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Abstract— This paper thoroughly explores the application 
of machine learning (ML) in concrete science, bridging 
traditional testing methods with advanced ML techniques. It 
begins with an overview of ML fundamentals and their 
relevance to concrete materials, highlighting ML's 
transformative potential in enhancing predictive modelling and 
analysis. The discussion covers various ML techniques, 
including supervised, unsupervised, and deep learning, along 
with common algorithms and models used in concrete 
research. Practical aspects such as data collection methods, 
preprocessing techniques, and feature engineering specific to 
concrete science are detailed, illustrating how ML improves the 
accuracy and efficiency of predicting properties like 
compressive strength, durability, and workability. The paper 
also examines challenges such as data quality, model 
interpretability, and scalability, and discusses future trends, 
ethical considerations, and the societal impacts of ML 
applications in advancing sustainable infrastructure. 

Keywords— Machine Learning; Concrete Science; Predictive 
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I. INTRODUCTION AND FUNDAMENTALS 

Machine learning (ML), a branch of artificial 
intelligence (AI), equips systems with the ability to learn 
and adapt from experience rather than relying on explicit 
programming. At its core, ML focuses on designing 
algorithms and statistical models that empower computers to 
identify patterns and make data-driven decisions. There are 
two main approaches within ML: supervised learning, where 
models are trained on labeled datasets to generate 
predictions, and unsupervised learning, where models 
uncover hidden patterns in unlabeled data [1, 2]. A 
specialized area of ML, known as deep learning, leverages 
neural networks to analyze large datasets, excelling in tasks 
like image and speech recognition with high accuracy. ML 
has applications across diverse fields, including finance, 
healthcare, robotics, and notably, materials science like 
concrete research [3-5]. Its ability to handle complex 
datasets and uncover hidden patterns makes it invaluable for 
predictive modeling, quality control, and optimization tasks 
in concrete science. As technology advances, ML continues 
to transform industries by automating processes and 
enhancing decision-making capabilities. 

Machine learning (ML) is highly relevant to concrete 
science due to its potential to revolutionize traditional 
approaches in material research and engineering. ML 
techniques can analyze vast amounts of data from various 
sources, including material composition, environmental 
conditions, and structural performance. This data-driven 

approach allows for more accurate predictions of concrete 
properties such as compressive strength, durability, and 
workability, which are crucial for designing durable and 
sustainable structures [6-9]. Additionally, ML facilitates the 
optimization of concrete mix designs by identifying optimal 
ingredient proportions to enhance performance and 
minimize environmental impact [10-13]. It also aids in real-
time monitoring of structural health, predicting potential 
failures, and assessing risks, thereby improving maintenance 
strategies and safety protocols [14-16]. By integrating ML, 
concrete scientists can advance their understanding of 
material behavior under different conditions, innovate new 
materials, and optimize construction practices. This synergy 
between ML and concrete science promises to drive 
significant advancements in infrastructure development and 
sustainability efforts worldwide. 

Traditional testing and analysis methods have been 
foundational in concrete science, providing essential 
insights into the physical and mechanical properties of 
concrete materials [17, 18]. These methods typically involve 
laboratory experiments and standardized tests to assess 
characteristics such as compressive strength, permeability, 
and durability. For example, compressive strength tests 
determine the maximum load a concrete sample can bear 
before failure, which is crucial for ensuring structural 
integrity in construction. Other traditional methods include 
slump tests to measure workability, water absorption tests to 
assess porosity, and various durability tests to evaluate 
resistance to environmental factors like freezing, thawing, or 
chemical exposure. Historically, these techniques have 
relied on empirical data and established standards to validate 
material performance and ensure compliance with safety 
and regulatory requirements. While effective, traditional 
methods can be time-consuming, labor-intensive, and may 
not capture all complexities of concrete behavior under real-
world conditions [19, 20]. Integrating modern techniques 
such as machine learning offers opportunities to enhance 
accuracy, efficiency, and predictive capabilities in concrete 
science, ushering in a new era of innovation and 
sustainability in construction practices [21-23]. 

This review paper explores the application of machine 
learning in concrete science, delving into its fundamental 
principles, techniques, and tools. It examines the impact of 
ML on predictive modeling, quality control, and structural 
health monitoring, and addresses future challenges and 
ethical considerations in the field. The paper suggests 
improving data quality through rigorous collection and 
preprocessing techniques, along with advanced feature 
engineering. For model interpretability, it advocates 



integrating explainable AI methods that clarify decision-
making processes. Collaborative efforts among data 
scientists and concrete engineers are emphasized to enhance 
transparency and trust in machine learning applications. 

II. MACHINE LEARNING TECHNIQUES AND TOOLS 

Machine learning provides a range of techniques and 
tools that allow computers to extract insights from data and 
make predictions or decisions autonomously, without the 
need for explicit instructions. These techniques are typically 
classified into three key categories: supervised learning, 
unsupervised learning, and deep learning. Each category 
offers distinct approaches for solving complex problems by 
analyzing data patterns and trends. 

1. Supervised Learning: In this method, models are 
trained using labeled datasets, allowing the algorithm to 
establish a relationship between input data and the 
desired output. In the field of concrete science, 
supervised learning is commonly applied to tasks such as 
forecasting compressive strength or determining 
concrete quality classifications. 

2. Unsupervised Learning: This focuses on uncovering 
patterns and structures within unlabelled data. Clustering 
algorithms, for instance, can group similar concrete 
samples based on their properties, assisting in tasks like 
segmentation and classification. 

3. Deep Learning: This approach leverages multi-layered 
neural networks to process and interpret intricate 
patterns within large datasets. For example, 
Convolutional Neural Networks (CNNs) excel at tasks 
like analyzing images of concrete microstructures, while 
Recurrent Neural Networks (RNNs) are ideal for 
handling time-series data from structural sensors. 

Key machine learning algorithms include Decision 
Trees, Support Vector Machines (SVM), Random Forests, 
and Neural Networks. Tools like TensorFlow and PyTorch 
are commonly used for deep learning, while scikit-learn is 
popular for traditional machine learning models [24-27]. In 
concrete science, these tools improve predictive accuracy, 
optimize material design, and allow real-time structural 
health monitoring, contributing to the creation of sustainable 
and resilient infrastructure. Nonetheless, challenges such as 
data quality, model interpretability, and scalability remain 
critical areas for further research and development. 

III. DATA COLLECTION AND PREPROCESSING 

Data collection in concrete science involves gathering a 
wide range of information essential for understanding 
material behavior and performance under various 
conditions. This includes physical properties such as 
compressive strength, tensile strength, and elasticity, as well 
as chemical composition details like the types and 
proportions of cementitious materials, aggregates, and 
admixtures used in concrete mixtures. Environmental 
factors such as temperature, humidity, and exposure 
conditions also play crucial roles in determining concrete 
durability and performance over time. Data is collected 
through diverse methods: traditional laboratory tests involve 
conducting experiments on concrete samples under 
controlled conditions to measure specific properties, while 
field tests provide insights into how concrete behaves in 

real-world scenarios, such as on construction sites or in 
existing structures undergoing monitoring. 

After gathering data, preprocessing is crucial to 
guarantee its quality and effectiveness for machine learning 
(ML) applications. This stage encompasses several 
important steps: first, data cleaning is performed to 
eliminate errors, manage missing values, and deal with 
outliers. Next, normalization or standardization is applied to 
ensure that all data points are on a comparable scale. 
Finally, feature engineering comes into play, where insights 
from the domain are utilized to identify relevant features or 
generate new ones, ultimately boosting the predictive 
capabilities of ML models. 

Effective data preprocessing lays the foundation for 
accurate modeling and analysis in concrete science, enabling 
researchers and engineers to optimize mix designs, predict 
material performance, monitor structural health, and 
improve overall infrastructure sustainability and resilience. 
Table 1 provides a concise overview of the key components 
involved in data collection and preprocessing within 
concrete science. It outlines the types of data collected, 
methods employed for data collection, steps taken in data 
preprocessing, and the overall significance of these 
processes in advancing research and practical applications in 
the field. 

TABLE 1: DATA COLLECTION AND PREPROCESSING IN 
CONCRETE SCIENCE  

 
Aspect Description 
Types of 
Data 

Physical properties (e.g., compressive 
strength, durability), chemical composition 
(e.g., cementitious materials, aggregates), 
environmental factors (e.g., temperature, 
humidity). 

Data 
Collection 
Methods 

Laboratory tests (e.g., compressive strength 
tests), field tests (e.g., non-destructive 
testing), sensor networks (e.g., monitoring 
structural health). 

Data 
Preprocessing 

Cleaning data (handling missing values, 
outliers), normalization (standardizing data 
scales), feature engineering (selecting 
relevant features, creating new features). 

Significance Ensures data quality for accurate 
modelling, enhances predictive capabilities, 
supports optimization of concrete mix 
designs, facilitates effective infrastructure 
management. 

 

IV. APPLICATIONS IN CONCRETE SCIENCE 

A. Predictive Modelling of Concrete Properties 

Predictive modeling of concrete properties involves 
employing mathematical and statistical techniques to 
forecast the behavior and characteristics of concrete under 
various conditions. This approach is crucial in civil 
engineering and construction, where precise predictions of 
properties like compressive strength, tensile strength, and 
elasticity are vital for ensuring structural integrity and 
safety. Advanced predictive models utilize machine learning 
(ML) and deep learning (DL) algorithms capable of 
handling complex, non-linear relationships between 
concrete components and their resulting properties. Models 



such as Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), and Decision Trees (DT) have 
demonstrated significant promise in this field. These models 
are trained on extensive datasets containing diverse concrete 
mix designs and their corresponding properties, enabling 
them to discern intricate patterns and make accurate 
predictions.  

Figure 1 illustrates the regression graphs for both the 
training and testing datasets, highlighting the strong 
predictive performance of the ANN model. The correlation 
results show a high degree of accuracy, with R² = 0.966 (or 
R = 0.983) for the training dataset and R² = 0.975 (or R = 
0.987) for the testing dataset. These results demonstrate that 
the DNN model is highly accurate and reliable in predicting 
the 28-day compressive strength of rubber concrete. This 
model holds significant promise for developing a numerical 
tool to estimate the hardened properties of rubber concrete. 

 

Fig. 1: Correlation analysis of experimental versus predicted 
compressive strength: (a) training dataset, (b) testing dataset 
[28]. 
 

Figure 2 compares the model's predicted values with the 
experimental results, where green highlights predictions 
with an error exceeding 20%. For the six models, the error 
between predicted and actual values is generally below 
20%, indicating a high level of prediction accuracy. This 
demonstrates that regression models can effectively 
complement experimental data and support engineering 
applications. 
 
B. Quality Control and Monitoring 

Machine learning (ML) is revolutionizing quality control 
and monitoring in concrete by leveraging large datasets and 
sophisticated algorithms. ML enhances predictive 
modelling, anomaly detection, and optimization of concrete 
properties. For instance, ML models can predict concrete’s 
compressive strength and durability using data on mix 
proportions and curing times, employing techniques like 
neural networks and regression models. Real-time 
monitoring through embedded sensors and image analysis 
using convolutional neural networks (CNNs) helps detect 
structural anomalies such as cracks. ML also optimizes 
concrete mix designs for performance and cost-efficiency 
while promoting sustainability by optimizing the use of 
supplementary cementitious materials (SCMs). In 
production quality control, ML ensures consistent quality by 
monitoring raw materials and the mixing process in real-
time [29-32]. Furthermore, structural health monitoring 
(SHM) uses ML to analyse sensor data, predicting 
maintenance needs and lifecycle schedules to prevent 
failures. Applications of ML include smart sensors and 

autonomous drones equipped with ML algorithms for 
continuous and detailed inspection of concrete structures. 
Challenges like data quality, system integration, and 
ensuring model interpretability and trust remain, but ML’s 
role in concrete quality control and monitoring is growing, 
leading to safer, more reliable, and sustainable structures. 

 

Fig. 2: Comparison of predicted values against actual 
values: (a) Linear Regression (LR), (b) Support Vector 
Regression (SVR), (c) Random Forest (RF), (d) Multi-Layer 
Perceptron Artificial Neural Network (MLP-ANN), (e) 
Ensemble Method, (f) Convolutional Neural Network 
(CNN) [29]. 
 
C. Optimization of Mix Design 

Machine learning (ML) is revolutionizing the 
optimization of concrete mix design by offering advanced 
tools to analyze and predict the properties of different mix 
combinations. Traditionally, identifying the optimal 
concrete mix involved extensive trial and error, a process 
that was time-consuming and costly. ML algorithms 
streamline this process by analyzing historical data and 
identifying patterns that contribute to desired concrete 
properties. These models can predict characteristics such as 
compressive strength, workability, and durability based on 
mix proportions, including the types and quantities of 
cement, water, aggregates, and supplementary cementitious 
materials (SCMs). Common techniques like regression 
models, neural networks, and genetic algorithms are utilized 
to discover the most effective mix designs [34-37]. ML 
models also consider environmental factors and specific 
project requirements to customize the mix accordingly. 
Additionally, ML promotes sustainability by optimizing the 
use of SCMs, which can replace a portion of cement, 



thereby reducing the overall carbon footprint of concrete 
production. By minimizing the necessity for extensive 
physical testing, ML not only conserves time and resources 
but also enhances precise control over the mix design 
process, resulting in higher-quality and more durable 
concrete structures. 

 
D. Structural Health Monitoring 

Machine learning (ML) is significantly advancing 
structural health monitoring (SHM) by providing robust 
methods to analyze data from various sensors embedded in 
concrete structures. These sensors collect real-time data on 
parameters such as strain, temperature, and vibrations, 
which ML algorithms then analyze to assess the structure's 
condition and predict potential issues. ML models, including 
neural networks and support vector machines, excel at 
detecting patterns and anomalies indicative of structural 
weaknesses such as cracks, corrosion, or excessive loads. 
By continuously monitoring these parameters, ML-based 
SHM systems can issue early warnings of potential failures, 
enabling timely maintenance and repairs. This proactive 
approach extends the lifespan of structures and enhances 
safety. Moreover, ML enhances the accuracy of SHM by 
integrating data from diverse sources such as IoT devices, 
drones, and satellite imagery. Drones equipped with 
cameras and ML algorithms conduct detailed inspections, 
identifying surface defects imperceptible to the naked eye. 
This comprehensive data analysis provides a holistic 
understanding of structural health. Implementing ML in 
SHM not only improves the reliability and safety of 
concrete structures but also reduces maintenance costs by 
preventing major repairs. As technology progresses, ML's 
role in SHM is expected to expand, contributing to smarter 
and more resilient infrastructure. 

 
E. Failure Prediction and Risk Assessment 

Advancements in machine learning (ML) are 
increasingly enhancing failure prediction and risk 
assessment in concrete structures, enabling more accurate 
and proactive maintenance strategies. ML algorithms 
analyze diverse data sources such as historical maintenance 
records, sensor data from structural health monitoring 
systems, environmental conditions, and usage patterns. By 
processing these extensive datasets, ML can detect patterns 
and correlations that precede structural failures. ML models, 
including neural networks and decision trees, are trained to 
predict the likelihood of various failure modes such as 
cracks, corrosion, or structural instability. These models 
assess the current condition of the structure using real-time 
data and forecast its future performance under different 
scenarios. Risk assessment with ML involves quantifying 
the probability of failure and the potential consequences, 
empowering engineers and stakeholders to prioritize 
maintenance activities and allocate resources effectively. 

ML's capacity to handle complex datasets and perform 
probabilistic modeling enhances the accuracy of risk 
assessments compared to traditional methods. Implementing 
ML-based failure prediction and risk assessment helps 
mitigate risks, prolong the lifespan of concrete structures, 
and reduce unexpected downtime and repair costs. Ongoing 
research and development in ML are poised to further refine 
these capabilities, bolstering infrastructure resilience and 
sustainability in the long term.  

The findings facilitate practical applications in concrete 
science, enhancing predictive modeling and optimizing mix 
designs. Integrating machine learning enables real-time 
structural health monitoring, promoting proactive 
maintenance and reducing failure risks. These advancements 
support sustainable practices, minimizing waste and 
environmental impact, ultimately leading to safer, more 
resilient infrastructure in civil engineering. 

V. CHALLENGES, FUTURE DIRECTIONS AND ETHICAL 
CONSIDERATIONS 

A. Challenges and Limitations 

Applying machine learning (ML) to concrete science 
poses several challenges and limitations that impact the 
effectiveness and applicability of ML models in this field. 
One primary challenge is the quality and availability of data. 
Concrete data often varies in quality, may be incomplete, or 
inconsistently recorded, which makes it challenging to train 
robust ML models that generalize well across different 
scenarios and conditions. Moreover, the requirement for 
large and diverse datasets to train complex models like deep 
learning networks can be a hurdle, especially when 
historical or sensor data is sparse or unreliable. Another 
significant concern is the interpretability of ML models. 
While ML models can achieve high accuracy in predictions, 
understanding the rationale behind their decisions is crucial, 
particularly in safety-critical applications like structural 
health monitoring. The black-box nature of advanced ML 
algorithms, such as deep neural networks, can impede their 
adoption without robust interpretability methods. 

Scalability and deployment issues also present 
challenges. Implementing ML solutions in real-world 
concrete engineering settings requires integration with 
existing systems, ensuring real-time performance and 
compatibility with operational constraints. This demands the 
development of lightweight models or distributed computing 
frameworks capable of efficiently handling large volumes of 
data. Addressing these challenges necessitates 
interdisciplinary collaboration between ML researchers, 
concrete scientists, and industry practitioners. This 
collaboration aims to develop tailored solutions that enhance 
the reliability, interpretability, scalability, and deployment 
of ML applications in concrete science. 

Algorithm and time complexity issues arise when 
machine learning models require extensive computational 
resources, especially with large datasets or complex 
architectures. High time complexity can lead to prolonged 
training and inference times, limiting real-time applications. 
Balancing accuracy and efficiency is crucial to ensure 
practical deployment in concrete science and related fields. 

B. Future Trends and Innovations 

Future trends and innovations in machine learning (ML) 
applications within concrete science are poised to 
revolutionize how we understand, design, and maintain 
infrastructure. One promising trend is the integration of ML 
with advanced sensing technologies, such as Internet of 
Things (IoT) devices and sensor networks embedded in 
concrete structures. These technologies collect real-time 
data on environmental conditions, structural behavior, and 
material performance, which ML algorithms can analyze to 
provide actionable insights. This integration supports 
optimizing maintenance schedules, predicting potential 



failures, and enhancing durability. Another critical area of 
innovation lies in developing predictive modeling 
frameworks that harness ML for more precise and efficient 
material characterization. By integrating data from diverse 
sources—including material composition, construction 
methods, and environmental factors—ML can predict 
concrete properties such as compressive strength or 
permeability with greater accuracy. This capability allows 
engineers to optimize mix designs and tailor concrete 
formulations to meet specific performance criteria, thereby 
enhancing sustainability and resilience. 

Furthermore, advancements in explainable AI (XAI) are 
pivotal for improving trust and transparency in ML models 
used in critical infrastructure applications. XAI techniques 
aim to provide understandable explanations for ML 
predictions, enabling engineers and stakeholders to interpret 
model outputs and make well-informed decisions. In 
summary, the future of ML in concrete science holds 
promise for transforming construction practices, improving 
infrastructure performance, and advancing sustainable 
development goals through data-driven innovation and 
decision-making. 

C. Ethical Considerations 

Ethical considerations in the application of machine 
learning (ML) to concrete science encompass several crucial 
dimensions that must be addressed to ensure responsible and 
beneficial deployment of these technologies. One primary 
concern is the responsible use of data. Concrete science 
involves handling sensitive data related to material 
properties, structural integrity, and potentially personal 
information from sensor networks. Ensuring data privacy, 
security, and obtaining proper consent becomes paramount 
to safeguard stakeholders and uphold ethical standards. 
Another critical issue is fairness and bias in ML models. 
Biases can inadvertently arise from biased training data or 
algorithmic decisions, leading to inequitable outcomes in 
decisions concerning infrastructure design, maintenance, or 
risk assessment. Mitigating biases requires meticulous 
attention to data collection, preprocessing, and model 
evaluation processes to reduce disparities and ensure 
fairness in model predictions. 

Transparency and accountability are also fundamental 
ethical considerations. Stakeholders need to comprehend 
how ML models arrive at decisions and their potential 
implications for safety, reliability, and environmental 
impact. Establishing mechanisms for model explainability 
and auditability can foster trust and confidence in ML-
driven decisions. Ultimately, ethical guidelines and 
frameworks are essential to steer the development, 
deployment, and governance of ML applications in concrete 
science. These guidelines promote ethical conduct, 
transparency, fairness, and societal benefits while mitigating 
risks and potential harms. 

D. Societal Impact and Benefits 

Machine learning (ML) in concrete science has profound 
societal impacts that transcend technical advancements, 
influencing various aspects of infrastructure development, 
sustainability, and public safety. ML enables more precise 
prediction of concrete properties and behavior, leading to 
optimized mix designs that enhance durability, reduce 
environmental impact, and bolster overall infrastructure 
resilience. This advancement supports sustainable 

development goals by promoting resource efficiency and 
extending the longevity of structures. ML-driven 
innovations in structural health monitoring yield significant 
societal benefits through proactive maintenance strategies. 
Real-time monitoring systems, empowered by ML 
algorithms, can detect early signs of deterioration or 
potential failures, thereby enhancing safety and minimizing 
risks to public health and infrastructure integrity. Moreover, 
ML facilitates data-driven decision-making in construction 
practices, optimizing material use and construction methods 
to minimize costs and maximize efficiency. This can lead to 
more affordable housing solutions and improved 
infrastructure accessibility for communities. However, 
careful consideration of societal impacts is crucial to ensure 
equitable distribution of benefits and mitigate potential 
drawbacks such as displacement of traditional labour roles 
or unintended environmental consequences. Engaging 
stakeholders, including communities and policymakers, in 
discussions about the ethical implications and societal 
benefits of ML applications in concrete science is essential 
to harnessing its full potential for positive societal impact. 

VI.  CONCLUDING REMARKS 

In conclusion, the integration of machine learning 
techniques and tools into concrete science represents a 
significant advancement in both research and practical 
applications. By leveraging supervised, unsupervised, and 
deep learning methods, professionals can enhance predictive 
modelling, optimize mix designs, and monitor structural 
health effectively. These innovations not only improve the 
accuracy of concrete properties but also facilitate real-time 
quality control, fostering safer and more sustainable 
infrastructure. Nonetheless, issues like data quality, model 
interpretability, and scalability need to be tackled to fully 
leverage the advantages of machine learning in this domain. 
As researchers continue to explore future trends, including 
the integration of IoT and advancements in explainable AI, 
the potential for improved infrastructure resilience and 
performance is substantial. Ethical considerations 
surrounding data privacy, fairness, and transparency remain 
critical, necessitating the establishment of robust guidelines 
to ensure responsible use. Ultimately, the societal impacts of 
machine learning in concrete science are profound, 
promoting sustainability and public safety. Involving 
stakeholders in discussions about these advancements 
allows us to ensure that the benefits of machine learning are 
shared fairly, thereby improving the resilience and 
accessibility of our infrastructure for future generations. 

Future work in machine learning applications within 
concrete science should focus on enhancing data integration 
from diverse sources, including IoT devices and 
environmental sensors, to improve predictive accuracy. 
Developing robust models that address data quality and 
interpretability challenges is crucial for real-world 
implementation. Additionally, advancing explainable AI 
techniques will foster trust and transparency in machine 
learning predictions. Research should also explore 
sustainable practices, optimizing concrete mix designs to 
minimize environmental impact. Collaborative efforts 
among researchers, engineers, and industry stakeholders will 
be essential to drive innovation, ensuring that these 
technologies effectively enhance infrastructure resilience 
and safety. 



REFERENCES 
1. S. H. Shetty, S. Shetty, C. Singh, and A. Rao, “Supervised machine 

learning: algorithms and applications,” Fundamentals and methods of 
machine and deep learning: algorithms, tools and applications, pp. 1–
16, 2022. 

2. M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. 
Aljaaf, “A systematic review on supervised and unsupervised machine 
learning algorithms for data science,” Supervised and unsupervised 
learning for data science, pp. 3–21, 2020. 

3. M. Khan, B. Jan, H. Farman, J. Ahmad, H. Farman, and Z. Jan, “Deep 
learning methods and applications,” Deep learning: convergence to big 
data analytics, pp. 31–42, 2019. 

4. S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A survey of 
deep learning and its applications: a new paradigm to machine 
learning,” Arch. Comput. Methods Eng., vol. 27, pp. 1071–1092, 2020. 

5. B. Jan, H. Farman, M. Khan, M. Imran, I. U. Islam, A. Ahmad, S. Ali, 
and G. Jeon, “Deep learning in big data analytics: a comparative 
study,” Comput. Electr. Eng., vol. 75, pp. 275–287, 2019. 

6. M. Imran, R. A. Khushnood, and M. Fawad, “A hybrid data-driven and 
metaheuristic optimization approach for the compressive strength 
prediction of high-performance concrete,” Case Stud. Constr. Mater., 
vol. 18, p. e01890, 2023. 

7. F. Kazemi, T. Shafighfard, and D. Y. Yoo, “Data-driven modeling of 
mechanical properties of fiber-reinforced concrete: a critical review,” 
Arch. Comput. Methods Eng., vol. 31, no. 4, pp. 2049–2078, 2024. 

8. M. I. Khan and Y. M. Abbas, “Intelligent data-driven compressive 
strength prediction and optimization of reactive powder concrete using 
multiple ensemble-based machine learning approach,” Constr. Build. 
Mater., vol. 404, p. 133148, 2023. 

9. I. Nunez, A. Marani, M. Flah, and M. L. Nehdi, “Estimating 
compressive strength of modern concrete mixtures using computational 
intelligence: a systematic review,” Constr. Build. Mater., vol. 310, p. 
125279, 2021. 

10. H. Adel, M. I. Ghazaan, and A. H. Korayem, “Machine learning 
applications for developing sustainable construction materials,” in 
Artificial Intelligence and Data Science in Environmental Sensing, 
Academic Press, pp. 179–210, 2022. 

11. Z. Li, J. Yoon, R. Zhang, F. Rajabipour, W. V. Srubar III, I. Dabo, and 
A. Radlińska, “Machine learning in concrete science: applications, 
challenges, and best practices,” npj Comput. Mater., vol. 8, no. 1, p. 
127, 2022. 

12. J. Zhang, Y. Huang, G. Ma, and B. Nener, “Mixture optimization for 
environmental, economical and mechanical objectives in silica fume 
concrete: a novel framework based on machine learning and a new 
meta-heuristic algorithm,” Resour. Conserv. Recycl., vol. 167, p. 
105395, 2021. 

13. S. Singh, S. K. Patro, and S. K. Parhi, “Evolutionary optimization of 
machine learning algorithm hyperparameters for strength prediction of 
high-performance concrete,” Asian J. Civ. Eng., vol. 24, no. 8, pp. 
3121–3143, 2023. 

14. M. Mishra, P. B. Lourenço, and G. V. Ramana, “Structural health 
monitoring of civil engineering structures by using the internet of 
things: a review,” J. Build. Eng., vol. 48, p. 103954, 2022. 

15. R. Katam, V. D. K. Pasupuleti, and P. Kalapatapu, “A review on 
structural health monitoring: past to present,” Innov. Infrastruct. Solut., 
vol. 8, no. 9, p. 248, 2023. 

16. K. Sarkar, A. Shiuly, and K. G. Dhal, “Revolutionizing concrete 
analysis: an in-depth survey of AI-powered insights with image-centric 
approaches on comprehensive quality control, advanced crack 
detection, and concrete property exploration,” Constr. Build. Mater., 
vol. 411, p. 134212, 2024. 

17. K. L. Scrivener and R. J. Kirkpatrick, “Innovation in use and research 
on cementitious material,” Cem. Concr. Res., vol. 38, no. 2, pp. 128–
136, 2008. 

18. X. Zheng, Y. Wang, S. Zhang, F. Xu, X. Zhu, X. Jiang, L. Zhou, Y. 
Shen, Q. Chen, Z. Yan, and W. Zhao, “Research progress of the 
thermophysical and mechanical properties of concrete subjected to 
freeze-thaw cycles,” Constr. Build. Mater., vol. 330, p. 127254, 2022. 

19. B. Ghosh and S. Karmakar, “The conventional construction scenario 
and the emergence of advance technologies in the bridge construction: 
implementation, impediments, and case study,” J. Inst. Eng. India Ser. 
A, vol. 104, no. 3, pp. 709–720, 2023. 

20. K. Feng, W. Lu, T. Olofsson, S. Chen, H. Yan, and Y. Wang, “A 
predictive environmental assessment method for construction 
operations: application to a Northeast China case study,” 
Sustainability, vol. 10, no. 11, p. 3868, 2018. 

21. A. J. Sánchez-Garrido, I. J. Navarro, J. García, and V. Yepes, “A 
systematic literature review on modern methods of construction in 
building: an integrated approach using machine learning,” J. Build. 
Eng., vol. 73, p. 106725, 2023. 

22. A. Chitkeshwar, “Revolutionizing structural engineering: applications 
of machine learning for enhanced performance and safety,” Arch. 
Comput. Methods Eng., pp. 1–16, 2024. 

23. O. Alshboul, R. E. Al Mamlook, A. Shehadeh, and T. Munir, 
“Empirical exploration of predictive maintenance in concrete 
manufacturing: harnessing machine learning for enhanced equipment 
reliability in construction project management,” Comput. Ind. Eng., 
vol. 190, p. 110046, 2024. 

24. V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo, and M. J. 
Chica-Rivas, “Machine learning predictive models for mineral 
prospectivity: an evaluation of neural networks, random forest, 
regression trees, and support vector machines,” Ore Geol. Rev., vol. 
71, pp. 804–818, 2015. 

25. J. Maroco, D. Silva, A. Rodrigues, M. Guerreiro, I. Santana, and A. de 
Mendonça, “Data mining methods in the prediction of dementia: a real-
data comparison of the accuracy, sensitivity and specificity of linear 
discriminant analysis, logistic regression, neural networks, support 
vector machines, classification trees and random forests,” BMC Res. 
Notes, vol. 4, pp. 1–14, 2011. 

26. E. Raczko and B. Zagajewski, “Comparison of support vector machine, 
random forest, and neural network classifiers for tree species 
classification on airborne hyperspectral APEX images,” Eur. J. Remote 
Sens., vol. 50, no. 1, pp. 144–154, 2017. 

27. I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim, “Performance 
comparison of support vector machine, random forest, and extreme 
learning machine for intrusion detection,” IEEE Access, vol. 6, pp. 
33789–33795, 2018. 

28. H. B. Ly, T. A. Nguyen, and V. Q. Tran, “Development of deep neural 
network model to predict the compressive strength of rubber concrete,” 
Constr. Build. Mater., vol. 301, p. 124081, 2021. 

29. M. B. Haha, M. Zajac, M. Arndt, and J. Skocek, “Control of cement 
composition and quality: potential application of AI techniques,” in 
Intelligent and Sustainable Cement Production, CRC Press, pp. 199–
223, 2021. 

30. Y. Quan and F. Wang, “Machine learning-based real-time tracking for 
concrete vibration,” Autom. Constr., vol. 140, p. 104343, 2022. 

31. A. Dembla and M. Mersmann, “Data-driven thermal energy 
management including alternative fuels and raw materials use for 
sustainable cement manufacturing,” in Intelligent and Sustainable 
Cement Production, CRC Press, pp. 141–197, 2021. 

32. K. Sarkar, A. Shiuly, and K. G. Dhal, “Revolutionizing concrete 
analysis: an in-depth survey of AI-powered insights with image-centric 
approaches on comprehensive quality control, advanced crack 
detection, and concrete property exploration,” Constr. Build. Mater., 
vol. 411, p. 134212, 2024. 

33. J. Zhang, W. Niu, Y. Yang, D. Hou, and B. Dong, “Machine learning 
prediction models for compressive strength of calcined sludge-cement 
composites,” Constr. Build. Mater., vol. 346, p. 128442, 2022. 

34. V. Chandwani, V. Agrawal, and R. Nagar, “Modeling slump of ready 
mix concrete using genetic algorithms assisted training of artificial 
neural networks,” Expert Syst. Appl., vol. 42, no. 2, pp. 885–893, 2015. 

35. Y. Huang, J. Zhang, F. T. Ann, and G. Ma, “Intelligent mixture design 
of steel fibre reinforced concrete using a support vector regression and 
firefly algorithm-based multi-objective optimization model,” Constr. 
Build. Mater., vol. 260, p. 120457, 2020. 

36. M. A. DeRousseau, J. R. Kasprzyk, and W. V. Srubar III, 
“Computational design optimization of concrete mixtures: a review,” 
Cem. Concr. Res., vol. 109, pp. 42–53, 2018. 

37. V. Chandwani, V. Agrawal, and R. Nagar, “Modeling slump of ready 
mix concrete using genetically evolved artificial neural networks,” 
Adv. Artif. Neural Syst., vol. 2014, no. 1, p. 629137, 2014. 


