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Abstract 

Background: Gait impairments during real-world locomotion are common in neurological 

diseases. However, very little is currently known about the neural correlates of walking in the 

real world and on which regions of the brain are involved in regulating gait stability and 

performance. As a first step to understanding how neural control of gait may be impaired in 

neurological conditions such as Parkinson’s disease, we investigated how regional brain 
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activation might predict walking performance in the urban environment and whilst engaging 

with secondary tasks in healthy subjects. 

Methods: We recorded gait characteristics including trunk acceleration and brain activation 

in fourteen healthy young subjects whilst they walked around the university campus freely 

(single task), while conversing with the experimenter and while texting with their 

smartphone. Neural spectral power density (PSD) was evaluated in three brain regions of 

interest, namely the pre-frontal cortex (PFC) and bilateral posterior parietal cortex (right/left 

PPC). We hypothesized that specific regional neural activation would predict trunk 

acceleration data obtained during the different walking conditions. 

Results: Vertical trunk acceleration was predicted by gait velocity and left PPC theta (4-7 

Hz) band PSD in single-task walking (R-squared = 0.725, p = 0.001) and by gait velocity and 

left PPC alpha (8-12 Hz) band PSD in walking while conversing (R-squared = 0.727, p = 

0.001). Medio-lateral trunk acceleration was predicted by left PPC beta (15-25 Hz) band PSD 

when walking while texting (R-squared = 0.434, p = 0.010). 

Conclusions: We suggest that the left PPC may be involved in the processes of sensorimotor 

integration and gait control during walking in real-world conditions. Frequency-specific 

coding was operative in different dual tasks and may be developed as biomarkers of gait 

deficits in neurological conditions during performance of these types of, now commonly 

undertaken, dual tasks.  
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1. INTRODUCTION 

Recent developments in mobile technologies enable the design of experiments describing 

behavioural and neural responses of subjects performing commonly observed tasks in real-

world scenarios outside of the experimental lab environment [1]. Such tasks may include 

artistic performance such as dancing and music playing [2], dealing with stressful situations 

[3] and evaluating changes in the levels of “excitement”, “engagement” and “frustration” 

when walking within different city areas [4, 5].  An interesting aspect of these novel 

experimental approaches is the possibility to correlate brain activity and natural behaviour, in 

both healthy and neurologically impaired populations [1].  For example, recent evidence has 

suggested that the pre-frontal cortex (PFC) is involved in multitasking behaviours [6, 7, 8] 

and that the posterior parietal cortex (PPC) is engaged in motor adaptation during walking in 

health [9, 10, 11]. These regions have also been shown to be involved in different attentional 

[12] and executive function networks [13].  Gait initiation failure (GIF) and freezing of gait 

(FoG) episodes in freely walking Parkinson’s disease (PD) patients have been correlated with 

increased neural activity and connectivity between different cortical regions such as occipital, 

parietal and frontal regions [14, 15].  Clinically, difficulties in free walking are observed to 

increase with the severity of PD due to damage in the cortical-striatal locomotor network 

[16]. Ambulatory abilities of PD patients are impaired by muscular hypertonia and 

hypokinesia, which induce asymmetries and reduce speed, as well as FoG [17]. PD patients 

have less control of their posture when standing, walking and compensating for an external 

perturbation and this may lead to an increased magnitude of postural sway [18]. Specifically, 

the magnitude of medio-lateral sway was shown to be highly sensitive to postural 

impairments during both standing and over-ground free walking and this progressed with the 

severity of PD [19, 20]. 
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In ths study, we used a smartphone to measure the acceleration root mean square index 

(RMS) as an indication of the magnitude of movements or sway at the pelvis in any of the 

three movement directions (i.e., vertical, antero-posterior and medio-lateral) [18, 21, 22, 23]. 

Previous investigations have shown that RMS increases at the level of the pelvis when 

walking on an insidious surface (i.e., more difficult) compared to smooth conditions, but not 

at the head [21, 24]. Normalization procedures have also been developed for RMS data to 

reliably compare the quality and variability of real-world gait between different populations 

(healthy young vs. elderly vs. neurologically impaired) and at different gait speeds [22, 25, 

26, 27].   

Whilst RMS has been correlated with age or level/type of neurological impairments, there 

have been no models of how neural activation can predict gait stability [20]. We hypothesised 

that in healthy young subjects, neural activity in the PFC and PPC regions would predict gait 

stability, specifically measured with the acceleration RMS index. To test our hypothesis, we 

investigated the relationships between neural activity and RMS index during different 

ambulatory conditions outside the laboratory using real life tasks. We studied three common 

ambulatory tasks, namely self-paced free walking, walking whilst conversing and walking 

whilst texting on a smartphone in order to better understand the neural correlates underlying 

human natural behaviours. 

2. MATERIALS AND METHODS 

2.1. Ethical approval 

Eighteen right-handed healthy young adults (age mean ± standard deviation (SD) = 25 ± 3, 7 

male/11 female] with no previous history of neurological, musculoskeletal or gait disorders, 

volunteered for the study by giving written informed consent. The study was approved by the 

University of East London Ethics Committee (UREC_1415_29) and all experiments were 
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conducted in accordance with the Declaration of Helsinki. Data of three subjects were 

discarded because of technical failures during data acquisition (2 males, 1 female) and of one 

subject (female) because of poor data quality, leaving a total of fourteen subjects (age mean ± 

SD = 26 ± 3, 5 male/9 female]. 

2.2. Experimental protocol 

Subjects were first prepared in a laboratory room and then guided outside into the campus 

garden [28]. During this period, no signals were recorded and subjects were instructed to 

become familiar with the setup and communicate to the experimenter if anything was not 

properly set. Once outside, subjects were shown the predefined walking path (200 m) and 

were instructed to walk at their preferred natural speed, as previous studies have shown that 

gait behaviour and patterns are optimized when walking at the natural speed [21, 26]. 

Experiments consisted of three conditions during which subjects walked along the predefined 

path naturally (Single-Task, ST), while conversing with the experimenter (Dual-Task1, DT1) 

or texting with their smartphone (Dual-Task2, DT2). The dual-task conditions were 

randomized across subjects in order to avoid bias in gait behaviour and recordings. The dual-

task conditions were designed to represent real-life situations and, to standardise them, 

conversations during DT1 were based on a set of standard questions, whereas in DT2 subjects 

read and replied to a standard email. Subjects rested for a period of 5 minutes after each 

condition in order to avoid fatigue. The experimenter followed the subjects during each 

condition recording videos of gait behaviour. Experiments were carried out only during dry 

days free from strong winds and/or rain.  

2.3. Recording techniques 

The experimental setup, illustrated in Figure 2, is fully mobile and allows the recording of 

physiological and behavioural data during walking (or any other mobile situation). Brain 

activity (EEG; μV) was continuously recorded via a high-density 64 channel Waveguard cap 
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(ANT Neuro, Enschede, Netherlands) with an EEGoPro amplifier (ANT Neuro, Enschede, 

Netherlands) at a sampling frequency of 1 kHz and raw signals filtered between 0.1 and 500 

Hz. Impedances were kept below 5 kΩ for the whole duration of the experiment and data 

were referenced to the FCz channel. The recording EEG amplifier was carried by the subject 

within a backpack. A Samsung Galaxy S4 mini smartphone was fixed at the subject’s lower 

back with an elastic belt and data from its internal accelerometers and gyroscope were 

recorded through the AndroSensor app at a frequency of 200 Hz. The lower back position is 

the currently most preferred and reliable location to observe changes in gait patterns across 

different conditions and populations [22]. Two digital force sensing resistor sensors (FSRs) 

were employed as contact switches and fixed underneath the subject’s heels to detect times of 

heel strikes. Data were recorded at 1 kHz by a 14 bit analog-to-digital converter (DataLog 

MWX8, Biometrics Ltd, Newport, UK) fixed at the subject’s hip by an elastic belt. These 

sensors return a digital binary output where the active edge is set 1-to-0, i.e., 0 when the heels 

make contact with the ground. A digital button (1-to-0 active edge) was also connected to the 

converter and pressed by the subject for five seconds at the beginning and at the end of each 

condition to define time points of start and finish. Elastic bands were placed around the 

subject thighs to fix the cables of contact switches to avoid uncomfortable situations and 

prevent the subject from falling/stepping on them. To synchronize data from the digital 

sensors representing important time points (i.e., start, heel strikes, end) with physiological 

variables, a common train of 12 consecutive TTL pulse was simultaneously sent to both the 

DataLog MWX8 converter and the EEGoPro amplifier at the beginning and at the end of the 

experiment. The matching of start and end points of each single pulse between the recordings 

were checked offline and eventually used as milestones for realigning the signals’ time axes. 
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2.4. Data analysis 

2.4.1. Gait measures 

Gait measures were analysed with the iGAIT toolbox for MatLab [29] which provides a 

simple user-friendly GUI to display and analyse gait linear acceleration data recorded by 

different types of accelerometers. Features extracted by trunk accelerometery have been 

previously shown to successfully provide valuable insights on both healthy and pathological 

gait patterns and to be a potential discriminator of gait quality among populations [30]. 

Spatio-temporal and frequency features of gait were extracted and further used such as stride 

duration (sec), mean step length (m), velocity (m/s), step regularity in the vertical and antero-

posterior directions, acceleration root mean square (RMS) in each movement direction (i.e., 

vertical (ver-), medio-lateral (ml-) and antero-posterior (ap-). To estimate gait stability across 

our experimental conditions, we employed a measure of normalized RMS (the RMS Ratio; 

RMSR) according to the formula: 

𝑅𝑀𝑆𝑅𝑥 =  
𝑅𝑀𝑆𝑥

√𝑅𝑀𝑆𝐴𝑃
2 +  𝑅𝑀𝑆𝑉𝑒𝑟

2 +  𝑅𝑀𝑆𝑀𝐿
2

 

where x = ver-, ap- and ml- directions of acceleration. RMSRx represents the ratio between 

the RSM in each direction and the overall RMS magnitude. These measures are 

representative of the quality and/or abnormality of gait [26] and used here to assess 

correlations with neural activation. However, it has also been demonstrated that velocity 

influences gait behaviour in both healthy and neurological populations [23, 26, 31]. 

Consequently, velocity was included as a factor in the model analysis of the correlations 

between neural activity and gait behaviour. 

2.4.2. EEG pre-processing 

EEG data were pre-processed using EEGLab open source toolbox for MatLab [32]. Data 

were first band-pass filtered between 0.5 Hz and 100 Hz (FIR filter, order automatically set 
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by EEGLab) to minimize slow drifts and remove high-frequency components and then notch 

filtered at 50 Hz (FIR notch filter, order = 3302) to remove the power line noise. Visual 

inspection was performed on continuous data in order to identify and temporarily discard 

EEG channels affected by major noise sources throughout the whole experiment and to 

permanently remove data affected by prominent artefacts across all the recording channels. 

Data were then re-referenced to the common average reference and decomposed using 

independent component analysis (ICA) with the extended Infomax algorithm as implemented 

in EEGLab [33, 34]. Power spectral, spatial and temporal features of each independent 

component (IC) were carefully inspected and those representing typical artefacts (e.g. eye 

blinks, saccades, neck muscles) were removed from the data and remaining components were 

projected back to the scalp. Previously removed bad channels were then interpolated [35, 36] 

and all data then re-referenced again to the common average reference. Continuous data were 

then segmented into epochs of 1.8 sec duration from -200 ms to 1600 ms around each right 

heel strike in order to capture a complete stride (composed by, in order: right, left, right heel 

strikes) even at the slowest speed. One last visual inspection was performed to check the 

quality of the cleaned data and eventually remove still noisy epochs. 

2.4.3. Electrodes regions of interest (ROI)-based power spectral density (PSD) 

PSD was calculated through the EEGLab function spectopo in the frequency domain of each 

channel, in each frequency band of interest for each subject. This function uses the Welch’s 

overlapped segment averaging estimator as implemented in MatLab (pwelch() function) to 

calculate the PSD. A default Hamming window of 400 ms with a 50% overlap (i.e., 200 ms) 

was adopted and PSD for frequencies from 2 Hz to 50 Hz calculated. Figure 3 shows the 

whole-brain PSD activity of a typical subject across conditions and for each frequency band 

of interest (FOI,  (4-7 Hz), α (8-12 Hz), β (15-30 Hz)). Further statistical analyses focused 

only on three ROIs, as we hypothesised a change in gait behaviour would be related to 
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changes in brain activities in those areas mostly employed during executive functions, spatial 

attention and navigation, sensorimotor integration and adaptation during multi-tasking. 

Previous findings have localized consistent brain activities during both single-task and dual-

tasks as well as adaptation in walking in PFC and PPC clusters [10, 11, 37]. We therefore 

defined three ROIs as: PFC including electrodes FP1, FPZ, FP2, AF7, AF3, AF4, AF8 and 

specifically laying over the Brodmann areas 9, 10 and 46, namely the dorsolateral and 

anterior prefrontal cortex thought to be involved in high-order executive functions [38]; the 

left PPC including electrodes P7, P5, P3, PO3, PO5, PO7 and the right PPC including 

electrodes P8, P6, P4, PO4, PO6, PO8, which together cover bilaterally Brodmann Areas 7, 

19, 37 and 39, namely the associative visual cortex, the parietal-occipital-temporal lobe and 

the angular gyrus, thought to be involved in high-cognitive functions (sensorimotor 

integration) and cross-modal association amongst somatosensory, auditory and visual 

information inputs [38]. For each ROI, the average PSD value among the ROI-specific 

electrodes was calculated in each FOI, for each condition separately and for each subject. 

2.5. Statistics 

Statistical analyses were all run with SPSS 23 software (IBM). 

2.5.1. Gait measures 

Gait measures were first calculated separately for each subject in each condition and group-

level differences between conditions were assessed statistically. The Kolmogorov-Smirnoff 

test for normality was used to test the distribution of the data. Data were all normally 

distributed, thus parametric statistical tests were further employed. One way repeated 

measures ANOVA with factor “Condition” (three conditions, α = 0.05) was applied to each 

gait measure of interest to identify variance differences across conditions. Subsequently, 

paired samples T-tests with Bonferroni correction for multiple comparisons were employed 

to specifically define differences between conditions. T-tests significance level was set at α = 
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0.05. The total number of tested comparisons (i.e., repeated measures) was three, which 

specifically compared ST vs. DT1, ST vs. DT2 and DT1 vs. DT2. According to Bonferroni 

correction for multiple comparisons, the adjusted α level below which a comparison could be 

considered as statistically significant was 0.05/3 = 0.0167. 

2.5.2. Predictive models of gait behaviour using PSD 

Predictive models were created for each experimental condition (i.e., ST, DT1 and DT2) 

separately considering acceleration RMSR in each direction (i.e., vertical, antero-posterior 

and medio-lateral) as diverse Dependent Variables (DVs). Thus, for each acceleration RMSR 

direction, three condition-specific models were generated. In each condition-specific model, 

the related PSD in each FOI (x3) and ROI (x3) were considered as independent variables 

(IVs, i.e., predictors) together with gait velocity for a total of 10 IVs. Multiple Regression 

models were created with the format: 

𝑅𝑀𝑆𝑅𝑥 =  𝛽0 + 𝛽1 ∙ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 +  𝛽𝑖𝑗 ∙ 𝑃𝑆𝐷_𝑅𝑂𝐼𝑖_𝐹𝑂𝐼𝑗 +  𝜀 

whereby RMSRx is the DV and represents the acceleration RMSR in the direction x (i.e., 

vertical, antero-posterior, medio-lateral), and the IVs are Velocity and PSD_ROIi_FOIj, which 

represents the PSD in the ROIi (i.e., frontal, right-parietal, left-parietal) and in the FOIj (θ, α, 

β). IVs were entered stepwise into the model, which means that only the IVs significantly 

correlating with the DV were added into the final model. 𝛽𝑛 are the intercept and coefficient 

associated to each model predictor, and ε is the error. Data were first centred (i.e., the mean 

score was subtracted from each observation) and scaled (i.e., SD was set equal to 1) in order 

to reduce the chance of multicollinearity. Measures of Goodness-of-Fit (B) and p-values 

associated to each significant predictor are presented. 
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3. RESULTS 

3.1. Gait measures across conditions 

Subjects walked along the predefined path of 200 m in an average time of 225 ± 25 sec 

during single-task (ST) walking and significantly more slowly when walking while 

conversing (DT1; 235 ± 28 sec) and when walking while texting (DT2; 260 ± 41 sec; 

RMANOVA F = 21.660, p < 0.001). Performing any secondary tasks significantly increased 

the walking time with respect to ST (ST vs. DTi with i = 1,2 all t < -3.906, all p < 0.002) and 

walking while texting required a longer time compared to walking while conversing (DT2 vs. 

DT1, t = -3.993, p = 0.002). Velocity was significantly slower (RMANOVA F = 34.215, p = 

0.001) in both DT1 (t = 4.199, p = 0.001) and DT2 (t = 6.847, p = 0.001) compared to ST and 

slower in DT2 vs DT1 (t = 4.991, p = 0.001; see Table 1). Gait measures of stride duration, 

ver-RMS and ap-RMS were statistically different across conditions (RMANOVA F > 12.165, 

p < 0.001), specifically between DT2 vs. ST (t > (-) 3.503, p < 0.004) and DT2 vs. DT1 (t > 

(-) 3.793, p < 0.002). Gait measures of ml-RMS and ap-step regularity significantly differed 

across conditions (RMANOVA F > 4.559, p < 0.043), specifically between DT2 vs. ST (t > 

2.772, p < 0.016). Gait measures of ver-RMSR and ap-RMSR also changed significantly 

across conditions (RMANOVA F > 3.990, p < 0.031), specifically between DT2 vs. DT1 (t > 

3.618, p < 0.003). No significant differences were found for measures of mean step length, 

ml-RMSR and ver-step regularity (RMANOVA F < 3.099, p > 0.05). Measures of 

acceleration RMS/RMSR in each direction across the three conditions are represented in 

Figure 4. 

3.2. Predicting single-task walking stability using neurophysiological activity 

A regression model was successfully created for ver-RMSR (R-squared = 0.725, p = 0.001) 

for which all assumptions were met (no multicollinearity, no auto-correlation, no 

homoscedasticity). Only the IVs significantly contributing to the prediction of ver-RMSR 
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were entered stepwise into the model, which predicted the DV based on Velocity (B = 0.355, 

p = 0.001) and left-parietal theta PSD (B = 0.009, p = 0.026) as shown in Figure 5. The final 

model equation is reported in Table 2. Multiple linear regression analysis did not provide 

statistically significant models for ml-RMSR or ap-RMSR during single-task walking.  

3.3. Predicting dual-task walking stability using neurophysiological activity: walking 

while conversing 

A regression model was successfully created for ver-RMSR (R-squared = 0.727, p = 0.001) 

for which all assumptions were met (no multicollinearity, no auto-correlation, no 

homoscedasticity). Only the IVs significantly contributing to the prediction of ver-RMSR 

were stepwise entered into the model, which predicts the DV based on Velocity (B = 0.029, p 

= 0.003) and left-parietal alpha PSD (B = 0.021, p = 0.020) as shown in Figure 6. The final 

model equation is reported in Table 2. Multiple linear regression analysis did not provide 

statistically significant models for ml-RMSR and ap-RMSR when walking while conversing. 

3.4. Predicting dual-task walking stability using neurophysiological activity: walking 

while texting with a smartphone 

A regression model was successfully created for ml-RMSR (R-squared = 0.434, p = 0.010) 

for which all assumptions were met (no multicollinearity, no auto-correlation, no 

homoscedasticity). Only the IVs significantly contributing to the prediction of ml-RMSR 

were stepwise entered into the model, which predicts the DV based only on left-parietal beta 

PSD (B = -0.055, p = 0.010), as shown in Figure 7. The final model equation is reported in 

Table 2. Multiple linear regression analysis did not provide statistically significant models for 

ver-RMSR and ap-RMSR when walking while texting. 
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4. DISCUSSION 

4.1. Novel findings 

We observed that region- and frequency- specific brain activation could predict gait stability 

during free self-paced walking and walking during dual-tasking. Two walking conditions 

(i.e., single-task walking and walking while conversing) were characterised by a positive 

relationship between ver-RMSR, velocity and left parietal PSD in  and α frequency bands 

respectively. On the other hand, walking while texting featured a negative relationship 

between ml-RMSR and left parietal PSD in the β frequency band. Thus the left PPC appears 

to play a general role in walking in the real-world and the type of secondary task may be 

correlated to frequency-specific coding in the left PPC. 

4.2. Relationship between brain and behaviour 

We tested whether prefrontal and bilateral posterior parietal spectral activity could relate to 

gait behaviour as it has been shown that these are the most modulated cortical areas during 

dual-task free walking [6, 11, 37, 39] and in dual-task laboratory-based experiments [40]. No 

linear relationship was found between the PFC and gait stability, despite the great interest in 

this brain region when monitoring multitasking ambulatory activities [6, 7, 37, 41, 42, 43, 

44]. On the contrary, the left PPC was shown to be related to gait behaviour regardless of the 

secondary task type undertaken. The left PPC has been extensively studied in laboratory-

based experiments both on animals and humans [45]. Currently, left PPC is thought to act as 

the sensorimotor integrator and rapid online updater of movement planning [46], integrating 

spatial information of the surroundings and sensory feedback with motor planning and 

executive commands [45]. First evidence of the involvement of the PPC in inter-limb 

coordination during walking was obtained through intra-cortical recordings of visually-

guided walking cats [47]. It was postulated that PPC neurons were involved in the regulation 

of inter-limb coordination during locomotion requiring visual guidance, thus playing a role in 
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processes of sensorimotor integration (i.e., visuomotor integration) [48]. In humans, PPC is 

believed to be involved in the integration of sensory information with motor plans, which is 

severely impaired in PD patients with FoG [49]. Indeed, the spatial navigation deficits seen 

after damage of bilateral PPC as in Balint’s syndrome [50] or neglect [51] arise because of 

the inability to integrate spatial orientation with current/future planning of the voluntary 

movement needed to accomplish the end goal. If the PPC is in general believed to play such a 

complicated role, then each hemispheric area has been characterized with specific roles. The 

right-PPC, in connection with frontal regions, is strongly involved in multiple types of 

attention [12, 52]. On the other hand, the left PPC has been recently shown to play a major 

role as a sensorimotor integrator as PD patients that exhibit FoG display reduced functional 

connectivity between left PPC and multiple brain regions such as the somatosensory and 

auditory areas [53]. Left PPC is therefore suggested to work as a sensorimotor integrator 

during online movement planning and monitoring, whereas the right PPC actively engages 

with different attentional networks. In summary, we suggest that left PPC plays a primary 

active role in monitoring and planning the walking movement regardless of any secondary 

conditions undertaken in parallel. However, the different relationships between neural 

activity in this brain region and changes in gait stability across walking conditions are 

encoded by different frequency-specific activity.  

Task-specific relationships between brain activation and gait behaviour 

When walking naturally, a positive linear predictive relationship could be identified between 

left PPC activity in the θ frequency band and ver-RMSR and velocity. Ver-RMS(R) has been 

shown to depend linearly on gait speed and to represent the quality of gait, with higher values 

symbolic of a more stable and rapid walk (typical of healthy young adults) and lower values 

symbolic of reduced flexibility and bent postures (typical of older adults) [22, 23, 26]. We 

confirmed the positive relationship between ver-RMSR and velocity, but added a predictive 
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neural component (left PPC). When walking naturally without engaging in any secondary 

tasks, left PPC has been shown to be active in the θ range (4 – 7 Hz) [54, 55, 56] and is 

believed to be connected to deeper structures such as the hippocampus actively engaged in 

the navigation process [57]. 

When walking while conversing, a positive predictive relationship could be identified 

between left PPC activity in the α frequency band and ver-RMSR and again velocity. As θ 

neural oscillations likely engage in memory retrieval and organization of ‘thoughts’ when 

subjects are engaged in a conversation [58, 59], is it likely that higher frequency oscillations 

(i.e., α) took over the duty of sensorimotor integrator and monitor during walking in the 

present study. This hypothesis is further supported by recent studies showing involvement of 

α (8 – 12 Hz) oscillations in spatial navigation [56, 60] and sensorimotor integration during 

walking speed adaptation to an external pace cue [11]. 

A significant negative predictive relationship was found between left PPC spectral activity in 

the β frequency band (15 – 30 Hz) and ml-RMSR when walking while texting. ml-RMSR has 

been recently validated as a marker of gait abnormality and recovery, where abnormally high 

values of trunk acceleration decrease alongside recovery [26, 27]. Moreover, stronger β 

desynchronization is required in arduous conditions in order to maintain the ‘status quo’ and 

to promote the voluntary action in a more challenging dual-task context [9, 10, 11, 61]. The 

negative relationship suggests that those subjects showing higher gait variability in the 

medio-lateral direction required stronger β desynchronization in order to accomplish the 

simultaneous tasks. This is in line with previous studies that showed that β PSD in the 

posterior parietal and occipital areas could be used to reliably classify and detect events such 

as FoG and GIF in Parkinson’s disease patients [14, 15], thus confirming the involvement of 

this brain region in postural and movement online control via sensorimotor integration. Of 
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note, ml-RMSR did not correlate with velocity in this study as previously reported in the 

literature [26]. 

4.3. Limitations and future perspective 

In summary, spectral activity in the left PPC can predict stability of gait during different 

walking conditions through frequency-specific neural mechanisms. As the healthy population 

sample was young and small in number, the study could be expanded to include healthy older 

adults and PD patients. The inclusion of healthy older adults and PD patients would enable 

further testing of the hypothesis that the left PPC is crucially involved in the underlying 

mechanisms of successful walking in the presence of complex secondary tasks. This would 

be important in order to observe how specific neural activities can predict altered gait patterns 

due to cognitive decay and/or neurological impairments.  

The analyses performed in this study were limited to the sensor-level (i.e., electrode data) and 

in the absence of subject-specific anatomical MRI data and care was taken not to over-stretch 

data interpretations towards the sources of neural activity. Future studies would benefit from 

anatomical MRI data for each subject or patient in order to reliably source the origins of 

neural activity especially as brain anatomy varies with age and stage of PD [62]. Lastly, both 

dual-task conditions required the subjects to share part of their attention to the ambulatory 

task with a second task, and difficulties in reallocating attentional resources could have 

contributed to the decrease in gait stability [40]. Future studies should therefore identify 

changes in level of attention as potential covariates in the predictive relationship between 

brain activations and gait behaviour using recent developments in MOBI of locomotion in 

health and disease [63, 64]. 
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5. Conclusions 

In this study, we demonstrated that region- and frequency-specific brain activity could predict 

gait stability in several commonly undertaken tasks whilst walking in an urban environment. 

These predictive relationships may prove to be of value in assessment of gait impairments in 

neurological populations and offer therapeutic targets in intervention trials. The left posterior 

parietal cortex appeared crucially involved in gait stability during self-paced walking in the 

real-world and the type of secondary task undertaken may be correlated to frequency-specific 

coding. These findings validate the employment of measures of trunk acceleration to monitor 

gait during real-world situations and offer preliminary insights into the neural activity 

underpinning gait stability. 

6. Declarations 

Ethics approval and consent to participate 

The study was approved by the University of East London Ethics Committee 

(UREC_1415_29) and all experiments were conducted in accordance with the Declaration of 

Helsinki. All volunteers spontaneously agreed to participate in the study by giving written 

informed consent. 

Conflict of Interests 

The authors declare that the research was conducted in the absence of any commercial or 

financial relationships that could construed as a potential conflict of interest. 

Funding 

No funding was received for the current work of research. 

Author Contributions 



18 
 

S.P.: study concept and design, data acquisition, data analysis and interpretation, statistical 

analysis, drafting/revising the manuscript for content. D.L.T: study concept and design, data 

interpretation, drafting/revising the manuscript for content. H.A and U.N.: study concept, 

drafting/revising the manuscript for content. All the authors revised the final version of the 

manuscript. 

Acknowledgments 

We wish to thank Francesco Bossi for his valuable assistance on statistical analyses. 

Consent for publication 

Written informed consent for publication of her image reported in Figure 1 was obtained 

from author S.P. Written informed consent for publication of her data reported in Figure 2 

was obtained from the subject P.S. A copy of the consent forms is available for review upon 

request. 

Availability of data and material 

Please contact author for data requests.  



19 
 

References 

1. Ladouce, S., Donaldson, D.I., Dudchenko, P.A., and Ietswaart, M. (2016). Understanding 

minds in real-world environments: toward a mobile cognition approach. Frontiers in 

Human Neuroscience 10. 

2. Contreras-Vidal, J.L., Cruz-Garcia, J., and Kopteva, A. (Year). "Towards a whole body 

brain-machine interface system for decoding expressive movement intent Challenges and 

Opportunities", in: Brain-Computer Interface (BCI), 2017 5th International Winter 

Conference on: IEEE), 1-4. 

3. Schlink, B.R., Peterson, S.M., Hairston, W., König, P., Kerick, S.E., and Ferris, D.P. 

(2017). Independent component analysis and source localization on mobile EEG data can 

identify increased levels of acute stress. Frontiers in Human Neuroscience 11. 

4. Aspinall, P., Mavros, P., Coyne, R., and Roe, J. (2013). The urban brain: analysing 

outdoor physical activity with mobile EEG. Br J Sports Med, bjsports-2012-091877. 

5. Tilley, S., Neale, C., Patuano, A., and Cinderby, S. (2017). Older people’s experiences of 

mobility and mood in an urban environment: a mixed methods approach using 

electroencephalography (EEG) and interviews. International journal of environmental 

research and public health 14(2), 151. 

6. Al-Yahya, E., Johansen-Berg, H., Kischka, U., Zarei, M., Cockburn, J., and Dawes, H. 

(2016). Prefrontal cortex activation while walking under dual-task conditions in stroke: a 

multimodal imaging study. Neurorehabilitation and Neural Repair 30(6), 591-599. 

7. Holtzer, R., Mahoney, J.R., Izzetoglu, M., Izzetoglu, K., Onaral, B., and Verghese, J. 

(2011). fNIRS study of walking and walking while talking in young and old individuals. 

The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, glr068. 

8. Maidan, I., Nieuwhof, F., Bernad-Elazari, H., Reelick, M.F., Bloem, B.R., Giladi, N., et 

al. (2016). The role of the frontal lobe in complex walking among patients with 



20 
 

Parkinson’s disease and healthy older adults: an fNIRS study. Neurorehabilitation and 

Neural Repair 30(10), 963-971. 

9. Sipp, A.R., Gwin, J.T., Makeig, S., and Ferris, D.P. (2013). Loss of balance during 

balance beam walking elicits a multifocal theta band electrocortical response. Journal of 

Neurophysiology 110(9), 2050-2060. 

10. Bradford, J.C., Lukos, J.R., and Ferris, D.P. (2016). Electrocortical activity distinguishes 

between uphill and level walking in humans. Journal of Neurophysiology 115(2), 958-

966. 

11. Wagner, J., Makeig, S., Gola, M., Neuper, C., and Müller-Putz, G. (2016). Distinct β 

band oscillatory networks subserving motor and cognitive control during gait adaptation. 

The Journal of Neuroscience 36(7), 2212-2226. 

12. Dosenbach, N.U., Fair, D.A., Miezin, F.M., Cohen, A.L., Wenger, K.K., Dosenbach, 

R.A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. 

Proceedings of the National Academy of Sciences 104(26), 11073-11078. 

13. Rosenberg-Katz, K., Maidan, I., Jacob, Y., Giladi, N., Mirelman, A., and Hausdorff, J.M. 

(2016). Alterations in conflict monitoring are related to functional connectivity in 

Parkinson's disease. Cortex 82, 277-286. 

14. Handojoseno, A.A., Gilat, M., Ly, Q.T., Chamtie, H., Shine, J.M., Nguyen, T.N., et al. 

(Year). "An EEG study of turning freeze in Parkinson's disease patients: The alteration of 

brain dynamic on the motor and visual cortex", in: Engineering in Medicine and Biology 

Society (EMBC), 2015 37th Annual International Conference of the IEEE: IEEE), 6618-

6621. 

15. Ly, Q.T., Handojoseno, A.A., Gilat, M., Nguyen, N., Chai, R., Tran, Y., et al. (Year). 

"Detection of Gait Initiation Failure in Parkinson's disease patients using EEG signals", 



21 
 

in: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual 

International Conference of the: IEEE), 1599-1602. 

16. Baehr, M., and Frotscher, M. (1998). Duus’ Topical Diagnosis in Neurology, 5th Edition. 

Thieme, Stuttgart. 

17. Peterson, D., and Horak, F. (2016). Neural control of walking in people with 

Parkinsonism. Physiology 31(2), 95-107. 

18. Latt, M.D., Menz, H.B., Fung, V.S., and Lord, S.R. (2009). Acceleration patterns of the 

head and pelvis during gait in older people with Parkinson's disease: a comparison of 

fallers and non-fallers. The Journals of Gerontology Series A: Biological Sciences and 

Medical Sciences, glp009. 

19. Galna, B., Murphy, A.T., and Morris, M.E. (2013). Obstacle crossing in Parkinson's 

disease: mediolateral sway of the centre of mass during level-ground walking and 

obstacle crossing. Gait & Posture 38(4), 790-794. 

20. Mancini, M., Chiari, L., Holmstrom, L., Salarian, A., and Horak, F.B. (2016). Validity 

and reliability of an IMU-based method to detect APAs prior to gait initiation. Gait & 

Posture 43, 125-131. 

21. Menz, H.B., Lord, S.R., and Fitzpatrick, R.C. (2003). Acceleration patterns of the head 

and pelvis when walking on level and irregular surfaces. Gait & Posture 18(1), 35-46. 

22. Iosa, M., Fusco, A., Morone, G., and Paolucci, S. (2014). Development and decline of 

upright gait stability. Frontiers in Ageing Neuroscience, 10. 

23. Menz, H.B., Lord, S.R., and Fitzpatrick, R.C. (2003). Age‐related differences in walking 

stability. Age and ageing 32(2), 137-142. 

24. Kavanagh, J.J., and Menz, H.B. (2008). Accelerometry: a technique for quantifying 

movement patterns during walking. Gait & Posture 28(1), 1-15. 



22 
 

25. Terrier, P., and Reynard, F. (2015). Effect of age on the variability and stability of gait: a 

cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. 

Gait & Posture 41(1), 170-174. 

26. Sekine, M., Tamura, T., Yoshida, M., Suda, Y., Kimura, Y., Miyoshi, H., et al. (2013). A 

gait abnormality measure based on root mean square of trunk acceleration. Journal of 

Neuroengineering and Rehabilitation 10(1), 118. 

27. Sekine, M., Tamura, T., Yoshida, M., Uchiyama, T., and Center, C. Application of root 

mean square ratio of trunk acceleration for evaluation of Parkinson's disease. BSN 2014. 

28. Pizzamiglio, S., Naeem, U., Abdalla, H., & Turner, D.L. (2017). Neural correlates of 

single-and dual-task walking in the real world. Frontiers in Human Neuroscience, 11, 

460. 

29. Yang, M., Zheng, H., Wang, H., McClean, S., and Newell, D. (2012). iGAIT: An 

interactive accelerometer based gait analysis system. Computer methods and programs in 

biomedicine 108(2), 715-723. 

30. Sejdic, E., Lowry, K. A., Bellanca, J., Redfern, M. S., and Brach, J. S. (2014). A 

comprehensive assessment of gait accelerometry signals in time, frequency and time-

frequency domains. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, 22(3), 603-612. 

31. Van Criekinge, T., Saeys, W., Hallemans, A., Velghe, S., Viskens, P.-J., Vereeck, L., et 

al. (2017). Trunk biomechanics during hemiplegic gait after stroke: a systematic review. 

Gait & Posture 54, 133-143. 

32. Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of 

single-trial EEG dynamics including independent component analysis. The Journal of 

Neuroscience Methods 134(1), 9-21. 



23 
 

33. Cardoso, J.-F. (1997). Infomax and maximum likelihood for blind source separation. 

IEEE Signal Processing Letters 4(4), 112-114. 

34. Delorme, A., Sejnowski, T., and Makeig, S. (2007). Enhanced detection of artifacts in 

EEG data using higher-order statistics and independent component analysis. NeuroImage 

34(4), 1443-1449. 

35. Perrin, F., Pernier, J., Bertrand, O., and Echallier, J. (1989). Spherical splines for scalp 

potential and current density mapping. Electroencephalography and Clinical 

Neurophysiology 72(2), 184-187. 

36. Ferree, T.C. (2000). Spline interpolation of the scalp EEG. Secondary TitlEGI. 

37. Lin, M.-I.B., and Lin, K.-H. (2016). Walking while performing working memory tasks 

changes the prefrontal cortex hemodynamic activations and gait kinematics. Frontiers in 

Behavioral Neuroscience 10. 

38. https://www.trans-cranial.com/. 

39. Maidan, I., Bernad-Elazari, H., Giladi, N., Hausdorff, J.M., and Mirelman, A. (2017). 

When is higher level cognitive control needed for locomotor tasks among patients with 

Parkinson’s Disease? Brain Topography, 1-8. 

40. Wahn, B., and König, P. (2017). Is attentional resource allocation across sensory 

modalities task-dependent? Advances in cognitive psychology 13(1), 83. 

41. Nieuwhof, F., Bloem, B.R., Reelick, M.F., Aarts, E., Maidan, I., Mirelman, A., et al. 

(2017). Impaired dual tasking in Parkinson’s disease is associated with reduced focusing 

of cortico-striatal activity. Brain 140(5), 1384-1398. 

42. Holtzer, R., Mahoney, J.R., Izzetoglu, M., Wang, C., England, S., and Verghese, J. 

(2015). Online fronto-cortical control of simple and attention-demanding locomotion in 

humans. NeuroImage 112, 152-159. 

https://www.trans-cranial.com/


24 
 

43. Holtzer, R., Verghese, J., Allali, G., Izzetoglu, M., Wang, C., and Mahoney, J.R. (2016). 

Neurological gait abnormalities moderate the functional brain signature of the posture 

first hypothesis. Brain Topography 29(2), 334-343. 

44. Hernandez, M.E., Holtzer, R., Chaparro, G., Jean, K., Balto, J.M., Sandroff, B.M., et al. 

(2016). Brain activation changes during locomotion in middle-aged to older adults with 

multiple sclerosis. Journal of the Neurological Sciences 370, 277-283. 

45. Calton, J.L., and Taube, J.S. (2009). Where am I and how will I get there from here? A 

role for posterior parietal cortex in the integration of spatial information and route 

planning. Neurobiology of learning and memory 91(2), 186-196. 

46. Buneo, C.A., and Andersen, R.A. (2006). The posterior parietal cortex: sensorimotor 

interface for the planning and online control of visually guided movements. 

Neuropsychologia 44(13), 2594-2606. 

47. Beloozerova, I.N., and Sirota, M.G. (2003). Integration of motor and visual information 

in the parietal area 5 during locomotion. Journal of Neurophysiology 90(2), 961-971. 

48. Lajoie, K., Andujar, J.-E., Pearson, K., and Drew, T. (2010). Neurons in area 5 of the 

posterior parietal cortex in the cat contribute to interlimb coordination during visually 

guided locomotion: a role in working memory. Journal of Neurophysiology 103(4), 2234-

2254. 

49. Lee, M.-S., Kim, H.-S., and Lyoo, C.-H. (2005). “Off” gait freezing and temporal 

discrimination threshold in patients with Parkinson disease. Neurology 64(4), 670-674. 

50. Bálint, R. (1909). Seelenlahmungs des' Schauens', optische Ataxie, raumliche Storung der 

Aufmerksamkeit. Monatsschr Psychiat Neurol 25, 51-81. 

51. Yordanova, J., Kolev, V., Verleger, R., Heide, W., Grumbt, M., and Schürmann, M. 

(2017). Synchronization of fronto-parietal beta and theta networks as a signature of visual 

awareness in neglect. NeuroImage 146, 341-354. 



25 
 

52. Tang, X., Wu, J., and Shen, Y. (2016). The interactions of multisensory integration with 

endogenous and exogenous attention. Neuroscience & Biobehavioral Reviews 61, 208-

224. 

53. Lenka, A., Naduthota, R.M., Jha, M., Panda, R., Prajapati, A., Jhunjhunwala, K., et al. 

(2016). Freezing of gait in Parkinson's disease is associated with altered functional brain 

connectivity. Parkinsonism & Related Disorders 24, 100-106. 

54. Caplan, J.B., Madsen, J.R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, 

E.L., and Kahana, M.J. (2003). Human θ oscillations related to sensorimotor integration 

and spatial learning. The Journal of Neuroscience 23(11), 4726-4736. 

55. Ekstrom, A.D., Caplan, J.B., Ho, E., Shattuck, K., Fried, I., and Kahana, M.J. (2005). 

Human hippocampal theta activity during virtual navigation. Hippocampus 15(7), 881-

889. 

56. Chiu, T.C., Gramann, K., Ko, L.W., Duann, J.R., Jung, T.P., and Lin, C.T. (2012). Alpha 

modulation in parietal and retrosplenial cortex correlates with navigation performance. 

Psychophysiology 49(1), 43-55. 

57. Bohbot, V.D., Copara, M.S., Gotman, J., and Ekstrom, A.D. (2017). Low-frequency theta 

oscillations in the human hippocampus during real-world and virtual navigation. Nature 

Communications 8, 14415. 

58. Giraud, A.-L., Kleinschmidt, A., Poeppel, D., Lund, T.E., Frackowiak, R.S., and Laufs, 

H. (2007). Endogenous cortical rhythms determine cerebral specialization for speech 

perception and production. Neuron 56(6), 1127-1134. 

59. Simons, J.S., and Spiers, H.J. (2003). Prefrontal and medial temporal lobe interactions in 

long-term memory. Nature Reviews Neuroscience 4(8), 637-648. 

60. Lin, C.-T., Chiu, T.-C., and Gramann, K. (2015). EEG correlates of spatial orientation in 

the human retrosplenial complex. NeuroImage 120, 123-132. 



26 
 

61. Engel, A.K., and Fries, P. (2010). Beta-band oscillations—signalling the status quo? 

Current opinion in neurobiology 20(2), 156-165. 

62. Prakash, K.G., Bannur, B.M., Chavan, M.D., Saniya, K., Sailesh, K.S., & Rajagopalan, 

A. (2016). Neuroanatomical changes in Parkinson's disease in relation to cognition: An 

update. Journal of advanced pharmaceutical technology & research, 7(4), 123. 

63. Nakanishi, Y., Wada, F., Saeki, S., & Hachisuka, K. (2014). Rapid changes in arousal 

states of healthy volunteers during robot-assisted gait training: a quantitative time-series 

electroencephalography study. Journal of Neuroengineering and Rehabilitation, 11(1), 59. 

64. Calabrò, R.S., Naro, A., Russo, M., Leo, A., De Luca, R., Balletta, T., Buda, A. ,La Rosa, 

G., Bramanti, A. & Bramanti, P. (2017). The role of virtual reality in improving motor 

performance as revealed by EEG: a randomized clinical trial. Journal of 

Neuroengineering and Rehabilitation, 14(1), 53. 

  



27 
 

FIGURES LEGENDS 

Figure 1 – Mobile Setup for real-world experiments. Brain activity was recorded by a 64 

channel EEG Waveguard cap connected to the EEGoPro amplifier placed into a backpack 

together with a tablet on which the recording software ran. Contact Switches were placed 

underneath the subject’s heels and connected to a digital input of the MWX8 DataLog 

analog-to-digital converter fixed at the subject’s hips by an elastic belt. Elastic bands were 

also placed around the subject’s thighs to make sure cables did not disturb gait performance. 

A digital button was connected to the converter and pressed by the subject at specific time 

points. A Samsung Galaxy S4 mini was firmly placed at the subject’s lower back with the 

elastic belt. Author S.P. gave written informed consent for the usage of this picture. 

Figure 2 – Power Spectral Density (PSD) across conditions. The spectral power of one 

typical subject in each condition (ST = Single-Task walking; DT1 = Dual-Task walking 

while conversing; DT2 = Dual-Task walking while texting with a smartphone) and for each 

frequency band of interest (, α and β). Values are colour-coded and expressed in dB. Subject 

P.S. gave written informed consent for the publication of her data. 

Figure 3 – Acceleration RMS and RMSR profiles across conditions. Condition-by-

condition population average (N = 14) profiles with standard deviation error bars for each 

movement direction (ver = Vertical, ml = Medio-Lateral, ap = Antero-Posterior). Statistically 

significant paired-samples t-test corrected for multiple comparisons (Bonferroni, x 3) are 

highlighted with * (ST vs DTi with i = 1, 2) and/or ** (DT1 vs. DT2). Detailed results are 

reported in Table 1. Average acceleration RMS decrease in the two dual-task conditions with 

respect to the single-task condition regardless of movement direction. Average acceleration 

RMSR decrease in the vertical direction and increase in the medio-lateral and antero-
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posterior directions decrease in the two dual-task conditions with respect to the single-task 

condition regardless of movement direction. 

Figure 4 – Observed vs. Predicted ver-RMSR values according to the multiple 

regression model during ST. The model R-squared value associated to the line of fit of the 

model in the figure. 

Figure 5 – Observed vs. Predicted ver-RMSR values according to the multiple 

regression model during DT1. The model R-squared value associated to the line of fit of the 

model in the figure. 

Figure 6 - Observed vs. Predicted ml-RMSR values according to the multiple regression 

model during DT2. The model R-squared value associated to the line of fit of the model in 

the figure. 
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TABLES 

Table 1. Single- and dual-task gait measures. Condition-by-condition mean (± SD) measures of gait performance (N = 

14). Repeated measures ANOVA p-values are reported in the right-side column. Statistically significant paired-samples t-

test corrected for multiple comparisons are highlighted with * (ST vs DTi with i = 1, 2) and/or ** (DT1 vs. DT2). N.S., not 

significant. 

 Single Task Dual Task 1 Dual Task 2 Anova F Anova p 

Stride Duration (ms) 1054 (± 87) 1060 (± 79) 1106 (± 107) *, ** 12.165 0.001 

Mean Step Length (m) 0.53 (± 0.06) 0.52 (± 0.08) 0.51 (± 0.07) 0.0769 N.S. 

Velocity (m/s) 0.90 (± 0.10) 0.86 (± 0.10) * 0.78 (± 0.12) *, ** 34.215 0.001 

ver-RMS 2.65 (± 0.56) 2.59 (± 0.55) 2.26 (± 0.63) *, ** 17.554 0.001 

ml-RMS 1.48 (± 0.32) 1.47 (± 0.31) 1.37 (± 0.40) * 7.769 0.008 

ap-RMS 2.19 (± 0.28) 2.09 (± 0.25) 0.96 (± 0.33) *, ** 16.946 0.001 

ver-RMSR 0.70 (± 0.05) 0.70 (± 0.05) 0.67 (± 0.06) ** 5.839 0.008 

ml-RMSR 0.40 (± 0.07) 0.40 (± 0.06) 0.41 (± 0.08) 1.735 N.S. 

ap-RMSR 0.59 (± 0.06) 0.58 (± 0.053) 0.60 (± 0.06) ** 7.165 0.003 

ver-Step Regularity 0.75 (± 0.09) 0.69 (± 0.19) 0.69 (± 0.13) 2.027 N.S. 

ap-Step Regularity 0.76 (± 0.09) 0.73 (± 0.11) 0.71 (± 0.09) * 6.642 0.005 
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Table 2 – Prediction models. Condition-by-condition prediction models for each acceleration RMSR direction. NA defines cases in which no statistically significant and/or reliable model (i.e., 
for which all assumptions were met) was created. 

 Dependent Variables 
Conditions RMSRver RMSRap RMSRml 

ST 0.699 + 0.355 ∙ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 0.009 ∙ 𝑙𝑒𝑓𝑡 𝑃𝑎𝑟𝑖𝑒𝑡𝑎𝑙 𝜃 𝑃𝑆𝐷 NA NA 
DT1 0.704 + 0.029 ∙ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 0.021 ∙ 𝑙𝑒𝑓𝑡 𝑃𝑎𝑟𝑖𝑒𝑡𝑎𝑙 𝛼 𝑃𝑆𝐷 NA NA 

DT2 NA NA 0.414 − 0.055 ∙ 𝑙𝑒𝑓𝑡 𝑃𝑎𝑟𝑖𝑒𝑡𝑎𝑙 𝛽 𝑃𝑆𝐷 
 


