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Abstract
Electricity system decarbonisation poses several challenges to network stability and
supply security, given renewables' intermittency and possible reduction of system inertia.
This manuscript presents a novel integrated system framework to determine optimal
generation investments for addressing decarbonisation challenges and achieving cost‐
effective electricity systems while ensuring frequency stability and reserve requirements
are met at the operational level in a net‐zero system. The novel planning framework is a
mixed‐integer bilinear programming problem accurately modelling clustered variables for
the on/off status of generation units and seconds‐timescale frequency requirements at an
operational and planning level. The benefits of the decision framework and effects of
dispatch decisions in a year are illustrated using the Great Britain case study. The results
provide optimal trade‐offs and cost‐effective investment portfolios for including detailed
modelling of unit‐commitment and frequency stability constraints versus not including
them in the planning model. Making investment decisions for a net‐zero electricity system
without these constraints can lead to very high system costs due to significant demand
curtailment. Although the model's computation burden was increased by these con-
straints, complexity was managed by formulating them tightly and compactly. Non‐
convex quadratic nadir constraints were efficiently solvable to global optimality by
applying McCormick relaxations and branching techniques in an advanced solver.
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1 | INTRODUCTION

The ambitious decarbonisation targets agreed upon by coun-
tries globally are bringing about significant transitions in
technology investments and operations of power system net-
works. Achieving a low or net‐zero emission system requires
substantial additions of variable, non‐synchronous, low‐carbon
generators and the retirement of many conventional power
plants [1–3]. In a bid to achieve supply security with variable
and unpredictable renewable energy generators, enormous

complexities are being imposed on the system. From the sys-
tem operator perspective, the low‐inertia nature of a network
with high penetration of intermittent renewable energy gen-
erators would require more reserves and flexibility to provide
an adequate frequency response and ancillary services [1, 2, 4,
5]. Providing these services with conventional generators in-
creases the chances of renewable power curtailment, especially
during high output at off‐peak times and in violation of
emission targets, thereby increasing costs in the system. These
challenges, therefore, highlight a need for cost‐effective
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investment decisions in flexible technology solutions to attain
supply security in future integrated low‐carbon power systems.
The whole system assessment of power systems networks has
been shown to improve the cost‐effectiveness of investments
and operations of technologies [6, 7].

Even though some authors [8] highlight that modelling
unit commitment (UC) may not be relevant in a system with
almost 100% renewables penetration, there are increasingly
more flexible, clean firm technologies, such as hydrogen
technologies, nuclear, biogas, and natural gas with carbon
capture and storage (CCS) technology, necessary for reliability
and balancing services in the future net‐zero carbon electricity
system [9]. Literature has shown that in a system with high
penetration of variable renewable sources, modelling UC
constraints and online status of generators at the operational
level are key for capturing the needed system flexibility,
amongst other critical requirements such as reserves and
temporal constraints [10]. Some recent research works have
shown the importance of operational details in an investment
planning model [11]. However, only a few existing research
studies have considered an integrated expansion planning
problem of power systems, including detailed operational
constraints, especially inter‐temporal constraints such as UC,
frequency, and reserve constraints. The few existing studies
formulate the integrated expansion problem by adopting a
considerably simplified description of the operational level. In
a bid to highlight the benefits of UC constraints modelling, the
authors in Ref. [11] showed hourly ramping rate constraints
make for more cost‐effective generation expansion decisions
but excluded other relevant generator characteristics such as
the start‐up/down cost or minimum‐up & down time. How-
ever, such investment models do not adequately describe the
value and potential of flexibility in power system technologies.
The authors in Refs. [12, 13] emphasise the benefits of power‐
based unit‐commitment modelling to accurately represent
flexibility capabilities and system requirements, as they ensure
more effective use of the installed generator investments when
compared with an energy‐based model. Specifically, the au-
thors in Ref. [14] highlighted that the tight and compact
formulation of UC, amongst the current state‐of‐the‐art for-
mulations, is more computationally efficient for solving day‐
ahead dispatch of generation units.

More so, the authors in Refs. [13, 15] proved that not
including UC constraints leads to overestimating the value and
actual flexibility required from synchronous, renewable, and
flexible technologies and underestimating the operational and
total system cost. Neglecting UC constraints significantly af-
fects the capacity mix deemed optimal by the model, the
resulting generation mix, carbon emissions and cost pro-
jections, specifically for a highly renewable and carbon‐
constrained electricity system. This study focuses on
capturing the operational flexibility of these more flexible
power plants and flexible technologies in a planning model for
accurate and cost‐effective investments. Also, to replicate the
ramping, reserve, start‐up/shut‐down flexibility of individual
UC within a cluster, the authors in Ref. [16] has proposed a
more accurate method for formulating clustered power‐based

UC, which will be adopted in this paper. The formulation in-
cludes constraints with the binary on/off status and reserve
assignment for individual units of clustered generators with
identical technology to avoid overestimating their flexibility in
a system with the high penetration of variable renewable
sources without increasing the computational burden.

Systems operators require flexibility to provide ancillary
services, especially reserves and frequency response, balancing
supply‐demand deviations and essential system requirements in
future power systems planning models. Increasingly, system
operators need to procure more frequency response products
such as systems inertia, Enhanced Frequency Response (EFR),
and primary frequency response to handle the growing low
inertia in the projected renewable energy‐dominated system. A
report by the National Grid [17] proposed the need for sub‐
second, faster‐acting response services from alternative tech-
nologies to conventional thermal plants to achieve optimum
flexibility in power systems with decreasing inertia. The fre-
quency response requirements on a system depend on the
available system inertia and the size of the largest generator
loss. Battery storage systems have been shown to provide the
much‐required sub‐second response [17, 18]. Through a novel
frequency‐constrained stochastic UC model, the authors in
Ref. [19] further showed the benefits of co‐optimising energy
production and provision of synchronised and synthetic
inertia, EFR, Primary Frequency Response (PFR) and
dynamically‐reduced largest power in‐feed. In addition, the
authors in Ref. [20] proved the capability of a Combined Cycle
Gas Turbine Plant (CCGT) to provide the much‐needed
flexibility for future low‐carbon power systems, especially
those with enhanced flexibility parameters. Some studies have
recognised the importance of including these frequency sta-
bility requirements in investment planning problems. The au-
thors Ref. [21] in their article on assessing the impact of inertia
and reactive power constraints in generation expansion plan-
ning emphasised that disregarding inertia and reactive power
constraints in generation expansion planning formulations can
result in extra costs, load curtailment, and distortion of optimal
resource allocation. However, their article did not consider the
frequency stability constraints.

The authors in Refs. [6, 7] employed a whole system
approach to determine the benefits of real‐time balancing per
second over a 1‐year time horizon. The model emphasised
savings that can come from co‐optimising generation and
network assets investment while improving the operational
efficiency of different assets in the system. Frequency response
and reserve provision from energy storage and conventional
generators were considered without frequency‐security con-
straints. In addition, the authors in Ref. [22] considered energy
storage potential alongside conventional generators in the
planning problem for primary frequency response adequacy
and for improving the system's frequency security limits. This
model did not consider the different response times of storage
and conventional generators in providing frequency response.
More specifically, these research studies excluded the detailed
modelling of security constraints such as the primary frequency
response (PFR) constraints, which can ensure the security of
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supply at times of lower inertia and loss of the largest gener-
ator. The authors in Ref. [8] showed that in UC problems, the
rate of change of frequency (RoCoF) limit is typically the most
restrictive constraint in an inertia‐aware binary UC problem,
compared to the limits on frequency nadir and quasi‐steady
state frequency deviation. Studying the impacts of omitting
and including these other FR constraints in a generation
planning problem becomes essential.

The authors in Ref. [23] carried out studies on a planning
problem, without detailed UC modelling, to identify the role of
the fast frequency response of energy storage systems and
renewable technologies for ensuring frequency stability in
future low‐inertia systems. The model included inertia and
RoCoF contributions and showed some benefits, but inertia
was fixed for different studies without considering the number
of generators online. Similarly, the authors in Ref. [10] exam-
ined the impact of operational details on generation investment
planning in a renewable energy‐dominated system. The model
included ramping limits, UC and very fast frequency contain-
ment reserves requirements in inertia and RoCoF. However,
apart from the integer UC variable being relaxed to its linear
counterpart, the research did not consider ramping costs, shut‐
down costs, or different start‐up types. Also, the frequency
stability constraints adapted did not consider load damping
effect, nadir, or quasi‐steady state requirements, and the largest
generator loss was a fixed value as a function of time.

Whilst these studies have investigated some level of oper-
ational details in their power system models, the current study
includes additional details for assessing the impact of sched-
uling and frequency stability constraints on investments in
technologies. The paper reports a comparative study of inte-
grated planning problems that consider different formulations
of scheduling constraints. Both planning problems employ a
clustered UC formulation, but one of the formulations in-
cludes a detailed description of the commitment of the single
generators.

2 | CONTRIBUTION AND APPROACH

This article proposes a novel integrated planning framework to
determine the optimal technology portfolio for a cost‐effective
electricity system while ensuring frequency stability and reserve
requirements at the operational level. The framework in-
tegrates the operational dynamics of post‐fault frequency re-
quirements [19] of the frequency rate of change, frequency
nadir, and quasi‐steady state frequency in an integrated plan-
ning problem formulation, selecting the optimal generation
and flexible technologies portfolio. In order to meaningfully
model the response limitations of conventional generators, we
have adopted a detailed description of the inter‐temporal
constraints of each unit based on Ref. [24]. The accurate UC
model allows considering simultaneous scheduling of multiple
frequency services and identifying optimal investments in low‐
carbon technologies such as Hydrogen‐powered CCGT

(H2CCGT ), nuclear and renewable assets, as well as flexible
technologies such as battery storage, hydrogen storage and
electrolysers, which operate at multiple timescales, for the se-
curity of supply and stable operation of future power systems.
However, using an accurate UC model in a planning problem,
consisting of multiple investment options, services and time-
scales, gives rise to a challenging optimisation problem due to
the substantial increase of symmetries. As a result, additional
constraints removing a large proportion of the symmetries
have been introduced to improve computational performances
considerably. The resulting model is a large‐scale mixed‐integer
bilinear programming problem solvable to global optimality by
applying McCormick relaxations and spatial branching tech-
niques implemented in the Gurobi optimisation solver [25].

To the best of the authors' knowledge, the proposed
framework and relative case studies consider for the first time
multiple post‐fault seconds‐timescale frequency requirements
in an integrated planning problem formulation, including
detailed descriptions of the inter‐temporal constraints of each
generator unit and contribution of different hydrogen and
other flexible technologies for reserve and frequency provision
services.

After applying the aforementioned linearisation techniques
for bilinear constraints from using an advanced solver, the
novel planning model becomes a mixed‐integer linear pro-
gramming problem optimised on a time horizon of 1 year and
hourly time resolution consisting of discrete variables for In-
vestment costs (IC) and binary variables for the on/off status
of generation units at the operational level. The presented
deterministic studies focus on a cost‐benefit system analysis
capturing the effects of dispatch decisions in 1 year from the
central planner/utility point of view. The constraints formu-
lated on the hourly variables include conditions happening on
the time scales of seconds, especially for the frequency
response requirements. Also, the requirements on an annual
basis, such as the need for hydrogen to be stored across sea-
sons for periods of low renewable output, are formulated with
estimated boundary conditions but still using the hourly time
horizon. The benefits of the proposed approach are depicted
through modelling and analysing the technologies in a modi-
fied single‐bus system to address some critical concerns about
the role of storage and hydrogen technologies for the future
power system. An extensive analysis of the impact of various
system operational characteristics on generation expansion
planning problems consisting of low‐carbon conventional
technologies, low‐inertia renewable technologies, and flexible
technologies has been performed to ensure system security and
stability. The studies concurrently optimise investments in low‐
carbon technologies while minimising the system's short‐term
Operating costs (OC) through hourly time resolution repre-
sentation of the system operation together with reserve and
frequency stability and regulation requirements for a net‐zero
system. To the best of the authors' knowledge, the proposed
study has not been conducted to the depth of modelling detail
applied at the operation level of this planning problem.
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A similar study was conducted by the authors in Ref.
[10], where the impact of operational details on a single
node generation investment planning in energy systems
dominated by renewable plants was examined. However,
apart from the integer UC variable being relaxed to its linear
counterpart, the analysis did not also consider ramping
costs, shut‐down costs or different start‐up types. Also, the
frequency stability constraints adopted did not consider load
damping effect, nadir or quasi‐steady state requirements. The
largest generator loss was also considered to be a fixed value
per time.

In summary, the main contributions of this paper are as
follows:

� We propose a model framework linking seconds‐timescale
frequency stability and hourly timescale UC to a yearly
timescale generation planning optimisation.

� We examined the impact of detailed seconds‐timescale fre-
quency stability and mixed integer UC constraints, amongst
other operational details, on the optimal planning for in-
vestments in technologies simultaneously scheduled to
provide inertia, primary frequency response, and enhanced
frequency reserves in a net‐zero system.

� We also examined the integration of hydrogen technologies,
especially H2CCGT, for supporting the frequency response,
amongst other flexibility requirements.

� We propose additional constraints to remove a large pro-
portion of the symmetries introduced by the clustered UC
variables to improve computational performances
considerably.

All the studies consider the projected electricity and heat-
ing demand in the 2050 GBnet‐zero scenario developed by the
government [1] to emphasise the impacts and benefits of
considering frequency stability constraints in a generation
expansion planning problem.

3 | PROBLEM FORMULATION

The proposed system design problem follows an integrated
system approach to power planning according to [7, 26] and
captures the influence of fast dynamics at the investment
temporal scale. The objective function to be minimised con-
sists of the overall system costs (investment and operation
cost) subject to investment and operation constraints:

min
x∈CðρÞ

VIðx; ρÞ þ VOðx; ρÞ
� �

ð1Þ

Equation (1) states both the investment cost function VI(⋅)
and operations cost function VO(⋅) are to be minimised, where
x denotes the whole collection of decision variables, ρ the
system parameters and Cð⋅Þ the set of constraints depending

on the parameters ρ. Refer to Appendix A for the nomen-
clature of the symbols used for the parameters and variables
used in the problem formulation. The full set of constraints is
introduced and discussed later in this section, while the in-
vestment cost function VI(⋅) and operation cost function VO(⋅)
are as follows:

V Iðx; ρÞ ¼
X

n∈ΩN

X
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The investment cost function VI(⋅) deals with the balance
among renewable generation, thermal generators, storage as-
sets, hydrogen production technologies such as gas‐heated
reformers with carbon capture storage (GHR‐CCS) and elec-
trolysers for blue and green hydrogen gas, respectively. The
storage assets include both battery storage and hydrogen
storage plants. The operation cost function VO(⋅) consists of
the sum of generation cost, start‐up cost, no‐load cost, shut‐
down cost, load curtailment, reserve curtailment, cost of
reserve scheduling, [27], cost of hydrogen production, and
storage operation costs. Load curtailment is economically
penalised using the Value of Lost Load Γ, fixed at 30, 000
$/MWh, while reserve curtailment is economically penalised
using ϒ.

Limitations on investment in thermal generation technol-
ogies are as follows:

0 ≤ Gn;gT ≤ Gn;gT ; ∀gT ∈ ΩT
G; ∀n ∈ ΩN ð4Þ

0 ≤ GH
n;o ≤ GH

n;o ∀ o ∈ ΩT
EL;BL ∀ n ∈ ΩN ð5Þ
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Similar investment bounds have been imposed on other
candidate technologies considered for investment in
constraint (2).

Constraints (6) describe the supply demand balance
∀ n ∈ ΩN, ∀ t ∈ Ωb

T and ∀b ∈ ΩB

X

g∈ΩG

Jn;g pt;g þ pmsg
g ut;g

� �
þ
X

r∈ΩR

pRt;n;r þ
X

ℓ∈Ωℓ

In;ℓf t;ℓ

þ
X

es∈ΩE
S

h−
t;n;es − hþ

t;n;es

� �
þ σd

t;n ¼ dt;n þ
Qt;n;el

ηel

ð6Þ

In like manner, the supply demand operation of the elec-
trolyser, GHR‐CCS hydrogen technology, and hydrogen stor-
age technologies per time is described in constraint (7)
∀b ∈ ΩB, ∀ t ∈ Ωb

T − tþb
� �

[28]:

X

n∈ΩN

Qt;n;el þ Qt;n;bl þ
X

hs∈ΩH
S

h−
t;n;hs − hþ

t;n;hs

� �
0

@

1

A

¼
X

n∈ΩN

Jn;h2g

pt;h2g þ pmsg
h2g ut;h2g

ηh2

 !
ð7Þ

where h2g indicates the H2CCGT plants.
The LHS of supply demand constraints (7) includes the

sum of hydrogen produced by the electrolyser, GHR‐CCS, and
hydrogen stored, while the RHS describes the demand for
hydrogen driven by the electrical power output of the
H2CCGT plant. Note that in constraint (7), hydrogen trans-
portation is neglected as the balance is performed by summing
over all the bus nodes. The operation of the hydrogen pro-
duction by the electrolyser and GHR‐CCS is modelled as
follows ∀b ∈ ΩB, ∀ t ∈ Ωb

T − tþb
� �

[28]:

0 ≤ Qt;n;el ≤ GH
n;el ∀ el ∈ ΩT

EL ∀ n ∈ ΩN ð8Þ

0 ≤ Qt;n;bl ≤ GH
n;bl ∀ bl ∈ ΩT

BL ∀ n ∈ ΩN ð9Þ

Constraints (8) and (9) describe the operational boundaries of
the hydrogen produced by the electrolyser and GHR‐CCS,
respectively.

The limits and distribution of the power flow over the
network are described by the following constraints ∀b ∈ ΩB,
∀t ∈ Ωb

T , and ∀ℓ ∈ Ωℓ

f t;ℓ ¼
1

ϰℓ
θt;wℓ − θt;vℓ

� �
; f t;ℓ
�
�
�
� ≤ F0

ℓ: ð10Þ

In this model, the line capacity for providing reserves is
assumed to be available, and enough room is left in the lines
for its provision. The provision of reserves is doubled based

on the need to satisfy flow conditions and reserve provisions
from different nodes.

3.1 | Storage operation

The storage operation is modelled as follows ∀b ∈ ΩB,
∀ t ∈ Ωb

T ∀ s ∈ ΩS and ∀n ∈ ΩN.

~htþ1;n;s ¼ ~ht;n;s þ Δt ρþ
s h

þ
t;n;s −

h−
t;n;s

ρ−
s

� �

ð11Þ

~htþb ;n;s ¼ ~ht−b þ1;n;s ð12Þ

0 ≤ h−
t;n;s ≤ Ŝ

−
n;s ≔ Sn;shs þ Hn

0;s ð13Þ

0 ≤ hþ
t;n;s ≤ Ŝ

þ

n;s ≔ Sn;shs þ Hn
0;s ð14Þ

0 ≤ ~ht;n;s ≤ Ẑn;s ≔ Sn;sηs þ Ẑ
n
0;s ð15Þ

where Hn
0;s, H

n
0;s and Ẑ

n
0;s describe the existing storage tech-

nology s at bus n. Constraint (11) computes the energy level of
the storage for each time period. Constraint (12) assigns the
energy level at the beginning of a block equal to the value at its
end. The convex formulation of the storage constraints in-
cludes charge and discharge efficiency parameters ρþ

s ; ρ−
s

� �

which have values less than 100%. Since the efficiency value is
less than one, there will be energy losses while cycling, limiting
the occurrence of simultaneous charging and discharging [29].
In addition, a small cost of charging and discharging intro-
duced in the objective function (2) has been introduced in the
model as a penalty parameter [29]. Since the model considers
losses and charging and discharging operation costs, the so-
lutions with simultaneous charging and discharging are not
optimal. Since hydrogen storage is seasonal, its behaviour
follows an annual periodicity. It requires assigning the energy
level at the beginning of the year equal to the energy level at
the end of the year. Constraint (13)–(15) describes the limits on
the charge, discharge, and energy level variables of the storage.
To determine the initial storage condition for each temporal
block and impose periodic annual conditions, we introduce a
dynamic equation describing the energy accumulated or used
during the year as follows:

~zbþ1;n;hs ¼ ~zb;n;hs þ wb

X

t∈Ωb
T

Δt ρþ
hsh

þ
t;n;hs −

h−
t;n;hs

ρ−
hs

 ! !

; ð16Þ

~z1;n;hs ¼ ~zNbþ1;n;hs ð17Þ

for temporal blocks b = 1, …, Nb þ 1. Constraints (16) esti-
mate the energy level for each temporal block from the daily
difference of total charge and discharge variables while
constraint (17) is similar to constraint (12) but applied to the
first temporal block in the year and the first time block in the
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next year. The initial conditions for hydrogen storage are then
defined by

~htþb ;n;hs ¼ ~zb;n;hs; ∀b ∈ Ωb ð18Þ

Constraint (18) ensures that the energy level at the start of the
day in a temporal block is equivalent to the total energy level at
the beginning of its temporal block.

3.2 | Generator scheduling constraints

To represent the ability of different generation technology to
provide frequency services, we need to take into account
ramping limits, and for this reason, we model the on/off status
of each thermal generation unit. Aggregate models of thermal
generators do not accurately identify the ramping capability of
the system because a feasible solution of the aggregate model
does not imply the existence of a feasible solution for the
current operating condition of every single generator. The
integer UC formulation proposed in Refs. [16, 24, 30] has
numerical advantages since the model is almost tight when the
integrality constraints are relaxed. The thermal generators are
required to satisfy minimum up/down times and logical con-
straints ∀b ∈ ΩB, ∀ t ∈ Ωb

T − tþb
� �

, ∀ g ∈ ΩG:

ut;g − ut−1;g ¼ uþ
t;g − u−

t;g; ut;g; uþ
t;g; u

−
t;g ∈ 0; 1;…;Ng

� �

ð19Þ

Xt

k¼t−T̂
U
g þ1

uþ
k;g ≤ ut;g ∀ t ≥ T̂

U
g þ tþb − 1 ð20Þ

Xt

k¼t−T̂
D
g þ1

u−
k;g ≤ Ng − ut;g ∀ t ≥ T̂

D
g þ tþb − 1 ð21Þ

Logical constraint (19) represents the equation which
guarantees the start‐up variable uþ

t;g and shut‐down variable u−
t;g

take the appropriate values when the generator units are online
and offline [24]. Constraints (20) and (21) guarantee the min-
imum periods for which the units must be online and offline,

where T̂
U
g and T̂

D
g represent the scaled number of hours that

the generator units are online and offline, respectively.
Assuming uniform sampling in demand blocks,

T̂
U
g ≔ ⌈Tmu

g ÷ Δt⌈ and T̂
D
g ≔ ⌈Tmd

g ÷ Δt⌈ where ⌈⋅⌈ denotes
the ceiling function that gives as output the least integer equal
or greater than the value of its argument. The generation limits
are as follows ([24, 30]) ∀b ∈ ΩB, ∀ t ∈ Ωb

T , ∀ g ∈ ΩG

if Tmu
g ≥ 2

0 ≤ pt;g þ rspt;g þ rest;g ≤ Pg − pmsg
g

� �
ut;g

− Pg − SUg
� �

uþ
t;g − Pg − SDg

� �
u−
tþ1;g

ð22Þ

if Tmu
g ¼ 1,

0 ≤ pt;g þ rspt;g þ rest;g ≤ Pg − pmsg
g

� �
ut;g

− Pg − SUg
� �

uþ
t;g − max SUg − SDg; 0

� �
u−
tþ1;g

ð23Þ

0 ≤ pt;g þ rspt;g þ rest;g ≤ Pg − pmsg
g

� �
ut;g

− max SDg − SUg; 0
� �

uþ
t;g − Pg − SDg

� �
u−
tþ1;g

ð24Þ

where cyclic boundary conditions u−
t−b ;g ¼ u−

tþb ;g are enforced
∀b ∈ ΩB and ∀ g ∈ ΩG. The generation limit equations include
the power output pt,g, spinning reserve rest,g and frequency
response rspt,g contributions of the clustered units. Constraints
(23) and (24) only apply for the subset of clustered generator
units with Tmu

g ¼ 1, while constraint (22) is for the subset of
generators with Tmu

g ≥ 2. The authors in Ref. [24] emphasise
that constraint (22) is much tighter and compact than con-
straints (23) and (24). To impose that candidate generators can
operate only if the necessary investment has taken place, we
model linear constraints linking the operation of candidate
generators g to the integer investment Gn;gT [13]. In particular,
the proposed constraints impose that the variables ut,g, uþ

t;g , u
−
t;g

can assume non‐zero values only if the cluster g has been built.
For all b ∈ ΩB, ∀ t ∈ Ωb

T and g ∈ ΩN � ΩT
G the following

constraints,

ut;g ≤ Gn;gT ; uþ
t;g ≤ Gn;gT ; u−

t;g ≤ Gn;gT : ð25Þ

guarantee that aggregate generators can be active only if the
relative investment occurs.

The operating initial conditions of the generator units at
time t ‐ 1, which considers the previous state of the units, are
imposed in this model. The system's initial condition depends
on the operating conditions at the end of the demand period,
given each demand block represents a typical period in the
year. The conditions are as follows:

utþb ;g − ut−b ;g ¼ uþ
tþb ;g − u−

tþb ;g; ð26Þ

Xt̂
−
b

k¼t̂−b −T̂
U
g þ1þt

uþ
k;g þ

Xt

k¼t̂þb

uþ
k;g ≤ ut;g ∀ t̂þb ≤ t ≤ T̂

U
g þ tþb − 1

ð27Þ

Xt̂
−
b

k¼t̂−b −T̂
D
g þ1þt

u−
k;g þ

Xt

k¼t̂þb

u−
k;g ≤ Ng − ut;g ∀ tþb ≤ t ≤ T̂

D
g þ tþb − 1

ð28Þ

The total power produced by the cluster g ∈ ΩN � ΩT
G is

expressed as the sum of two terms as follows:
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Pt;g ¼ pmsg
g ut;g þ pt;g ∀ t; g: ð29Þ

The first term describes the unit's minimum stable generation
and the second one is the additional generation output over the
minimum. Total commitment, frequency response, spinning
reserve and production output of the clustered units, which
sums up the contributions from individual generator units, are
given by

ut;g ¼
X

i∈Ωg
I

~ut;g;i ∀ t; g ð30Þ

rspt;g ¼
X

i∈Ωg
I

r~spt;g;i ∀ t; g ð31Þ

rest;g ¼
X

i∈Ωg
I

r~est;g;i ∀ t; g ð32Þ

pt;g ¼
X

i∈Ωg
I

~pt;g;i ∀ t; g ð33Þ

The computation of constraints (30)–(33) is based on the
need to model the individual ramping constraints of generators
in the clustered unit to avoid the overestimation of their
ramping and reserve flexibility [16]. A commitment order in
every cluster is enforced ∀ t, g to remove multiple equivalent
solutions as follows:

~ut;g;1 ≤ 1 ð34Þ

~ut;g;iþ1 ≤ ~ut;g;i ∀ i ¼ 2;…;Ng − 1 ð35Þ

~ut;g;Ng ≥ 0 ð36Þ

~pt;g;iþ1 þ r~spt;g;iþ1 þ r~est;g;iþ1 ≤

~pt;g;i þ r~spt;g;i þ r~est;g;i ∀ i ¼ 1;…;Ng − 1
ð37Þ

Constraints (34) to (36) have been modelled according to
Ref. [16] to ensure the successive order of commitment of the
units starting from unit 1, while constraint (37) is introduced to
ensure symmetries in the generators' model are removed and
the production of individual units are limited. The model
which properly estimates the start‐up and shut‐down capabil-
ities for the individual generator units i is as shown in con-
straints (38)–(40) ∀ t, g, i = 1, …, Ng:

if Tmu
g ≥ 2:

~pt;g;i þ r~spt;g;i þ r~est;g;i ≤ SUg − pmsg
g

� �
~ut;g;i

þ Pg − SUg
� �

~ut−1;g;i ∀ t; g; i ¼ 1;…;Ng
ð38Þ

~pt;g;i þ r~spt;g;i þ r~est;g;i ≤ SDg − pmsg
g

� �
~ut;g;i

þ Pg − SDg
� �

~utþ1;g;i ∀ t; g; i ¼ 1;…;Ng
ð39Þ

and if Tmu
g ¼ 1:

~pt;g;i þ r~spt;g;i þ r~est;g;i ≤ SUg − Pg þ SDg − pmsg
g

� �
~ut;g;i

þ Pg − SUg
� �

~ut−1;g;i þ Pg − SDg
� �

~utþ1;g;i

ð40Þ

The ramping limits for the individual units are guaranteed
with the following constraints ∀ t, g, i = 1, …, Ng:

~pt;g;i − ~pt−1;g;i þ r~spt;g;i þ r~est;g;i ≤ RUgΔt~ut;g;i ð41Þ

~pt−1;g;i − ~pt;g;i ≤ RDgΔt~ut−1;g;i ð42Þ

In addition, the present model includes fast reserves for
frequency response and spinning reserves. Thermal generators
and storage devices can all contribute to the achievement of
the system frequency response and reserve requirements
∀b ∈ ΩB, ∀ t ∈ Ωb

T :

X

g∈ΩG

X

i∈Ωg
I

r~spt;g;i þ
X

n∈ΩN

ð
X

es∈ΩE
S

α̂rsp
t;n;es

≥ PL
t − Rslack

t

ð43Þ

P

g∈ΩG

P

i∈Ωg
I

r~est;g;i þ
P

n∈ΩN

8
<

:

P

es∈ΩE
S

α̂res
t;n;es

9
=

;

≥ Resmin
t − Rslack

t :

ð44Þ

Constraints (43) and (44) ensure adequate contributions
from the thermal generators and storage devices for meeting
the minimum frequency response and spinning reserves,
respectively, where the minimum reserves requirement are
given by

Resmin
t ¼ 0:1

X

n∈ΩN

dt;n þ
X

r∈ΩR

pRt;n;r

 !( )

ð45Þ

The spinning reserve requirements depend on uncertainty
or forecast error in intermittent generation and demand. All
the generation and storage contributions rspt,g, α̂res

t;n;es and α̂rsp
t;n;es

are subject to physical limitations ∀b ∈ ΩB, ∀ t ∈ Ωb
T , ∀ es ∈ ΩS

0 ≤ α̂rsp
t;n;es ≤ Rspes ≔ Pmax

L ; 0 ≤ α̂res
t;n;es ≤ Reses ð46Þ

α̂res
t;n;es þ α̂rsp

t;n;es

� �
≤ Ŝ

−
es − h−

t;n;es þ hþ
t;n;es ð47Þ

Nrsp
es α̂rsp

t;n;es þ Nres
es α̂res

t;n;es

� �
≤ ~ht;n;es ð48Þ

0 ≤ r~spt;g;i ≤ ~ut;g;iRspg ð49Þ
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where Rspg and Rspes are the maximum frequency response
capabilities of a generation unit in the cluster g and of storage
es, respectively. The parameters Nres

es and Nrsp
es refer to the time,

and storage s must provide the slow and fast response,
respectively. The power output of intermittent sources satisfies,
∀b ∈ ΩB, ∀ t ∈ Ωb

T , ∀n ∈ ΩN and ∀r ∈ ΩR,

0 ≤ pRt;n;r ≤ ξt;r;n Rn;r þ R0
r;n

� �
ð50Þ

where Rn,r is the capacity size (MW) of candidate renewable
installations, R0

r;n represents the existing capacity and ξr(t) is
the performance factor of technology r at time t.

The carbon emissions of a thermal unit in the cluster g at
time t can be modelled as a linear function of the generated
power and the annual carbon limits as follows:

X

b∈ΩB

wb

X

g∈ΩG

X

t∈ΩT

aVg Δt pt;g þ pmsg
g ut;g

� ��
 

þ aNL
g ut;g þ aUP

g uþ
t;g

��
≤
X

b∈ΩB

wb

X

n∈ΩN

X

t∈Ωb
T

ETdt;n
� �

ð51Þ

where aVg (kg/MWh) is the variable emission coefficient of the
cluster g, aNL

g (kgCO2) the no load emission coefficient and
aUP
g (kgCO2) the start‐up load emission coefficient. The
adopted UC formulation, presented in this section, combining
constraints on the aggregates and single generators, ensures
quality and faster solutions and reduces computational burden
compared to using either classic clustered or binary UC
formulation alone [16]. Apart from reducing computational
burden, the proposed modelling technique accurately evaluates
the flexibility provided by every single generator when
considering frequency response constraints.

3.3 | Frequency response constraints

The proposed model, similar to [19], combines the new FR
service, EFR, recently introduced by National Grid in Great
Britain (GB), which should deliver responses within 1 s,
together with primary frequency response services from
available conventional generators delivered in less than 10 s.
The analysis of the swing equation, describing the time evo-
lution of frequency deviation after a generation outage, allows
the identification of constraints guaranteeing the satisfaction of
the dynamic frequency requirements. The swing Equation (52)
describes the frequency dynamic as a function of the time τ
immediately after a generation outage PL

t occurs at time t [19]:

2Ht

fo
dΔf ðτÞ

dτ
þ DPD

t Δf ðτÞ ¼

X

es∈ΩE
S

EFRt;esðτÞ þ
X

g∈ΩT
G

PFRt;gðτÞ − PL
t

ð52Þ

where

EFRt;esðτÞ ¼
RES
t;esτ=Tes if τ ≤ Tes

RES
t;es if τ > Tes

8
<

:
ð53Þ

PFRt;gðτÞ ¼
RG
t;gτ=TG if τ ≤ TG

RG
t;g if τ > TG

8
<

:
ð54Þ

The largest power in‐feed PL
t satisfies ∀b ∈ ΩB, ∀t ∈ Ωb

T

~pt;g;i þ pmsg
g ~ut;g;i ≤ PL

t ≤ Pmax
L ; ∀ g ∈ ΩG; i ¼ 1;…;Ng

ð55Þ

Ψ ≤ PL
t ≤ Pmax

L ∀ r ∈ ΩR; ∀n ∈ ΩN ð56Þ

where Ψ is a parameter to be chosen by the planner to take
into account other losses that are relevant, such as the loss of a
wind farm of a certain size. The definition of PL

t as a decision
variable ∀b ∈ ΩB and ∀t ∈ Ωb

T is advantageous because
dynamically choosing the largest power in‐feed reduces the
maximum potential RoCoF after a generator loss, as supported
by [31]. This approach is more efficient than increasing the
inertia levels in the system through the addition of synchro-
nous generators, as it would not be a long‐term economical
solution, given the decreasing system inertia due to renewable
integration.

The highest value for the RoCoF occurs at τ = 0 and the
RoCoF security constraint [19] at the instant of outage
∀b ∈ ΩB; ∀t ∈ Ωb

T is

0 ≤
PL
t f0
2Ht

≤ RoCoF ð57Þ

Note that condition (57) guarantees that Δf(τ) cannot become
smaller than Δfmax = −0.8 Hz before τ̂ ¼ 0:8=RoCoFmax ¼

1:6s. This implies that a minimum of Δf(τ) occurring at values
τ ≤ τ̂ does not correspond to a critical situation. For this
reason, we will consider only the minimum sitting in the in-
terval [Tes, Tg] since in our case studies Tes < τ̂.

The system inertia level after the largest generator loss is

Ht ¼
X

g∈ΩG

X

i∈Ωg
I

Hg Pg~ut;g;i − HLoss
t ð58Þ

Pmax;L
g HL

g ~ut;g;i ≤ HLoss
t ∀ g ∈ ΩG; ∀i ð59Þ

δ ≤ Ht ð60Þ

where Pmax;L
g is the size of the largest generator and δ is a

constant parameter satisfying 0 < δ ≤ ming∈ΩGHg Pg. The
condition in (59) ensures considering the most significant
possible inertia level loss HLoss

t at every time, while Equa-
tion (60) requires the existence of at least a conventional
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generator online. Constraint (60) models the minimum
requirement for system inertia, a key consideration proposed in
a system with a high penetration of variable renewable tech-
nologies [32, 33].

To ensure the achievement of quasi‐steady state security,
we impose the following constraint ∀b ∈ ΩB; ∀t ∈ Ωb

T

PL
t − RES

t − RG
t

D PD
t

≤ Δf ssmax; ð61Þ

where the total EFR, RES
t , satisfies

RES
t : ¼

X

es∈ΩE
S

RES
t;es ¼

X

n∈ΩN

X

es∈ΩE
S

ω̂rsp
t;n;es ð62Þ

where

ω̂rsp
t;n;es ≤ α̂rsp

t;n;es ð63Þ

The introduction of ω̂rsp
t;n;es allows for flexibility in the actual

amount of frequency response that can be allocated by energy
storage, where α̂rsp

t;n;es is the maximum allocated.
The total PFR, RG

t , is such that

RG
t ≔

X

g∈ΩG

RG
t;g ¼

X

g∈ΩG

X

i∈Ωg
I

r~spt;g;i ≤
X

g∈ΩG

X

i∈Ωg
I

Rspg~ut;g;i ð64Þ

it is also required:

RG
t ≥ RG ≔ min

g∈ΩG
RSPg ð65Þ

Based on the analysis performed in Ref. [19], the following
quadratic expression accounts for the frequency nadir
requirements.

Ht

f0
−
RES
t T es

4 Δfmax

 !

RG
t ≥

PL
t − RES

t
� �2

TG

4 Δfmax

−
PL
t − RES

t
� �

TG D
4

PD
t

ð66Þ

Note that constraint (66) takes into account the effect of
damping, and its good approximation properties are discussed
in Ref. [19].

Moreover, since the nadir frequency occurs at time t0 ∈
[0, Tg], the following constraints have been included
∀b ∈ ΩB, ∀t ∈ Ωb

T ,

PL
t − RES

t − DPD
t jΔfnadirj ≥ 0 ð67Þ

PL
t − RES

t − DPD
t jΔfnadirj ≤ RG

t ð68Þ

to ensure the requirements are met within the response time of
the frequency response services. The quadratic expression for
the nadir constraint (66) is non‐convex. Consequently, the
resulting model is a mixed integer quadratic programming
(MIQP) problem. The mixed integer model, including the non‐
convex quadratic constraint, is efficiently solvable to global
optimality by applying McCormick relaxations and spatial
techniques as implemented in the Gurobi solver (starting from
version 9.1.2) to a MIPGap of 0.1% [25]. Constraint 66 in-
cludes three non‐linear terms: Products of continuous and
binary/Integer variables HtRG

t and RES
t RG

t as well as the
quadratic term PL

t − RES
t

� �2
. McCormick lower and upper

envelopes are applied to the products using auxiliary variables
to linearise the bilinear terms in the nadir constraints [25]. Such
that HtRG

t is

Ht;lRG
t þ RG

t;lHt ≤ Ht;lRG
t;l ð69Þ

Ht;uRG
t þ RG

t;uHt ≤ Ht;uRG
t;u ð70Þ

Ht;uRG
t þ RG

t;lHt ≤ Ht;uRG
t;l ð71Þ

Ht;lRG
t þ RG

t;uHt ≤ Ht;lRG
t;u ð72Þ

where Ht;l;Ht;u;RG
t;l;R

G
t;u is the lower and upper bound of

HtRG
t respectively. The other products are linearised in a

similar manner and added to the model. The linearised co-
efficients and RHS of the McCormick constraints depend on
variables' local bounds, which, once changed, update the LP
coefficients and RHS. The above constraints are then added via
spatial branching techniques as locally valid cuts [25]. The
spatial branching technique minimises the McCormick volume
as much as possible [25]. The tighter McCormick relaxations
replace weaker, more global ones, at local nodes leading to
fewer simplex iterations to support the solution of the trans-
formed MILP problem. In addition, compared to other
solvers, Gurobi delivers a globally valid lower bound on the
optimal objective value by exploring the entire search space
and with enough time, through the tolerance, finds a globally
optimal solution [25].

4 | PROBLEM FORMULATION FOR
MODEL WITHOUT SCHEDULING
CONSTRAINTS

In highlighting the benefits of detailed scheduling constraints
in the proposed planning framework, this subsection presents a
similar system design but with the classic clustered integer UC
formulations often adopted in research today. The planning
framework was adapted to integrate a deterministic formula-
tion of the mixed integer UC constraints proposed by the
authors in Refs. [19, 34]. The design mainly excludes the
ramping and commitment constraints formulations for the
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single generators proposed in Section 3.1, Equations (30)–(42),
which evaluates the flexibility of individual generators in the
optimisation model. The formulation serves as a good baseline
for comparison because it also includes the inertia‐dependent
post‐fault frequency response requirements being adapted in
the proposed model in the previous section. With the same
constraints in Section 3.1 implemented, especially for other
technologies such as storage, hydrogen electrolysers, blue
hydrogen, and renewable technologies, this section presents
only key parts of the model that were modified according to
where the clustered UC variable, Nup

t;n;gT , applies.
The problem formulation for the model without sched-

uling constraints is as follows:

VOðx; ρÞ ≔
X

b∈ΩB

wb

X

t∈Ωb
T

τt
X

g∈ΩG

cGg Pt;g
� �

"(

þ
X

n∈ΩN

`σd
t;n þ

X

s∈Ωn
S

cþ
s h

þ
t;s þ c−

s h
−
t;s

� �
2

4

3

5

3

5þ ϒRslack
t

þ
X

g∈ΩG

cresrest;g þ
X

g∈ΩG

crsprspt;g

)

ð73Þ

It is important to note that based on the model formulation in
Refs. [19, 34], the operation cost objective function VO(x, ρ) in
constraint (73) excludes the start‐up and shut‐down costs. The
generation limits [24, 30] for this case, which excludes detailed
scheduling constraints, are as follows: ∀b ∈ ΩB,
∀ t ∈ Ωb

T , ∀ g ∈ ΩG ≔ ΩN � ΩT
G

0 ≤ Pt;g þ rspt;g þ rest;g ≤ PgN
up
t;n;gT

� �
ð74Þ

The power output, frequency response and spinning
reserve contributions of the clustered units are bounded by
their maximum total amount of power output based on the
number of generators online Nup

t;n;gT per time. We propose new
linear constraints linking the operation of candidate generators
gT to the integer investment Gn;gT to impose that a candidate
generation unit can operate only if the necessary investment
has taken place. In particular, the proposed constraints impose
that the variables Nup

t;n;gT can assume a non‐zero value only if
the generator gT has been built. For all b ∈ ΩB, ∀ t ∈ Ωb

T and
gT ∈ ΩT

G the following constraints,

Nup
t;n;gT ≤ Gn;gT ð75Þ

guarantee that a candidate generator can be active only if the
relative investment has taken place. The ramp‐up/down con-
straints for the clustered units are as follows: ∀b ∈ ΩB,
∀ t ∈ Ωb

T − tþb
� �

, ∀ g ∈ ΩG

Pt;g − Pt−1;g þ rspt;g þ rest;g ≤ RUgτtN
up
t;n;gT ð76Þ

Pt−1;g − Pt;g ≤ RDgτtN
up
t−1;n;gT ð77Þ

The thermal generators are also modelled to satisfy mini-
mum up/down times and logical constraints, similar to con-
straints (19 − 21). However. in this case, ut,g is replaced with
Nup

t;n;gT . All the frequency response contribution from the
clustered generation units rspt,g are subject to physical limita-
tions ∀b ∈ ΩB, ∀ t ∈ Ωb

T , as in

0 ≤ rspt;g ≤ RspgN
up
t;n;gT ð78Þ

The largest power in‐feed PL
t at time t is implemented such

that

Pt;g

Nup
t;n;gT

≤ PL
t ≤ Pmax

L ; ∀ g ∈ ΩG; i ¼ 1;…;Ng ð79Þ

This expression provides a non‐linear expression of the
decision variable PL

t , given the need to optimise the largest loss
of a single power production unit [19]. The expression was
linearised using Big‐M formulation and McCormick relaxation
techniques, given thatNup

t;n;gT is an integer decision variable [19].
The RoCoF, nadir and steady‐state security constraints used in
this formulation are similar to constraints (57), (61) and (66).

However, the system inertia level after the largest generator
loss is

Ht ¼
X

g∈ΩG

Hg PgN
up
t;n;g − Pmax

L HL: ð80Þ

These constraints were used to carry out further studies.

5 | METHODS AND TEST SYSTEM

The proposed model outlined above is applied to a single‐node
system to determine the generation (conventional, renewable
and storage) mix for meeting system's different energy, fre-
quency response and reserve requirements. The co‐optimisation
of investment and operation constraints led to a large number of
constraints and variables in the model, shown in Table 1.

T A B L E 1 Model components.

Model Total Quadratic Bilinear
Components Constraints Constraints Constraints

Number 4226902 672 1344

Total Continuous Integer Binary

Variables Variables Variables Variables

1915225 1436757 478468 470400
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The numerical complexity of the problem and the large
number of constraints and variables led to the decision to carry
out this study first on a single‐node system. The system does not
assume any existing conventional generator types. Two candi-
date conventional generation technologies (H2CCGT (HT),
Nuclear (NC), generators) [28, 35] investments are considered
on a single node, with their parameters shown in Tables 2 and 3.

Also, battery storage, renewable solar and wind generator
technologies, electrolysers and hydrogen storage are part of the
investment portfolio. The used renewable parameters are
shown in Table 4.

The four seasons' (winter, spring, summer and autumn)
wind and solar performance level factors have been extracted
from GB historical data. Table 5 reports technical details for
the storage. The Lithium Ion battery storage technology is
modelled to have the capability of EFR service provision
delivered within Ts = 0.5 s with Rsps ¼ Ress. The conventional
generators provide PFR within Tg = 10 s. Other parameters
include D = 0.5%/Hz and Pmax

L = 1800 MW. The dynamic
frequency requirements are set as in Ref. [19].

The parameters for the blue and green hydrogen produc-
tion (gas‐heated reformers with carbon capture storage, GHR‐
CCS, and electrolysers, respectively) [28], as well as storage
technologies, are shown in Table 6.

The hydrogen storage duration is 6 h, while the conversion
efficiency of H2CCGT, ηh2, is 58.8% [28]. The marginal cost
of GHR‐CCS is higher, compared to electrolysers, due to the
consideration of the CCS for decarbonising the hydrogen fuel
produced.

Demand profiles used on this system are based on
representative historical typical days data from the GB system.
Four different week‐long demand block profiles, representing
all seasons of the year (winter, spring, summer and autumn)
are considered, and the system's annual peak (electricity) de-
mand is 71 GW, which totals to 167.9 GW after including heat
demand in the system [35]. This paper assumes that the heat
sector will be decarbonised through electrification using heat
pumps. Considering hydrogen demand, the amount of
hydrogen is estimated by the model. However, the hydrogen
production and storage modelling also considers an additional
123 TWh hydrogen demand, with a profile modelled as flat,
based‐industrial processes in a 2050 GB net‐zero scenario
[1, 35].

The model was implemented in PYOMO [36, 37] and
solved with the Gurobi Optimiser 10.0.025 on a High‐
Performance computer with linux64, 128 physical cores, and
256 logical processors, using up to 16 threads.

6 | RESULTS

Recalling that the research goal is to determine the influence of
frequency response and detailed modelling of operational
constraints in an integrated planning framework, a series of
scenario studies were considered on the test system. The sys-
tem settings common to all scenarios included

� The annual CO2 emissions target, ET, was set to 0 kg/MWh,
representing the net‐zero system.

� The generator scheduling constraints included the on/off
status, minimum up/down time and start‐up/shut‐down
trajectories of conventional generators.

� Battery storage was also modelled to provide flexibility in
terms of energy arbitrage, spinning reserves and primary
frequency response.

� The model was run with an hourly temporal resolution for
one typical week per seasonal block at the operational level
to determine the optimal power generation portfolio.

The obtained optimal generation mixes are analysed
hereafter under different scenarios.

6.1 | Scenario description

This subsection analyses the optimal technology portfolio mix
with and without the modelling of detailed scheduling

T A B L E 2 Candidate generator data.

Type
pmsg

g Pg κG
g cG

g csu
g

(MW) (MW) ($/yr) ($/MWh) ($)

HT 500 500 54813.2.9 38 30780

Nc 1440 1800 530582.0 6 56710

T A B L E 3 Technical thermal generators data.

Type
Hg Rspg T md

g T mu
g RUg/RDg

(s) (MW) (h) (h) (%Pg/minute)

HT 4 85 4 4 60

Nc 5 0 4 4 1

T A B L E 4 Candidate renewable generator data.

No.
Rn,r κR

r

(MW) ($/yr)

Wind 6000 57565.77

Solar 1500 50261.2

T A B L E 5 Candidate storage data.

ηs

hs ρs κH
s cs N res

s N rsp
s

(MWh) (MW) ($/yr) ($/MW) (h) (h)

200 50 0.85 7650.76 5 4 0.5

T A B L E 6 Hydrogen production and storage technologies data.

Technology κH
o co ηo

(o) ($/yr) ($/MW) (%)

Electrolyser 36066.94 2.1 82%

Hydrogen storage 520.05 0.149 99.67%

GHR‐CCS 37222.43 61 61%
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constraints for synchronous generators as constructed in
Sections IV and VI, respectively. The case studies discussed in
the section analyse the value of detailed scheduling constraints
for synchronous generators such as Hydrogen CCGT
(H2CCGT ) fuelled by both blue and green hydrogen sources
and moderately flexible nuclear plants (minimum stable gen-
eration set to 80% of its maximum capacity). Additional power
generation technologies used in this scenario include renewable
technologies (wind and solar plants). H2CCGT, nuclear plants,
and battery storage were modelled to provide spinning re-
serves, while primary frequency response (PFR) constraints
were mostly delivered by battery storage and H2CCGT.

This subsection also assesses the optimal technology
portfolio mix considering frequency security constraints. We
compare the optimal mix with and without frequency response
requirements. Tables 7 and 8 show the system's costs (IC, OC,
Total costs (TC) in billion (bn) pounds/year) for the scenarios
with and without detailed scheduling constraints, respectively.
In both scenarios, similar studies on the impact of the fre-
quency response constraints in the model were carried out and
reported.

6.1.1 | Value of modelling detailed scheduling
constraints

The value of modelling detailed scheduling constraints will be
assessed by comparing the system cost of Case A and Case E
reported in Tables 7 and 8, respectively. The system cost in
Table 7 includes detailed scheduling constraints, while Table 8
do not have detailed scheduling constraints. Case A, in Table 7
reports a higher systems cost (difference of $4.56bn/yr) based
on higher investment and operation costs compared to Case E.
A smaller difference ($73 million/yr) in the investment cost is
observed compared to the difference in operation costs
($3.9bn/yr), and the composition of the investment cost per

technology is shown in Figure 1. Case E's almost similar in-
vestment portfolio reveals higher investment in wind plants,
battery storage and hydrogen storage compared to Case A.

Figures 2a–d emphasise the differences between the ca-
pacity mixes and highlights reduced investment in blue and
green hydrogen sources related to the reduction observed in
H2CCGT plants in Case E.

In a bid to understand the higher operation costs observed
in Case A, the impacts of the detailed scheduling constraints
are further assessed by fixing the technology investment so-
lution of Case E as inputs for Case A. The simulation resulted
in a total systems cost of $476.14bn/yr, with the investment
cost at $27.75bn/yr and operation costs at $443.33bn/yr,
based on demand curtailments. The results reported in
Figure 3 show the demand curtailment costs ($443.33bn/yr)
and additional operation costs ($442.70bn/yr) to the system
for meeting the demand if technology investments were based
on the model outputs without detailed scheduling constraints.
The high curtailment cost was due to an annual demand

T A B L E 7 Annual systems cost for the Blue & Green hydrogen case
with detailed scheduling constraints (Case A –All FR constraints included,
Case B –Nadir constraints excluded, Case C –Nadir & Rocof constraints
excluded, Case D –All FR constraints excluded).

Type CaseA CaseB CaseC CaseD

IC($bn/yr) 28.47 28.39 27.42 27.33

OC($bn/yr) 5.69 5.77 1.60 1.44

TC($bn/yr) 34.16 34.16 29.01 28.77

T A B L E 8 Annual systems cost for the Blue & Green hydrogen case
without detailed scheduling constraints (Case E –All FR constraints
included, Case F –Nadir constraints excluded, Case G –Nadir & RoCoF
constraints excluded, Case H –All FR constraints excluded).

Type CaseE CaseF CaseG CaseH

IC($bn/yr) 27.74 27.75 27.76 27.73

OC($bn/yr) 1.84 1.83 1.36 1.32

TC($bn/yr) 29.59 29.59 29.12 29.05

F I G U R E 1 Investment cost per technology (Case A –Model with
detailed scheduling constraints, Case E –model without detailed scheduling
constraints).

F I G U R E 2 Capacity Investment of technologies for Blue –Green
hydrogen case with versus without detailed scheduling constraints (Case A
–Model with detailed scheduling constraints, Case E –model without
detailed scheduling constraints).
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curtailment of 14.78 TWh and its high price ($30,000/MWh),
shown in Figures 4a,b. The Figure also highlights that most of
the curtailment occurs in winter during periods of significant
variations in net demand when ramping constraints are critical.
In particular, Figure 4b shows that the H2CCGT technologies
did not ramp quickly enough during low wind and steep
changes in net demand. The curtailment costs also led to a
considerable change in operation costs observed in Figure 3.
This disparity shows that even if the difference in system mix
and cost is small, their ability to serve demand and satisfy
constraints is very different.

6.1.2 | Value of modelling frequency security
constraints

Cases B–C in Table 7 and Cases F–H in Table 8 report the
optimised costs with and without scheduling constraints under
different assumptions on the frequency response requirements.
In particular, Cases B and F neglect the nadir constraints (66),
Cases C and G do not include nadir and ROCOF constraints
(but the constraints on the system inertia and largest generator
loss are present in the model) and Cases D and H exclude all
the frequency response constraints are excluded. The systems'
costs for Cases A and B reported in Table 7 are similar, but the
operation and IC differ. In Case B, which excludes the nadir
constraints, the operation cost decreased by 1.39% and the
investment cost increased by 0.28% compared to Case A, as
shown in Figure 5. However, removing both the nadir and
ROCOF constraints in Case C led to a 71.94% and 3.69%
decrease in operations and IC, respectively. In Case C, the
system inertia constraints 59 were included in the model. The
inertia constraints are excluded in Case D, which led to a

74.61% and 4.01% decrease in operation and IC, respectively.
The differences in the systems cost account for the additional
flexibility needed for system security and stability [19].

Figure 5 also shows how the PFR constraints impact the
solution when neglecting the detailed modelling of the
scheduling constraints, using Case A as the base case. The
removal of the PFR constraints in the manner described above
shows a greater reduction in systems cost, especially the
operation costs, between Cases B–D compared to Cases F–H
without detailed scheduling constraints in Figure 5. However,
very small changes are seen when assessing the impact of the
frequency response constraints on the IC between Cases E–H.
These minor differences in Cases E–H emphasise the value of
the detailed modelling of the scheduling constraints for iden-
tifying the actual impact of the frequency constraints.

Figure 6 shows the system costs if the optimal investment
mix obtained in Case D, which neglects frequency response
constraints, is used in Cases A–C. The demand curtailment
costs and change in OC with and without nadir constraints
show similar high‐cost effects of $341.35bn/yr and $340.7bn/
yr, respectively. The high system costs in Cases A and B show
the criticality of including the ROCOF and nadir constraints in
a system with unlimited EFR from battery storage [23].
However, the demand curtailment costs and change in oper-
ations costs are much lower for Case C, where nadir and
ROCOF constraints have been excluded. Figure 7 shows in

F I G U R E 3 Demand curtailment & change in Operational cost for a
fixed investment solution (Case A –Model with detailed scheduling
constraints).

F I G U R E 4 Generation profile for a typical winter week (Case A –
Model with detailed scheduling constraints, Case E –model without detailed
scheduling constraints).

F I G U R E 5 Change in systems cost for Blue & Green hydrogen case
with versus without detailed scheduling constraints with respect to Case A
(Case A –All FR constraints included, Case B –Nadir constraints excluded,
Case C –Nadir & Rocof constraints excluded, Case D –All FR constraints
excluded, Case E –All FR constraints included, Case F –Nadir constraints
excluded, Case G –Nadir & RoCoF constraints excluded, Case H –All FR
constraints excluded).

F I G U R E 6 Demand curtailment & change in Operating costs using
Case D solution (Case A –All FR constraints included, Case B –Nadir
constraints excluded, Case C –Nadir & Rocof constraints excluded, Case D
–All FR constraints excluded).
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detail the season demand curtailment occurs, which was mostly
in the winter period, as previously described.

The impact of excluding the PFR constraints on the power
generation and flexible technologies capacity investment mix
with and without detailed scheduling constraints is shown in
Figure 8. Figure 8 shows the changes in the power generation
capacity mix (wind, nuclear and H2CCGT ) for Case A of cases
with detailed scheduling constraints and without detailed
scheduling constraints. Figure 8 also shows changes in flexible
technologies such as battery storage, H2‐storage Blue, and
green (electrolysers) hydrogen fuel sources. In Case B of

Figure 8, there is a 0.8% decrease in wind capacity and a 1.43%
increase in H2CCGT capacity. There is a corresponding in-
crease in hydrogen storage, blue and green hydrogen fuel with
the increase in H2CCGT plant capacity, while battery storage
also increased slightly, as observed in Figure 8. However,
excluding the ROCOF constraints in addition to the nadir
constraints, Case C in Figure 8, resulted in a further decrease in
wind plant capacity by 3.19% and a further increase in
H2CCGT capacity by 5.71%. On the contrary, it can be
observed in Figure 8 that the increase in H2CCGT was
matched with a decrease in blue and green hydrogen fuel but
an increase in battery and hydrogen storage, as observed.

An analysis of the annual generation profiles for Case C
during the winter and spring week (Figure 9a,b) shows that
H2CCGT plants operate as peaking plants during critical pe-
riods of low wind generation and for a relatively short time (one
or 2 days). The supply of large demand for short periods by
H2CCGT plants in a system with lower wind capacity, observed
in Case C, compared to Cases A and B explains the increased
investment in H2CCGT and the further decrease in blue and
green hydrogen, where H2CCGT provided both the baseload
and part of the peak generation. Also, using the optimal in-
vestment mix obtained by neglecting the RoCoF constraints
with RoCoF limitations reports a demand curtailment of
11.81 TWh and consequently high costs of $354.39bn/yr.

Such demand curtailment represents the inadequacy of
resource investments when nadir or RoCoF constraints are not
considered in the planning phase. The changes in the tech-
nology investment mix in Case D, where all PFR security and
inertia constraints are excluded, are similar to Case C but
higher in percentage. The inadequacy of the technology in-
vestment mix obtained in Case D is highlighted in Figure 7,
which reports substantial demand curtailment when frequency
limitations must be satisfied.

The percentage changes observed in Cases E–H alternated
such that investments in wind plants increased by 0.52% and
H2CCGT plant decreased by 1.43% based on excluding the
detailed scheduling constraints. However, when comparing
changes observed in Cases E–H in Figure 8 with changes in
Cases A–D, the effect on the optimal mix induced by the
frequency constraints is more evident considering detailed
scheduling constraints. The investment capacity of wind and

F I G U R E 7 Generation profile in Case A for a typical winter week
when Case D investment solution is fixed in Case A and Case C (Case A –
All FR constraints included, Case D –All FR constraints excluded).

F I G U R E 8 Change in capacity Investment of power and flexible
generating technologies for Blue & Green hydrogen case with detailed
scheduling constraints (Case A –All FR constraints included, Case B –Nadir
constraints excluded, Case C –Nadir & Rocof constraints excluded, Case D
–All FR constraints excluded, Case E –All FR constraints included, Case F
–Nadir constraints excluded, Case G –Nadir & RoCoF constraints
excluded, Case H –All FR constraints excluded).

F I G U R E 9 Generation profile in typical winter and spring week for Case C (Case C –Model with detailed scheduling constraints [Nadir & Rocof constraints
excluded]).
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H2CCGT plants are similar in Cases E–G. The most signifi-
cant change in the scenarios without detailed scheduling con-
straints was the 0.79% change in wind plants observed in Case
H when all the frequency security constraints were excluded
from the model. Figure 8 also shows that for Cases E–H there
is a corresponding increase in hydrogen storage capacity, while
blue and green hydrogen fuel capacity decreases with the
observed reduction in H2CCGT plant capacity. However,
there are no significant changes from excluding the frequency
response constraints named in Cases F–H. Similar to Case D,
the greatest decrease in battery storage is observed in Case H
when the frequency response constraints are excluded.

Figure 10 shows the share of annual generation output for
the installed technologies when detailed modelling is included
(Case A) and excluded (Case E), based on the net demand on
the system. The total generation output in Case A is
844.55 TWh, while Case E is 657.39 TWh. Even though the
same system demand was used in both cases, the variation in
their total generation output is mainly due to the flexible en-
ergy demand from the electrolysers used for hydrogen pro-
duction. This flexible demand from the electrolyser is higher in
Case A (13.05%), where the contribution from H2CCGT to
generation output is higher compared to Case E (2.69%). The
high contribution of H2CCGT in Case A is due to the detailed
scheduling constraints, which depict the actual requirement of
flexible generation on the system. However, wind plants deliver
the highest percentage of annual generation output in both
cases. Battery storage also contributes to the energy supply in
both cases. In Case A, the charge–discharge activity of battery
storage was summed and resulted in a net contribution of
1.22%, discharging more times than it charges. Whereas in
Case E, the net contribution of battery storage is −2.32%,
charging more times than it discharges.

Figures 11 and 13 compare the spinning reserve and the
primary frequency response provisionmix in CaseA andCase E.
In particular, Figure 11 shows thatH2CCGT and battery storage
technology meet all the spinning reserves requirements, with
batteries having the largest share. Given that the reserve
requirement, Resmin

t , is calculated as a percentage of system de-
mand and renewable generation per time, the reserve require-
ment in Case E (148 TWh) is higher compared to Case A
(133 TWh) due to higher investment in wind plant capacity
observed in Figure 8. As a result, Case E shows a higher pro-
portion of battery storage usage andH2CCGT, respectively, for
spinning reserve provision compared to Case A. Figure 12

provides further explanation for the results observed as it depicts
the hourly scheduling of reserves in Cases A and E. The results
show that in Case E, the technologies, especially storage, are
scheduled in excess for reserves provision compared to Case A.
The detailed modelling of the scheduling constraints eliminates
the overestimation of reserves from different technologies.

A comparison of the Primary frequency reserve (PFR)
portfolio in Figure 13 shows Case A and Case E are almost
similar (circa. 16 TWh) based on the requirement estimated
from the size of the largest generator loss PL

t
� �

. In both cases,
battery storage mostly provided a frequency response, given its
enhanced and faster frequency response capability compared
to H2CCGT. However, the contribution of H2CCGT capacity
in Case E (0.79 TWh) was slightly higher compared to Case A
(0.74 TWh). The higher availability of H2CCGT in Case E can
be linked to the reduced use of H2CCGT for meeting energy
demand, as observed in Figure 10.

7 | DISCUSSION

Energy system models, especially investment planning models,
are required for decision‐making and to provide insights to
energy stakeholders on key technologies valuable for achieving

F I G U R E 1 1 Share of Annual Spinning Reserve portfolio (Case A –
Model with detailed scheduling constraints, Case E –model without detailed
scheduling constraints).

F I G U R E 1 0 Share of Annual generation output (Case A –Model with
detailed scheduling constraints, Case E –model without detailed scheduling
constraints).

F I G U R E 1 2 Spinning Reserve profile for a typical combined winter
and spring week (Case A –Model with detailed scheduling constraints, Case
E –model without detailed scheduling constraints).

F I G U R E 1 3 Share of Annual PFR portfolio (Case A –Model with
detailed scheduling constraints, Case E –model without detailed scheduling
constraints).
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energy transition and decarbonisation targets. The proposed
novel formulation and the case studies emphasise the impor-
tance of using an enhanced whole system model, which in-
cludes frequency requirements and detailed operational
dynamics to support decision‐making by policymakers, systems
operators, utilities and investors.

The results of modelling detailed scheduling constraints in
the proposed planning framework demonstrate that such
modelling significantly impacts investment outcomes. The
system cost increases to allow the system to edge against fre-
quency variations. Specifically, the modelling ensured an
appropriate estimation of the capacity of technologies needed
to support the required system flexibility in a low‐carbon
future, and these were seen in the total capacity requirements
for reserves and frequency response [32]. The changes
observed were increased investment capacity in H2CCGT
plants, as well as blue and green hydrogen production tech-
nologies needed to fulfil the energy requirements in a net‐zero
system, compared to a model without the detailed represen-
tation of the scheduling constraints. Despite an observed
reduction in investments in wind plants, the investments in
these hydrogen technologies are also required to support the
integration of renewable technologies, especially for managing
periods of variable and low renewable generation [2]. In-
vestments in battery and hydrogen storage capacity are directly
related to investments in renewable technologies, such as the
reduction in wind plants, which reduced the amount of storage
capacity required to support the technology [38]. The signifi-
cance of these changes is that high curtailment costs of up to
$443.33bn/yr were avoided when capacity planning was done
using the outcomes of a model excluding the detailed model-
ling of UC constraints and the ramping capability of individual
generators units in a cluster.

Similarly, modelling the different frequency security con-
straints in an investment planning framework aids system op-
erators in accurately estimating investments in flexible
technologies needed to support the system during a frequency
round trip [10]. By layering frequency security constraints on
the detailed scheduling constraints in the model, it was
demonstrated that modelling frequency constraints support the
integration of renewable technologies into the system, leading
to increased investments in wind plant capacity. These changes
were evident because of the ramping capability of individual
generation units captured in the model. It was also realised that
compared to a model without any of the frequency response
constraints, the reduced capacity of H2CCGT and hydrogen
storage technologies are actually needed for supporting the
system's flexibility. In addition, it was demonstrated that
increased investment in battery storage was required to manage
the frequency changes in the system based on its fast response.
Considering nadir constraints and requirements at the planning
level contributes to driving better investment decisions for
managing near under‐frequency load shedding situations. As
shown in the case study, not considering nadir constraints at
the planning level can cause very high curtailment costs of up
to $340bn/yr, no security of supply and reduced demand‐
supply balancing.

Even though the model can integrate a dynamic power in‐
feed loss, this study assumed the loss of the largest generator,
which is a nuclear plant included in the technology mix. The
sensitivity analysis on a dynamic power in‐feed loss which
could vary from the actual power output of a power produc-
tion unit to the maximum power output of the largest gener-
ator as seen in Equations (55) and (56) was not carried out, but
the author anticipates it would lead to significant changes in the
investment planning outcomes. Moreover, by modelling these
complex constraints and the interactions between electricity
and hydrogen vectors, the framework provided insights into
the interactions between these energy vectors and managed the
possibility of overestimating or underestimating the actual
capacity of flexible technologies required to support the system
in the integration of low‐carbon technologies and during
diverse operational challenges [32]. This was specifically
observed in changes in the capacity investments for wind,
H2CCGT plants, blue and green hydrogen plants, and
hydrogen storage when the additional constraints were
integrated.

7.1 | Computation time

The detailed modelling approach increased the computational
complexity of the model, as highlighted by the number of
constraints and variables highlighted in Table 1. The large
number of constraints and variables greatly impacted the
computation (CPU) time as the deterministic MIQP model
solved in the range of time, as shown in Table 9. Compared to
the model without the detailed scheduling constraints, the
model with detailed scheduling constraints required a CPU
time of 16 h 30 m to solve for optimality (0.001% Gap). The
computation time is reduced by approximately 1 h when
removing any of the frequency security constraints. Moreover,
the model's performance shows that the detailed scheduling
constraints largely impact the computation time. This
computational performance highlights great consideration
would need to be given to the trade‐off between achieving a
more accurate estimate of investment results and the amount
of time required to solve such a model to optimality.

MIP problems are generally NP‐hard, but this model has
been enhanced with tight and compact detailed UC constraints
and additional constraints removing the symmetries due to the
potential presence of multiple identical generators. Experi-
mental testing, as shown in the reported studies, demonstrates

T A B L E 9 Model computation time.

Model CPU time Relative gap

Model without scheduling constraints 10 s 0.00%

Model with scheduling constraints 16 h 30 m 0.00%

Model without nadir constraints 15 h 19 m 0.00%

Model without frequency security constraints 14 h 17 m 0.00%
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the model performs well, reducing the likelihood of over-
estimating the investment solution.

8 | CONCLUSION

This paper investigates the impact of detailed frequency sta-
bility and mixed integer UC constraints, amongst other oper-
ational details, on a power system planning problem. A novel
integrated planning framework was proposed to identify
optimal technology portfolios for a cost‐effective electricity
system while ensuring frequency stability and reserve re-
quirements. The studies concurrently optimised investments in
low‐carbon technologies while minimising the system's short‐
term OC through hourly time resolution representation of
the system operation alongside reserve, frequency stability and
regulation requirements for a net‐zero GB system. The
outcome of the studies highlighted the importance of detailed
operational constraints for accurately estimating the optimal
low‐carbon technologies needed in a net‐zero system. The
results obtained provided optimal and significant trade‐offs
and cost‐effective investment portfolios, from including
detailed modelling of UC scheduling and frequency stability
constraints versus not including them in a power systems
planning problem. The trade‐offs were observed in the
increased system's costs, based on additional investment in
flexible technologies, especially H2CCGT plants, battery stor-
age, and other hydrogen production and storage technologies
required to manage the system should any operational chal-
lenges such as the loss of the largest generator occur. The
results also emphasised that the system can experience higher
annual TC than anticipated due to high demand curtailment by
making investment decisions without considering frequency
constraints and a detailed UC. The curtailments were observed
during periods of low wind generation and when the system
required a quick ramping response from flexible power gen-
erators. The studies showed that an investment planning
framework without frequency security constraints for man-
aging frequency imbalance and detailed modelling of the UC
scheduling constraints would lead to resource inadequacy and
an underestimation of the technology portfolio required in a
net‐zero system.

Future work will involve further investigation of the
trade‐offs and optimal portfolio based on modelling emerging
technologies, which can support the flexibility needs of low‐
carbon power systems in terms of frequency response, sys-
tems inertia, and spinning reserve. In addition, future work
will include actual grid networks and consider spatial fre-
quency variability and network security constraints. The study
will also evolve to carry out a stochastic analysis based on
introducing short‐term uncertainties in renewable generation
or demand. With the solution of this scale of framework
being very complex, uncertainty sources can be considered by
adding robust margins to different system requirements such
as the spinning reserve and frequency response requirements,

similarly employed by the authors in Ref. [39]. Another
example of an uncertainty source is to add a reserve margin
to the generator loss PL

t estimated by considering the statis-
tical property of a variable generator loss. Using robust
margins introduces conservativeness when considering un-
certainties, but in complex models, it is inevitable. Future
works will also include conducting sensitivity analysis on
using a dynamic power in‐feed loss compared to a fixed
power in‐feed loss.
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APPENDIX A

A | NOMENCLATURE
This section introduces the mathematical symbols most
recurrently used in the article.

A.0.1 | Sets
ΩB Set of demand blocks indexed by b.
ΩN Set of system nodes indexed by n.
ΩT

G Set of conventional generation technologies indexed
by gT.

ΩG Set ΩN � ΩT
G of clusters associated to node n and

technology gT indexed by g = (n, gT).
Ng Number of the generator within a cluster g.
Ωg

I Set of generation units in the cluster g ∈ ΩG indexed by i
Ωb

T Set of time periods in the demand block b indexed by t.
ΩT

R Set of candidate renewable technologies.
ΩR Set of all renewables indexed by r.
ΩS Set of all storage technologies indexed by s.
ΩE

S Subset of electricity storage technologies ΩE
S ⊆ ΩS

� �

indexed by es.
ΩH

S Subset of H2 storage technologies ΩH
S ⊆ ΩS

� �
indexed

by hs.
ΩT

EL Set of electrolyser candidate technologies.
ΩT

BL Set of blue hydrogen candidate technologies.

A.0.2 | Parameters
dt,n Demand (MW) at node n and time t.
In,ℓ Bus‐to‐line incidence matrix of size |ΩN|�|ΩL|.

In,ℓ = 1 if line ℓ is from the sending bus node n
In,ℓ = −1 if line ℓ is from the receiving bus node n
In,ℓ = 0 otherwise

~h
0
s Initial state‐of‐charge of the storage device s.
Jn,g Bus‐to‐generation cluster incidence matrix (|ΩN|�|

ΩG|).
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Jn,g = 1 if generator g connects to bus n.
Jn,g = 0 otherwise

hes Maximum charge/discharge rate (MW) of storage es.
ρes Charging/discharging efficiency of storage es.
Ng Maximum number of generator units within the

cluster g.
Pg Maximum power output (MW) of a conventional

generator unit g.
Gn;gT Maximum number of investments in conventional

generators of technology gT at bus node n.
pmsg
g Minimum stable generation (MW) of the cluster

unit g.
Γ System balance penalty constant ($/MWh).
ϒ Reserve penalty constant ($/MWh).
κℓ
o Annual fixed capital cost ($/(km yr)) of line ℓ, op-

tion o.
κRr Annual capital cost ($/yr) of renewable technology r.
κHes Annual capital cost ($/yr) of storage devices es.
κGg Annual capital cost ($/yr) of the generator cluster

unit g.
κHel Annual capital cost ($/yr) of the electrolyser unit el.
κHhs Annual capital cost ($/yr) of hydrogen storage

unit hs.
csug Start‐up cost ($) of the generator cluster unit g.
csdg Shut‐down cost ($) of the generator cluster unit g.
cnlg No‐load cost ($/h) of the generator cluster unit g.
cGg Operation cost ($/MWh) of the generator cluster

unit g.
c−
s Discharging cost ($/MWh) of the storage unit s.
cþ
s Charging cost ($/MWh) of the storage unit s.
c−
hs H2 consumption cost ($/MW) of the storage unit hs.
cþ
hs H2 production cost ($/MW) of the storage unit hs.
cel H2 production cost ($/MW) by the electrolyser

unit el.
cbl H2 production cost ($/MW) by blue H2 unit bl.
cres Cost ($/MW) of reserve scheduling.
Tmd
g Minimum down time (h) of the generator cluster

unit g.
Tmu
g Minimum up time (h) of the generator cluster unit g.

ηes Energy capacity (MWh) of storage es.
ηel Conversion efficiency of the electrolyser el.
ηhs Conversion Efficiency of H2 storage hs.
ηh2 Conversion efficiency of the H2CCGT.
RUg Ramp‐up limit (MW/h) of unit g.
RDg Ramp‐down limit (MW/h) of unit g.
Ŝ

−
es Total discharge capacity (MW) of storage es.
SUg Start‐up capability (MW) of the generator cluster

unit g.
SDg Shut‐down capability (MW) of the generator cluster

unit g.
wb weight of the demand block b.
tþb First period of the demand block b.
t−b Last period of the demand block b.
ET Annual emission limit (kg/MWh).
Δfmax Maximum admissible frequency deviation.
Δf ssmax Maximum quasi‐steady state frequency deviation.
D Load‐damping factor (%Hz).

f0 Nominal frequency (Hz) of the power grid.
Hg Inertia constant (s) of the generator cluster unit g.
HL Inertia constant (s) of the generator producing PL

t .
Pmax
L Bound of the largest power in‐feed (MW).

RoCoF Maximum admissible RoCoF (Hz/s).
Tg Delivery time (s) of PFR.
Tes Delivery time (s) of EFR.
PD
t Total demand (MW) at time t.

Δhs
t H2 storage duration (hours).

Δfnadir Frequency at nadir in Hz.

A.0.3 | Decision variables
All decision variables, denoted as x, are as follows:

Gn;gT Candidate (integer) generators of technology gT at
bus n.

Hn,es Candidate storage es at bus n.
Rn,r Candidate renewable technology r at bus node n.
GH

n;el Candidate electrolyser el at bus n.
GH

n;bl Candidate blue H2 technologies bl at bus n.
Sn;hs Candidate H2 storage hs at bus n.
pt,g Cluster generator power output (MW) at time t.
~pt;g;i Power output (MW) above the minimum output of

generator unit i in cluster g at time t.
Pt,g Total cluster generator power output (MW) at time t.
Qt,n,el Green H2 production (MW) at time t.
Qt,n,bl Blue H2 production (MW) at time t.
pRt;n;r Power output (MW) of renewable r at bus n and time t.
ft,ℓ Power flow in line ℓ at time t.
θt,n Bus angle at node n and time t.
hþ
t;es Power charge of storage es at time t.
h−
t;es Power discharge of storage es at time t.

~ht;es State of charge of storage es at time t.
hþ
t;n;hs H2 production by H2 storage hs at bus n and time t.
h−
t;n;hs H2 consumed by H2 storage hs at bus n and

time t.
~ht;n;hs Energy content of H2 storage hs at bus n and time t.
rspt,g Frequency response provided by the cluster generator g

(MW) at time t.
r~spt;g;i Frequency response provided by the generator unit i in

cluster g at time t.
rest,g Spinning reserve provided by the cluster generator g

(MW) at time t.
r~est;g;i Spinning reserve provided by generator i in cluster g

(MW) at time t.
ut,g Integer variable for the commitment of the number of

generator units in cluster g at time t.
~ut;g;i Binary variable of unit i in cluster g at time t. It is 1 if

unit i is producing above minimum output and
0 otherwise.

uþ
t;g Start‐up of unit g at time t. It takes 1 if unit starts up at

time t and 0 otherwise.
u−
t;g Shut‐down of unit g at the operating point t. it takes 1

if unit shuts down at time t and 0 otherwise.
α̂rsp
es;t Proportion of storage charging that can be interrupted

to provide the frequency response.
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α̂res
es;t Proportion of storage charging that can be interrupted

to provide operating reserves.
Rslack
t Reserve curtailment (MW) at the operating point t.

PL
t Largest power in‐feed (MW) at time t.

Ht System inertia (MWs) after the loss of PL
t .

RG
t Total PFR (MW) from all generators.

RES
t Total EFR (MW) from all storage units.
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