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Key points 52 

Question: Is late-life depression (LLD) associated with one or multiple structural neuroimaging 53 

patterns?  54 

Findings: Two dimensions best represented LLD neuroanatomical heterogeneity. Dimension 1 55 

was associated with preserved brain structure, whereas Dimension 2 demonstrated diffuse 56 

structural abnormalities and greater cognitive impairment. One de novo independent genetic 57 

variant was significantly associated with Dim1 but not with Dim2. Notably, the two dimensions 58 

manifested significant genetic heritability in the general population, and Dim2 was longitudinally 59 

more vulnerable to Alzheimer's disease and brain aging than Dim1.   60 

Meanings: The two dimensions encompass heterogeneity in LLD and offer the potential for 61 

clinical precision in diagnosis and prognosis.  62 
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ABSTRACT 63 

Importance: Late-life depression (LLD) is characterized by considerable heterogeneity in clinical 64 

manifestation. Unraveling such heterogeneity would aid in elucidating etiological mechanisms and 65 

pave the road to precision and individualized medicine.  66 

Objective: We sought to delineate, cross-sectionally and longitudinally, disease-related 67 

heterogeneity in LLD linked to neuroanatomy, cognitive functioning, clinical symptomatology, 68 

and genetic profiles. 69 

Design & setting: The iSTAGING study is an international multicenter consortium investigating 70 

brain aging in pooled and harmonized data from 13 studies with over 35,000 participants, including 71 

a subset of individuals with major depressive disorder. 72 

Participants: Multimodal data from a multicentre sample (N=996), including neuroimaging, 73 

neurocognitive assessments, and genetics: 501 LLD participants (332 women, mean age 67.39 74 

± 5.56 years) and 495 healthy controls (333 women, mean age 66.53 ± 5.16 years) were analyzed. 75 

A semi-supervised clustering method (HYDRA) was applied to regional grey matter (GM) brain 76 

volumes to derive dimensional representations.  77 

Exposure: None 78 

Main outcome and Measure: Two dimensions were identified, which accounted for the LLD-79 

related heterogeneity in voxel-wise GM maps, white matter (WM) fractional anisotropy (FA), 80 

neurocognitive functioning, clinical phenotype, and genetics. 81 

Results: Dimension one (Dim1) demonstrated relatively preserved brain anatomy without WM 82 

disruptions relative to healthy controls. In contrast, dimension two (Dim2) showed widespread 83 

brain atrophy and WM integrity disruptions, along with cognitive impairment and higher 84 

depression severity. Moreover, one de novo independent genetic variant (rs13120336) was 85 
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significantly associated with Dim 1 but not with Dim 2. Notably, the two dimensions demonstrated 86 

significant SNP-based heritability of 18-27% within the general population (N=12,518 in UKBB). 87 

Lastly, in a subset of individuals having longitudinal measurements, Dim2 demonstrated a more 88 

rapid longitudinal change in GM and brain age, and was more likely to progress to Alzheimer's 89 

disease, compared to Dim1 (N=1,431 participants and 7,224 scans from ADNI, BLSA, and 90 

BIOCARD datasets).   91 

 92 

Conclusions and Relevance: Heterogeneity in LLD was represented by two dimensions with 93 

distinct neuroanatomical, cognitive, clinical, and genetic profiles. This dimensional approach 94 

provides a novel mechanism for investigating the heterogeneity of LLD and the relevance of the 95 

latent dimensions to possible disease mechanisms, clinical outcomes, and responses to 96 

interventions.    97 
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Introduction  98 

Major depressive disorder (MDD) is one of the most common mental health disorders and is a 99 

leading contributor to disability worldwide (1, 2). Late-life depression (LLD) generally refers to 100 

MDD that is present from 60-65 years of age, which can be early-onset or late-onset, affecting 1.8-101 

7.2% of older adults in the general community (3, 4). 102 

There is considerable heterogeneity in the clinical presentation and illness progression (5, 103 

6). Pharmacological and psychological treatments tend to be less effective in LLD. Up to 50% of 104 

LLD patients do not achieve remission with their first treatment (7). LLD is associated with 105 

cognitive impairments (5,6) and high comorbidity, including cardiac and cerebrovascular disease 106 

(8), stroke (9), as well as increased risk for obesity, diabetes, frailty (10), and neurodegenerative 107 

diseases such as Alzheimer's disease and vascular dementia (11–14). 108 

Magnetic resonance imaging (MRI) has revealed grey matter (GM) reductions in bilateral 109 

anterior cingulate and medial frontal cortices, insula, putamen, and globus pallidus, extending into 110 

parahippocampal gyrus, amygdala, and hippocampus. In contrast, larger GM volumes have been 111 

observed in the lingual gyrus (15), putamen and caudate regions (16). Diffusion tensor imaging 112 

(DTI) demonstrates widespread losses in white matter (WM) integrity, including in the anterior 113 

thalamic radiation, cingulum, corticospinal tract, superior and inferior longitudinal fasciculi, and 114 

uncinate fasciculus (17). Collectively, the findings support biological models of LLD being 115 

associated with cortical atrophy and white matter abnormalities in specific brain networks, 116 

although the extent and magnitude have varied. 117 

A developing body of methodological advancement in data-driven biological subtypes 118 

(18–23) is challenging the traditional definition of neurological diseases, such as Alzheimer's 119 

disease (18, 19, 21, 22) and MDD (24–26). One of the critical advantages of semi-supervised 120 
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clustering methods (22, 23, 27, 28) is that it performs subtyping via the “1-to-k” mapping from the 121 

domain of a reference group (i.e., healthy control) to the patient group, thereby avoiding clustering 122 

patients according to disease-irrelevant confounds. Distinct neuropathological mechanisms may 123 

underlie heterogeneity in the presentation and progression of the clinical phenotype (29). 124 

Furthermore, the extent to which genetic heterogeneity influences or interacts with phenotypic 125 

expression has barely been explored (30), while individual-level variability, including 126 

environment, genetic or other factors, may lead to different levels of disease liability (31).  127 

We sought to delineate heterogeneity in LLD in a large multicenter sample (N = 996) using 128 

a state-of-the-art semi-supervised clustering method (HYDRA) 1  (27). We hypothesized that 129 

multiple distinct dimensions coexist to account for the underlying heterogeneity and that these 130 

dimensions might be prominent in the general population and longitudinal trajectories.  131 

 132 

Materials and methods 133 

Participants 134 

The iSTAGING study is an international consortium consisting of various imaging protocols, 135 

scanners, data modalities, and pathologies (32), comprising harmonized MRI data in more than 136 

35,000 participants, from over 13 studies, and encompassing a wide range of ages (22 - 90 years). 137 

The present study includes LLD from four cohorts, including UK Biobank (UKBB) (33); 138 

Psychotherapy Response Study at the University of California San Francisco (UCSF); Baltimore 139 

Longitudinal Study of Aging (BLSA) (34, 35); and Biomarkers of Cognitive Decline Among 140 

Normal Individuals (BIOCARD). The institutional review board per site approved the study. All 141 

participants provided informed consent to the studies contributing data to this pooled meta-analysis. 142 

 
1 https://github.com/anbai106/mlni 
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We applied a harmonized LLD definition criterion to consolidate LLD participants and 143 

excluded comorbid medical and neurological diseases that were potential confounds (i.e., LLD 144 

population) as follows: i) all participants from all four sites are restricted to be 60 years or above; 145 

ii) For UKBB, we excluded subjects that are diagnosed with schizophrenia, bipolar, psychotic 146 

symptoms, anxiety, obsessive-compulsive disorder, post-traumatic stress disorder, Huntington's 147 

disease, AD, epilepsy and stroke, diabetes, or hypertension; For BLSA, we excluded individuals 148 

diagnosed with hypertension, anxiety, bipolar or schizophrenia; For BIOCARD, we excluded 149 

individuals diagnosed with diabetes or hypertension; For UCSF, we excluded individuals with 150 

substance abuse, psychotic features, cognitive-enhancing use, neurological diseases, or post-151 

traumatic stress disorders (Table 1). Moreover, we defined two additional populations: i) general 152 

population (12,518 participants from UKBB) and ii) longitudinal population (1,431 participants 153 

from ADNI, BLSA, and BIOCARD). A total of 996 participants (501 LLD patients and 495 154 

healthy control subjects) were included for the LLD population. Image protocols and acquisition 155 

parameters for all sites are presented in Supplementary eMethod 1.  156 

 157 
Image preprocessing 158 

Quality-controlled (QC) images were corrected for magnetic field intensity inhomogeneity (36) 159 

(Supplementary eMethod 2). A state-of-the-art multi-atlas parcellation method (MUSE) (37) was 160 

used to extract regions of interest (ROI) values of the segmented GM tissue maps (Supplementary 161 

eTable 2). Voxel-wise regional volumetric maps (RAVENS) for each tissue volume (38) were 162 

generated by spatially aligning the skull-stripped images to a template residing in the MNI-space 163 

using a registration method (39). Fractional anisotropy (FA) maps were used to examine 164 

microstructural integrity disruptions in WM (Supplementary eMethod 3). The mean FA values 165 
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were extracted within the 48 WM tracts of the JHU ICBM-DTI-81 WM label atlas (40). Inter-site 166 

image harmonization of the GM MUSE ROIs is detailed in Supplementary eMethod 4. 167 

 168 

Genetic preprocessing  169 

We consolidated an imaging-genetic dataset from UKBB that passed the QC protocol, resulting in 170 

20,438 participants and 8,430,655 single nucleotide polymorphisms (SNPs) (Supplementary 171 

eMethod 8). We then selected 774 UKBB participants who overlapped with the LLD population 172 

for genetic analyses. 173 

 174 

Discovery of the multidimensional representation via HYDRA  175 

We applied a semi-supervised clustering method, termed HYDRA (27) (Supplementary 176 

eMethod 5), to the harmonized MUSE ROIs. Briefly, HYDRA aims to cluster disease effects 177 

instead of directly clustering participants by comparing the patterns between healthy controls (CN) 178 

and LDD patients, thus resulting in a "1-to-k" mapping from the CN to the patient domain. 179 

We chose the optimal number of dimensions/clusters (k), ranging from 2 to 8 clusters, by 180 

the Adjusted Rand Index (ARI) (41). We performed additional analyses to evaluate the robustness 181 

of the optimal k clusters scheme. First, split-sample analyses (42) were carried out to assess 182 

whether the dimensions in each half exhibit similar neuroanatomical patterns, given that the two 183 

halves had similar cohort characteristics in terms of age, sex, and site. Secondly, we conducted 184 

leave-site-out validation (43) to examine if the dimensions were consistent across sites: i) training 185 

on UKBB only and ii) training on all sites. Lastly, a permutation test was performed to test the 186 

statistical significance with the optimal k cluster scheme (Supplementary eMethod 6).  187 

 188 

Evaluation of the multidimensional representation in neuroimaging, cognition, and genetics    189 
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We subsequently investigated their characteristics regarding i) GM volume, ii) WM integrity, iii) 190 

cognitive functioning and depression-related variables, and iv) genetic architecture. Moreover, we 191 

investigated the expression of the k dimensions in the general population and longitudinal data. 192 

 193 

Voxel-wise GM RAVENS regional tissue volumes  194 

Voxel-wise RAVENS GM maps from all sites were used to assess the differences in GM tissue 195 

volumes. The 3dttest++ program (44) in AFNI (45) was used to detect the distinct 196 

neuroanatomical patterns of the corresponding dimensions vs. the CN group, considering age, sex, 197 

site, and ICV as covariates. Finally, for those voxels that survive the adjustment (Benjamini-198 

Hochberg procedure), voxel-wise effect-size maps (i.e., Cohen's f2) were estimated for each paired 199 

comparison. 200 

 201 

Regional WM integrity abnormality  202 

WM microstructural abnormality was assessed using the mean FA values of the 48 regional tracts 203 

from UKBB. Group comparisons were performed with multiple linear regression models using R 204 

(version 3.4.0, The R Foundation) (Supplementary eMethod 9). Age and sex were fixed effects, 205 

and group was the variable of interest. P-values were corrected, and Cohen's f2 was computed with 206 

the same procedure as above.  207 

 208 

Demographic, cognitive, and clinical variables 209 

Group comparisons for demographic, cognitive, and clinical variables (Supplementary eTable 5) 210 

were examined separately between the dimensions. Mann–Whitney–Wilcoxon test was used for 211 

continuous variables (e.g., age) and Chi-Square test of independence for categorical variables (e.g., 212 

sex). Global effect size (i.e., Cohen's d) was also reported for continuous variables.  213 



10 
 

 
 

 214 

Genome-wide associations 215 

We performed GWAS with the derived binary dimension traits, i.e., Dim1 or Dim2 vs. CN using 216 

Plink 22. FUMA online platform3 was then used to annotate the genomic risk loci and independent 217 

significant SNPs (Supplementary eMethod 8).  218 

 219 

Evaluation of the multiple dimensions in the general population 220 

The trained model was applied to the external validation samples in the general population (Table 221 

1). Dimension membership (Fig. 3B) and expression scores of the k dimensions were derived 222 

(Supplementary eMethod 7).  223 

We examined the neuroanatomical patterns using RAVENS GM maps, demographic and 224 

cognitive functioning of the k dimensions in the general population. We calculated the genome-225 

wide SNP-based heritability coefficient (h2) using GCTA4 (Supplementary eMethod 8). 226 

 227 

Evaluation of the multiple dimensions in longitudinal data and their progress to AD and brain 228 

aging 229 

The cross-sectionally trained model was applied to the longitudinal population (Table 1). 230 

Dimension membership was derived to evaluate its longitudinal changes in MUSE GM ROIs, 231 

SPARE-AD (Spatial Patterns of Atrophy for REcognition of AD) (46), SPARE-BA (Brain Age) 232 

(47). Specifically, the Rate of Change (RC) over time in these variables for each participant was 233 

derived with a linear mixed-effects model and compared across dimensions using a linear 234 

regression model (Supplementary eMethods 9, 10). 235 

 236 

 
2 https://www.cog-genomics.org/plink/2.0/ 
3 https://fuma.ctglab.nl/ 
4 https://cnsgenomics.com/software/gcta 
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Results  237 

HYDRA reveals two dimensions  238 

The highest ARI (0.58) was achieved by a HYDRA model for k=2 clusters (Supplementary 239 

eFigure 1). The cluster assignment distribution for k = 2 to 8 across sites is presented in 240 

Supplementary eTable 3. For the optimal k=2 clustering scheme, 227 LLD participants were 241 

assigned to Dimension 1 (Dim1) and 274 to Dimension 2 (Dim2). The optimal k=2 clustering 242 

scheme was replicated in split-sample and leave-site-out analyses (Supplementary eFigure1). In 243 

the leave-site-out analyses, the percentage overlap for participants assigned to the same dimension 244 

was 89.12% (91.77% for UKBB, 76.41% for BLSA, 81.27% for BIOCARD, and 84.45% for 245 

UCSF). The neuroanatomical patterns of the two dimensions were similar (Supplementary 246 

eFigure 3) to the original dimension patterns (Fig. 1). In split-sample analyses, the GM patterns 247 

for the two splits were similar (Supplementary eFigure 2) compared to the original dimension 248 

patterns (Fig. 1A). The ARI at k=2 was higher than the null distribution in the permutation test (P-249 

value<0.001). Lastly, we presented the results without excluding comorbidities in UKBB, which 250 

yielded similar imaging patterns for the two dimensions (Supplementary eFigure 4). Therefore, 251 

we present the results of k=2 for all subsequent analyses. 252 

 253 

Differences in GM volumetric patterns  254 

Dim1 demonstrated greater GM tissue volume in bilateral thalamus, putamen, and caudate relative 255 

to healthy controls. Dim2 demonstrated reduced GM tissue volume in widespread cortical regions, 256 

including bilateral anterior and posterior cingulate gyri, superior, middle, and inferior frontal gyri, 257 

gyrus recti, insular cortices, superior, middle, and inferior temporal gyri, etc., compared to controls 258 
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(Fig. 1A). The split-sample and leave-site-out analyses are detailed in Supplementary eFigure 2 259 

and Supplementary eFigure 3, respectively.       260 

  261 

Differences in WM integrity disruption 262 

Dim1 exhibited similar FA values compared to controls. However, Dim2 showed widespread WM 263 

disruptions, with 31 out of the 48 WM tracts demonstrating significantly lower FA values than 264 

controls but small effect sizes (0.01 ≤  Cohen's f2 ≤  0.05, Fig. 1B). Specifically, the middle 265 

cerebellar peduncle tract obtained the highest effect size (Cohen's f2=0.05). Other affected WM 266 

tracts mainly involved frontal lobe and subcortical limbic regions (Supplementary eTable 4).   267 

 268 
 269 
Dim1 and Dim2 demonstrate differences in clinical profiles 270 

Dim1 showed statistically higher scores in Fluid Intelligence scores (Cohen's d = 0.25) and fewer 271 

errors in Pairs Matching test (Cohen's d = -0.28), and fewer depressive symptoms in Patient Health 272 

Questionnaire responses (PHQ9) (Cohen's d = -0.45) relative to Dim2. The two dimensions did 273 

not significantly differ in age, sex, site, or other clinical variables (details in Supplementary 274 

eTable 5).  275 

  276 

Differences in genome-wide associations  277 

Dim1, but not Dim2, was significantly associated with one de novo independent variant 278 

(rs13120336 on chromosome 4) (P-value=3.14x10-8) (Fig. 2). Quantile-quantile plots are 279 

presented in Supplementary eFigure 5.   280 

 281 

Expression of the two dimensions in the general population 282 
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Applying the trained model to UKBB samples resulted in: 2269 Dim1 participants, 3786 Dim2 283 

participants, and 2963 Mixed individuals (both dimensions were expressed), and 3500 None 284 

participants (neither dimension was expressed) (Supplementary eTable 6 and Fig. 3B). 285 

 The neuroanatomical patterns of the two dimensions were stable (Fig. 3A). Dim1 showed 286 

higher scores in Fluid Intelligence scores (P-value < 1e-10, Cohen’s d = 0.28), but lower errors in 287 

Pairs Matching (P-value < 1e-6, Cohen’s d = -0.13) compared to Dim2 (Supplementary eTable 288 

6). The expression scores of the two dimensions were significantly heritable in the general 289 

population. Specifically, h2 for Dim1 and Dim2 was 0.27±0.04 (P-value<5.7e-10), and 0.18 ±0.04 290 

(P-value<1.1e-5), respectively.  291 

 292 

The two dimensions and longitudinal trajectories  293 

Applying the trained model to ADNI, BLSA, and BIOCARD, which also had longitudinal follow-294 

up data, yielded 301 Dim1 participants, 390 Dim2 participants, 330 Mixed individuals, and 410 295 

None participants in baseline images (Supplementary eTable 7).  296 

 The neuroanatomical patterns of the two dimensions were stable (Fig. 4A). The GM RC in 297 

Dim2 decreased more rapidly than Dim1 or None groups (-0.1 < Cohen's f2 < 0.1), specifically in 298 

the left precentral gyrus, temporal pole, and right anterior insula (Fig. 4B). Moreover, the two 299 

dimensions remained independent and stable along longitudinal trajectories (Fig. 4C). Lastly, 300 

Dim2 showed progression of both SPARE-AD (Cohen's f2=0.03) and SPARE-BA (Cohen's 301 

f2=0.03) compared to Dim1 (Fig. 4D), but not at baseline.  302 

  303 
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Discussion  304 

Two reproducible and distinct dimensions characterized neuroanatomical heterogeneity in LLD. 305 

Dim1 showed relatively preserved brain anatomy with larger subcortical regional volumes and 306 

was associated with one de novo genetic variant, while Dim2 displayed widespread brain atrophy 307 

and WM integrity disruptions with impaired cognitive functioning and increased depressive 308 

severity. Moreover, the two dimensions were manifested in the general population and were 309 

significantly heritable. Notably, Dim2 demonstrated a higher degree of progression to AD and 310 

brain aging signatures relative to Dim1.  311 

The two dimensions demonstrate the extent of underlying GM heterogeneity in patients 312 

with LLD. GM atrophy evident in Dim2 has been widely reported in previous case-control studies 313 

(48–50). Regional atrophy in the frontal lobes has been observed (51, 52), which is associated with 314 

cognitive deficits as well as reports of psychotic symptoms (53). Striatal atrophy has been 315 

associated with degeneration in the dopaminergic connections between caudate and cortical limbic 316 

areas involved in mood regulation (54), although increased caudate and putamen volumes have 317 

been found in UKBB depression phenotypes (16). Dim2 showed atrophy in hippocampal regions, 318 

perhaps indicative of future neuro progressive degeneration linked with Alzheimer's disease. 319 

The two identified neuroanatomical dimensions differed significantly in microstructural 320 

integrity. Dim1 shows no significant WM abnormalities, while Dim2 demonstrates widespread 321 

WM abnormalities. WM lesions may play a key role in conferring vulnerability or perpetuating 322 

depressive syndromes in LLD and contributing to the observed microstructural disturbance (55). 323 

Widespread WM disruptions can persist in LLD, even excluding WM lesions from the DTI 324 

analysis (56). WM tracts connecting fronto-subcortical and fronto-limbic regions are most 325 

frequently affected, including the uncinate fasciculus (57, 58), anterior thalamic radiation, superior 326 
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longitudinal fasciculus (55, 57, 59), and posterior cingulate cortex (60). Dim2 demonstrates 327 

clinical features of LLD patients that are frequently associated with more severe cognitive 328 

deterioration (61–63). Interestingly, previous studies using depressive symptom and cognitive 329 

scores (25), or metabolic-inflammatory profile (26), derived one subtype that was a 'healthy' group, 330 

and other subgroups that demonstrated higher depressive symptom scores or a more specific 331 

immune-inflammatory dysregulation profile. 332 

The detected genetic variant (rs13120336) was uniquely associated with Dim1. 333 

Interestingly, two mapped genes (CCDC110 and LOC105377590) have been previously linked to 334 

cancer and diabetes (64, 65). We speculate that these genetic factors may play a key role in the 335 

heterogeneity of imaging phenotype and cognitive dysfunctions in the two dimensions. Many 336 

studies have shown that depression is associated with different genetic variants, some of which 337 

were not replicated (66–69). Replication needs to be performed to confirm this detected variant. 338 

In general, our dimensional approach might provide another approach for genetic associations in 339 

depression.  340 

The two dimensions showed significant genetic heritability of 18-27%, potentially 341 

suggesting genetic underpinnings of neuroanatomical phenotypes associated with depression in 342 

the general population. Of note, multimorbidity, such as schizophrenia and anxiety disorders, 343 

exists in the UKBB population (70). Such comorbidities might account for the expression of the 344 

two dimensions to some extent. MDD is a common and complex syndrome with an estimated 345 

genetic heritability of approximately 40% (71), and prevalence rates range from 7 - 13% (69). Our 346 

findings confirm the high risks and prevalence of depression in the general population.  347 

The proposed two-dimensional representation emphasizes the tremendous prognostic 348 

potential to distinguish LLD that is co-occurring or preceding neurodegenerative diseases. Dim2 349 
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progressed towards an AD or brain aging signature, whereas Dim1 expressed a preserved brain 350 

anatomy. Epidemiological studies (72, 73) have consistently found that shared risk factors exist in 351 

AD and LLD, supporting depression as a prodromal feature or a risk factor of AD. Interestingly, 352 

the two dimensions did not longitudinally differ in cognitive impairment, perhaps supporting the 353 

AD pathological cascade model (74).  354 

To ensure the reproducibility of the finding, we had performed additional analyses: split-355 

sample analysis, leave-site-out analysis, and applying the model trained on LLD to independent 356 

UKBB and a combined ADNI, BLSA, and BIOCARD cohort with the same age range as the LLD 357 

population. From a technical perspective, applying the trained LLD model to a younger population 358 

would be possible, but this could lead to a trivial solution due to the significant difference in age 359 

ranges, rather than due to a disease effect of interest, as aging might play a crucial role in driving 360 

these dimensions. We believe that applying the model to external data requires careful 361 

consideration of potential confounds, such as demographic differences.  362 

There are several limitations. We had sought to limit potential confounds in population 363 

selection in order to aid interpretation of the dimensions. However, this could then potentially limit 364 

generalizability of the findings. That the dimensions were reproduced in various conditions 365 

demonstrates the robustness of the dimensions. Nonetheless, longitudinal LLD data are required 366 

to confirm the added value of the proposed multidimensional representation and replication of the 367 

GWAS findings is necessary. 368 

 369 
Conclusions 370 

LLD was characterized by two dimensions linked to neuroanatomy, cognitive functioning and 371 

genetic profiles. The two-dimensional representation offers a system for future research on the 372 
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underlying etiology mechanisms, heterogeneity of genetic architectures, and the potential for 373 

personalized clinical care.  374 
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Figure legend 416 

Figure 1: The two dimensions show distinct structural patterns. Effect size maps were 417 
identified in Dimension 1 (Dim1) and Dimension 2 (Dim2) compared to controls (CN), 418 
respectively. A) Multiple selective views are shown in different views. Warmer color denotes brain 419 
atrophy (i.e., CN > Dim), and cooler color represents larger tissue volume (i.e., Dim > CN). Both 420 
directions are shown for each dimension. L: left; R: right. The effect size map is shown in a 421 
radiological fashion, i.e., the brain's left is shown to the right of the display. B) Dim1 and Dim2 422 
demonstrate two distinct WM patterns based on FA values. Dim1 exhibits a normal appearance, 423 
without significant difference from controls; whereas Dim2 shows widespread disruptions in WM 424 
integrity. The P-value and effect size for all the 48 WM tracts are shown in Supplementary eTable 425 
4. Both directions of the comparisons are performed, but effect sizes only show WM integrity 426 
disruptions. For references, Cohen's f2 of ≥ 0.02, ≥ 0.15, and ≥ 0.35 signify small, moderate, and 427 
large effect sizes, respectively. Of note, we would like to clarify we do not claim that voxel-based 428 
differences provide validation of clustering. We simply show these comparisons to elucidate the 429 
characteristics of the dimensions determined by the machine learning algorithm so that we can 430 
appreciate the features which were found by the algorithm to be essential for the definition of these 431 
dimensions.  432 
 433 
Figure 2: Dim1 and Dim2 demonstrate distinct genetic profiles in GWAS. A) Dim1 was 434 
significantly associated with a novel genomic risk locus. This significant independent SNP 435 
(rs13120336) is in LD with other seven-candidate SNPs that passed the GWAS P-value threshold 436 
(5e-8). FUMA identified two corresponding protein-encoding genes: CCDC110 and 437 
LOC105377590; B) Dim2 was not significantly associated with any variants. 438 
 439 
Figure 3: The expression of the two dimensions in the general population. A) The two 440 
neuroanatomical dimensions in UKBB show distinct grey matter abnormalities. Effect size maps 441 
of GM patterns were identified in Dimension 1 (Dim1) and Dimension 2 (Dim2) compared to 442 
None (the dimension that does not express in Dim1 and Dim2), respectively. Multiple selective 443 
views are shown with the number of slices in the axial view. Warmer color denotes brain atrophy 444 
(i.e., None > Dim), and cooler color represents larger tissue volume (i.e., Dim > None). Both 445 
directions are shown for each dimension. Cohen's f2 of ≥ 0.02, ≥ 0.15, and ≥ 0.35 signify small, 446 
moderate, and large effect sizes, respectively. L: left; R: right. The effect size map is shown in a 447 
radiological fashion, i.e., the brain's left is shown to the right of the display. We include age, sex, 448 
and ICV as fixed effects and group (None vs. Dim1 or Dim2) as the variable of interest. The 449 
likelihood ratio test was used to test each effect. B) The quadrant plot after applying the HYDRA 450 
model trained on the LLD population to the external UKBB individuals. X-axis and Y-axis 451 
represent the expression scores for each individual at the Dim1 and Dim2, respectively. The 452 
dimension membership was decided based on the two expression scores, E1 and E2. Specifically, 453 
the individual was assigned as None when E1 and E2 are smaller than -0.3, as Dim1 when E1 > 454 
0.3 and E2 < -0.3, as Dim2 when E1 < -0.3 and E2 > 0.3, and as Mixed for the other individuals. 455 
 456 
Figure 4: The two dimensions and longitudinal trajectories to aging and AD. A) The two 457 
neuroanatomical dimensions in ADNI, BLSA, and BIOCARD baseline images show distinct grey 458 
matter abnormalities. Warmer color denotes brain atrophy (i.e., None > Dim), and cooler color 459 
represents larger tissue volume (i.e., Dim > None). Both directions are shown for each dimension. 460 
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Cohen's f2 of ≥  0.02, ≥  0.15, and ≥  0.35 signify small, moderate, and large effect sizes, 461 
respectively. L: left; R: right. B) The rate of change (RC) shows that Dim1's brain volume 462 
decreases with time more rapidly than Dim2. Only subjects for which MRI data were available at 463 
least for 6-time points were included for this analysis. C) Applying the HYDRA model to all 464 
available longitudinal scans with at least 6 years follow-ups. The two dimensions stay stable over 465 
time and are independent of each other. D) The positive RC for SPARE-AD and SPARE-BA of 466 
Dim2 is bigger than Dim1, meaning that Dim2 is more vulnerable to AD and brain aging 467 
longitudinally. Only subjects that have at least 6 time points were included for this analysis. 468 
 469 
Table 1. Study cohort characteristics. 470 

  LLD population General population Longitudinal 
population  

CN LLD P-value CN1 CN2 
N 495 501 12518 1431 
Age (year) 
[min/max] 
 

66.26 [60, 
91.47] 

67.33 [60, 91] 0.34 67.23 [60, 80] 71.88 [60, 93] 

Sex/ 
female, % 

333/ 
67% 

332/ 
66% 

0.78 6123/49% 666/47% 

Education (year) 14.76± 
2.68 

14.87± 
2.62 

0.55 16.90± 
2.81 

16.86± 
2.57 

Systole 135.03± 
16.83 

134.75± 
16.56 

0.52 140.97± 
18.88 

124.06± 
2.57 

Diastole 75.59± 
9.24 

79.05± 
9.15 

0.45 82.26± 
10.45 

69.93± 
11.05 

Age of onset (year) NA 34.62± 
15.70 

NA NA NA 

Age is shown with mean and its range. Sex is displayed with the female and its percentage. Mann–Whitney–Wilcoxon 471 
test was used for continuous variables (e.g., age) and the Chi-Square test of independence for categorical variables 472 
(e.g., sex). CN: healthy control; NA: not applicable; P: P-value. More details of the LLD population per site are 473 
presented in Supplementary eMethod 1. For the general population, we included all individuals from UKBB over 60 474 
years old (excluded overlapping individuals in the LLD population). 1Note that this population is cognitively healthy 475 
(CN) but might be diagnosed with other general disorders historically (ICD-10: 476 
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=41202). More details of the general population are presented in 477 
Supplementary eTable 6. For the longitudinal population, we included all healthy controls from ADNI, BLSA, and 478 
BIOCARD that were diagnosed as CN at baseline. We present here only baseline information2. For more details, refer 479 
to Supplementary eTable 7.   480 

https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=41202
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