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Abstract The EU Nature Restoration Law (NRL) is

critical for the restoration of degraded ecosystems and

active afforestation of degraded peatlands has been

suggested as a restoration measure under the NRL. Here,

we discuss the current state of scientific evidence on the

climate mitigation effects of peatlands under forestry.

Afforestation of drained peatlands without restoring their

hydrology does not fully restore ecosystem functions.

Evidence on long-term climate benefits is lacking and it is

unclear whether CO2 sequestration of forest on drained

peatland can offset the carbon loss from the peat over the

long-term. While afforestation may offer short-term gains

in certain cases, it compromises the sustainability of

peatland carbon storage. Thus, active afforestation of

drained peatlands is not a viable option for climate

mitigation under the EU Nature Restoration Law and

might even impede future rewetting/restoration efforts.

Instead, restoring hydrological conditions through

rewetting is crucial for effective peatland restoration.

Keywords Carbon storage � GHG emissions �
Nature based solutions � Nature restoration law �
Peatland forestry � Peatland restoration

INTRODUCTION

The EU Nature Restoration Law is critical for the

restoration of degraded ecosystems and the provision of

climate protection, as clearly shown by the most recent

IPCC report (IPCC AR6 SYR 2023). The carbon dioxide

(CO2) sinks necessary to reach climate neutrality and

then net cooling during the second half of this century

heavily rely on the land use sector (LULUCF), because

improved land stewardship is the most mature CO2

removal method (e.g. ibid., Field and Mach 2017).

However, sinks should not be used to compensate for

avoidable sources and emission reduction remains the

utmost priority because the sinks cannot—by far—

compensate for the large anthropogenic emissions, which

urgently need ‘‘aggressive and rapid greenhouse gas

emission reduction in all sectors of the economy’’

(Seddon et al. 2021).

Several EU member states pursue the recognition of

active afforestation of drained and degraded peatlands

(without rewetting) as a measure under the Nature

Restoration Law (NRL). This is, however, problematic

from a scientific perspective. Firstly, afforestation of

drained peatlands, while keeping them drained, will not

restore the peatland ecosystem with its flora, fauna and

functions. Secondly, as long as a peatland remains drained,

it will degrade further, contribute to climate warming

through high emissions of CO2 and nitrous oxide, and

downstream systems may be severely polluted with nutri-

ents and dissolved organic matter (Zak and McInnes 2022).

Typically, in forested northern peatlands, much more car-

bon is stored in the peat (22.6–66.0 kg m-2) than in the

forest biomass (2.8–5.7 kg m-2) (Beaulne et al. 2021).

Long-term carbon losses from the drained peatland will

likely be larger than the amount of carbon stored in the

forest biomass (Dunn and Freeman 2011; Makrickas et al

2023). Carbon will be released to the atmosphere as CO2

when the trees or the manufactured timber products reach

the end of their life cycle. Actions focussed on a single

ecosystem service too often result in adverse outcomes for

the ecosystem as a whole.
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Presently, the claim that afforestation on drained peatlands

could be beneficial for climate change mitigation in the long-

term has to be questioned. In most cases, CO2 release from

peat soil degradation will likely exceed carbon sequestration

in the forest biomass when full growth cycles are considered,

as was also concluded by the IPCC in the 2013 Wetlands

Supplement (IPCC 2014). In contrast, ecosystem-scale flux

measurements show that rewetting/restoration1 of forestry-

drained peatlands can reduce soil CO2 emissions and even

restore the CO2 sink function within a few years/decades

(Hambley et al. 2019). A comprehensive assessment must

cover the entire land use cycle—from site preparation to

sowing or planting, growth of the biomass, thinning or ditch

cleaning, through to harvest, the fate of the biomass (whether

used for long-lived products or not) and the fallow time before

renewed site preparation. For cropping agriculture, this cycle

commonly takes in a single year, while in forestry it takes

much longer. Longer, comprehensive greenhouse gas moni-

toring studies are currently only available from the boreal

region and even here, the authors call for longer-term studies

that include the entire life cycle (e.g., Bjarnadottir et al. 2021).

Such studies do not exist to date and so we can only approach

the true climate balance of peatland forestry by using space-

for-time substitution and stitching together studies that cover

different stages of the forestry life cycle.

Here, we review the relevant literature and discuss the

role of peatlands in relation to the climate with respect to

forestry-drained peatlands in particular. We identify

knowledge gaps and suggest future research that will enable

better knowledge of the climate effect of peatland forestry.

PEATLANDS AND CLIMATE

A peatland is an area with a naturally accumulated layer of

peat at the surface. Peat is a sedentary material consisting

of at least 30% (dry mass) of dead organic material. Plants

absorb CO2 and store carbon in their biomass. When they

die, they are decomposed and the CO2 is released again. In

mires—peatlands that actively accumulate peat2—water

saturation of the soil effectively excludes oxygen, thereby

inhibiting the full decomposition of the plant litter, which

then accumulates as peat. In this way, peatlands have

sequestered huge amounts of carbon over millennia.

Globally, peatlands store approximately 600 Gt of carbon

(Yu et al. 2010; UNEP 2022), which is more than is con-

tained in global forest above-ground biomass (Santoro

et al. 2021), and have cooled the planet by approximately

0.6 �C over the past 10,000 years (Frolking and Roulet

2007; Joosten et al. 2016). Forests and peatlands are fun-

damentally different in terms of carbon cycling over time,

in that pristine mature forests are generally in balance

(although this view has also been challenged by, e.g.

Luyssaert et al. (2008)); whereas, peatlands continue to

accumulate carbon, year after year.

While mires sequester carbon from the atmosphere,

incomplete decomposition under water-saturated oxygen-

free conditions results in the production of methane (CH4).

The amount of CH4 released from pristine, wet peatlands

varies strongly depending on environmental conditions

such as pH, temperature and vegetation (e.g. Lai 2009).

Methane is a short-lived greenhouse gas (GHG) and stays

in the atmosphere, on average, for less than 12 years. Thus,

given steady emissions of CH4, a dynamic equilibrium will

establish over time in which in a certain year the same

amount of CH4 will disappear from the atmosphere as is

added from the peatland, and the CH4 concentration in the

atmosphere and the climate impact do not increase any

further (Frolking and Roulet 2007). Pristine, undrained

peatlands almost always release CH4, but the net uptake of

CO2 overcompensates for the CH4 losses in the long-term.

In mires, i.e. wet peat-forming peatlands, formation and

emissions of nitrous oxide (N2O, a potent greenhouse gas)

are negligible.

When peatlands are drained, the upper soil layers are no

longer water-saturated, oxygen enters the peat, and

decomposition of organic matter becomes much more

efficient, leading to mineralisation of the peat and, thus,

high CO2 (Ojanen et al. 2010; Jovani-Sancho et al. 2018)

and N2O emissions (Klemedtsson et al. 2005; IPCC 2014;

Leppelt et al. 2014; Minkkinen et al. 2020). In contrast,

CH4 production and emissions generally decrease because

of water table drawdown; while, drainage ditches may

remain a major source of CH4 emissions (Minkkinen et al.

1997; Köhn et al. 2021; Rissanen et al. 2023). Draining

reduces soil CH4 emissions but increases soil CO2 and N2O

emissions, as well as CH4 emissions from drainage

infrastructure such as ditches. In the case of forestry,

drainage also increases tree stand carbon stock, until the

stand is cut. This may lead to short-term cooling in the

boreal climate zone, but in most cases, the long-term effect

will be warming (Laine et al. 1996; Ojanen and Minkkinen

2020).

1 Rewetting and restoring/restoration are often used interchangeably

but they are not. Rewetting describes the deliberate action of raising

the water table on drained soils to re-establish water-saturated

conditions. In contrast, restoration refers to the full re-establishment

of all ecosystem functions that cannot be done directly but only be

aimed at facilitating measures, such as rewetting, removal of

degraded topsoil, and re-introduction of mire-typical vegetation, etc.

See the IPCC Wetlands Supplement (IPCC 2014) for a profound

discussion of this terminology.
2 Definitions based on resolution VIII.17 ‘‘Guidelines for Global

Action on Peatlands’’ https://www.ramsar.org/sites/default/files/

documents/pdf/res/key_res_viii_17_e.pdf, IMCG & IPS Wise Use

Guidelines (Joosten & Clarke 2002), and ‘‘Mires and Peatlands of

Europe’’ (Joosten et al. 2017).
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In order to determine the climate effect of rewetted

peatlands, we need to compare CO2, CH4 and N2O emis-

sions, and lateral losses of carbon and nitrogen both in

drained and rewetted situations. Rewetting is always a

choice between continued emissions of long-lived GHGs

(CO2 and N2O) versus emissions of a short-lived GHG

(CH4). In the short-term, rewetting will not result in net

cooling because of increased CH4 emissions, but will in the

long-term (decades to centuries) (Wilson et al. 2016, 2022;

Günther et al. 2020; Ojanen and Minkkinen 2020). How-

ever in most cases, rewetting peatlands will pay off

immediately, or after a very short time period, i.e., total

radiative forcing is lower than in the drained state (Günther

et al. 2020; Tanneberger et al. 2021b). Re-introduction of

vegetation on cutover bogs (Rochefort et al. 2003; Gon-

zález and Rochefort 2014), but also after topsoil removal

on formerly drained grassland on bog peat (Rosinski et al.

2021) can speed-up restoration of the GHG sink function

after rewetting (Nugent et al. 2018, 2019; Huth et al. 2022).

FORESTRY ON PEATLANDS

Peatland forestry is common in the boreal zone, but also

occurs across the temperate climate zone. Globally,

approximately 12 million hectares (Mha) of peatlands have

been drained for forestry (Minkkinen et al. 2023). This

represents approximately 3% of the global peatland area

(ca. 440 Mha, Yu et al. 2010). Most of the area under

peatland forest is situated in Fennoscandia and Russia,

where over 10 Mha of peatlands have been drained for

forestry (ibid.). In Canada and the United States, forestry is

also practised on undrained peatlands.

In Europe, peatland forestry is mainly found in the north

(i.e. Finland, Sweden, and Norway), but is also of national

importance in the Baltic countries, United Kingdom, Ire-

land, Poland and Germany (see Fig. 1, data for non-EU

countries are not included). Typically, peatlands used for

forestry are drained, which leads to a simultaneous increase

in CO2 and N2O emissions through peat decomposition

(see above) and CO2 sequestration through the growing

tree stand; while, the drainage ditches may still emit con-

siderable amounts of CH4.

CLIMATE IMPACT OF PEATLAND FORESTRY

Although soil CO2 emissions increase after drainage, sev-

eral studies on drained boreal peatland forests, made with

micrometeorological or combined chamber-efflux-litter-

production-methods, suggest that carbon sequestration in

the tree biomass can exceed the carbon loss from the

decomposition of the peat (Lindroth et al. 2007; Meyer

et al. 2013; Ojanen et al. 2013; Uri et al. 2017; Minkkinen

et al. 2018; Bjarnadottir et al. 2021). In most cases, how-

ever, soil C stocks decrease over time, which is the

deciding factor when whole rotation climate impacts are

considered. Nutrient-poor sites in the boreal zone may

accumulate carbon in the soils (Ojanen et al. 2013), but in

the absence of a high water table, the fate of this carbon is

unclear over a production cycle.

Measuring greenhouse gas fluxes in peatland forests

is challenging

The most common way to measure greenhouse gas fluxes

in treeless peatlands has been to place airtight chambers on

the surface and to measure the change in the concentration

of gases inside the chamber. This commonly applied

technique cannot be used in a forest stand as mature trees

typically cannot fit inside the chambers. Therefore, the soil

carbon balance is estimated by subtracting measured litter

production from heterotrophic soil respiration (e.g. Ojanen

et al. 2012, 2013; Jovani-Sancho et al. 2021; Uri et al.

2017) where the latter has been measured from trenched

plots in which plants and tree roots have been excluded.

Simply placing chambers on the forest soil will not provide

reliable measurements of fluxes from soil degradation,

because the roots of the trees also emit CO2 (i.e. auto-

trophic soil respiration). Intricate chamber set ups are

required to distinguish between emissions from the soil

(i.e. heterotrophic soil respiration) and from the living tree

roots (i.e. autotrophic respiration) (Mäkiranta et al. 2008;

Hermans et al. 2022).

The eddy covariance technique (EC), which uses fast

measuring gas analysers, requires large flat and homoge-

neous areas, which are also difficult to find because forestry

areas on peatlands are often organised in fairly small blocks.

EC is the standard method for ecosystem-level measure-

ments and has a typical uncertainty between 5 and 15%

(Burba 2022). The method also allows for the estimation of

the soil carbon sink/source by subtracting the modelled

biomass increment from the measured net ecosystem

exchange. Other soil carbon balance estimation methods

include the estimation of soil subsidence through pollen or

carbon isotope profiles or by consecutive thickness mea-

surements (Minkkinen et al. 1999; Hooijer et al. 2012;

Simola et al. 2012; Sloan et al. 2019). These integrate longer

time periods. Obtaining accurate estimates for these carbon

balance estimation methods is, thus, challenging.

The above-mentioned studies consider forestry on

drained peatlands, but these are based on natural tree stands

in the boreal zone. In the temperate zone, sites have more

often been drained for agriculture or peat extraction and

only later been afforested. Most of the studies do not

describe the situation after afforestation of agricultural
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fields or cutover peatlands, yet this difference in soil

management history may lead to different outcomes

(Jauhiainen et al. 2023). In addition, the above-mentioned

gas exchange studies only give a temporary GHG balance

for the study period. They do not consider the whole for-

estry cycle, which includes harvesting of the wood (i.e. the

removal of sequestered biomass C), decomposition of wood

products, and the time needed for stand regeneration.

Harvested sites, especially clear-cut sites, are large carbon

sources (Korkiakoski et al. 2019, 2023) until a new stand

has regenerated. In addition, only a small proportion of

wood products is long-lived as most of the carbon in wood

products is lost to the atmosphere in a few years after

cuttings (Soimakallio et al. 2016).

State of knowledge on greenhouse gas exchange

in peatland forests

A recent study from Iceland (Bjarnadottir et al. 2021)

showed no warming effects of peatland forestry compared to

rewetted or wet peatlands. The study area, a poorly drained

site, was afforested with a very productive species (Black

cottonwood, Populus trichocarpa). According to the

authors, only further long-term studies and life-cycle

assessments will show whether forestry on drained peatlands

can really be more climate friendly than wet and healthy

peatlands. A recent meta-analysis examining the climate

effects of forestry on shallow organic soils (\ 40–50 cm peat

depth) in Scotland showed no warming climate effect

Fig. 1 Areal share of peatlands under agriculture, peat extraction, forestry, and other uses in countries of the European Union. Colours refer to

different land use types, and the size of the circles reflects total peatland area
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(Vanguelova et al. 2018). However, meta-analyses that

explore the effects of forestry on deep peat soils in the

temperate climate region show considerable net emissions of

CO2 to the atmosphere, at least when the whole life-cycle is

considered (Hommeltenberg et al. 2014; Jovani-Sancho et al.

2021). The latter finding confirms the emission factors

derived in the 2013 IPCC Wetland Supplement (IPCC 2014).

The considerably lower figures for carbon loss from the soil

reported in Hermans et al. (2022) show that there can be

strong variation across sites, which would suggest that more

research on the matter is needed. With respect to the har-

vesting stage of peatland forestry, selective cutting instead of

clear-cutting can lower GHG emissions in a forestry-drained

peatland in the boreal climate zone (Korkiakoski et al. 2023).

Although the site with partial harvest studied by Korkiakoski

et al. (2023) transformed into a CO2 sink five years after

harvest, peat decomposition continued, releasing almost the

same amount of carbon into the atmosphere as was fixed by

the trees. Most studies in drained peatland forests show

similar results: the ecosystem may be a C sink; whereas, the

soil is a C source. Therefore, production forestry, where

biomass C is harvested and rapidly lost back to the atmo-

sphere (Soimakallio et al. 2016), will likely result in net C

losses in the long-term.

A recent synthesis of site-specific greenhouse gas emis-

sions from drained organic forest soils suggests new emission

factors for boreal and cool temperate regions (Jauhiainen et al.

2023). Only one of the derived emission factors, the one for the

site type ‘‘afforested after peat extraction’’, suggests a minor

CO2 sink (- 86.12 ± 247.34 (SD) g m-2 a-1). It is based on

only one study (featuring 6 sites) and the emission factor for

N2O for the same site type is actually quite similar but with

opposite sign (95.55 ± 32.76 (SD) g m-2 a-1) when trans-

formed to CO2 equivalents (according to IPCC AR6) sug-

gesting overall climate neutrality during the growth phase of

the forest. All other emission factors for the discussed site

types suggest peatland forests to be overall sources of CO2

equivalent emissions to the atmosphere although some cate-

gories (e.g. low productivity nutrient-poor sites in the boreal or

typical productivity sites in the temperate region (independent

of nutrient status)) come out with lower emission factors

compared to the IPCC 2014 Tier 1 approach.

Thus, none of the studies discussed above provides a

basis to include active afforestation on drained peatlands,

especially if managed for production forestry, as a viable

option under the NRL.

Discussion of findings of recent studies lacking

scientific rigour

Some recent studies from Latvia do seem to support the

idea that afforestation of drained peatlands could be better

for the climate than rewetting. However, these studies are

inconclusive, have major flaws and biases, and cannot be

verified and validated because the methods used are error-

prone and descriptions often lack clarity. For instance,

Samariks et al. (2023) claim to show that afforestation of

peat extraction sites can result in net carbon removals.

However, they did not measure all elements of the carbon

cycle and failed to clearly distinguish between soil emis-

sions and emissions from tree roots. Instead of analysing,

they simply assumed that the soil fluxes made up less than

half of the measured total flux, independent of changes in

management or site conditions, which is unrealistic

because the share of soil flux to the total ecosystem flux

varies widely (Ojanen et al. 2010). Moreover, the appro-

priate comparison would have been with a rewetted peat

extraction site. Further, after peat extraction, any rehabili-

tation measures including plant establishment will likely

result in net carbon removals because in the first years the

biomass stock will build up. Bārdule et al. (2022) sug-

gested that wet peatlands do not achieve lower emissions

than drained peatlands. However, they measured only once

per month over a period of only four months, during only

one vegetation period. Their experimental set up allowed

only the emitted CO2 flux from the system (soil and litter

degradation plus plant respiration) to be measured, but not

the sequestration of CO2 from the atmosphere during

photosynthesis. Moreover, they neglected to account for

the fluvial carbon export from the drained sites.

Butlers et al. (2021) reported larger N2O and CH4

emissions from ‘naturally wet’ sites than from ‘drained’

forests. These findings are not surprising given that the

‘drained’ site in the study had water tables deeper than

60 cm below the soil surface in summer. Again, a full GHG

balance can only be assessed when CO2 exchange is

included as well. Butlers et al. (2022a) claimed that CO2

emissions from ‘naturally wet’, nutrient-rich organic forest

soils can be larger than those from drained sites but they

did not include photosynthesis by ground vegetation in

their study and did not quantify CO2 release from the tree

roots, thus, failing to describe net-CO2 exchange appro-

priately. Without inclusion of the contribution of trees and

without a full life cycle assessment, no sensible conclu-

sions about the climate effect of wet vs. drained forested

peatlands can be drawn.

Butlers et al. (2022a) attempted to obtain a better

understanding of the whole GHG balance by looking at

different stages of the harvest cycle and even including the

input of litter. Again, the same error-prone methods were

used. No distinction is made between root- and soil-derived

emissions in the measurements. Instead a regression

equation is used, which indicates that slightly more than

half of the measured flux is related to decomposition of

litter and soil. The equation employed presents a broad

relationship that may be helpful to constrain large scale
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estimates, but was not made to infer site-specific flux

values, as was stressed by the original authors of the

equation (Bond-Lamberty and Wang 2004). Again, the

conclusions are based on limited measurements. They fall

far short of the full life-cycle assessment that is essential if

reliable data for the effects of forest growth on drained

peatlands are to be compared with the situation in rewetted

or pristine peatlands. In addition, there were no measure-

ments conducted in intact or rewetted peatlands to provide

an appropriate baseline for comparison. Thus, the study

results are unsuitable to support far reaching generalisa-

tions with regard to afforestation of peatlands as viable

options to achieve climate goals under the NRL.

The need for full production cycle analyses

Most importantly, however, the felling of trees and the

subsequent fate of the carbon sequestered in the wood

needs to be considered (Ciais et al. 2008). As little as 50%

of the actual tree biomass may be extracted during harvest;

the remainder is left to decompose on site and within a few

years returns as CO2 to the atmosphere (Korkiakoski et al.

2019; Leturcq 2020). After a tree is felled, much of its

carbon can be stored in wood products. The processing of

raw wood for product is estimated to produce (1) waste

wood residues and (2) short-lived products (bioenergy,

pellets, and pulp and paper (Jasinevičius 2018) of

*40–60% being subject to fast carbon release (Sokka et al.

2015). Yet a simple carbon balance does not tell the whole

story; unlike the carbon stock in soil and peat, not every-

thing made out of wood is climate neutral (Leturcq 2020).

As a rule, for a long-lasting product made out of 80-year

old wood to be climate cooling, the wood should not be

discarded and burnt for at least 40 years after harvest. A

product made from 40-year old wood would need to remain

for at least 20 years after harvest (Guest et al. 2013; Gal-

imshina et al. 2022). Long-lived harvested wood products

are actually quite rare, and harvesting does reduce the total

amount of carbon stored in the forest (Soimakallio et al.

2022). In assessing the GHG balance of peatland forestry,

complete harvest cycles should be taken into account. Such

data are simply absent at the moment.

Since trees grow slowly, no measurements of full

growth cycles are yet available and results that span longer

time periods are derived from the investigation of

chronosequences. Certainly, more chronosequence work is

needed, but measurements must be made over multiple

years so that variations in weather and other environmental

conditions can be integrated into the models. As Vangue-

lova et al. (2018) have expressed: ‘‘There is a clear need for

long-term studies using different planting ages (chronose-

quence studies) to ensure robust results when evaluating

the impacts of afforestation and restocking on soil carbon

stocks, as short-term impact studies are likely to provide

misleading conclusions.’’

Overall, Finland’s land use sector, for instance, seems to

have gradually transitioned from being a CO2 sink to a

source (Statistics Finland 2022b) driven by increased

demand for wood products, slower increase in growing

stock, and rising emissions from soil organic matter and

litter in drained peat-based forest soils. Siljander et al.

(2022) have suggested that the fastest way to strengthen

carbon sinks in Finland is to reduce logging, and the Fin-

nish Nature Panel has recommended, among other things,

the rewetting and restoration of wetlands and peatlands

(Lång et al. 2022).

Additional possible effects of drained peatland

forestry

Peatland forestry on drained sites is more prone to wildfires

(Kohlenberg et al. 2018), which will become more frequent

and severe in times of climate change with more frequent

and more intense droughts in the boreal zone (Walker et al.

2019). Boreal forests in North America have turned from a

net sink to a net source of GHG in recent years (Zhao et al.

2021), primarily due to more frequent and more severe fires

(Zheng et al. 2023). In addition to the carbon loss from

burnt wood, as well as substantial carbon losses from burnt

and burning peat layers, should be considered, including

the waterborne carbon losses (Liu et al. 2023). In countries

with a relatively high density of forest roads, such as

Finland, the severity of forest fires on peatland could be

increased. This is because large drained peatland areas with

forest often have a much lower density of roads compared

to areas with mineral ground, thereby making it more

challenging to control fires in these peatland regions.

In addition to GHG exchange, the change in albedo and

the release of aerosols, together with the lateral exchange

of carbon and nitrogen, all add to the total climate effect of

ecosystems (Billett et al. 2010). Increased tree cover

decreases the albedo effect compared to a treeless mire

(Lohila et al. 2010), which leads to local warming (Gao

et al. 2014). However, forests are also large sources of

biogenic volatile organic compounds (BVOC) and thus

may have a considerable cooling impact on the climate

(Tunved et al. 2006). In the boreal zone, this impact is

similar in magnitude, but opposite to that of the albedo

(Kalliokoski et al. 2020).

Aside from site-related atmospheric impacts, forestry on

peatland may also have negative impacts on water storage

capacity, water quality and nutrients runoff, including loss

of organic matter via fluvial pathways, which is subse-

quently mineralised and the carbon partially returned to the

atmosphere (Evans et al. 2016). Rewetting of drained

peatlands can also lead to considerable amounts of nitrogen
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and phosphorus leaching (e.g., Koskinen et al. 2017) but

the nutrient-sink function can be rapidly recovered pro-

vided further restoration management is implemented (Zak

and McInnes 2022). The loss in water storage capacity due

to the loss of pore space caused by drainage can manifest

itself in greater variations in stream flow and water quality

for downstream aquatic ecosystems (Flynn et al. 2021).

Intense rainfall events are predicted to increase under cli-

mate warming, which can cause mid-term flooding leading

to the die-back of trees caused by increased hydrological

instability. Indeed, more research to evaluate the trade-off

values of wood production, carbon sequestration and

emissions, and water storage of natural, drained, and

rewetted peatlands like it has been recently published by

Makrickas et al. (2023) is urgently required (Manton et al.

2021).

CONCLUSIONS

The most recent IPCC report (IPCC AR6 SYR 2023)

outlines in clear language that we must come to grips with

proper natural climate solutions since they are paramount

to avoid the gravest consequences of climate change and

global warming. The Nature Restoration Law (NRL) pro-

posed by the European Commission is a key component to

unlock the climate mitigation potential of degraded

ecosystems. The many open questions and lack of evi-

dence for overall climate benefits of active afforestation

on peatlands prohibit its inclusion as a viable climate

change mitigation measure in the NRL. Moreover, the

NRL should foster true natural ecosystems wherever pos-

sible, particularly where those are demonstrably carbon

capture systems. A forest that can only grow when the peat

below the trees is drained does not comply with this

requirement. Afforestation of drained peatlands is not

restoration. We cannot restore peatland ecosystems, their

flora, their fauna, their functions, by afforestation. The

only solution to restore drained peatlands is rewetting.

The re-introduction of natural mire vegetation can poten-

tially speed-up the restoration process. If trees belong to

such an ecosystem, they will regenerate naturally.
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