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Abstract: K-means is one of the most important and widely applied
clustering algorithms in learning systems. However, it suffers from centroids
initialisation that makes K-means algorithm unstable. The performance and
the stability of the K-means algorithm may be degraded if benign outliers
(i.e., long-term independence data points) appear in data. In this paper,
we developed a novel algorithm to optimise K-means performance in the
presence of benign outliers. We firstly identified the benign outliers and
executed K-means across them, then K-means runs over all data points
to re-locate clusters’ centroids, providing high accuracy. The experimental
results over several benchmarking and synthetic datasets confirm that the
proposed method significantly outperformed some existing approaches with
better accuracy based on applied performance metrics.

Keywords: clustering; K-means; centroid initialisation; benign outlier.

Reference to this paper should be made as follows: Karami, A., Urréhman, S.
and Ghazanfar, M.A. (xxxx) ‘A novel centroids initialisation for K-means
clustering in the presence of benign outliers’, /nt. J. Data Analysis Techniques
and Strategies, Vol. x, No. X, pp.XXX—XXX.

Biographical notes: Amin Karami is currently a Senior Lecturer at the
University of East London (UEL) in UK. He has been extensively working on
big data technologies, computational intelligence, optimisation and network
analysis. He received his MSc in Informatics from the University of Skovde,

Copyright 20XX Inderscience Enterprises Ltd.



2 A. Karami et al.

Sweden in 2011. He also completed his PhD from the Computer Architecture
Department at the Universitat Politécnica de Catalunya Barcelona Tech
(UPC), Spain in February 2015. He has been carried out several international
research collaborations, several funds and grants, and several invited talks
and presentations.

Shafiq Urréhman is Tech Lead AI/ML and Senior Technical Expert at
China Euro Vehicle Technology AB (CEVT), Sweden. He has 15 years
of experience in developing AI/ML/technical projects for various industries
spreading from mining, automotive, forestry, communication, assistive and
medicine. Before joining CEVT, he has been working as an Associate
Professor and the Director of i2lab at the Umea University, Sweden,
and an Associate Professor at the LinkOping University, Sweden and the
Founder/Team Lead of Intelligent Systems Group at UEL, UK.

Mustansar Ali Ghazanfar is currently a Lecturer at the University of East
London (UEL), UK. He has been extensively working on machine learning,
deep learning, artificial intelligence, and business analytics. He receive his
PhD in Machine Learning from the University of Southampton UK in 2012.
He has more than 10 years of industrial and academic experience. He has
more than 50 international publications and according to Google Scholar, his
research attracts more than 0.5 citation per day in 2019.

1 Introduction

One of the most primitive human actions is grouping and classifying similar and
heterogeneous objects into distinct categories (Karami and Guerrero-Zapata, 2014). In
exploratory data analysis and data mining domain, this task is known as clustering.
Clustering is the unsupervised classification technique that divides a set of given data
into different clusters, in which the similar data are grouped into a same cluster (Karami
and Guerrero-Zapata, 2015a; Li, 2011). Clustering techniques have been employed in
many applications, such as wireless sensor networks, medicine, biology, psychology,
statistics, computer networking, program comprehension, software visualisation and
engineering (Celebi et al., 2013; Khanmohammadi et al., 2017; Alaei et al., 2018).

Among many clustering algorithms developed in the past 60 years, K-means is
one of the oldest and commonly used algorithms, first employed by James MacQueen
in 1967. K-means is simple, easy to implement, suitable for large datasets, and very
efficient with linear time complexity. However, it suffers from several drawbacks, one
such drawback is that it is sensitive to clusters’ centroids initialisation, particularly in the
presence of low-frequent patterns called outliers (Karami and Guerrero-Zapata, 2015a;
Gan and Ng, 2017; Min and Kai-fei, 2015; Karami, 2018).

The low-frequent data patterns are mostly malignant outliers, which adversely
affect the clustering quality. Detecting and removing such malignant outliers improves
the clustering accuracy. Much research on clustering attempts to remove these using
‘outlier removal techniques’ (Gan and Ng, 2017; Hautamaki et al., 2005) or combine
meta-heuristic optimisation algorithms with machine learning techniques (Santhanam
and Padmavathi, 2015; Marghny and Taloba, 2011; Shahreza et al., 2011) in order to
improve K-means in the presence of such outliers.
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In contrast, benign outliers have been getting less attention, most approaches simply
ignore them during training (Karami and Guerrero-Zapata, 2015a; Shin et al., 2017).
Benign outliers are the long-term independent data points that are mostly not included
in a 90%-95% confidence interval of normally distributed data (Jach and Kokoszka,
2008). Since the benign outliers are inherently a part of original data (see Figure 1 in
Section 2) and they must be available for training purposes (i.e., they are not severe or
malignant outliers), removing them might result in inappropriate training, unstable and
diverge modelling. It means that, the benign outliers exist in all the datasets and users
must decide to take away a small portion of data (i.e., out of 95% of normal distribution)
as benign or a large portion (i.e., out of 90% of normal distribution) as benign.

In this research work, we focus on the benign outliers to improve the stability and
the robustness of K-means algorithm through novel centroid initialisation technique. In
our approach we initially identify the benign outliers and initialise K-means centroids
across them. Then, K-means runs over all data points to re-locate clusters’ centroids,
providing better classification and accuracy rate.

The rest of this paper is organised as follows. Section 2 discusses the importance
of the benign outliers. Section 3 describes K-means clustering algorithm. The proposed
method is presented and discussed in Section 4. Experimental results are presented in
Section 5, and, conclusion is given in Section 6.

2 Benign outliers

Outliers are data points that are distant from other data and may indicate experimental
error, often resulting in exclusion from the dataset. Outliers may occur due to several
reasons, such as, measurement error, incidental systematic error, or by chance. It is often
not trivial to ascertain the cause of an outlier, resulting in, not a straightforward way to
express rules for their removal. For instance, a person with an 1Q of 130 is not outlier.
Outliers may or may not be a problem depending on several factors (Marr, 2015):

e some statistical tests are robust and can accommodate outliers, others may be
severely influenced by outliers

e some data types will naturally contain extreme values which are entirely inherent
e the presence of outliers may, in fact, be of interest.

Figure 1 depicts a sample of data distribution with a set of data samples that are far
from the 90%—-95% of the normal distribution; however, they are not malignant or severe
outliers. Hence, we cannot remove them because they are inherently a main part of the
original data. In this research work, we call them benign outlier, by removing them
might result in inappropriate training, unstable and diverge data modelling. To be able
to deal accurately with the benign outliers, we would initially need to identify them. To
do so, we employ Hotelling’s T-squared distribution technique (Yi et al., 2016).

2.1 Hotellings T-squared distribution

The Hotelling’s T-squared distribution is a multivariate generalisation of the Student’s
t-test. The form of the Hotelling’s T-squared is as follows:

T°=(X - X)W HX - X) )
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where X is the original data matrix, X is the mean of the dataset, and W is
the covariance matrix of X. The Hotelling’s T-squared statistic is approximately
F-distributed as follows:

2 (n—a)
Fp,n,a ~T m (2)

Any sample that has an F-value exceeding the critical F-value can be considered as

an outlier. There is no an obvious F'-value and must be empirically chosen. We setup
F-value = 3 experimentally to find the most probable data points as benign outlier.

Figure 1 A sample of normal distribution (see online version for colours)
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3 K-means clustering algorithm

K-means clustering algorithm groups the set of data points into a predefined number
of clusters based on a distance function, most commonly used distance function
is Euclidean distance (Karami and Guerrero-Zapata, 2015a). The standard K-means
algorithm is summarised as follows:

1  randomly initialise K centroids

2 calculate Euclidean distance between each data points and centroids and select the
smallest distance as the closest cluster centroid to data point

3 recalculate the cluster centroids using the mean of data points in each cluster

4  repeat step 2 and 3 until the centroids do not change any more in the predefined
number of iteration or a maximum number of iterations have been reached.

4 The proposed method

The proposed method for optimal placement of cluster centroids in the presence of
benign outliers with K-means algorithm is described in Algorithm 1.
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Algorithm 1 The pseudocode of the proposed method

Input: Training dataset
Output: Well-separated clusters using K-means
N = The number of training data
T = The maximum number of iteration
K = The number of clusters
F — Value = The threshold value for finding benign outliers
Phase 1: Identify Benign Outliers
while N do
(1) Identify Benign.Outliers using equations (1) and (2)
end while
Phase 2: Initialise K-means centroids
(1) Centers = Place randomly K centroids across Benign.Outliers data points
Phase 3: Run K-means
while Iter < T or cluster centroids do not change any more do
(1) Find the closest Centers to each data point using Euclidean distance:

\/Ef\;l Z;;l(Datai — Centers;)?

(2) Recalculate C'enters using the mean of data points within a same cluster
end while
return Well-separated clusters

Our proposed algorithm modifies the original K-means -clustering algorithm by
introducing an initialisation stage where we identify the benign outliers and randomly
place centroids across them. The time complexity of the proposed algorithm
(Algorithm 1) is therefore calculated in two stages. The first stage (i.e., identifying
benign outliers for centroids initialisation) has a complexity of O(N), and the second
stage (i.e., running K-means clustering) has a complexity of O(T.N.K). The overall
complexity of the proposed approach is O(N + T.N.K), which reduces to O(T.N.K).
In practice, although the proposed technique increases the time complexity by O(N)
required for the initialisation stage, this additional cost results in improved clustering
performance.

5 Experimental results

To assess the performance and accuracy of the proposed method, we compare it
against two existing widely-used algorithms, K-meanst+ (Arthur and Vassilvitskii,
2007) and density K-means (Yuan et al., 2015). We perform the comparison using
several performance metrics, namely, mean square error (MSE), standard deviation
(Std.), detection rate (DR), false positive rate (FPR), and purity. These are well-known
metrics used for assessing and comparing the performance and the accuracy of clustering
algorithms (Karami and Guerrero-Zapata, 2015a, 2015b).

We use eight datasets from two different sources for the comparison, ensuring that
there are diversity in the datasets and a generality in the results. The first source of
data has three 2D synthetic dataset and is currently being used to analyse learning
algorithm (Karami and Johansson, 2014). Figure 2 shows these three synthetic datasets.
Another source of data gives five classic benchmark problems from UCI machine
learning repository, namely, Iris, Glass, Wine, lonosphere, and Zoo. Table 1 shows the
characteristics (features, classes and patterns) for these five benchmark datasets.
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Figure 2 Synthetic datasets derived from Karami and Johansson (2014), (a) outlier
(D =1,020, K =15) (b) compound (D =399, K =6) (c) pinwheel (D= 1,200, K = 6)
(see online version for colours)

(a) (b) (c)

Notes: D — the number of data points; K — the number of classes.

Table 1 The five applied benchmark datasets

Dataset Features Classes Patterns
Iris 4 3 150
Glass 9 6 214
Wine 13 3 178
Ionosphere 34 2 351
Z00 17 7 101

5.1 Results of synthetic data

Figures 3(a), 5(a) and 7(a) show the first stage of the proposed algorithm. We selected
a random K for each dataset to be able to visualise the functionality of the first stage
of the proposed method. This stage discovered the benign outliers (e.g., the bold and
highlighted data points) and initialised clusters’ centroids across them. Initial centroids
are drawn with yellow squares. Figures 3(b), 5(b) and 7(b) show the final placement of
clusters’ centroids to visualise the performance of the proposed method over applied 2D
datasets.

The MSE values of three methods over applied datasets are depicted in Figures 4, 6,
and 8 with different random K values. As we expected, the initial MSE value from our
method is high due to spreading initial centroids in far spots. However, after a while
through K-means iterations, the proposed method could significantly provide less or
reasonable MSE as compared to existing methods. This non-significant MSE result is a
cost of considering benign outliers. In contrast, this provides significant results based on
higher DR and lower FPR at the same time, that are the main attributes for considering
clustering quality. To evaluate the accuracy and the robustness of the proposed method,
we considered several numbers of centroids and presented the best results of 10 times
individual runs in Tables 2—4. According to results, the proposed method performed well
as compared to other methods in terms of high DR, low FPR and high purity at the
same time.
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Figure 3 The results of proposed method for outlier dataset (K = 20), (a) centre initialisation
(b) after training (see online version for colours)

Figure 4 MSE results with different K for outlier dataset, (a) K=7 (b) K=12 (¢) K=20
(see online version for colours)
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Table 2 The average results of clustering for outlier dataset

K (centre) Methods MSE Std. DR (%) FPR (%) Purity
7 Proposed method 0.237 0.1023 83.17 343 0.96
K-means++ 0.2312 0.1001 82.66 3.45 0.955
Density K-means 0.2313 0.1002 82.53 3.88 0.954
12 Proposed method 0.174 0.073 92.86 1.40 0.98
K-means++ 0.169 0.0758 88.30 2.46 0.96
Density K-means 0.18 0.0796 90.68 2.71 0.96

20 Proposed method 0.1354 0.0555 100 0 1
K-means++ 0.1279 0.0533 98.33 0.45 0.995

Density K-means 0.1298 0.0541 94.73 0.84 0.98
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Figure 5 The results of proposed method for compound dataset (K = 17), (a) centre
initialisation (b) after training (see online version for colours)

Figure 6 MSE results with different K for compound dataset, (a) K=12 (b) K=17
(c) K =20 (see online version for colours)
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Table 3 The average results of clustering for compound dataset

K (centre) Methods MSE Std. DR (%) FPR (%) Purity
12 Proposed method 0.1824 0.088 94.22 5.28 0.925
K-means++ 0.1537 0.0925 91.09 5.33 0.904

Density K-means 0.177 0.0868 89.77 3.86 0.897

17 Proposed method 0.1641 0.0807 96.10 3.04 0.9323
K-means++ 0.1353 0.0669 94.27 6.15 0.9223

Density K-means 0.1379 0.0933 93.28 3.97 0.929

20 Proposed method 0.119 0.067 97.73 1.19 0.9674
K-means++ 0.1175 0.0634 95.76 222 0.9599

Density K-means 0.1181 0.068 95.35 1.44 0.9574

5.2 Results of benchmarking data

We added a white Gaussian noise to benchmarking datasets for creating low frequency
noises as benign outliers. In this experiment, the signal-to-noise ratio is 10 dB. Figure 9
shows a sample of added white Gaussian noise to sawtooth signal.
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Figure 7 The results of proposed method for pinwheel dataset (K = 10), (a) centre
initialisation (b) after training (see online version for colours)
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Figure 8 MSE results with different K for Pinwheel dataset, (a) K=8 (b) K=10 (c) K= 14
(see online version for colours)
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Table 4 The average results of clustering for Pinwheel dataset

K (centre) Methods MSE Std. DR (%) FPR (%) Purity
8 Proposed method 0.1421 0.0998 97.73 1.32 0.975
K-means++ 0.1432 0.102 97.02 1.61 0.9717
Density K-means 0.1424 0.1 96.83 1.80 0.9708

10 Proposed method ~ 0.1322 0.0942 98.26 1.22 0.979
K-means++ 0.1268 0.0897 97.71 1.46 0.976

Density K-means 0.1319 0.0939 97.12 1.52 0.972

14 Proposed method 0.107 0.0725 99.03 0.59 0.989
K-means++ 0.1157 0..0834 98.19 0.9 0.983

Density K-means 0.1069 0.0764 98.47 1.011 0.98

All experiments over benchmarking datasets were run 10 times with different K
values, and the average classification error (Ave.) and the standard deviation (SD) were
computed. In the conducted experiments, 70% of dataset is used for training and the
rest is considered as test data in order to validate the quality of the proposed method.
After training, the label (class) of each formed cluster comes from the largest number
of a class within a same cluster. For instance, if a cluster contains two instances from
class A, 12 instances from class B, and one instance from class C, the label of this
cluster is considered as class B and the three instances from classes A and C are
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considered as misclassification. The results have been summarised in Table 5. The

results show that the proposed method tends to obtain more accurate classification rate
(Ave.) and lower SD as compared to other methods.

Figure 9 Added white Gaussian noise to sawtooth signal (see online version for colours)
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Table 5 Classification error (%) of applied methods over benchmarking datasets

Method Type Criteria Dataset
Iris Glass Wine lonosphere  Zoo
Proposed method  Training Ave. 3.804  12.684 13.854 8.375 7.51
SD 0.83 1.958 1.747 1.892 2.035
Test Ave. 3.361 11.345 12.91 7.286 6.631
SD 0.858 2.02 1.927 1.892 1.688
K-means++ Training Ave. 5.211 16.689  16.011 9.533 9.727
SD 2.129 2.836 2.86 2.593 2.648
Test Ave. 4407 15437 16.203 9.464 9.592
SD 2.118 2.958 2.675 2.532 2.157
Density K-means  Training Ave. 4.461 16.474  15.875 10.658 9.201
SD 1.563 2.739 2.442 2.941 2.287
Test Ave. 4496 15279 15.523 9.078 7.899
SD 1.572 2.765 2.23 2.578 2311
K-means Training Ave. 4.74 15.043  17.112 10.103 10.01
SD 2.165 3.401 3.545 4.001 3.877
Test Ave. 6.192  16.123 15455 9.912 9.136

SD 2.152 3.131 4.031 4.002 3.563
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6 Conclusions

In this paper, a new centroid initialisation method for K-means clustering algorithm
was introduced. The proposed method firstly considered and discovered benign outliers
which exist inherently in almost all datasets. Benign outliers are usually out of
90%-95% of confidential interval of normal distribution of data. According to the
experimental results, clusters’ centroids initialisation through these tangible data points
constructed clusters with higher accuracy as compared to some existing methods.
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