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Abstract—Speech enhancement is an essential preprocessing
stage for automatic speech recognition in noisy conditions;
however, the distortion caused by the denoising process may
lead to degradation in automatic speech recognition performance.
This paper presents a deep learning-based speech enhancement
architecture to overcome this issue by applying a second-stage
network that deals with distortion noise. Moreover, a signal-
to-noise ratio binary classifier is implemented to activate the
speech enhancement network for intrusive noise environments
only, which improves the overall performance. The proposed
architecture outperforms powerful models in the literature, as
it improves a challenging noisy speech test set by 0.8 and 5.9%
improvement in the quality and intelligibility scores, respectively.
Furthermore, the architecture improves the performance of
automatic speech recognition with a 13.8% reduction in the word
error rate at 0 dB signal-to-noise ratio. Finally, the second-stage
network was proven to improve the performance of first-stage
speech enhancement models, not previously seen in the training
process.

Index Terms—Automatic speech recognition, deep learning,
generative adversarial network, speech distortion, speech en-
hancement

I. INTRODUCTION

Speech enhancement is the process of improving speech
quality and intelligibility by mitigating background noise [1].
Automatic Speech Recognition (ASR) is one of the important
applications for speech enhancement. In noisy environments,
a frontend speech enhancement network is needed to process
the noisy speech signal before performing ASR, to improve
performance [2], [3]. Supervised deep learning-based speech
enhancement models were proven to be very effective in
removing background noise and enhancing speech quality and
intelligibility [4]–[6]. However, these models do not always
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generate a satisfying performance when applied as a separate
preprocessing stage to ASR, especially for mismatched noise
conditions [7]; conversely, it was shown to degrade the per-
formance in some cases [8], [9].

Much research has been done to understand why speech
enhancement models do not improve ASR performance, and
the outcome of this research points to the speech distortion
issue, a key drawback of the denoising process [8], [10].
While the Deep Neural Network (DNN) tries to eliminate
background noise, it removes part of the target speech signal.
This introduces a new kind of noise, more specifically distor-
tion noise, which leads to a change in the processed speech
characteristics, and makes it not understandable by the ASR
model, leading to higher Word Error Rates (WERs) [9].

Consequently, more recently, DNNs for speech enhance-
ment have been designed to minimize distortion, by manip-
ulating the loss function [4] or developing a two-stage speech
enhancement network [5], [11], [12]. An alternative solution
is to implement a feedback system to the speech enhancement
network during training that takes a signal from the ASR
model to ensure that it can successfully produce a transcript
of the speech processed by the DNN [13].

Another approach that solves this distortion issue is joint
training of the speech enhancement network and ASR model,
where the ASR model is retrained using the processed speech
from the speech enhancement network, to avoid this mismatch
problem [9], [14]. However, there are disadvantages to this
solution. First, retraining of a running ASR system is required,
which is not practical. Moreover, whenever modifications are
needed to the speech enhancement network, further retraining
will be needed for the ASR model. Second, speech enhance-
ment will be performed in any environmental condition, even
for clean speech, which will increase system complexity and



processing time without any gain in ASR performance.
Although the above-discussed solutions help in minimizing

the negative effect of speech enhancement processing, further
improvement to the WER of ASR can be achieved by adding
a switch, to decide whether to perform speech enhancement
or not. The decision of this switch can be based on measuring
the distortion of the enhanced speech signal generated by
the speech enhancement network using Signal-to-Distortion
(SDR) ratio, as presented in this work [15]. Alternatively,
a deep neural network (DNN) can be trained to measure
the distortion added by the speech enhancement processing,
and then decide whether to perform SE or not, based on
predicting the improvement/deterioration of the WER of the
ASR system under testing [16]. However, these solutions are
based on making the decision based on the enhanced speech
signal, which means speech enhancement processing is always
required, and this increases processing time.

In this paper, we aim to contribute to the above research
by presenting a deep learning-based speech enhancement
architecture for ASR that minimizes the speech distortion
caused by the denoising process. The architecture consists of
a Signal-to-Noise Ratio (SNR) classifier, a deep Convolutional
Denoising Autoencoder (CDAE) network, and a Least Square
Generative Adversarial Network (LSGAN) [17]. The classifier
performs binary classification to differentiate between high and
low SNR speech. The output signal from the classifier activates
the speech enhancement network at low SNRs only, when
speech enhancement is essential for ASR. This will avoid the
speech distortion caused by speech enhancement processing
at high SNRs and also for clean speech; furthermore, it will
decrease processing times. At low SNRs, the first stage CDAE-
based network performs speech enhancement in the frequency
domain to eliminate background noise. Afterwards, the second
stage LSGAN acts as a matching network that performs further
speech denoising and reconstruction to minimize the mismatch
between the processed speech from the first stage speech
enhancement network and the input to the ASR model.

The contributions of this paper can be summarized as
follows:

• proposing a deep learning-based speech enhancement
architecture that minimizes distortion and improves ASR
performance, and

• providing a standalone second-stage LSGAN model that
acts as a matching network between the speech enhance-
ment model and the ASR model to improve the overall
performance.

The rest of this paper is organized as follows. Section II
describes the problem under investigation. Section III illus-
trates the developed architecture. Section IV demonstrates the
experimental setup. Results and discussion are presented in
Section V. Finally, the paper’s conclusions are given in Section
VI.

II. PROBLEM FORMULATION

At low SNRs, where speech enhancement provides crucial
preprocessing for ASR, the speech signal, s, is affected by

noise environment, n, and the time domain noisy speech
signal,y, can be represented as in Eq. 1:

y(k) = s(k) + n(k), (1)

where k is the time index. When processing this noisy signal
using a deep learning approach, the DNN performs some
nonlinear operations on the input noisy speech to minimize
a loss function that aims to generate an estimate of the clean
speech signal, ŝ. As proved in [9], although this estimated
clean speech has a higher SNR compared to the noisy speech,
it suffers from a new kind of noise originating from the
distortion which occurred during the denoising process. As
a result, ŝ can be expressed as in Eq. 2:

ŝ(k) = s(k) + αn(k) + nd(k), (2)

where α is a scaling factor that describes the decrease in
the noise intensity, and nd is the added distortion noise.
Considering the case that the DNN managed to effectively
remove background noise, the speech quality will be improved
but the added distortion noise will be significant and results in
performance degradation for the backend ASR. In this case,
nd is greater than αn. We hypothesise that when adding
a second stage DNN to process ŝ, the loss function will
focus on minimizing this dominant distortion noise, which will
ultimately decrease the mismatch issue between the speech
enhancement network and the ASR. To achieve this, we
used an LSGAN model with a discriminator that learns to
differentiate between distorted and clean speech. The loss
function of the discriminator (D) and the generator (G) of
this second stage LSGAN can be expressed as in Eqs. 3 and
4, respectively:

minDLLSGAN (D) =
1

2
Es∼Pdata(s)[(D(s, y)− b)2]+

1

2
Eŝ∼Pŝ(ŝ)[(D(G(ŝ, y), y)− a)2], (3)

minGLLSGAN (G) =
1

2
Eŝ∼Pŝ(ŝ)[(D(G(ŝ, y), y)− b)2, (4)

where b is an all-one vector representing the label for real
clean speech, while a is an all-zero vector that represents
the label for estimated clean speech. D(s,y) is the output
of the discriminator with concatenated real clean speech and
noisy speech as an input, and D(G(ŝ,y),y) is the output of the
discriminator with concatenated noisy speech and the second
stage estimated clean speech from the generator network as an
input. The noisy speech is fed to both the generator and the
discriminator, as it was found that this improves the learning
process because when the noisy signal is seen as a different
signal from the clean speech, noise reconstruction will be
avoided during the training process.

At high SNRs, the effect of speech enhancement processing
on ASR is not very significant, because most ASR systems are
trained with some noisy speech, so the ASR can deal with
non-intrusive noise environments. Moreover, the distortion
issue, as discussed above, may outweigh the denoising benefits
and have a negative impact on the quality of clean or high



SNR speech, leading to worsened ASR performance. For this
reason, we suggest not performing speech enhancement at high
SNR conditions.

The decision of performing speech enhancement or not
is made in our implementation using an extra SNR binary
classifier that processes the noisy speech, and outputs 1 if low
SNR is detected, activating the speech enhancement network.
This classification is performed based on the average of five
audio features that are concatenated together and fed to the
classifier network to make the decision. The used input feature
vector to the classifier, Ci, can be represented as in Eq. 5:

Ci = yMFCC ⊕ yMel ⊕ ySC ⊕ yChroma ⊕ yT , (5)

where yMel is the Mel-Spectrogram, yMFCC is the Mel-
Frequency Cepstral Coefficients (MFCCs), YSC is the Spectral
Contrast, YChroma is the Chromagram, and YT is the Tonnetz
[18]. The threshold of the classifier decision boundary should
be chosen based on the performance of the backend ASR
in noisy conditions. In our implementation, we found that
the performance of the ASR, used in testing, without speech
enhancement is better at SNR values higher than 15 dB, so
the classifier was designed to activate the speech enhancement
network for noisy speech with SNR 15 dB or less.

III. ARCHITECTURE DESCRIPTION

The diagram of the fully developed architecture is shown
in Fig. 1. The SNR classifier is a one-dimensional (1D)
convolution-based network of three convolution layers with
Parametric Rectified Linear Unit (PReLU) activations. A
dropout layer of 0.2% rate was used to avoid overfitting, and
two dense layers were added: one with ReLU activation and
the other with Sigmoid activation for prediction.

For the first stage speech enhancement model, we used
the single-stage Deep-Encoder Convolutional Autoencoder
Denoiser (DE-CADE) network proposed in our previous work
[5]. The network consists of several strided-dilated convolution
layers in the encoder, and deconvolution and upsampling
layers in the decoder. Further details about network hyper-
parameters are described in Fig. 1. The network operates in
the frequency domain using Short-Time Fourier Transform
(STFT) input features of 256 hamming window size with
50% overlap, to estimate the clean magnitude spectrogram. In
the second stage speech enhancement network, the LSGAN
generator is another DE-CADE but processing is in the time
domain using time frames of size 2,048 and 50% overlap
as input. The discriminator has nine 1D convolution layers
with PReLU activations, and batch normalization was applied
after each convolution layer, to ensure training stability. A
dropout of 0.2% rate was applied after every three convolution
layers. Another 1D convolution layer was used with linear
activation before the final two dense layers used for prediction.
The discriminator classification is based on the MFCCs input
features, because MFCCs are the main feature used in the ASR
model, so this will ensure that the processed speech from the
second stage keeps the most important features to be correctly
interpreted by the ASR model.

IV. EXPERIMENTAL SETUP

The training of the architecture is based on the deep noise
suppression challenge dataset [19], which has speech data of
more than 500 hours and 181 hours of noise data. The speech
and noise data were divided into 90% for training and 10%
for validation, and then the speech and noise environments
were additively mixed at a wide range of SNRs from 0 to 20
dB in steps of 1 dB. For the SNR classifier, the noisy speech
of SNR value 15 dB or less is labelled as low SNR speech
(binary 1); while 20 dB SNR noisy speech and clean speech
data are labelled as high SNR speech (binary 0).

In testing, we used 224 speech audio files for 56 speak-
ers and 224 different speech utterances that were randomly
selected from the Voice Bank Corpus dataset [20]. These
speech audio files were corrupted with 10 noise environments,
taken from the 100 Nonspeech Environmental Sounds dataset
[21]. The selected noise environments are a mix of human-
generated noise, such as crying and yawning sounds, and other
non human-generated noise, such as phone dialling, shower
noise, and tooth brushing. The spectrograms of these noise
environments are shown in Fig. 2. Four test SNRs were used,
two low (0 dB and 5 dB) and two high (15 dB and 20 dB).
It should be mentioned that this test set is very challenging
based on the fact that the speech dataset is different from the
one used in training, the number of speakers is very large, and
the noise environments are very intrusive and unseen during
the training process [7].

The audio files were down-sampled to 8 KHz, which is the
same sampling frequency as the ASR model used for testing.
Mean Squared Error (MSE) is the loss function used for the
speech enhancement networks. The Adam optimizer is used
with a learning rate = 0.0001, β1 = 0.1 for the first stage DE-
CADE network and β1 = 0.5 for the second stage LSGAN. A
batch size of 2 was used in training. The first stage DE-CADE
network was trained for 100 epochs, while the second stage
LSGAN was trained for 20 epochs, which was enough for the
model to converge. For the SNR classifier, the binary cross
entropy loss function is used, and the network was trained for
300 epochs.

V. RESULTS AND DISCUSSION

The performance of the speech enhancement architecture
was evaluated using the well-known speech quality and in-
telligibility metrics: Perceptual Evaluation of Speech Quality
(PESQ) [22] and Short-Time Objective Intelligibility (STOI)
[23]. Moreover, we used Scale-Invariant Signal-to-Distortion
Ratio (SI-SDR) [24] to measure speech distortion. On the other
hand, the performance of the ASR system was tested using the
WER.

A. Speech Enhancement Performance

A comparison is presented in Table I for the performance of
the proposed architecture against other best-performing two-
stage and similar GAN models in the literature. As baselines,
we used the single-stage Metric-GAN architecture, presented
in [25], which is a GAN model designed to optimize the PESQ



Fig. 1. The proposed speech enhancement architecture. k, d, f, and L represent kernel size, dilation rate, number of convolution channels, and layer number
respectively; s represents stride size in the encoder, and upsampling size in the decoder. T is the time samples, and a is the number of units. y is the noisy
speech, Ci is the input feature vector to the SNR classifier, and ẑ is the predicted label by the SNR classifier. s is the clean speech and ŝ1 and ŝ2 are the
enhanced speech by the first and second stages, respectively.

score; this is denoted by GAN1. Moreover, our network was
compared to the two-stage cascaded GAN model, proposed
in [6], which was proven to improve the performance of
GANs for speech enhancement; this is denoted by GAN2.
The output from the first stage DE-CADE is also shown in
Table I, referred to as DE-CADEs1. Finally, we compared the
architecture to the two-stage DE-CADE network presented in
our previous work [5], which performs speech enhancement
using cascaded DE-CADE networks, with the first stage op-
erating in the frequency domain and the second stage running
in the time domain; this is denoted by DE-CADE(F-T). For a
fair comparison, all the models were trained and tested using
the same dataset, presented in Section IV. The complexity
of all architectures is shown in Fig. 3, where the one-stage
GAN that is optimized to improve the PESQ score, GAN1,
was used to compare with our first stage DE-CADEs1, both
have a similar number of parameters of 6.3 million. A two-
stage cascaded GAN of 58 million parameters, GAN2, and
our previous two-stage DE-CADE network, DE-CADE(F-T)
(12.6 million parameters), were used to compare with the two-
stage architecture proposed in this work (also 12.6 million
parameters).

The presented results are the average of the four test
SNRs. The results show that our architecture outperforms in
terms of speech quality, intelligibility, and distortion scores.
Furthermore, the first stage DE-CADEs1 shows a better PESQ
score than the Metric-GAN model, GAN1, which is trained
to maximize the PESQ score. At the same time, the pro-
posed two-stage architecture performs better than the cascaded
GANs, GAN2, although it is less complex; GAN2 has 58
million parameters; while ours has 12.6 million parameters.

TABLE I
PERFORMANCE COMPARISON TO THE BEST-PERFORMING SPEECH

ENHANCEMENT MODELS.

Metric Noisy GAN1 DE-CADEs1 GAN2 DE-CADE(F-T) Ours
PESQ 2.50 2.81 2.95 3.11 3.20 3.30

STOI(%) 83.7 84.8 86.4 87.8 88.2 88.6
SI-SDR 6.10 11.16 12.64 12.81 13.98 15.06

B. Automatic Speech Recognition Performance

We used a baseline time-delay neural network ASR system
provided by Intelligent Voice for research purposes [26], to



Fig. 2. Testing Noise Environments, N1-N2: yawn sound; N3: Cry; N4: Shower; N5: Toothbrushing; N6-N7: Footsteps; N8: Door moving; N9-N10: Phone
dialing

Fig. 3. Comparison of speech enhancement architectures parameters

show the effect of adding the speech enhancement architecture
as a preprocessing stage to ASR. The WER of the ASR for
the clean test set is 31.9%.

The WER is shown in Table II for the unprocessed speech,
WERUnproc, and for the speech processed by the single-
stage DE-CADE, WERSE1, the two-stage speech enhancement
architecture, WERSE2, and after including the SNR classifier,
WERC+SE . The accuracy of the frontend SNR classifier at the
testing SNRs and for clean speech is shown in Fig. 4. Although
the test data is challenging and highly mismatched, a clear
improvement in ASR performance is shown after adding the
speech enhancement architecture at very low SNRs 0 dB and
5 dB. The single-stage DE-CADE results in a 6.5% and 5.7%
decrease in the WER at 0 dB and 5 dB SNRs, respectively.
The second stage significantly improves the performance of the
first stage by a further 7.3% and 4.7% decrease in the WER
at 0 dB and 5 dB SNRs, respectively. This makes a total of
13.8% and 10.4% WER reduction. SNR classifier accuracy at
these very low SNR values is 100%, so the performance is the
same after including the classifier.

As the ASR model is trained on some noisy data, the

improvement caused by the speech enhancement network
becomes less significant at high SNRs, such as in the case
of 15 dB SNR, where a 4.1% decrease in WER is seen after
adding the speech enhancement architecture. At the same time,
the classifier accuracy drops to 80% for 15 dB SNR noisy
speech files, leading to a slightly higher WER compared to the
case of processing the speech with the speech enhancement
network only. This is because 15 dB SNR is the threshold
used by the classifier to differentiate between low and high
SNRs; therefore, it is the most challenging SNR value for the
classifier to output the correct decision. However, the positive
effect of the SNR classifier is shown when processing clean
speech and at 20 dB SNR, where the distortion caused by the
speech enhancement processing overrides the improvement of
the denoising, leading to a higher WER when compared to
the WER of unprocessed speech. The classification accuracy
is 90% for 20 dB SNR and 94% for clean speech, resulting
in a 0.4% and 0.3% WER reduction for 20 dB and clean
speech, respectively, for the generated speech by the full
architecture, WERC+SE , in comparison to the WER of the
processed speech by the speech enhancement network only
without the classifier, WERSE2, and this also results in a lower
average WER for the full architecture.

TABLE II
AUTOMATIC SPEECH RECOGNITION PERFORMANCE

SNR Clean 20 dB 15 dB 5 dB 0 dB Ave
WERUnproc. 31.9 33.2 39.7 53.9 65.7 44.9

WERSE1 32.4 33.9 36.7 48.2 59.2 42.1
WERSE2 32.4 33.8 35.5 43.5 51.9 39.4

WERC+SE 32.1 33.4 35.6 43.5 51.9 39.3

C. Second Stage Generalization

An experiment was conducted to show the generalization of
the second-stage LSGAN network to other first-stage DNNs,
not previously seen in the training process. Two pre-trained
DNNs were used in this evaluation: an MLP model [27] and
an RNN model [4], available in [28] and [29], respectively.



Fig. 4. The accuracy of the frontend SNR classifier at the testing SNRs and
for clean speech utterances

Both models are frequency domain-based implementations,
but a masking training target is used for these models, which
is a different training target than the mapping target used in
our first-stage network. This increases the mismatch between
the first stage of testing and training DNNs, which ensures a
fair assessment of the generalization ability. Additionally, the
test set used is seen by the MLP network during the training
process. This will show the effect of the proposed second-
stage LSGAN even when the test data is not challenging for
the first-stage speech enhancement DNN.

This evaluation is based on 0 dB SNR, and its results
are shown in Table III, where subscripts 1 and 2 denote
running the model as a single stage and after adding the
second stage of our architecture, respectively. The results show
that adding the second stage LSGAN results in a speech
enhancement performance gain in terms of both speech quality
and intelligibility. On the other hand, a remarkable reduction
in the WER of the ASR is shown for both models after adding
the LSGAN. Moreover, the ability of the LSGAN to solve the
mismatch problem between speech enhancement and ASR is
clear for the MLP model. Although the MLP generated speech
with better quality and intelligibility than the noisy speech, it
fails to improve the ASR performance, leading to a worse
WER than the noisy speech. However, the MLP managed to
improve the WER of the ASR after adding the second stage
LSGAN.

TABLE III
SECOND STAGE NETWORK GENERALIZATION TO OTHER SPEECH

ENHANCEMENT MODELS

Metric Noisy MLP1 MLP2 RNN1 RNN2

PESQ 1.92 2.84 2.92 2.48 2.53
STOI(%) 73.8 82.7 82.9 79.9 80.1

WER 65.7 65.9 59.3 60.1 54.2

VI. CONCLUSION

This paper presents a speech enhancement architecture that
minimizes distortion, for integration with an ASR model
to improve the ASR model’s performance. The architecture
performs speech enhancement for low SNR environments only
based on the decision of an SNR classifier as a first processing
step. If a low SNR is detected, a two-stage speech enhance-
ment processing is applied using a first-stage CDAE-based
network for denoising, and a second-stage LSGAN architec-
ture to deal with the distortion caused by the first enhance-
ment stage. The architecture shows better speech enhancement
performance when compared to the best-performing models
in the literature. Additionally, it improves the performance
of the ASR model for highly challenging noisy test data.
Furthermore, the results show that the second-stage LSGAN
can be used as a standalone speech enhancement network to
improve first-stage DNNs for speech enhancement, not seen in
the training process. Future work will be done to improve the
classification accuracy of the SNR classifier for SNR values
near the decision boundary.
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