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Abstract

Over the years the cost of providing assistance and support to the ever-increasing
population of the elderly and the cognitively impaired has become an eco-
nomic epidemic. Therefore, the emergence of Ambient Assisted Living (AAL)
has become imperative, as it encourages independent and autonomous living
by providing assistance to the end user by conducting activity and behaviour
recognition. Accurate recognition of Activities of Daily Living (ADL) play
an important role in providing assistance and support to the elderly and cog-
nitively impaired. Current knowledge-driven and ontology-based techniques
model object concepts from assumptions and everyday common knowledge
of object used for routine activities. Modelling activities from such informa-
tion can lead to incorrect recognition of particular routine activities resulting in
possible failure to detect abnormal activity trends. In cases, where such prior
knowledge are not available, such techniques become virtually unemployable.
A significant step in the recognition of activities is the accurate discovery of
the object usage for specific routine activities. This thesis presents a hybrid ap-
proach for automatic consumption of sensor data and associating object usage
to routine activities using Latent Dirichlet Allocation (LDA) topic modelling.
This process enables the recognition of simple activities of daily living from
object usage and interactions in the home environment. In relation to this, the
work in this thesis addresses the problem of discovering object usage as events
and contexts describing specific routine activities, especially where they have
not been predefined. The main contribution is the development of a hybrid
knowledge-driven activity recognition approach which acquires the knowledge
of object usage through activity-object use discovery for the accurate specifica-
tion of activities and object concepts. The evaluation of the proposed approach
on the Kasteren and Ordonez datasets show that it yields better results com-
pared to existing techniques.
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Chapter 1

INTRODUCTION

1.1 Background

The United Nations Population Funds (UNFPA) reports that the world is ageing rapidly
[131]. According to this, 12.3% of the global population is made up of people aged 60
years or older, and this number will rise to almost 22% by 2050. The Office for National
Statistic (ONS) reports that in the United Kingdom, the fastest growth in the population
will be in the older age group and one in twelve people will be over 80 years by 2039 [42].
Advancements in healthcare, improving standards of living and declining mortality have
attributed to people living longer. As more people reach 60 years and above, we can expect
the number of people below this age group to shrink. While ageing has its advantages, its
disadvantages are quite enormous and far reaching. Amongst these are the growing de-
mand on healthcare resources and the provisions of social care. As people age, they tend
to become less physically independent, they begin to be frail and in most cases experience
declining memory and cognitive impairment. They start to rely on help and possibly losing
their independence. They experience difficulties in carrying out daily tasks hence requiring
support and care. In addition to the loss of autonomy and independence, they become so-
cially isolated resulting from changes in their living arrangements. With these, they are cut
off from friends, other family members, and experience minimal movements to visit or even
see places they would have loved to see. Alzheimer and Dementia are diseases commonly
associated with ageing. While these diseases have stages and levels of severity, symptoms
are the loss of cognitive abilities which affects the person’s daily life and activities [8]. In
most cases, family members are looked up to provide support and care for their affected
elderly relatives. These provisions affect the entire family as financial resources, human
resources and even time are invested in helping. Jobs and means of livelihood are given up
making the elderly and aged a burden. Older persons and aged also affect the public sector
and government because resources are needed to provide social care and support. This may
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be in the case of the provision of care homes, renumeration of care workers and support
providers. According to [42], an National Health Service (NHS) bed costs the taxpayer an
average of £1,925 a week in the United Kingdom. For a typical residential home, £558 is
needed a week and £357 is the average cost for providing similar care at home.

To augment the provisions of care and support to the elderly seniors, technology driven
solutions have been identified to help reduce the burden. It is the belief that through As-
sisted Living Systems or Ambient Assisted Living (AAL) systems equipped with sensors,
computers, wireless networks and software applications for healthcare monitoring, the se-
niors can live independently in their preferred environment by utilising Information and
Communication Technology (ICT) technologies for personal healthcare, support and assis-
tance [2]. As a way of harmonising the core aims and objectives towards providing a unified
goal of technology driven support and help for the aged, elderly and cognitively impaired
through this emerging area of Ambient Intelligence (AmI), the Active and Assisted Living
Programme (AALP) [2] has the following concepts:

• To extend the time people can live in their preferred environment by increasing their
autonomy, self-confidence and mobility;

• To support the preservation of health and functional capabilities of the elderly

• To promote a better and healthier lifestyle for individuals at risk;

• To enhance security, prevent social isolation and support the preservation of the mul-
tifunctional network around the individual;

• To support carers, families and care organisations;

• To increase the efficiency and productivity of used resources in the ageing societies.

To achieve these, an AAL system could have connected sensors, wireless sensors and
actuator networks, computer hardware and networks, software applications, and databases,
to provide services in an Ambient Assisted environment [2] as illustrated in Figure 1.1.
Typically, the system monitors and captures information from the user and the environ-
ment. With analysis and classifications based on this information, a reasoning and infer-
ence module can recognise what the user’s activities are so as to make assistive decisions to
provide support. This process is known as the Activity of Daily Living (ADL) recognition.

ADL recognition also known as Activity recognition is an emerging area of pervasive
computing. It is very important due to its significance in the provision of support and
assistance to the elderly, disabled and cognitively impaired. Pervasive computing com-
bines technologies with wireless computing, internet capability and artificial intelligence
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Figure 1.1: An example of an Ambient Intelligence Assisted Environment [1].

to create an environment where the connectivity of devices is embedded in such a way
that it minimizes the end user’s need to interact with computers. ADL recognition through
a pervasive computing process is involved in identifying what an individual is doing e.g.
Sleeping, Showering and Cooking.

Accurate recognition of Activities of Daily Living (ADL) plays an important role in
providing assistance and support to the elderly and cognitively impaired. Current knowledge-
driven and ontology-based techniques model object concepts from assumptions and every-
day common knowledge of object use for routine activities. Modelling activities from such
information can lead to incorrect recognition of particular routine activities resulting in
possible failure to detect abnormal activity trends. As a way forward, it is essential to
accommodate object concepts that are specific to the routine activities with regards to the
individual and the contextual environment. To provide assistance and support to the elderly
and cognitively impaired, the recognition of their ADLs must be accurate and precise with
regards to the object use events.
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1.2 Motivation

The motivation for this research is to conduct accurate activity recognition which can be
used to provide assistance and support for the elderly and the cognitively impaired. Activity
recognition can be conducted using data-driven and knowledge-driven techniques. A com-
bination of both these techniques can also be used to carry out activity recognition. Data-
driven activity recognition uses machine learning and statistical methods on sensor or vi-
sion data, which represents low-level events. This process involves discovering the patterns
and the classification of constituents data to make activity inferences. Research efforts in
[66, 64, 105, 85] shows the strengths of this approach within the learning process. Although
data-driven methods are capable of handling uncertainties, they lack semantic clarity and
are either hidden or latent, thus requiring expressivity in an understandable format for the
end user. On the other hand, knowledge-driven approaches model activities dependent on
the prior knowledge of object usage in the home environment through a knowledge engi-
neering process. The modelling process involves associating low-level sensor data to the
relevant activities through knowledge modelling and representation to build a knowledge
base. The activity recognition then follows logical inference or subsumption reasoning as
the case may be. In comparison with data-driven technique, knowledge-driven techniques
are more expressive and semantically rich but weak in handling uncertainties. However, in-
ferences are usually in a format that is easily understood by the end user. Knowledge-driven
techniques in most cases depend on the common and everyday knowledge of object usage
to model and represent object concepts in association to activity concepts. These com-
mon and everyday knowledge of object usage are mostly by assumptions and are generic
knowledge of object usage for specific routine activities or sometimes from wiki-know-
how 1. Activity ontologies modelled and represented in this way may not fit into certain
situations or capture specific routine activities in home environments. If activity concepts
have been developed based on the generic and or assumed knowledge of object usage, the
recognition model may fail due to objects fitting which differs with individuals and home
environments. This then affects the quality of assistance and support provisions to the
elderly and cognitively impaired.

Generic Ontologies models have been designed and developed as in [30, 28] to empha-
sise reusability and shareability. As a way forward, it is essential to extend these ontologies
to accommodate object concepts specific to the routine activities given the individual and
the home environment. Individuals differ in their lifestyles, habits and home setting with
objects therein also differs. With these, the contexts of activities cannot be generalised

1http://www.wikihow.com/Main-Page
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with regards to the object usage. For instance Breakfast as activity can be performed by
an individual using Kitchen as a Location, Fridge and Microwave. Another individual in
a different home setting could use Kitchen, GroceryCupboard, Toaster and Cooktop to
perform Breakfast as an activity. Breakfast is the activity in both cases, but they have
been performed using different sets of objects which could be unique to the individual and
the home settings. If a recognition model is developed based on the generic knowledge
that Breakfast has object use Kitchen, Plate and Cup, it would fail to accurately recognise
Breakfast for both individuals due to wrong object specifications which do not match. The
reliance on generic activity ontologies would fail in both cases to recognise Breakfast as
the activity being performed and eventually affect the assistive and support provisions as
the case may be.

To achieve accurate activity recognition, the specifications of the object used for activ-
ities can be achieved through an activity context describing the technique. In cases where
habits and home settings are changing, it can be used for updates and allow for modifi-
cations. The Figure 1.2 illustrates the functional intention of the proposed approach. It
extends the generically modelled activity ontology to an activity ontology with the spe-
cific activity-context descriptions based on sensor data captured in a home environment.
Unlike the generic activity ontology, the activity ontology with specific activity-context
descriptions has extended the object contexts such as Cooktop, Toaster, GroceryCupboard

from specifications based on the proposed hybrid approach to enhance activity recognition.
The idea is to develop an activity recognition technique with consideration to the unique-
ness of the user and the home setting. Also as habits, lifestyles and possibly home setting
changes, the hybrid approach adapts and allows these changes and modification to be made
to the activity ontology through an update service. The eventual hybrid activity recognition
technique can be used for accurate activity recognition and integrated into systems for the
provision of assistance and support for the elderly and cognitively impaired. In summary,
the thesis focuses the development of a novel hybrid activity recognition approach with due
consideration to unique and different individuals and home settings. This thesis also with
the emphasis on knowledge-driven techniques has identified that the knowledge acquisition
process should be extended beyond the generic and everyday knowledge of object usage
to build activity ontology. Given these, this thesis is motivated to harness the complemen-
tary strengths of the data-driven, and the knowledge-driven techniques to provide activity
recognition solutions over the limitations and weaknesses highlighted.
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Figure 1.2: Functional Intention of the Approach.

1.3 Thesis Objectives

The recognition of activities relies on accurate representation of activity and object con-
cepts. To achieve this, the knowledge of object contexts used for particular activity sit-
uations are essential. With due regards to the Breakfast example in the section above,
activity ontologies modelled from generic and everyday knowledge of object usage need to
be extended to accommodate inferences of specific activity situations from object contexts
describing them. In this regard, the principal aim of this thesis is:

To design and implement a hybrid activity recognition approach that recognises routine

activity situations as events from sensor datasets by the accurate specification of the object

use as the context describing the activities.

This aim can be achieved by addressing the following objectives:

• A review of research efforts in the area of ambient intelligence, context awareness
pervasive computing with regards to activity recognition.

• Identification of techniques to discover the object contexts for activities and the
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knowledge representation and formalism to enable activity recognition.

• Design and the implementation of context description and activity recognition algo-
rithms on the basis of the specification of the object use as context describing routine
activities.

• The selection of an appropriate evaluation methodology to evaluate the proposed
hybrid approach against requirements.

• Validate activity recognition results through experiments using sensor datasets rep-
resenting activity events in home environments.

1.4 Research Methodology

To achieve the goal as stated in the section above, this thesis follows the methodology as
illustrated in the Figure1.3 and as given below:

• Review relevant and related literature on ambient intelligence, pervasive computing,
assisted living and activity recognition.

• A review of the state of the art in activity recognition with an aim of analysing,
evaluating, highlighting the strength and weakness of activity recognition approaches
to identify areas for extension and contribution.

• Based on the areas for extension and contribution set out requirements ensuring they
become specifications and the basis for measurement.

• Design and develop activity recognition technique and approach based on the areas
for extension and contribution identified.

• Carryout incremental tests on the proposed activity recognition technique and ap-
proach developed.

• Experimentation and evaluation of the activity recognition approach.

• Selection of an appropriate validation methodology to evaluate the proposed hybrid
approach against requirements.

• Presentation of the research results.
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Figure 1.3: Research Methodology

1.5 Thesis Contributions

This thesis presents a novel hybrid approach to sensor and object-based knowledge-driven
activity recognition that combines ontology and topic model techniques. The proposed
approach offers improvements with regards to the limitations and drawbacks of each of the
separate techniques to activity recognition, such as accurate specification of object concepts
as context descriptors for particular activities and clear expressivity of recognised activities.
With these, this thesis makes the following contributions:

• A review of research efforts in the area of ambient intelligence, context awareness
pervasive computing with regards to activity recognition. This thesis also considered
a broad overview of these attempts highlighting data, knowledge driven and hybrid
approaches. Distinctions are made of the features, methods and the identified emerg-
ing approaches towards activity recognition. Limitations thereof are identified and
possibly how the approaches can be complementary. The details of the review can
be found in in Chapter 2.

• A novel hybrid approach made up of a context description module that augments an
activity ontology module as components. A context description algorithm discovers
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and assigns the specific objects as context descriptors for particular routine activities
which are modelled as activity ontology concepts.This context description algorithm
algorithm is presented in Chapter 4.

• A methodology to model static and dynamic activity situations by combining ontol-
ogy concepts formalism and 4D fluent (temporal attributes formalism with ontology).
This is especially applicable to activities occurring at specific times of the day and
having same or similar object interactions. This methodology to model static and
dynamic activity situations is presented in Chapter 5.

• A methodology to model fine grain activity situations with precedence property with
the realisation that activities are a result of atomic events occurring in patterns and
orders. These patterns and orders differ, and in some cases, the patterns determine the
evolving activity situations. This methodology to model fine grain activity situations
is presented in Chapter 5.

• A methodology to detect activity boundaries to signal the end of an activity and
the beginning of another activity by the introduction of location concept for objects
within the same location of a home environment was introduced. This is based on the
assumption that if two consecutively observed objects in use belonged to the same
location in the home environment, it suggests the continuation and persistence of an
activity. The details of the methodology can be found in in Chapter 5.

• An activity ontology update algorithm to update the activity ontology without the
process of editing the entire ontology. Ontologies have been known to be static, so
modifications and changes with the activities and object usage are achieved through
an ontology update process. This activity ontology update algorithm is presented in
Chapter 5.

1.6 List of Publications

The work presented in this thesis has been partially published in the following papers.

• Isibor Kennedy Ihianle, Usman Naeem, Syed Islam and Abdel-Rahman Tawil "A
Hybrid approach to Recognising Activities of Daily". MDPI Informatics Journal -
Special Issue : Sensor-Based Activity Recognition and Interaction, 2018.
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• Isibor Kennedy Ihianle, Usman Naeem, Syed Islam and Abdel-Rahman Tawil "Recog-
nising Activities of Daily Living from Patterns of Object Use". International Journal
of Hybrid intelligent Systems (IJHIS), 14(3): 2018

• Isibor Kennedy Ihianle, Syed Islam, Usman Naeem, Saeed Sharif, Muhammad Awais
Azam and Amin Karami "Intelligent Recognition of Activities of Daily Living from
Patterns of Object Use" in Intelligent Systems Conference (IntelliSys) 2018, [Ac-
cepted].

• Isibor Kennedy Ihianle, Usman Naeem, and Syed Islam "Ontology-Driven Activity
Recognition from Patterns of Object Use". in Proceedings of the 2nd International
Workshop on Intelligent and Personal Support of Human Behaviour in conjunction
with UbiComp ’17, 2017.

• Isibor Kennedy Ihianle, Usman Naeem and Syed Islam "Knowledge Driven Activ-
ity Recognition from Patterns of Object Use" 5th Activity Monitoring by Multiple
Distributed Sensing Workshop AMMDS 2017 [Accepted]

• Isibor Kennedy Ihianle, Usman Naeem and Abdel-Rahman Tawil, “Recognizing Ac-
tivities of Daily Living from Patterns and Web Knowledge Extraction”, 1st Inter-
national Workshop on Intelligent Personal Guidance of Human Behaviour Utilizing
Anticipatory Models in conjunction with UbiComp ’16, 2016.

• Isibor Kennedy Ihianle, Usman Naeem and Abdel-Rahman Tawil, “Recognition of
Activities of Daily Living from Topic Model,” The 7th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2016), 2016.

• Isibor Kennedy Ihianle, Usman Naeem and Abdel-Rahman Tawil, “Getting Knowl-
edge from Patterns for Activity Recognition,” in Artificial Life and Intelligent Agents
Symposium, ALIA 2016 [Poster].

• Isibor Kennedy Ihianle, Usman Naeem and Abdel-Rahman Tawil, “A Dynamic Seg-
mentation Based Activity Discovery through Topic Modelling,” in IET International
Conference on Technologies for Active and Assisted Living (TechAAL 2015), Lon-
don, 2015.
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1.7 Structure of thesis

This thesis structured into seven chapters and are as follows:

Chapter 2 presents the state of the art techniques on the recognition of Activities of Daily
Living (ADL) in the home environment. It reviews related work and existing approaches in
activity recognition. It discusses state of the art in the area of ambient intelligence, ubiqui-
tous computing and context awareness. In addition, data and knowledge driven techniques
employed in activity recognition have been reviewed.

Chapter 3 focuses on knowledge representation and formalism for activity recognition.
In this chapter, the semantic and ontology were discussed as the approach employed in this
thesis to represent knowledge for activity recognition. It also explains in detail the process
of representing ontological concepts, modelling and inference.

Chapter 4 introduces the proposed approach, methodology and the conceptual architecture
of the approach and the comprising components. It also presents knowledge acquisition and
context description for activity ontology. This chapter focuses on how knowledge of object
usage is acquired for the proposed activity ontology through activity-object discovery. This
chapter describes the process of context description for activity situations with an emphasis
on the use of Latent Dirichlet Allocation LDA to discover activity-object use. Further, it
presents context description from discovered activity-object use distributions for activity
ontology.

Chapter 5 presents ontology modelling of activities of daily living. It also presents the
modelling and representation of activity and object concepts in the ontology. It describes
the implementation and construction static and dynamic activities and their context descrip-
tors in the ontology as a prototype of the approach.

Chapter 6 presents the dataset, experiments and evaluation results of the technique pro-
posed in this thesis.

Chapter 7 concludes the thesis, final remarks, reflections and future work.
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Chapter 2

RECOGNITION OF ACTIVITIES
WITHIN THE HOME
ENVIRONMENT

The recognition of the ADLs of the elderly within an home environment is a major re-
search area due to the ageing population worldwide. Typical recognition systems monitor
the ADL of the elderly cognitively impaired to provide them support and assistance. In this
process, object usage data is captured using vision and sensor devices wearable sensors.
The captured data is classified using machine learning techniques and in some cases mod-
elled into knowledge-driven methods to infer activities. The machine learning techniques
work by discovering activities associated with the most likely value with regards to a set
of independently observed object data. On the other hand, the knowledge-driven method
involves associating low-level object data to the relevant activity through knowledge mod-
elling and representation to build a knowledge base. There are also hybrid models that
combine data and knowledge driven techniques. This chapter provides a review of the state
of the art techniques in activity recognition. It also discusses the previous related works
on activity monitoring, activity discovery and pattern analysis and modelling. While these
techniques of activity recognition have made useful and significant advances, they have
some weaknesses, limitations and challenges which are presented in the concluding part of
this chapter.

2.1 Ambient Intelligence

Ambient Intelligence (AmI) was introduced in 2001 by the European Commission’s Information
Society Technologies Advisory Group (ISTAG) [51] in a bid to develop systems to help
people within their own environments. Over the years, researchers have made contribu-
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tions in this area of endeavour making it evolve into an emerging field of computing. The
authors of [9], defines it as a technological system which proactively provides support to
people in their environment by the use of contextual information. A set of technologies
that should disappear into the user’s environment to make life easy and entertaining [34].
Artificial Intelligence (AI) supports this as the use of sensor technologies [91] and designs
which enhance user-friendliness, human assistance and easy interaction. The design of an
Ambient Intelligence (AmI) is such that it is user centric to provide assistive services based
on its ability to learn and predict the user actions and the environment. Besides, Cook
et al. [91] summarised technologies provided by AmI as sensitive, responsive, adaptive,
transparent, ubiquitous, and intelligent.

So it builds upon sensors and sensor networks, pervasive computing, and artificial intel-
ligence to have pervasive and ubiquitous computing and context-awareness as contributing
technologies as illustrated in Figure 2.1. Hence, AmI systems should have:

• Sensing mechanism to capture information from the user and the environment.

• Reasoning module able to recognise action of the user and make the decision to
provide support.

• Actuators that execute actions and affect the system users.

2.1.1 Pervasive Computing

Pervasive computing also known as ubiquitous computing aims to create AmI where tech-
nologies are embedded and integrated into everyday objects in the user’s environment to
be non-intrusive and communicate unobtrusively. In 1988, Mark Weiser coined the term
"Ubiquitous Computing" setting the principles of computers to be quite, invisible, calm and
by intuition smarter [138]. Weiser [137] described it as the use of computers in the physi-
cal environment to be non-intrusively available to enhance everyday life of the home user
without being visible. In pervasive computing, devices are interconnected to collect au-
tonomously, process and transport information to improve the human experience unaware
of the underlying communications and technologies. Computational techniques through
this would be human centred and freely available everywhere and disappear into the en-
vironment. To create ubiquity, a typical pervasive environment as illustrated in Figure
2.2 (An example of context attributes encoded to activity ontology in CONtext ONtology
(CONON) [136]) would be equipped with monitoring devices such as sensors, cameras,
microphones on home items or the user to gather information about their use even without
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Figure 2.1: Ambient Intelligence building block [91]

the user’s intervention [91]. These devices are networked across different layers seam-
lessly and operated in some cases through applications which support input/output modes
[119, 89]. A prominent feature of a pervasive environment is intelligence and its ability to
make decisions based on its state and the user with regards to the home object used.

2.1.2 Context Awareness

Context-awareness as a contributing technology to AmI uses contextual information to
make human-computer interactions easier without an interfacing medium for engagement.
Dey and Abowd [36] defined context as "any information that can be used to characterise
the situation of entities (i.e. whether a person, place or object) that are considered relevant
to the interaction between a user and an application, including the user and the application
themselves. Contexts are typically the location, identity and state of people, groups and
computational and physical objects." Which is then define Context-awareness as the ability
of devices to sense, detect interpret and respond to aspects of a user’s environment and
the devices themselves [103, 63]. Salber et al. [120] defined context-awareness as the
ability to provide real-time sensing of contexts to provide flexible computational service.
Typical characteristics of a context-aware technologies includes: context-sensitive [71],
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Figure 2.2: An example of context attributes encoded to activity ontology in CONtext
ONtology (CONON)[136]

responsive [39], reactive [33] and adaptive [22]. While the features of a typical context-
aware application include the above, Dey et al. [37] limits its development to the human-
computer interface. Context-aware technologies must also add context which Ryan et al.
[117] defined as the user’s location, environment, identity and time. Dey and Abowd [36]
suggested contexts should include the computing environment, user environment and the
physical environment. Important aspects of contexts should include who’s, where’s, when’s
and what’s (that is, what the user is doing) of entities and these could be used to determine
why an activity is taking place [123]. Dey et al. [37] suggested context-aware technologies
could use the who’s (the user’s identity), where’s (the user’s location) when’s (the time
of activity), and what’s (the user’s activity) of entities to determine why the situation is
occurring. All these contextual elements add to identify activities or situations involving
the user. As a result, context-aware applications can add to provide users with context-
aware services. Besides, Lui et al. [87] added that context-aware technologies should have
context acquisition and sensing methods, context modelling and representation, context
filtering and fusion, context storage and retrieval in addition to the context applications.

With regards to these settings, conventional activity recognition technologies could use
accelerometers to measure relative motion, location sensing devices, audio sensing devices,
time amongst many. The knowledge of these context attributes as illustrated in Figure 2.2
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could help to provide assistive support to the user. The goal is to enable computers through
AmI and context-aware technologies to have similar capabilities as humans for recognising
people’s activities. For example, if a person had dementia, the context-aware application
could provide alerts if the person forgets to their take his or her medications. Activity com-
pletion support could also be given to the home user. This could be done through activity
recognition dependent on contexts like location, time and previous events. Finally, activity
recognition dependent on context-aware technologies could reliably recognise user’s var-
ious activities to improve the way they interact with computers, and through this make a
huge impact on behaviour, social, and cognitive sciences.

2.2 Ambient Assisted Living

Ambient Assisted Living (AAL) relies on AmI technologies for its deployment. Typical
components of an AAL system includes a monitoring system (such as vision and sensor
devices) and a recognition and behaviour analysis model [31]. In the provision of care
for the elderly, the AAL system uses vision capturing devices and a variety of sensors to
monitor the daily activities of the elderly cognitively impaired. The deployment of these
devices in the user’s environment are used to pervasively augment [137] as well as capture
contexts such as location, time, etc. [37]. Issues such as privacy and acceptability of the
monitoring systems are worth considering in the choice of these devices. The analysis of
the captured data may focus on recognising the activities of individual user in comparison
with daily schedules. It could also be used to recognise abnormal activity trends to identify
a decline in health or even dangerous activities. Another could be to provide assistance
or support completion of activities of daily living. Irrespective of its use, the deployment
of the recognition and analysis components are supported by middleware technologies and
software agents. According to Ruijiao et al. [115], AAL services are applied in daily task
assistance, rehabilitation and social inclusion, mobility assistance and healthcare as illus-
trated in Table 2.1.

In addition, prominent projects offering assisted living support and assistance includes;
The CASAS Smart Home [109, 125] at the Washington State University. This smart home
was created to provide comfort, safety, improve productivity and autonomous living of its
residents. It has deployed sensors to monitor activities and environmental factors, intelli-
gent agents and a set of actuators to provide mechanisms for control or movement in the
provision of assistance and support as the case may be. iDorm [91] was established by
the Intelligent Environment Group of Digital Lifestyle Centre, University of Essex. This
project was upgraded to iSpace composed of physical static computational components
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Area Service Provided

Daily task assistance Support with daily tasks such cleaning, cook-
ing. Life style management such as when to
wake up or got to bed, watching TV and lis-
tening to radio. Activity and task reminders.

Rehabilitation and So-
cial Inclusion Personal Digital Assistant (PDA) enhanced ap-

plication to read emails, operate washing ma-
chine, food items manager, enhanced user dia-
logue system, access to social network, news-
paper reader [45], e-inclusion to stay connected
with friends and family [83].

Mobility Assistance Fall detection, enhanced mobility through smart
wheel chairs, Smart route planning and naviga-
tion [124], Assistive and robotic limb [47], Ob-
stacle detection for outdoor movements [142],
Robotic wheel chair with assistive limbs [32].

Healthcare Medication and drugs management, Care sup-
port and reporting systems [75], Rehabilitation
system, Disease management systems [100].

Table 2.1: Services provided by the different areas in Assisted Living.

to learn users’ behaviour, a robotic agent and portable computational devices for wireless
interactions with the smart home. The Gator Tech Smart Home was developed by Helal
et al [55] to provide support and assistance to the elderly. This project through deployed
technologies which notifies residents when to do laundry, monitor sleep pattern through the
smart bed and a cognitive assistant to guide occupants through tasks. The Ambient Light-
ing Assistance for and Aging Population ALADIN [90] project seeks to develop adaptive
lighting system which can respond to users lighting needs with respect to the situation and
also provide eco-energy management. The PlaceLab project is a living laboratory which
imitates a real home for routine and everyday activities. Equipped with sensors and vision
and audio monitoring devices, it provides context sensitive reminders based on activities
recognised [69]. Other projects completed and ongoing includes iCare [67], SYSIASS [6],
PERSONA [95], CareLab [35], Aware Home [76], RoboCare [25], and LsW [38] amongst
many which are not just laboratory based but technologies focusing on routine and every-
day activities. To fully understand how these technologies have been deployed, the next
section considers approaches to activity recognition.
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Figure 2.3: A generic activity recognition model

2.3 Activity Recognition

Activity recognition is the process of recognising the actions of an individual through the
use one or more agents. According to Chen et al. [27], activity recognition process involves
inferring ongoing activities in an environment through the use of technology driven agents
which monitor and analyse the activities as they occur. A generic activity model as illus-
trated in Figure 2.3 tracks user’s behaviour and contexts such a location, time, etc. through
vision devices, a set of multi-modal sensors or both. This thesis refer to this process of
monitoring as activity monitoring process. The activity recognition model processes the
incoming monitored data for inference. Activity recognition models can be broadly classi-
fied into three; data dependent, knowledge driven and the hybrid models. Data dependent
also known as machine learning models, statistically analyse data captured using activity
monitoring devices and process them to infer ongoing activities [66, 84]. The knowledge
driven methods build activity models by encoding characteristic behaviour of the home
user and contexts [21], and the hybrid models combine of data and the knowledge-driven
models. The output of the activity monitoring and recognition models are the inferred or
recognised activities. In the sections below provide a review of activity monitoring process
and recognition models.
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2.3.1 Activity Monitoring

Activity recognition models depend on contextual data from the user and the environment.
These are captured through activity monitoring devices. Currently, there are two categories
of activity monitoring devices include vision and sensor devices.

2.3.1.1 Vision Monitoring Devices

Vision-based activity monitoring use cameras to capture users’ activities and environmen-
tal changes in the form of digitalized visual data or video sequences. In most cases, a
set of multiple cameras is involved to capture context-rich data which may include sound
and various image ranges. Captured images are taken through feature extraction, struc-
tural modelling, segmentation and pattern recognition processes to recognise the activities
which they represent. A major limitation to vision-based activity recognition is that it has
been considered to be invasive. Besides, they suffer scalability and reusability issues due
to the complexity of real-world setting [27, 28]. Main areas of the application include se-
curity, surveillance and capturing biometric data such as fingerprints. Vision-based activity
recognition has also been used in smart rooms [27].

2.3.1.2 Sensor Monitoring Devices

A wide range of sensor-based monitoring devices such as accelerometers, Radio Frequency
Identification (RFID), motion detectors, Geographical Positioning System (GPS), etc. are
used to capture users’ behaviour and environmental contexts. Given their variety, use and
technical specifications they are deployed where they are needed most. Chen et al. [27],
classified sensors into two categories according to how they are deployed: Wearable sensors
(Sensors worn by the user) and Object based sensors (Dense sensing or sensors tagged to
objects).

Wearable sensors are sensors carried by the users or attached to the body of the user.
They can be strapped, clipped to the clothing of the user or even embedded into mobile
devices belts, shoe eye glasses, etc. in the process of capturing data. Typical wearable sen-
sors include inertial sensors (accelerometers, gyroscope and Geographical Positioning Sys-
tem GPS Sensors) and body monitors (heart monitors, thermometers, electro-cardiographs,
oximetry sensors, etc.). Accelerometers and gyroscope are the most commonly used wear-
able sensors due to their cost, efficiency and purpose. They are used to measure and monitor
motion-based activities such as walking, climbing, running, jogging, falls, etc. Bourke and
Lyons [20] used accelerometers to distinguish activities like standing up and lying down,
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sitting and standing up. Huynh et al. [64] also used accelerometers to discover walking, sit-
ting and eating activities. The use of gyroscopes helps to achieve greater positional results
as in Bourke and Lyons [20]. GPS sensors are also another widely used set of wearable
sensors. They are used to capture data for location based activities. Patterson et al. [105]
used GPS sensors to detect users’ behaviour of boarding a bus at a particular bus stop and
disembarking. Liao et al. [85] also used GPS in their work to infer user’s mode of travel
(bus) and taking a wrong bus. Body monitors also known as biosensor are deployed in
healthcare to help provide a monitoring system for vital body signs such respiratory, heart,
blood pressure, temperature readings, etc. Research works on the use of biosensors include
[54] and [41]. In spite of their use and advantages, wearable sensors have some limita-
tions. Users may be reluctant to have wearable sensors worn, tagged, strapped or clipped
on them. This acceptability issues raises the question of their use as it may not reflect their
acceptance in real life scenarios. Other issues as reported by Chen et al. [27] includes their
ease of use, battery life and their size.

Dense and object based sensors consist of passive motion detectors to record human
activity. To avoid privacy concerns and reduce cost, dense sensing networks are composed
of simple low cost sensors (passive infrared motion detectors) to monitor public spaces
and sometimes tagged to objects. These sensors can only detect the presence of a person
and cannot identify the person, thus alleviating privacy concerns. Object-based sensors
are attached to objects to capture user-object interactions. According to Chen et al. [27],
the objects manipulated can determine the activity that is ongoing. We can identify the
activities from the sensor data reported because the sensor data is a representation of the
objects used that are associated with specific activities. Commonly used sensors are Radio
Frequency Identification RFID sensors and binary sensors. Binary sensors are state-change
sensors which provide binary reports of ON and OFF, OPEN and CLOSE or 0 and 1 to
represent the state of the associated object usage. They are very cheap, easy to install and
small. Kasteren et al. [132] used binary state-change sensor tagged to the toilet, doors,
fridge, cupboard, etc. to recognise activities like sleeping, toileting, leaving, etc. In the
same manner, Ordonez et al. [99] used binary sensors attached to home objects like cooktop
and microwave in their work. A major limitation of the use of sensor-based dense sensing
is their inability to quantify measurements, hence restricting their use to activities involving
the determination of object use. Noisy data could also be associated with their use requiring
enormous computational efforts in data pre-processing and cleaning. Irrespective of their
drawbacks and limitations, it’s hard to say which of visual monitoring devices, wearable
sensors and object based sensors is best. The targeted activity and situation determines
the choice of the monitoring device to use. According to Chen et al. [27], none of the
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monitoring devices is mutually exclusive. They could all be used together to achieve better
recognition performance.

2.4 Activity Recognition Approaches

Activity recognition approaches can be classified into two broad categories data, knowledge
driven approaches and hybrid approaches for activity recognition. These classifications are
based on the methodologies adopted, how activities are modelled and represented in the
recognition process.

2.4.1 Data Driven

As the name implies, data driven approaches are data dependent. They use of machine
learning techniques on datasets to discover and recognise activity models contained therein.
The process of activity recognition involves the use of probabilistic and statistical algo-
rithms on existing dataset to perform activity inference. Data-driven approaches can be
generative or discriminative.

According to Chen et al. [27], the generative approach builds a complete description
of the input (data) space, usually using a probabilistic model. The resulting model induces
a classification boundary which can be applied to classify observations during inference.
The classification boundary is implicit, and a lot of activity data is required to produce
it. Generative classification models includes Dynamic Bayes Networks (DBN) [129, 70],
Hidden Markov Model (HMM) [70, 104, 105, 94], Naive Baiyes (NB) [129, 130, 80], LDA
[65, 113, 73]. Bayesian networks are graphical models structured as a directed acyclic
graph. They are designed for establishing relations between variables. Nodes in the graph
represent a random variable with the probability of the corresponding variable. The di-
rected arcs between nodes indicate their dependencies, such that one variable affects the
other one directly and this effect can be defined by a conditional probability [116]. Tapia
et al. [130] used NB to recognise activities from wearable sensors. Activities recognised
includes toileting, bathing, preparing lunch, etc. Also in [129], the authors used both de-
cision trees and NB to recognise gymnasium based activities like walking, running, push
ups, sit ups, etc. Bayesian Networks are unable to model temporal entities. DBN were
proposed to overcome the temporal limitations of the Bayesian Networks. HMM are a
type of DBN with one discrete hidden node and one discrete or continuous observed node
per slice. HMM have the advantage of representing spatiotemporal information. Activity
recognition approaches using HMM represents an activity as a sequence of hidden states.
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A user is assumed to be in one of the states at each time, and each state emits an obser-
vation. The user makes a transition to another state following the transition probabilities
between states. Once transition and emission probabilities are learned from labelled data,
activities are recognised by finding the most likely state sequence in the model that pro-
duced the observations [3]. Patterson et al. [104] used interaction information derived
from object usage-based sensing to infer ongoing activities using both HMM and DBN.
Activities recognised in this process includes cooking and what the home user was cook-
ing. Modayil et al. [70] recognised interleaved activities by the use of the HMM approach.
The approach models activities in the context of the last object used. A major drawback
associated with HMM their inability to recognise all observation sequences with specific
activities. Several HMM extensions have been proposed as the way forward to solving
these limitations and other drawbacks not mentioned in this thesis. With the Hidden Semi
Markov Model (HSMM), explicit state duration probability distribution is used instead of
self-transition probabilities. So, states have variable durations, and some observations are
produced in each state according to the duration determined by the distribution [59]. Also,
the Factorial Hidden Markov Models (FHMM) enable multiple dynamic processes to inter-
act to produce a single output [78]. The Coupled Hidden Markov Models (CHMM) models
dynamic relations between several events by considering as a set of HMM where states at
specific times are conditioned by the states at the time for all instances of HMM [101].

Topic models inspired by the text and natural language processing community. The
authors of [113] were able to apply the LDA to a collection of documents to show that
each author is associated with a multinomial distribution over topics and each topic is
associated with a multinomial distribution over words. The LDA topic model has also
have been applied to discover and recognise human activity routines in research works
by Katayoun and Gatica-Perez [73] and Huynh et al. [65]. Huynh et al. [65] applied
the bag of words model of the LDA to discover activities like dinner, commuting, office
work, etc. The process involved activity discovery of partitioned sensor segments of time
windows. While Katayoun and Gatica-Perez [73] discovered activity routines from mobile
phone data, Huynh et al. [65] used wearable sensors attached to the body parts of the user.
Although activities discovered (topics) were mostly latent and hidden as the word "latent"
in LDA implies, it has the compelling feature of been able to assign words and documents
to the discovered topics. The approach proposed significantly with LDA approaches by
[73] and [65] with the inclusion of a activity ontology to make object and activity concepts
more expressive for the end user.

On the other hand, the discriminative approach, also called conditional models works
by modelling the dependence of an unobserved variable on an observed variable such as
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sensor data to produce activity inference as outputs. Discriminative models, as opposed
to generative models, do not allow generating samples from the joint distribution of the
models [27]. Discriminative Clasification tries to model by just depending on the observed
data. It makes fewer assumptions on the distributions as opposed to generative models. Dis-
criminative models also do not make classification from the joint distribution of observed
and target variables. Discriminative models includes Nearest Neighbour (NN)[82, 64] ,
Decision Trees (DT) [13], Support Vector Machines (SVM) [64, 24, 107], Conditional
Random Fields (CRF) [86], multiple eigenspaces [66], and k-means [64]. Artificial Neural
Networks (ANN) are modelled to imitate information processing of a biological neural sys-
tem whose components are composed of neurones and links. In the artificial intelligence
systems, each neurone is responsible for an arithmetic operation the output of which will
be served as input to the successor neurones through links [116]. A perceptron represents a
basic system which consists of some input neurones connected to an output node. Yang et
al. [143] proposed an approach using neural classifiers based on signals received from a tri-
axial accelerometer. The pre-classifier discriminates static activities from dynamic ones by
using body acceleration feature. With the distinctions is made, classifiers for static/dynamic
activities (standing, sitting, walking, etc.) are constructed using a particular set originated
from the acceleration data. SVM functions to locate a hyperplane separating classes from
each other with a maximum margin that is the distance between two data points in each
class where their distance from the hyperplane is minimum. The closest points to the hy-
perplane are called support vectors (SV). Qian et al. [107]. used SVM decision trees to
recognise activities in a surveillance system. In this approach, differences between activi-
ties are learned by identifying boundaries between activity classes in a hierarchically using
decision tree where an SVM binary classifier represents each node. By integrating all SVM
in the nodes, a multi-class SVM is generated Support Vector Machines with Binary Tree
Architecture (SVM-BTA). Cao et al. [24] used SVM to recognise activities from a video
system. The captured video data were represented by a set of filtered images which were
fed into a classification module. While the major limitation with SVM is the inability to
model temporal interactions, ANN are criticised for being a “black-box”, i.e. relations
between inputs and outputs are hidden within the network structure, which makes the inter-
pretation of the calculated results difficult. Conditional Random Fields CRF are graphical
models which represent conditional probability of a sequence of hidden variables, e.g. ac-
tivity labels, given a sequence of observations. CRF considers only labels in conditional
probabilities, instead of joint probabilities of labels and observations. The authors of [86]
used CRF on GPS data to recognise activities. This discriminative approach was formu-
lated as a hierarchical structure of the GPS data capable of handling temporal data. Huynh
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and Schiele [66] applied eigenspaces to recognise activities from wearable sensors. Theo-
retically, if a scalar λ is defined as an eigenvalue of the n x nmatrixA so thatAx = λx. x is
called an eigenvector corresponding to the eigenvalue λ. The eigenspace of the n x nmatrix
A corresponding to the eigenvalue λ of A is the set of all eigenvectors of A corresponding
to λ. In their work, they considered data from a linear subspace referred to as eigenspace,
in the process the eigenvectors were found. The optimal eigenspace is further determined
to represent the data without using any prior annotation or user intervention. To model
complex structure inherent in data sets, they extended this to multiple eigenspaces, which
are then used to classify activities. With the use of CRF, it is possible to model conditional
probabilities without specifying the probability distribution of the observations, which is
the most daunting phase. The major weakness of this approach is the complexity associated
with the training process which is computationally expensive with many features involved.

2.4.2 Knowledge Driven

The knowledge driven approach builds activity models by exploiting rich prior knowledge
in the domain of interest [27]. Rich domain knowledge is used instead of the learning
process in data-driven approaches. Knowledge-driven approaches are semantically clear,
logically elegant and easy to get started and do not require to be trained. Various methods,
in particular, knowledge engineering methodologies and techniques, are used to model do-
main knowledge. This domain knowledge can then be encoded in various reusable knowl-
edge structures, including activity models for holding heuristics and prior knowledge of
performing activities. Domain knowledge can also be encoded contexts for maintaining re-
lationships between the activities, objects, temporal and spatial contexts [4, 26, 43, 48, 57].
With regards to the knowledge model and structures, knowledge-driven techniques can are
grouped into three categories logic, mining and ontology technologies.

The logic-based approach uses the specification knowledge representation to represent
knowledge models. Knowledge engineering techniques are used to set up and acquire do-
main knowledge. Logic-based Knowledge representations of activities and sensor data use
logical reasoning for activity inference. The process of recognition would involve using ob-
served sensor data against the knowledge-driven model to recognise an activity by way of
logical induction, abduction, and or deduction. Given these, domain knowledge can be eas-
ily added to allow data fusion. The logic based approach was used by the authors of Kautz
et al. [74]. They built activity plans from first-order axioms. Bouchard et al. [19] used
lattice theory and action description logic (DL) to identify activities. This work captures
the subsumption relationships among activities and activity structures that are modelled as
action sequences. With these structures, transitions from initial states to final states in the
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performance of activities are presented. The classification performs activity recognition
through a lattice structure. Lymberopoulos et al. [88] investigated the use of spatiotempo-
ral reasoning in activity recognition. Data is gathered from a sensor network that monitors
a person over space and time and generates spatiotemporal sequences of characteristic in-
formation. Chen et al. [29] proposed event calculus modelled from events and object states
which they used as properties. In this process, they were able to use logical constructs to
model compound and parallel activities. An activity trace is simply a sequence of activities
that happen at different time points. Activity recognition is mapped to deductive reasoning
tasks, e.g., temporal projection or explanation, and activity assistance or hazard prevention
is mapped to abductive reasoning tasks. Although, these allowed context-rich concepts,
logic-based methods were not flexible enough to be adapted for other users. Similar to
other knowledge-driven methods they lacked the ability to handle uncertainties.

The mining-based approach creates activity model by mining existing activity knowl-
edge from a publicly available source. The activities are identified first and described from
relevant sources. Information retrieval techniques are then used to determine the definitions
of the activities from specific sources and extract examples of phrases or statement which
describe the object usage. Afterwards, an algorithm is then used to determine to estimate
the object-usage association. Wyatt et al. [140] mined the web to create activity model
of object use. Applying discriminative approach they built a genre classifier which when
exploited the Viterbi Algorithm and Maximum Likelihood to learn customised activity pa-
rameters from unsegmented, unlabelled sensor data. Palmes et al. [102] proposed a method
for activity segmentation and recognition. They applied the frequency of object usage for
different activities from web pages. This method created object weights which were used
to recognise relevant activities and create a segmentation of activity trace. The major limi-
tation with the mining based approach is the lack of reusability of the genre classifier built
from this model.

Ontology-based activity recognition is an emerging area in knowledge-driven approach.
It involves the use of ontology modelling and representation to support activity recognition,
support and assistance. Ontology uses the formal and explicit specification of a shared con-
ceptualization of a problem domain [52]. Vocabulary for modelling a domain are provided
by specifying the activity and object concepts, properties, and their relationships. It then
uses domain and prior knowledge to pre-define activity concept in the ontology [27]. Latfi
et al. [81] proposed an ontology framework for a telehealth smart home aimed at pro-
viding support for elderly persons suffering from loss of cognitive autonomy. Chen et al.
[30, 28] proposed an ontology-based approach to activity recognition in which they rep-
resented activity and object concepts and contexts for explicit domain modelling. Sensor
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Figure 2.4: An activity ontology with specification of conceptual structures [136]

activations over a period are mapped to individual contextual information and then fused to
build a context at any particular time point. Subsumption reasoning was used in the clas-
sification process, thus inferring the ongoing activity. Knowledge-driven ontology model
as shown in Figure 2.4, follow OWL theories for the specification of conceptual structures
and their relationships [141]. OWL has been widely used for modelling human activities
for recognition, which most times involve the description of events by their specifications
using their object and data properties [28]. In ontology modelling, domain knowledge is
required to encode activity scenarios, but it also allows the use of assumptions and com-
mon sense domain knowledge to build the activity scenarios that describe the conditions
that drive the derivation of the activities [97]. Recognising the activity then requires the
modelled data to be fed to the ontology reasoner for classification. The authors of [30, 96]
and [28] followed generic activity knowledge to develop an ontology model for the smart
home users. While these approaches to model activities following common sense, everyday
domain knowledge and its associated heuristics are commendable, they may lead to faulty
activity recognition due to lack of specificity of the contexts describing the activity situa-
tions. Specific considerations to object use for routine activities could be put into accounts
just as home settings and individual object usage differ which may not apply to ontologies
developed from generic knowledge of object usage. They also do not follow evidenced
patterns of object usage and activity evolution as they rely on generic know-hows to model
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activity and object concepts.

2.4.3 Hybrid Approaches for Activity Recognition

Hybrid approaches combine data-driven and knowledge-driven approaches. In most cases,
data-driven approaches are applied to augment the knowledge-driven approach. Research
efforts by [118, 111, 97, 96, 53] show that hybrid approaches are promising. An example
of a hybrid based activity recognition is the Context-aware Activity Recognition (COSAR)
by Riboni and Bettini [111]. The COSAR system recognises activities using ontology
and statistical reasoners which are based on ontology and multiclass logistic regression
method respectively. It relies on the statistical pre-classification of considered activities
which are integrated to the ontology reasoner. Although this work shows how recognition
rate improves, it failed to consider detail specification of object use and interactions for
particular activities which might impact on the recognition of fine grain activities. Kun Gu
et al [53] proposed an activity recognition assistance algorithm based on a hybrid semantic
model. The hybrid semantic model proposed was based on the HMM and an activity on-
tology model. The system infrastructure included a search engine module which performs
internet information retrieval for its ontology module for activity recognition which is con-
nected to a 3 layer HMM module to provide assistance. The strength of the work is in its
ability to provide assistance based on recognised activities, but it failed to mention how
retrieved internet information is filtered since object search return multiple results leading
to ambiguous activity recognition. Okeyo et al. [97] proposed a hybrid approach which
combined ontology and temporal formalism and a dynamic sensor data segmentation tech-
nique [96], based on shrinking and expanding the time windows. Despite exploiting the 4D
approach for their temporal formalism, they modelled object and activity concepts from
generic knowledge of object use and wiki-know-how rather than accurate object use dis-
covery which we propose in this thesis. Okeyo et al. [97], this thesis relies of the discovery
of the objects use for activities to model object and activity concepts which proves to be
more accurate for the specification of activities and the eventual recognition of activities.

Hybrid approaches have not been purely limited to the combination of data and knowledge-
driven approaches. A hybrid generative and discriminative model was proposed by Or-
donez et al [99]. This pure data-driven hybrid approach used Artificial Neural Network
(ANN) and Support Vector Machine (SVM) within a Hidden Markov Model (HMM) frame-
work. Although the approach provided a unifying data-driven hybrid framework for the
recognised set of activities, it lacked semantic expressivity and knowledge inference as
with the ontology-based hybrid approaches. A major drawback found with most existing
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hybrid approaches is their inability to consider accurate knowledge of object use and in-
teractions for the specification of routine activity concepts [99, 97, 96, 53, 111], which
should be an inherent feature of activity recognition, and that can serve as contexts describ-
ing activity situations in the home environment. In cases where such prior knowledge is
not available, such techniques become virtually unemployable. A significant step in the
recognition of activities is the accurate discovery of the objects used for specific routine
activities.

2.5 Discussion

As discussed in the sections above, data-driven approaches and knowledge-driven ap-
proaches follow different methodologies and procedures. They also have with them their
various limitations and drawbacks. In spite of this, the strengths of these approaches have
led to different commendable research efforts. In relation to this, a summary of the dis-
cussed works with emphasis on their strengths and weaknesses is presented in Table 2.2.

Data-driven approaches, in general, have the advantage of handling incomplete data and
managing noisy data. Also, they can handle uncertainty much more than knowledge-driven
approaches. The review above also highlighted the weaknesses of Bayesian Networks at
managing temporal information. DBN, HMM and CRF support modelling temporal in-
formation and so could be used for modelling interleaved and concurrent activities. With
efforts made with the HMM as in Modayil et al. [70], interleaved activities could be mod-
elled with time take into consideration. The dependence of the HMM on limited observa-
tion sequence led to extensions like HSMM, FHMM, and CHMM. The LDA also has the
compelling feature of being able to allocate words in a corpus of documents to topics. This
feature was put to use in Katayoun and Gatica-Perez [73] and Huynh et al. [65] where the
sensor features corresponded to words and the activity topics corresponded to the topics of
the LDA. However, the data-driven models are very reliant on data. Activity recognition
results in most cases lack semantic expressiveness understood by the end user. Features for
classification are very limited due to the inability of context-rich features to be incorporated
in these models. With these, it is hard to adequately reflect real life situations as features to
be classified in the process of activity recognition using data-driven models.

On the other hand, knowledge driven approaches build on some of the weaknesses of the
data-driven approaches. As discussed, they rely on logic, ontology theories which enhance
their expressiveness [28]. Domain knowledge can then be encoded in different re-usable
knowledge structures for maintaining relationships between activities, objects and temporal
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and spatial contexts. In most cases, Knowledge-driven approaches can be reusable ontolo-
gies which support the common use and sharing across applications. But then, knowledge
driven approaches are purely dependent on expert’s domain knowledge [97, 30]. These
characteristics limit it opportunities amongst models. They are static and unable to handle
fuzzy and uncertain situations unless they are extended. Unlike data-driven knowledge,
they do not automatically learn the most optimal activity models to characterise activities
and sensor data from a set of possible models. Some knowledge-driven methods, e.g. those
using ontological, rule-based and case-based reasoning, do not provide inherent support
for handling temporal information. Their dependence on knowledge and domain expert’s
results to generic models being built from the assumptions, and common everyday knowl-
edge of activity situations which may not adequately represent specific settings or home
user.

Activity recognition can benefit from both data and knowledge driven approaches to-
gether – hybrid models which can utilise data-driven methods to discover object usage
patterns and these to be used as knowledge concepts and contexts by knowledge-driven
methods to recognise activities. Existing hybrid models are unable to consider accurate
knowledge of object use and interactions for the specification of routine activity concepts.
Home environments and settings have been known to be varied, and user habits are equally
different. Individuals perform activities differently; hence, it is difficult to use generically
built knowledge-driven models or models developed from assumptions and common every-
day knowledge of object usage for activity situations. It can be argued that models should
progress to evolve methods that are unique to home settings and user specific taking ad-
vantage of activity patterns and the home settings. The object usage for specific activity
situations can be acquired using a data-driven approach which is then encoded as activity
and object concepts using a knowledge driven technique to build more adaptable recogni-
tion system. This also provides the domain expert with the needed knowledge to encode
onto the knowledge base. With this combination, the strength abilities to handle uncertain-
ties by data-driven techniques and semantic expressiveness and clarity of knowledge-driven
techniques can be harnessed to recognise activities in a hybrid model proposed in this the-
sis. More specifically, the compelling word-topic allocation feature of the LDA can also
be utilised to discover object usage for specific routine activities. Given these, the work in
this thesis harnesses the complementary strengths of data and the knowledge driven tech-
niques to overcome the limitations and challenges highlighted above as a hybrid activity
recognition approach built on the activity ontology augmented by LDA topic model.
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Classification Methods and Techniques
Approaches Methods Techniques Strengths Weaknesses

Data-Driven

Generative (DBN: Tapia et al. [129]), (HMM:
Modayil et al. [70], Patterson et
al. [104] Patterson et al., [105]),
(NB: Tapia et al. [130], Lang-
ley et al. [80]), (LDA: Huynh
et al. [65], Rosen-Zvi and Grif-
fiths [113], Katayoun and Gatica-
Perez [73]), (HSMM: Hongeng and
Nevatia [59]), (FHMM: Kulic et al.
[78]), (CHMM: Ou et al. [101])

Flexible models allow-
ing classifications from
joint probabilistic dis-
tributions of observed
samples. Can handle
noisy data and uncer-
tainties.

Unable to incorporate
some context rich
features for activity
recognition. Tradi-
tional HMM cannot
handle temporal infor-
mation in some cases.
Recognition results
lack expressiveness.

Discriminative (NN: Lee and Mase [82], Huynh et
al. [64]), (DT: Boa et al. [13]),
(SVM: Cao et al. [24], Qain et
al. [107]), (CRF: Liao et al [86],
Huynh et al. [66]), (ANN: Russell
[116], Yang et al. [143])

Relies on limited
amount of observed
data to focus on bound-
aries for classification.
Can handle noisy data
and uncertainties.

Knowledge-Driven

Logic-Based Kautz et al. [74], Bouchard et al.
[19], Lymberopoulos et al. [88],
Chen et al. [29]

Semantically expres-
sive and logically
clear

Weak at handling un-
certainties.

Mining-Based Wyatt et al. [140], Palmes et al.
[102]

Information retrieval
from relevant sources.

Static in some cases.

Ontology-Based Gruber [52], Akdemir et al, [4],
Fancois et al. [43], Hobbs et al.
[57], Chen et al. [30, 28], Latfi et al.
[81], Yamada et al. [141], Okeyo et
al. [96, 97]

Semantically expres-
sive and logically
clear.

Generic and built from
assumptions and every-
day common knowl-
edge. Weak with tem-
poral attributes.

Hybrid Models

Data and Ontology Riboni and Bettini [111], Okeyo et
al. [96, 97], Kun et al [53]

Semantically expres-
sive and logically
clear

Poor specification on
accurate object and ac-
tivity concepts.

Table 2.2: Summary of Activity Recognition Approaches
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2.6 Conclusion

This chapter reviewed research areas related to smart environments such as pervasive com-
puting, ambient intelligence, smart homes, ambient assisted living, and context awareness.
This chapter also reviewed current activity recognition approaches. A discussion cover-
ing the strengths and the weaknesses was provided with a way of signalling a framework
which combines data-driven and knowledge driven approaches towards a hybrid knowledge
driven approach.
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Chapter 3

KNOWLEDGE REPRESENTATION
AND FORMALISM FOR ACTIVITY
RECOGNITION

The previous chapter presented a review of the state of the art techniques in activity recogni-
tion. This thesis proposes a hybrid activity recognition approach built on knowledge-driven
technique augmented by the Latent Dirichlet Allocation LDA topic model. Knowledge-
driven activity recognition is an emerging area of research which uses knowledge engineer-
ing methodologies to represent ADLs through ontology modelling. Ontology methodology
was followed to implement the approach, which includes all of the use case ontologies de-
veloped in this chapter. The Ontology model described in this chapter allows the formali-
sation and semantic expressiveness of activity and object concepts for activity recognition
which the data-driven model lacks. This chapter presents knowledge representation, for-
malism as aspects of ontology engineering methodology highlighting its implementation
for activity recognition, types of ontology and languages and representations.

3.1 Semantic Web

The semantic web was introduced was introduced as a standard for computers to read data
on the internet. This involves the contents of the web to have precise semantics and mean-
ing for web contents and resources [56]. The aim of this is to enable people and machines
to cooperate by equipping the device with semantic tools and resources. Semantics as a
branch of linguistics is concerned with the meaning of words and analysis of these words
[56] with the sense in it, references, implications and relations between the words. So, ma-
chine processing of web contents equipped with knowledge representations provides the
information for conclusions to be drawn. “The Semantic web” as coined by Tim Berner-
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Lee, describes how the internet could evolve so that web contents could have meanings and
knowledge representations based on information to enhance the use of computers by hu-
mans [17]. The introduction of machine enabled semantics supports data and information
integration. Through this platform supported by semantic web, information is shared on the
web. The semantic web is based on knowledge representation, modelling and features for
reasoning accessible on the internet [93]. The vision of the network permits models which
are re-useable and easily shared across the platform. Specifications and conceptualisation
which allow integration are also another feature which helps to enhance interlinking of in-
formation and data [56]. Over the years, the semantic web has evolved to technologies like
Resource Description Framework (RDF) [134], OWL [134] [49], DL [12], Semantic Web
Rule Language (SWRL) [61], SPARQL Protocol and RDF Query Language [135], JENA
[92], Java Expert System and Shell (JESS) [44] and many more.

3.2 Ontology

Gruber [52] defined ontology as “a formal specification of a shared conceptualisation”. By
this, it provides the formalism for modelling concepts which allows humans and computers
to interact especially in specific domains. The vocabularies used in ontology enhances its
expressiveness and its utilisation in the modelling of relationships between concepts. The
interoperability, information integration and reusability are key strengths of ontology. With
the integration of semantics to ontology, data processed and analysed by computers tend to
be human readable from which conclusions can be drawn. This has led to the development
of the ontology in e-government [121], bioinformatics [108] amongst many. The complex
nature of the problems to which ontology are applied has led to ontologies regarded as
knowledge bases or repositories of information. These knowledge bases link specific in-
formation through data for which contextualised interpretations can be made. This process
involves the knowledge content of a domain to be encoded onto the ontology through data
or word of choice as concepts. The concepts are then interlinked in the ontology based on
the relationship established or enforced in the ontology. By way of inferential reasonings,
results are achieved depending on what is being sought. Authors have had different classi-
fications for ontologies depending on the implementation, but this thesis recognises the two
classifications by Roussey et al [23] i.e. the first classification is based on language expres-
sivity and formality and the second classification relies on the scope of the objects described
in the ontology. The language expressivity and formality classification focus on the con-
cepts, instances and properties referenced to one or more symbols which could be entities
e.g. “Martin Luther King” as an instance of a concept “person”. The symbols are terms
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humans can easily interpret and understand by simply reading them. The method could be
seen as a declarative method of implementing the concept hence providing a “know that”
sort of expressive interpretation of the data. The second classification of ontologies based
on the scope of the objects described in domain ontologies. They are modelled to carry
the fundamental concepts of a domain e.g. Hydrontology developed specifically for hydro-
graphic representations. Domain-based ontologies can be shared and re-used by different
applications belonging to the specified domain. In a way, these domain based ontologies
could be said to be generic and provide “know how” sort of expressive interpretation of the
information sought to make them procedural.

3.3 Knowledge Representation and Formalism

This thesis follows knowledge representation and its formalism for the development of
a hybrid activity recognition approach. Knowledge representation and reasoning aim to
design and implement technology solutions that reason about machine interpretable rep-
resentations of real world problems similar to human reasoning [77]. A knowledge base
stores the computational model of the knowledge representations in the form of symbols
and statements and then performs reasoning by the manipulation of the symbols and state-
ments. We illustrate knowledge representation using an example from an activity recogni-
tion scenario.
Scenario: In the home environment having “Rooms” as different locations in it. The “Ob-

jects” in a “Room” are used to performed “Activities” which are “ADL”.
The activity recognition scenario as illustrated in Figure 3.1 is a semantic network with
nodes representing the concepts while the arcs represent the relations between the con-
cepts. The network of nodes then provides the means to abstract from natural language to
represent knowledge in the form of text suitable for computation. This is exemplified with
concepts like “action”, “activity” or “object”” would be linked with relations hasUse or
isUsedfor. This knowledge and its formalism can be represented in different languages,
forms and rules which we consider next.

3.3.1 Description Logic

Description logics (DL) are a family of knowledge representation languages. They are
decidable fragments of first-order logic and at the same time expressive enough such that
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Figure 3.1: Knowledge representation of activity from an object use

they have become a major knowledge representation paradigm. They are equipped with a
formal semantics which allows humans and computer systems to exchange DL ontologies
without ambiguity as to their meaning [77, 7, 11]. This makes it possible to use logical
deduction to infer additional information from the facts stated explicitly in an ontology
which is an important feature that distinguishes DLs from other modelling languages. The
capability of inferring additional knowledge increases the modelling power of DLs but it
also requires some understanding on the side of the modeller. DL ontology consists axioms
which must be a true reflection of a situation being described. The axioms can represent
only partial knowledge of any situation of the ontology which can be expressed in different
ways as long as it is consistent with the ontology. While this may be true, the axioms are
categorised into three groups based on terminology: assertional ABox axioms, termino-
logical TBox axioms and relational RBox axioms [127, 7]. The ABox axioms are used to
capture knowledge about name individuals. They specify an instance of a concept as an
individual for example asserting “Breakfast” as an individual of the concept “Activity”.
The TBox axioms describes the relationships between concepts. Unlike ABox, TBox can
be used for concept inclusion and subsumption as in Object v Resource. This implies the
inclusion of the concept of Object as Resource. If the v in the example given is replaced
with ≡, it the asserts equivalence between the two concepts. The RBox axioms makes
reference to properties and could be used in expressing the assertion of inclusion. In the
RBox axiom timesliceOf v hasBeginning refers to timesliceOf is a sub-time
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of hasBeginning. In DL, the range features are determined by the power of expres-
sivity of the language used. Most common of these language are the Attributive Concept
Language with Complements (ALC) logic representation scheme. ALC implies the AL
with full existential support and union. Other versions of DL has been derived by the use
different letters such SHOIN, SROIQ etc. [77].

3.3.1.1 The Description Logic ALC

The ALC constructors allows for concept negation ¬ C, the intersection and union of con-
cepts C and D are expressed C uD and C uD respectively. A brief summary of the concept
contructs for the Description Logic ALC and first order logic symbols are given in Table
3.1.

Translation of concepts with Boolean construct is possible to first-order logic like C u
¬ D can be translated to C(x) ∧ ¬ D(x). Also C v D t ¬ E can be translates to ∀ x :
(C(x) → (D(x) ∨ ¬ E(x))). In ALC a role r is allowed as an entity which could be used
relations between entities. The composite concept ∀r.C translates to ∀ y : (r(x, y)→ C(y))
in first-order logic, while ∃ r.C translates to ∃ y : (R(x, y) ∧ C(y)). With reference to the
activity recognition scenario above TBox statements like,

Breakfast v Activity (3.1)

This statement would encode the knowledge that Breakfast is an Activity.

Breakfast v ∃ hasUse.(Microwave t PansCupboard). (3.2)

This implies that Breakfast can be made using Microwave or Pans Cupboard. The ALC
allows to state that some individuals belong to (named or composite) concepts, e.g. C(a)
states that the individual a belongs to concept C. An ALC knowledge base consists of an
ALC ABox and an ALC TBox [77, 127, 7].

3.3.1.2 The Description Logic SROIQ

The DL SROIQ is one of the most expressive DLs. Every DL ontology is based on three
finite sets of signature symbols i.e. a set NI of individual names, a set NC of concept names
and a set NR of role names. A SROIQ role expression over this signature is a role name,
the inverse of a role name, or the special symbol U (universal role). It also considers every
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Syntax Meaning

t Union: X tY is the set of all objects which are in X ,
in Y , or in both X and Y .

u Intersection: X u Y is the set of all objects that are
members of both the sets X and Y .

≡ Equivalent: X ≡ Y is true only if both X and Y are
false, or both X and Y are true.

v Inclusion: X v Y all the contents of X object are
also contained within Y

¬
∼

Negation: ¬ X is true if and only if X is false.

→
⇒

Implication: X ⇒ Y Y is true only in the case that
either X is false or Y is true.

← Inverse Implication: X ← Y implies if not X then
not Y

←→
⇐⇒

Equivalence:X ⇔ Y is true only if both X and Y are
false, or both X and Y are true.

∧ Conjunction: X ∧Y is true if X and Y are both true;
else it is false.

∨ Disjunction: X ∨ Y is true if X or Y (or both) are
true; if both are false, the statement is false.

∀ For All: ∀ x: P(x) or (x) P(x) means P(x) is true for
all x.

> Concept with Everything: The statement > is un-
conditionally true.

⊥ Empty Concept: The statement ⊥ is unconditionally
false.

∃ Exists: ∃ x: P(x) means there is at least one x such
that P(x) is true.

Table 3.1: Construct for Description Logic ALC and First Order Logic

concept name, ⊥ as a concept expression [60, 77] . A set of SROIQ concept expressions is
defined as:

C ::= NC|(C t C)|(C t C)|¬C|>| ⊥ |∃R.C|∀R.C| = nR.C| 5 nR.C|∃R.Self |{NI},
(3.3)

Where in C represents concepts, R is a set of roles, and n is a non-negative integer. Axioms
are built from concept expressions, role expressions and individual names. ABox axioms
are of the form C(a), R(a, b), a ≈ b, or a 0 b; TBox axioms are of the form C ∨ D or C ≡
D; RBox axioms are of the form R ∨ T, R ≡ T, R ◦ S ∨ T, or Disjoint (R, S ). Table 3.2
shows a summary of the syntax and semantic of SROIQ constructors [77] .
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Syntax Semantics
Individuals
Individual Name a aI

Atomic Role R RI

Inverse Role R− { ( x, y )| ( y, x ) ∈ RI }
Universal Role U ∆Ix∆I

Concepts
Atomic Concept A AI

Intersection C uD CI ∩DI

Union C tD CI ∪DI

Complement ¬C ∆\CI

Top Concept > ∆I

Bottom Concept ⊥ �
Existential restriction ∃R.C { x|some RI -successors of x is in CI}
Universal restriction ∀R.C { x| all RI -successors of x are in CI}
At-least restriction = nR.C { x| at least nRI -successors of x are in CI}
At-most restriction 5 nR.C { x| at most nRI -successors of x are in CI}
Local Reflexivity ∃R.Self { x|( x, x) ∈ RI }
Nominal {a} {aI}

where a, b ∈ NI are individual names, A ∈ NC is a concept name, C, D ∈ C are concepts,
R ∈ R is a role

Table 3.2: Construct for SROIQ

3.3.2 Resource Description Framework

Resource Description Framework RDF as a major component of the semantic web and
knowledge representation and formalism allows the specification of the semantics of data
based on XML in a standardized, interoperable manner. It also provides mechanisms to ex-
plicitly describe resources using a graphical data model [7, 11]. The RDF and RDFS graph-
ical data model represent properties or relations between entities in the form of triplets to
describe resource of interest. In addition, the graphical model represents information as a
labelled, directed multigraph with vertices and labelled edges (multiple edges with differ-
ent labels between the same nodes are allowed). The vertices consist of Internationalized
Resource Identifier IRI representing abstract “things”, literals of concrete data values and
nodes. Typically, a graphical can be expressed as a set of <subject, predicate, object>
triples, each interpreted as an edge labelled with “predicate” going from the “subject” node
to the “object” node for example Breakfast hasUse Microwave. Individuals are instances
which belong to classes as Breakfast is an Activity. Properties such as hasUse can relate
individuals of specific classes, for example one can specify that the object of the property
hasUse belongs to class Activity and the subject belongs to the class Resource. Classes of
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the object and the subject of a property are abbreviated as domain and range respectively.
Relationship between classes and properties can be also specified, for example is can be
stated that Microwave is a subclass of Resource. The resultant graphical model and the
associated semantics allows for sub graphs and inferential instances.

3.3.3 Web Ontology Language OWL

In realisation of the objectives of the Semantic Web standards for formal machine under-
standable semantics, Web Ontology Language was conceptualised. It build upon DARPA
Agent Markup Language (DAML) [5] and Ontology Interchange Language (OIL) [40] and
compatible with RDF for describing concepts and properties of objects. OWL extends
RDF/RDFS and offers increased expressiveness over the RDFS description for RDF. OWL
exists with three variants OWL-Full, OWL-DL and OWL-Lite [16].

OWL-Full is the fully compliant with RDF and has been the most routinely used ver-
sion of OWL. It is the most expressive variant of OWL but is not supported by OWL rea-
soners and retain decidability. OWL-DL is based on the SHOIN-D description logic. Its
constructs are Concept negation, union, intersection, value and existential restrictions and
transitive properties (S), subproperties (H), nominals (O), inverse properties (I), unquali-
fied cardinality restrictions (N) and Datatypes from the acronym SHOIN-D was formed.
OWL-Lite is a subset of the OWL-DL. It is less expressive than OWL-DL but allows for
the definition of class hierarchies and simple constraint features. It is based on SHIF-D
description logic which supports the concepts of negation, union, intersection, value and
existential restrictions and transitive properties (S), subproperties (H), and inverse prop-
erties (I) and functional properties (F). Reasoning over OWL-DL is non deterministic ex-
ponential in time (NExpTIME) although, in practice, optimised tableaux based reasoners
offer tractable average case running times. Unilke OWL-DL, it is deterministic exponential
in time although, average case complexity is lower [11].

OWL 2 extends OWL-DL with additional constructs. OWL 2 is based on SROIQ-D
description logic which offers all the constructs of SHOIN-D and in addition qualified
number restrictions (Q) with complex role inclusion axioms (R) [111]. These properties
also offers that is decidable with additional expressiveness whilst retaining the computa-
tional properties of OWL-DL.

This thesis follows the OWL specification which are similar to those of the Description
Logic which includes abstract syntax. The names specifically used for the classes repre-
sent the concepts for example, if C1, C2...Cn are implemented as classes in an OWL, they
represent concepts and keywords in that OWL. The intersectionOf(C1, C2...Cn) and
unionOf(C1, C2...Cn) represent the intersection and disjunction of classes C1, C2...Cn.
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The complements of the respective classes C1, C2...Cn are defined using keywords
complementOf(C1), complementOf(C2)...complementOf(Cn) for each of the classes.
For each of the classes, there could a set of individuals (O1, O2...On) is defined using the
declaration oneOf(O1, O2...On). If P represents property, restrictions (expressed using
the restriction keyword followed by the property P over which the restriction applies and
the restriction keyword) can be any of: someValuesFrom(C), allValuesFrom(C),
hasValue(O), minCardinality(n) and maxCardinality(n) representing quali-
fied existential restrictions, value restrictions, exact value restriction, min and max car-
dinality restrictions respectively, where C is a class name, O an individual (or datatype
value), and n an integer. An enumeration using the oneOf keyword can be used instead of
a class name C in the above definitions. SubClassOf(C1, C2...Cn) asserts that C1 to Cn
are sub classes of the parent class of reference. EquivalentClasses(C1, C2...Cn)
and DisjointClasses(C1, C2...Cn) represent respective class equivalence and dis-
jointness for the list of classes named. SubPropertyOf(P1, P2...Pn) represents the
subproperty relation between properties P1 and Pn, while property equivalence is defined
using EquivalentProperties keyword. domain and range corresponds to domains
and ranges arguments respectively for the classes to which they point, while keywords
inverseOf, Symmetric, Asymmetric, Functional, InverseFunctional,

Transitive, DisjointProperties, Reflexive and Irreflexive are used
to indicate the properties on which they are applicable. Also, owl : Thing and owl
: Nothing represents the top > and bottom ⊥ concepts respectively.

3.3.4 Semantic Web Rule Language SWRL

The SWRL is an acronym for Semantic Web Rule Language. It is the rule language ap-
plicable to semantic web ontologies. The rule are expressed in terms of OWL concepts
(classes, properties, individuals) using Horn clauses which are disjunction of classes with
at most one positive literal. For example, first order notation like ¬ A ∨ ¬ B...∨ C can be
written as A ∧ B ∧... =⇒ C (See Table 3.1 above). SWRL extends OWL expressiveness
whilst retaining decidability. The intersection of properties over named individuals can be
expressed using SWRL which is not part of OWL [61, 62]. With this, it has an edge over
OWL as an important tool for embedding rules into an ontology. In this thesis, we use
SWRL rules which we present in both the first order notation and in some cases the cor-
responding SWRL notation. This is because Horn clauses have reasoning efficiency using
forward chaining rules engine based available data from the constructs, notations and infer-
ence rules to extract more data until a goal is reached. The antecedent (body) of the rule is
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regarded as a conjunction of clauses and the consequence (head) is one positive. The con-
junction of clauses in the consequence part of the rule can be expressed indirectly by a set
of rule which have identical antecedents. A class with C concept and P property can have
clause in the rule expressed as C(?x)), property names P (in the form P(?x, ?y) where
x, y are variables). In cases where the antecedent of the rule holds for a given set of vari-
able instantiations, the consequence is asserted into the knowledge base. Disjunction and
negation of clauses are not supported in the body and they cannot appear as a consequence
of the rule. SWRL rule also support specific build ins numerical operators and datatypes.

3.3.5 SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) is a query language for RDF.
SPARQL works by graph matching of the query criteria in the form of RDF triples spec-
ified as the subject predicate and object discussed in the sections above. This set of triple
patterns, called the basic graph pattern, defines the graph patterns that has to be matched
to a target dataset [106]. With this, SPARQL queries can be used on a diverse set of data
as long as they are stored or saved as RDF. The capabilities SPARQL includes consider-
ations of RDF triples with their conjunctions, disjoints, negations as well as support for
aggregation. SPARQL queries are similar to SQL which allows results to be sorted and
filtered from duplicates. An extension of SPARQL is the Temporal Ontology Querying
Language (TOQL) which has the expressive power for handling time queries [14]. In ad-
dition to the strengths of SPARQL, TOQL supports queries on time evolving information
instantiations to an ontology using allen operators that allow comparisons between time in-
tervals, and the operator AT that allows comparisons between time points or time intervals.
Typical TOQL query structure would involve syntax like:

• PREFIX: This declares the namespaces used in the query relative to the target dataset.

• SELECT: A select clause in the query defines the variables to which the query is
bound.

• FROM: This clause is an optional clause. It is used for the specification of the target
dataset.

• WHERE: The WHERE clause specifies the graph pattern to match against the
data graph. This pattern in the format of the RDF triple like the subject-predicate-
object searches for the look alike match of the query in the dataset e.g. Breakfast

hasUse Microwave which implements Microwave is used for Breakfast. An op-
tional WHILE clause included implements cases when the WHERE clause is true
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and present and a UNION clause returns results for multiple graphs matches. FIL-
TER: The FILTER clause is used to add constraints and restrictions which may
entail the use of variables.

• Other clauses and constructs applicable to TOQL query includes DISTINCT used
to distinguish results, ORDER BY used as a sequence comparator of query results,
LIMIT construct puts an upper or a lower bound in terms of number to the result and
OFFSET used for the specification of the results after generating a number of other
results.

The approach proposed in this thesis adopts TOQL query language as the preferred
means of retrieving activity results from the knowledge base of activity ontology. It build
TOQL queries to capture observe object usage data to retrieve activity results from an RDF
based activity ontology by matching the query to the RDF activity ontology. A simple
TOQL query can look like this:

SELECT Activity Name
FROM Activities
WHERE Activities hasUse Object
AT Time

(3.4)

This TOQL query retrieves the Activity which is an ADL at a particular time which
could be instantiated with specific values using the clause AT, directly filtering the results
to those matching the query.

In addition to the SPARQL and TOQL query, is the recently developed SPARQL up-
date language. The SPARQL update is used for the specifications and execution of up-
dates, changes and modifications to Ontologies and RDF graphs [46]. Typically, SPARQL
updates work oppositely to the SPARQL query. While the query performs retrieval op-
erations, the update adds and in some cases deletes to modify the ontology. To make
modifications and changes to ontologies, the SPARQL update uses the update operations
DELETE and INSERT in addition to WHERE and the PREFIX similar to the SPARQL
query. The

• INSERT data to insert data in the form of new triples into an ontology or RDF graph

• DELETE data seeks to remove data in the form of known triples from an ontology
or RDF graph.

Both operations are applied to a part of the ontology or RDF graph with the clause WHERE
similar to the query where the resulting RDF triples get removed from and added to the
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data or both. With these update operations, minor changes and modifications can easily be
carried out on the ontology graph thus saving time and bypassing the process of editing the
entire ontology. This thesis applies SPARQL update operations similar in expressiveness
to the TOQL to make changes to the choice of object usage which typically would have
required editing the whole ontology using Protégé which could be cumbersome and time-
consuming.

3.4 Conclusion

This chapter presented knowledge representation and formalism for the development of
activity ontology. It described semantic web, web ontology language, description logic
and ontology rules. In the process, the need to acquire knowledge of object use through
activity-object discovery to aid information fusion and the development of activity and
object concepts in the activity ontology was highlighted. It also presented the TOQL as an
extension of SPARQL and the preferred language of object use retrieval to perform activity
recognition and the SPARQL update language for making changes to the ontology in the
event of object use change to bypass the process of editing the entire activity ontology. The
next chapter shall focus on presenting knowledge acquisition and context description for
activity ontology.
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Chapter 4

THE PROPOSED HYBRID
APPROACH AND KNOWLEDGE
ACQUISITION FOR CONTEXT
DESCRIPTION

This chapter presents the proposed hybrid approach to recognising activities of daily living
from patterns of object use which extends activity ontology to include a context description
component for enhanced activity recognition. This chapter also presents the knowledge
acquisition of the context descriptors for activity ontology. The conventional techniques
for the acquisition of knowledge for context describing activity situations and concepts
formation to build activity ontology relies on the use of predefined templates, rules, static
background knowledge and assumptions from everyday use of home objects. These con-
ventional techniques are not only difficult to scale between different individuals and home
settings given their uniqueness. Their activity recognition results also could be far from
desirable especially when object use for specific activities have not been predefined of
are lacking. This chapter presents a novel technique for acquiring knowledge of object
concepts which describes activity situations. This technique involve activity-object use
discovery as part of an ontology knowledge acquisition for context description of activity
situations. The rationale behind this technique is that routine activities should correspond
to separate sets of objects as contexts describing them.

4.1 Proposed Approach

This thesis proposes a hybrid approach to recognise activities conducted in an home en-
vironment. The functional intention as illustrated in Figure 1.2 is to give an overview of
possible outcomes and outputs with regards to the individual performing activities in the
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home environment. The system architecture allows for a continuous activity recognition
process in the home environment and made available to the family, physicians and care-
givers to provide the needed support and assistance that may be required based on the
activities recognised. To achieve the goal of activity recognition, the proposed approach
supports acquiring knowledge of object use as contexts of the activity situations through
activity-object use discovery, information fusion of activity and object concepts, activity
ontology design, development and modelling, followed by activity recognition. Figure
4.1 illustrates a conceptual overview of the proposed hybrid activity recognition approach,
which proposes a complementary topic model approach through a context description mod-
ule as an extension to the traditional ontology-driven activity recognition. The architecture
is made of two component modules the context description and ontology modules. As a
unified approach, the functions of these components modules are integrated to provide a
seamless activity recognition platform which takes in inputs of sensor and object observa-
tions captured in the home environment representing atomic events of object interactions.
The resultant outputs are activities and activity situations. The subsections below describes
in detail the component modules.
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Figure 4.1: An Overview of the Proposed Hybrid Activity Recognition Approach.
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4.1.1 Context Description Module

The context description module extends the traditional knowledge-driven activity recog-
nition technique. Its principal function is to provide the knowledge of object usage for
specific routine activities. The object usage for specific routine activities are the contexts
describing the specific routine activity situations, hence the name context description mod-
ule. To provide the basis for a hybrid knowledge-driven activity recognition, knowledge
of object and activity concepts are required. The dependency on this knowledge is such
that activities as high-level events are a result of low-level tasks or atomic events of object
interactions. Traditional knowledge-driven activity recognition techniques [30, 96] model
ontologies from object use assumptions or common everyday knowledge of object use.
This may not be the case in every home setting or the environment as this may lead to
faulty object descriptions or low-level tasks and eventually, wrong activities recognised.
So to design and model for accurate recognition of these activity situations, there must be a
process of acquiring the accurate knowledge of objects or context descriptors that describe
activities or results to the activities as higher level events. The context description module
performs its function by a process of activity context description which uses the output
from an activity-object use discovery process. The modular process is described briefly
below:

• Activity-Object Use Discovery: The activity-object use discovery uses the gener-
ative Latent Dirichlet Allocation LDA topic model to find a correlation between
objects and corresponding activities. It does this by generating activity-object dis-
tributions in a probabilistic manner using a bag of object observations as inputs and
activity topic number as a parameter. The main idea of the LDA of topic models
is that documents in a corpus of texts are a mixture of latent topics while the latent
topics are probability distributions over words therein. The input are documents rep-
resented as "bag of words" and topic number as a parameter so that the output has for
the topics probability distribution over the unique words [18]. In the context of ac-
tivity recognition, observed sensor/object in a dataset, bag of object observations and
the activity topic number corresponds to the corpus of texts or words, "bag of words"
and topic number of the LDA respectively. To determine the activity topic num-
ber which is a necessary parameter for the LDA, an unsupervised silhouette method
through K-Means clustering is used. The bag of object observations is constructed by
partitioning the sensor/object dataset into sensor/object segments using time window
interval. The sensor/object segments are then formed into segment-object-frequency
matrix referred to as "bag of object observations". The result using the activity topic
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number as a parameter and the bag of object observations as input on the LDA are
allocations or assignments of objects to specific activities.

• Activity Context Description: To satisfactorily assign and allocate the objects as
context descriptors, a context description algorithm is used on the objects to activity
topics allocations from the step above. This algorithm uses the number of times an
object is assigned to an activity topic and a threshold (a measure of the mean and
standard deviation of the number times from the collective distributions). An object
becomes a context describing an activity situation if it is assigned to that activity by
the number of times greater than the threshold. Finally, the activity topics are labelled
and annotated in line with the activities carried out with the objects and model these
as concepts in the activity ontology.

4.1.2 Ontology Module

The knowledge base is the component and repository of information consisting of the mod-
elled activity ontology concepts, data, rules used to support activity recognition. Just like
other knowledge bases, it functions as a repository where information can be collected,
saved, organized, shared and searched. The activities and the context descriptors from the
context description module are designed, developed following description logic knowledge
representation and formalism and added to the knowledge base. The knowledge base is
made of the TBox, ABox and the reasoner. The TBox is the terminological box made of
the activities and the relevant context descriptors as defined and encoded ontological con-
cepts. The ontological design and development process gradually populates the TBox by
encoding the activities and context descriptors from the context description module as on-
tological concepts. The ABox is the assertional box made of the instances and individuals
of the concepts encoded in the TBox asserted through properties which may be object or
data properties. For all the concepts in our TBox, instances and individuals are created out
of them and asserted through different properties to populate our ABox. In addition to the
activity and context descriptor concepts and instances, temporal concepts and and with their
instances are added following the 4D fluent approach which is an ontology temporal for-
malism to allow for a realistic reflection of activity evolution and transition. The resultant
activity ontology created with the fusion of likely object use and behavioural information
from the activity-discovery component makes it possible for activity inference. The rea-
soner checks the relationships between the concepts in the TBox and the consistencies in
the ABox for the individuals and instances to perform activity recognition by information
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retrieval. The eventual results from the information retrieval are the activities or activities
situations.

4.1.3 Activity Recognition

Activity recognition is performed by querying the knowledge base. With sensor or objects
observed along a timeline, a query is set up which reasons this observed sensor information
against the activity model in the knowledge base to make activity inference. The activity in-
ference is a result of retrievals from the knowledge base through a process of subsumption
and equivalence reasoning of the TBox and ABox. The approach is eventually evaluated
for the proof of concept for which this thesis claims based on the activity recognition per-
formance using publicly available datasets. The major objective of this approach is activity
recognition through the modules and components described above. For the proposed hybrid
approach to achieve this, a subset of sensor/object dataset (training subset) is used for the
context description module to get the context descriptors and the corresponding activities.
The resulting context descriptors and activities are modelled ontologically to populate the
knowledge base (see Figure 4.2 for the methodology and data flow). Activity recognition
is carried out using the test subset to retrieve activity situations which the streams of sen-
sors/objects represents. Full detail of the process and experiments are provided in Chapter
6.

4.2 Knowledge Acquisition of Contexts

The use of ontologies and inter-operable semantics are becoming significantly important
in the area of activity recognition. The conventional technique of acquiring knowledge of
contexts describing activity situations and concept formation to build ontology relies on the
use of predefined templates, rules, static background knowledge and assumptions of every-
day use of home objects. The problem exacerbates this that recognition of ADL should
result from the ways activities can be carried out from the interactions of home objects.
To positively impact on this existing problem of knowledge acquisition is to construct and
maintain activity ontologies through a complementary semi-supervised or unsupervised
learning technique of object usage in the home environment. Knowledge acquisition and
context description from object use in the home environment is the process of identifying
the object usage for specific routine activities. The knowledge of the object usage for the
activities then become the contexts and concepts used to construct and maintain the activity
ontology. The task of determining the object used for the routine activities in the home en-
vironment then become the fundamental step in the process of knowledge acquisition and
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Figure 4.2: Methodology and Data flow

context description for activity situations. The names of the objects as used by the authors
[30, 28, 97, 110] in their ontologies are terms turned contexts and concepts which do not
have established feature analysis based on their usage for activities. So to say, these object
names and the resulting concepts have been created dependent on background knowledge
acquired through everyday and common knowledge over the years. For example, the activ-
ity Make coffee has over the years been known to be composed of the objects use Coffee,
Milk, Sugar and Mug.

On the other hand, knowledge learning techniques for ontologies apply text and natural
language based clustering techniques which rely on contextual cues of the terms as features
[50]. Lagus et al [79] noted that, a document could be encoded as a histogram of its
word which might not retain information of relatedness. Oliveira et al [98] demonstrated
certain properties which K-Means clustering has such as cluster sizes and ability to identify
the number of clusters. Also, the generative probabilistic topic models Latent Dirichlet
Allocation LDA by Blei et al [18] and the Probabilistic Latent Semantic Analysis (PLSA)
by Hofmann [58], learn a set of latent variables called topics from a set of words in the
form of documents as inputs. The central assumption of topic models is that documents
are generated by a mixture of topics while topics are probability distributions over words.
Output are a classification of topic assignments to documents and words. Despite these, the
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potentials of K-Means clustering and LDA remains relatively unexplored in the process of
acquiring knowledge of context describing activity situations for activity ontology.

This chapter presents the context description by explaining the activity-object use dis-
covery process to learn and acquire the knowledge of object usage and the contexts for
describing activities for the formation of ontology concepts. The steps to activity-object
use discovery and context description presented in this thesis is as illustrated in the Fig-
ure 4.3. Towards this, activity-object use discovery as a part of the process involved is
presented in section below.

4.3 Activity-Object Use Discovery

One of the primary tasks of activity recognition applications is the discovery of the objects
used and the contexts describing the different activities regardless how they are performed.
This is very key because specific objects used for routine activities are determined and cases
where activities share similar object usage (e.g. Making Breakfast, Lunch and Dinner)
could also be discovered. Also, behavioural tendencies and habits may be uncovered in the
process. Activity object use discovery aims to identify possible objects used for routine
activities. The rationale behind this process is that routine activities should correspond to
the use of a separate set of objects. To achieve this, a 3 step approach is proposed which
includes:

• Determining the number of activities: A key parameter needed by the LDA pro-
cess is the topic number. In the context of the activity-object discovery, the number
of activities corresponds to the topic number of the LDA. The number of distinct ac-
tivities in a dataset is determined by applying the silhouette method through K-Mean
clustering.

• Bag of Objects Observations: In this step, the observed sensor or object data stream
are partitioned into segments of time intervals i.e. each segment corresponds to se-
quences of observed sensor or objects within suitable time windows. A segment-
object frequency matrix is formed or constructed from the resulting sensor segments.

• LDA Process: The LDA process uses the topic number from the first above and the
segment-object frequency matrix formed from the "bag of object observations" as
inputs to determine the object distributions for the specific activities.

The steps are presented in detail below:
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Figure 4.3: Activity-Object discovery and Context Description flowchart
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4.3.1 Determining Activity Topic Number

Observed objects in a dataset are a representation of activities which implies that activities
can be performed by a set or group of objects. These object groups which represent the
activities can be determined by clustering the dataset so that each cluster represent a can-
didate activity. The major challenge is the estimation of the number of groups or clusters
of objects in the dataset, especially where the number of possible activities has not been
specified. The number of activities which is the same as the activity topic number is de-
termined by a silhouette method through K-Means clustering. This method searches for
the optimal number of clusters in a given dataset. So, in the context of the activity dis-
covery this optimal number of clusters in the sensor or object data is analogous number of
activities hence determining the topic number needed as a parameter by the LDA process.
But first, the K-Means clustering is explained and how silhouette method can be applied
through it. K-means is an unsupervised clustering technique used in partitioning data into
clusters. It can be applied to a dataset of N unique observations with the aim to partition
into k clusters (k <= N ), since the number of possible clusters cannot be more than the
number of N unique observations. For x1 ...xn where each observation is a d-dimensional
real vector and are entities as contained in N , the clustering process produces sets of S =
S1... Sk partitions so that Sk ∈ S is a cluster having centroid ck calculated by minimizing
the within-cluster sum of squares as in equation 4.1. This process is iterated until clusters
Sk stabilise.

W (S,C) =
K∑
i=1

∑
i∈Sk

‖ xi − ck ‖2 (4.1)

In the context of activity recognition, K-Means clustering can be applied to partition
sensor or object data stream. Huynh et al [65] applied K-Means clustering to partition sen-
sor dataset. They have used the results from the clustering process to construct document
of different weights. In a slightly different way, this thesis applies the K-Means clustering
to determine the topic number. The clustering process partitions any given dataset into
clusters and in this case, each cluster represents a candidate activity which resultant from
the object interactions therein. This approached also aims to use this process to determine
the number of activities which is a measure of the optimal number of clusters. An optimal
number of clusters/activities is an important parameter that will maximize the recognition
accuracy of the whole approach. To achieve this, the concept of silhouette width which
involves the difference between the within-cluster tightness and separation from the rest is
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applied. Theoretically, it is a measure of the quality of clusters [114]. The silhouette width
of xi from N as wxi

can be computed from:

wxi
= zxi

− yxi

max(yxi
, zxi

) (4.2)

where yxi
is the average distance between xi and all other entities belonging to the

cluster and zxi
as the minimum of the averages distances between xi and entities in other

clusters. Normally, the measure of silhouette width values ranges -1 and 1. If all the
silhouette width values are close to 1, then the entities are well clustered. The highest mean
silhouette width over different values of k then suggests the optimal number of clusters.

4.3.2 Bag of Object Observations

The "bag of objects observation" proposed is analogous to the "bag-of-words" used text and
document analysis. In text and document analysis, a document (bag) in a corpus of texts can
be represented as a set of words with their associated frequencies independent of their order
of occurrence [50]. Thus, disregarding the order of word occurrence, the "bag of words"
is a representation of the words in the documents with their frequencies. This "bag of
words" approach can be followed to represent discrete observations of objects or sensors of
specific time windows generated as events in the manipulation of the home objects. In this
regard, it is referred to as "bag of object observations". To satisfactorily achieve bagging
of the objects accordingly, the stream of observed sensors or objects data are partitioned
into segments of suitable time intervals. By this, the objects and the partitioned segments
then respectively corresponds to the words and documents of the "bag of words". If a
dataset is given by D made of x1...xn objects, D can be partitioned using suitable sliding
time window intervals into d1...dD segments. Observed objects in each of the segments
are then represented with their associated frequencies to form a segment-object frequency
matrix. In this thesis, the Kasteren et al [132] and the Ordonez et al [99] datasets has
been used. Similar to the documents of texts, these datasets are collections of objects
observations which represents activities through object use in the home environment. For
the "bag of object observations", the intention is to partition the datasets into segments
using suitable time intervals similar to schema 4.3. A sensor-segment frequency matrix is
formed from the object counts from each of the segments. Observed objects x1...xn in each
of the segments d1...dD are then represented with their associated frequencies f to form a
segment-object-frequency matrix similar to the schema given in Equation 4.4. The objects
are then represented as their aliases as in Seat (S), Basin (B), Bed (A), Microwave (M),
Cupboard (C), Fridge (F), Cabinet (N), Toilet (T), Shower (Sh) etc. to be encoded onto the
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partitioned segments and "bag of objects observations". This is further described with the
bag of object observation using the scenario below.

D =


{x1..., xn1} objects in segment d1
{x2..., xn2} objects in segment d2

......
{xN1..., xN} objects in segment dD

 (4.3)

BagofObjectObservations =


d1 x1 f1
d2 x2 f2

......
dD xN F

 (4.4)

Scenario: The construction of the ’bag of objects observations’ is described using a
part of the Kasteren House A dataset1, as illustrated in Figure 4.4. The observed object
data are partitioned into segments using a sliding window of 60 s intervals so that objects:
Hall-Bedroom Door belongs to Segments 1–3; Hall-Toilet Door, Hall-Bathroom Door and
ToiletFlush belong to Segment 4; Hall-Bathroom belongs to Segment 5; and Plates Cup-

board and Fridge belong to Segment 6. The objects in each of the segments with their
associated frequencies form a segment-object-frequency matrix representing the bag of ob-
jects observations. Further, the objects are represented as aliases, e.g., Hall-Bedroom Door

(BE), Hall-Toilet Door (TO), Hall-Bathroom Door (BA), ToiletFlush (TF), Fridge (FR),
Plates Cupboard (PC), etc, to be encoded onto the bag of sensor observation as given in
Equation (4.5).

BagofObjectObservations =



1 BE 1
2 BE 1
3 BE 1
4 BA 1
4 TO 1
4 TF 2
5 TO 1
6 PC 2
6 FR 2


(4.5)

1https://sites.google.com/site/tim0306/datasets
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Figure 4.4: A part of the Kasteren House A dataset with Objects/Sensors ID represented
as: 24 = Hall-Bedroom Door; 5 = Hall-Toilet Door; 6 = Hall-Bathroom Door; 14 = Toilet-
Flush; 9 = Plates Cupboard; and 8 = Fridge.

4.3.3 Latent Dirichlet Allocation (LDA)

The Latent Dirichlet Allocation is a generative classification topic model widely used in the
text mining and analysis. The Probabilistic Latent Semantic Analysis PLSA [58] and the
Latent Dirichlet Allocation LDA [18] are two topic models extensively used in text mining
natural language processing. They work in a similar way requiring inputs of documents
represented as "bag of words". The outputs are latent topics and topic assignments for
each of the input documents. In addition to this output, topic model have the ability to
assign the individual words in the documents to topics according to the frequency of how
the words appear in the documents. Due to this appealing characteristics, the LDA has
been used to assign objects used to activities in the activity recognition context. The LDA
was introduced by Blei et al. [18], in which the documents from the "bag of words" are
modelled as a multinomial distribution of topics. It takes advantage of the assumption that
there are hidden themes or latent topics which have associations with the words contained
in a corpus of documents. It extends the PLSA by the introduction of Dirichlet priors on the
distribution over topics for the particular document, θ, and the distribution over words for
a specific topic φ. A graphical model of the LDA is illustrated in Figure 4.5 and Table 4.1
for symbols used. The generative process follows:

1. For each each topic zi in Z = z1...zk:

• choose a distribution over words φ ∼ Dirichlet(β)

2. For each document di in D = d1...dD:

• choose θ ∼ Dirichlet(α)
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Figure 4.5: Graphical model of the Latent Dirichlet Allocation.

3. For each word xi in X = x1...xn:

• choose a topic zk ∼Multinomial(θ)

• choose a word xi ∼Multinomial(φ)

The documents are presented in the form of documents of words d1...dD. With D

composed of words independent of the order, d1...dD, di would be made of words repre-
sented as xi1 ...xin from X words of x1...xn. The LDA places a dirichlet prior P(θd|α ) with
parameter α on the document-topic distributions P(z|θd). It assumes a Dirichlet prior dis-
tribution on the topic mixture parameters θ and φ, to provide a complete generative model
for documents D. θ describes D x Z matrix of document-specific mixture weights for
the Z topics, each drawn from a Dirichlet(α) prior, with hyperparameter α. φ is an X x
Z matrix of word-specific mixture weights over X words for the Z topics, drawn from β

which is a Dirichlet prior. The probability of a corpus, is equivalent to finding parameter α
for the dirichlet distribution and parameter β for the topic-word distributions P(x|z, β) that
maximize the likelihood L of the data for documents d = d1...dD [18]

In the context of the activity-object use discovery, this approach is applied to discover
the activity-object distribution. In this process, the topic number from the silhouette method
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X The object observed with xi as a unique object.
Z The latent activity topic assigned to the objects

in X .
X¬i The object excluding xi.
Z¬i The object excluding zi.
K The number of activity topics determined from

the silhouette method above.
U The number of unique objects.
D Denotes the number of Segments.
α Topic dirichlet prior
β Word dirichlet prior
Ωd,k The number of object counts in each segment

assigned to activity topic k
Ψk,u The number of object counts in the entire data

assigned to activity topic k

Table 4.1: Symbols Used

above asK and the sensor-segment frequency matrix from the "bag of object observations"
are required. In this case, the "bag of objects observations" constructed from dataset is
analogous to the corpus of documents which contain words. The LDA iterative process
simply as illustrated with the schema 4.6 (see Table 4.1 for key symbols). The Gibbs
sampling [50] is applied so that P(X|Z, β) and P(Z|α) depend on Φ and Θ respectively and
used to derive them.

 d...
x

→ Initialize→

z0
...
x

→ P (zi|z−i, d, w)→

zi...
x

→ Φ,Θ (4.6)

To sample from P(Z|X) the joint distribution is expressed as:

P (Z,X|α, β) = P (X|Z, β)P (Z|α) (4.7)

P (X|Z, β) =
∫
P (X|Z,Φ)P (Φ|β)dΦ (4.8)
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P (Φ|β) has a dirichlet distribution as:

P (Φ|β) =
K∏
k−1

P (φk|β)

=
K∏
k=1

U∏
u=1

1
B(β)φ

βu−1
k,u

(4.9)

But P(X|Z,Φ) has a multinomial distribution given as:

P (X|Z,Φ) =
N∏
i=1

φzi,xi

=
K∏
k=1

U∏
u=1

φ
Ψk,u

k,u

(4.10)

Ψ is the activity topic number K x the unique objects matrix. From the expression
above Ψk,u is the number of times that an activity topic is assigned to an object. With Φ in
5.7 and 5.8, 5.6 is resolved to be:

P (X|Z, β) =
∫ K∏

k=1

U∏
u=1

1
B(β)φ

Ψk,u+βu−1
k,u dφk (4.11)

Simplifying and integrating out, the next two expressions will be:

P (X|Z, β) =
K∏
k=1

∫ 1
B(β)

U∏
u=1

φ
Ψk,u+βu−1
k,u dφk

 (4.12)

P (X|Z, β) =
K∏
k=1

B
(Ψk + β)
B(β) (4.13)

Ψk is the kth row in the matrix Ψ. Recall that P(Z|α) is dependent of Θ, so that it becomes:

P (Θ|α) =
D∏
d=1

P (θ|α)

=
D∏
d=1

1
B(α)

K∏
k=1

θd,αk−1

(4.14)

P (Z|Θ) =
N∏
i=1

θdi,z1

=
D∏
d=1

K∏
k=1

θ
Ωd,k+αk−1
d,k

(4.15)
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P (Z|α) =
∫
P (Z|Θ)P (Θ|α)dΘ

=
D∏
d=1

∫ 1
B(α

K∏
k=1

θ
Ωd,k+αk−1
d,k dθd


=

D∏
d=1

B(Ωd + α)
B(α)

(4.16)

Ωd,k is the number of times activity topic k is assigned to the object in the object segment
d. The joint distribution using eq 5.5 becomes eq 5.15 using 5.11 and 5.14.

P (Z,X|α, β) =P (X|Z, β)P (Z|α)

=
K∏
k=1

B(Ψk + β)
B(β) .

D∏
d=1

B(Ωd + α)
B(α)

(4.17)

For each object, it determines the estimate of the probability of assigning it to a topic given
the assignment of the other words in the entire data set of objects. It then calculated by:

P (Z¬i, X¬i|α, β) =
K∏
k=1

B(Ψ¬ik + β)
B(β) .

D∏
d=1

B(Ω¬id + β)
B(β) (4.18)

The elements of matrices Φ = {φk,u} and Θ = {θd,k} containing the specific activity-object
distributions and the specific segment-activity topic, are determined by:

φk,u =
K∏
k=1

B(Ψ¬ik + β)
B(β) (4.19)

θd,k =
D∏
d=1

B(Ω¬id + β)
B(β) (4.20)

φk,u = P (x = u|z = k)

φk = P (x|z = k)

θd,k = P (z = k|d)

θk = P (z|d)

(4.21)

It then conversely applies the LDA assumptions to that of the segments of objects in the
dataset, that latent activity topics would have associations with the features of objects data
in the partitioned segments of the "bag of object observations". If the number of suggested
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clusters are used as topic numbers from the silhouette method above in section 4.3.1, then
the object use distributions specific to the routine activities can be determined result similar
to the matrix as schema 4.22. The unique objects and activities are expressed as x1...xN

and k1...K respectively. The process would have discovered the activity-object use. The
process ends with the LDA process assigning objects to specific activity topics.

P (x|z) =


{x1k1..., xNk1} number of unique objects are assigned to k1
{x1k2..., xNk2} number of unique objects are assigned to k2

...... ........
{x1K ..., xNK} number of unique objects are assigned to K


(4.22)

4.4 Context Descriptors for Routine Activities

The knowledge base of a knowledge-driven activity recognition technique is dependent on
a set of activity and object concepts carefully encoded ontologically to represent the activ-
ity descriptions. The knowledge representations are such that for a particular activity as a
concept, there are object concepts which are used to describe the activity. In essence, the
activity is specified by linking and associating it with objects as context descriptors. The
activity concepts are structured in some cases hierarchically allowing more and general
contextual properties in addition to the main associating object concepts to encode the ac-
tivity descriptions. Ideally, activities are performed generating sensor events resulting from
object interactions and object usage in the home environment. Understanding the activities
and how they are performed relies on the knowledge breakdown of the respective object
usage for the specific routine activities. This thesis bases this knowledge on the activity-
object use discovery described in the previous sections. The activity-object use discovery
process provides the knowledge of objects used for the routine activities. The aim is to use
the activity-object use discovery to provide the conceptual model for annotating the routine
activities with their context descriptors. So the object usage discovered then becomes the
context descriptors for the activity concepts in the activity ontology. The context descrip-
tors specifications for the routine activities provides the link and relationship between the
objects and the activities. This link and relationship are carried onto the ontology layer to
help provide class relationship and property assertion among the domain concepts. This
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process of context description utilises the object assignments to a specific activity topic. It
uses the number of times an object has been assigned to an activity and applies a threshold
to imply the object as a context describing the activity conveniently.If x1ki..., xNki are the
number of times unique objects has been assigned to an activity topic ki, then it becomes
a context descriptor if xi for the activity topic ki is greater than a threshold value. The
idea is that for an object to be a context describing an activity topic, it must have been
assigned to an activity topic by a number of times greater than the threshold µ. µ is de-
termined by computing the mean M of the number of objects assignment to K topics and
standard deviation SD of the number of times an object has been allocated to an activity
topic (see expression 4.23). The threshold values vary as µ1...µK for the unique activities
k1...K since the unique objects x1ki..., xNki have different numbers of occurrences in the
dataset. Finally, the context descriptors for the specific routine activities are achieved using
the Algorithm 1 with dependency on the activity-object distributions from the LDA and µ.

µ = M + SD (4.23)

Algorithm 1: Algorithm for Context Descriptors of Activities.
Input: Observed Sensors in Partition of segment-sensor frequency matrix D =
d1...dD, Probability distribution P(x|z), µ ;

Result: Most plausible Activity zi, Set of zi descriptors.
Begin:;
while data stream is active do

Extract observed objects from segment di, X = x1...xn for each di ∈ D;
Perform LDA topic model P(x|z) ;
for each P(xi|zi) ∈ P(x|z) do;
Y = {xj|∀xj ∈ X } ;
Z = {zj|∀zj ∈ Z } ;
if (∃ xi ∈ Y, zi ∈ Z) > µ then

zi most plausible activity;
xi→ xi ∪ {Set of zi descriptors} ;
for all Repeat process for next d.

end
end

These context descriptors for the routine activities become the knowledge acquired
from the object usage and the needed information of object and activity concepts that will
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be encoded onto the activity ontology.

4.5 Conclusion

The Chapter presented the proposed hybrid approach and knowledge acquisition of object
use and context description for activity ontology. It described the method for acquiring
knowledge of object usage for specific routine activities in the home environment. It also
presented the process used to automatically determine the number of activity topics, "bag
of object observations" and the generative topic models. As a means to represent develop
and represent activity and object concepts in the development of the knowledge base for
activity recognition, the need for context descriptors was highlighted. In addition, this
chapter presented how to use these three steps to determine the context descriptors for
routine activities. The algorithm for context description was introduced to form the basis
for knowledge representation and the activity ontology development in the next chapter.
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Chapter 5

ACTIVITY ONTOLOGY
MODELLING FOR ACTIVITY
RECOGNITION.

The previous chapter considered knowledge acquisition of object use for activity ontology.
In particular, it focused on how to determine the likely object usage for routine activi-
ties using topic models. As discussed in Chapter 4, this process of knowledge acquisition
provides the context descriptions of object concepts to be linked or associated with the ac-
tivity concepts needed to be modelled in the proposed activity ontology. Unlike the hybrid
approach proposed in this thesis, traditional and existing knowledge-driven activity recog-
nition techniques develop or model activity ontologies of concepts (activities and objects)
based on the general everyday knowledge or assumptions of object usage for activities
which most times are not fitting or cannot be adapted to home setting and users. This
chapter focuses on developing and modelling the activity ontology from object and activity
concepts. The resulting activity ontology of concepts relies on the context descriptors from
Chapter 4. Sections 5.1 and 5.2 discusses the ontology development from concepts and
contexts. Temporal representations of the concepts are presented in 5.3. Sections 5.4 and
5.5 presents ontology activity model and modelling activities as class concepts respectively.
Activity recognition by object use query is presented in section 5.6 and finally concludes
the chapter.

5.1 Modelling Activities of Daily Living (ADL) Concepts

The process of modelling ontology begins with the identification of the key concepts and
the relationships between them. The concepts in any domain are defined by the information
space produced by a set of known procedures [112]. In ADL, the collection of devices in the
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Figure 5.1: Key concepts identified in the home environment.

home environment and the activities resulting from the interaction of these devices form the
set of key concepts needed to build an activity ontology. For the sake of their significance
in ADL, activities and resources (devices) are regarded as key ontology concepts. The
devices or the resources serve as the common basis for which activities are carried out hence
defining the relationship or the shared semantics which characterises these two concepts.
In this information space, activity situations are produced by the use of the resources in the
home environment as illustrated in Figure 5.1.

Activities that are performed are identified and Resources are used in the process. The
formal modelling process would involve the specification of the Activities and Resources

as classes in the activity ontology domain to encode the information they represent. A
common feature of the concepts in any domain are the relationships between them. This
relationship establishes the links which facilitate the connections between the key con-
cepts. Depending on the domain, relationship concepts carry evidence of commonly shared
semantic properties which may convey similarities or differences between the key con-
cepts. Typical relationship concepts include equal, subsume, overlap, adjacent and disjoint
[29, 28, 128]. For example, if in a home environment, Make Food, Make Breakfast, Make

Dinner, Make Drink, Use Shower, Use Toilet, Sleeping and Go Out are Activities concepts
set for specification in the activity ontology, the following relationship concepts could be
specified to encode the relationship information as:

• Make Breakfast is equal to Make Food exhibiting reflexive, symmetric and transitive
properties.

• Make Food subsumes Make Breakfast and Make Dinner exhibiting reflexive, anti-
symmetric and transitive properties.

• Make Food overlaps Make Breakfast, Make Dinner and Make Drink exhibiting ir-
reflexive and symmetric properties.
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Figure 5.2: Make Food subsuming Breakfast and Dinner

• Use Shower is adjacent to Use Toilet exhibiting irreflexive and symmetric properties.

• Make Drink is disjoint with Make Breakfast and Make Dinner exhibiting irreflexive
and symmetric properties.

The process of ontology modelling continues with the identification of other concepts
which may be defined as members of the key concepts. They are then specified in a hi-
erarchical structure to represent relationships in terms of commonly shared semantic char-
acteristics or properties. Make Food from the example of Activities concepts above could
be specified to have Make Breakfast and Make Dinner as member concepts as illustrated in
Figure 5.2. Make Food the subsumes Make Breakfast and Make Dinner so that Make Food

becomes a superclass of with respect to Make Breakfast and Make Dinner. Make Breakfast

and Make Dinner the inherit properties of Make Food exhibiting reflexive, symmetric and
transitive properties. Make Breakfast and Make Dinner may have distinct properties which
makes them disjoint and irreflexive.

5.2 Modelling ADL Concepts with Contexts

To this point, the concepts in the home environment based on the abstract information and
relationship they can exhibit in this information space have been described. But these, in
reality, restricts and excludes detail information about the situational contexts which may
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convey details which characterises the dimensional space in context. By these, reference
is made to any contextual information which can be used to characterise the concepts and
contexts encoded with them to provide a true reflection of the concept in the information
space. In the words of Yau and Karim [144], contexts are "any information acquired from
a system or an environment". According to Dey et al. [36], situational contexts could be
adapted from who’s (the user’s identity), where’s (the user’s location), when’s (the time
of activity), and what’s (the user’s activity) of concepts to determine why the situation is
occurring. The process of modelling concepts with contextual information involves estab-
lishing contexts which reflect the reality of the situation. They are specified appropriately
by encoding them as properties of the concepts which may further be used to enforce re-
lationships between concepts. For example, Microwave and Fridge are Resources located
in the Kitchen. They are used to for the activity Make Breakfast in the morning. Obvious
contexts here are location, time and the usage requirement of the Microwave and Fridge

concepts to perform the activity concept Make Breakfast. Enforcing these contexts requires
that they are encoded as predicate properties so that they can be used to represent the rela-
tionship between the concepts as illustrated in Figure 5.3. In ontology, predicate properties
could be expressed as object properties or data properties to accommodate contextual in-
formation to be encoded. In the example, above locatedIn and hasUse are encoded as
object properties corresponding to the location and the usage requirement contexts, whilst
hasTime has been encoded as a data property to corresponding to time as will be further
discussed in the subsection below.

5.2.1 Activity Concept with Context

Considering the initial discussion on activity contexts in section 5.2, activities as events are
performed dependent on the resources in the home environment. So, the process of mod-
elling the activities as ontology concepts requires that the specific resources as concepts are
encoded as vocabularies to represent and reflect how the activity events are performed. In
addition to these resources concepts, contextual information can be specified to reflect the
situation in the home environment. This thesis, the conceptual activity model with context
information as illustrated in Figure 5.4. An Activity is represented as an instance of an ADL
performed in the home environment similar to the Make Breakfast example above. Depend-
ing on the type and description of the activity, it could be a super-class or sub class of the
instantiated ADL. This super and sub-class relationship defines the hierarchy of relation-
ship of the Activity concepts. The super-class Activity subsumes the subclass Activities such
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Figure 5.3: Modelling concepts with contexts

that the subclasses inherits all the properties of the super-class. The sub-classes may in ad-
dition have distinguishing properties which disjoints them just as in the example of Make

Breakfast and Make Dinner which are subclasses of Make Food considered in sections
above. The subclasses then exhibit irreflexive properties to disjoint them as distinct activ-
ities though inheriting the properties of Make Food. An individual referred to as an Actor

performs the instantiated activity of the ADL. This Actor may be specified as an individual
in the ontology to have its own specific properties. The properties hasDescription
and hasLocation encodes the context information of the Description and Location of
where the Activity is performed. The Activity requires the use of objects in the home en-
vironment to perform them. These Objects are of different types and are placed in the
different locations of the home environment. In dense sensing, these Objects or Resources

usually have sensors attached to them. Sensor observations and reports indicate the object
usage or resource interactions which are translated as activity events. The Objects used
for specific Activities are encoded as Resources for the respective Activity concepts with
the property hasUse. The resources as ontology concepts are further modelled with the
properties hasLocation, hasType and hasSensorAttached to represent Loca-

tion, Type and Sensor respectively. The Location of an activity in most cases is the same
location of the Resources used in performing it. Additionally, the temporal information of
the Activity is represented using the property hasTime to encode Time as a concept. Using
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Figure 5.4: A conceptual activity model with contexts

hasStartTime and hasEndtime further gives more granular temporal information of
the instantiated Activity. More details on temporal representation are presented in the next
section.

5.3 Temporal Representation

To model ADL concepts satisfactorily to reflect activities as they are performed, temporal
properties are required. However, temporal properties are difficult to be encoded because
OWL specifications allows only unary and binary relationships between concepts [15].
With OWL-Time, it is now possible to encode temporal concepts and properties. As a way
demonstrating the representation of temporal properties and relation, Batsakis and Petrakis
[15] used 4D-fluents approach. According to Welty and Fikes [139], fluents are relational
concepts holding within certain intervals. They also are relational properties used to define
time instants and time interval as part of the temporal attributes of concepts. In practical
terms, fluent properties holds between two time instants which can be implemented to
represent start time and end time of either an activity or the use of an object. In this thesis,
we follow the 4D-fluents approach to encode temporal properties to the activity ontology
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model. Representing 4D-fluents requires the use of the core vocabularies time slices and
fluents. The time slices represents specific time instants for example the instant an object
is used or an activity event occurred. A time interval can also be encoded to represent
a range of times characterizing the time instances. The intervals then aggregates all the
time instants as time slices. Additionally, Time slice and Time intervals can be included as
class concepts with the relational properties hasTimeSlice and hasTimeInterval
to extend the activity concepts with contexts. The Time interval encodes a range of time
intervals within the day path for example a day path can be encoded to have four 6 hourly
intervals 00:00 to 06:00, 06:00 to 12:00 etc. The Time slice then encodes time instants
within these Time intervals to capture specific temporal attributes of events in the home
environment.

5.4 Ontology Activity Model

The activity ontology is developed following the conceptual activity model with contexts.
The process start with a generic activity ontology as illustrated in Figure 5.5. The ADL

class is the parent of all activity class concepts. The Resource class is the parent of all
artefacts or object concepts in the home environment. The Resource class concept has as
Doors, Fixtures, Furniture and Devices as subclasses so as to allow the different objects
used in the home environment to be encoded. Other class concepts included in the generic
ontology implementation includes Symbolic Location, Sensors and Persons as exemplified
as contexts in the conceptual activity model. TimeSlice and TimeInterval has been in-
cluded to encode temporal properties. Contextual relationships between the class concepts
has been enforced through the different specified properties. The respective properties are
specified to have domain class concept to which it intersects and a range of class concept to
which it intersects. As set of properties used for the activity ontology are provided in Table
5.1. With the specification of the properties given their domain and ranges a generically
modelled simple activity would be defined as:

SimpleActivity v ADL u ∃property1.Range1 u ∃property2.Range2. (5.1)

Where Ranges1 and Range2 are resource concepts used as objects to perform the sim-
ple activity. The property has been specified such that the domain intersects the Simple

activity or in broader terms ADL and ranges on to the objects as they are used to perform
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Figure 5.5: A generic activity ontology model
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Property Domain Range
hasUse Activities Resources
isTaggedto Sensors Resources
hasActor Activities Person
hasLocation Activities SymbolicLocation
tsTimeSliceOf TimeSlice Activities
tsTimeInterval TimeSlice TimeInterval

Table 5.1: Basic Properties for the Activity ontology

the Simple Activity.
While these are at the generic level of development, it is pertinent that the activity ontology
is developed to reflect the reality of how activities are carried out in the home environment.
This means the activity ontology designed and developed for recognition of activity situa-
tions should encode sensor and object data output to describe activity events. To achieve
this, the activity ontology proposed in this thesis is composed of a Terminological Box
(TBox) and an Assertional Box (ABox) [110, 122]. The ontology modelling process popu-
lates the TBox with the sensors, objects usage for specific activities as context descriptors
and the activities. For example, if Microwave is example of a Resource, it can be modelled
as a subclass of Resource. With this, Resource and Microwave are ontology terms or con-
cepts making up the TBox. Further, Microwave can be modelled as an individual resource
or an instance of the class Resource which then makes up the ABox. The ABox can also
populated by including the instances of the states of sensors and objects as an extension
of the sensors and objects classes to reflect their use and further describe in reality activ-
ity situations. With this, sensor outputs from object interactions can be integrated into the
activity ontology to recognise an ongoing activity. El++ being a lightweight description
logic [12] which supports quantification and data types are used to describe possible sensor
and object states in the Protégé 1 editing environment.

5.4.1 Modelling Sensors and Objects

In dense sensing, the interactions of the objects in the home environment produce sensor
outputs. In some cases, these outputs may be Boolean and discrete values which determine
the state of use of the object to which the sensor is attached. Modelling activity ontology
to recognise activities from sensor data requires extending the sensor and object classes
to include the state of the sensors which reflects possible sensor data outputs from object
usage. With this, sensor data resulting from object interactions can be used to infer ongoing

1http://protege.stanford.edu/

72



activities. A binary sensor state can be ON or OFF, then the concept as represented in
expression (5.2) would encode the possible states for a Passive Infra-Red (PIR) sensor
attached to a Microwave.

PIR v Sensor

Microwave_On v PIR

Microwave_Off v PIR

(5.2)

With the hasState data property, discrete values returned as outputs of actual sensor
states can be captured in the ontology through data types like string or integer as express in
(5.3) below.

Microwave_On vMicrowave u ∃hasState.(=, On) (5.3)

Further, an individual can asserted to instantiate the state of the sensor in the activity
ontology. If an activity Breakfast results from the use of the Microwave, then the expres-
sion (5.4) would encode the activity through the object property concept hasUse. These
assertions are then added to the ABox.

Breakfast v ADL u ∃hasUse.Microwave_On (5.4)

Every sensor output has specific times associated to them. In most cases, they are the
start times and end times to denote the time interval when the sensor reading was observed.
These temporal attributes and time instants associated sensor data output can be included
e.g. hasStartTime data property to represent the instant when the sensor state was
captured. The hasStartTime data property of a Microwave turned on at time t can be
captured through data types like and expressed as (5.5)

Microwave_On vMicrowave u ∃hasStartTime.(=, t) (5.5)

The activity Breakfast resulting from the use of Microwave turned on at time t would
be expressed as:

Breakfast v ADL u ∃hasUse.
(
Microwave_On u ∃hasStartTime.(=, t)

)
(5.6)

hasStartTime and hasEndTime properties are included in the activity ontology
to have domain intersection TimeInterval so that resulting activities are modelled reflecting
the intervals of their occurrence. The inferential process through instance checking returns
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Breakfast in the example above by checking the states of all the sensors and their asserted
times and then it returns the most relevant results.

5.4.2 Modelling Activity Situations with Context Descriptors.

The previous section described modelling of a simple activity situation from a sensor with
state On and observed at time t. But in reality, an activity situation can be a result of a se-
quence of sensors triggered by objects used. Modelling an activity situation resulting from
a set of sensors requires asserting all the sensors and with their times to be encoded to rep-
resent the activity situation. If an activity situation Breakfast is the result of Microwave_On

and Fridge_On at times t1 and t2 respectively, then Breakfast can be asserted with the prop-
erties hasUse and hasStartTime as hasUse(Microwave_On, hasStartTime t1),
hasUse(Fridge_On, hasStartTime t2). The activity situation is therefore modelled
as a list of the sensors and with their times ordered temporally. The example of Breakfast

from Microwave_On and Fridge_On at t1 and t2 can then be encoded by the expression
below.

Breakfast v ADL u ∃hasUse.
(

(Microwave_On u ∃hasStartTime.(=, t1))

u∃(Fridge_On u ∃hasStartTime.(=, t2))
)

(5.7)
Typically, activity situations or activities in the home environment are a result of specific

objects and resources usage. To model activity situations accurately, it is significantly im-
portant to extend the present activity ontology modelling to include specific resources and
or objects used for routine activity situations. This can be achieved through activity-object
discovery for context descriptors. Recall in Chapter 4 of this thesis discussed activity-object
use discovery enabled by the LDA topic model. This is a layer in the proposed approach to
determine the likely object use for the routine activity situations rather the dependence on
generic and or everyday knowledge of object use. The context descriptors resulting from
the activity-object use discovery component forms the resources and objects concept and
knowledge to be modelled onto the activity ontology for the specific routine activities such
that if:

Activities: The activity topics determined from the activity-objects use discovery and
are annotated as activities analogous to the activity situations in the home environment.
This represents a class collection all types of activities set as z1...zk.
Objects: These represents class collection of all objects in the home environment set as
x1...xn.
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Contextual Elements: They represent the context attributes and states of the observed ob-
jects associated to the activities and environmental conditions. They are set as e1...em

entities describing the the states of the observed objects.
Recall P(x|z) in equation 4.21 and the expression 4.22 computes the likely objects for

each of the activity topics, then zi from z1...zk would have a subset of likely objects defined
as x1z...xiz. The function f is the context descriptor of x1z...xiz objects for zi as the likely
objects for this activity such that:

f : zi → x1z...xiz (5.8)

If the context description function is replaced with the object property function in on-
tology object property hasUse, then expression (5.8) becomes:

zi hasUse x1z...xiz (5.9)

Considering that objects in the home environment are sensor tagged with outputs as
discussed in section 5.4.1, then expression (5.9) with temporal attributes will be expressed
as:

zi hasUse {(x1z_On,hasStartTimet1z)...(xiz_On,hasStartTimetiz)}
(5.10)

The context descriptors are then modelled as resources and objects class concepts ac-
cordingly and added to the ABox so that:

Zi v ADL u ∃hasUse.
(

((x1z_On u ∃hasStartTime.(=, t1z))

... u ∃(xiz_On u ∃hasStartTime.(=, tiz))
) (5.11)

5.5 Modelling Activities as Class Concepts

The success of modelling activities does not only depend on the context descriptors but
also on the patterns and situations of occurrence. Without considerations to activity-object
use or context descriptors, some activities are traditionally performed at specific times of
the day whilst others are not. This gives rise to the relevance of time in the modelling of
activity concepts. The concepts Time Interval and Time Slices discussed in section 5.3
above becomes relevant. Recall that the Time Slices represents specific time instants, for
example the instant an object is used or a sensor is triggered. The Time Interval represents
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the range of times characterizing the time instances. But an activity is a result of at least an
object use or a sequence of sensor outputs. The activities are considered to be performed
in Time Interval whilst object are used in time slices or instants. Then, the Time Interval

activities are performed aggregates all the time instants as Time Slices in which the objects
are used. The Time Interval can be modelled in ontology as part of the day path so that
the activities are considered to be performed at particular times of the day. But some of
these activities are constrained to specific Time Intervals making them "static activities".
The other category of activities not constrained to be performed at specific times of the
day are regarded as "dynamic activities". Further, as these activities are performed, they
can generate a sequence of situations or patterns in which an activity may be interleaved,
non interleaved or concurrent with other activities. These activity situations and patterns
are independent of whether they are classed as static or dynamic activities. In the sections
below considers how to model static and dynamics activities and then modelling activity
situations.

5.5.1 Static and Dynamic Activities

In the home environment, activities are performed differently, in different ways and times
within the 24 hour day. These activities can be static or dynamic, and in some cases, same
and or similar objects may be used to perform these different activities. Make Breakfast,
Make Lunch, Make Dinner, Use Toilet and Showering are used as examples of activities
in the home environment to make the following analogies. Make Breakfast, Make Lunch

and Make Dinner are examples of different activity concepts which can be performed with
same or similar object interactions, but they are all performed at different times of the day.
As sub class activities of the activity class Make Food, they differ with regards to their
respective temporal properties. While they inherit all the properties of Make Food by sub-
sumption, they can be easily confused in the recognition process if modelled in the ontology
without consideration to their usual times of performance. Semantically, they are different,
but they share the same properties by subsumption. Distinction can be achieved for them
by the specification of the time intervals they are usually performed. On the other hand,
activities like Use Toilet and Showering can be performed at any time of the day making
the process of distinguishing them less dependent on their temporal properties . This the-
sis refers to activities that are known traditionally to be performed at specific times of the
day as static activities whilst activities that can be performed at any time of the day as dy-
namic activities. The Figure 5.6 illustrates an example of static and dynamic activities. The
static activities in this example is with reference to Make Breakfast which is specified to be
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Figure 5.6: An example static and dynamic activities based on the analogy

possibly performed within the time interval 09.00 and 12.00 hours and Make Dinner speci-
fied for performance within 18.00 and 21.00 hours. Dynamic activities are not constrained
within any time interval, so they have time interval ranging from 0.00 to 23.59 hour of the
day. The extension of the ontology modelling of activity situations described in section
5.4.2 to include static and dynamic activities using the 4D-fluent approach [15], requiring
the temporal class concepts Timeslice and TimeInterval to be specified using the relational
properties tsTimesliceOf and tsTimeIntervalOf respectively (see Table 5.1). As
illustrated in Figure 5.7, the time intervals Interval1 and Interval2 holds the temporal infor-
mation of the time slices for the static and dynamic activities. An instance of a TimeSlice

of an activity whether static or dynamic is linked by the property tsTimeSliceOf and
property tsTimeInterval and then links this instance of the class TimeSlice with an
instance of class TimeInterval which may be Interval1 or Interval2.

Modelling a Static Activity: A static activity is modelled by requiring the specifica-
tion of the TimeSlice, TimeInterval class concepts and with the context descriptors for that
activity. The activity situations described above are extended so that the hasUse object
property encodes the usage of the objects for the static activity by specifying the static ac-
tivity as the domain class concept and ranges to all the object classes which describes the
context descriptors. This is extended further with the temporal properties which requires
tsTimeInterval to have domain TimeSlice and Resources and it ranges TimeInterval

to capture specific time interval of the day through Interval (a sub class of TimeInterval).
The time instants of the activities are captured through the tsTimeSliceOf with do-
main TimeSlice and Resources and it ranges to TimeSlice. The DL expression 5.12 encodes
a static activity so that Interval1 asserts the time interval of the day the static activity is
performed using the object x1z. Interval1 with regards to Figure 5.6 can be modelled in the

77



Figure 5.7: 4D-Fluents with Activities and Resources

activity ontology to have a range of times between 9 am and 12 noon using data property
starttime 9.00 and endtime 12.00 in the format date time format. Activities per-
formed within these ranges of time e.g. Breakfast can be modelled with this Interval1 as an
extension. An Interval3 is also included ranging between 6 pm (18.00) and 9 pm (21.00)
for static activities performed at this time of the day.

StaticActivity v ADL u ∃hasUse.
(
x1z_On u ∃tsTimeInterval.Interval1

)
(5.12)

The expression 5.13 then asserts Interval1 to cover the time instant t1z through the property
tsTimeSliceOf.

Interval1 v Interval u ∃tsTimeSliceOf.
(
TimeSlice u ∃hasStartTime.(=, t1z)

)
(5.13)

Modelling a Dynamic Activity: Similar to static activities, dynamic activities are mod-
elled by requiring the specification of the TimeSlice, TimeInterval class concepts and with
the context descriptors for that activity. An instance of a TimeSlice of a dynamic activity
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is linked by the property tsTimeSliceOf and property tsTimeInterval and then
links this instance of the class TimeSlice with an instance of class TimeInterval which may
be Interval2. Interval2 ranges to cover the full 24 hour cycle of the day as asserted by 5.15
and modelled using data property starttime 0.00 and endtime 23.00 in the format
date time format.

DynamicActivity v ADL u ∃hasUse.
(
x2z_On u ∃tsTimeInterval.Interval2

)
(5.14)

Interval2 v Interval u ∃tsTimeSliceOf.
(
TimeSlice u ∃hasStartTime.(=, t2z)

)
(5.15)

5.5.2 Modelling Fine Grain Activity Situations

In reality, activities are a result of multiple stepwise atomic tasks or sensor events. So when
modelling the concepts in ontology, it is important to put this into consideration given that
order of activity or precedence in some cases may lead to different types of activities. The
role value expressed by r1 ◦ r2 v r3 holds the relationship of transitivity between r1, r2
and r3 [122, 11]. Therefore transitivity can be applied to a list ontology concepts in ex-
pressing precedence. Given this, the property relationship hasLastObject is introduced
to specify precedence relationship between objects in use. With the hasLastObject,
the ontology can be extended to include the order of list of context descriptors more es-
pecially in the of modelling fine grain activity situations. Considering a stepwise activity
situation Make Breakfast from GroceryCupboard_On, Microwave_On and then Fridge_On

afterwards. This would be expressed as:

MakeBreakfast v GroceryCupboard_On u ∃hasLastObject.(
Microwave_On u ∃hasLastObject.F ridge_On

) (5.16)

The precedence property hasLastObject has been used encode the order as Grocery

Cupboard_On, Microwave_On and Fridge_On. This adds granularity to the activity spec-
ification and refinement. This assertion can then be added to the ABox to describe Make

Breakfast with the specifications of the order of object use. The power transitivity ex-
pressed in the example above can be fully utilised in the design and development of ontol-
ogy to model fine grain activity to specification specific. If an activity A can be performed
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Figure 5.8: The four kitchen object and the possible resulting activity situations.

specifically with the objects x1, x2 and x3, the expression 5.17 can be followed to assert
and recognise this activity situation given the order of precedence and object evolution.

x1 hasLastObject x2,

x2 hasLastObject x3 then;

ActivityA = x1 hasLastObject(x2 hasLastObject x3),
(5.17)

The significance of this ordering in precedence is such that each of these objects as
events can lead to multiple activity situations, the specifications of precedence refines the
activity based on the context which describes the activity. The scenarios below explains
further.
Scenario 1: Suppose a kitchen environment has the objects Cup, Coffee, Milk and Tea.
White Coffee, Black Coffee, Black Tea and White Tea are four likely activity situations that
could result from the combinations of these object based on preference. Basically from
the tree illustrated in Figure 5.8 shows the four activity situations. The activity situations
following object use order could be encoded as expressions 5.18, 5.19, 5.20 and 5.21.
The Figures 5.9, 5.10, 5.11 and 5.12 illustrates possible orders of object use with Cup as
first object use leading to White Coffee, Black Coffee, White Tea and Black Tea respectively.
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Figure 5.9: White Coffee

Figure 5.10: Black Coffee

White Coffee :Cup, Coffee and Milk.

WhiteCoffee v Cup u ∃hasLastObject.(
Coffee u ∃hasLastObject.Milk

) (5.18)

Black Coffee :Cup and Coffee.

BlackCoffee v Cup u ∃hasLastObject.Coffee (5.19)

White Tea :Cup, Tea and Milk.

WhiteTea v Cup u ∃hasLastObject.(
Tea u ∃hasLastObject.Milk

) (5.20)

Black Tea :Cup and Tea.

BlackTea v Cup u ∃hasLastObject.T ea (5.21)

Figure 5.11: White Tea
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Figure 5.12: Black Tea

With order and precedence in a stepwise fashion, the four activities are bound if Cup

is used first. Including Coffee, refines the situations to White and Black Coffee. A step
further including Milk further refines the activity situation to White Coffee. With the transi-
tivity property of hasLastObject the activity situations can be achieved so that all four
activities depending on the path.

The modelling of activity situations proposed in this thesis are described by their con-
texts. The order according to precedence can be used to define and refine the activity
situations especially when similar or same object interactions leads to different activity sit-
uations. Activity situations from the Kasteren Home environment are considered next[132].

Scenario 2: Consider the discovered context descriptors (following the context descrip-
tion process described in Chapter 4) for Drink includes Fridge and Cups Cupboard; Break-

fast includes Fridge, Cups Cupboard, Microwave and Toaster; Snack Fridge, Cups Cup-

board and Microwave (see Figure 5.13 for the activity situations tree). Although, Breakfast

is an example static activity, Snack and Drink dynamic activity as earlier explained, they
share similar or same objects for the situations. They are encoded them so that their context
descriptors reflect the activity situations they could result to. The hasUse is used so that
they are asserted as expressions 5.22, 5.23 and 5.24 and can be added to the ABox:

Drink v ADL u ∃hasUse.(Fridge t hasUse.Cupboard) (5.22)

Snack v ADL u ∃hasUse.
(
Fridge t Cupboard tMicrowave

)
(5.23)

Breakfast v ADL u ∃hasUse.
(
Fridge t Cupboard tMicrowave t Toaster

)
(5.24)
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Figure 5.13: Tree structure of object contexts for activity
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Figure 5.14: Fridge and Cupboard resulting to Drink, Snack and Breakfast

Figure 5.15: Snack and Breakfast from Fridge, Cupboard and Microwave

If all three activity situations are assumed to take place within the same time interval,
hasLastObject can be used to further enhance the expressions to include precedence.
With the order of the objects observed downward with regards to Figure 5.13, you notice
that Fridge and Cupboard are common for all three activities. If Fridge is activated first as
being used, Drink, Breakfast and Snack are the suggested activities asserted as expression
5.25. Activating Fridge and then Cupboard still results to the three activities asserted as eq
5.26 and illustrated as Figure 5.14.

Drink, Snack,Breakfast v ADL u ∃Fridge (5.25)

A step further activating Microwave excludes Drink so that the path now leads to Snack

and Breakfast as expression 5.26 and illustrated as fig 5.15.
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Figure 5.16: Breakfast from Fridge, Cupboard, Microwave and Toaster

Figure 5.17: Breakfast with a changed of object activation

Snack,Breakfast v ADL u ∃ hasLastObject.
(
Fridge u ∃hasLastObject.

(Cupboard u ∃hasLastObject.Microwave)
)

(5.26)

Further activating Toaster in addition, eliminates Snack from the path to result to Breakfast

as in expression 5.27 and Figure 5.16.

Breakfast v ADL u ∃hasLastObject.
(
Fridge u ∃hasLastObject.

(Cupboard u ∃hasLastObject.(Microwave u ∃hasLastObject.T oaster))
)

(5.27)

This order of object observations may change to allow flexibility. However, transitivity
rule still applies. If the order of observation becomes Cupboard, Microwave and Toaster.
the progressive assertion becomes as expression 5.28 and Figure 5.17 for only Breakfast

eliminating Drink and Snack:

Breakfast v ADL u ∃hasLastObject.
(
Cupboard u ∃hasLastObject.

(Microwave u ∃hasLastObject.T oaster)
) (5.28)
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Notice that the precedence property did not only incorporate the context descriptors for
the activities but also is used to return finer grain of activity through the hasLastObject
property. Modelling activity situations with the context descriptors and asserting them with
transitivity property can create situations where an activity stops or ends creating an activity
boundary to signal end or the beginning of an activity. Locations in the home environment
creates location groups for objects and thus location basis for activity situations i.e Toilet-

ing in the Toilet using Toilet objects. Having a Shower in the Bathroom with Bathroom

based object. If a user moves from the Toilet location to the Bathroom it could signal
the end of an activity and the beginning of another. Introducing location grouping for
objects could be used to create disimilarity amongst objects and then used to signal the
end of an activity or the beginning. Disimilarity when applied with the transitivity prop-
erty of hasLastObject enhances the process. Disimilarity of location object grouping
can be determined using the Jaccard and Dice Coefficient such that if the similarity index
of objects from different locations falls below a threshold then it can suggest an activity
boundary.
At this point, β is introduced as the Jaccard similarity index [72] for A and B. If A is a set
of Kitchen based objects x1, x2, x3, and x4 and B is a set of Toilet based objects x5, x6,
and x7 the β for location base objects in A and B is as:

β = |A ∩B|
|A ∪B|

(5.29)

β = |(x1, x2, x3, x4) ∩ (x5, x6, x7) |
|(x1, x2, x3, x4) ∪ (x5, x6, x7) | (5.30)

β should be below a threshold for the set of A and B to be disimilar. Since objects as

context descriptors are likely resultant to activity situations, β can be used in sequence
of objects observations to determine the persistence of an activity. Activity termination is
discovered when the β value for consecutively observed objects falls below the threshold
value for the location set they belong. The algorithm 2. implements the boundary detection
for activities with dependency on β. Notice that the precedence of object observations is
also enabled in this case by the use of hasLastObject property since they are consec-
utively observed. A third scenario is considered applying location based β similarity index.
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Algorithm 2: Algorithm for Activities Boundary Detection.
Input: Observed Sensors X = {x1,...xn} in Partition of Sensor Segment S =
{s1...sn}, ADL ontology (ADL)

Result: Activity A, Activity Boundary.
Begin:;
while data stream is active do

Extract observed object xi ∈ X = {x1... xn}, from si ∈ s1...sn for each si ∈ S. ;
Create Activities Z ≡ Z(x1)t...Z(xn) ;
for each x ∈ A do;
Map xi1 to an Activity A ;
So that ;

Z ≡ ADL u ∃ hasUse.
(
xi1_On u ∃ hasStartTime.(=, t)

)
;

Activity Inference
if an activity Zi is returned then

Report Activity A;
Repeat process for next xi2.
if an activity Zi is not returned for next xi2. then

Calculate β for xi1 and xi2 if β < 0.5 then
Report Activity Boundary

end
end

end
end

Scenario 3: The scenario where object observations are from different locations in
the home environment. Activities are assumed to be location-based for example Fridge,
Cupboard and Microwave are used for Breakfast, Dinner and Snack in the Kitchen with
regards to the Kasteren home environment. In addition are toilet based objects like Toilet

flush are normally kept in the Toilet and used for Toilet based activities (see Figure 5.18).
Breakfast and Toileting have context descriptor as asserted as expressions 5.31 and 5.32
below.

Breakfast v ADL u ∃hasLocation.(
Kitchen∃ u hasUse.(Cupboard t Fridge tMicrowave)

) (5.31)

Toileting v ADL u ∃hasLocation.

(Toilet∃ u hasUse.T oiletF lush)
(5.32)
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Figure 5.18: Toileting and Breakfast activity situation in different locations.

β = |(Fridge, Cupboard,Microwave) ∩ (ToiletF lush) |
|(Fridge, Cupboard,Microwave) ∪ (ToiletF lush) | (5.33)

β in this case is 0.00 which is the lowest in terms of any value of similarity obtain-
able and indicative of the disimilarity of the Kitchen set of object and Toilet objects given
expression 5.33. β with the object property hasLastObject can now be used to de-
termine the persistence of an activity or to signal the end of an activity given consecutive
observation of objects.
Order of precedence for the objects leading the activity situation could be any of path in
Figure 5.19 and expression 5.34 Breakfast. The path for Toileting is illustrated in Figure
5.20 and expression 5.35

Breakfast v ADL u ∃hasLocation.
(
Kitchen∃ u hasUse.

(Cupboard u ∃hasLastObject.(Microwave u ∃hasLastObject.F ridge)
)

(5.34)
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Figure 5.19: Breakfast processes

Figure 5.20: Toileting process

Toileting v ADL u ∃hasLocation.

(Toilet∃ u hasUse.T oiletF lush)
(5.35)

Toileting in the Toilet using Toilet Flush would have the activity path in Figure 5.20.

Figure 5.21: Objects from different location groups
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Figure 5.22: Using hasLastObject and β to signal end of activity

If objects are observed in the sequence as Fridge, Microwave and Toilet Flush as illus-
trated in Figure 5.21, hasLastObject could be used with β to indicate discontinued
Breakfast after Microwave and commencement of Toileting as illustrated in the flow Figure
5.22. This is because β for Microwave and Toilet Flush falls below the similarity threshold
value for the sets of location based objects which they belong.

From the above explanations and scenarios, the object property hasLastObject can
be used to emphasise precedence given the transitivity it exhibits. Further choices and
preferences which arises due to the order of object use can also be encoded using this
object property. While it is being used contexts descriptors are also linked and with this
granular activities are encoded.

5.6 Activity Recognition by Object Use Query

The activity recognition process uses the Algorithm 3 which performs a mapping of the
activity situation using the observed objects. A comparison is made through reasoning by
the ontology to retrieve the closest activity situation described by the contexts of object
observed as sensor data. Activity recognition also follows the TOQL [14] adapted based
on object usage to retrieve activity situations using sensor data concurrently available. The
process uses object use query like constructs on the knowledge base to retrieve activity
situation fitting the requirements of the query. As an advantage, sensor states and status
of object use as implemented in the activity ontology can be used in queries to reflect
real situations of object usage in the home environment. A typical query is comprised
of SQL like construct (SELECT - FROM - WHERE) for OWL which treats the ontology
classes and properties like database tables and columns. An additional AT construct in the
query compares the time interval for which a property is true with a time interval or instant.
Considering the scenario in the home environment where sensor status and outputs captured
are reported as given in Table 5.2. The Algorithm 3 implements the activity recognition
process. The input are observed sensor along their time lines as x1,...xn from segments
s1...sn. The process maps sensor or object xi on to the ontology applying inference rules to
determine if xi is a context descriptor for a static or dynamic activity. if the mapping using
the inference rule returns activity, then it is reported as the activity situation for xi.
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Algorithm 3: Activity recognition algorithm.
Input: Observed Sensors X = {x1,...xn} in Partition of Sensor Segment S =
{s1...sn}, ADL ontology (ADL)

Result: Static Activity (SA) or Dynamic Activity (DA).
Begin:;
while data stream is active do

Extract observed object xi ∈ X = {x1... xn}, from si ∈ s1...sn for each si ∈ S.
Create Activities Z ≡ Z(x1) t...Z(xn)
for each x ∈ A do;
Map xi to a Static Activity (SA) or Dynamic Activity (DA)
So that;
Z ≡ ADL u ∃ hasUse.

(
xi_On u ∃ hasStartTime.(=, t)

)
Activity Inference
if an activity Zi is returned then

Report (SA) or (DA) as recognised.;
for all Repeat process for next x.

end
end

Sensor ID Sensor State Time
6 Microwave_On 09:00:00
7 Fridge_On 09:01:01
8 PlatesCupboard_On 09:01:05

Table 5.2: A sample of sensor status and output

The question would be “What activity situation does these sensor outputs represent this
particular time?” The query construct to provide the activity situation at that particular time
is as presented below.

SELECT Activities zi, Activities.activityName
FROM Activities, Objects As Object1, Objects As Object2,
Objects As Object3
WHERE Activities.hasUse : Object1 AND Object1.ObjectState
LIKE ”Microwave_On” AT (09.00) AND Activities.hasUse :
Object2 AND Object2.ObjectState LIKE ”Fridge_On” AT (09.00)
AND Activities.hasUse : Object3 AND Object3.ObjectState LIKE
”PlatesCupboard_On” AT (09.00)

(5.36)

91



Notice the simplicity of expression with regards to time. The query automatically deter-
mines the activity situation with reference to the given time where the classes and properties
are true.

5.7 Activity Ontology Update

Due to the dynamic nature of humans, preference for object usage for routine activities
changes with time. Failing health and decline in the cognitive abilities of the elderly could
also lead to changing habits and choice of object usage for activities. In this regards, it
is logical for activity recognition models to have the capabilities to handle the variations
in the choice of objects for activities. Traditional knowledge-driven activity recognition
models, manage these changes and modifications by editing the entire activity ontology
using editors like Protégé. This does not only make the process of changes cumbersome
but also time-consuming.

The SPARQL update language for data manipulation facilitates modifications of on-
tologies and graphs through update operations for data to be inserted and deleted [46]. This
thesis uses the SPARQL update operations to facilitate changes and modifications in ob-
ject usage for specific routine activities which may arise due to changing preferences and
habits. The update process follows the template as given in the schema 5.37. Typically,
it performs a delete to remove data a b c from the ontology or graph using the DELETE
clause; use the INSERT clause to insert or add data d e f to the ontology or graph, and the
WHERE clause is used to indicate where the DELETE and INSERT modification is to be
done e.g where the data corresponds to x y z .

WITH < Graph />
DELETE {

a b c
}
INSERT {

d e f
}
WHERE {

x y z
}

(5.37)
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This pattern of the operation follows a triple format of the subject (s), predicate (p) and
object (o). The subjects corresponds to a, d and x, predicate corresponds to b, e and y

and the object corresponds to d, f and z of the DELETE, INSERT and WHERE clauses
respectively. The SPARQL update language protocol maps the subjects, predicates and
objects using the DELETE, INSERT and WHERE clauses to the classes and properties of
the domain activity ontology to perform the update or modification operations. The update
operation does not all have to involve the DELETE and INSERT at the same time. It may
be either depending on the modifications and changes to be made. Further illustration is
made using the scenario 4.

Scenario 4: In scenario 2, Breakfast as an ADL has use (hasUse) the context descrip-
tors Fridge, Cupboard, Microwave and Toaster. If due to changes in preferences or habits,
the context descriptors for Breakfast becomes Fridge, Cupboard, Cooktop and Toaster.
This then requires modifying and updating the ontology so that now Breakfast will exclude
Microwave to be deleted and to include Cooktop to be inserted. The process of effecting
these changes would involve the DELETE of Microwave and INSERT of Cooktop WHERE
activity hasUse (Fridge, Cupboard and Toaster) with the schema 5.38. The modification
requires mapping the subject, predicate and object contents of the schema to the activity on-
tology through the clauses. For example the DELETE clause deletes ’Microwave_On’
mapped with the predicate as object property attribute hasUse:Object for the ontol-
ogy activity class ?Activity. This is same for the INSERT and WHERE clauses of the
update schema.

Prefix adl < Graph />
DELETE {

?Activity adl:hasUse ’Microwave’
}
INSERT {

?Activity adl:hasUse ’Cooktop’
}
WHERE {

?Activity adl:hasUse ’Fridge’.
?Activity adl:hasUse ’Cupboard’.
?Activity adl:hasUse ’Toaster’

}

(5.38)

Modifications and updates through this process do not only save time but also the pro-
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cess of editing the entire activity ontology. Breakfast is then encoded and expressed as
5.39. The resulting data is added to the ABox for Breakfast.

Breakfast v ADL u ∃hasUse.
(
Fridge t Cupboard t Toaster t Cooktop

)
(5.39)

Updates to an activity ontology can be initiated and facilitated through the algorithm
4 which triggers the update operation in the event of repeated null activity recognition. In
reality, the need for ontology update arises when a set of observed objects fails to retrieve an
activity(s) from the object query described above in section 5.6. This means that the object
concept change(s) would have to be discovered through a context description process as
discussed in Chapter 4 of this thesis. The discovered changes in object concepts are then
updated through the ontology update schemes similar 5.37 and 5.38

If a set of observed objects their time lines as x1,...xn from segments s1...sn fails to
retrieve an activity, then the Algorithm 3 is extended to include the context description
process and the update operation through the Algorithm 4.
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Algorithm 4: Activity ontology update algorithm.
Input: Observed Sensors X = {x1,...xN} in Partition of Sensor Segment S =
{s1...ss}, ADL ontology (ADL)

Result: Static Activity (SA) or Dynamic Activity (DA).
Begin:;
while data stream is active do

Extract observed objects xi...xn ∈ X = {x1... xN}, from si ∈ s1...ss for each si
∈ S.

Create Activities Z ≡ Z(x1) t...Z(xn)
for each x ∈ A do;
Map xi...xn to a Static Activity (SA) or Dynamic Activity (DA)
So that;
Z ≡ ADL u ∃ hasUse.

(
xi_On...xn_On u ∃ hasStartTime.(=, t)

)
Activity Inference
if an activity Zi is returned then

Report (SA) or (DA) as recognised.;
for all Repeat process for next x.
if an activity Zi is not returned for xi...xn. then

Perform Context description and
Update activity ontology for context changes
Repeat activity recognition
Report (SA) or (DA) as recognised.;

end
end

end

5.8 Conclusion

This Chapter presented activity ontology modelling for activity recognition. As part of
the process of knowledge representation for activity recognition, modelling of ADL con-
cepts and with contexts was presented. The chapter also considered activity as an ADL
concept and further discussed modelling it with contexts. Temporal attributes of ADL
concepts through temporal representation was also presented as part of ADL contexts that
could help in improving activity recognition. As part of modelling activity concepts, it
also presented modelling of sensors and object concept to reflect the situations in the home
environment. Modelling status of sensor outputs when in use and integrating object usage
was also presented to further reflect the situations involving ADL process in the home envi-
ronment. To also enhance this, static and dynamic activities, modelling fine grain activities
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with three scenarios and then activity recognition by object use query. The chapter is con-
cluded with updating activity ontology through the update Algorithm 4 without editing the
entire ontology
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Chapter 6

VALIDATION

Chapter 5 considered activity ontology modelling for activity recognition. In particular, it
focused on how to model objects and activities as ontology concepts. The resulting activity
ontology is designed to be composed of the TBox and ABox ensuring that the activity
situations in the home environment are reflected in the process. This chapter presents
the experimental evaluation which validates the proposed the hybrid approach to activity
recognition described in Chapters 3, 4 and 5. This process of evaluation and validation
was carried out through various experiments on two publicly available datasets. Details of
the experimental methodology and evaluation are presented in section 6.1 of this chapter
emphasising on the proposed approach. In addition, section 6.2 presents the experiments,
results and performance evaluation. Discussions of results are also presented as a way of
highlighting the effectiveness of the proposed hybrid activity recognition approach. The
chapter also makes comparisons with results obtained using other methods on the datasets.
Section 6.3 summarises and concludes the chapters.

6.1 Experimental Methodology and Evaluation

The process of activity recognition as considered in previous chapters follows several tech-
niques and approaches. Different methods have been followed by researchers to evaluate
and validate their approaches as reported in the following [30, 96, 73, 104, 129, 130, 110].
However, these methods to a large extent are similar and can be summarised as;

• Deploy monitoring devices in the target environment.

• People perform activities in the target environment.

• Capture activities through monitoring devices and keep a record of ground truth using
an appropriate annotating system.
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• Carry out experiments using the developed algorithm, technique or approach on the
captured dataset.

• Compare experimental results using ground truth

• Carry out performance analysis on the experimental results.

While these summarised steps have led to the validation of the approaches cited above,
limitations still abounds and includes:

• It almost impossible to tag every single object in the home environment with sensors
or use wearable sensor to measure every single needed attribute needed for perfect
activity recognition. This limitation can be attributed to cost implication of sensors,
associated cost of processing sensor data and ease of use with regards to wearable
sensors.

• Ground truth are often not perfect and sometimes may not reflect the reality of the
dataset annotations. This poses the challenge of affecting the performance of ap-
proaches.

• The ethical implication associated to data collection and in some cases the intrusive
nature of the process might be invasive to occupant(s) of the home environment.
These raises privacy concerns and limits the extent to which the research can go.

Although these limitations abound, they do not discredit the approaches but serve to
provide the basis for future validations. Efforts by researchers in this emerging field should
be, to take into account these limitations to develop techniques that are significantly com-
parable and even better in performance.

6.1.1 Dataset

To evaluate and validate the proposed activity recognition approach, this thesis have adopted
some of the steps highlighted above in using the Kasteren dataset1 and the Ordonez dataset2.
The choice of these dataset fulfils conditions premised on the method of evaluation and to
a large extent addresses some of the limitations mentioned above. The dataset chosen
so far are publicly available and as such, this addresses the limitations of high cost, and
the lengthy process involved in collecting and processing the dataset. Legal and ethical
constraints that would have been major limitations are also addressed by the use of these

1https://sites.google.com/site/tim0306/datasets
2http://mlr.cs.umass.edu/ml/machine-learning-databases/00271/
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publicly available dataset. In arriving at a suitable dataset that addresses other limitations
mentioned, the activities involved in these dataset were carefully thought of, the object
used to perform the activities and the availability of ground truth with which to make com-
parisons in terms of evaluation and performance. The choice of these dataset was further
driven by the fact that the Kasteren and Ordonez dataset contain a lot of sensor activations
with dense sensing applied. Different types of sensor (for example pressure sensors, mag-
netic sensor etc tagged to home objects like microwave, dishes, cups) were used to capture
contexts for the different activities to allow for a rich collection of different types of data.
These sensor/object activations have been annotated and labelled to suggest activity events,
situations and tasks being performed. The sensor/object activations as they are, represents
samples of different activities enabling a learning process. To further enhance the learning
process, the activities contained therein have been performed in varied ways and accurately
annotated in the ground truth. In addition, there are a set of ground truths which have been
carefully labelled and annotated as representations of the series of sensor/object activations.

6.1.1.1 Kasteren Dataset

The Kasteren dataset was generated by a set of simple state-change sensors installed in
three different environments labelled as Houses A, B and C (See Appendix A: Figure 7.1
for the floor plan). The three datasets includes a set of eight different activities: Leaving,
Toileting, Showering, Sleeping, Breakfast, Dinner, Drink, and Idle which corresponds to
times when no activity took place. A brief overview of the dataset are as given below.
Also, see table 6.1 for a summary of activity instances for the Kasteren Dataset .

• The House A dataset tracked the activities of a 26 year old man in a single occupancy
residence. The dataset was collected over a period of 28 days, recording 2120 sen-
sor events. The sensor network was implemented using digital reed switches, each
mounted to a RF Monolithics DM1810 module to form a wireless network. Dense
sensing method was applied attaching sensor modules to 14 objects of interest across
rooms in the house, each producing a binary reading to indicate whether or not a sen-
sor is firing. The instrumented objects are -Wireless sensor network connected to a
base-station to for the record of trace sensor observations, a Bluetooth headset worn
by the user was used to for recording of the activity data through speech recognition
of the spoken annotation. Object tagged in this House A includes:

1. Bedroom: Door

2. Main Entrance: Door
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3. Bathroom: Door

4. Toilet: Door and Toilet Flush

5. Kitchen: Microwave, Groceries Cupboard, Plates Cupboard, Freezer, Fridge,
Pans Cupboard, Cups Cupboard, Washing machine, and Dishwasher.

• House B dataset is similar to House A tracking the same activities but with a 28 year
old male in an apartment over a period of 14 days. Although House B had more
home objects involved than House A, it followed the same dense sensing approach
with the use of binary sate change sensors. The setup included pressure mats for
detecting lying and sitting, mercury contact sensor to detect movement of objects and
infrared sensors for motion detection. Unlike House A, the starting and end times of
the activities were recorded from the individual watch. The annotated activities were
handwritten in a diary from sheets of paper left where activities have been performed.
Object tagged in this House B includes:

1. Bedroom: Door, Bedmat Right and Bedmat Left (pressure mats), Dresser, and
a Passive Infra-Red (PIR) sensor.

2. Main Entrance: Door

3. Bathroom: Door

4. Toilet: Door and Toilet Flush, Sink (float), and a PIR sensor

5. Kitchen: Microwave, Groceries Cupboard, Plates Cupboard, Fridge, Cutlery

Drawer, Stove lid, Toaster, and a PIR sensor

• The House C dataset tracked the activities of a 58 year old man in a single occu-
pancy residence over 19 days. Although the same activities tracked in House A and
B were tracked in House C, House C significantly differs from Houses A and B due
to its having two floors. Dense sensing was also applicable in this setting using reed
switches, pressure mats, mercury contacts and passive infrared motion sensors simi-
lar to House B. An additional pressure sensor was attached to the couch in the lounge.
The activity data was collected and recorded using the same blue tooth approach as
in House A. Object tagged in this House B includes:

1. Bedroom: Door, Bedmat Right and Bedmat Left (pressure mats) and a Dresser

2. Main Entrance: Door

3. Bathroom: Door (Left and Right swing doors), Bathtub PIR, Sink (float)

4. Downstairs Toilet: Door and Toilet Flush
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Activities Instances
House A House B House C

Leaving 36 24 47
Toileting 114 27 99

Showering 24 11 14
Sleeping 25 14 19
Breakfast 20 9 18

Dinner 10 6 11
Drink 20 8 10

Table 6.1: Summary of activity instances for the Kasteren Dataset

5. Upstairs toilet: Toilet Flush.

6. Kitchen: Groceries Cupboard, Cup Cupboard Bowl Cupboard, Herb Cabinet

and Plate Cabinet, Fridge, Freezer, Food Scraps bin, Cutlery Drawer, Pots

Cupboard and Pans Cupboard, Microwave, Drawer with keys to the backdoor
and a PIR sensor.

6.1.1.2 Ordonez Dataset

The Ordonez dataset is similar to the Kasteren dataset and generated using a set of state-
change sensors installed in two different environments (Houses A and B with single occu-
pants). Similar to the Kasteren dataset, the Ordonez dataset includes activities like Leaving,
Toileting, Showering, Sleeping, Breakfast, Dinner, Drink, and Idle which corresponded to
times when no activity took place. Other activities in addition which did not feature in
the Kasteren include Lunch, Snack, Spare time/TV and Grooming. A brief overview of the
dataset are as given below. Also, see table 6.2 for a summary of activity instances for the
Ordonez Dataset. .

• The House A dataset was collected over a period of 14 days in a 4 room house. 12
state change sensors were used to capture 410 events. Types of sensors and objects
tagged includes:

1. PIR: Shower, Basin, Cooktop

2. Magnetic: Maindoor, Fridge, Cabinet, Cupboard

3. Flush: Toilet

4. Pressure: Seat, Bed
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Activities Instances
House A House B

Leaving 14 38
Toileting 44 93

Showering 14 11
Sleeping 14 29

Grooming 51 113
Spare Time 77 116
Breakfast 14 22

Lunch 9 13
Dinner Na 11
Snack 11 47

Table 6.2: Summary of activity instances for the Ordonez Dataset

5. Electric: Microwave, Toaster.

• The House B dataset was collected over a period of 21 days in a 5 room house.
Similarly, 12 state change sensors were used but this time to capture 2314 events.
Types of sensors and objects tagged includes:

1. PIR: Shower, Basin, Door Kitchen, Door Bathroom, Door Bedroom.

2. Magnetic: Maindoor, Fridge, Cupboard.

3. Flush: Toilet

4. Pressure: Seat, Bed

5. Electric: Microwave

6.1.2 Evaluation Methodology

To validate and evaluate the performance of the proposed activity recognition approach, a
’leave one day out’ cross validation was used [10]. Cross validation is a standard technique
used to estimate how accurate a predictive model will perform. It involves splitting the
given dataset into a training and test subsets. The training subset is used to train the model
and then the test subset is used to determine the accuracy of its performance. In k-fold
cross-validation, the dataset is split or partitioned into equal sizes of k subsets. A subset is
set aside for test while k − 1 of the dataset is used to train the model. The cross validation
process is repeated for k times with k subset used once for the test purpose. With regards to
’leave one day out’ cross validation, the dataset is split according to the number of days for
which the dataset was captured. If there are k days amount of data, then k− 1 days amount
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of the data are used to train the model leaving one day amount of the data for testing. The
process is then repeated for k times with each day data used once for test purpose.

The accuracy, precision, recall and F-measure (also referred to as also F-Score) are
calculated as statistical metrics used to determine the performance of the model.

As earlier mentioned, a ’leave one day out’ cross validation was used to evaluate the
performance of this approach. To do this, a 60 seconds sliding window intervals was ap-
plied to the sensor data of Kasteren and the Ordonez dataset using the start times of the
sensor data. The 60 seconds intervals resulted to segments of object observations which
were used to form the segment-object-frequency matrix as explained in subsection 4.3.2
for the preparation of "bag of object observations". The resulting matrix were partitioned
into k (The number of days for which the dataset represents) days folds such that each fold
corresponds to the data in each of the respective days. The training phase involved using
the LDA topic model on the k− 1 amount of training data for the activity-object discovery.
The activity-object usage discovered from the training phase was then used as knowledge
of object use for the activity situations, and with the application of Algorithm 1 for context
descriptions were determined, context descriptors for the activities. The results of the con-
text description process were used to develop the activity ontology on which we ran the test
subset for activity recognition. Kasteren et al [133, 132] and Ordonez et al [99] both ap-
plied ‘leave one day out’ cross-validation methodology. However, comparisons were made
with the results published using these datasets.

6.1.3 Evaluation Parameters

To evaluate the performance of the proposed approach, there is need to use frequently
used activity recognition evaluation metrics. The work presented in this thesis is based
on ontology-driven activity recognition dependent on the knowledge of object use from
the context description process. The evaluation process is based on activity recognition
experiments using the datasets comparing the output results with the ground truth and from
this determining the True Positives, True Negatives, False Positives and False Negatives for
every activity.

• True Positives (TP): are the activities that have been correctly recognised as belong-
ing to the target category.

• True Negatives (TN): are the activities that have been correctly recognised as not
belonging to the target category.
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• False Positives (FP): are the activities that have been mistakenly recognised as be-
longing to the target category. False positives are also referred to as wrong selections.

• False Negatives (FN): are the activities that have been mistakenly recognised as not
belonging to the target category. False negatives are also referred to as missed selec-
tions.

Since the evaluation aims to determine how well the algorithms recognise tasks from object
usage, we also use the following metrics.

• Average Accuracy: The number of correctly recognised situations over the total num-
bers of the activity situations averaged over the activity situations in the dataset.
Where accuracy is calculated as:

Accuracy = TP + TN

TP + FP + TN + FN
× 100% (6.1)

• Average Precision: The number of times this proposed technique correctly recog-
nises an activity situation divided by number of times the same activity situation is
recognised, averaged over each activity situation in the dataset. Where precision is
calculated as:

Precision = TP

TP + FP
× 100% (6.2)

• Average Recall: The number of times the proposed technique correctly recognises
an activity situation divided by number of times the same activity situation occurs in
the dataset, averaged over each situation in the dataset. Where recall is calculated as:

Recall = TP

TP + FN
× 100% (6.3)

• Average F-measure: This is dependent on the precision and the recall. It is also the
harmonic mean of precision and recall calculated as:

F −measure = 2× Precision×Recall
Precision+Recall

× 100% (6.4)

In predictive models and activity recognition techniques precision, recall, and F-measure
are mostly used. So, the evaluation results were based on these metrics. The precision
provides the measure of the ability of this hybrid approach to recognise the desired activity
and the F-measure measures the recognition capability of the approach. It important to
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consider the total proportion on which all these metrics are based and from this, the test
results can be drawn. The results are based on the total proportion of the test instances so
as to provide an overall measurement in percentage.

6.1.4 Evaluation Framework

To implement the evaluation framework proposed in this thesis, the following development
environments with software libraries were sought for and used:

• Matlab R2015b3 is a computing environment for numerical analysis and supports
implementation of machine language algorithms. Due to its ability to implement
machine learning algorithms, Matlab R0215b to implement the silhouette analysis
through K-Means clustering to determine the number of activity topics was used.
Afterwards, we implemented the LDA topic model in the Matlab environment to
determine the activity-object distributions.

• Protégé 4 is an open source software environment for developing and editing ontol-
ogy. Protégé was used for the ontology development and implementation of context
descriptors for activity situations. The activity-objects usage discovered using with
the topic model in the Matlab environment were then developed as ontology concepts
as rightly explained in Chapters 4, 5 and 6. The expressiveness of activity and object
concepts which this editor enhances the process of activity recognition especially for
the end user.

6.2 Experiments, Evaluation and Results

Using the methods and approach outlined above, experiments were performed to validate
the performance of the proposed approach on the datasets. Experiments were performed
to determine the model learning capabilities of this approach. The experiments performed
includes: i) Object Use and Context Descriptor Similarity, ii) Activity Ontology and Recog-
nition Performance, iii) Evaluation of Static and Dynamic Activities, iv) Evaluation of the
Learning Model, v) Evaluation of the Activity Ontology update, vi) Evaluation of the Ac-
tivity Boundary Detection algorithm. Finally, comparisons were made with the results
published using other methods on these datasets.

3https://uk.mathworks.com/downloads/
4http://protege.stanford.edu/
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Home Environment Number of Segments
Kasteren House A 33,007
Kasteren House B 17,143
Kasteren House C 24,337
Ordonez House A 20,193
Ordonez House B 30,115

Table 6.3: Number of Segments from the Partitioning process from the Kasteren and Or-
donez datasets

6.2.1 Activity-Object Use Discovery and Context Description Evalua-
tion

To generate the context descriptors for routine activities, LDA topic model process de-
scribed in Chapter 4 was followed. Recall that the LDA process requires activity topic
numbers and the "bag of object observations".

As previously mentioned, the "bag of sensor observations" can be constructed by par-
titioning the sensor dataset into time slices of constant length. For the experiments in this
thesis, Kasteren and Ordonez sensor data were partitioned and segmented in intervals of
time t = 60 seconds, based on the contributions of Kasteren et al [132] and Ordonez et al
[99]. This time interval is considered long enough for a segment of object representing a
candidate activity and short enough to provide good accuracy labelling results. Also, the
shorter the time interval segments tend to be more sparse and larger time interval the par-
titioned segments lose the capability to capture shorter activities. Table 6.3 represents the
number of segments based on the time t = 60 seconds interval for Kasteren and Ordonez
datasets. The partitioned segments are then used to form a sensor-segment frequency matrix
which also includes the object counts from each segment. The objects are then represented
as their aliases as in Seat (S), Basin (B), Bed (A), Microwave (M), Cupboard (C), Fridge

(F), Cabinet (N), Toilet (T), Shower (Sh) etc. to be encoded onto the partitioned segments
and "bag of objects observations".

The activity topic number is determined using the silhouette method through K-Means
clustering rather than a random guess of the number of activities represented in the dataset.
To do this, first, cluster the sensor data features using K-Means setting the number of
clusters from 5 to 10 as a reasonable range of probable number of activities which this
represents. The silhouette analysis which is a measure of the mean silhouette width of
each of the clusters was then performed. Charts in Figures 6.1 and 6.2 below illustrates the
optimal number clusters indicative of the number of activity topics for Kasteren House A,
B and C, Ordonez A and B.
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Figure 6.1: Silhouette width results for the Kasteren Houses A, B and C suggesting 6, 6
and 7 activity topics respectively for the houses
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Figure 6.2: Silhouette width results for the Kasteren Houses A, B and C suggesting 6, 6
and 7 activity topics respectively for the houses
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For the LDA inference, the constructed "bags of object observations" are used, the op-
timal activity topic numbers from the silhouette method and set the dirichlet prior α to
0.01. Figures 6.3 (a) and (b) shows sample visualisation activity-object distributions for
Kasteren House A and Ordonez A. Visualisations for Kasteren B, C and Ordonez B have
been included in appendix A Figure 7.2 . The process of activity topic number determi-
nation and activity-object distribution is in its entirety unsupervised. Finally, the context
descriptors for the specific routine activities are achieved using the Algorithm 1 above with
dependency on the activity-object distributions from the LDA and µ. The idea is that for an
object to be a context describing an activity topic, it must have been assigned to an activity
topic by a number of times greater than the threshold µ. µ was determined by computing
the mean value M and standard deviation SD of the number of times an object has been
allocated to an activity topic (see expression 6.5). The threshold values vary as µ1...µK

for the different activities k1...K since the unique objects x1ki..., xNki have different num-
bers of occurrences in the dataset. Further, some of the activity topics were annotated in
line the ground truth, and matched them with their respective context descriptors as given
in Tables 6.4 and 6.5 for Kasteren House A and Ordonez House A respectively (See Ta-
bles Appendix A 7.1, Appendix A 7.2 and Appendix A7.3 for Kasteren Houses B, C and
Ordonez B respectively).

µ = M + SD (6.5)

Activities Context Descriptors
Leaving Front Door.
Toileting Hall Toilet Door, Toilet Flush.
Showering Hall Bathroom Door.
Sleeping Hall Bedroom Door.
Make Food Fridge, Plates Cupboard, Cups Cupboard, Gro-

ceries Cupboard, Microwave, Freezer.
Make Drink Fridge.

Table 6.4: Activity Concepts and the discovered context descriptors for Kasteren House A
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(a) Kasteren A (b) Ordonez A

Figure 6.3: Visualisation of LDA generated Object classifications for Kasteren A and Or-
donez A

Activities Context Descriptors
Leaving Main Door.
Toileting Toilet, Basin.
Showering Shower.
Sleeping Bed.
Make Food Cupboard, Fridge, Microwave, Toaster.
Spare Time Seat.
Grooming Basin, Cabinet.

Table 6.5: Activity Concepts and the discovered context descriptors for Ordonez House A

The outcome of this process was evaluated by analysing the similarities and relatedness
between the contexts describing the activities since they were discovered in an unsupervised
manner. This is achieved using the Jaccard [72] and Dice [126] Coefficients expressed
as eq. 6.6 and 6.7 respectively to measure to similarities of the context descriptors and
compared these for all the activities. The Jaccard coefficient measures similarities between
sample sets A and B by the ratio of the size of their intersection to the union of the sample
sets while the Dice similarity Coefficient is the ratio of twice the size of the intersection of
the sets to the sum of the sizes of the sets.

Jaccard(A,B) = |A ∩B|
|A ∪B|

(6.6)
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Dice(A,B) = 2|A ∩B|
|A|+ |B| (6.7)

The resulting score of similarities are always in the interval of 0 and 1 with a normalis-
ing factor 1 which is divided by the non-zero element in the sample sets being compared.
The score of the Jaccard and Dice coefficients is 1 if the sample sets are similar and equal.
It is 0 when there are no matching elements. The Jaccard and Dice coefficients have been
selected, because they are been well founded measures used as basis of determining similar-
ities between sample sets of values. This method of determining the similarities between
activity contexts works well with sufficient data, but result may lead to poor conclusion
with insufficient data. An implementation example to determine the similarity between
activities A = Microwave, Fridge, PlatesCupboard, Groceries Cupboard, Pan Cupboard,
Freezer, B = Microwave, Fridge, Groceries Cupboard, CupsCupboard and C = HallBath-

roomDoor, HallToiletDoor, ToiletFlush results to 0.43 and 0.6 between A and B, 0.00 and
0.00 between A and C, 0.00 and 0.00 between B and C for Jaccard and Dice similarity
indices respectively. Although, the results suggest marked similarities between A and B
using the two methods, a threshold value is needed to conclude on whether both activity
concepts are to be considered as the same or similar. On the other hand, A and C, B and C
show no similarities and can not be considered to have any context descriptor association.
By applying these methods, the resulting similarity indices for context descriptors of the
activity topics for the Kasteren House A are presented in the Tables 6.6 and 6.7. Applying
the Jaccard and Dice coefficients, the similarity indices were based between the resulting
context descriptors of the activities to be above a threshold value θ. The choice of simi-
larity thresholds is dependent on the variability of the similarity indices determined. The
author of [10] determined similarity thresholds using median absolute deviation as a means
of determining the threshold similarity index which worked well for the similarity indices
obtained in their case. Considering the similarity indices obtained for the Kasteren and
Ordonez datasets, θ = 0.5 was chosen as the threshold value for Jaccard and Dice similarity
coefficients. This choice was based on the upper and lower limits of the coefficients and it
represents a more robust and resilient indicator for determining similarities between activ-
ity sample sets unlike the values for the standard deviation and median absolute deviation
which falls below this choice of threshold.
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Leaving Toileting Showering Sleeping Make Food Drink
Leaving 1.00 0.00 0.00 0.00 0.00 0.00
Toileting 0.00 1.00 0.00 0.00 0.00 0.00

Showering 0.00 0.00 1.00 0.00 0.00 0.00
Sleeping 0.00 0.00 0.00 1.00 0.00 0.00

Make Food 0.00 0.00 0.00 0.00 1.00 0.17
Drink 0.00 0.00 0.00 0.00 0.17 1.00

Table 6.6: Jaccard similarity indices for context descriptors for Kasteren House A

Leaving Toileting Showering Sleeping Make Food Drink
Leaving 1.00 0.00 0.00 0.00 0.00 0.00
Toileting 0.00 1.00 0.00 0.00 0.00 0.00

Showering 0.00 0.00 1.00 0.00 0.00 0.00
Sleeping 0.00 0.00 0.00 1.00 0.00 0.00

Make Food 0.00 0.00 0.00 0.00 1.00 0.29
Drink 0.00 0.00 0.00 0.00 0.29 1.00

Table 6.7: Dice similarity indices for context descriptors for Kasteren House A

Discussion
The main aim of the activity-Object use discovery and context description is to determine
the likely object usage and contexts for specific routine activities. This is based on the
idea that to design and develop the activity ontology model, the knowledge of the contexts
which describes the routine activities needs to be acquired through a known robust process
rather than guessing or generically determined from an everyday common knowledge of
activity process. Topic model LDA was proposed to discover the likely object use for the
routine activities. But the number of activity topics needed by the LDA as a parameter was
determined by a silhouette method through K-Means clustering as illustrated in Figures
6.1 and 6.2. These activity topic numbers are indicative of the number of activities which
corresponds to 6 activities for Kasteren A and B, 7 activities for Kasteren C, Ordonez A
and B. The LDA inference results as visualised in Figures 6.3 and Figures 7.2 show the
likely object use for the activities. The Algorithm 1 uses the activity-object distributions
and a threshold value µ to determine the context descriptors for the activities. Some of the
activities were then annotated in line with the ground truth, but it was noticed that Breakfast,
and Dinner share same and similar object use and so they were annotated as Make Food so
that Kasteren A and B now have 6 activities against 7 activities as in the ground truth. For
Ordonez A and B, 7 activities were discovered against 10 activities as in the ground truth
(see Tables 6.4 and 6.5 for the context descriptors of Kasteren A and Ordonez A). This
was due to Breakfast, Lunch, Dinner and Snack using same and similar objects. To assess
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and evaluate this process, the Jaccard and Dice coefficients was used to determine how
similar the contexts describing the activities are. A threshold as a value was also applied to
determine whether the contexts descriptors between activities are similar, equal or match.
Similarity indices are presented in parts in Tables 6.6 and 6.7. So far, the result suggests
marked similarities between Make Food and Drink for the Kasteren Houses A, B and C but
they fall below the threshold suggesting that the sets are not equal and the same. Grooming

and Toileting for the Ordonez dataset showed marked similarities but these also fell short of
being classed as the same or equal. The context descriptors discovered through this process
provides the basis for modelling the objects and activity concepts in the activity ontology.

6.2.2 Activity Ontology and Recognition Performance

To this point, the context descriptors for the various activities of the Kasteren and the Or-
donez datatsets have been generated. To facilitate activity recognition and eventual eval-
uation of the approach, the activities were modelled and the context descriptors from the
previous section into an ontology activity model. The modelling process is designed using
OWL language and developed in the ontology editor Protégé. The generic activity ontol-
ogy is extended in Figure 5.5 to include the context descriptors and activity concepts from
the various houses. To enhance and support a unified ontology model and with common
concepts shared and which can be reused across the similar home environments, a unified
activity ontology for the Kasteren and the Ordonez homes has been developed. Figures
6.4 and 6.5 illustrates the unified concepts for the Kasteren and Ordonez homes respec-
tively. The green coloured rounded rectangles represents common object concepts in both
homes. In Figure 6.4, the yellow rounded rectangle has been used specifically for House
A concepts which are not shared in B and C, blue rectangle for House B and red rectangle
for C concept. Figure 6.5 represents the common concepts for the Ordonez House A and
B. Yellow rounded rectangle corresponds to specifically House A concept, Blue for House
B concepts and the green rounded rectangle for concepts common in both houses. These
unified ontology models can also be extended and adapted further for similar homes thus
reducing the amount of time take to construct and develop activity ontologies.
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Figure 6.4: Common object concepts for Kasteren Houses A, B and C. Green for common object concepts, yellow for House A, blue for
House B and red for House C

113



Figure 6.5: Common object concepts for Ordonez Houses A and B. Green for common object concepts, yellow for House A and blue
for House B
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The activity concepts were modelled accordingly, but due consideration was given to
Make Food which represents a group of activities from the context description above in
subsection 6.2.1. The Make Food activity as it implies, corresponds to a group of activi-
ties involving making of food and ranges from Breakfast, Lunch, Dinner, Snack and even
Drink which is also seen with the Kasteren and Ordonez homes. Recall, Make Food was
discovered as an activity with context descriptors and has been classed as a static activity
comprising of activities sharing same or similar object interactions but performed at spe-
cific times of the day. With regards to the Kasteren and Ordonez dataset, Breakfast, Lunch

and Dinner are classed as static activities with super class Make Food sharing same or
similar context descriptors and also they are performed at specific time of the day. Drink

and Snack have not been limited to time specifics. Extending the activity concepts of the
generic ontology in Figure 5.5, Breakfast, Lunch, Dinner, Drink and Snack are modelled
as subclasses of the activity concept Make Food. To further enhance shared ontology con-
cepts and reuse, the Kasteren and Ordonez activity concepts are harmonised as illustrated
in Figure 6.6 onto the activity ontology to form a set of unified activity concepts. Similar to
the object concepts, activity concepts have been colour coded in this unified set of activity
concepts with static and dynamic activities as super classes so that the green round rect-
angle represents common activity concepts, the red rounded rectangle represents activity
concepts specific to Kasteren activities and blue specific to Ordonez activities. As part of
this proposed hybrid approach, instances and individuals were added to the of the object
concepts making the model more expressive (assertions used in populating the ABox) for
example instantiating Microwave as Microwave_On to suggest the state of the object or
sensor when in use. The ABox was further populated with assertions using object and data
properties as explained in subsection 5.4.2 incorporating the context descriptors for the ac-
tivity situations preparatory for activity recognition. The modelled activity situations or
concepts are then linked to their respective context descriptors as object states through the
properties as assertions added to the ABox. Activity recognition is enabled by an object
use query to retrieve activity situations based on observed sensor or object data similar to
the schema 5.36. The Algorithm 2 implements the recognition process. See Appendix B
for the OWL and Ontology implementation of the Kasteren and Ordonez datasets concepts.

To facilitate execution of activity inference, the modelled activity ontology is imported
into the TOQL environment [14]. This environment as illustrated in Figure 6.7 is a Java
based environment which executes object based queries by mapping the observed objects
and its temporal information from the dataset to the closest activity situation in the imported
activity ontology through ontological reasoning. The proposed approach was evaluated
using the Kasteren and Ordonez sensor data for experiments, thus allowing us to compare
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Figure 6.6: Common activity concepts for the Kasteren and Ordonez Houses. Green for
common activity concepts, red for Kasteren Houses and blue for Ordonez Houses.

Figure 6.7: Activity recognition by object use query.
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Figure 6.8: Activity recognition performance with different days of training data for
Kasteren House A.

the activity situations inferred and recognized by this approach with the ground truths. The
criterion for evaluation is to compare recognised activity situations with the ground truth
provided with the dataset based on based on the average true positives (TP), false positives
(FP) and false negatives (FN) per activity. The results are then further evaluated using
precision, recall and F-score.

As mentioned earlier the evaluation methodology of the proposed techniques is based
on the ‘leave one day out’ cross-validation. The justification for this is as illustrated in the
Figure 6.8. It illustrates the relationship between the precision, recall and F-Score for the
Kasteren House A dataset (See Tables 7.4, 7.5, 7.6, 7.7 and 7.8 in Appendix A for result
details of different amounts training data for Kasteren Houses A, B, C and Ordonez Houses
A and B). Given the relationships as shown in the curves, there is a marginal increase in
terms of amount data requirements for the activity recognition algorithm. However, the
performance as illustrated in the Figure 6.8 peaks at 23 days (Out of 24 days) amount of
training data for Kasteren House A. With this, thesis bases its validation methodology on
the ‘leave one day out’ cross-validation.

Tables 6.8 and 6.9 presents a summary of recognised activity situations based on the
average true positives (TP), false positives (FP) and false negatives (FN) per activity. Leav-
ing, Toileting, Sleeping were recognised with significantly high results for the Kasteren and
Ordonez datasets. Breakfast, Dinner, Lunch showed lower performance due to confusions
from same and similar object use with Drink and Snack. The precision, recall and F-score
for the activity situations are presented in Figure 6.9 and 6.10 for the datasets.
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True Positives (%) False Positives (%) False Negatives (%)
Activities A B C A B C A B C
Leaving 100 100 100 0.0 0.0 0.0 0.0 0.0 0.0
Toileting 100 100 100 0.0 0.0 0.0 0.0 0.0 0.0

Showering 95.8 100 100 3.3 0.0 0.0 0.9 0.0 0.0
Sleeping 100 100 100 0.0 0.0 0.0 0.0 0.0 0.0

Breakfast 73.6 74.7 72.8 16.8 15.6 17.5 9.6 9.7 9.7
Dinner 71.2 62.8 69.4 22.9 27.8 23.7 5.9 9.4 6.9
Drink 66.7 55.8 58.8 28.4 30.2 32.1 4.9 14 9.1

Table 6.8: Activity recognition performance for Kasteren A, B and C

True Positives (%) False Positives (%) False Negatives (%)
Activities A B A B A B
Leaving 100 100 0.0 0.0 0.0 0.0
Toileting 100 87.6 0.0 8.9 0.0 3.5

Showering 66.7 69.8 23.2 22.1 10.1 8.1
Sleeping 100 100 0.0 0.0 0.0 0.0

Grooming 69.5 69.3 24.9 25.8 5.6 4.9
Spare Time 100 98.3 0.0 1.7 0.0 0.0
Breakfast 82.3 80.7 16.1 13.6 1.6 5.7

Lunch NA 63.4 NA 25.9 NA 10.7
Dinner 61.9 60.7 28.4 35.8 9.7 3.5
Snack 59.3 59.5 30.7 30.7 10.0 9.8

Table 6.9: Activity recognition performance for Ordonez A and B
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Figure 6.9: Average Precision, Recall and F-Score for Kasteren Houses A, B and C
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Figure 6.10: Average Precision, Recall and F-Score for Ordonez Houses A and B
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Discussion
As earlier mentioned, recognition results for Leaving, Toileting, Sleeping were significantly
very good in terms of their performances considering Tables 6.8 and 6.9. This was largely
due to the accurate specification of the context descriptors for these activity situations. Also
Showering in the Kasteren Houses and Spare Time in Ordonez performed well. This per-
formance can be attributed to the context descriptors for these activities. The process of
discovering likely the object use for routine activities significantly ensured that these activ-
ities were associated to the objects used to perform them. Object interactions in the home
environment results to sensor firing and are considered as events which are atomic to every
activity situation hence the need to use the activity discovery and context description pro-
cess to aptly map the relevant contexts to describe the activity. This provided the pathway
to acquiring the needed knowledge of specific object use or contexts to model in the on-
tology the specific activity situation which describes it. In addition to this, modelling them
as dynamic activities in the ontology also ensured that their temporal attributes are used to
help recognise them along their timelines. The performance of Breakfast, Lunch, Dinner,
Drink and Snack are quite significant and encouraging. The activities have shared same and
similar object interactions as observed with context description process hence been classed
under the super activity Make Food. Recall that to further distinguish Breakfast, Lunch

and Dinner they were modelled as Static activities given the specific time of the day they
are performed. To enhance their recognition, time interval properties and concepts enabled
by 4D fluent approach were included. The low performance of these can be attributed to
confusions arising from Drink and Snack for the Kasteren and Ordonez datasets respec-
tively which were classed as dynamic activities. They were often recognised concurrently
and led to high false positives in the process. However, the results achieved for them are
quite encouraging. Overall, the average precision, recall and F-Score with the datasets as
illustrated in Figures 6.9 and 6.10 show impressive performance.

6.2.3 Evaluation of Static and Dynamic Activities

In this experiment, the impact modelling activities was investigated as either static or dy-
namic activity. Recall in Chapter 5, it was explained that activities can be performed dif-
ferently, in different ways and times within the 24 hour day path. In some cases, these
activities may be performed with same or share similar objects usage in the home environ-
ment. Make Food is a typical example of the super class activity of Breakfast, Lunch and
Dinner. Breakfast, Lunch and Dinner are all examples of different activity concepts which
can be performed with same or similar object interactions, but they are all distinct by times
of the day they are performed. As sub class activities of the activity class Make Food, they
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Activities Precision (%) Recall (%) F-Score (%)
A B C A B C A B C

Leaving 100 100 100 100 100 100 100 100 100
Toileting 100 100 100 100 100 100 100 100 100

Showering 96.4 100 100 98.2 100 100 97.3 100 100
Sleeping 100 100 100 100 100 100 100 100 100

Breakfast 59.3 54.0 53.0 72.7 71.8 70.3 65.4 61.6 60.4
Dinner 55.3 51.7 53.1 71.2 62.4 59.2 62.3 56.6 56.0
Drink 52.0 44.9 47.1 62.3 48.5 46.6 56.7 46.7 46.9

Table 6.10: Summary of performance with alternate variant of activity ontology for
Kasteren Houses

Activities Precision (%) Recall (%) F-Score (%)
A B A B A B

Leaving 100 100 100 100 100 100
Toileting 100 89.2 100 94.3 100 91.7

Showering 68.4 70.3 86.1 86.8 76.2 77.7
Sleeping 100 100 100 100 100 100

Grooming 69.0 66.4 89.1 90.8 77.8 76.7
Spare Time 95.1 90.6 98.2 97.4 96.6 93.9
Breakfast 55.7 52.8 78.7 70.7 65.2 60.4

Lunch 49.3 50.4 60.3 52.9 54.4 51.6
Dinner Na 49.8 Na 56.5 Na 52.9
Snack 48.7 37.2 57.2 58.7 52.6 45.5

Table 6.11: Summary of performance with alternate variant of activity ontology for Or-
donez Houses

differ with regards to their respective temporal properties. Whilst they inherit all the proper-
ties of Make Food by subsumption, they can be easily confused in the recognition process if
modelled in the ontology without consideration to their usual times of performance. In the
ontology, two classes of activities - dynamic and static activities were created. Activities
that are known traditionally to be performed at specific times of the day as static activities
(for example Breakfast, Lunch and Dinner) whilst activities that can be performed at any
time of the day as dynamic activities (for example Toileting or Showering). To enhance
recognition, 4D fluent approach was applied to integrate temporal information to the activ-
ity ontology as explained in subsection 5.5.1. To evaluate the impact modelling activities
as either static or dynamic activity, an alternate variant of the activity ontology without
the temporal class concepts Timeslice and TimeInterval was developed. Further, activity
recognition was performed using the datasets and compared the performance with results
obtained in subsection 6.2.2.
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Figure 6.11: Average Precision, Recall and F-Score performance for the alternate variant
of activity ontology for Kasteren Houses
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Figure 6.12: Average Precision, Recall and F-Score performance for the alternate variant
of activity ontology for Ordonez Houses

122



Summary of the Precision, Recall and F-Score for the activities using the alternate vari-
ant of the activity ontology across folds are as given in Tables 6.10 and 6.11. The results
show poorer recognition results (see also Figures 6.11 and 6.12 for the average perfor-
mance of the Precision, Recall and F-Score using the alternate variant activity ontology)
for the activities in comparison with the results using the proposed ontology given in Fig-
ures 6.9 and 6.10 Of particular interest are the Breakfast, Lunch and Dinner. Precision
results averaged at 55.43% and 54.21% for Breakfast in the Kasteren and Ordonez Houses
respectively for the alternate variant ontology in comparison with 88.6% and 84.15% for
the same houses with the main ontology suggesting the impact of modelling Breakfast as
static activity. Snack and Drink in comparison performed with weaker results due to the
fact that some of the objects used for these activities are also used to Breakfast, Lunch and
Dinner. The performance of the alternate variant ontology generally was due to high false
positives with the associated activities. In addition, the use of same and similar objects for
raised confusion in the inferencing process leading to multiple activity situations. There-
fore, classing these activities as static activities helped to create distinct temporal patterns
used to model them in the activity ontology. Hence, the positive impact which led to the
performance achieved with the main activity ontology.

6.2.4 Learning Performance of the Approach

In this section, the learning of the proposed activity recognition approach is presented. Ac-
tivities in the home environment can have different ways of being performed or the patterns
of object interactions for activities can differ. A robust activity recognition model should
have the ability of recognising activities irrespective of the patterns of object interactions.
In this thesis, context description for activities which takes advantage of activity-object dis-
covery to define likely object usage for specific routine activities was proposed. The object
contexts from this process describes the activity independent of the sequence or pattern of
usage. The model learning of the proposed approach was evaluated in recognising activi-
ties traces as they are performed in different ways and patterns using objects. The learning
capability at the activity level (the instances of the activities recognised) and at the object
level (the similarities of the contexts descriptors independent of order of object usage) are
evaluated. The basis for evaluation would be the ground truth. The process of evaluation
is to perform activity recognition using the Kasteren and Ordonez datasets and make com-
parisons with the ground truth. This comparison would involve the number instances of the
different activities across folds at the activity level. A good model should be able to return
almost the same number of activity traces as in the ground truth. Further, the object usage
resulting to the activities recognised with their equivalents in the ground truth are compared
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Activities Jaccard Coeff. (JC) Dice Coeff. (DC) Average
A B C A B C JC DC

Leaving 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Toileting 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Showering 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sleeping 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Breakfast 0.57 0.67 0.67 0.67 0.75 0.75 0.64 0.72
Dinner 0.67 0.67 0.67 0.75 0.75 0.75 0.67 0.75
Drink 0.5 0.33 0.5 0.67 0.5 0.67 0.44 0.61

Table 6.12: Similarity indices at the object level for the Kasteren Houses

Activities Jaccard Coeff. (JC) Dice Coeff. (DC) Average
A B A B JC DC

Leaving 1.0 1.0 1.0 1.0 1.0 1.0
Toileting 0.5 0.67 0.5 0.67 0.5 0.67

Showering 0.5 0.67 0.5 0.67 0.5 0.67
Sleeping 1.0 1.0 1.0 1.0 1.0 1.0

Grooming 1.0 0.5 1.0 0.67 0.75 0.84
Spare Time 1.0 1.0 1.0 1.0 1.0 1.0
Breakfast 0.6 0.75 0.67 0.80 0.62 0.78

Lunch 0.6 0.6 .75 0.75 0.6 0.75
Dinner Na .6 Na .75 0.6 .75
Snack 0.5 0.5 0.67 0.67 0.5 0.67

Table 6.13: Similarity indices at the object level for the Ordonez Houses

i.e. if an activity Z is recognised from the interactions of objects x1, x2 and x3 regardless of
the order or sequence of usage, these object usage should similarly be observed as the ob-
jects resulting to Z in the ground truth. If the upper layer which describes the context have
good similarity index, then the lower layer activity ontology should reflect this by having a
good measure of correctly recognised activity instances in comparison to the ground truth.
The comparisons was based on the Jaccard and Dice similarity coefficients. To evaluate
the learning performance at the object level, four samples of each of the activities across
the 10 folds were randomly picked and checked for the similarities of context descriptors
and the contexts that led to the activities in the ground truth. Tables 6.12 and 6.13 show the
results of the similarities. Tables 6.14 and 6.15 below present the learning performance at
the activity level.

Discussion At the object level, there is a good measure of similarities between the
object usage discovered as context descriptors and that reported in the groundtruth. Of
particular interest for the Kasteren Houses are the object used for the activities Leaving,
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Activities Ground Truth Instances Recognised Differences
A B C A B C A B C

Leaving 36 24 47 36 24 47 0 0 0
Toileting 114 27 99 114 27 99 0 0 0

Showering 24 11 14 22 11 14 2 0 0
Sleeping 25 14 19 25 14 19 0 0 0

Breakfast 20 9 18 15 7 14 5 3 4
Dinner 10 6 11 7 4 7 3 2 4
Drink 20 8 10 14 5 6 6 3 4

Table 6.14: Summary of correctly recognised activity instances for Kasteren Houses

Activities Ground Truth Instances Recognised Differences
A B A B A B

Leaving 14 38 14 38 0 0
Toileting 44 93 44 79 0 14

Showering 14 11 9 7 5 4
Sleeping 14 29 14 14 0 0

Grooming 51 113 35 76 16 37
Spare Time 77 116 77 113 0 3
Breakfast 14 22 11 17 3 5

Lunch 9 13 5 8 4 8
Dinner Na 11 Na 6 Na 5
Snack 11 47 6 24 5 23

Table 6.15: Summary of correctly recognised activity instances for Ordonez Houses
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Toileting, Showering and Sleeping. There are marked similarities 1.0 as indices for these
activities. Ordonez activities like Leaving, Sleeping, Spare Time also showed very good
similarities with the groundtruth. Breakfast, Dinner, Lunch, Snack and Drink report re-
duced similarities which can be attributed to multiple object usage which varies depending
on what the user feels like using for the activity. But then, these activities share same and
similar object usage which can also be linked to this reduced similarities. Considering a
threshold of greater than 0.5, we can then say that for all the context descriptors discov-
ered, they are similar to object usage as in the groundtruth. This similarities can also be
seen to be linked to the activity recognition results as the share similarities in trend. At the
activity level, the number of activity instances recognised as presented in Tables 6.14 and
6.15 are indicative of good learning capability of this proposed approach. Grooming and
Snack of the Ordonez Houses performed worst due to object usage similarities and high
false positives. Overall the results are encouraging.

6.2.5 Detection of Activity Boundaries

As part of this hybrid approach, an algorithm for the detection of activity boundaries whilst
activity recognition is ongoing was proposed. The aim of the activity boundary algorithm
is to signal the end of an activity and the beginning of another activity. It is assumed that
objects in particular locations in the home environment are used to perform similar activ-
ity and can be grouped into location based subsets i.e. Kitchen based subset of objects
for Making Food and Toilet based subset of objects for Toileting. Using Jaccard similarity
indexing [72], objects observed consecutively can be checked for similarities to establish
whether an activity in continuous or not. Continuity of an activity is dependent on a simi-
larity threshold β for the consecutive objects which must be greater than 0.5 otherwise an
activity boundary is detected. The example below illustrates further:

Example: If Fridge and Hall Toilet Door are observed consecutively, β for the two

objects is calculated considering the that they belong to two different location based subset

of objects. Let A be a set Kitchen objects and B a set of Toilet objects.

A = Microwave, Fridge, Grocery Cupboard, Pans Cupboard, Freezer.

B = Hall Toilet Door, Toilet Flush.

Then Fridge belongs to the Kitchen and Hall Toilet Door belongs to the Toilet. With this, β
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Figure 6.13: Performance of activity boundaries algorithm

is calculated as:

β = |A ∩B|
|A ∪B|

= 0.00

With β is less than the threshold (0.5), it then implies that an activity boundary is estab-

lished between Fridge and Hall Toilet Door. An activity ends with Fridge and another

begins at this point with Hall Toilet Door.

To evaluate the performance of the activity boundary algorithm, the percentage of accu-
rately recognised activity boundaries (ARAB) is computed using the expression 6.8 where
Ba represents number of accurately recognised boundaries and B number represents real
boundaries as in the ground truth.

ARAB =
B∑
i=1

(
Ba ∗ 100

B

)
(6.8)

Figure 6.13 illustrates the performance of the activity boundary algorithm for the datasets
across folds. The average performance generally was significantly good especially for
Kasteren Houses A and C. Boundary recognition performance for Ordonez houses were
slightly lower. This was due noise arising from the frequent observation of Living Door

and Kitchen Door which in most cases led to increased false positives for especially for Or-
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donez House B. In addition, the performance generally is linked to the activity recognition
above since the subset suggests closely linked activities.

6.2.6 Evaluation of the Activity Ontology Update

In this experiment, the evaluation of the changes made to the activity ontology through
ontology update is presented. Recall in subsection 5.7, the activity ontology update using
the SPARQL update language was presented [46]. It was explained that it is logical for
activity recognition models to have the capabilities to make ontology updates arising from
the changes in the choice of objects usage for activities. With SPARQL update language
triggered by the algorithm 4, changes and modifications which may arise due to object us-
age for the specific routine activities are facilitated. For this purpose, changes to the context
descriptors for the Kasteren House A activities Sleeping, Toileting and Breakfast and per-
formed activity recognition as explained in subsection 6.2.2 were made. It is expected that
the activity recognition results should be the same for the activities for which the updates
were made in comparison to results achieved before the updates. Hitherto, Sleeping has
context descriptors Hall Bedroom Door, Toileting has Hall Toilet Door and Toilet Flush

as context descriptors. The context descriptors for Breakfast includes Fridge, Plates Cup-

board, Cups Cupboard, Groceries Cupboard, Microwave and Freezer. If some changes are
made to add the context descriptors Pillow to Sleeping, Toilet Roll to Toileting, Cooktop

to Breakfast and remove Microwave for Breakfast. The Table 6.16 then presents the con-
text descriptors for the activities with their respective mapping objects and data property
attributes.

Activity Context Descriptor Mapping Property attribute and Data

Sleeping
Hall Bedroom Door adl:hasUse ’HallBedroomDoor’
Pillow adl:hasUse ’Pillow’

Toileting
Hall Toilet Door adl:hasUse ’ToiletDoor’
Toilet Flush adl:hasUse ’ToiletFlush’
Toilet Roll adl:hasUse ’ToiletRoll’

Breakfast

Fridge adl:hasUse ’Fridge’
Plates Cupboard adl:hasUse ’PlatesCupboard’
Cups Cupboard adl:hasUse ’CupsCupboard’
Groceries Cupboard adl:hasUse ’GroceriesCupboard’
Freezer adl:hasUse ’Freezer’
Cook top adl:hasUse ’Cooktop’

Table 6.16: Context descriptors and the mapping attributes
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The activity ontology was updated with the schemas 6.9, 6.10 and 6.11 respectively for
Sleeping, Toileting and Breakfast so that changes as illustrated in Figure 6.14 is a snippets
of the changes made. Activity recognition results based on these modifications and updates
in comparison with the results obtained before modifications and updates are as illustrated
in Figure 6.15.

Prefix adl < Graph />
INSERT {

?Activity adl:hasUse ’HallBedroomDoor’
}
WHERE {

?Activity adl:hasUse ’Pillow’
}

(6.9)

Prefix adl < Graph />
INSERT {

?Activity adl:hasUse ’ToiletRoll’
}
WHERE {

?Activity adl:hasUse ’ToiletDoor’
?Activity adl:hasUse ’ToiletFlush’

}

(6.10)

Prefix adl < Graph />
DELETE {

?Activity adl:hasUse ’Microwave’
}
INSERT {

?Activity adl:hasUse ’Cooktop’
}
WHERE {

?Activity adl:hasUse ’Fridge’.
?Activity adl:hasUse ’Cupboard’.
?Activity adl:hasUse ’Toaster’

}

(6.11)
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Figure 6.14: OWL syntax snippet after inserting ToiletRoll for the activity Toileting

With regards to the results obtained for the modified activity ontology, the F-Score for
the activities Sleeping, Toileting and Breakfast across folds were 100%, 100% and 92.18%
respectively. There were no significant changes in comparison for Sleeping and Toileting

as the context descriptors for these activities are not shared with other activities. Breakfast

showed improved recognition in comparison because the addition of Cooktop as a context
descriptor helped to minimise false positives. It also reduced the confusion of Breakfast

with Drink and Dinner which do not have Cooktop as shared context descriptors. The per-
formance also shows that inserting and deleting of context descriptors through this update
operation validates the process and demonstrates the easiness to making changes and mod-
ifications in comparison to editing the entire activity ontology using editor like Protégé.

6.2.7 Comparison With Other Recognition Approaches

This thesis made comparisons with the results reported by Kasteren et al [133], Ordonez et
al [99], Ye [145], Riboni et al [110] and Kun et al [53]. In addition, comparisons were made
following the technique proposed by Okeyo et al [97]. The techniques reported by authors
have been all based on the Kasteren House A dataset using the "leave one day out" cross-
validation except Ye [145] who primarily used 10-fold validation (Ye also included results
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Figure 6.15: Comparison of F-Score performance before and after update

based on a "leave one day out" cross-validation in her report). Kasteren et al [133] reported
class accuracy of 49.2% (for Hidden Markov Model) and 44.6% (for Conditional Random
Field) which in their definition is same as average recall per class. In comparison with their
work, this thesis achieved a higher average recall of 96.2%. Ordonez et al reported F-Score
results of 75% and 76% for Hybrid Multi-Layer Perceptrons and Support Vector Machine
respectively - both lower in comparison with the F-Score of 92.3% achieved in this thesis.
The proposed technique performed better than Kasteren and Ordonez due to its ability to
incorporate temporal attributes to sensor and objects through timeslices and intervals en-
hancing the activity recognition performance. In addition to the 10 fold cross validation
used, Ye also included in her report Recall and F-Score of 78.9% and 84.4% respectively
for the Kasteren House A dataset using ’leave one day out’ cross-validation’. This is also
lower than the 96.6% and 92.3% for the Recall and F-Score respectively reported in this
thesis. Ye’s technique gives a set of probabilities which corresponds to the likelihood of the
activity situations given a set of observed sensors. This may have accounted for the lower
performance in comparison as it falls short of the context descriptors as presented in this
thesis which is specific to the routine activities. In addition to the comparisons above, we
considered other hybrid approaches. Riboni et al [110] and Okeyo et al [97] and Kun et
al [53] all proposed hybrid and ontology-based activity recognition techniques. Although
Okeyo et al [97] did not make their report based on the Kasteren dataset, we assembled
their technique in almost the same way as explained by the authors. Comparing our ap-
proach with these hybrid approaches using the Kasteren House A dataset, the recognition
results presented in this thesis surpassed the others as seen in Table 6.17. Riboni et al
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[110] and Okeyo et al [97] reported F-Score of 89.7% and 82.8% respectively. Although
Riboni et al [110] followed a ‘leave one day out’ validation, the ontology concepts had no
temporal attribute associations. So with the Kasteren House A, activity recognition led to
high false positives for activities like Breakfast, Dinner and Drink which shared same and
similar object concepts. Okeyo et al [97] models activities based on generic assumptions
of object use. This, however, does not put into considerations the context describing ac-
tivity situations, hence high false positives for activities especially if they share same or
similar object usage. The object use specification as context description routine activities,
fine grain activity modelling and temporal association stood as key features which led to
minimal false positives with the approach proposed in this thesis over the approaches by
Riboni et al [110] and Okeyo et al [97]. Kun et al [53] technique is composed of an infras-
tructure included a search engine module which performs internet information retrieval for
its ontology module for activity recognition which is connected to a 3 layer HMM module
to provide assistance. The information and performance results as presented by Kun [53]
were minimal making it difficult for the technique to be scrutinized. Their report as sug-
gested led to high false positive due to the results from the internet search which multiple
per object search. With the Kasteren House A dataset, there were multiple search results
which may have impacted on the ontology concepts and retrieved information.
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Technique Leaving Toileting Showering Sleeping Breakfast Dinner Drink Average

Riboni et al [110]
Precision 98 76.8 90.7 93.9 77.6 89.5 69.6 85.2

Recall 100 93.5 96.7 98.9 92.4 95.6 88.9 95.1
F-Measure 98.9 84.4 93.6 96.4 84.4 92.5 78 89.7

Okeyo et al [97]
Precision 100 100 93.9 100 58.6 55.4 54.1 80.3

Recall 100 100 95.1 100 72.3 70.8 62.7 85.8
F-Measure 100 100 94.5 100 64.7 62.2 58.1 82.8

Ye et al [145]
Precision 92 98.6 82.5 91.7 96.4 92.2 81.6 90.7

Recall 58.5 85.9 94 78.6 91.4 77.7 66 78.9
F-Measure 71.5 91.8 87.9 84.6 93.8 84.3 72.9 84.4

This thesis
Precision 100 100 96.7 100 81.4 75.7 70.1 89.1

Recall 100 100 99.1 100 88.5 92.3 93.2 96.2
F-Measure 100 100 97.9 100 84.8 83.2 80 92.3

Table 6.17: Comparison of our approach with other hybrid approaches133



6.3 Summary and Conclusion

The hybrid activity recognition approach enhanced using topic model proposed in this the-
sis provides the basis to learn and recognise activities. Experiments carried out using the
Kasteren and Ordonez datasets. The performance of the context description process was
assessed. The performance of the approach to recognise activities was also evaluated. This
thesis also evaluated the impact of modelling activities as static and dynamic activities.
Further, it evaluated the learning capability of the proposed approach. Finally, it evaluated
the performance of the activity boundary detection algorithm. In addition to the experi-
ments, this thesis compared the results to the results published using the same dataset in
other literature. Based on the experiments and evaluations, the benefits and limitations of
the proposed approach are discussed below:

• Assessment of the activity-object use and context description process: As part
of the hybrid approach, acquiring knowledge of object usage by the object discov-
ery and context descriptions for the activity situations was proposed. To assess the
performance of the process, similarity assessments between the sets of context de-
scription make up for the activities was carried out. The results clearly suggests no
similarities between the activity sets. The set of context descriptions are unique for
the activity situation using the Jaccard and Dice similarity coefficients. However,
activities like Breakfast, Lunch and Dinner sharing same or similar object use are
considered as activity situations which can be made distinct by modelling them as
static activities in the ontology. The main benefit of this process is its ability to dis-
cover unique object use as context descriptor for activity situations. Limitations may
arise for other similar activity situations like Drink and Snack as observed with the
datasets.

• Performance of the activity recognition process: Experiments carried out on the
datasets suggest good recognition performance for activities. Although the perfor-
mance was encouraging for most activities, recognition was confused for activities
sharing same and similar object use. Notably in this case was Drink and Snack which
was modelled as dynamic activities. Given the general performance of this activity
recognition process as illustrated with Figure 6.9 and 6.10, the activity recognition
process on the average is comparable.

• Impact of the Static and Dynamic Activities: The impact of modelling activities
as static and dynamic activities was assessed. The comparison with the alternate
variant of the activity ontology suggested a weaker performance. This was largely
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due to the activities like Breakfast, Dinner, Lunch, Drink and Snack reported for
the datasets in table 6.10 and 6.11. These activities traditionally are performed with
same and similar object leading to high false positives and recognition confusions.
It is obvious from Tables 6.8 and 6.9 modelling the activities as static and dynamic
activity minimised false positive and confusion from the activities across folds.

• Model Learning Performance: The aim of this evaluation was to assess the model
learning ability. The similarities of contexts descriptions at the object level and at
the activity level were assessed. From the results, the contexts which led to activity
situations in the ground truth are similar to the contexts descriptors discovered, hence
the result achieved at the activity level. Almost the same number of activity traces
for the datasets in comparison with the ground truth suggesting good and significant
learning were obtained. Although, results were weaker for the Ordonez dataset set
due to noise and similarities in contexts for some activities. The results at the ob-
ject and activity level can be seen to be directly linked to the activity recognition
performance with regards to Tables 6.8 and 6.9.

• Activity Boundary Detection: The performance of this proposed algorithm. Ac-
tivity boundaries detected suggests good performance were assessed. It also found
out that the performance is closely linked to the activities recognised. However, the
results achieved are significant and encouraging.

• Activity Ontology Update: Finally, the performance of the object use changes made
through activity ontology update were assessed. The results obtained suggests good
performance for the updates made. The performance of Breakfast improved due to
reduced false positives and minimal confusions with Dinner and Drink. The change
of inserting Cooktop to Breakfast further enhanced Breakfast as a distinct activity.

With the experiments, assessment and evaluation using publicly available datasets, it can
be said that i) The process of activity-object use and context description of activity situa-
tion provides accurately the needed object and activity concepts for the ontology modelling
process. ii) Modelling activities as static and dynamic activities helps to improve activity
recognition especially for activities with same and similar object interactions. iii) Given
the results from the activity recognition process in comparison with other results published
using the same datasets, it concludes that it is significantly good and encouraging. The
experimental and evaluation process using these datasets suggests that the features, com-
ponents and the entire activity recognition process have been fully verified.
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Chapter 7

CONCLUSION AND FUTURE WORK

The motivation of work in this thesis was to provide the basis to acquire knowledge of ob-
ject usage for specific routine activities to support an ontology-driven activity recognition
instead of developing activity ontologies from assumptions and every day common knowl-
edge of object use for activities. The outcome is an enhanced knowledge-driven activity
recognition approach, which utilizes topic modelling to discover the context descriptors for
specific activity situations. This work has extended the traditional ontology driven activity
recognition with improvements in the way ontology concepts in this domain are acquired.
To achieve this, Latent Dirichlet Allocation LDA topic models were applied to generatively
discover activities-object distributions. In addition to this, an algorithm was developed that
used the activity-object distributions to define the context descriptors for the specific routine
activities. A description logic DL formalism for ontology and knowledge representations
was followed to build a knowledge base for the activities and the respective context descrip-
tions as concepts. TBox and ABox were also populated to allow for activity information
retrieval enabled by the reasoners. The proposed hybrid approach also included the devel-
opment of an activity recognition algorithm and an activity boundary detection algorithm.
As part of the performance and validation process, the work in this thesis was compared to
the approaches of Riboni et al [110], Kasteren et al [132], Ordonez et al [99], Okeyo et al
[97], Kun et al [53] and Ye [145] who have published work evaluated on the same datasets.
Riboni et al [110] in their work modelled the object use for the activity situations using
ontological techniques. Although they extended the basic ontological techniques with the
addition of temporal reasoning which outperformed the results from Kasteren et al [132],
they were limited with the mention on how the knowledge of object use for the activity
situations were acquired to develop the activity ontology. Ye [145] used context lattice
exhaustively models all possible conjunctions of sensor firings. They labelled the sensor
observations with the associated probability of each of the situation’s occurrence. The work
in this thesis differs from theirs with the context descriptions for specific activity situations
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modelled on to an ontology knowledge base system to support activity inference retrieval
based on observed object use information. Activities are eventually recognised by querying
the knowledge base using the observed object use information. The following sections pro-
vide a summary of the research contributions and a discussion on future work. The work
reported in this thesis is an extension to our previous work reported in Ihianle et al [68]
with the use of LDA and inclusion of the activity ontology to introduce semantic clarity,
enhance expressiveness and improve activity recognition whilst retaining the ability to han-
dle noisy situations through the LDA. Our work in Ihianle et al [68] used the topic model
PLSA to discover and recognise activities, but it still remains that the process is limited and
lacks expressiveness of the activities recognised for the end user. As part of the extension,
we determined the number of activities automatically using silhouette analysis through K-
Means clustering and used the LDA instead of the PLSA to discover the activity-object
use distributions. However, the approach we used to determine the context descriptors for
specific routine activities provides an alternate method to acquire knowledge of object use
for activities and context descriptions for activities.

7.1 Contributions

The work in this thesis proposed an enhanced knowledge driven activity recognition ap-
proach to acquire the knowledge of object use as context descriptors for the activity situa-
tions. Below is a summary the contributions:

• The State of the art of the Recognition of Activities of Daily Living in the Home;
Environment. In Chapter 2 we presented a review of research efforts in the area of
Ambient Intelligence, Context Awareness Pervasive computing with regards to activ-
ity recognition. We also considered a broad overview of these attempts highlighting
data and knowledge driven approaches. From these discussion we made distinction
of the features of the approaches and identified emerging approaches towards ac-
tivity recognition. We also identified limitations and possibly how the approaches
can be complementary. We concluded by pointing out that activity recognition as an
emerging area of technology has yet to be fully develop.

• A Context description of object use for specific routine activities.; In Chapters 4,
we presented the proposed hybrid approach and methodology and the approach to
acquire knowledge context description for activity ontology respectively. The con-
text description module is an extension to the traditional ontology driven activity
recognition approach. It serves as a novel approach and an alternate solution to the
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traditional method to acquiring knowledge of object usage which hitherto has been
by assumption and the generic knowledge of every day object usage in the home en-
vironment. We applied the topic model LDA to discover activity-object distribution
and developed a context description algorithm to satisfactorily assign objects as con-
text descriptors for specific routine activities which were then designed, developed
and modelled in the activity ontology as concepts and instances etc.

• An approach to recognise Static and Dynamic Activities.: In Chapter 5, we pre-
sented an approach to model static and dynamic activity situations by combining
ontology formalism and 4D fluent approach. We realise that some are carried out at
particular times of the day and the others are not constrained to be performed at any
particular time of the day. To achieve this model, we applied the 4D fluent approach
to create time intervals of the day and made the activities to range onto these time
intervals as concept through an interval property. We also created timeslices as con-
cepts and made the objects to have properties ranging to these timeslices. With these
concept and properties, activities like Breakfast, Lunch and Dinner sharing same
or similar object interactions were modelled to belong to different time intervals to
make them distinctive in the activity recognition process.

• Modelling fine grain activities situations by enabling the atomic events in prece-
dence.: In Chapter 5, we presented fine grain activities recognising that activities
are a result of atomic events occurring in patterns and orders. The pattern and
orders differ and in some cases the patterns determine the activity situation. To
achieve precedence, we applied the rule of transitivity enable by the object property
hasLastObject so that the order of object evolution in the emergence of an ac-
tivity would be followed. In addition to this we also extended the object and activity
concepts to have instances and individuals asserted using object and data properties
to populate the ABox. Activity recognition is achieved by object use query of the
instances.

• Algorithm for Activity Boundary Detection: In Chapter 5, we proposed an algo-
rithm to recognise activity boundary. We introduced location concept for objects
within the same location of a home environment. We were of the assumption that
if two consecutively observed objects or sensor belonged to same location in the
home environment it suggests the persistence of an activity. We applied similarity
to objects in the same location to indicate this persistence and used dissimilarity of
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consecutively observed objects also based on location to suggest an activity bound-
ary i.e. the end of an activity and the beginning of an activity. Similarity must be
above a threshold value while dissimilarity below the threshold value.

• Ontology update for object use: Also in Chapter 5, we presented activity ontology
object use update without the process of editing the entire ontology. Ontologies have
been known to be static, so to give room for changes in the activities and object usage
we introduce the ontology update. We use the insert and delete data for SPARQL up-
date language to update the ontology when there is a change in the activity situations
or with object usage.

• Evaluation and Validation of the Proposed Hybrid Approach.: In Chapter 6 we
performed evaluation and validation experiments on the proposed hybrid approach
using publicly available datasets. The evaluation includes assessment, of the similar-
ities of the context descriptors of activities, of the activity recognition performance,
recognition performance of static and dynamic activities, performance of the bound-
ary recognition algorithm, and comparison with the results published using other
techniques on the datasets.

With these contributions, the principal aim "To design and implement a hybrid activ-

ity recognition approach that recognises routine activity situations as events from sensor

datasets by the accurate specification of the object use as the context describing the activi-

ties" as highlighted in chapter 1 of this thesis has been fully achieved.

7.2 Future Work

Given that the performance and evaluation metrics indicated good performance for the
proposed approach, we make good to say that it is not perfect and all problems regarding
activity recognition have not been taken into account. In the course of this research, we
identified the following issues and opportunities:

• Concurrent and Interleaved: Activities considered in this thesis are interleaved ac-
tivities. We have not considered recognition of activities concurrently evolving. We
have not also considered non-interleaved activities. Concurrent and non-interleaved
activities present complex situations involving the start of another activity whilst
there is an ongoing activity. This would require extensive model in the ontology
multiple instances and the use of precedence property to assert the activities as they
evolve. Future work should investigate extending our proposed work to include con-
current and non-interleaved activities.
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• Multi-individual Occupancy: This approach has been designed and developed on
the assumption of a single occupancy home environment. In real world situations,
homes are occupied by multiple users or in the case of the elderly and cognitively
impaired you have cases when the carers are with the elderly or in a multi occupancy
care resident. Future work can extend the context descriptions and ontology model to
include multiple actors and individuals. The sensor network could be extended to in-
clude heterogeneous sensing systems. Individual sensor firings can be distinguished
by making the individuals wear identifying sensors in the case of wearable sensing
protocols or sensor protocol pairings when object are used on the home environment.
It could also include mobile phone as a distinguishing mechanism.

• All-In-One Unified Model: We have developed this approach on a multi-platform.
The context description module has been developed and implemented in a Matlab
environment, the activity ontology has been designed and developed in the Protégé
environment which is different from the former. In a realistic situation, the approach
should be in a single platform thus allowing for almost a real time activity recogni-
tion process. Future improvements on this would involve developing a system or an
algorithm capable of performing context description and ontology model in the same
platform.

• Automatic Model Adaptation: The approach as it is currently manually updates
the ontology based on changes in the reported activities in comparison to the ground
truth. This process is not only slow but could be prone to error. An improvement in
the future could be to bootstrap the context description module to report immediately
changes in the context describing the activity situations. The process would itera-
tively provide the needed update to automatically adapt the activity ontology for the
needed activity recognition. Finally this hybrid approach has been evaluated using
dataset collected in a controlled home environment. The home setting falls short of
real world situations. Activities have been performed to prescription. The activities
in number are limited as well the limited number of objects tagged with sensors.
Uncertainties and incompleteness which characterises human life have not been put
into consideration. Given this future work could involve deploying extensive sensor
network in real home environments and the experiment replayed.

140



7.3 Concluding Remarks

This thesis has provided significant contributions to the emerging research area of activ-
ity recognition. A review of the state of the art was made and areas of opportunities
highlighted. To address some of the opportunities we proposed this hybrid approach as
an extension most especially to the traditional ontology-driven activity recognition. We
proposed the acquiring knowledge object use for specific routine activities, a process we
termed context description of the activity situations. Use modelled these contexts as on-
tological concepts to allow for a more expressive way of activity recognition from object
use. Although the performance and evaluation process suggests good performance, there
are opportunities to improve on this proposed work in the future to the benefit of the elderly
and cognitively impaired.
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Appendix A

Activities Context Descriptors
Leaving Front Door.
Toileting Hall Toilet Door, Toilet Flush.
Showering Hall Bathroom Door.
Sleeping Hall Bedroom Door.
Make Food Fridge, Plates Cupboard, Cups Cupboard, Gro-

ceries Cupboard, Microwave, Freezer.
Make Drink Fridge.

Table 7.1: Activity Concepts and the discovered context descriptors for Kasterens House B

Activities Context Descriptors
Leaving Front Door.
Toileting Hall Toilet Door, Toilet Flush.
Showering Hall Bathroom Door.
Sleeping Hall Bedroom Door.
Make Food Fridge, Plates Cupboard, Cups Cupboard, Gro-

ceries Cupboard, Microwave, Freezer.
Make Drink Fridge.

Table 7.2: Activity Concepts and the discovered context descriptors for Kasteren House C



Activities Context Descriptors
Leaving Main Door.
Toileting Toilet, Basin.
Showering Shower.
Sleeping Bed.
Make Food Cupboard, Fridge, Microwave, Toaster.
Spare Time Seat.
Grooming Basin, Cabinet.

Table 7.3: Activity Concepts and the discovered context descriptors for Ordonez House B
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(a) House A (b) House B

(c) House C, First floor (d) House C, Second floor

Figure 7.1: Floorplan of houses A, B and C, the red boxes represent wireless sensor nodes
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(a) Kasterens B (b) Kasterens B

(c) Ordonez B

Figure 7.2: Visualisation of LDA generated Object classifications for Kasterens B,
Kasterens C and Ordonez B
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Figure 7.3: Class Concepts of the Kasteren House Ontology
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Figure 7.4: Class Concepts of the Ordonez House Ontology
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Days Leaving Toileting Showering Sleeping Breakfast Dinner Drink Average

1
Precision 97.6 94.3 85.8 83.4 57.5 60.7 55.0 76.3

Recall 98.7 97.9 91.8 95.6 79.4 72.9 77.6 87.7
F-Measure 98.1 96.0 88.7 89.1 66.7 66.3 64.4 81.3

3
Precision 98.2 95.2 88.6 84.6 64.6 63.8 56.2 78.7

Recall 99.1 99.4 93.4 96.2 78.3 73.0 78.0 88.2
F-Measure 98.7 97.2 90.9 90.0 70.8 68.1 65.3 83.0

5
Precision 98.7 95.8 89.8 84.0 65.9 64.9 56.6 79.4

Recall 100 99.4 95.4 97.1 78.1 73.5 77.2 88.7
F-Measure 99.3 97.5 92.5 90.1 71.5 68.9 65.3 83.6

10
Precision 99.3 100 96.0 100 79.6 73.2 68.2 88.0

Recall 100 100 98.33 100 87.7 91.6 92.3 95.7
F-Measure 99.1 100 97.1 100 83.4 81.3 78.4 91.3

15
Precision 100 100 96.5 100 80.6 73.4 68.6 88.4

Recall 100 100 98.8 100 88.4 91.6 92.3 95.9
F-Measure 100 100 97.6 100 84.3 81.5 78.7 91.7

20
Precision 100 100 96.4 100 80.6 75.6 69.8 88.9

Recall 100 100 98.7 100 88.4 92.3 92.8 96.0
F-Measure 100 100 97.5 100 84.3 83.1 79.6 92.1

23
Precision 100 100 96.7 100 81.4 75.7 70.1 89.1

Recall 100 100 99.1 100 88.5 92.3 93.2 96.2
F-Measure 100 100 97.9 100 84.8 83.2 80 92.3

Table 7.4: Precision, Recall and F-Score results with different amount of training data for Kasteren House A
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Days Leaving Toileting Showering Sleeping Breakfast Dinner Drink Average

1
Precision 89.5 84.8 76.1 88.7 58.5 52.0 49.5 71.3

Recall 97.2 95.6 93.8 96.1 76.8 70.3 71.5 85.9
F-Measure 93.2 89.9 83.0 92.2 66.4 59.7 58.5 77.6

3
Precision 92.5 91.4 88.4 94.5 66.6 57.1 53.5 77.7

Recall 98.5 97.5 95.9 97.6 82.5 79.4 74.9 89.5
F-Measure 95.5 94.3 92.0 96.0 73.7 66.4 62.4 82.9

5
Precision 96.4 97.2 93.5 98.0 74.7 62.3 58.6 82.9

Recall 100 99.4 98.4 99.3 86.4 84.1 77.8 92.2
F-Measure 98.2 98.3 95.9 98.6 80.2 71.6 66.8 87.1

10
Precision 100 99.6 95.1 100 76.4 67.1 61.5 85.7

Recall 100 100 99.2 100 87.1 84.8 78.9 92.9
F-Measure 100 99.8 97.1 100 81.3 74.9 69.1 88.9

13
Precision 100 100 100 100 82.7 69.3 64.9 88.1

Recall 100 100 100 100 88.5 86.9 79.9 93.6
F-Measure 100 100 100 100 85.5 77.1 71.6 90.6

Table 7.5: Precision, Recall and F-Score results with different amount of training data for Kasteren House B
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Days Leaving Toileting Showering Sleeping Breakfast Dinner Drink Average

1
Precision 89.5 82.9 77.5 84.2 57.6 52.4 46.3 70.1

Recall 96.1 95.1 93.3 96.2 77.6 74.1 75.9 86.9
F-Measure 92.7 88.6 84.7 89.8 66.1 61.4 57.5 77.3

3
Precision 93.6 87.9 84.8 89.6 61.2 56.5 48.8 74.6

Recall 97.5 97.2 95.3 98.6 79.0 77.2 79 89.1
F-Measure 95.5 92.3 89.7 93.8 69.0 65.2 60 80.8

5
Precision 96.1 90.5 89.0 94.7 66.2 60.1 53.2 78.5

Recall 98.2 98.6 96.1 98.8 81.1 79.4 84.1 90.9
F-Measure 97.1 94.4 92.4 96.7 72.9 68.4 65.2 83.9

10
Precision 98.4 93.5 93.4 99.1 71.3 66.1 55.1 82.4

Recall 100 96.7 98.2 100 84.2 81.5 86.4 92.4
F-Measure 99.2 96.5 95.7 99.5 77.2 73.0 67.3 86.9

15
Precision 100 96.8 100 100 78.3 73.9 59.6 86.9

Recall 100 99.7 100 100 86.5 90.1 88.3 94.9
F-Measure 100 98.2 100 100 82.2 81.2 71.2 90.4

18
Precision 100 100 100 100 80.6 74.5 64.7 88.5

Recall 100 100 100 100 88.2 90.9 86.6 95.1
F-Measure 100 100 100 100 84.3 81.9 74.1 91.5

Table 7.6: Precision, Recall and F-Score results with different amount of training data for Kasteren House C
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Days Leaving Toileting Showering Sleeping Grooming Spare Time Breakfast Lunch Snack Average

1
Precision 85.8 84.3 52.2 83.7 50.5 82.4 57.9 48.9 48.1 65.9

Recall 94.2 93.9 76.9 96.8 78.9 95.4 83.8 76.1 68.8 84.9
F-Measure 89.8 88.8 62.6 89.7 61.6 88.5 68.5 59.6 56.6 73.9

3
Precision 92.44 90.1 60.2 89.5 55.5 87.1 66.6 53.9 51.5 71.9

Recall 96.33 95.8 80.1 97.5 84.4 97.1 91.4 80.1 72.0 88.3
F-Measure 94.3 92.9 68.7 93.3 66.9 91.8 77.1 64.4 60.0 78.8

5
Precision 95.6 92.8 65.0 94.2 63.9 95.1 72.6 58.3 56.9 77.2

Recall 98.7 98.2 83.2 99.7 88.9 98.4 97.1 81.3 76.5 91.3
F-Measure 97.2 95.4 73.0 96.9 74.4 96.7 83.1 67.9 65.2 83.3

10
Precision 97.8 95.5 68.9 98.2 67.9 98.7 81.4 64.1 59.9 81.4

Recall 100 99.7 84.8 100 90.3 100 97.8 84.8 77.9 92.8
F-Measure 98.9 97.6 76.1 99.1 77.5 99.3 88.8 73.0 67.7 86.4

13
Precision 100 100 74.2 100 73.6 100 83.6 68.5 65.8 85.1

Recall 100 100 86.8 100 92.5 100 98.1 86.5 85.6 94.4
F-Measure 100 100 80.0 100 82.0 100 90.3 76.4 74.5 89.2

Table 7.7: Precision, Recall and F-Score results with different amount of training data for Ordonez House A
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Days Leaving Toileting Showering Sleeping Grooming Spare Time Breakfast Lunch Dinner Snack Average

1
Precision 75.6 68.4 49.6 68.0 47.6 69.8 45.4 45.7 44.3 43.1 55.7

Recall 89.5 82.0 66.9 88.2 69.9 85.9 71.3 71.5 72.0 70.8 76.8
F-Measure 82.0 74.6 56.9 76.8 56.6 76.9 55.5 55.8 54.9 53.6 64.4

3
Precision 77.9 73.6 50.1 75.6 51.3 74.5 49.4 48.1 47.7 44.9 59.3

Recall 90.1 85.6 66.7 89.8 71.0 89.4 74.7 74.4 71.6 71.0 78.4
F-Measure 83.6 79.1 57.2 82.1 59.5 81.3 59.4 58.4 57.2 55.1 67.3

5
Precision 87.2 80.6 57.4 81.0 56.9 82.5 62.5 53.7 51.5 49.9 66.3

Recall 96.2 90.9 78.3 90.5 78.5 92.4 79.7 77.3 78.4 69.7 83.2
F-Measure 91.5 85.4 66.3 85.5 66.0 87.2 70.0 63.3 62.1 58.2 73.6

10
Precision 93.6 85.6 64.6 90.9 64.7 89.6 76.5 60.9 55.8 56.8 73.9

Recall 98.7 92.8 84.3 98.1 83.7 97.2 86.1 81.2 84.0 79.2 88.5
F-Measure 96.1 89.1 73.1 94.4 73.0 93.2 81.1 69.6 67.2 66.1 80.3

15
Precision 100 89.8 71.8 97.5 69 94.7 81.1 68.1 59.9 62.2 79.4

Recall 100 94.5 88.9 100 91.3 97.8 91.0 84.2 93.5 84.1 92.5
F-Measure 100 92.1 79.4 98.7 78.6 96.2 85.8 75.3 73 71.5 85.1

20
Precision 100 90.8 75.9 100 72.9 98.3 85.6 70.9 62.9 66.0 82.3

Recall 100 96.2 89.6 100 93.4 100 93.4 85.6 94.5 85.9 93.9
F-Measure 100 93.4 82.2 100 81.9 99.1 89.3 77.6 75.5 74.6 87.4

Table 7.8: Precision, Recall and F-Score results with different amount of training data for Ordonez House B
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