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ABSTRACT

Visual-only speech recognition is dependent upon a number
of factors that can be difficult to control, such as: lighting;
identity; motion; emotion and expression. But some factors,
such as video resolution are controllable, so it is surprising
that there is not yet a systematic study of the effect of resolu-
tion on lip-reading. Here we use a new data set, the Rosetta
Raven data, to train and test recognizers so we can measure
the affect of video resolution on recognition accuracy. We
conclude that, contrary to common practice, resolution need
not be that great for automatic lip-reading. However it is
highly unlikely that automatic lip-reading can work reliably
when the distance between the bottom of the lower lip and
the top of the upper lip is less than four pixels at rest.

1. INTRODUCTION

A typical lip-reading system has a number of stages: first, the
data are pre-processed and normalised; second, the face and
lips are tracked; third, visual features are extracted and clas-
sified. In practice many systems find tracking challenging,
which affects the overall recognition performance. However,
the tracking problem is not insurmountable and it is now re-
alistic to track talking heads in outdoor scenes filmed with
shaky hand-held cameras [2], so we focus on feature extrac-
tion using Active Appearance Models (AAMs) [4]. We se-
lect AAMs since they have been shown to have robust perfor-
mance on a number of datasets ( [8, 9, 10, 11] for example)
and out perform other feature types [6].

2. DATASET AND FEATURE EXTRACTION

An AAM is a combined model of shape and appearance
trained to fit to a whole video sequence [4]. Training cre-
ates a mean model and a set of modes, which may be varied
to create shape and appearance changes. In training, a small
number of frames are identified and manually landmarked.
These models are Procrustes-aligned and the mean and co-
variance of the shape are computed. The eigenvectors of the
covariance matrix give a set of modes of variation, which are
used to deform the mean shape. For appearance a mesh shape-
normalizes the images via a piecewise affine transform so the

pixels of all images are aligned. We then compute the mean
and the eigenvectors of their covariance. Concatenating the
shape and appearance features forms the feature vector for
training and testing. Having built a model on a few frames, it
is fitted to unseen data using inverse compositional fitting [8].
The Rosetta Raven data are four videos of two North Amer-
ican talkers (each talker in two videos), reciting Edgar Allen
Poe’s ‘The Raven’. The poem was published in 1845 and, re-
cited properly, the poem has trochaic octameter [13], but this
does not appear to have been followed by the talkers in this
dataset. Figure 3(a) shows example frames from the high-
definition video of the two talkers. The database summarised
in Table 1 was recorded at 1440 × 1080 non-interlaced reso-
lution at 60 frames per second. The talkers wore no make-up.

Video Train Images Fit Images Duration
Talker1 - 1 10 21,648 00:06:01
Talker1 - 2 10 21,703 00:06:02
Talker2 - 1 11 31,858 00:08:52
Talker2 - 2 11 33,328 00:09:17

Table 1: Frame images from each video

All four videos were converted into a set of images (one
per frame) with ffmpeg using image2 encoding at full high-
definition resolution (1440× 1080).
To build an initial model we select the first frame and nine or
ten others randomly. These key frames are hand-labelled with
a model of a face and lips. This preliminary model is then
fitted, via inverse compositional fitting [8] to the remaining
frames (Table 1 lists total frames for each video). At this stage
therefore we have tracked and fitted full face talker dependent
AAMs on full resolution lossless PNG frame images as in
Figure 1.
These models are then decomposed into sub-models for the
eyes, eyebrows, nose, face outline and lips (this allows us
to obtain a robust fit from the full face model but process
only the lips). Figure 2 shows both talker’s lips sub-model.
Next, the video frames used in the high-resolution fitting were
down-sampled to each of the required resolutions (Table 2)
by nearest neighbor sampling and then up-sampled via bilin-
ear sampling (Figure 3) to provide us with 18 sets of frames.
These new frames are the same physical size as the origi-



Fig. 1: Showing full face mesh for talker T1 (left) and T2
(right)

nal (1440× 1080) but contain far less information due to the
downsampling.

1440× 1080 960× 720 720× 540 360× 270
240× 180 180× 135 144× 108 120× 90
90× 67 80× 60 72× 54 65× 49
69× 45 55× 42 51× 39 48× 36
45× 34 42× 32

Table 2: Resolutions

We are most interested in the affect of low resolution on the
loss of lip-reading information rather than, say the affect it
would also have on the tracker (many AAM trackers lose
track quite easily at low resolutions and we do not wish to be
overwhelmed with catastrophic errors due to tracking prob-
lems which can often be solved in other ways [12]). Conse-
quently the shape features in this experiment are unaffected
by the downsample whereas as the appearance features vary
(a useful benchmark as it will turn out).

Fig. 2: Showing lip-only mesh for talker T1 (left) and talker
T2 (right)

For talker1 (T1), we retain 6 shape and 14 appearance param-
eters and for talker2 (T2), 7 shape and 14 appearance param-
eters. The number of parameters was chosen to retain 95% of

the variance in the usual way [4].

3. RECOGNITION METHOD

vID Phones vID Phones
v01 /p/ /b/ /m/ v10 /i/ /ih/
v02 /f/ /v/ v11 /eh/ /ae/ /ey/ /ay/
v03 /th /dh/ v12 /aa/ /ao/ /ah/
v04 /t/ /d/ /n/ /k/ /g/ /h/ /j/ v13 /uh/ /er/ /ax/

/ng/ /y/
v05 /s/ /z/ v14 /u/ /uw/
v06 /l/ v15 /oy/
v07 /r/ v16 /iy/ /hh/
v08 /sh/ /zh/ /ch/ /jh/ v17 /aw/ /ow/
v09 /w/ v18 silence

Table 3: Phone to viseme mapping

To produce the ground truth we listen to each recitation of the
poem and produced a ground truth text (some recitations of
the poem were not word-perfect). This word transcript is con-
verted to an American English phone level transcript using the
CMU pronunciation dictionary [3]. However not all phones
are visible on the lips, so we select a mapping from phones to
visemes (which are the visual equivalent of phonemes). Here,
the viseme mapping is based upon Walden’s trained conso-
nants [14] and Montgomery et al’s vowel [7] classifications
as illustrated in Table 3. Viseme recognition is selected over
phoneme recognition as, on a small data set, it has the bene-
fits of reducing the number of classes needed (the model for
each class forms a single recogniser) and increasing the train-
ing data available for each viseme classifier. Note that not all
visemes are equally represented in the data as is shown by the
viseme counts in Figures 4 and 5.
For each talker, a test fold is randomly selected as 42 of
the 108 lines in the poem. The remaining lines are used as
training folds. Repeating this five times gives five-fold cross-
validation. Visemes cannot be equally represented in all folds.
For recognition we use Hidden Markov Models (HMMs) im-
plemented in the Hidden Markov Toolkit (HTK) [15]. An
HMM is initialised using the ‘flat start’ method using a pro-
totype of five states and five mixture components and the in-
formation in the training samples. We choose five states and
five mixtures via [9]. We define an HMM for each viseme
plus silence and short-pause labels (Table 3) and re-estimate
the parameters four times with no pruning. We use the HTK
tool HHEd to tie together the short-pause and silence models
between states two and three before re-estimating the HMMs
a further two times. Then HVite is used to force-align the
data using the word transcript 1.

1We use the -m flag with HVite with the manual creation of a viseme
version of the CMU dictionary for word to viseme mapping so that the force-
alignment produced uses the break points of the words.



(a) (b) (c)

Fig. 3: (a) 1440×1080-Original resolution image for T1 & T2, (b) 60×45-T1 downsampled, and (c) 1440×1080-T1 restored
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Fig. 4: Visemes present in both T1 videos

v01v02v03v04v05v06v07v08v09v10v11v12v13v14v15v16v17v18
0

200

400

600

800

1000

1200

1400

1600

1800

2000

C
o
u
n
t
V
i
s
e
m
e
I
n
s
t
a
n
c
e
s

Vi seme

Fig. 5: Visemes present in both T2 videos

The HMMs are now re-estimated twice more, however now
we use the force-aligned viseme transcript rather than the
original viseme transcript used in the previous HMM re-
estimations. To complete recognition using our HMMs we
require a word network. We use HLStats and HBuild
to make both a Unigram Word-level Network (UWN) and a
Bi-gram Word-level Network (BWN). Finally HVite is used
with the different network support for the recognition task and

HResults gives us the correctness and accuracy values.

4. RESULTS

Recognition performance of the HMMs can be measured by
both correctness, C, and accuracy, A,

C =
N −D − S

N
, A =

N −D − S − I

N
,

where S is the number of substitution errors, D is the number
of deletion errors, I is the number of insertion errors and N
the total number of labels in the reference transcriptions [15].
We use accuracy as a measure rather than correctness since
it accounts for all errors including insertion errors which are
notoriously common in lip reading. An insertion error occurs
when the recognizer output has extra words/visemes missing
from the original transcript [15]. As an example one could
say “Once upon a midnight dreary”, but the recognizer out-
puts “Once upon upon midnight dreary dreary”. Here the rec-
ognizer has inserted two words which were never present and
it has deleted one.
Figure 6 shows the acurracy, A, versus resolution for an
UWN. The x-axis is calibrated by the vertical height of the
lips of each talker in their rest position. For example, at the
maximum resolution of 1440×1080 talker T1 has a lip-height
of approximately 26 pixels in the rest position whereas T2 has
a lip-height of approximately 17 pixels. The worst perfor-
mance is from talker T2 using shape-only features. Note that
the shape features do not vary with resolution so any variation
in this curve is due to the cross-fold validation error (all folds
do not contain all visemes equally). Nevertheless the varia-
tion is within an error bar. The poor performance is, as usual
with lip-reading, a standard error dominated by insertion er-
rors (hence the negative A values). The usual explanation
for this effect is that shape data contains a few characteris-
tic shapes (which are easily recognised) in a sea of indistinct
shapes - it is easier for a recogniser to insert garbage sym-
bols than it is to learn the duration of a symbol which has
indistinct start and end shapes due to co-articulation. Talker
T1 has more distinctive shapes so scores better on the shape
feature.
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Fig. 6: Mean viseme recognition accuracy supported by
UWN at 18 degraded resolutions shown by vertical resting
lip height in pixels. Error bars show ± one standard error.

However it is the appearance that is of more interest since
this varies as we downsample. At resolutions lower than four
pixels it is difficult to be confident that the shape information
is effective. However the basic problem is a very low error
rate (shown in Figure 6) therefore we adopt a more supportive
word model.
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Fig. 7: Mean viseme recognition accuracy supported by
BWN at 18 degraded resolutions shown by vertical resting
lip height in pixels. Error bars show ± one standard error.

Figure 7 shows the recognition accuracy versus resolution
(represented by the same x-axis calibration in Figure 6) for
a BWN. It also includes two sub-plots which zoom the right-
most part of the graph. Again the shape models perform
worse than the appearance models but, looking at the zoomed

plots, appearance never becomes as poor as shape perfor-
mance even at very low resolutions. As with the UWN ac-
curacies, there is clear inflection point at around four pixels
(two pixels per lip) and by two pixels the performance has
declined noticeably.

Rest Talker 1 Talker 2
Pixels Ins Del Sub ins Del Sub
> 4 69.8 667.0 259.6 114.2 467.8 284.6
< 4 61.0 729.2 271.0 106.0 464.4 300.0

Table 4: Error rates for insertions, deletions and substitutions
where the pixels are more than four covering the lips at rest
(where recognition is still reliable), and less than four pix-
els where recognition performance falls. Values are averaged
over all five folds.

Table 4 shows the deletion, insertion and substitution error
rates for the recognition performance of resolutions which
are just above and below the four pixels at rest. We see that
the insertion errors are significantly lower than both deletions
and substitutions so we are confident that our accuracy scores
are accurate insertions despite negative accuracy scores be-
ing achieved with the Unigram Word Network support in Fig-
ure 6.

5. CONCLUSIONS

We have shown that the performance of simple visual speech
recognizers has a threshold effect with resolution. For suc-
cessful lip-reading one needs a minimum four pixels across
the closed lips. However the surprising result is the remark-
able resilience that computer lip-reading shows to resolution.
Given that modern experiments in lip-reading usually take
place with high-resolution video ([16] and [1] for example)
the disparity between measured performance (shown here)
and assumed performance is very striking.
Of course higher resolution may be beneficial for tracking but,
in previous work we have been able to show other factors be-
lieved to be highly detrimental to lip-reading such as off-axis
views [5] actually have the ability to improve performance
rather than degrade it. We have also noted that previous shib-
boleths of outdoor video, poor lighting and agile motion af-
fecting performance can all be overcome [1]. It seems that
in lip-reading it is better to trust the data than conventional
wisdom.
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