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Ischemic stroke of the middle cerebral artery (MCA), a major brain vessel that supplies the

primary motor and premotor cortex, is one of the most common causes for severe upper

limb impairment. Currently available motor rehabilitation training largely lacks satisfying

efficacy with over 70% of stroke survivors showing residual upper limb dysfunction.

Motor imagery-based functional magnetic resonance imaging neurofeedback (fMRI-NF)

has been suggested as a potential therapeutic technique to improve motor impairment

in stroke survivors. In this preregistered proof-of-concept study (https://osf.io/y69jc/),

we translated graded fMRI-NF training, a new paradigm that we have previously

studied in healthy participants, to first-time MCA stroke survivors with residual mild to

severe impairment of upper limb motor function. Neurofeedback was provided from the

supplementary motor area (SMA) targeting two different neurofeedback target levels

(low and high). We hypothesized that MCA stroke survivors will show (1) sustained

SMA-region of interest (ROI) activation and (2) a difference in SMA-ROI activation

between low and high neurofeedback conditions during graded fMRI-NF training. At the

group level, we found only anecdotal evidence for these preregistered hypotheses. At

the individual level, we found anecdotal to moderate evidence for the absence of the

hypothesized graded effect for most subjects. These null findings are relevant for future

attempts to employ fMRI-NF training in stroke survivors. The study introduces a Bayesian

sequential sampling plan, which incorporates prior knowledge, yielding higher sensitivity.

The sampling plan was preregistered together with a priori hypotheses and all planned

analysis before data collection to address potential publication/researcher biases.
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Unforeseen difficulties in the translation of our paradigm to a clinical setting required some

deviations from the preregistered protocol. We explicitly detail these changes, discuss

the accompanied additional challenges that can arise in clinical neurofeedback studies,

and formulate recommendations for how these can be addressed. Taken together, this

work provides new insights about the feasibility of motor imagery-based graded fMRI-NF

training in MCA stroke survivors and serves as a first example for comprehensive study

preregistration of an (fMRI) neurofeedback experiment.

Keywords: fMRI, neurofeedback, stroke, preregistration, rehabilitation

INTRODUCTION

Ischemic stroke of the middle cerebral artery (MCA) is one of
the most common forms of stroke (Leys et al., 1992; Aouad et al.,
2013). The MCA is the main blood supply to the primary motor
cortex, including the hand knob area, as well as the premotor
cortex. Hence, MCA stroke often leads to severe upper limb
impairment and compromises patients’ quality of life (Miller
et al., 2010; Langhorne et al., 2011). The efficacy of current
rehabilitative strategies is limited, and most patients remain
impaired such that more than 70% of stroke survivors show acute
upper limb impairment (Lawrence et al., 2001) and in many
cases to amoderate-to-severe degree. Furthermore, it is estimated
that only 5–20% of patients with hemiparesis regain full upper
limb function, while 33–60% do not show any recovery 6
months after stroke (Kwakkel and Kollen, 2013). This remaining
limb dysfunction presents a major impediment to rehabilitation,
activities of daily living and occupational prospects of stroke
survivors, and has a considerable, negative effect on their well-
being (Langhorne et al., 2011; Pollock et al., 2014). Hence, there
is a need for new noninvasive therapies to promote recovery of
motor function in general and in particular for the upper limb
after MCA stroke.

Several motor imagery-based interventions have been
suggested for stroke (Sharma et al., 2009b; Ietswaart et al.,
2011), which may enhance neuroplasticity and thus potentially
facilitate recovery, in particular when combined with regular
physiotherapy (García Carrasco and Aboitiz Cantalapiedra,
2016; Sakurada et al., 2017). Such interventions include brain–
computer interfaces (Cervera et al., 2018) and real-time fMRI
neurofeedback training (Linden and Turner, 2016; Wang et al.,
2017) whereby participants engage in mental practice to control
some form of external feedback that they are provided with.
Motor imagery strategies can be primarily visual or kinesthetic,
and it is possible that the type of motor imagery influences the
degree of improvement in motor impairment (Jackson et al.,
2001; Sharma et al., 2009b). Whereas, visual motor imagery
focuses primarily on visual mental imagery, either from a first- or
a third-person perspective, kinesthetic motor imagery is defined
as motor imagery from the first-person perspective and involves
imagining the feeling and experience of movements without
overt movement. Interestingly, brain stimulation (Stinear et al.,
2006) and neuroimaging studies (Solodkin et al., 2004; Guillot
et al., 2009; Hétu et al., 2013; Sharma and Baron, 2013) suggest
that kinesthetic motor imagery recruits motor areas including

the supplementary motor area (SMA) and that this type of
imagery is thus of interest for motor rehabilitation. In a previous
neurofeedback experiment conducted in healthy participants, we
confirmed that the SMA is a suitable target for motor imagery-
based neurofeedback training (Mehler et al., 2019b). Specifically,
we have previously introduced a new form of feedback training
where participants self-regulated the activity of the SMA to
discrete target levels. In this within-subject design, users act as
their control condition regarding self-regulation success of motor
imagery-based neurofeedback training based on a measure that
is calibrated by individuals’ baseline activation during a localizer
scan. In the present proof-of-concept (PoC) study, we aimed to
translate these findings to MCA stroke patients.

We introduce two new aspects to the fMRI-neurofeedback
community: comprehensive study preregistration and a Bayesian
sequential sampling plan (Schönbrodt et al., 2015). Before data
acquisition started, the study protocol was preregistered on
an open platform (the Open Science Framework) to increase
the replicability and reproducibility of the introduced methods
and reported results. Adapted from clinical trial registrations
(Nosek et al., 2018), our comprehensive study preregistration
included a transparent description of the methodology, a priori
hypotheses, and a detailed analysis plan outlining how it
is intended to test for these (https://osf.io/y69jc/#!). Hence,
comprehensive study preregistration address three common
concerns in translational neuroscience and research more
broadly (Poldrack et al., 2017; Mehler, 2019): Unanticipated
challenges, which are part of developing a new intervention
technique, are disclosed transparently in the process, affording
an adequate discussion that can eventually help addressing
these in future work. Moreover, predeclared analysis plans
help preventing questionable research practices. Lastly, with
preregistration results are published irrespective of their
outcome, effectively addressing publication bias (Allen and
Mehler, 2019). The preregistration protocol included a Bayesian
sequential sampling, which allows accumulating evidence for
(or against) an effect until a certain threshold is reached
(Schönbrodt and Wagenmakers, 2018). Moreover, individual
tests were calibrated (using a preregistered decision rule) by
individual prior distributions. These were informed by the
SMA activation that was measured at the beginning of a
training session during a localizer scan. Such approach provides
greater flexibility and sensitivity over conventional (frequentist)
sampling plans and is a promising approach for translational
research designs. The study’s aim was mainly to test for
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the feasibility of graded fMRI neurofeedback training of the
SMA in first time MCA stroke patients. The SMA is an
attractive target region of interest (ROI) in MCA stroke patients
because it is supplied by the anterior cerebral artery (Brugger
et al., 2015) and thus is not expected to have (substantially)
compromised hemodynamic function following MCA stroke.
Our first hypothesis was that patients could activate the SMA
through motor imagery. Our second hypothesis was that
patients can self-regulate the feedback signal to two discrete
target levels.

METHODS

Preregistration Protocol
The following methods section is based on the preregistered
study protocol (Mehler et al., 2017). Minor modifications were
performed, partly based on reviewers’ feedback, to improve
the documentation.

Participants
This PoC study aims to ascertain if unilateral MCA ischemic
stroke patients, with moderate to severe upper limb impairment,
are able to (1) achieve sustained SMA activation during motor
imagery and (2) demonstrate control over the feedback (by self-
regulating the activation to different target levels), which we see
as prerequisites for the use of graded neurofeedback training
as motor rehabilitation therapy. Stroke severity was determined
by the local clinician and based on the Modified Rankin Scale
Questionnaire Score of 3–4 (Bonita and Beaglehole, 1988).
Potentially suitable participants, within 6 months of stroke, were
identified by clinical staff at Cardiff and Vale University Health
Board. The inclusion criteria for patients were as follows:

1) infarction of the middle cerebral artery territory
2) persisting hemiplegia/hemiparesis
3) patients either (a) have been discharged from the acute stroke

unit and received ambulatory physiotherapy (so called early
supported discharge), (b) are still undergoing, or (c) have
already completed an inpatient rehabilitation program

4) no receptive aphasia to ensure that task instructions will be
properly followed.

Patient exclusion criteria were any MRI contraindications.
Patients provided informed consent. The study has been
approved by the local research ethics committee (Wales REC3,
reference number 16/WA/0167) operated by Health and Care
Research Wales. For a detailed list of exclusion criteria that affect
the data acquisition and/or quality, please see Data Exclusion
section below. Although exclusions have been anticipated,
any further expulsions and reasons are possible and will be
documented (please see Deviations From Preregistered Protocol).

Data Exclusion
Neurofeedback runs that contain too much head motion, defined
by>30% volumes with a framewise displacement (FD)> 0.5mm
were excluded (Power et al., 2014).

Head motion was quantified using framewise displacement
(FD), with:

FDi = |1dix| + |1diy| + |1diz| + |1αi| + |1βi| + |1γi|, (1)

where i indicates the volume, 1dix = d(i−1)x − dix for translation
rigid body motion parameters, and [αi β i γi] are the three head
rotation parameters (roll, pitch, yaw) that were converted to
millimeters using a projection onto a sphere with a radius of
50mm (Power et al., 2014).

If debriefing suggested that patients misunderstood
instructions, data of affected runs were excluded. Furthermore,
if patients did not attend the second neurofeedback session and
did not withdraw their consent, acquired data from the first
neurofeedback session that met the quality criteria as specified
above were still included in the Sequential Bayes Factor sampling
and all other planned analyses.

If technical problems occurred that either disrupted or delayed
the feedback presentation, data from affected runs were excluded.
Incomplete neurofeedback runs were excluded and repeated.
If patients interrupted a scan session but consent was not
withdrawn, acquired data from this session were included.
However, some instances in which a patient stopped complying
during the task were identified after debriefing, and those affected
runs were excluded. Other unanticipated circumstances affecting
data quality could result in exclusions. In such circumstances, all
exclusions and reasons are reported (please see Deviations From
Preregistered Protocol).

Dependent Variables and Hypotheses
The first dependent variable of interest is the median percent
signal change (PSC) of the SMA-ROI during motor imagery
(taking an average across the low and high neurofeedback
condition) > rest (details for calculation, see Analysis Plan
below). The second dependent variable of interest is the
difference in SMA-ROI PSC between the low and high
neurofeedback condition (details for calculation, see Analysis
Plan below).

H0A: MCA stroke patients show no sustained SMA-
ROI activation.
H1A: MCA stroke patients will show sustained SMA-ROI
activation as measured by a positive PSC.
H0B: MCA stroke patients show no difference in SMA-
ROI activation (measured by PSC) between low and high
neurofeedback conditions.
H1B: MCA stroke patients show a difference in SMA-ROI
activation between low and high neurofeedback conditions.

Sample Size and Bayesian Sequential
Sampling Plan
Owing to feasibility and PoC, we followed a Bayesian sampling
strategy. Bayesian statistics do not require adjustment for
multiple testing and hence can provide higher flexibility
and sensitivity over conventional (frequentist) sampling
plans (Schönbrodt and Wagenmakers, 2018). Moreover, the
interpretation of the Bayes factor, which expresses how much
more likely one hypothesis is over another, allows sampling
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data until evidence for the absence of an effect is found. For
the present study, we chose a minimum of N = 5 patients
and continue recruiting either until the Bayes factor for both
hypotheses (A and B) was conclusive—i.e., either for the
alternative with a Bayes factor (BF10) > 10 (indicating that the
alternative hypothesis is at least 10 times more likely than the
null hypothesis given the data, thus indicating strong evidence
for a positive effect) or for the null with BF01 > 10 (indicating
that the null hypothesis is at least 10 times more likely than the
alternative hypothesis given the data, thus indicating strong
evidence for a null effect)—or until the end of the data collection
period (February 28, 2018) was reached.

For both H1A and H1B, Bayes factor calculations were
performed using a normal prior (Baguley, 2010; Dienes, 2014).
For H1A, we tested for activation vs. no activation and thus
conducted a one-sided one-sample Bayesian t test for which
the prior distribution was scaled by the group median of the
PSC during the localizer (PSCLOC). For H1B, we tested for a
difference between the low and high neurofeedback level and thus
conducted a one-sided paired Bayesian t-test. In the optimal case,
the difference would be 0.5 (see paragraph above). Hence, to test
for H1B, prior scaling of the prior distribution was set to 0.5.

Besides these Bayesian t-tests that were used for the stopping
rule, we also report respective Bayesian t-tests on group level
with a default Jeffreys–Zellner–Siow (JZS) prior (Cauchy r =

0.707) (Rouder et al., 2009). These are reported together with the
median of the posterior and its 95% credible interval. To test if
resulting Bayes factors were sensitive to priors, a prior robustness
check (with r = 0.5, r = 1, and r = 1.4142) was conducted
to assess the robustness of the outcome (Rouder et al., 2016;
Schönbrodt and Wagenmakers, 2018).

This stepwise Bayesian approach provides us with more
flexibility to detect larger effects and hence to stop sampling
earlier. It also allows flexible accumulation of evidence for
the null hypothesis, which presents one main advantage
of Bayesian hypothesis testing compared to conventional
frequentist hypothesis tests (Mehler et al., 2019a). To control
for early stopping due to false positives or false negatives, we
have set a relatively conservative stopping threshold of BF = 10
for both the alternative and the null hypothesis. However, there
remains a risk for inflated type-II error rates to detect small to
medium effect sizes given the minimum N = 5. For instance,
such sample would require at least an effect size of Cohen’s d =

1.36 for the planned one-sided frequentist t tests to be powered
at 80%. Hence, in line with best practice recommendations,
we acknowledge this limitation by labeling the study proof of
concept (Ros et al., 2020).

Procedure
Patients were invited to two fMRI-NF training sessions. Sessions
were conducted at the patient’s convenience but within 6 months
of their stroke. If necessary, patients were made familiar with
the MR scanner environment using a mock scanner before their
scanning session. Mental imagery performance has been shown
repeatedly to be modulated by hand orientation (Jongsma et al.,
2013) as well as body posture (de Lange et al., 2006; Ionta
et al., 2012). Thus, patients were asked to identify a kinesthetic

motor imagery strategy that involves both hands (see Motor
Imagery Instructions).

MRI Acquisition and Online Processing
Imaging data were acquired using a 3-T MRI scanner (3T
Prisma, Siemens Healthcare, Erlangen, Germany) at the Cardiff
University Brain Research Imaging Center (CUBRIC). Blood-
oxygenation-level-dependent (BOLD) signals during localizer
and neurofeedback runs (see Procedure) were measured with
a T2∗-weighted gradient-echo echo planar imaging (EPI)
sequence synchronized to the onset of the stimulus presentation.
Functional EPI volumes of 24 slices of 2.5-mm thickness, with
0.5-mm interslice spacing was used (in-plane resolution= 3mm,
TR = 1,500ms, TE = 30ms, flip angle = 80◦). High-resolution
structural images were acquired before the first functional scan
using a magnetization-prepared rapid gradient-echo sequence
(MPRAGE) T1-weighted image with 172 contiguous sagittal
slices of 1-mm thickness (voxel size: 1 × 1 × 1mm, TR
= 7.9 s, TE = 3.0ms, flip angle = 20◦, FoV = 256 ×

256 × 172mm). Turbo-BrainVoyager (TBV) software (Brain
Innovation B.V., Maastricht, Netherlands, version 3.2) was used
for online preprocessing and analysis of BOLD signals including
motion correction with respect to the first volume of the
functional localizer and spatial smoothing [4mm full width at
half maximum (FWHM)].

Functional Localizer
The functional localizer run (180 volumes) consisted of four
blocks (30 s) kinesthetic motor imagery, flanked by rest blocks
(30 s). An incremental general linear model (GLM) was used
including a task predictor and linear drift term to compute
task-correlated activity. The localizer run serves to identify most
active voxels and to calculate the individual percent signal change
(PSCLOC) that is used to scale the visual feedback.

Previous real-time neurofeedback studies with neurological
patients have either used motor execution (Subramanian et al.,
2011, 2016) or action observation (Sitaram et al., 2012) tasks
during localizer runs. However, given that motor execution is
impaired in stroke patients in general and to different degrees
across patients, a motor execution localizer would be difficult
to implement and most likely provide unreliable estimates for
PSCLOC. Moreover, more recent studies that employed graded
fMRI-NF also used mental imagery localizers (Sorger et al., 2016;
Krause et al., 2017). Lastly, different subparts within the SMA
may be activated during motor imagery compared to motor
execution, and hence, a motor imagery-based localizer may be
more suitable for imagery-based neurofeedback training (Mehler
et al., 2019b). Statistically significant voxels were selected using a
t-contrast of motor imagery > rest with a variable t-threshold to
ensure that a sufficient number of voxels were available within the
SMA for the following selection. The 40 most active neighboring
voxels (determined by their t value) in four neighboring slices
were identified in native functional space based on this t-contrast
using a custom-made plugin (Best Voxel Tool with settings 4-4-
1-0-40; plugin available upon request) (Lührs et al., 2017). This
procedure deviated from the originally preregistered procedure
in which this step was conducted in a normalized space and
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constrained to an anatomical mask of the SMA (see justification
provided in Deviations From Preregistered Protocol). To give
participants sufficient time to disengage from motor imagery
during the rest and allow time for the BOLD signal to recover to
baseline, only the second half of each rest period were considered
for the calculation using a custom-made PSC plugin tool (PSC
calculation Tool; plugin available upon request).

The PSCLOC value determined the 100% level of the
thermometer feedback; the remaining parts of the thermometer
display are linearly scaled accordingly (see Neurofeedback
Calculation and Presentation). Specifically, the PSCLOC value to
scale the thermometer was set to 80% of the maximum percent
signal changemeasured in the localizer. However, in case patients
initially struggled to engage in motor imagery when no feedback
is provided yet, a lower bound PSCLOC = 0.7 was set to avoid
underestimating an appropriate PSCLOC to scale the feedback.
Furthermore, because the maximum PSC value could be biased
by outliers or spikes in the time series, an upper bound was set to
PSCLOC = 1.4. These values are comparable to PSCLOC default
values of 1% that have previously been used in neurological
patients (Subramanian et al., 2011, 2016).

Neurofeedback Calculation and
Presentation
The localizer run was followed by five neurofeedback runs (180
volumes), which contained two repetitions of two block types, a
low and high neurofeedback level, which were interleaved by rest
(30 s). For feedback presentation, the mean raw BOLD value was
extracted from the SMA-ROI (BOLDSMA−ROI). The feedback was
computed (temporally smoothed) based on Equation 2:

PSCNF =

(

val− baseline
)

∗100

baseline
(2)

where val is the mean of three consecutive BOLDSMA−ROI values,
baseline is the median BOLDSMA−ROI during the second half (i.e.,
last 10 TRs) of the preceding rest period, and PSC_NF is the
resulting percent signal change. PSCNF was then normalized by
PSCLOC to map it on to the (15) segments of the thermometer
display such that every segment represents 10% of the PSCLOC.
Values below 0 were rounded up to 0; values above 15 were
rounded down to 15. The calculation was carried out using an in-
house written python script (Python 2.7.10). The Open Source
Python library Expyriment was used for continuous online
feedback presentation (Krause and Lindemann, 2014). Target
levels were defined by 50% (low) and 100% (high) of the localizer
SMA-ROI PSC and indicated by green arrows. Both the low- and
high-level conditions were repeated twice per run and interleaved
by rest periods. During rest periods, no feedback was presented.
The order of the condition (low and high target level) was
counterbalanced across runs and subjects (determined by subject
number and run number). The python script for the localizer and
neurofeedback runs is available (https://osf.io/y69jc/).

Motor Imagery Instructions
Before the scan, patients were asked to identify a kinesthetic
motor imagery strategy that involved both hands and that they

could perform comfortably, vividly, and consistently (e.g., an
activity of daily living) for ∼30 s while lying in a supine position
comparable to the actual scan session. Patients were further
instructed to avoid any movements and muscle contractions.

During the localizer run, patients were asked to use this
motor imagery strategy while being presented with an empty
thermometer on the screen. Patients were instructed to remain
still in the scanner and either rest when presented with red
arrows next to the empty thermometer gauge or perform vivid
kinestheticmental imagery of an action that involves both of their
hands during task periods that were indicated with green arrows.
Patients were reminded that no feedback was presented during
the localizer scan.

For both the localizer and neurofeedback runs, patients were
further instructed that, during scans, they should (1) remain still
and relaxed, (2) avoid movements and muscle contractions, and
(3) use only kinesthetic motor imagery that involves both hands.
Besides these aspects, patients were not restricted in the content
of motor imagery (e.g., a particular type of activity or sport).

For the neurofeedback runs, it was explained to patients that
bars in the thermometer represent the activity level in the target
region and that their goal is to use kinesthetic motor imagery
to control the feedback by filling up the bars contained in the
thermometer display. They were also instructed to maintain the
activation at target levels by adjusting their mental strategy (e.g.,
changing speed and/or intensity of the imagined movement).

Offline fMRI Analysis Plan
The present study is a repeated measure within-subject design.
The dependent variable of interest is the PSC of the SMA-
ROI in the contrast task—i.e., supervised kinesthetic motor
imagery based on fMRI-NF from the SMA-ROI > rest. The
open source software AFNI (version 16.2.18) was used for offline
fMRI ROI analyses using the same preprocessing parameters
(motion correction, 4mm spatial smoothing) as used for online
feedback. Based on existing in-house scripts, AFNI functions
3dDeconvolve and 3dREMLfit function were used. The AFNI
function 3dDeconvolve was used to calculate task and baseline
predictors (see below), and preprocessed BOLD time series and
design matrices were submitted to 3dREMLfit to compute SMA-
ROI PSCs. This approach largely replicates the analysis carried
out online and additionally corrects for temporal autocorrelation
(AR1) of the BOLD time series. For the functional localizer, the
intercept, drift, and task are modeled, and the PSC is defined
as the ratio between task and intercept parameter estimates.
For the neurofeedback runs, analyses was carried out on a
concatenated time series for both the low and high target
level with their respective preceding rest periods such that
five coefficient estimates are returned for: the (1) intercept,
(2) low-level task block, (3) high-level task blocks, (4) baseline
blocks preceding low-level task blocks, and (5) baseline blocks
preceding high-level task blocks (with order of 2–5 depending on
randomization). Based on these coefficient estimates, PSCs are
calculated with Equation 3:

PSC = task ∗
100

intercept + preceding rest period
(3)
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FIGURE 1 | Example of supplementary motor area (SMA) target region of interest (ROI) and self-regulation time course (green indicating the task periods, red rest

periods). Radiological convention, with anterior part of the brain shown at the top.

for the low and high neurofeedback level, respectively.
Returned values from the neurofeedback runs were

normalized by the offline calculated PSCLOC. Hence, for
instance, a value of 0.5 would indicate that 50% of the PSCLOC

have been achieved during neurofeedback, the desirable target
level for the low neurofeedback condition.

Both SMA activation (H1A) and difference between target
levels (H1B) were tested on the group level as well as in
individual patients. Group analyses were carried out based on
patients’ median PSC values calculated across all runs from both
neurofeedback sessions. To test for H1A, the grand median was
calculated from PSC (grand mdPSC) values across the low and
high target level conditions. To test for H1B, the median PSC was
calculated separately for the low and high target level condition
(mdPSC). In addition to the group analyses, both H1A (SMA
activation) and H1B (graded SMA activation) were tested within
subjects based on all PSC values available for a patient.

Frequentist Statistical Analysis
Besides Bayesian hypothesis testing, frequentist hypothesis
testing was also conducted. H1A was tested with a one-sample t-
test and H1B with a paired t-test for both the group analysis and
individual subject analyses. Because we have directed hypotheses
in the cases of H1A and H1B (i.e., positive differences), all tests
were carried out right tailed. Both hypotheses were tested on the
group level as well as in individual patients. Tests conducted on
group level were carried out at a significance level of 0.05. Tests at
subject level were Bonferroni corrected for multiple comparisons
and carried out at a significance level of 0.05/number of tested
patients. For all measures, effects sizes (Cohen’s d) are reported.

Deviations From Preregistered Protocol
and Exploratory Analyses
To address challenges in the data acquisition and analysis
that were not anticipated when this study was preregistered
(Mehler et al., 2017), the following changes to the preregistered
methodology were applied.

Participants and Sessions
The patient recruitment was slower than expected. We therefore
extended the recruitment phase by 5 months with approval from
the ethics and research governance committees from September
30, 2017 until February 28, 2018. Toward the end of the
recruitment phase, inclusion criteria (in terms of clinical severity)
were relaxed to reach the minimum N = 5. As a result, one
mildly impaired (patient 4; P4) and one recovered patient (P5)
were included. In anticipation of potential data loss due to head
motion, data from three training sessions were recorded for P3.
P5 only completed one training session since the end date of the
study was reached.

Coregistration and Functional Localizer
Brain lesions and head motion corrupted data quality and
anatomical landmarks. As a consequence, planned online
coregistration attempts failed. Therefore, the created anatomical
SMA mask in Talairach could not be applied, and instead, target
voxel selection was guided by visual inspection of functional
brain slices in native space. For an exemplary target ROI and time
course, see Figure 1.

Target regions were mostly constrained to the 40 most active
adjacent voxels; however, this approach failed for two scanning
sessions due to technical problems and resulted in a larger set of
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voxels (84 and 440) selected. Originally, it was planned to guide
voxel selection using a custom-made SMA-ROI. For a detailed
description about how the customized template was created,
please see Supplementary Material 1).

Prior Distribution
In the original analysis plan, Bayesian analyses were conducted
using a uniform prior distribution using custom-written
MATLAB (Mathworks Inc.) scripts. However, to enhance
reproducibility, it was decided to switch to the open source
software JASP (version 0.8.4.0; Team, 2017), where users can set
priors based on normal distributions. These were scaled based on
localizer PSC values as described in the preregistered methods.

Mental Imagery Questionnaire
Patients evaluated their motor imagery capacity through a
standardized motor imagery questionnaire, the Kinesthetic and
Visual Imagery Questionnaire (KVIQ). The KVIQ includes test
items for visual and kinesthetic motor imagery for the left and
right upper limb, respectively, which are rated on a scale from 1 to
5 (Malouin et al., 2007). The questionnaire was used to familiarize
patients with motor imagery, as well as to evaluate patient’s self-
ratings. For this study, only items 3–5 of the upper limb section
were assessed, which included motor imagery tasks concerning
the shoulder, elbow, and fingers. Scores for each body side and
modality were calculated, such that a maximum of 15 points
could be scored.

RESULTS

Recruitment
During the recruitment period (December 1st, 2016–February
28, 2018), 44 patients were screened for their eligibility
(Figure 2). In total, 37 patients (84%) had to be excluded
because they did not meet inclusion criteria. Leading reasons
were overall poor health conditions (13 patients, 30%), either
as a complication of the stroke or due to pre-existing
comorbidities, as well as cognitive impairment (12 patients,
27%). Another five patients (11%) declined to participate
for personal reasons. In total, seven patients (16%) provided
consent to be included in the study, of which five patients
completed the study (11%). One patient withdrew consent later
due to personal reasons, and one patient died before starting
the study.

Patient Demographics
The patients that completed the study mainly suffered
from right hemispheric MCA stroke, resulting in left-sided
hemiparesis (Table 1). Overall, patients were relatively young,
with a median age of 49 years (range, 38–68 years), broadly
gender balanced (three female and two male patients),
and mostly identified themselves as right-handed (N = 4;
one left-handed). Patients further mostly suffered from right-
hemisphericMCA stroke (four right hemispheric stroke, one left-
hemispheric stroke).

TABLE 1 | Patient demographics, stroke characteristics, motor impairment, and

average head motion (±SD) during real-time fMRI neurofeedback training.

Patient Lesion side Fugl meyer

(severity)

Median ± interquartile range/

Median percentage of

excluded scan volumes

P1 R 42/66

(moderate)

0.26 ± 0.13 mm/

14.5%

P2& R 13/66

(very severe)

1.19 ± 0.03 mm/

97.8%

P3 R 43/66

(moderate)

0.27 ± 0.08 mm/

6.7%

P4* R 66/66

(fully recovered)

0.32 ± 0.11 mm/

14.5%

P5* L 52/66

(mild)

0.17 ± 0.02/

1.1%

*Patients 4 and 5 were recruited during the extended period when initial inclusion criteria

were relaxed.
&Patient 2 was excluded from data analysis due to excessive head motion.

Preregistered Analyses
After fMRI data preprocessing and motion correction were
performed, data were excluded based on the head motion criteria
described above. Specifically, all data acquired from patient 2
(P2), as well as two runs from patient 1 (P1), were excluded
because of severe head motion. In total, ∼33% of all acquired
volumes contained head motion above the set threshold of
0.5mm. The exclusion of entire runs when more than 30% of
volumes passed this threshold resulted in discarding 15 of 50
(30%) acquired functional imaging runs. The groups’ median
localizer PSC value was 1.12. However, in three sessions, the
lower boundary value of 0.7 was used because the PSC estimation
procedure yielded a value that was too low.

To test H1A (net activation of the SMA), data were submitted
to a right-tailed one-sample Bayesian t test. The results showed
only anecdotal evidence for SMA activation during fMRI-NF
blocks compared to rest [N (0, 1.12), BF+0 = 2.316, median
posterior Cohen’s d = 0.794, 95% credibility interval (95%
CrI) (0.074, 1.819), Figure 3A], indicating that the alternative
hypothesis (H1A) was ∼2.3 times more likely than the null
hypothesis (H0A). The prior sensitivity analysis that was carried
out with JZS priors and a range of scaling factors were overall
comparable and suggested anecdotal evidence for SMA activation
(Figure 3B). This convergence between analyses suggested that
the results were relatively invariant to the prior distribution being
used (Rouder et al., 2016). Data were also tested with a right-
tailed one-sample frequentist t-test, which remained inconclusive
[t3 = 1.789, p = 0.086, mean difference to zero of 0.142, 95%
CrI (−0.045, ∞), Cohen’s d = 0.895, 95% CrI (−0.161, ∞)].
Given the small sample, assumptions of normality of the data
were tested. A Shapiro–Wilk test indicated that these were met
(W = 0.808, p= 0.118).

To test H1B (more SMA activation for high vs. low target
level condition), data were submitted to a right-tailed paired
Bayesian t-test. The results showed anecdotal evidence for the
absence of a level effect [N(0, 0.5), BF0+ = 1.829, median
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FIGURE 2 | CONSORT recruitment flow diagram.

posterior Cohen’s d = −0.198, 95% CrI (−0.009, −0.715),
Figure 4A], indicating that the null hypothesis (H0B) was
∼1.8 times more likely than the alternative hypothesis (H1B).
The prior sensitivity analysis suggested moderate evidence for
SMA activation for various scaling factors and the evidence
for the null increased monotonically with increasing prior
width (Figure 4B). A frequentist right-tailed t-test remained
inconclusive [t3 =−0.483, p= 0.669, mean difference=−0.014,
95% CI (–.083,∞), Cohen’s d =−0.242, 95% CI (−1.06,∞)].

Next, H1A and H1B were tested on subject level using
frequentist t tests. A test for non-normality indicated no
deviation for any patient with regards to their average PSC values

(Supplementary Tables 1, 2). To test for net SMA activation,
one-sided one-sample t-tests were conducted for patients
individually. Tests for P1 and P3 remained inconclusive, and for
P1, there was a trend opposite to the expected direction (SMA
deactivation). Tests for P4 and P5 reached significance when
uncorrected; however, when corrected for multiple testing using
Bonferroni, only the effect for P5 remained significant (Table 2).

Bayesian one-sample t-tests that were informed by patients’
individual activation during the motor imagery localizer
scan indicated moderate evidence for P4 and P5 (Table 3).
Noteworthy, these two patients also showed the least motor
impairment (Table 1).
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FIGURE 3 | (A) Prior and posterior distribution for Bayesian t test and associated Bayes factor and effect size estimates for H1A [net activation of the supplementary

motor area (SMA)]. (B) Corresponding prior sensitivity analysis for a set of default Cauchy prior scaling settings.

FIGURE 4 | (A) Prior and posterior distribution for Bayesian t test and associated Bayes factor and effect size estimates for H1B [more supplementary motor area

(SMA) activation for the high vs. low target level condition]. (B) Corresponding prior sensitivity analysis for a set of default Cauchy prior scaling settings.

Paired t-tests for high vs. low target level remained
inconclusive for P1, P3, and P4, with mean differences indicating
a trend opposite to the expected direction (i.e., PSClow >

PSChigh). Tests were only significant for P5 before, but not after
correction for multiple testing (Table 4).

Bayesian t-tests suggested anecdotal to moderate evidence for
an absence of a level effect for P1, P3, and P4, and moderate
evidence for the presence of a target level effect for P5 (Table 5).

Taken together, data suggested anecdotal or moderate
evidence for SMA activation (H1A) in two patients, respectively.
With regards to level effects, one patient showed moderate
evidence for an effect (H1B), whereas the remaining patients
showed anecdotal to moderate evidence for the absence

of an effect (H0B). PSC data and JASP analysis files are
available (https://osf.io/y69jc/).

Exploratory Analyses
The following analyses were not predeclared in the
preregistration protocol and served to explore hypotheses
that were declared post hoc.

Self-Regulation Over Time
Given the limited sample size, self-regulation data were
descriptively explored. PSC values were plotted for SMA
activation (H1A), and target level separation (H1B) were plotted
for individual subjects over time (i.e., training runs and sessions).
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TABLE 2 | Frequentist one sample t tests (H1A ) on subject level.

95% CI for location parameter 95% CI for effect size

t p Location parameter Lower Upper Effect size Lower Upper

P1 −0.42 0.653 −0.03 −0.191 ∞ −0.189 −0.921 ∞

P3 1.34 0.126 0.04 −0.024 ∞ 0.599 −0.241 ∞

P4 2.598 0.030 0.153 0.028 ∞ 1.162 0.130 ∞

P5 5.488 0.003* 0.401 −0.116 ∞ 2.454 0.827 ∞

*Significant at Bonferroni corrected alpha = 0.0125.

TABLE 3 | Bayesian one-sample t tests (H1A ) on subject level.

BF+0

P1 0.525

P3 1.759

P4 3.579

P5 6.906

TABLE 4 | Frequentist paired sample t tests (H1B) on subject level.

95% CI for Cohen’s d

t p Mean

difference

SE

difference

Cohen’s d Lower Upper

P1 −0.75 0.753 −0.047 0.062 −0.336 −1.076 ∞

P3 −0.92 0.794 −0.066 0.072 −0.409 −0.156 ∞

P4 −2.22 0.949 −0.060 0.029 −0.946 −1.809 ∞

P5 2.53 0.032 0.057 0.022 1.132 0.122 ∞

With regards to SMA activation (Figure 5), we report two
observations: first, data did mostly not indicate that the SMA
was more activated over training runs within training sessions,
except for session of P3 that showed a linear trend during session
1. Second, for two of three patients (P3 and P4) for which data
from multiple sessions were available, data indicated increased
activation between training sessions. With regards SMA target
level separation (Figure 6), neither a trend within nor between
training sessions was obvious for any of the patients.

Head Motion
Head motion-based data exclusion criteria indicated that about
one-third (33.02%) of the acquired volumes contained head
motion beyond the predefined thresholds. This data exclusion
compromises significantly the power of the current study, in
particular in combination with a second threshold that discards
entire runs if more than 30% of volumes are affected.

For comparison, we applied the same threshold (FD >

0.5mm) to existing head motion data acquired from a previous
experiment with a similar fMRI-NF paradigm that was conducted
in young healthy participants (Mehler et al., 2019b). We found
that only∼3.4% of volumes showed too large motion (compared
to 33% for patients in the present study) and that median

TABLE 5 | Bayesian paired samples t tests (H1B) on subject level.

BF0+

P1 2.201

P3 2.337

P4 3.009

P5 0.288

head motion ranged from 0.10 to 0.25mm between participants
with a group median of 0.15mm (compared to 0.17–1.19mm
between patients with a group median of 0.32mm for the present
study). Hence, head motion in our sample of stroke patients was
substantially larger.

Relation Between Brain Lesion Side and Motor

Imagery Ratings
To evaluate differences in self-rated motor imagery obtained
from the KIVQ (Malouin et al., 2007), scores obtained of the
affected side were subtracted from the scores of the non-affected
side. Positive scores thus reflect a higher rating for the non-
affected bodyside, an outcome that one may expect based on
reports of motor imagery in stroke patients (Malouin et al.,
2007; McInnes et al., 2016). Patients rated their motor imagery
ability as being relatively high (for both visual and kinesthetic
imagery), with no discernible difference between the affected
and unaffected sides (Table 6). Likewise, no clear relationship
with respect to patients’ handedness was evident (e.g., ratings for
right motor imagery were mostly not higher for patients who
self-identified as right dominant).

Difference scores are calculated with respect to the non-
affected side. Positive difference scores reflect larger ratings for
the non-affected side; negative difference scores reflect larger
ratings for the affected side.

DISCUSSION

Analyses from this preregistered PoC study found only anecdotal
evidence for the two main preregistered hypotheses, suggesting
that the present sample of MCA stroke patients struggled to
activate and self-regulate the SMA during kinesthetic motor
imagery-based graded neurofeedback training. Comparing
individual effect sizes and Bayes factors (Tables 2, 3) found
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FIGURE 5 | Individual PSC (1 BOLD) values of supplementary motor area (SMA) activation for training runs. Separate training sessions indicated by dotted

vertical lines.

FIGURE 6 | Individual percent signal change (PSC) (1 BOLD) values of supplementary motor area (SMA) target level separation for training runs. Separate training

sessions indicated by dotted vertical lines.

for SMA activation (H1A) with patients’ motor impairment
scores (Table 1), we found that patients who were the least
impaired (P4 and P5) showed the largest SMA activation.

Such potential relationship should be tested in future, larger
controlled studies. Moreover, descriptive/visual data exploration
of self-regulation values suggested that some patients (P3 and
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TABLE 6 | Patients’ side of dominance and stroke, self-rated motor imagery sum scores for visual imagery (VI), and kinesthetic imagery (KI) for the left and right upper

limb (out of 15 possible points, with higher values denoting higher imagery capacity).

Patient Dominant body side Affected body side VI left VI right VI Diff KI left KI right KI Diff

P1 L L 5 4 −1 7 7 0

P2 R L 10 9 −1 12 9 −3

P3 R L 12 8 −4 15 15 0

P4 R L 6 7 1 10 10 0

P5 R R 9 9 0 13 9 4

P4) may learn to increase SMA activation (H1A) over training
sessions (Figure 5). Based on our limited experience, however,
we note that, in particular, more severely impaired patients may
not tolerate longer or additional training sessions well. The
merely marginal evidence for SMA activation that we found
overall during motor imagery may be surprising in light of earlier
reports of SMA activation during motor imagery in chronic
stroke patients (Sharma et al., 2009a,b; Confalonieri et al., 2012;
Sharma and Baron, 2013). Besides larger sample sizes of earlier
reports, differences in patient selection procedures may explain
these discrepancies.

For instance, Sharma and colleagues used a rigorous screening
procedure to assess motor imagery abilities at baseline (Sharma
et al., 2009a,b). Thereby, these studies ascertained that included
patients were skilled in performing motor imagery but at the
cost of excluding 30–50% of patients (Simmons et al., 2008;
Sharma et al., 2009a,b). Intriguingly, screening for baselinemotor
imagery capacity may also explain why samples of previous
motor imagery studies featured mainly, or even exclusively,
left hemispheric stroke patients (Sharma et al., 2009a), who
tend to show less severe impairment in motor imagery tasks
(Malouin et al., 2012) compared to right hemispheric stroke
patients (Kemlin et al., 2016). In contrast, the present study
mostly included right hemispheric stroke patients. Damage to
the frontoparietal network has been hypothesized as a potential
pathophysiological mechanism underlying these imagery deficits
(Buch et al., 2012; Dettmers et al., 2015). For instance, the
network is involved in cognitive processes that involve spatial
attention and body–environment interactions (Ptak, 2012),
functions that are likely involved in different forms of motor
imagery. Although the present study used a motor imagery
questionnaire that has been validated in stroke patients to
assess self-rated motor imagery capacities (Malouin et al.,
2007), it was not used to select patients based on their
ratings. The main aim of this PoC study was to test the
technique within the constraints of an established healthcare
setting to provide a proxy measure of feasibility with an
ecologically meaningful sample. Moreover, given the limited
recruitment success, further restriction on patients would have
additionally decreased the statistical power and biased the sample
toward patients with above average motor imagery capacities.
Taken together, the presented imaging findings are limited
given the small sample size that has likely compromised the
statistical power and also the fact that motor imagery abilities

might have been impaired in patients due to mostly right-
hemispheric stroke.

Limitations
Patients were young with a median age of 49 years, a
sampling bias that may have resulted from only including
patients with sufficient cognitive capacities and general
health who were more likely to complete the intervention
(Sreedharan et al., 2019). Furthermore, as noted earlier, the
sample mainly consisted of patients suffering from right-
hemispheric stroke. Such bias may have resulted from excluding
aphasic patients (who usually suffer from left hemispheric
stroke). Hence, the generalizability of presented findings is
likely compromised.

It is possible that providing feedback based on the BOLD
signal may itself be a limitation. The BOLD contrast depends
on coupling relationships between the metabolic rate of oxygen
(CMRO2), cerebral blood flow (CBF), and volume (CBV).
Changes in any of these parameters (e.g., due to inflammation)
may attenuate BOLD responses. Indeed, reduced neurovascular
coupling (Schroeter et al., 2007; Lin et al., 2011) and deficits
in increasing local perfusion (Siegel et al., 2017) are well
documented for stroke patients. Such pathological changes
likely result in atypical BOLD dynamics in stroke patients
and thus render interpretation of the present findings, i.e.,
only marginal evidence found for SMA activation, difficult. We
therefore recommend that future fMRI-neurofeedback studies
should include neurovascular measurements such as breath-
hold functional scans that allow assessing vascular reactivity
in stroke patients (Murphy et al., 2011; Geranmayeh et al.,
2015), as well as CBF and CBV weighted data that can
help understanding null findings related to the BOLD signal
(Blicher et al., 2012).

Lastly, the present study only focused on testing whether
patients were able to activate the SMA and gain control over it,
rather than behavioral effects of the training. Hence, no control
group was included, also in order to increase the number of
patients that could be recruited to test for feasibility. Future
studies will benefit from including behavioral outcome measures
and pre–post assessments, possibly including a treatment as
usual group that is matched for motor impairment and age (see
for review, Sorger et al., 2019) or a an active control group
as previously employed in randomized clinical trials (RCTs) of
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fMRI-NF for other conditions (Subramanian et al., 2016; Mehler
et al., 2018) and fNIRS-NF training (Mihara et al., 2013).

Challenges and Potential Solutions
Three main challenges were encountered in the present study: (1)
recruiting a sufficient number of eligible patients, (2) substantial
head motion, and (3) additional efforts that resulted from
preregistering the protocol a priori.

(1) The present sample of five patients was recruited out
of 44 screened patients; the main reason to exclude patients
was impaired cognitive capacity and lack of general well-
being. As a consequence, the trial period was extended by 5
months and inclusion criteria relaxed to reach the minimum
target of five patients, which is comparable to sample sizes of
previous PoC fMRI-NF studies in neurological populations
(Subramanian et al., 2011; Sitaram et al., 2012; Liew et al.,
2015; Sreedharan et al., 2019). Multicenter studies with
standardized protocols and less rigorous inclusion/exclusion
criteria will likely accelerate recruitment. Alternatively,
technologies that are more portable and comfortable such
as functional near-infrared spectroscopy (fNIRS) (Kohl
et al., 2019) and electroencephalography, which have been
successfully tested in stroke (Mihara et al., 2013; Lioi et al.,
2020), may yield higher recruitment rates and attainment
compared to fMRI. Furthermore, researchers may benefit
from preregistering (Bayesian) sequential sampling plans, such
as introduced here. These allow flexible stopping rules that
are informed by prior knowledge and calibrating statistical
tests based on patient characteristics, thereby increasing
design efficiency.

(2) Another factor that compromised the data was head
motion. Although head motion poses a major challenge for
fMRI research with stroke patients (Siegel et al., 2017) and
fMRI-neurofeedback more generally (Heunis et al., 2020), several
previous fMRI studies that investigated motor imagery stroke
patients have not reported criteria to control for it (Sharma
et al., 2009b; Sharma and Baron, 2013; Liew et al., 2015). The
present study employed rigorous criteria informed by previous
recommendations (Power et al., 2012, 2014; Siegel et al., 2017)
leading to a substantial discarding of data (an increase by the
factor of nearly 10 compared to a similar study conducted
in healthy participants) and one patient from the analysis.
Noteworthy, head motion in stroke may relate to impairment
severity, for instance due to general discomfort as reported by P2
(who showed consistently large head motion and was excluded
from the analysis), and thus, data censoring may increase the
risk of sampling bias (Wylie et al., 2014). Preferably, future work
should make use of more recently developed real-time correction
procedures and quality control tools to reduce head motion
(Maclaren et al., 2013; Dosenbach et al., 2017; Heunis et al., 2019;
Krause et al., 2019). Lastly, neurofeedback technologies such as
fNIRS, where the signal acquisition is more resilient toward head
motion, may provide a useful alternative (Kohl et al., 2019).

(3) To address concerns around replicability in neuroimaging
(Poldrack et al., 2017; Mehler, 2019) and follow best practice
recommendations (Ros et al., 2020), the present study
was preregistered. This approach not only protects against

publication and researcher biases (Algermissen and Mehler,
2018) but also comes with additional challenges (Allen and
Mehler, 2019). For instance, in order to formulate an analysis
plan, a priori knowledge about plausible effects and various
contingencies is needed. Noteworthy, this approach still
allows exploring data to generate hypotheses about underlying
mechanisms; however, data exploration was very limited in
the present study due to the small sample size and data quality
issues. To document the design and reporting quality, we have
completed the “Consensus on the reporting and experimental
design of clinical and cognitive-behavioral neurofeedback
studies (CRED-nf checklist)” (Ros et al., 2020) and made
results available (https://osf.io/p46xb/). The present work
was based on a previous study (Mehler et al., 2019b), which
allowed us to adapt an existing paradigm to stroke patients
more easily (for instance, a motor execution localizer was
replaced by a motor imagery localizer). However, we note
that researchers may not always have the opportunity to
test a paradigm in a healthy population first. Moreover, we
underestimated recruitment difficulties and data quality issues
due to distortions and head motion, which required slight
deviations from the original protocol. For instance, MRI
coregistration failed at setup, mainly because anatomical image
quality was insufficient. The preregistration of his PoC study
allowed us to document transparently where we had to deviate
from our originally intended design, providing a more realistic
picture of the challenges that come with this type of research.
We thus encourage researchers to preregister their studies
and consider predeclaring analysis plans that are contingent
on achieved sample sizes for populations that are difficult
to recruit and where statistical power requirements may not
be met. For instance, such preregistration could include a
minimum sample size that is required to employ inferential
statistics and otherwise mainly draw conclusions based on
data description.

Lastly, we note that the SMA remains an attractive target
region not for motor imagery-based interventions not only in
stroke but also other motor conditions (Hampson et al., 2011;
Sukhodolsky et al., 2019). As an alternative to providing feedback
based on an average signal from an entire ROI, future fMRI-NF
studies may benefit from exploring connectome-based (Ramot
et al., 2017; Noble et al., 2020) and multivariate, i.e., decoded,
neurofeedback (Shibata et al., 2019). Connectome-based
neurofeedback allows targeting entire networks of correlated
activity between nodes of motor networks and support their
reorganization (Desowska and Turner, 2019), allowing to probe
causally functional network models of impairment/recovery
(Mehler and Kording, 2018). Of particular interest for future
work may be targeting dynamic connectivity states that vary
with motor impairment (Bonkhoff et al., 2020). Multivariate
approach yield higher sensitivity compared to mass univariate
models. These allow detecting neural correlates of imagined
(Zabicki et al., 2016) and executed movements (Ejaz et al., 2015;
Kolasinski et al., 2020) down to the level of individual fingers
(Oblak et al., 2020). Albeit promising, both approaches are highly
susceptible to spurious correlations resulting from excessive
head motion. Successful implementation in neurological
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populations will thus afford using reliable real-time head
motion and artifact correction methods (Heunis et al., 2019,
2020).

CONCLUSION

The present PoC study tested for the feasibility of motor
imagery-based graded fMRI-NF neurofeedback training in
a small sample of MCA stroke patients. Results suggested
only anecdotal evidence for preregistered hypotheses, and
replication in larger samples is required. To our knowledge,
this is the first fully preregistered report of a neurofeedback
study and the first neurofeedback study that employed a
Bayesian sampling plan. Difficulties in recruiting eligible patients,
adequate control for patient’s head motion, a compromised
BOLD signal, and the trade-off between applying adequate
inclusion/exclusion criteria vs. inducing sampling biases should
be considered in future fMRI-NF studies conducted with
stroke patients.
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