14.	 Maiti, S. & Tiwari, R. K. A comparative study of artificial neural networks Bayesian neural networks and adaptive neuro-fuzzy 

inference system in groundwater level prediction. Environ. Earth Sci. 71(7), 3147–3160 (2013).
	15.	 Li, Z. et al. Water quality prediction model combining sparse auto-encoder and LSTM network. IFAC-PapersOnLine 51(17), 

831–836 (2018).
	16.	 Chen, C. & Xue, X. A novel coupling preprocessing approach for handling missing data in water quality prediction. J. Hydrol. 617, 

128901 (2023).
	17.	 Min, C. An improved recurrent support vector regression algorithm for water quality prediction. J. Comput. Inf. 12, 4455–4462 

(2011).
	18.	 Li, Q., Yang, Y., Yang, L. & Wang, Y. Comparative analysis of water quality prediction performance based on LSTM in the Haihe 

River Basin, China. Environ. Sci. Pollut. Res. 30(3), 7498–7509 (2023).
	19.	 Zambrano, A. F., Giraldo, L. F., Quimbayo, J., Medina, B. & Castillo, E. Machine learning for manually-measured water quality 

prediction in fish farming. PLoS ONE 16(8), e0256380 (2021).
	20.	 Hu, Z. et al. A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture. 

Sensors 19(6), 1420 (2019).
	21.	 Eze, E. & Ajmal, T. Dissolved oxygen forecasting in aquaculture: A hybrid model approach. Appl. Sci. 10(20), 7079 (2020).
	22.	 Hu, Z. et al. A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture. 

Sensors 19, 1420 (2019).
	23.	 Chelsea Technologies, “TriLux”, available online at: https://​chels​ea.​co.​uk/​produ​cts/​trilux/
	24.	 My Maps, available online at: https://​www.​google.​co.​uk/​maps/​about/​mymaps/
	25.	 Pan, L., Li, J. & Luo, J. A temporal and spatial correction based missing values imputation algorithm in wireless sensor networks. 

Chin. J. Comput. 33, 1–10 (2010).
	26.	 Chelsea Technologies, “Aquaculture”, available online at: https://​chels​ea.​co.​uk/ application-category/aquaculture
	27.	 Lee, R. J. & Nicewander, W. A. Thirteen ways to look at the correlation coefficient. Am. Stat. 42(1), 59–66 (1988).
	28.	 Abyaneh, H. Z. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. 

J. Environ. Health Sci. Eng. 12(1), 1–8 (2014).
	29.	 Razi, M. A. & Athappilly, K. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification 

and regression tree (CART) models. Expert Syst. Appl. 29(1), 65–74 (2005).
	30.	 Wu, Z. H. & Huang, N. E. Ensemble empirical mode decomposition: A noise assisted data analysis method. Adv. Adapt. Data Anal. 

1, 1–41 (2009).
	31.	 Liu, Z., Chen, J., Fan, Q. & Wang, D. A key-term separation based least square method for Hammerstein SOC estimation model. 

Sustain. Energy Grids Netw. 35, 101089 (2023).
	32.	 Eze, E., Kirby, S., Attridge, J. & Ajmal, T. Time series Chlorophyll-a concentration data analysis: A novel forecasting model for 

aquaculture industry. Eng. Proc. 5(1), 27 (2021).
	33.	 Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series 

analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454, 903–995 (1998).

Author contributions
Conceptualization, E.E., S.K., J.A. and T.A.; methodology, E.E.; software, E.E.; validation, E.E. and T.A.; formal 
analysis, E.E.; investigation, E.E.; resources, E.E., S.K., J.A. and T.A.; data curation, E.E.; writing—original draft 
preparation, E.E.; writing—review and editing, E.E., S.K., J.A. and T. A.; visualization, E.E.; supervision, T.A.; 
project administration, T.A.; funding acquisition, S.K., J.A. and T. A.

Funding
The Funding was provided by Innovate UK (Grant no 86204028), Biotechnology and Biological Sciences Research 
Council (Grant no BB/S020896/1).

Competing interests 
The authors declare no competing interests.

http://arxiv.org/abs/2003.11492
https://chelsea.co.uk/products/trilux/
https://www.google.co.uk/maps/about/mymaps/
https://chelsea.co.uk/


16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16129  | https://doi.org/10.1038/s41598-023-41602-7

www.nature.com/scientificreports/

Additional information
Correspondence and requests for materials should be addressed to E.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Aquaculture 4.0: hybrid neural network multivariate water quality parameters forecasting model
	Methods and materials
	Study area description, aquaculture dataset acquisition and analysis
	Data pre-treatment, filling and correction
	Data correlation analysis

	Multivariate linear regression
	Proposed hybrid forecasting model design
	EEMD method
	Deep learning LSTM NNs
	Hybrid water quality parameters forecasting model

	Performance evaluation metrics
	Results and discussions
	Conclusion
	References


