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Abstract

Gestational Diabetes Mellitus (GDM) poses significant health risks to mothers and infants. Early prediction and effec-
tive management are crucial to improving outcomes. Machine learning techniques have emerged as powerful tools
for GDM prediction. This review compiles and analyses the available studies to highlight key findings and trends

in the application of machine learning for GDM prediction. A comprehensive search of relevant studies pub-

lished between 2000 and September 2023 was conducted. Fourteen studies were selected based on their focus

on machine learning for GDM prediction. These studies were subjected to rigorous analysis to identify common
themes and trends. The review revealed several key themes. Models capable of predicting GDM risk during the early
stages of pregnancy were identified from the studies reviewed. Several studies underscored the necessity of tailor-
ing predictive models to specific populations and demographic groups. These findings highlighted the limitations

of uniform guidelines for diverse populations. Moreover, studies emphasised the value of integrating clinical data

into GDM prediction models. This integration improved the treatment and care delivery for individuals diagnosed
with GDM. While different machine learning models showed promise, selecting and weighing variables remains
complex. The reviewed studies offer valuable insights into the complexities and potential solutions in GDM prediction
using machine learning. The pursuit of accurate, early prediction models, the consideration of diverse populations,
clinical data, and emerging data sources underscore the commitment of researchers to improve healthcare outcomes
for pregnant individuals at risk of GDM.
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Introduction

Gestational diabetes mellitus (GDM) is characterised by
any degree of glucose intolerance that either develops or
is first identified during pregnancy [1]. It encompasses
cases of previously undiagnosed glucose intolerance that
may have existed before or emerged during pregnancy,
regardless of subsequent management approaches, such
as dietary modification or insulin therapy, and whether
the condition persists post-pregnancy [2]. Regional dis-
parities in GDM prevalence are evident, with the highest
rates found in the Middle East and North Africa (12.9%),
followed by Southeast Asia (11.7%), the Western Pacific
(11.7%), South and Central America (11.2%), and the
lowest rates in Europe (5.8%), North America, and the
Caribbean (7.0%) [3]. GDM is a widespread pregnancy
complication, affecting 1-14% of pregnancies worldwide,
with variations influenced by patient ethnicity and diag-
nostic criteria [4, 5]. The impact of GDM on maternal
and fetal health is significant, often leading to preterm
delivery, cesarean section, excessive fetal growth, hyper-
insulinemia, hypoglycemia, and hyperbilirubinemia in
newborns [6—-8]. Additionally, GDM can progress to Type
2 Diabetes Mellitus (T2DM), resulting in birth-related
complications, visceromegaly, fetal macrosomia, and an
increased risk of metabolic disorders for both mother
and child, including hypertension, obesity, and metabolic
syndrome [9, 10].

The precise pathophysiological mechanisms of GDM
remain incompletely understood, but hormonal imbal-
ances, impaired insulin sensitivity, and pancreatic p-cell
malfunction are suggested contributors [11]. About 16%
of pregnancies globally are linked to hyperglycemia, with
84% classified as GDM [12]. GDM significantly contrib-
utes to the onset of T2DM in both mothers and offspring,
emphasising the importance of effectively managing
blood glucose levels during pregnancy to prevent and
reduce the prevalence of T2D in future generations [13].
Historically, screening for GDM relied on medical his-
tory, previous obstetric outcomes, and family history of
T2D. However, this approach exhibited an approximate
50% failure rate in detecting GDM among pregnant
women. In 1973, a pivotal study recommended adopt-
ing the 50 g 1-h oral glucose tolerance test as a screening
tool, which is now widely used by approximately 95% of
obstetricians in the United States for GDM screening. In
2014, the U.S. Preventive Services Task Force (USPSTF)
recommended GDM screening for all pregnant women at
24 weeks [12, 14, 15].

Early screening and diagnosis of GDM are crucial for
reducing the risks of pregnancy-related complications,
such as macrosomia, preterm birth, pre-eclampsia,
and neonatal intensive care admissions [14, 16]. Exist-
ing diagnostic tools have limitations in this regard. To

Page 2 of 15

enhance the prediction of GDM, clinical, sociodemo-
graphic, and anthropometric data have been employed in
traditional regression analysis-based clinical risk predic-
tion models. Recent advancements in machine learning
promise to increase the accuracy of disease perception,
diagnosis, and management. For instance, Belsti et al.
[17] used a predictive analysis on antenatal care records.
Their model achieved 85% accuracy, 90% precision, 78%
recall, 84% F1-score, 81% sensitivity, 90% specificity, 92%
positive predictive value, 78% negative predictive value,
and a Brier Score of 0.39, surpassing the performance of
traditional statistical methods. Most outcome prediction
models enable early intervention in high-risk women and
cost-effective screening by identifying low-risk individu-
als, potentially eliminating the need for glucose toler-
ance tests [18]. This review explores the effectiveness of
machine learning algorithms in detecting GDM, incorpo-
rating relevant studies and data on their application for
GDM detection.

Methodology

Literature search strategy

A literature search was carried out to review the role of
machine learning algorithms in the early detection of
GDM and their impact on fetomaternal outcomes. The
following databases were searched: PubMed, Scopus,
Web of Science, and Google Scholar. The search was con-
ducted for studies published between 2000 and Septem-
ber 2023. The following keywords were used (“machine
learning”[MeSH Terms] OR (“machine”[All Fields] AND
“learning”[All Fields]) OR “machine learning”[All Fields])
AND (“algorithms”’[MeSH Terms] OR “algorithms”[All
Fields]) AND (“diabetes, gestational’[MeSH Terms] OR
(“diabetes”[All Fields] AND “gestational”[All Fields]) OR
“gestational diabetes”[All Fields] OR (“gestational”[All
Fields] AND “diabetes”[All Fields] AND “mellitus”[All
Fields]) OR “gestational diabetes mellitus”[All Fields]).

Inclusion and exclusion criteria
Articles were included if they met the following criteria:

— Dublished in English.

— DPeer-reviewed original studies.

— Focused on applying machine learning algorithms in
the context of GDM.

— Included information on using machine learning in
detecting or predicting GDM.

The exclusion criteria were:

— Systematic analyses, meta-analyses, reviews, confer-
ence abstracts, case reports, editorials, and letters.
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— Studies that did not provide relevant information or
data on the topic.

Study selection

Two independent reviewers (NA & EK) initially screened
titles and abstracts to identify potentially relevant arti-
cles. Full-text articles were then retrieved for further
evaluation. Discrepancies were resolved through dis-
cussion, and a third reviewer (GO) was consulted when
necessary.

Data extraction

Data were extracted from the selected articles, includ-
ing study design, sample size, characteristics of the study
population, machine learning algorithms employed, pre-
dictive variables used, outcomes measured, and reported
results.

Data synthesis

The findings from the selected studies were synthesised
to provide an overview of the current evidence regard-
ing the role of machine learning algorithms in the early
detection of GDM and their impact on fetomaternal
outcomes. Common themes, trends, and methodologi-
cal differences were identified. Results were analysed and
presented in a clear and organised manner.

Results

The studies in this review focused on predicting and
detecting GDM through machine learning algorithms
(See Table 1). Most were retrospective studies; others
were cohort studies, and two were randomised clinical
trials. The populations studied vary in size, from smaller
cohorts of just a few thousand individuals to larger popu-
lations exceeding 30,000. The studies reviewed utilised
diverse machine learning algorithms, including Naive
Bayes, Decision Trees, Support Vector Machines, Neural
Networks, Logistic Regression, Lasso-Logistics, Gradient
Boosting Decision Tree (GBDT), Deep Neural Network
(DNN), Gaussian Naive Bayes (GNB), Bernoulli Naive
Bayes (BNB), and various ensemble methods such as
Light Gradient Boosting Machine (LGBM) and Extreme
Gradient Boosting (XGBoost). Data sources include preg-
nancy registries, perinatal databases, clinical records, and
data from health institutions or hospitals.

Model performance and comparison

The studies conducted by Kang et al. (2023) and Yunzhen
et al. (2020) demonstrated notable outcomes in terms of
model performance and comparison [21, 32]. Kang et al.
[21] conducted an analysis comparing the effectiveness of
two machine learning algorithms, namely Light Gradient
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Boosting Machine (LGBM) and XGBoost, in predicting
GDM. This study revealed that XGBoost consistently
outperformed LGBM when evaluated across diverse
cohorts and time points, positioning it as a promising
choice for the prediction of GDM. In contrast, Yunzhen
et al. [32] explored the potential of machine learning
methods to surpass traditional logistic regression in
GDM prediction. Their results, however, indicated that
several machine-learning methods fell short of outper-
forming logistic regression.

Jie et al. [24] implemented diverse machine learn-
ing algorithms, including Logistic Regression, Gradient
Boosting Decision Tree, XGBoost, and Lightgbm. The
outcome was a model with high accuracy, precision, and
recall, demonstrating the potential of these algorithms to
enhance GDM prediction and risk assessment. Comple-
menting this, Yang-Ting et al. [30] introduced a clinically
cost-effective 7-variable Logistic Regression model. This
simplified approach offers a promising avenue for GDM
prediction, making it accessible and practical for clinical
applications.

Early prediction

Gabriel et al. [19] develop employed Gaussian Naive
Bayes (GNB), Bernoulli Naive Bayes (BNB), Decision
Trees (DT), Support Vector Machines (SVMs), Multi-
Layer Perceptron (MLP) to predict early prediction of
GDM within the early stages of pregnancy through regu-
lar examinations. The results showed that the developed
ML models and the proposed data augmentation method
achieved excellent predictive performance for GDM.
Similarly, Jenny et al. [23] introduced a novel machine
learning-based stratification system. The study utilised
linear and non-linear tree-based regression models,
including XGBoost. The study demonstrated a straight-
forward method for implementing proportionate care
delivery based on existing features in GDM clinics. The
machine learning-based stratification system identified
patients at risk of high blood glucose levels, enhancing
the ability to tailor care interventions. Furthermore, Yi-
xin et al. [22] utilised machine learning to forecast GDM
risk with a moderate performance at pregnancy initia-
tion, ultimately achieving good-to-excellent predictive
capabilities by the end of the first trimester. The ML algo-
rithm utilised in the study was XGBoost. The machine
learning model demonstrated moderate performance
in predicting GDM at pregnancy initiation and good-
to-excellent performance at the first cohort’s end of the
first trimester. However, in the second cohort, the trained
XGBoost exhibited moderate performance. The primary
objective of the prospective cohort study conducted by
Jingyuan Wang et al. [33] was to develop and verify an
early prediction model for GDM using machine learning
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algorithms. Various machine learning algorithms, includ-
ing LR, Random Forest (RT), ANN, and SVM, were
employed in the study. The study findings indicate that
the constructed New-Stacking model theoretically aimed
for optimal specificity, accuracy, and AUC. Nonetheless,
the SVM model demonstrated superior performance,
specifically in sensitivity.

Jesus et al. [20] conducted a study to address the bar-
riers to early detection of GDM in pregnant Mexican
women. The study employed a machine-learning-driven
method to select the best predictive variables for GDM
risk. The identified variables included age, family history
of type 2 diabetes, previous diagnosis of hypertension,
pregestational body mass index, gestational week, par-
ity, birth weight of the last child, and random capillary
glucose.

Subsequently, an artificial neural network approach
was used to build the Al-based prediction model. The
developed model demonstrated a high level of accu-
racy, reaching 70.3%, and sensitivity, achieving 83.3%.
These results indicate the model’s effectiveness in iden-
tifying pregnant women at high risk of developing GDM.
Moreover, de Freitas et al. [31] conducted a study aim-
ing to characterise GDM in pregnant women better using
Attenuated Total Reflection Fourier-transform infrared
(ATR-FTIR) spectroscopy. The study employed chemo-
metric approaches, integrating feature selection algo-
rithms along with discriminant analysis methods such as
Linear Discriminant Analysis (LDA), Quadratic Discri-
minant Analysis (QDA), and Support Vector Machines
(SVM). The results obtained by Genetic Algorithm Lin-
ear Discriminant Analysis (GA-LDA) were reported as
the most satisfactory, achieving % accuracy, sensitivity,
and specificity of 100%.

Results in diverse populations

Mukkesh Kumar et al. [26] conducted a cohort study to
evaluate the predictive ability of the existing UK National
Institute for Health and Care Excellence (NICE) guide-
lines for assessing GDM using machine learning. This
study employed the CatBoost gradient boosting algo-
rithm and the Shapley feature attribution framework for
predictive modelling. The findings of the study revealed
that the existing UK NICE guidelines were insufficient
to assess GDM risk in Asian women. Furthermore, the
non-invasive predictive model developed in this study
demonstrated superior performance to the current state-
of-the-art machine learning models in predicting GDM.
Similarly, Mukkesh Kumar et al. [27] built a preconcep-
tion-based GDM predictor to enable early intervention.
Additionally, the study aimed to assess the associations
of top predictors with GDM and adverse birth outcomes.
Participants were recruited from multi-ethnic groups
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(Chinese, Malay, Indian, or any combination of these
three ethnicities). The study employed an evolutionary
algorithm-based automated machine learning (AutoML)
approach, incorporating the SHAP (SHapley Additive
exPlanations) framework and TPOT (Tree-based Pipe-
line Optimization Tool). The study successfully devised
a population-based predictive care solution, utilising an
AutoML approach, to assess the risk of developing GDM
among Asian women in the preconception period. While
effective in some contexts, their findings revealed that
these algorithms proved insufficient for accurately assess-
ing GDM risk in some ethnic groups of women. This
study highlights the need for population-specific consid-
erations when addressing GDM.

Predictive models for specific cohorts

Yuhan et al. [28] conducted a Randomized Clinical
Trial to apply machine learning techniques to develop
a Clinical Decision Support System (CDSS). The objec-
tive was to predict the risk of Gestational Diabetes Mel-
litus (GDM), specifically in a high-risk group of women
with overweight and obesity.. The study employed both
Random Forest and Logistic Regression models for pre-
diction. The study successfully developed a simple yet
effective model utilising machine learning algorithms to
predict the risk of GDM in the first trimester. Notably,
the model achieved this without relying on blood exami-
nation indexes. Li-Li et al. [29] conducted a retrospective
study to investigate the application of a machine learn-
ing algorithm for predicting GDM in early pregnancy.
The machine learning algorithm employed in the study
was the Random Forest regression algorithm. Notably,
the model identified body weight at birth and the moth-
er’s weight as strongly predictive variables for GDM.
Additionally, other variables such as colpomycosis, kid-
ney disease, the number of births by the mother, regu-
lar menstruation, blood type, and hepatitis consistently
ranked among the top 20 most influential factors. They
were found to be linked to GDM in the study.

Clinical data and treatment modality

Lauren et al. [25] conducted a population-based cohort
study to investigate whether clinical data at different
stages of pregnancy could predict the treatment modal-
ity for GDM. The focus of the study was on predicting
the risks for pharmacologic treatment beyond medical
nutrition therapy (MNT) for pregnant women diagnosed
with GDM. The study employed transparent and ensem-
ble machine learning methods for predictive modelling,
incorporating LASSO regression and a super learner.
The super learner included classification, regression tree,
LASSO regression, random forest, and extreme gradient
boosting algorithms. The study’s findings demonstrated
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reasonably high predictability for GDM treatment
modality at GDM diagnosis and maintained high pre-
dictability at 1-week post-GDM diagnosis. In parallel,
Jenny et al. [23] demonstrated the development of an
innovative method for implementing proportionate care
delivery based on existing features within GDM clinics.
For predictive modelling, the study employed linear and
non-linear tree-based regression models, including met-
rics such as XGBoost MSE (Mean Squared Error), R2
(R-squared), and MAE (Mean Absolute Error). The find-
ings suggest that such a machine learning-based strati-
fication system could provide an effective and practical
approach for tailoring care interventions based on exist-
ing features within GDM clinics, potentially improving
patient outcomes and resource allocation.

Discussion

The studies reviewed here encompass various method-
ologies, underlining the multifaceted nature of GDM
prediction. One striking trend within this collection
of studies is the detailed comparison of machine learn-
ing algorithms. Algorithms like XGBoost and Logis-
tic Regression have demonstrated their effectiveness
in GDM prediction [29]. However, it is essential to rec-
ognise that there is no one-size-fits-all solution. While
XGBoost displayed superiority in several studies, com-
prehending the strengths and weaknesses of different
algorithms becomes crucial for optimising predictive
models within various contexts.

The importance of early prediction for effective GDM
management cannot be overstated, and it is evident in the
significant emphasis placed on this aspect in the reviewed
studies [25, 34] (Fig. 1). The rationale behind early pre-
diction lies in the potential to initiate timely interven-
tions and provide personalised care to pregnant women
at risk of developing GDM. The complications associated
with GDM can have profound and long-lasting effects on
both the mother and child, making early detection a criti-
cal component of effective healthcare [35]. This empha-
sis on early prediction is reflected in the proliferation of
diverse models designed to forecast GDM risk during the
early stages of pregnancy. The variety of models exempli-
fied by the comprehensive work of Gabriel Cubillos et al.
[19] underscores the collective ambition within the sci-
entific community to enhance the accuracy and reliabil-
ity of GDM predictions. The study by Gabriel Cubillos
and their team is particularly noteworthy as it prioritised
early prediction and explored the potential of different
machine-learning models [19]. They expanded the toolkit
for healthcare providers and researchers by developing
and optimising twelve distinct models. These models are
fine-tuned to deliver high prediction performance dur-
ing the early stages of pregnancy. This multi-pronged
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Input Data and
Prediction

Clinical Decision

Support System Risk Stratification
(CDSS)
Continuous
Monitoring and 323::;;::.
Adaptation

Fig. 1 Translating machine learning predictions into clinical
interventions for gestational diabetes

approach allows for more comprehensive risk assess-
ment, increasing the chances of timely interventions. The
focus on early prediction is not only about identifying
cases but also about developing a deeper understanding
of the factors and variables that contribute to the devel-
opment of GDM [36]. By emphasising the importance of
early detection, these studies pave the way for tailoring
interventions that can prevent or mitigate the impact of
GDM. The ultimate goal is to improve maternal and fetal
health outcomes by making proactive, personalised care
a standard practice in obstetrics.

Studies within this review underscore the importance
of tailoring predictive models to specific populations and
demographic groups when addressing the prediction
and early detection of GDM [19, 23, 30]. These studies
highlight that a one-size-fits-all approach is insufficient,
and demographic-specific considerations are essential
for constructing accurate predictive models. Mukkesh
Kumar et al. [26] have made a particularly striking contri-
bution by shedding light on the limitations of employing
uniform guidelines for diverse populations, specifically
emphasising the challenges faced by Asian women. Their
findings reveal that traditional, broadly applicable guide-
lines may not adequately capture the unique risk factors
and nuances associated with GDM in Asian populations.
This study emphasises the necessity of considering eth-
nicity, genetics, and other demographic-specific factors
when constructing predictive models for GDM. By doing
s0, healthcare providers can better identify at-risk indi-
viduals within these populations and tailor interventions
and care strategies to their specific needs. Similarly, the
research conducted by Yuhan Du et al. (2022) provides
a compelling illustration of the potential for augmenting
prediction accuracy by focusing on high-risk groups [23].
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In this case, the study zeroes in on women who are over-
weight or obese, a demographic with a higher susceptibil-
ity to GDM. By developing a specialised clinical decision
support system for this specific cohort, the study rec-
ognises the unique risk profile of these individuals. This
targeted approach can enhance prediction accuracy,
ensuring women at the highest risk receive the necessary
attention, interventions, and care. These findings indicate
the importance of healthcare equity, emphasising that
predictive models must be sensitive to the diversity of the
populations they serve. The one-size-fits-all approach is
no longer adequate, as demographic factors significantly
determine GDM risk. Future research and healthcare ini-
tiatives should consider these demographic-specific con-
siderations when designing predictive models, ultimately
leading to more accurate risk assessment and better-tai-
lored interventions.

Lauren et al. (2022) and Jenny et al. (2022) made sub-
stantial contributions to the field by emphasising the
importance of integrating clinical data into the predictive
models for GDM [23, 25]. These studies provide valuable
insights into how leveraging clinical data can enhance
the treatment and care delivery for individuals diagnosed
with GDM, ultimately improving patient outcomes. The
integration of clinical data into predictive models offers
several crucial advantages. First and foremost, it ena-
bles healthcare providers to personalise and optimise the
treatment and care for pregnant individuals diagnosed
with GDM. By considering clinical data such as respon-
siveness to medical nutrition therapy, they can tailor
interventions to each patient’s specific needs. This indi-
vidualised approach is essential, as GDM management
can vary significantly from one person to another [37].
Furthermore, incorporating clinical data fosters a more
patient-centred approach to care. It ensures that the
treatment plan aligns with the patient’s specific health
profile, preferences, and response to interventions. This
patient-centred approach can improve patient satisfac-
tion, compliance, and overall well-being. Jenny et al. [23]
introduced the concept of proportionate care delivery
based on available clinical data. This innovative approach
streamlines care and ensures that resources are allocated
efficiently, addressing patients’ needs more effectively
[30]. By leveraging existing clinical data, healthcare pro-
viders can identify individuals at risk of high blood glu-
cose levels, enabling proactive intervention and reducing
the likelihood of complications associated with uncon-
trolled GDM.

Nonetheless, it is essential to acknowledge that chal-
lenges persist within GDM prediction. A common chal-
lenge encountered is the extensive array of variables
associated with GDM [38]. The condition’s multifaceted
nature means numerous factors must be considered,
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making selecting and weighing these variables complex
[39]. While studies like that of Jie et al. (2022) have dem-
onstrated the potential of different machine-learning
models, addressing this variable complexity remains a
significant challenge [26]. Researchers must continue
refining their models and methodologies to accurately
incorporate the full spectrum of relevant variables.
Moreover, applying ensemble methods, such as stacking,
underscores the aspiration to enhance predictive perfor-
mance. While these methods promise to improve accu-
racy, they also introduce additional layers of complexity.
Studies must balance model sophistication and practi-
cality, ensuring that predictive models can be effectively
implemented in real-world clinical settings.

As technology and healthcare data evolve, future
research can leverage emerging opportunities. Integrat-
ing real-time data from wearable devices, exploring
genetic data, and incorporating a more comprehensive
range of health-related information are all promising ave-
nues for improving predictive models. These advanced
data sources have the potential to provide a more holis-
tic understanding of GDM risk, leading to more accu-
rate and timely predictions [40]. Furthermore, future
research should consider the holistic context in which
GDM occurs. Focusing on patient-centred outcomes
and the social determinants of GDM can deepen our
understanding of this condition. Factors such as access
to healthcare, socioeconomic status, and lifestyle can sig-
nificantly impact an individual’s risk of developing GDM.
By considering these broader determinants, researchers
and healthcare providers can develop more comprehen-
sive and effective management strategies that address the
medical aspects and the social and environmental factors
influencing GDM.

Limitations and strengths of review

This review explores various studies on predicting and
detecting GDM through machine learning methods. It
encompasses a wide range of study designs, population
groups, and machine learning algorithms, providing an
inclusive overview of this field’s current state of research.
However, the studies included in this review span across
different geographical regions and demographic profiles.
While this diversity enriches the scope of the review, it
can simultaneously limit the generalizability of findings.
GDM risk factors and predictive models may exhibit var-
iations among populations, and the review would ben-
efit from a more thorough discussion of the implications
arising from this variability. Additionally, this review pri-
marily relies on studies published in English, which might
introduce publication bias, potentially overlooking nega-
tive or inconclusive results less readily available in Eng-
lish literature.



Kokori et al. Clinical Diabetes and Endocrinology (2024) 10:18

Conclusion

Predicting and early detecting GDM through machine
learning techniques is a dynamic and evolving field.
This review shows significant findings and trends across
diverse studies, shedding light on the potential and
challenges within this domain. The significance of early
prediction in facilitating effective GDM management
is striking, with numerous studies committed to craft-
ing models capable of identifying GDM risk in the early
stages of pregnancy. XGBoost emerged prominently as
a consistent performer, showcasing superior predictive
capabilities across various cohorts and time points. These
models create opportunities for timely interventions and
personalised care, ultimately improving outcomes for
both mothers and infants. Nevertheless, the challenges at
hand are notable. The vast array of variables associated
with GDM poses a substantial hurdle in the quest for
accurate prediction models. The selection and weight-
ing of these variables remain intricate tasks, necessitating
ongoing research and innovation in feature engineer-
ing. Furthermore, the emphasis on tailoring predictive
models to specific populations, evident in studies focus-
ing on Asian women or high-risk groups, underscores
the importance of demographic-specific considerations.
Predictive models must adapt to these groups’ unique
characteristics and risk factors. The practicality of imple-
menting proportionate care delivery based on readily
available clinical data underscores the value of leveraging
existing resources effectively. As technology and health-
care data continue to advance, there is an opportunity for
future research to harness real-time data from wearable
devices and genetic information to enhance predictive
models further. These emerging data sources could revo-
lutionise GDM prediction and early intervention. Focus-
ing on patient-centred outcomes and exploring the role
of social determinants in GDM prediction can deepen
our understanding of this condition. It can pave the way
for more comprehensive and effective management strat-
egies considering medical variables and broader con-
texts in which GDM occurs. This review offers valuable
insights and directions for future studies in GDM predic-
tion through machine learning techniques.

Abbreviations

GDM Gestational Diabetes Mellitus

T2DM Type 2 Diabetes Mellitus

USPSTF U.S. Preventive Services Task Force
SHAP SHapley Additive exPlanations

TPOT Tree-based Pipeline Optimization Tool
MeSH Medical Subject Headings

MSE Mean Squared Error

R2 R-squared (coefficient of determination)
MAE Mean Absolute Error

BMI Body Mass Index

OGTT Oral Glucose Tolerance Test
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LGBM Light Gradient Boosting Machine
XGBoost  Extreme Gradient Boosting

SVM Support Vector Machines

MLP Multi-Layer Perceptron

KNN K-Nearest Neighbors

LR Logistic Regression

RF Random Forest

ET Extra Trees

BRF Balanced Random Forest

GB Gradient Boosting

ANN Artificial Neural Network

HbATc Hemoglobin Alc

FPG Fasting Plasma Glucose

TG Triglyceride

TC Total Cholesterol

HDL High-Density Lipoprotein

SHAP SHapley Additive exPlanations
TPOT Tree-based Pipeline Optimization Tool
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