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Abstract 

The theoretical part of this research work summarised all the known potential lubricant 

degradation effects during engine operation and in particular with regard to the use of 

the current generation of biofuels. A qualitative risk assessment was conducted which 

outlined biodiesel as potentially the most critical fuel. A ‘black box’ model was used to 

outline the challenge of oil condition monitoring based on summative sensor 

measurement methods. The theoretical considerations were supported by a statistical 

analysis which investigated how the presence of multiple contaminants in the oil affects 

the most common sensor data of permittivity, conductivity and viscosity. ‘Design of 

Experiments’ (DoE) models were developed for the permittivity, conductivity and 

viscosity data and expressing mathematically the relationship between the contaminants 

having a significant influence on each of the sensor data. The findings of the 

multivariate analysis identified that the effects on permittivity and viscosity provided 

reliable information about oil condition changes. The concept of an oil condition 

algorithm in this research was aimed at addressing accuracy and efficiency in predicting 

the outcome. The core aspect of the algorithm was the use of characteristic maps based 

on bi-linear regression to predict the fuel, soot and oxidation levels in the oil using 

permittivity and viscosity as the input data. Based on the predictions using three 

contaminant components a method to assess the overall condition status is derived. The 

derived condition status provided the input for an oil drain forecast method which 

monitors the status within the predefined maximum mileage. Another achievement from 

this research was the vehicle simulation for different driving profiles and the 

corresponding simulation of oil degradations. The selected profiles were for a ‘Taxi’, 

‘Normal’ driving and ‘Long Distance’ driving. The resulting simulation of fuel, soot 

and oxidation levels in the oil showed a high correlation compared with the use of real 

oil analysis based on engineering judgement. The quantitative assessment of the 

simulated contaminant levels compared with the predicted levels obtained from each 

characteristic map showed excellent prediction performance. The derived overall 

condition rating and mileage forecast prediction also showed very good results. The 

results from this research have shown that this new oil condition algorithm concept 

using bi-linear characteristic maps has enabled the compromise between predictive 

accuracy and an efficient and transparent algorithm structure. Validation of the results 

confirms that the algorithm has the potential to minimise and prevent oil condition 

related engine failures regardless of the actual fuel used.  
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Chapter 1 

1 Introduction 

1.1 Motivation - Influence of Climate Protection 

Ambitions on the Engine Oil 

The dramatic and rapid changes of global climate conditions within the last decades 

have motivated governments and legislation to compile and pass climate change 

commitments to protect and improve climate conditions. The eco-political declarations 

of intent have resulted in regional and national laws and regulations to implement the 

energy source improvements to achieve these goals. One of the most important global 

declarations of intent to adopt environmental protection into legislation was the Kyoto 

protocol. The purpose of the Kyoto climate change conference was to establish a legally 

binding international agreement, whereby all the participating nations commit 

themselves to tackling the issue of global warming and greenhouse gas emissions (UN, 

1998). The resulting policy of the European Union to comply with the demands of the 

Kyoto protocol addressed, in particular, the new requirements for the transport section 

and outlined two key motivations (EU, 2003). First aspect was to reduce the dependence 

on fossil fuels and therefore the second aspect was the reduction of the CO

2

 emissions. 

The EU directive 2003/30/EC therefore set indicative biofuel shares for the 25 EU 

member states with a gradually increasing rate up to 20 % in volume of fossil fuel 

replacement by 2020. Some of the EU member states in addition, defined national 

directives and laws to prescribe mandatory annual biofuel replacement rates to realise 

the achieved indicative biofuel targets of the EU. The UK Government introduced in 

April 2008 a ‘Renewable Transport Fuel Obligation’ (RTFO) requiring transport fuel 

suppliers to ensure that 2.5 % in 2008 rising to 5 % in 2010 of their total fuel supplies 

comes from renewable sources (http://www.dft.gov.uk).  

http://www.dft.gov.uk).  
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The German ‘Biokraftstoffquotengesetz’ defines a mandatory annually increasing 

biofuel replacement rate even exceeding the EU goals (BioKraftQuG, 2006). The 

content of bioethanol in petrol fuels is currently 5 % in volume, also referred to as E5. 

The prescribed amount of biodiesel in diesel fuels was increased in 2009 to 7 % in 

volume, also referred to as B7. Other countries have identified even higher biofuel 

blend requirements. France has biodiesel blends up to B30 and ethanol blends up to E10 

(ADM, 2007). Brazil and the USA are currently the dominant bioethanol markets for 

ethanol blends up to E25 (Giroldo et al., 2005). Flex-fuel applications with E85 are 

currently quite rare from a global prospective. ASTM International introduced a B20 

biodiesel standard into effect at the end of 2008 which will result in an increasing share 

of B20 biodiesel blends in the US market (ASTM, 2008). The ‘green technology’ 

regardless if it is a new type of fuel or new engine concept is accompanied by 

significant challenges for the condition of engine oil. When biodiesel comes into contact 

with the oil it causes fuel accumulation and accelerated oil oxidation. The oxidation 

byproducts in the oil are the formation of acid and oil insoluble products which increase 

the viscosity significantly. Ethanol applications, especially E85, can cause problems at 

low engine temperature operation when the ethanol evaporates slowly from the oil. 

Acids from the ethanol and the formation of stable emulsion can occur due to the 

hygroscopic character of ethanol. If ethanol blends consist of a poor base fuel, the 

susceptibility for an accelerated oxidation process in the oil is similar to the unsaturated 

fatty acids of the biodiesel components. The presence of any of the current generation of 

biofuels in the sump bears a highly increased reliability risk for the engine. Recent 

measurements to achieve economical improvements have not only changed the fuel 

situation significantly but also the hardware design of modern engines to comply with 

the emission regulations to achieve the required CO

2

 limits.  

To achieve the rigorous emission regulations (e.g. EURO 6 from 2014 onwards) 

modern engines need to be equipped with complex exhaust after-treatment systems 

including ‘Diesel Particulates Filter’ (DPF). The current after-treatment systems 

contribute significantly to higher level of unburnt fuel reaching into the oil (Klemens, 

2008). The implementation of CO

2

 based tax regulations to replace former tax 

regulations based on engine size and emissions has forced the automotive industry to 

develop and improve new engine technologies to meet the CO

2

 targets. The latest 

generation of petrol engines use direct fuel injection systems to increase the efficiency 

and reduce fuel consumption. 
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Direct injection can lead to increased fuel dilution especially due to wall spraying of 

unburnt fuel drops for low temperature driving cycles (Binder, 2007). Engines currently 

being developed are driven by the need for greater fuel economy; downsized (small 

turbo charged) engines, mostly 4 and 6 cylinder with significantly reduced engine 

displacement, are being developed to operate at performance levels of the 6 and 8 

cylinder engines. These small and powerful engines thus operate in heavy cars up to the 

luxury range, and leads to significant fuel economy but the oil stress is a major concern 

especially due to the thermal stress and the small volume of oil in the sump. The 

reaction rate of chemical degradation in the oil, particularly in the presence of biofuels 

is much faster. Additionally there are many applications for the so called low ash engine 

oils which are required to prevent ash loading of the diesel particulate filters and the 

catalytic elements which are very cost sensitive due to the materials used. The ash 

forming substances in engine oil are from the additive components of the oil 

formulation. Metal additive components are essential for the oil to fulfil the wide range 

of duties besides the commonly known aspect of lubricating. One major task is to 

prevent and avoid the oxidation reaction chain initiated by combustion products and 

unburnt fuel, and to neutralise acids in the oil (McTavish and Ney, 2009). A small 

amount of oil gets burnt during normal engine operation. Ashes from the metal additive 

components unfortunately load and destroy the catalyst and prevent an effective exhaust 

after-treatment (Sappok and Wong, 2010). All modern diesel engines fulfilling the 

current and future European emission standards are equipped with DPF which requires 

the application of low ash engine oils. The reduced additive treatment makes these oils 

less robust against chemical degradation processes due to the reduced additive 

treatment.  

The current situation outlines the ambition to contribute to the CO

2

 reduction in the 

transport sector and results in a variety of technical innovations that pose a challenge for 

the reliability of engine oil. The engine oil condition can be regarded as the vital 

function of the engine operation and severe degradation results inevitably in a reliability 

risk. Reliability plays a dominant role in customer satisfaction which is annually ranked 

by independent organisations and plays an important role in the customer recognition of 

the automobile manufacturer. The subject of engine oil condition monitoring in this 

research work will become a more important topic to ensure a reliable automobile drive 

operation. The aim is therefore to prevent the loss of mobility due to degraded oil 

regardless of which fuels are used today or in the future. 
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1.2 Literature Review 

1.2.1 Structure and Key Sources 

An initial literature review in the thematic field of engine oil condition monitoring or oil 

quality monitoring was performed. The structure of the literature research to explore the 

related key subjects is illustrated in the concept map below, see Figure 1.1 (Novak and 

Musonda, 1991).  

   

 

 

 

   

 

Figure 1.1: Concept map and thematic structure of the literature review 

 

 

Each box represents the investigated key subject. The arrows with the explanations link 

the topics together to provide the thematic structure of the literature research.  

 

   

The following major sources were identified as they provide key literature and the most 

recognised articles in this field of study: 

 Automotive World - Synesis Media Ltd., UK. 

 ATZ Online - Vieweg Verlag/GWV Fachverlage Ltd., GER 

 Daimler ‘Corporate Information & Research Management’ 

 DieselNet - Ecopoint Inc., CDN 
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 IEEE Xplore Digital Library – provided by Institute of Electrical and Electronics 

Engineers, USA 

 Römpp Online – Thieme Chemistry, GER 

 SAE Technical Papers - Society of Automotive Engineers Inc., USA 

 Scopus – Database provided by Elsevier B. V., NL 

 SpringerLink – Database provided by Springer Science+Business Media Ltd., 

GER 

 SpringerMaterials – The Landolt-Börnstein Database, GER 

 Studies and research work conducted by oil and additive companies provided to 

Daimler AG 

It was noticeable that the overall number of researchers in this field is very limited. The 

main reason might be due to the fact that engine oil condition monitoring using a sensor 

is only rarely used in serial applications in the automotive but also in other industries. 

The following critique of key research articles will present the actual status of 

knowledge in this area.  
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1.2.2 Critique of Key Research Articles 

 

Development and Testing of an Innovative Oil Condition Sensor (Basu et al., 2009) 

The Ford Motor Company together with Hella GmbH conducted a study to evaluate the 

performance of the Hella PULS+C oil condition sensor. A short research plan was 

presented that consisted of empirical analyses using bench and vehicle tests. The aim of 

the bench tests was to determine the sensor performance, in particular the repeatability 

and hysteresis effects. The aim of the vehicle tests was to sense the oil data directly in 

the oil sump and to detect contaminants using the internal ‘Oil Condition Algorithm’ 

(OCA). The bench testing used fresh as well as degraded oil which was not further 

specified. The sensor with the oil samples was mounted in a test fixture and heated up in 

an oven from 30 – 100 [°C]. The viscosity over temperature results of the heat up and 

the cool down process were investigated. The analysis used scatterplot diagrams 

together with regression analysis results including the obtained R² value of the test. The 

results for all of the different viscosity plots were comparable. All curves were very 

close together and showed high R² results. Cool down curves were not plotted in the 

bench analysis results which makes it difficult to assess hysteresis effects. From the 

bench test it was concluded that the viscosity measurement with this sensor type 

provides reliable results for fresh and used oil. Vehicle tests were conducted for city and 

highway driving. The Hella PULS+C sensor was installed in a separate oil reservoir and 

the data were uploaded via telematics to a server for analysis. Oil samples were 

periodically collected and analysed to provide reference values. The results were 

presented and assessed using data plots. The data plot showed viscosity values of the 

sensor at 70 [°C] over a driving distance of 10,000 [mi]. The values were compared 

with calculated viscosity values which were not further specified. Statistical analysis 

was not presented. From a qualitative assessment it can be observed that the sensor 

viscosity values showed good correlation with the laboratory results. Sensor viscosity 

decreased with increasing temperature for the two vehicles. The analysis in the research 

report was primarily focussed to viscosity measurements over temperature with 

unknown oils for the bench test and viscosity over mileage plots for the vehicle tests. 

The oil condition algorithm was not presented.  
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Providing Embedded, In-situ Oil Quality Monitoring for Improved Maintenance 

and On-Board Diagnostics in Trucking and Automotive Applications  

(Mackos et al., 2008) 

This research publication presented the development of an ‘Electrochemical Impedance 

Spectroscopy’ (EIS) to provide real-time on-board oil quality assessment. The report 

provided a detailed overview on the theoretical aspects of the EIS sensor development. 

The sensing architecture including underlying theoretical aspects, equivalent circuit and 

equations were discussed. Data fusion and classification approaches of the sensor 

device were presented in the paper. An exploratory research design approach was 

selected for experimental sensor evaluation. The research plan was briefly described 

and consisted of empirical analysis using a scaled lubrication test stand to replicate 

operation conditions of Navy diesel engines. The presented test plan of the study called 

for identifying and quantifying soot, fuel and water contamination in a lubricant based 

on military specifications. The study includes a brief summary of a test plan based on 

‘Design of Experiments’ (DoE) methods providing a well structured test approach. The 

reference values were evaluated at different oil laboratories. The data were assessed 

using data plots and statistical analysis for the sensor and reference values for each type 

of contaminant. The report addressed primarily off highway or navy needs where the 

contaminants are basically water, soot and fuel. Other lubricant degradation effects such 

as oxidation or nitration which are important for automotive applications were not 

considered. From the report it can be concluded that water, soot and fuel can be 

sufficiently measured using EIS. The conclusion focused solely on the bivariate 

correlation between single contaminants and the resulting impedance values. The 

presence of multiple contaminants and the resulting influence on the data was not 

considered. A further consideration arose from the report which was to incorporate the 

viscosity value with the electrochemical measurement. The single impedance 

measurement seemed not to be able to reliably detect fuel and oxidation or nitration 

byproducts in the oil. 
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Lube Oil Condition Monitoring System - An Alternative Methodology  

(Murukesan 2008) 

This research paper presented an oil condition monitoring system consisting of 

dielectric sensor, controller and display. The theoretical part of the article discussed 

some oil degradation mechanisms. An exploratory research design approach was 

selected for experimental system evaluation. The experimental part consists of empirical 

analysis using two different types of oils fresh and used after 5,000 [km] / 3,108 [mi] 

with one petrol engine vehicle and one diesel engine vehicle in city traffic. The sensor 

output voltage over temperature of fresh and used oil was measured in the range from 

25 – 75 [°C]. The evaluation of the results was conducted using data plots where the 

sensor output voltage was plotted over temperature. A discussion about the cause of the 

output voltage changes in the experimental part would have been beneficial. Modern oil 

formulations are able to endure oil drain intervals of up to 30,000 [km] / 18,645 [mi] 

depending on the operation conditions. It should be considered if only slightly 

contaminated oil which was only used for 5,000 [km] / 3,108 [mi] will show sufficient 

sensor response to derive reliable findings. The findings presented with the data plots 

were not statistically supported to justify the results. The research outlined again the 

need to include related theoretical aspects of oil condition monitoring to understand the 

results. The proposed oil condition monitoring approach based on comparison of sensor 

data with predefined thresholds is similar to the research report by Irion et al. (1997). 

The presented paper identified the need for further research to better understand the 

primary drivers of dielectric oil sensors. It further outlined the lack of considering 

efficient and reliable oil condition rating techniques suitable for ECU applications to 

obtain a condition statement from the sensor data.  
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Combi-sensor for Oil Level and Oil Quality Management (Dobrinski et al., 2008)  

The focus of the detailed research work published by Hella GmbH was to provide 

substantial background information on the Hella PULS+C sensor development. A 

similar article was already presented earlier with slightly different aspects and less 

details by Buhrdorf et al., (2005). The work presented the three main elements of the 

combined sensor namely ultra-sonic level detection, tuning fork mechanical resonator 

and the oil condition algorithm developed by Hella. The first section covered the theory 

of oil level detection using ultrasonic based device. All relevant basic equations and 

fundamentals were described together with schematic illustrations of the measuring 

principle. The experimental part consisted of empirical analysis of the ultra-sonic level 

detection and temperature measurement. The next section in the article covered the 

theory of the tuning fork mechanical resonator to measure viscosity, density and 

permittivity. The theory included all relevant explanations and mathematical equations 

supported by an equivalent electrical circuit. The empirical analysis of the tuning fork 

sensor measured viscosity, density, permittivity and impedance. Fresh oil was diluted 

stepwise with diesel, soot loaded oil and water. Viscosity decreased with increasing fuel 

dilution and density slightly increased with fuel dilution. The next measurement showed 

the response of permittivity over fuel dilution. The data points were not influenced by 

the stepwise increasing fuel dilution. The next experiment evaluated the influence of 

water on viscosity and density at constant temperature. Viscosity values showed a slight 

decrease with increasing amounts of water. The density value slightly increased. The 

next test covered the influence of water on the permittivity. The permittivity showed a 

noticeable increase with increasing water in the oil. The next test in the series assessed 

the change of viscosity and permittivity at constant temperature in the presence of soot 

in the oil which showed a noticeable increase of both values with increasing soot 

loading. All results were qualitative and did not include statistics. The final part of the 

research report presented briefly the integrated oil condition algorithm. The algorithm 

was based on a decision tree using predefined thresholds of the sensor parameters 

permittivity, viscosity, density and conductance. The value from this research 

publication was the insight into the tuning fork theory and the oil condition algorithm 

approach. Multiple contamination influences on the sensor parameter were not 

considered. The link between the defined static algorithm thresholds for the sensor 

values and the actual contaminant situation in the oil could be further investigated. 
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In-Situ Monitoring of Engine Oils through Electrical AC Impedance 

Measurements (Halalay and Schneider, 2007) 

The research was conducted at the General Motors Research & Development Centre 

and studied the variation of electrical resistivity and permittivity under well controlled 

degradation conditions during engine dynamometer tests. Speed and load conditions 

were selected to approximate conditions of highway driving while pulling a trailer to 

accelerate oil degradation. An electrochemical impedance spectroscopy probe based on 

common laboratory standard was used to track changes in the electrical oil properties 

every 30 minutes providing a large number of data points. The test results were 

presented using data plots of permittivity and resistivity over engine runtime without 

incorporating any statistical methods. Visual evaluation of the plots highlighted 

comparable results for all tested oils. The electrical resistivity increased during the first 

test hours, dropped significantly in the middle of the test and finally increased steadily 

until end of test. The permittivity values increased continuously from the beginning of 

the test in a clear straight gradient. The gradient differed slightly between the used oil 

formulations. Unsurprisingly, the lowest gradient was measured with the synthetic oil, 

as synthetic oils are more robust against oxidation effects (Möller and Nasser, 2002: 

74). The test results indicated high repeatability of the measurement results. Limiting 

factor in this study was the fairly brief discussion of measurement results without 

inclusion of relevant theoretical aspects to underpin the data. Justification for the initial 

decrease of resistivity value was not clearly provided or discussed. Reference oil 

analysis would have been advantageous to understand which effect had primarily driven 

the permittivity change over the test length. From the study it can be suggested that 

conductivity is a very questionable oil condition parameter and provides no additional 

benefit to permittivity. This conclusion is also supported by research work from Delphi 

(Basu et al., 2000) who investigated conductivity and permittivity sensor results. Both 

papers confirm in general better correlation results of key contaminants with 

permittivity than with conductivity.  
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Verfahren zur Bestimmung des Motorölzustands und Prognostizierung der 

Ölwechsel in Nutzfahrzeugen (Method to Determine the Engine Oil Condition and 

Prediction of the Oil Drain Interval for Truck Application) (Lorenz, 2007) 

The research was conducted at the DaimlerChrysler Research & Development Centre 

and studied the oil condition assessment based on permittivity and indirect viscosity 

measurement. The work focused on the application of the ContiTemic QLT sensor. This 

sensor measures permittivity, level and temperature. The application was modified in 

this work to obtain a viscosity statement from this sensor by measuring the speed of oil 

level changing in dedicated driving situations where the oil movement is in the 

longitudinal direction. The oil condition model used viscosity, permittivity and the 

predicted soot and fuel content which were obtained from a linear regression model as 

input variables. The condition assessment was based on a comparison of each of the 

four input variables with three predefined classification thresholds ‘good’, ‘medium’ 

and ‘high’. The oil drain forecast used a 2

nd

 order polynomial as a function of 

permittivity and viscosity. The aim was to calculate the trend of the two parameters in 

order to predict when they reach the predefined ‘high’ level for permittivity or viscosity. 

The polynomial coefficients were calculated using the last five measurements. Based on 

the intersection with the defined maximum level for permittivity and viscosity was the 

corresponding remaining mileage or hours of operation calculated. The model 

validation proved to provide sufficient condition and forecasting results.  
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New Solid State Oil Condition Sensor for Real Time Engine Oil Condition 

Monitoring (Bennett et al., 2006) 

The research work was conducted by Symyx Technologies Inc. together with Thermo-

King Corporation and targeted to increase oil drain intervals using oil condition sensor 

information. The empirical study included theoretical discussion of two different 

viscosity sensing principles based on crystalline quartz resonators. One was the tuning 

fork flexural resonator developed by Symyx and the other was a ‘Thickness Shear 

Mode’ (TSM) resonator also used in bioanalysis (Kaspar et al., 2000). The brief 

theoretical comparison suggested superior performance of tuning fork technology due to 

its ability to measure viscosity, density, permittivity and conductance with a single 

device (Dobrinski et al., 2008), (Buhrdorf et al., 2005). The research strategy of the 

quantitative experiments was based on engine test runs equipped with a tuning fork 

sensor and laboratory tests with the same sensor assembly to test artificially 

contaminated oil samples. Laboratory testing was based on a test series of oil samples 

with different soot and diesel concentrations. The presentation of lab results was based 

on scatterplots where viscosity and density values were plotted over soot and fuel 

content. Each plot includes the appropriate laboratory reference measurement. All of the 

results show good correlation of the tuning fork sensor data compared with the 

laboratory reference value. The study shows that viscosity and density measured by the 

sensor increased with increasing amount of soot in the oil. Viscosity and density 

dropped with increasing amount of diesel in the oil. Limiting aspect of the study was the 

poor oil analysis information of the engine test results to fully justify the sensor data. 

The low number of data points over test duration indicated a trend but they provided 

only limited reliability of the findings. Lubrizol conducted a similar study focusing only 

on the effect of soot on the permittivity and viscosity measurement using thickness 

shear mode resonator (Zhang et al., 2004). Soot loaded oil from real engine tests was 

used and indicated clear correlation between soot loading and increasing in viscosity 

and permittivity value. From the research work it could be concluded that additional 

density value to viscosity does not provide additional oil condition information. 

Reliable oil condition information about physical flow properties of oil are thus fully 

provided by a reliable viscosity value. 
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Einsatz eines Multisenors für ein Condition Monitoring von mobilen 

Arbeitsmaschinen (Application of a Multisensor for Condition Monitoring of 

Mobile Agricultural Machines) (Krallmann, 2005) 

The research focus of the dissertation was the development and evaluation of a multi-

sensor for condition monitoring of hydraulic liquids to be used in mobile agricultural 

machines. The work started with a detailed theoretical section where all relevant 

elements of the novel sensor were qualitatively investigated and discussed. Main 

elements of the novel sensor system were permittivity measurement electrodes, 

viscosity measurement using a thickness shear mode resonator, humidity measurement 

using permittivity measurement with polymer insulator and temperature measurement 

using a thermistor. Data classification methods were discussed and qualitatively 

evaluated to select the most suitable methods. The quantitative part of the research was 

based on an exploratory research starting with experimental pre-measurements of the 

developed sensor elements. The sensor was implemented into an assembled test stand 

with continuous flow of hydraulic liquid which was thermo-oxidised to simulate ageing 

effects of the medium. The test configuration was chosen to simulate real operating 

conditions of hydraulic oil in agricultural machines. Results were provided using data 

plot diagrams including statistical methods. The pre-measurement results showed good 

correlation of sensor parameter and ageing effects of hydraulic oil. The main testing in 

the quantitative research part was conducted in field trials where the sensor was used in 

a tractor. The review of raw data showed clearly the effects of oil loss, oil top-ups and 

the influence of ageing effects. The work identified permittivity and viscosity as reliable 

fluid condition data. The important research aspect was the quantitative assessment of 

data classification methods of the sensor data. Krallmann investigated neural networks, 

Dempster-Shafer method and Bayes theorem to assess the classification performance 

with the sensor data from the field trial. The outcome clearly identified that neural 

networks show superior classification performance for condition monitoring tasks 

compared to the other methods tested.  
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Viscosity Sensors for Engine Oil Condition Monitoring – Application and 

Interpretation of Results (Agoston et al., 2005) 

The aim of the quantitative research was to investigate viscosity measurement 

performance of ‘Thickness Shear Mode’ (TSM) resonator compared to conventional 

laboratory viscosimeter. In the experiment were different mixtures of oil samples with 

pure base oil, oil with low additive content and full formulated heavy-duty oils used. 

The test matrix included beside artificially contaminated oil samples also a series of 

used low-ash oils. A Bosch TSM resonator was used for all tests, the reference 

measurements were obtained from an Ubbelohde viscosimeter. All viscosity values 

were measured at 40 [°C]. The quantitative results were assessed using data plots 

including regression analysis and regression coefficient calculation. Agoston et al. 

(2005) concluded from the results in general a good correlation of the viscosity values 

measured by the Bosch sensor in comparison with the Ubbelohde results. Differences 

occurred with the different types of base oils. Mineral base oils could be very reliable 

measured by the sensor. Synthetic base oils showed deviation from the reference results 

as the influence of the ‘Viscosity Improver’ (VI) is not detected by the sensor. The 

measured values were in this case over the entire temperature range slightly too low. 

However, the relative viscosity increase due to oxidation effects could be well 

measured. The research outlined the ability of a TSM resonator to monitor oil 

deterioration as the viscosity change correlated well with the laboratory results of the 

used oil samples.  

 

Evaluation of Sensors for On-Board Diesel Oil Condition Monitoring of U.S. Army 

Ground Equipment (Schmittigal and Moyer, 2005) 

The U.S. Army ‘Tank-Automotive Research Development and Engineering Center’ 

completed an experimental study to demonstrate the abilities of an on-board sensor 

system for monitoring the oil condition. Motivation of the quantitative research was to 

investigate the capability of commercially available sensors to reduce the Army’s 

dependence on traditional analysis methods. The research design is based on empiric 

analysis using bench tests. Focus of the investigation was soot, oxidation, fuel and water 

in the oil. The test hardware consists of a 6.5L V8 diesel engine, dielectric sensors, 

conductivity sensor and an electromechanical viscosity sensor. 
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The test matrix consisted of tests where for each test run one of the interested 

contaminants is dominant in the oil. For soot detection the engine setup was changed to 

produce more soot and minimise other chemical lubricant changes. Detection of 

chemical compositional changes due to oxidation was tested by heating the oil up to 150 

[°C] during operation. Fuel dilution situation was simulated by injecting fuel at constant 

rate into the test engine while running. Water detection test simulated a coolant leak 

where a mix of water and antifreeze was slowly added. Data results and discussion were 

based on quantitative exploration of measurement results using data plot diagrams. Data 

evaluation did not incorporate statistics such as correlation or regression analysis. 

Conclusions were drawn from visual comparison of each sensor value and the 

corresponding reference result. Schmitigal and Moyer concluded from the investigation 

of soot detection good correlation of soot increase with increasing output values for all 

three sensor systems. Investigation of oxidative byproducts detection with the dielectric 

and the viscosity sensor showed a continuously increasing positive correlation for the 

permittivity value with increasing oxidation. The viscosity value started to increase at a 

later stage of the test. The investigation of fuel dilution detection affected only the 

viscosity sensor value, which indicated a negative correlation with increasing amounts 

of fuel. Water dilution showed a positive correlation with permittivity and viscosity. 

The permittivity increase is reasonable due to high polarity of water. The viscosity 

increase with increasing amount of water is reasonable as the added antifreeze caused 

gelling of the oil. Based on the identified single sensor correlations Schmitigal and 

Moyer suggested that it is possible to monitor the soot content and oxidation, as well as 

fuel dilution and water contamination. This outcome is also supported by the study of 

Lubrizol testing these effects using acoustic wave and multi-frequency impedance 

measurement with different oil qualities (Goodlive et al., 2004). It should be considered 

that with a real engine operation all contaminants are simultaneous in different 

concentration in the sump. A research of the strength and significance of the multiple 

contaminants on dielectric or viscosity data would be beneficial to provide clarification 

of which contaminant effect influences the sensor data most. 
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Synthesis of the literature research and critique of key research articles 

Table 1.1 provides a summary of the key findings from the conducted literature research 

based on qualitative assessment criteria. 

   

 
Table 1.1: Synthesis of the literature research 

 

   

 

Criteria Findings 

1. Consideration of oil 

degradation theories and 

effects (in particular with the 

use of biofuels) 

 In general no theoretical facts about lubricant 

degradation mechanisms presented to justify findings. 

 No contrast drawn between the different characteristic 

of fossil fuels and biofuels to explain sensor effects. 

 Influence of biofuel blend rates and feedstock not 

presented to discuss the severity of contamination and 

resulting measurement impact.    

2. Consideration of multiple oil 

degradation effects on sensor 

data 

 Quantitative studies and experiments of degradation 

effects on sensor data only with single contaminants. 

 Investigation of multiple effects and evaluation of 

strength and significance not found. 

3. Presentation of results to 

explain derived relationships 

between the sensor data and 

contamination effects (e.g. 

mathematical models) 

 Most research articles use qualitative assessment of 

results derived from scatterplots. 

 Discussion of quantitative results very rare and 

typically only presented as bivariate, linear regression 

results including presentation of the coefficient of 

determination. 

 Lack of discussion of the selected modelling 

approach. 

 No justification of the findings with underlying 

theoretical facts. 

 No consistent mathematical models of sensor effects 

found (e.g. DoE models). 

4. Quality of statistical 

investigations and results 

 Rare use of statistical methods. 

 Typically only small data populations presented and 

assessed. 

 No discussion of potential failures or interference in 

the raw data found. 

5. Presentation and 

transparency of (oil condition, 

mileage forecast) algorithm 

models 

 Published research work on oil condition algorithm 

models hardly found. 

 Transparency for adaption to further application in 

general not provided. 

6. Consideration of practical 

algorithm implementation 

aspects (e.g. suitability for 

cost sensitive segments such 

as automotive) 

 Not found in the reviewed literature. 
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1.3 Identified Research Objective 

The review of research work in the subject area of oil condition monitoring showed that 

most of the work conducted is strongly focused on testing of the measuring abilities of 

oil sensors from different manufacturers. The aim of all the presented research work is 

to derive bivariate correlations and to test how well the sensor performs to detect a 

single contaminant in the oil. Three important aspects could be identified from the 

review of the current status of knowledge in this area:    

1. Consideration of underlying theories and contexts of the oil degradations:  

The study of key literature outlined lacks discussion of potential lubricant 

degradation mechanisms, how they affect the oil and how this then affects the 

sensor data. The proposed process would be (a) to collect information about the key 

lubricant degradation effects, and (b) evaluate which contamination effects have an 

influence on the existing sensor types. It would thereby be important to investigate 

the strength and significance of multiple contaminants on the sensor data.  

2. Data evaluation and conclusions: The review revealed that research experiments 

were targeted to investigate single contamination effects on sensor data. Results 

were typically derived by single experiments with low data population. Many of the 

conclusions presented were based on bivariate data plots drawing correlations 

between individual oil contaminants and the few sensor parameters. Conclusions 

were drawn using this prior knowledge of the contaminant with regard to the sensor 

measurement. It is arguable if this is consistent with the multiple effects in the oil 

sump during real engine operations. The presence of an unknown number of 

concurrent degradation effects having potentially different effects on the sensor data 

is not discussed in any of the existing works. Knowledge of the strength of major 

influencing parameters on the main sensor values permittivity, conductivity and 

viscosity would be beneficial to derive an understanding of what are the main 

drivers of the sensor data. It would also help to understand what is possible to detect 

with the current on-board measurement techniques and what the limitations are. 
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3. Development of an efficient and reliable oil condition monitoring concept: 

Research work on engine oil condition algorithms or methods of how to interpret 

and process the sensor data to obtain a condition statement could only rarely be 

found. The most profound work to classify oil sensor data reviewed in the literature 

search was the research conducted by Krallmann (2005). He monitored hydraulic oil 

ageing in agricultural machines using artificial neural networks in comparison with 

other classification techniques. The experiments in that research were conducted by 

computer simulation outside any engine control unit. However, for automotive 

production applications with the applied techniques would not be appropriate as 

they consume valuable processor and memory capacity. Another aspect to consider 

is the overall efficiency of an oil condition algorithm. The major sensor data from 

current systems are permittivity, conductivity and viscosity. For this limited input 

data the use of neural networks for instance would be over-engineered. Therefore, a 

research challenge is to develop an efficient oil rating approach providing reliable 

lubricant condition statements. 

 

The three key topics identified outline the intention for this research work to contribute 

knowledge to the field of oil condition monitoring and to introduce novel ideas and 

considerations. The resulting research objectives for this work are therefore summarised 

as: 

 Exploratory summary of lubricant degradation effects and the resulting influence on 

oil condition sensor data. The impact of biofuels on the lubricant condition will be 

discussed in particular. 

 Characterisation of the concurrent influences of the multiple contamination effects 

on selective oil condition sensor data. Their individual strength and significance will 

be statistically investigated. A ‘Design of Experiments’ (DoE) model representing 

the contaminant effects on the sensor data will be developed. 

 Modelling and testing of an oil condition monitoring concept using a generalised 

linear model. This aim is to develop an innovative approach providing high 

efficiency and accuracy in the prediction of the lubricant condition and oil drain 

interval forecast.  
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1.4 Research Plan 

The following research plan provides an overview of the key research activity of each 

chapter in this work. The purpose is to provide a summary of the line of thoughts and to 

outline how knowledge and arguments will be developed to achieve the research 

objectives.  

The engine oil fundamentals are qualitatively explored in Chapter 2 to provide 

understanding of the main purposes of engine oil. The review will cover all relevant 

underlying physical and chemical fundamentals for each lubricant function. The main 

lubricating principles will be presented together with the most relevant technical issues 

for this research work. Oil formulating aspects such as the supportive work of additive 

components to fulfil the tasks will be briefly presented for the sake of completeness. 

The aims of this chapter will be to summarise the key functions, technical terms and 

definitions of engine oils and to outline the complexity and multi-functionality of 

modern lubricants.   

Chapter 3 will provide a qualitative review of the different oil contamination effects, 

especially while using biofuel of the current generation. The research will use secondary 

data analysis to obtain the relevant information. Data will be extracted from 

acknowledged sources such as annual fuel reports and research papers from the 

industry. A brief overview of the current global biofuel situation and the globally 

varying feedstock will be discussed to introduce the different characteristics of biofuels 

compared with fossil fuels. A summary of the different ways of how unburnt fuel can 

travel into the sump to start degradation will be presented. A brief review of the major 

lubricant degradation processes will be presented. The aim is to identify and summarise 

the key parameters that potentially affect the lubricant condition, especially once fuel 

has reached the oil. The investigation of lubricant impact during engine operation will 

contrast how the contamination effects will influence the required oil performance to 

ensure a proper and efficient engine operation. The compilation of all these main effects 

will provide an overview of the multitude and complexity of oil degradation 

mechanisms. 
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An overview of the main electrical and and physical measurement principles of 

commercially available oil condition sensors for automotive applications will be 

presented in Chapter 4. The qualitative review will be focused on the chemical-related 

oil condition sensor parameters (permittivity and conductivity) and the physical oil 

condition sensor parameter (viscosity). The theoretical influence of previously 

identified lubricant contamination effects on the sensor parameters will be considered 

and qualitatively examined. The main challenges with oil condition monitoring based 

on the existing sensor data will be discussed.  

The quantitative research in Chapter 5 will investigate the strength and significance of 

multiple contaminants on the existing sensor data. The data source will be existing oil 

analysis data from vehicle and test bench runs which will be statistically investigated. 

The analysis will cover the sensor data permittivity, conductivity and viscosity and the 

main lubricant contaminants. The aim of this component of the research is to 

characterise which of the key contamination effects in the lubricant has the most 

dominating effect on permittivity, conductivity and viscosity data. A novel aspect will 

be the investigation of multiple effects on the sensor data instead of focusing on a single 

contamination effect as to be seen in the reviewed literature. The strength of each 

degradation effect on the different sensor parameters can be ranked based on the 

outcome of the quantitative study. The knowledge derived from this chapter will be 

required for the next stage of the research which will be the development of a novel oil 

condition rating model. 

The previously derived characterisation of the interaction of contaminants and selected 

sensor parameters will be the starting position for the research in Chapter 6. Based on 

the findings the most reliable sensor data will be used as input for the oil condition 

model. The aim of this qualitative research step is to find an efficient and reliable 

solution to predict the current oil condition and to forecast the remaining mileage. The 

basis for the concept of a suitable condition model will be presented as an initial step. 

The novel aspects of the lubricant condition monitoring algorithm will be outlined. The 

scheme of the condition rating algorithm will be drawn and the functional subgroups 

will be explained. The overall aim of this chapter will be to provide all considerations 

and theoretical background that are necessary to develop the innovative condition model 

in this research work. 
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Chapter 7 will present the quantitative validation of the individual elements of the oil 

condition monitoring algorithm. Starting with an analysis of the linear models in the 

format of modelled characteristic maps, the conditions for the modelling of these maps 

will be discussed together with a statement of the achieved predictive accuracy with 

experimental data from used oil analysis. The complete model validation including the 

mileage forecast requires sufficient data bases. The generation of this data will be 

presented in detail. The predictive fit of the algorithm model, including a quantitative 

mileage forecast, will be assessed. 

The model validation outcome will provide a clear picture of the performance of the 

individual parts of the oil condition monitoring concept in this research. It will show 

how reliability could be improved by implementing the model to monitor the lubricant 

condition. 

The conclusions and key findings of this research work will be presented in Chapter 8. 

The contribution to knowledge in the area of oil condition monitoring will be 

summarised by the discussion and critical reflection of the fulfilment of the research 

objectives in this work. A brief outlook of potential further research on the basis of the 

findings and novel pathways presented in this work will also be considered and 

proposed.    
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Chapter 2 

2 Engine Oil – a Fundamental Constructional 

Element 

2.1 Introduction 

This chapter provides an introduction of the fundamentals of engine oil with respect to 

its main purposes in relation to the essential design and constructional features of any 

modern combustion engine. The focus will be particularly on the main responsibilities 

of engine oil which play a crucial role to ensure reliable engine operation. The oil 

viscosity can be regarded as an essential oil characteristic and is of critical importance. 

All degradation effects presented later in Chapter 3 affect at least this parameter. 

Insufficient oil viscosity due to degradation effects, regardless if this is too high or too 

low, can result in serious engine wear and a major risk of failure. All relevant physical 

and chemical lubricant fundamentals are presented here to provide understanding for 

later considerations and discussions. Alongside the description of the functions covered, 

this section also provides relevant technical terms and definitions. A brief summary of 

the involved additive components to enable or support each task shall outline the 

complexity of modern oil formulations and indicate how susceptible the oil is for 

contamination and what additive depletion means in terms of performance loss. 
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2.2 Main Functions of the Engine Oil 

The functionality of engine oil is not limited to fulfil only a single task during the 

engine operation as for many other mechanical engine parts. Engine oil is an essential 

constructional element of modern engines and must contribute to the overall reliability 

requirements of the vehicle. Reliability is defined as ‘the probability that an item can 

perform its intended function for a specified interval under stated conditions’,  

(DoD, 1981). The definition of reliability addresses two important topics. First, 

reliability is unconditionally related to the ‘intended functions’ and second it is related 

to the ‘stated conditions’. Engine oil is a multi-functional element and is responsible for 

a number of tasks and is intended to fulfil a range of complex duties. Figure 2.1 

summarises the main responsibilities of modern lubricants. Engine oil provides 

lubrication in order to reduce friction and thus prevent wear, it provides cooling in order 

to support the thermal control of the engine, it must seal moving parts, it has to maintain 

engine cleanliness to ensure freedom of movement of the engine parts and protect 

against corrosion by neutralising acid components and prevent the formation of these 

components (SAE J 357, 2006). Each of these functionalities will be briefly discussed in 

order to provide a better understanding of the individual tasks. The ‘stated conditions’ 

for the oil to ensure the required reliability cannot be precisely defined. Since the 

lubricant is influenced and degraded by various effects during its operation in a 

combustion engine. It is therefore difficult to maintain the reliability which will be 

investigated in Chapter 3.  

   

 

 

 

   

 

Figure 2.1: Range of responsibilities of modern engine oils 

 

 

The grey boxes highlight the most important engine oil functions which need to be fulfilled 

by the oil to enable a reliable engine operation. 
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2.3 Lubricating 

One of the major functions of the engine oil is to reduce friction and to protect the 

engine from wear in a combustion engine. As lubrication is the major responsibility of 

the oil some general aspects are summarised in more detail to ensure a comprehensive 

insight into its physical and chemical aspects. 

2.3.1 Viscosity - Physical Characteristics and Definitions 

The viscosity is a measure of the inner friction of a liquid and defines the required 

relative speed of two surfaces at which a stable hydrodynamic lubrication film is 

formed. The viscosity can be regarded as the essential parameter to prevent wear during 

the engine operation. Viscosity is a measure of a fluid's resistance to flow in the 

presence of an influencing force. As any substance opposes a force when it is deformed 

either by shear stress or longitudinal stress, the viscosity describes a fluid's internal 

resistance to flow and may be thought of as a measure of fluid friction. It can therefore 

be described as the internal friction of a moving fluid. A fluid with high viscosity resists 

motion because its molecular composition results in more internal friction in the 

presence of an applied force (Möller and Nasser, 2002: 160 - 163). High viscosity 

engine oil therefore requires more force and greater relative movement of the 

lubricating surfaces to form a hydrodynamic lubrication film but this results in a higher 

load carrying capacity. A fluid with low viscosity flows more easily because its 

molecular composition results in a lower level of friction when it is in motion. This 

requires less force and relative speed of the friction surfaces in forming a hydrodynamic 

lubricating film. However, the load carrying capacity of a lubrication film of low 

viscosity engine oil is lower compared to engine oil with high viscosity  

(Leonhardt et al., 2005: 37 - 40). Viscosity in a technical context in automotive 

applications can be expressed in two distinct forms, which are the ‘dynamic viscosity’ 

(sometimes known as absolute viscosity) and the ‘kinematic viscosity’  

(Viswanath et al., 2007: 1 - 3). Dynamic viscosity   typically expressed in [mPa∙s] is 

the tangential force per unit area required to slide the fluid between two flat plates 

which are parallel to one another. The shear stress   [Pa] is the ratio of the tangential 

force F  [N] needed to maintain the moving plate A  [m²] at a constant velocity   [m/s] 

to the plate layer ‘B’ as shown in Figure 2.2 when the two layers are maintained at a 

unit distance x  [m] apart. As illustrated in Figure 2.2, the force F causes the liquid 

layers at surfaces ‘A’ and ‘B’ to slide at different velocities 

1

 and

2

 , respectively. 
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Velocity 

2

  is lower compared to velocity 

1

   in the presence of force. This causes a 

velocity gradient of the different liquid layers in the laminar flow of the medium within 

the two plates.   

   

 

 

 

   

 

Figure 2.2: Shear of a liquid film to illustrated the dynamic viscosity  

(Viswanath et al., 2007) 

 

 

Dynamic viscosity is the tangential force per unit area required to slide the fluid between 

two flat plates which are parallel to one another. The shear stress  [Pa] is the ratio of 

the tangential force F [N] needed to maintain the moving plate ‘A’ [m²] at a constant 

velocity   [m/s] to the plate layer ‘B’ when the two layers are maintained at a unit 

distance x [m] apart. The force F causes the liquid layers at surfaces ‘A’ and ‘B’ to slide 

at different velocities 

1

  and 

2

 . This causes a velocity gradient d of the different 

liquid layers in the laminar flow of the medium within the two plates. 

 

   

The velocity gradient or shear rate e  [1/s], can be expressed by the fluid 

velocity

dt

dx

 and the distance of the gap x  [m]; where 

    

 

xdt

dx

x

e





1


 

(2.1)  

    

As the dynamic viscosity is defined as the ratio of shear stress and shear rate the final 

equation for the dynamic viscosity  [Pa·s] can be written as: 

    

 

v

x

   

(2.2)  

    

The dynamic viscosity, from a technical point of view, is the most significant viscosity 

form as it is related to the mechanical stress of the lubricant during the operation with 

respect to shear stress and shear rate. Measuring techniques do not determine the 

dynamic viscosity directly but provide its ratio to the oil density  [kg/m³]. 
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The viscosity-density ratio is referred to as the ‘kinematic viscosity’  [mm²/s] and is 

currently the most widely used viscosity unit in nearly all practical applications as the 

measurements are more accurate and easier obtained (Klamann, 1982: 4). The kinematic 

viscosity is defined by equation 2.3: 

    

 





   

(2.3)  

    

Engine oil viscosity is in practice not constant as it is a function of temperature, 

pressure and shear rate and can therefore not be considered as a Newtonian liquid 

(Blume, 1987; Mang and Dresel, 2001: 21 – 28). The ‘Viscosity Index’ (VI) is an 

empirical number indicating the effect of temperature change on the viscosity of the oil. 

High VI means less change of viscosity with temperature (O’Donnell and Zakarian, 

1984). High VI oils are required in practice to have low viscosity at low temperature in 

order to provide easy cold starting of the engine. On the other hand a sufficiently high 

viscosity is required to have a good lubrication and high load carrying capacity at full 

operating temperature. However, the natural viscosity-temperature characteristic of base 

oils is not sufficient to achieve these requirements. Modern oils have therefore  

VI-improver additives blended with the oil to meet both the high and low temperature 

requirements. VI-improvers are based on long-chained hydrocarbon polymers. These 

polymers can be visualised as small balls of polymers which are tightly folded at low 

temperatures and get unfolded as the temperature increases. The reduction in viscosity 

of the basic oil with increasing temperature becomes largely compensated by the 

volume increase of the VI-improver (Klamann, 1982: 84 - 86). Shearing of the oil 

occurs due to the relative movement of molecules or groups of molecules between each 

other in relation to the engine parts. If the viscosity decreases with increasing shear rate 

or shear stress the liquid is defined as pseudo-plastic or structure-viscous  

(Möller and Nasser, 2002: 163 – 166). Additive components such as VI-improvers, 

ashless detergents or dispersants, soaps, colloids and combustion products like soot, 

contribute to more shear dependence and thus structure-viscous behaviour of the engine 

oil (Klamann, 1982: 6). Temporary viscosity decrease usually occurs for engine parts 

with high mechanical stress and the ‘High Temperature High Shear’ (HTHS) viscosity 

is of importance for reliability considerations. The HTHS-viscosity is a dynamic 

viscosity and is measured at 150 [°C] and at a defined shear rate of 10

6

 [1/s]  

(Möller and Nasser, 2002: 168). This viscosity value correlates with the real shear stress 

of the oil in high load engine operation at the camshaft, con rod bearing and between 

piston rings and cylinder wall. 
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High HTHS values provide in general, better wear performance as the hydrodynamic 

lubrication regime is reached quicker and the load carrying capacity is higher even 

under high shear rate. Low HTHS values, on the other hand, contribute significantly to 

better fuel economy. 
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2.3.2 Physical Principle of Lubrication - Stribeck Curve and 

Lubrication Regimes 

The aim of all types of lubrication is to reduce friction between sliding surfaces in order 

to minimise wear (Möller and Nasser, 2002: 454 - 456). Friction is in general expressed 

and quantified by the dimensionless friction coefficient  [1]. The friction coefficient is 

defined as the ratio of the applied force F [N] and the load 

N

F
 

[N] (Liu et al., 1990).  

    

 

N

F

F

  

(2.4)  

    

All surfaces are characterised by an individual roughness, regardless of how plane they 

seem. A closer look with a microscope shows the roughness peaks on every surface. If 

two surface areas are in contact, the contact therefore only occurs at these roughness 

peaks which are in direct contact in the absence of a lubricant (Krause and Scholten, 

1979). One of the main purposes of the engine oil is to separate these surfaces in order 

to prevent the roughness peaks touching each other and causing wear (Möller and 

Nasser, 2002: 15 – 19). This requires the engine oil to form a hydrodynamic lubrication 

film (Leonhardt, et al., 2005). The achievement of this hydrodynamic lubrication film 

reducing the friction coefficient μ depends on a sufficient angular frequency   [1/s] of 

the friction surfaces, the dynamic viscosity   [Pa∙s] of the engine oil and the specific 

pressure per area p  [Pa] on the surfaces. These coefficients are summarised within the 

dimensionless ‘Sommerfeld-Number’  [1] (Vogelpohl, 1954; Bartz and Möller, 2000) 

in equation 2.5: 

    

 

p







  

(2.5)  

    

The four main lubrication regimes of ‘boundary lubrication’, ‘mixed lubrication’, 

‘elastohydrodynamic lubrication’ and ‘hydrodynamic lubrication’ in an automotive 

engine are characterised in the field of Tribology by the ‘Stribeck-Curve’, see Figure 

2.3. In 1902 Stribeck found that the friction coefficient depends on the relative speed or 

movement of the friction surfaces (Möller and Nasser, 2002: 14). On the vertical axis of 

the Stribeck-Curve, the friction coefficient μ is plotted and on the horizontal axis the 

Sommerfeld-Number .
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Figure 2.3: Stribeck-Curve with illustration of the main lubrication regimes 

 

 

The individual regime depends on a sufficient angular frequency  [1/s] of the friction 

surfaces, the dynamic viscosity  [Pa∙s] of the engine oil and the specific pressure per 

area p [Pa] on the surfaces. These coefficients are summarised within the dimensionless 

‘Sommerfeld-Number’  [1]. The change of the regime causes a change of the friction 

coefficient   [1]. The preferable operating regime is the hydrodynamic regime after the 

inflexion point.  

 

 

 

 

The lubrication regime in area ‘A’ in Figure 2.3 of the Stribeck-Curve is referred to as 

the ‘boundary lubrication’ and is present for low speeds of relative movement of the 

friction surfaces. This occurs during the engine operation, for instance, at the engine 

start or at the reversal point of the pistons. Boundary lubrication can also occur as a 

result of heavy loads, restricted contact areas or insufficient viscosity. Insufficient 

viscosity can result from shear loss and will be discussed later in this section, or from 

fuel dilution which will be presented in Chapter 4. In the operating state of boundary 

lubrication only the friction surfaces are covered by oil molecules and the load is carried 

by a very thin lubrication film. This results in a high friction level indicated by the high 

number of the friction coefficient in the Stribeck-Curve. Due to the contact of the 

surfaces, this causes the highest wear in practice with this lubrication regime and the 

wear performance of an engine oil formulation depends fully on the additive 

components (Leonhardt et al., 2005). To prevent metal-metal wear in this critical 

regime, anti-wear additive components are included in the oil formulation. Anti-wear 

additives made from organic compounds form a protection layer on the metallic surface 

to keep the friction areas separated in the absence of oil under critical operating 

conditions (Mang and Dresel, 2001: 103 – 110; Möller and Nasser, 2002: 28). 
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The ‘mixed lubrication’ in area ‘B’ of Figure 2.3 is characterised by a very steep 

negative slope of the friction coefficient μ. The thickness of the lubrication film is equal 

to the surface roughness and the load is not fully carried by the lubrication film. The 

roughness peaks of the surface are still in contact in this lubricating regime. 

The ‘elastohydrodynamic lubrication’ in area ‘C’ of Figure 2.3 was included in the 

Stribeck-Curve to cover the elastic deformation of contact faces. This lubrication 

regime is only relevant for contact geometries particular for plain bearings like roller 

bearings and gear teeth (Mang and Dresel, 2001: 14).  If the relative speed of the 

friction surfaces is further increased, the hydrodynamic pressure of the oil is 

continuously built up towards the inflexion point of the friction coefficient curve. At 

this point, indicated in area ‘D’ of Figure 2.3, the surfaces are completely separated by 

the lubrication film and friction is mainly determined by the oils internal resistance – 

the viscosity. This ‘hydrodynamic lubrication’ regime is the preferred operating 

condition for any moving engine part as the separation of the friction surfaces by the oil 

prevents any wear (Möller and Nasser, 2002: 14). 
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2.4 Cleaning 

The cleaning function of the engine oil is based on two principles with two essential 

types of additives involved, the ‘Dispersants’ and the ‘Detergents’. The engine cleaning 

properties of an oil formulation are also referred to as ‘Detergent-Dispersant 

Characteristic’ (DD-Characteristic) (Möller and Nasser, 2002: 459). Both types of 

additives are described as molecules containing a polar and non-polar section. They 

aggregate with orientation based on the polarity of the medium. The cleaning 

mechanism is the task of the dispersants which are metal-free, ashless additives 

(Leonhardt et al., 2005: 14). A dispersant consists of a long, non-polar oleophile  

(oil loving) tail and a polar head with less polarity compared to that of the detergents. 

The function of the dispersant is to wrap solid and liquid contaminations which have 

infiltrated into the oil during the engine operation and to keep them in suspension to 

prevent sedimentation and the formation of so called ‘cold sludge’. Sludge can block 

the oil gallery, filter, piston grooves, rings and valves, and can cause severe engine 

failures or further rapid oil degradation. Two main mechanisms are present, the 

peptisation and the solubilisation (Möller and Nasser, 2002: 460). Peptisation is the 

wrapping and the keeping in suspension of solid oil contaminations, like dust, soot or 

solid oil ageing products, with a diameter of 50 – 150 [nm]. The non-polar tail of the 

molecules prevents agglomeration due to electrostatic repulsion. Solubilisation is 

known as the wrapping and suspension of liquid contaminations such as acids or 

condensate with a droplet size of < 20 [nm]. The purpose of the dispersants is to keep 

all the contaminations in suspension to get them out of the engine with the next oil 

drain. The second clean keeping mechanism is the task of the detergents. The structure 

of the detergent molecule is equal to the structure of the dispersant molecule explained 

earlier. The only difference in the molecule structure is their shorter tail and the higher 

strength of the polar head. Detergents are metal based additives typically in colloidal 

composition (Klamann, 1982: 91 - 93). Their function is to prevent or remove lacquer, 

carbon and varnish deposits on the hot engine parts by oriented adsorption of the 

detergent molecules at the metal surfaces. This is especially important on the engine’s 

pistons in order to prevent ring sticking under severe high-temperature operating 

conditions. Detergents are multifunctional and their second important function is to 

neutralise acids either from blow-by gases from the combustion or acids from the 

oxidation or nitration process. 
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2.5 Neutralisation       

During the engine operation the oil is in continuous contact with acid combustion 

products (Möller and Nassar, 2002: 460). There are two main mechanisms where the 

neutralisation effect of the oil is required to prevent the build-up of acids in the oil. The 

first is to neutralise aggressive acid products from the combustion gas that are in direct 

contact with the oil (Möller and Nassar, 2002: 462). The second is to neutralise acids 

that get formed in the oil as a by-product from the oxidation or nitration process, which 

will be explained later in Chapter 3. The acids formed in the oil cause corrosion and 

increase wear of the engine, especially of the bearings, and can also result in the 

formation of deposits in the engine, especially in the hotter parts. The engine oil thus 

needs to provide an alkaline reserve which is a characteristic value of engine oil and is 

defined by the ‘Total Base Number’ (TBN) in [mg KOH/g] (Möller and Nassar, 2002: 

137). The TBN is mainly formed by the detergent additives mentioned earlier with the 

cleaning properties of the oil. Overbased detergents are typically used having additional 

calcium-carbonate or magnesium-carbonate in the compound that is surrounded by the 

detergent molecules in the form of micelles (Leonhardt et al., 2005: 12). This provides a 

high alkaline level of the oil and thus prevention of acid build up in the oil but it also 

causes the formation of ash if some oil is burned during the engine operation. Ash 

formation is problematic with DPF which is also the reason why engines equipped with 

DPF need to use low ash engine oils which also means lower TBN and thus less 

alkaline reserve (Sappok and Wong, 2010). During the operation of the additives in the 

engines, the detergents are conventionally depleted and provide no more protection 

against the formation of acid build up in the oil once they are at a low level. Increasing 

acidity is thus a strong indicator for a necessary oil drain as the functionality of the oil is 

strongly affected. The acidity of engine oil is defined by the ‘Total Acid Number’ 

(TAN) in [mg KOH/g] (Möller and Nasser, 2002: 136 – 137). 
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2.6 Sealing 

Engine oil needs to provide an important sealing function at two separate friction points 

in an engine (Möller and Nasser, 2002: 463). First, sealing between the piston rings and 

the cylinder wall is required to prevent large amounts of blow-by gas passing through, 

see Chapter 3, section 3.3. Insufficient sealing at this point would cause power loss, 

thermal stress for the piston and would accelerate the oil degradation process 

significantly due to higher contamination with nitrogen oxide from the combustion gas 

as well as with more unburnt fuel passing by. The second important sealing function of 

engine oil is between the valve stems and the valve stem guides. Insufficient sealing at 

this point would result in pressure fluctuations at the intake and exhaust gas system and 

would affect the combustion and may result in unburnt fuel reaching into the engine oil. 

The appropriate viscosity of the engine oil plays an important role to ensure the sealing 

functions. If the engine oil viscosity is too thin due to shear losses or fuel dilution the 

sealing lubrication film can tear off and the amount of blow-by gases will increase 

resulting in fast depletion of the additive components responsible for the neutralisation 

of the acid components. Once these additives are depleted, the oxidation or nitration 

reaction chain can accelerate generating even more acids and oil insoluble products 

which can result in engine failure. The oil degradation processes are explained in more 

detail in the next chapter. 

2.7 Power Transmission 

The engine oil acts as a hydraulic medium in current engine concepts. It is used to 

control the tappet clearance adjustment, the timing chain tensioner and the camshaft 

adjustment unit (Leonhardt et al., 2005: 35). Sufficient viscosity is of importance to 

fulfil the function as a hydraulic medium. Low viscosity due to degraded oil can result 

in leakage of the oil from the pressure reservoirs for the hydraulic applications. This can 

be detected by noise from a clacking hydraulic valve lifter or oscillating timing chain. It 

can further result in functional deficiency such as power loss due to incorrect working 

camshaft adjustment. A similar effect occurs in the case of high gas content in the oil. 

This effect can result from foam formation of the oil due to the permanent movement of 

the circulating oil and the splashing of the oil in the sump. Foam makes the oil 

compressible and causes fail functions in the hydraulic systems and can lead to severe 

engine problems (Magorian, 1980). Foam also affects the lubrication as the lubrication 

film may tear off and can cause increased wear especially of the bearings. 
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To prevent stable oil foam build up and to improve the air removal ability the additive 

composition of engine oils contains foam inhibitors in a concentration of 0.0001 - 0.001 

% (Klamann, 1982: 98). Effective foam inhibitors are based on silicon oils and need to 

fulfil three basic requirements (Awe, 1963). They need to be insoluble in oil, have a low 

surface tension and need to be dispersible. The foam destructing effect of the small 

silicon oil droplets is based on their oil insolubility and their low surface tension. The 

surface-active (oil-air) agent adsorbs the foam bubbles and starts to expand due to the 

lower surface tension of the additive. The oil foam surface layer gets ripped due to this 

expansion and the air bubble bursts (Möller and Nassar, 2002: 210). 

2.8 Cooling 

The cooling and heat dissipation function of the oil is especially important for the 

engine parts that are not in direct contact with the engine coolant. These parts are 

mainly the pistons and the crankshaft. Due to the high circulation rate of the oil, the 

intensive movement is a sufficient cooling function of these parts, although the cooling 

effect of oil is lower compared to the cooling effect of the engine coolant liquid 

(Leonhardt et al., 2005: 36). Heat occurs at all lubricating points due to friction. The 

main heat transport mechanism of the oil in the lubricating points is based on heat 

convection and conduction (Möller and Nassar, 2002: 19 – 23). 

2.9 Summary 

This chapter illustrates the main functions of engine oil which is an important versatile 

component performing numerous tasks to maintain reliable and efficient engine 

operation. The key performance areas include an explanation of lubricant functions 

including all related technical and physical terms, definitions and units. This provides a 

common understanding for the subsequent chapters of this thesis. It should be 

recognised that of all the tasks performed, oil viscosity control can be regarded as the 

most crucial parameter of oil performance. Viscosity is directly related to engine wear 

and has thus a direct influence on the reliability. Chapter 3 will present the major oil 

contamination effects leading to oil degradation especially with regard to the influence 

of biofuels. This is one of the major current challenges for engine oils and the resulting 

overall engine reliability. It will become transparent how sensitive the lubricant and in 

particular the viscosity is regarding contamination. The summary of the current status of 

knowledge on lubricant degradation effects, especially when using biofuels, will outline 

why oil condition monitoring contributes to maintaining engine reliability. 
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Chapter 3 

3 Impact of Biofuels on Crankcase Lubricants 

Performance 

3.1 Introduction 

This chapter presents the influence of the current generation of biofuels on lubricant 

performance. The research is based on an exploratory summary of theoretical facts and 

experience reported by different industries. It starts with an overview of the global 

biofuel landscape and gives an understanding of the actual global market share and the 

typical biodiesel and bioethanol markets. The next step in this chapter is to provide a 

brief summary of the manufacturing process, the chemical compositions and general 

properties of biodiesel and bioethanol to illustrate the reasons for the initiation of the 

degradation processes. A summary of the possible ways that the fuels can affect the 

engine oil, which forms the starting point for all further negative effects, is also 

presented. The resulting interaction and the resulting oil degradation mechanisms and 

the impact on the previously outlined important lubricant functionalities will be 

explained in detail to illustrate the serious risk for the engine. Most of the contamination 

effects discussed in this chapter also occur with regular fossil fuels. The overall 

degradation risk of the lubricant is thus present with any fuel. Nevertheless the effects 

which are described are much more severe and in most cases much more serious with 

biofuels compared to fossil fuels.  
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3.2 Global Biofuel Scenario 

   

 

 

 

   

 

Figure 3.1: Summary of the global biodiesel situation 

 

 

The key market for biodiesel today is Europe with blend rates up to B7. In the US market 

B20 fuels are available and B100 can occasionally be found for dedicated fleets. It is 

expected that the global blend rates for all global main markets will go up to B10 and B20. 

 

 

  

The key market for biodiesel is currently Europe. Based on current EU biofuel directive 

most member states, including the UK, today use B5 biodiesel blends (EU, 2003; 

Department for Transport, 2010). Since 2009 the Germany national diesel standard has 

allowed blends up to B7 (DIN EN 590, 2010). Other key markets such as Canada, 

Australia, India, South Africa and the Pacific Region follow the European 

standardisation and use biodiesel blends up to B5. 
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The effective US diesel fuel standards cover blends between B6 and B20 (ASTM 

D7467, 2008). There is also a B100 ASTM standard in effect (ASTM D6751, 2001). 

The expected future biodiesel blends will be significantly higher as legislation promotes 

the increase of biofuel to comply with climate protection declarations. It is expected that 

the biodiesel blend in Europe will increase to B10 within the next few years as indicated 

in Figure 3.1. Other markets such as Brazil, Canada, Peru, Chile and China will also 

probably allow blends up to B10. Argentina, Colombia, South Africa, Mexico, India 

and the Pacific Region are expected to allow up to B20. 
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Figure 3.2: Summary of the global ethanol situation 

 

 

The key markets for ethanol are today the US and Brazil. In most European countries the 

blend rates are up to E5 (Germany with up to E10). It is expected that the US, China and 

South Africa will use blends up to E20. Mexico, Europe, India and Australia will probably 

increase their legislated bioethanol contents to E10. 

 

   

Key markets for ethanol are today the US and Brazil where Brazil has a flex-fuel market 

allowing ethanol blends from E25 to E100 (Kremer and Fontes, 2004). Local regions 

with E85 such as Sweden for specially adapted flex-fuel vehicles were not considered in 

the ethanol map in Figure 3.2 (Kapus et al., 2007). In the US market as well as in most 

of the South American countries, China and the Pacific region ethanol blends up to E10 

are found in the market today. In most European countries, India, South Africa and 

Australia, typically blends up to E5 are found in the market based on the gasoline fuels 

regulations in effect. 
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Since 2011 E10 ‘Super 95’ fuel replaces the former E5 ‘Super 95’ fuel in Germany 

(DIN 51626-1, 2009). Upcoming biofuel replacement rates, to improve use of 

renewable fuels in order to reduce the dependency on fossil fuels and to reduce 

greenhouse gases, will also affect the ethanol situation in the next 5 - 10 years. It is 

expected that the US, China and South Africa will use blends up to E20. Mexico, 

Europe, India and Australia will probably increase their legislated bioethanol contents 

to E10.   

3.2.1 Biodiesel Production 

Vegetable oils offer good ignition characteristics and have occasionally been used in the 

past in diesel engines that were adapted to run on pure vegetable oil (Ollus and Juoperi, 

2007). However, the application of neat vegetable oil in modern diesel engines is very 

complicate due to the high viscosity and the low oxidation stability of pure vegetable oil 

and is therefore today only rarely used. With pure vegetable oil, and with B100 

biodiesel the existing severe exhaust gas limits cannot be met due to the higher 

formation of NOx emissions (Graboski et al., 2003; Büngert et al., 2007). As the use of 

pure oils made of fatty acid triglycerides is problematic, conversion to methyl esters 

before use as diesel fuel is necessary. The designation of biodiesel thus refers to ‘Fatty 

Acid Methyl Esters’ (FAME). FAME can be produced from vegetable and animal fats 

and oils by transesterification where the most commonly used process due to its 

superior economy is the base-catalysed transesterification mechanism (Schwab et al., 

1987; van Gerpen et al., 2004). In this process, biodiesel is produced through a 

transesterification reaction of a natural oil triglyceride either vegetable oil or animal fat 

with a short chain alcohol, typically methanol, in the presence of a catalyst like sodium 

or potassium hydroxide (Taupp 2001; Boocock, 2003). The resulting products are 

glycerin and three monoalkyl esters, the biodiesel or FAME, with carbon chains of 

typically 12 - 22 atoms (Waynick, 1997; Berry, 1999). Transesterification lowers the 

molecular weight to about one third and the viscosity to approximately one eighth and 

increases at the same time the fuel volatility. The resulting parameters are now in a 

range that is suitable for use as diesel fuel (Kinast, 2003). The feedstock depends 

mainly on the climate conditions and occurrence in the different countries. In moderate 

climates, rapeseed, soybean and sunflower FAME is common. For climates in hot and 

tropical regions, olive, coconut palm oil and jatropha are prevalent. Non-vegetable 

feedstocks are typically fish oil and tallow. 
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Figure 3.3 illustrates the FAME feedstock in different regions and climate conditions of 

the world (van den Bulk, 2008). 

   

 

 

 

   

 

Figure 3.3: Summary of the globally used biodiesel feedstock (van den Bulk, 2008) 

 

 

The feedstock depends mainly on the climate conditions and occurrence in the different 

countries. In moderate climates, rapeseed, soybean and sunflower FAME is common. For 

climates in hot and tropical regions, olive, coconut palm oil and jatropha are prevalent. 

Non-vegetable feedstocks are typically fish oil and tallow. 
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3.2.2  (Bio-)ethanol Production 

Ethanol can be made from biomass based on locally available vegetable feedstock that 

contains high amounts of starch or sugar to ferment it to alcohol (Kaltschmitt and 

Hartmann 2001). From a global prospective the most common feedstock is corn (as it is 

used in the US) followed by sugar cane in Brazil. The US have recently overtaken 

Brazil as the largest producer of ethanol. About 20 % of the US corn crop goes into 

ethanol fuel production. The basic product for the European ethanol production is 

wheat, barley, rye or sugar beet (McTavish and Ney, 2009). Technology now also exists 

to use wastes and residues to produce ethanol from lignocellulosic material (Murphy 

and McCarthy, 2004: 149). The first step of the ethanol production process is milling of 

the feedstock and mixing with water to form mash. Enzymes are added to the mash to 

convert the starch to simple sugar like dextrose or glucose. This process is known as 

saccharification. The next process step is fermentation where yeast is added to ferment 

the sugar to alcohol, i.e. (ethanol). After fermentation, the resulting ethanol is 

transferred to distillation columns where the ethanol is separated from the remaining 

water. After the removal of undesired by-products the final step is the concentration and 

dehydration to remove the final moisture from the alcohol in order to achieve 99 % pure 

ethanol. 
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3.3 Pathways of Oil Contamination by Fuel 

There are three main ways for the fuel to contaminate the engine oil. One option is 

transportation of unburnt fuel with the blow-by gases. Blow-by is combustion gas from 

the combustion chamber that passes along the pistons and reaches the crankcase  

(van Basshuysen and Schäfer, 2002). Blow-by gas always contains a certain amount of 

unburnt fuel as complete fuel combustion is not possible in practice (Pruckner, 2007). 

The function of the piston rings is to provide a sealing of the combustion chamber to the 

crankcase. However, complete and reliable sealing cannot be guaranteed based on 

current technology. The typical ways for the blow-by gas to pass the pistons are 

between the piston ring and the cylinder wall, between the piston ring groove and the 

ring and through the piston ring space as summarised in Figure 3.4.  

   

 

 

 

   

 

Figure 3.4: Illustration of blow-by pathways (Kunz cited by Herrmann, 2009) 

 

 

The typical ways for the blow-by gas to pass the pistons are (1) between the piston ring 

and the cylinder wall, (2) between the piston ring groove and the ring and (3) through the 

piston ring space. 

 

   

A key factor for the amount of blow-by gas and thus the amount of unburnt fuel 

contaminating the engine oil is the temperature. With low temperatures, the thermal 

expansion of the rings is low and the gap between the piston rings and the cylinder wall 

is wider. The oil viscosity is higher at low engine temperatures which results in thicker 

oil film on the cylinder wall. As discussed earlier sealing is one of the oil functionalities 

but if the oil film is too thick between the cylinder wall and the piston it cannot seal 

properly against the high pressure peaks from the combustion process. 
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When the engine operates under cold conditions the unburnt fuel typically condenses at 

the cold cylinder wall. With the next piston movement the fuel is wiped downwards to 

the oil sump by the oil wipe ring. Another serious blow-by problem occurs when the 

engine temperature is very high due to high load operation. Thermal expansion of the 

piston rings widens the rings and reduces the gap between the piston ring and the 

cylinder wall. Due to the narrow gap and the decreased viscosity caused by the higher 

temperature, there is only a very thin oil film on the cylinder wall and on the pistons. If 

the temperature at the piston, especially at the top groove, exceeds a critical temperature 

the heat capacity of the thin oil film is not sufficient. The oil therefore becomes 

thermally destroyed at this hot spot which results in the oil cooking at these hot engine 

parts (Möller and Nassar, 2002: 130 – 131). This effect is worse when biodiesel is 

present in the oil; glycerines in the biodiesel (that may remain from the synthesis 

process) are even more temperature sensitive than oil and the cooking effect of hot 

engine parts can thus be worse when FAME is present (Sem, 2004). The cooking leads 

to stuck piston rings that cannot properly fulfil their sealing functionality. This results in 

a high amount of blow-by and thus much more fuel dilution during the subsequent 

engine operation regardless of the engine load (Marsh and Corradi, 2007). There is the 

further risk of much faster oil oxidation and nitration caused by the blow-by gases 

(which will be discussed later). 

Another mechanism contributing to fuel dilution comes with the application of the 

Diesel Particulate Filter, DPF (Krüger and Breuer, 2007: 506 – 507). Soot and solid 

combustion residues accumulate on the DPF during engine operation. To avoid 

blocking of the filter element it needs to be regenerated at certain intervals to remove 

the particulate loading. Regeneration is achieved by the burning of the soot particles and 

requires elevated temperatures in the range of 600 – 650 [°C]  

(Mollenhauer and Tschöke, 2007). The exhaust gas temperature in normal operation 

reaches up to 500 [°C]. If the engine control unit detects loading of the DPF it initiates 

the regeneration process by late post injection in order to achieve a higher internal 

temperature to burn the soot from the filter (van Basshuysen and Schäfer, 2002; 

Mollenhauer and Tschöke, 2007). Post late injection promotes fuel dilution especially in 

two operating modes: (a) if the engine temperature is very cold due to low load or start-

stop operation or especially during wintertime, then more unburnt fuel from the post 

injection will condense at the cylinder wall and travels down to the sump; (b) the other 

fuel dilution effect with post injection occurs if the active regeneration cycle gets 

aborted due to the engine stopping and completely unburnt fuel spray reaches into the 

oil. 
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3.4 Biodiesel – Potential Areas of Concern for the 

Lubricant and the Engine 

Biodiesel has a significantly different distillation curve compared to fossil diesel fuel as 

illustrated in Figure 3.5. Luther (2008) demonstrated with this measurement the 

different evaporation characteristics of fossil and biodiesel fuel. The red line in Figure 

3.5 represents a fossil reference diesel without biodiesel components. The evaporation 

curve is very steep between 240 [°C] and 300 [°C] where almost 60 % of the fuel gets 

evaporated. The blue line represents a typical diesel fuel from the petrol station 

according to DIN 51628 specification containing up to 7 % biodiesel. The evaporation 

curve is noticeably flatter and between 240 [°C] and 300 [°C] and only about 35 % fuel 

evaporated. The green line shows the evaporation curve of a B100 RME biodiesel. The 

evaporation starts at 328 [°C] which outlines the essential problem with biodiesel in the 

engine oil. Biodiesel that enters the sump remains there and accumulates if the oil 

temperature does not reach the Biodiesel evaporation temperature during engine 

operation. 

   

 

 

 

   

 

Figure 3.5: Evaporation characteristic of diesel and FAME (Luther, 2008) 

 

 

The evaporation curve (red line) is very steep between 240 [°C] and 300 [°C] where 

almost 60 % of the fuel gets evaporated. The blue line represents a typical diesel fuel 

from the petrol station according to DIN 51628 specification containing up to 7 % 

biodiesel. This evaporation curve is noticeably flatter and between 240 [°C] and 300 [°C] 

and only about 35 % fuel evaporated. The green line shows the evaporation curve of a 

B100 RME biodiesel. The evaporation starts at 328 [°C] which outlines the essential 

problem with biodiesel in the engine oil. 
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3.4.1 Fuel Dilution 

In 2008, Shell Global Solutions conducted a vehicle field trial with B5 and B15 fuels. 

The aim of the study was to investigate the fuel dilution and fuel evaporation 

characteristic with different load profiles (Klemens, 2008). The applied load profiles 

were defined as snail cycle, nursery operation and motorway operation. In the snail 

cycle the speed was always below 60 [km/h] / 37.29 [mph] with engine stops at every 

red traffic light. After every cold start the car was driven for a maximum of 15 minutes 

or 10 [km] / 6.22 [mi]. The engine cooling was accelerated by opening the bonnet for at 

least 15 minutes with each stop. The nursery cycle is not specified in detail. The cycle 

consists only of city driving with driving distances between 1 [km] / 0.622 [mi] and  

6 [km] / 3.73 [mi] per trip. The motorway profile simulated a high load operation to 

promote evaporation of the fuel from the oil. Figure 3.6 shows detail of the typical fuel 

dilution progress over the different cycles with different biodiesel blends. The blue bars 

represent the amount of fossil diesel in [wt.-%]. The red bars the amount of FAME in 

[wt.-%].  

   

 

 

 

   

 

Figure 3.6: Field trial data of fuel accumulation (adapted from Klemens, 2008) 

 

 

The bar diagram illustrates the fuel accumulation in the oil with low load operation (snail 

and nursery cycle). The blue bars represent fossil diesel and the red bars biodiesel. The 

dilution effect is higher with higher amount of biodiesel in the fuel (B5 vs. B15). With hot 

engine operation (motorway) the fossil fuel starts to evaporate while the biodiesel level 

remains high due to the different evaporation characteristic. 
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It was observed that the nursery cycle in particular facilitated fuel dilution. It was also 

observed that the amount of dilution correlated with the amount of biodiesel in the fuel. 

The fuel dilution with B15 fuel was significantly higher and reached levels of up to  

35 [wt.-%]. The subsequent motorway operation caused slow fuel evaporation. The 

analysis showed that mainly the fossil fuel was evaporated, whereas the FAME content 

remained at high levels due to its evaporation characteristics. The data presented further 

showed that the fuel evaporation is a very slow process even with a continuous hot 

operation mode. In the meantime, the thinned fuel may cause increased wear and is 

likely to accelerate the oxidation process. The study underlines the potential reliability 

risk with the fuel dilution risk due to the biodiesel contamination. 

Another process contributing to higher fuel dilution with biodiesel can result from the 

poor oxidation stability of the fuel itself (Bondioli et al., 1995; Fang and McCormick, 

2006). The oxidation stability of biodiesel depends mainly on the fatty acid 

configuration of the feedstock (McTavish and Ney, 2009-1). When the biodiesel 

oxidises it forms polymers that increase the fuel viscosity (DGMK, 2005). Thus 

oxidised biodiesel will result in higher fuel viscosity which can have a noticeable 

influence on the fuel spray characteristic of the injected fuel (Vaughn et al., 2006). The 

droplet size is larger and impedes the spray decomposition to evaporate the fuel before 

ignition (Binder, 2007: 68 - 84). As a result less fuel is completely burned, leaving more 

unburnt fuel in the combustion chamber that can travel down to the sump. Alternatively, 

the larger fuel droplets that spray directly onto the cylinder wall can result in fuel 

travelling down into the oil. Both effects are simultaneous and are summarised in Figure 

3.7 (a) vs. (b) (Spicher and Lüft, 2007). 

   

 

 

 

   

 

Figure 3.7: Fuel spray characteristic – standard diesel vs. rapeseed oil/oxidised RME 

(Spicher and Lüft, 2007) 

 

 

(a) shows a proper gaseous spray which is indicated by the white area in the picture 

showing the high amount of fine droplets. (b) shows a rapeseed oil fuel with a viscosity in 

the range of an oxidised RME biodiesel, and injection spray with higher viscosity resulting 

in a lean spray without proper fuel evaporation. 
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Figure 3.7 (a) shows the evaporation characteristic of a standardised diesel fuel with a 

fine evaporation of the fuel and having nearly completely turned into a gaseous stage 

before ignition. The gaseous spray is indicated by the white area in the picture showing 

the high amount of fine droplets. Figure 3.7 (b) shows a rapeseed oil fuel with a 

viscosity in the range of an oxidised RME biodiesel, and injection spray with higher 

viscosity resulting in a lean spray without proper fuel evaporation. The absence of white 

areas in the picture indicates that some of the fuel spray directly reaches the cylinder 

wall, as no evaporation occurs. 
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As presented earlier with the ‘Stribeck-Curve’ the formation of a hydrodynamic 

lubrication film is a function of the relative speed gradient, the dynamic viscosity and 

the specific pressure. When the oil viscosity becomes thinned by the fuel a higher 

relative speed of the friction partners is required to form a hydrodynamic lubrication 

film. This results in a shift of the inflexion point to the right. The hydrodynamic 

lubrication regime and the separation of the friction components occur later as 

illustrated in Figure 3.8. 

   

 

 

 

   

 

Figure 3.8: Impact of fuel dilution on the hydrodynamic lubrication regime  

 

 

If the oil viscosity becomes thinned by fuel dilution a higher relative speed of the friction 

partners is required to form a hydrodynamic lubrication film. This results in a shift of the 

inflexion point to the right. The mixed lubrication regime is wider. The hydrodynamic 

lubrication regime and the separation of the friction components occur later. 

 

   

The noticeably wider ‘mixed lubrication’ regime results which will likely result in 

increased engine wear as critical parts sensitive to lubrication (such as the main and con 

rod bearings) will have to function for significantly longer under non-hydrodynamic 

conditions. The result is more friction causing increased wear in a mid to long term 

process. The situation could become more critical with new start-stop systems and 

turbo-charged engines used in modern downsizing concepts to achieve CO

2

 reduction as 

the main bearings will be subject to more mixed lubrication with more starts. The 

additive components discussed in Chapter 2 cannot compensate for such dilution 

impacts and the oil safety margin in terms of load carrying capacity is badly affected.   
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3.4.2 Oxidation 

The fuel dilution effect with biodiesel and the resulting viscosity loss is only one 

concerning factor with the presence of FAME in the oil sump. The second area of 

concern is related to the oxidation susceptibility of the different fatty acids that have a 

significant impact on the oil oxidation process. The susceptibility to oxidation depends 

on the level of poly-unsaturated fatty acids as indicated in Figure 3.9 summarised by 

McTavish and Ney (2009-1).  

   

 

 

 

   

 

Figure 3.9: Oxidation susceptibility of common FAMEs (McTavish and Ney, 2009-1) 

 

 The description of fatty acids often uses an abbreviating nomenclature of the form Cn:m in 

which n represents the number of carbon atoms and m the number of double bonds in the 

molecule. The fatty acid molecule determines the reaction rate for degradation processes 

in the oil due to oxidation. 

 

   

The oil oxidation process is facilitated by the presence of FAME in the oil compared to 

conventional fuels as a result of the auto-oxidation of the FAME itself in the oil 

(Gunstone, 1967; Canakci et al., 1999). Over 95 % of all fatty acids have a chain length 

of 16 – 18 carbon atoms (DGMK, 2005: 7). The description of fatty acids often uses an 

abbreviating nomenclature of the form Cn:m in which n represents the number of 

carbon atoms and m the number of double bonds in the molecule. The main 

representatives are stearic acid C18:0, oleic acid C18:1, linoleic acid C18:2 and 

linolenic acid C18:3. 
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The fatty acid configuration of biodiesel is of high importance for the oil condition as 

the fatty acid molecule determines the reaction rate for degradation processes in the oil 

due to oxidation. Fatty acid methyl esters with a high content of saturated fatty acids 

C14:0, C16:0, C18:0 have a high cloud point, pour point and cetane number and have 

good oxidation stability (DGMK, 2005: 8). FAME molecules with a high number of 

unsaturated fatty acids indicated by the number of double bonds C18:2, C18:3 act in the 

opposite direction (Ullmann, 2007). The relative speed of the oxidation reaction is for a 

C18:3 molecule up to 98 times higher than for a C18:0 molecule (DGMK, 2005). As 

outlined in paragraph 3.2 the types of FAME mostly used from a global perspective are 

RME and SME. They are both composed of 80 – 85 [wt.-%] total unsaturated fatty 

acids and have a relatively high degree of polyunsaturation. The number of 

polyunsaturated fatty acids is higher with SME resulting in even worse oxidation 

stability than RME. In contrast palm oil methyl or coconut oil methyl esters used in the 

Far East contains 50 – 90 [wt.-%] saturated fatty acids giving high oxidation stability 

but insufficient cold flow properties (Clarke et al., 2003). The oil oxidation reaction end 

products have a noticeable impact on the oil condition which is the formation of acids 

and oil insoluble products (Möller and Nassar, 2002: 212 – 214). Oxidation of the 

engine oil gets initiated by incomplete combustion of fuels, i.e. hydrocarbons reaching 

into the oil and getting attacked by oxygen. The level of oxygen attack is determined by 

the strength of the hydrocarbon bond (Paddon, 2008). The oil impact now results from 

formed aldehydes during the oxidation process. In the first mode the aldehydes oxidise 

easily to aggressive carbon acids resulting in acidification of the oil (Tojo and 

Fernández, 2007). In the second mode at higher temperatures the oil viscosity increases 

significantly as a result of polymerisation and polycondensation (Atkins, 1988: 735 – 

737). FAME oxidation rate increases with the increasing availability of oxygen and with 

increasing temperature. Lubricant oxidation can in general be influenced by the oil 

formulation using oxidation inhibitors (McTavish and Ney, 2009-1). If the oil oxidation 

is significantly increased due to the influence of auto-oxidation of biodiesel, the 

antioxidant additives are depleted rapidly and cannot prevent further acid formation and 

increased oil viscosity. Oxidation is thus a major concern for the engine and bears the 

risk of high engine wear and accelerated breakdown. The oxidation reaction rate is 

further influenced by current engine design to meet CO

2

 regulations. Engine downsizing 

results in small, very powerful and mostly turbocharged engines driving large and heavy 

vehicles up to the luxury sector. Smaller engines have less oil volume resulting in less 

additive reserve but also higher oil temperature due to the lower heat capacity. 

Turbochargers further heat the oil more and the sum of all these effects results in high 

oxidation risk of the oil in modern engines.  
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3.4.3 Nitration 

Oil nitration is another area of concern with the application of biodiesel due to the 

different emission characteristics of biodiesel and biodiesel blends compared to fossil 

diesel. Nitration is initiated by nitrogen oxides NOx from the combustion process  

(van Basshuysen and Schäfer, 2002). NOx emissions formed in an engine are highly 

dependent on combustion temperature, along with the concentration of oxygen in the 

combustion process (Binder, 2007: 77 – 78). Most publications and studies on the NOx 

formation using biodiesel report higher NOx emissions compared to standard diesel 

(Schumacher and Borgelt, 1996; Wang et al., 2000; Kawano, et al., 2007). Higher NOx 

emissions are mainly due to the fact that biodiesel blends have a shorter ignition delay 

time. The shorter ignition delay results from the higher cetane number of biodiesel and 

increases peak pressure and temperature (Wang et al., 2000). NOx enters the crankcase 

as a mixture with the blow-by gases. It can react to form acids and promote sludge 

formation of the oil. Many different reaction pathways for NOx exist  

(McTavish and Ney, 2009-1). NOx can react to form nitrous and nitric acids, which can 

result in acidification comparable to the formation of carbon acids from the oxidation 

reaction. Sludge formation occurs directly in the oil where NOx reacts with olefins from 

the fuel in the oil and generates nitrated hydrocarbons that can further react with each 

other to form sludge. Sludge causes an increase in viscosity and bears a high risk of 

blocking the oil filter or oil gallery (van Basshuysen and Schäfer, 2002). Deposits can 

become formed causing potential piston ring sticking resulting in even more blow-by, 

fuel dilution and oxidation or nitration.  

3.4.4  Soot 

The build-up of soot in oils (‘soot loading’) when biodiesel is used should not exist for a 

proper and complete combustion of biodiesel. Many studies have shown that the 

particulate matter is reduced with biodiesel as the FAME molecule contains more 

oxygen and has a higher cetane number (Wang et al., 2000; Babu and Devaradjane, 

2003). The concerns summarised here are focused on the side-effects of the biodiesel 

application that can lead to high soot formation. Soot becomes formed during 

combustion if the air/fuel ratio approaches zero and if the fuel is not fully homogenised 

before ignition (Binder, 2007: 69 – 74). The injected fuel needs to be evaporated and 

mixed with air within milliseconds. It is therefore important that the fuel spray decays 

very quickly forming small droplets with a large surface. Two potential problems arise 

with biodiesel that can impede this fuel evaporation process. These effects could not 

only result in more fuel dilution, but also in the formation of soot. As presented earlier 

this causes the oxidation of FAME fuel to a higher fuel viscosity. 



Chapter 3 - Impact of Biofuels on Crankcase Lubricants Performance 

52 

This leads to poor and incomplete combustion due to insufficient fuel evaporation and 

can result in more soot formation (Sem, 2004; FAL, 2005). Biodiesel of poor quality 

can further affect the injectors as observed in studies and field experiences where 

injector cooking with biodiesel was reported (Choi et al., 1997; Marsh and Corradi, 

2007). The negative impact on the fuel spray will lead to incomplete combustion and 

the formation of soot. Soot loading of the oil with the application of biodiesel or 

biodiesel blend is therefore also an indicator for incomplete combustion due to 

problems with the fuel system likely caused by the biodiesel. Soot loaded oil can result 

in deposits causing further engine problems (Möller and Nassar, 2002: 470). Soot 

particles can be abrasive and increase engine wear (Sato et al., 1999). Dispersant 

additives can control a certain amount of soot in the oil but they cannot prevent 

viscosity increase with excessive soot loading. 

3.5 Bioethanol - Potential Areas of Concern for the 

Lubricant and the Engine 

Studies and publicised research work on ethanol as an automotive fuel were in the past 

mainly focused on materials compatibility and the different fuel characteristics as the 

most concerning aspect (Kapus et al., 2007). Alcohols are more reactive than 

hydrocarbons and have solvency characteristics affecting sealings, tubes and some 

metals (McTavish and Ney, 2009-2). Therefore special precautionary measures are 

required especially for cars suitable for flex fuel application. Positive aspects regarding 

the use of ethanol-containing fuels include octane enhancement and a more complete 

and cleaner combustion (van Basshuysen and Schäfer, 2002). The evaporation 

characteristic of Bioethanol is also a positive aspect as its boiling end temperature is at 

78.4 [°C] and potential side-effects of ethanol are minimised due to quick evaporation 

(Atkins, 2001: 59). Nevertheless, ethanol can build up in the oil under extreme cold 

driving and low load operation. One of the main problems with ethanol in the sump is 

due to its hygroscopic characteristics; ethanol absorbs water from the combustion and 

the atmosphere, resulting in increased water levels in the oil. Both ethanol and water 

will evaporate under normal driving conditions over a short period of time, and the 

lubricating oil can “self-heal”. However, the presence of ethanol and water in the sump 

is a concern from a lubricant point of view as it promotes the formation of acids. 
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3.5.1 Acid Formation 

Field trials operating in cold driving conditions to promote ethanol build up in the 

lubricant showed high ethanol levels > 15 % and due to the hygroscopic character even 

higher levels of water > 20 % with E85 ethanol fuel (McTavish and Ney, 2009-2). The 

main concern with the presence of ethanol and water is the formation of acid that can be 

formed in the oil at very low activation energy levels and does not require high 

temperatures as with the acid byproducts from the oxidation or nitration process. 

Unburnt ethanol reacts with oxygen and oxidises further and forms acetic acid. The 

presence of acetic acid and water in the oil bears a high risk of engine corrosion. 

Especially critical is the corrosion of soft metals like aluminium as used as bearings 

(McTavish and Ney, 2009-2). Aluminium corrosion with ethanol is primarily due to 

corrosive wear and occurs when the aluminium oxide layer gets removed and the 

surface is in contact with acetic acid. As discussed earlier the TBN reserve of the oil 

suppresses an acidification of the oil as long as a sufficient alkaline reserve exists and 

the additive components are not depleted.   

3.5.2 Sludge Formation 

Unburnt fuel from ethanol blends can cause the formation of sludge in the sump. Sludge 

formation was occasionally reported in the past mainly with the use of ethanol blends 

up to E25 with low or varying fuel qualities in markets such as Brazil, China or 

Malaysia (Herrmann, 2009). The addition of ethanol to fossil petrol increases the octane 

number and low quality fuels topped with ethanol can meet national specifications. Low 

quality petrol fuel is typically characterised by a high amount of olefins in the oil. 

Olefins are unsaturated hydrocarbon molecules that react in a similar fashion to 

unsaturated fatty acids in biodiesel. Acetic acid at low temperatures accelerates the 

polymerisation of olefins and can result in the formation of resinous products in the oil 

(Herrmann, 2009). These resinous products, when initially formed, can be held in 

suspension by the dispersants. However, if they agglomerate the compounds formed are 

too heavy for the dispersant additives to keep in suspension. The resinous products will 

thus fall out of the oil and can accumulate in the sump and form sludge or lacquer 

causing an increase in viscosity and resulting in a higher risk of further engine damage 

due to blocking of oil circulation components. Another type of sludge that can be 

formed with the application of ethanol is known as ‘white-sludge’. This effect was 

reported with the use of E85 fuel under worst case conditions causing high fuel dilution 

in the oil (McTavish and Ney, 2009-1). 



Chapter 3 - Impact of Biofuels on Crankcase Lubricants Performance 

54 

Cold conditions resulted in high levels of ethanol dilution (> 15 %) and due to the 

hygroscopic effect also resulted in high levels of water (> 20 %) in the oil forming a 

stable emulsion – appearing as ‘white sludge’. Ethanol mixes with water but is not 

miscible with lubricants. The water level with the combustion of ethanol is inevitably 

higher compared to the water level in the oil with fossil fuel. Above a certain amount of 

ethanol in the sump this results in phase separation where the ethanol-water mixture is 

the lower phase. The ethanol-water emulsion in the oil can be stable for over 18 hours 

and results in phase separation that can last for a period of weeks  

(McTavish and Ney, 2009). This effect bears a high risk of oil filter and oil gallery 

blocking especially in wintertime when the emulsion can possibly freeze and the engine 

will receive no lubrication immediately after ignition. The engine will therefore become 

damaged within minutes as no hydrodynamic lubrication film gets formed in the 

bearings and the resulting friction rapidly destroys the bearings. Dispersant additives 

can in principle solubilise water droplets and keep them in suspension unless they get 

evaporated when the oil temperature is high enough. In certain conditions the amount of 

water present can be too high for the dispersants to handle. 

3.5.3 Wear  

In comparison with the biodiesel dilution effect described earlier, ethanol/water dilution 

is only critical in applications at low engine temperatures and is not critical under 

normal driving profiles due to rapid evaporation. Ethanol is also more viscous than 

fossil petrol improving the viscosity drop with higher blends of ethanol  

(McTavish and Ney, 2009-1). Thus although the viscosity decrease is less significant in 

comparison to biodiesel, other aspects can result in worse wear under ethanol dilution. 

As mentioned earlier, ethanol is not completely miscible with lubricants. This increases 

the risk of increased engine wear, especially for those engine parts requiring high HTHS 

viscosity. Due to its solvency characteristics ethanol can also potentially remove oil 

molecules from metal surface and thus reduce the remaining oil film between metal 

surfaces. Complete separation of roughness peaks from the surfaces cannot be ensured 

and wear increases. Increased amounts of iron and aluminium wear have been observed 

in studies, but only with E85 in combination with low temperature operation (McTavish 

and Ney, 2009-2). Another concern is present with the application of modern ‘Direct 

Injection’ (DI) engines. As the fuel spray is directly injected in the combustion chamber 

high ethanol concentrations can reach the cold cylinder liner unburnt and can remove 

partially the thin oil film (Kappus et al., 2007). This will cause abrasive wear of the 

liners and the piston rings. 
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3.6 Summary 

This chapter has explored and summarised the major areas of concern regarding 

lubrication with the application of the current generation of biofuels. The risk of 

massive fuel accumulation along with the significantly increased oxidation tendency is a 

serious challenge for engine reliability. Based on the concerns summarised with 

biodiesel and bioethanol, the following risk evaluation outlines which of the biofuels is 

potentially more critical on the basis of the reviewed studies. The criteria that are 

qualitatively assessed are summarised in Table 3.1.  

   

 
Table 3.1: Biofuel risk assessment criteria 

 

   

 

 

 

   

The biodiesel risk rating is higher than the bioethanol rating due to the fact that the fuel 

accumulates in the oil regardless of the load profile. The potential of bioethanol 

accumulation is much lower and occurs only rarely under very specific conditions. The 

resulting potential impact on the lubricant is therefore more critical with biodiesel on 

the basis of the detailed investigation of existing research work. The further research 

presented in this work will therefore focus on diesel applications.  
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While increasing biofuel blends seems, at least from a legislative perspective, a 

convenient and quickly realisable instrument to ‘reduce’ global CO

2

 emissions and to 

comply with environmental protection protocols and conventions, it is questionable if 

the entire ‘CO

2

 footprint’ of agriculture, transport and the process of vegetable 

feedstock to biofuel is in sum CO

2

 neutral as is often claimed. Available studies and 

research reports discussing this topic have typically taken the stance of the lobby 

funding the individual research work. It is therefore almost impossible to derive a 

reliable statement about the actual CO

2

 benefits and ethical discussions like the ‘fuel vs. 

food’ debate have been mentioned but not fully explored. Nevertheless, it seems likely 

that biofuel blending limits will be increased in future, with ethanol blends up to E25 

and biodiesel blends up to B20 highly realistic. The intensity of the biofuels discussion 

and the actual timeline for the adoption of fuel standards permitting higher blends will 

be driven by the progress of the crude oil debate. 
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Chapter 4 

4 Oil Condition Measurement Techniques and 

the Influence of Oil Contaminants 

4.1 Introduction 

The first application of oil sensors in passenger cars was in the 1990s and was mainly 

driven by comfort aspects. The first types of sensors measured typically the oil level and 

temperature. The motivation for the use of these novel devices was first of all to 

monitor the actual oil level in the sump and therefore to replace manual measuring 

using an oil dipstick. As many vehicle users neglect a regular oil level check, the more 

convenient level monitoring with the sensor ensures a sufficient amount of lubricant to 

prevent increased engine wear or even engine failure. Another aspect was to have an 

additional onboard diagnostic functionality to inform the driver when the oil level drops 

below a critical, predefined oil level. The most common procedures for oil level sensing 

use a dielectric or an ultrasonic sensor device (Stöckl and Winterling, 1973; Zabler, 

2001). The first generation of these sensors had besides the level sensing elements also 

an integrated temperature sensor (Fleming, 2001). The measurement of the oil 

temperature provides a second data point in addition to the coolant water temperature to 

monitor the engine operation temperature. The functionality of the oil level measuring 

method was soon extended to provide the permittivity value to detect oil condition 

changes. The purpose of this was to extend the oil drain intervals in order to reduce the 

servicing costs for the customer based on their driving profile. Some load level 

indicators where evaluated from the vehicle parameters and together with the measured 

oil permittivity, the oil drain interval could be forecasted (Irion et al., 1997). One of 

these applications was launched on the market in the 2000s in the Mercedes-Benz  

E-Class as part of the ‘ASSYST’ system (Warnecke et al., 1998). 
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Due to higher oil stress caused by modern engine hardware and the globally varying 

fuel quality this has led to the motivation to further monitor the quality within the 

existing drain intervals. The ambition for oil condition monitoring today would be to 

use an oil sensor to detect oil degradation before it affects the engine. 

A summary of current oil condition sensors technology and their general measuring 

principles is provided in this chapter. Impedance, permittivity and conductivity are 

covered within the ‘dielectric measurement’. These dielectric parameters measure 

changes from the fresh oil values caused by contaminants during operation. The main 

theories about polarisation and ion conductivity will be discussed. Infrared spectroscopy 

is only used by a single sensor model and will be briefly introduced in this chapter. 

Viscosity and density are discussed within the physical oil condition parameters. From 

the indirect parameters only the indirect viscosity measurement is explained. Due to a 

lack of insight of the sensor integrated algorithms all parameters obtained indirectly by 

the sensor will not be discussed here. However, the theoretical findings of the reviewed 

work will be discussed in order to identify the main challenges with oil condition 

monitoring. The discussion will also outline why the conclusion of being able to detect 

individual contaminants from discrete correlations in reviewed key literature was 

questioned. One of the research objectives of this work will be accomplished from the 

findings at the end of this chapter. 
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4.2 Chemical Related Oil Condition Parameter 

4.2.1 Dielectric Measurement 

Permittivity is typically used in dielectric spectroscopy applications to evaluate and 

characterise systems having low conductivity and where the measurement is dominated 

by polarisation effects which is also the case with lubricants over their lifetime. The 

polarisation effect will be discussed separately. Admittance Y [S] or impedance Z [Ω] 

are in general only used in dielectric spectroscopy with mediums having a conductor or 

semi-conductor characteristic (Halalay and Schneider, 2007). The following formula 

have been derived from (Atkins, 2001; Kastner, 2001; Fichtner, 2002).  

The parameter electric flux density D



 [As/m²] and the electric field E



 [V/m] are 

typically used to describe dielectric processes and are related to the presence of 

polarisable substance by the permittivity 

r

  as defined in equation 4.1. The permittivity 

of free space is defined as 

12

0

108542.8



  [As/Vm]. 
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r



 
0

 
(4.1)  

    

Equation 4.1 can also be rewritten introducing the polarisation P



 [As/m²] which is 

proportional to the increase of the flux density caused by the presence of the dielectric 

medium. 

    

 
PED




0

  
(4.2)  

    

In most cases P



 is proportional to E



 and the relative permittivity can be defined as:  

    

 

E

P

r



0

1

1



  

(4.3)  

    

Evaluation of the dielectric characteristic is usually measured with a capacitive device 

that can be defined by the general capacitor equation 4.4 with the capacitance  

C  [As/V]. The cross sectional area of the capacitor plates is A  [m²] and the distance 

between the plates is d  [m].  
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A
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(4.4)  

    

Applying an alternating voltage  tuu  sin  [V] to a capacitor results in losses due 

to the frequency dependent influence of the conductance G  [S] as the specific 

resistivity of the dielectric material is not infinite as illustrated in the equivalent circuit 

of a real capacitor in Figure 4.1.  

   

 

 

 

   

 

Figure 4.1: AC capacitor configuration and loss tangent vector diagram 

 

 

The applied alternating voltage u to the capacitor causes the current i  to split into a 

current 

G

i   which is in phase with i   and a phase shifted current 

C

i  related to the 

imaginary part of C . The loss tangent tan   defines the ratio of the imaginary part to the 

real part and is also referred to as the dissipation factor. 

 

   

The applied alternating voltage u to the capacitor causes the current i  [A] to split into a 

current 

G

i  which is in phase with i  and a phase shifted current 

C

i related to the 

imaginary part ofC .  

    

 

 CjGujiii
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   

(4.5)  

    

The dielectric properties of the dielectric medium are expressed by the complex 

permittivity 

r

  where the real part 

'

r

  is equal to

r

  from equation 4.4. 

    

 

'''

rrr

j   
(4.6)  

    

The loss tangent tan  defines the ratio of the imaginary part of 

r

  to the real part and 

is also referred to as dissipation factor or quality factor. 
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(4.7)  

    

The admittance Y  [S] of the capacitor configuration in Figure 4.1 can now be derived 

using equation 4.4, 4.5 and 4.6 as 
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(4.8)  

    

The imaginary part of permittivity 

''

r

  in equation 4.8 expresses the losses of the 

capacitor and is a measure of how dissipative the insulating material, i.e. the oil is. The 

real part of permittivity 

'

r

  is a measure of how much energy from an external field is 

stored in the material due to the polarisation effects of the contaminants. The measured 

loss of the material 

''

r

  in equation 4.8 can be expressed as a function of both dielectric 

loss 

''

rd

   and specific conductivity   [S/m] as provided in equation 4.9. 
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(4.9)  

    

Fresh oil permittivity 

r

  for mineral based lubricants is typically in the range of  

2.1 – 2.2 [1] and increases due to the influence of polar or polarisable contaminants in 

the oil as discussed earlier. The polarisation mechanisms will be discussed in a 

separated step to understand the effect of permittivity increase during oil ageing. It 

should be mentioned that for all considerations in this work it is assumed that the sensor 

is temperature compensated as the volumetric expansion of oil can potentially lower the 

density of polar or polarisable molecules for the effective sensing area of the capacitor 

configuration and can falsify the measurement. 
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4.2.2 Multi-Frequency Impedance Spectroscopy 

Electrical ac impedance measurements performed on engine oils requires calibration of 

the measurement cell, i.e. the plates of a capacitance cell filled with oil connected to a 

frequency response analyzer or an RLC bridge (Smiechowski, 2005). The impedance of 

the cell is then measured as a function of frequency based on the general equations 

introduced in the previous section. This technique is called electrical ac impedance 

spectroscopy (abbreviated as ‘EIS’) because it involves a frequency scan with a range of 

different orders of magnitude in frequency. The typical range for engine oil 

measurements is from 10

-1

 [Hz] ≤ f ≤ 10

6

 [Hz] over which ac impedance bridges can be 

used (Halalay and Schneider, 2007). The electrical ac impedance represents the 

response of the circuit to a time varying excitation (voltage or current) and is defined 

through Ohm's law as: 

    

 

)(

)(

ti

tu

Z   

(4.10)  

    

where all quantities are complex numbers, reflecting the fact that the current and 

voltage are not necessarily varying in a synchronized fashion (Orazem and Tribollet, 

2008). The ac impedance therefore consists of a real part cos ZR  and an 

imaginary part sin ZY where  is the phase angle of the impedance. 

    

 

jYRZ   

(4.11)  

    

Oil condition sensor using multi-frequency impedance measurements typically use three 

defined frequencies, high, medium and low. At each of these frequencies only one 

parameter is usually measured (Smiechowski, 2005). At high frequencies f < 10

5

 [Hz] 

the permittivity measured correlates with the polarisability of the lubricant affected by 

the contaminants. The medium frequency 10

3

 [Hz] < f < 10

4

 [Hz] measures the real part 

of the impedance and correlates with conductivity losses occurring from ion 

conductivity. At low frequencies 10

-1

 [Hz] < f < 10

3

 [Hz] the imaginary impedance 

measured determines the content of surface active additive components. 
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4.2.3 Polarisation Mechanisms 

If the sensor electrodes are separated by a liquid medium the electric charge transport of 

a free electric charge Q  [As] is due only to the force F  [N] caused by the electric field 

E  in the medium. 

    

 EQF   
(4.12)  

    

The number of free electric charges contributing to the electric conductivity in 

lubricants is very low. The dominating electric charge transportation mechanism in low 

conductivity liquids such as lubricants is caused due to polarisation P



. The following 

equations and formulas have been derived from (Atkins, 2001; Fichtner, 2002;  

Ivers-Tiffée and von Münch, 2007).  

The three main polarisation mechanisms are the electron polarisation, the ion 

polarisation and the orientation polarisation. Each polarisation mechanism contributes 

to the overall permittivity of the oil. The measured permittivity is due to the total 

polarisation measured by the sensor and is the sum of all induced or permanent dipoles 

in the lubricant and will be discussed later in this chapter but forms of polarization will 

be reviewed first. 
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Electron Polarisation 

All atoms consist of a positive charged nucleus and negative charged electron shells. 

The application of an external electric field causes a deformation or shift of the electron 

shell as indicated in Figure 4.2. 

   

 

 

 

   

 

Figure 4.2: Electron polarisation 

 

 

The application of an external electric field E causes a deformation or shift of the electron 

shell. 

 

   

The nucleus does not move and an electric charge transport or movement occurs due to 

the applied field. Electron polarisation occurs with every substance (gaseous, liquid or 

solid) and is the only polarisation mechanism of atoms with covalent bond. The 

polarisability 

el

 of a single atom depends only on the atom radius R  and is defined as: 

    

 

3

0

4 R
el

   

(4.13)  
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Ion Polarisation 

An external electric field applied to ions in polar substances causes an elastic 

deformation of the ion configuration resulting in a shifted electric charge and thus 

increasing the electric susceptibility. Figure 4.3 illustrates the ion polarisation in the 

presence of an electric field. 

   

 

 

 

   

 

Figure 4.3: Ion polarisation 

 

 

The application of an external electric field E  to ions in polar substances causes an 

elastic deformation of the ion configuration resulting in a shifted electric charge and thus 

increasing the electric susceptibility. 

 

   

Ions in the engine oil result mainly from acid components and salts resulting from the 

oxidation and nitration processes. Ion polarisability depends on the electric charge and 

on the characteristic repulsion force defined by the ‘Boltzmann-constant k’ with 

23

10381.1



k  [J/K]. The polarisability 

ion

 of a single atom depends only on k  is 

defined as: 

    

 

k

Q

ion

2

  (4.14)  
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Orientation Polarisation 

Polar molecules have a permanent dipole arising from partial charges on its atoms. 

Permanent dipoles are distributed in the lubricant without the presence of an electric 

field. The application of an external electric field causes the dipoles to become 

orientated in the direction of the applied field as illustrated in Figure 4.4.  

   

 

 

 

   

 

Figure 4.4: Orientation polarisation 

 

 

Permanent dipoles are distributed in the lubricant without the presence of an electric 

field E . The application of an external electric field E  causes dipoles to become 

orientated in the direction of the applied field. The thermal movement of the dipoles are 

opposing a repelling moment in the opposite direction of the applied field.  The orientation, 

i.e. contributing polarisation p , in the direction of the applied field of a permanent 

dipole

0

p , depends on the angle ;  cos

0

pp . 

 

   

The thermal movement of the dipoles are opposing a repelling moment in the opposite 

direction of the applied electric field in order to achieve an equal distribution of the 

dipoles. The orientation, i.e. contributing polarisation p , in the direction of the applied 

field of a permanent dipole

0

p , depends on the angle  and is defined as: 

    

 

 cos

0
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(4.15)  

    

The polarisability of a single dipole is defined as: 
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4.2.4 Frequency Response of Polarisation Mechanisms and 

Ion Conductivity 

The frequency response of 

'

r

  contributing to the energy stored and of 

''

r

  indicating the 

energy loss with regard to the polarisation mechanisms is shown in Figure 4.5. The two 

spectrums are also referred to as dispersion spectrum and loss spectrum (Ivers-Tiffée 

and von Münch, 2007: 137 - 138). The abscissa shows the individual frequency regions 

[Hz] and indicates in which region each of the polarisation mechanisms contribute most 

to the complex permittivity values. The typical dielectric measurement frequency of oil 

condition sensors is f < 10

6

 [Hz]. The dominant polarisation mechanism measured is the 

orientation polarisation followed by the ion polarisation and then the electron 

polarisation. However, the overall frequency response of molecules forming the 

permittivity number typically results from a combination of polarisation effects. Most 

molecules are susceptible to more than one polarisation effect. 

   

 

 

 

   

 

Figure 4.5: Frequency response of polarisation mechanisms relative to frequency 

 

 

The typical dielectric measurement frequency of oil condition sensors is f < 10

6

 [Hz]. The 

frequency response of 

'

r

  contributing to the energy stored and of 

''

r

  indicating the 

energy loss with regard to the polarisation mechanisms. The dominant polarisation 

mechanism measured is the orientation polarisation followed by the ion polarisation and 

then the electron polarisation. 
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Strong dipoles that reach into the oil during operation are water, esters from the 

biodiesel and ethanol. Acids formed in the oxidation and nitration process are typically 

susceptible to orientation and ion polarisation. Soot consists of > 99 % of carbon and is 

susceptible to electron polarisation (Ivers-Tiffée and von Münch, 2007: 124). The main 

losses in this frequency region occur from ion conductivity. Changes in the lubricant 

conductivity are mainly caused by the presence of electrolytes in the oil increasing the 

ionic concentration and thus the ionic conductivity (Atkins, 2001: 188 – 189). Typical 

electrolytes are acids, bases and salts. 

The presence of contamination products such as carbonic acid from the oxidation or 

nitrous acid from the oil nitration would generally increase the conductivity due to the 

higher number of ions. The ionic conductivity is the part of electrical conductivity 

which is caused by cation and anion. With ionic conductive substances the charge 

transport is due to mass transfer, i.e. the diffusion of the charged ions. The conductivity 

is provided as an equivalent molar conductivity with the symbol   in [(S·cm²)/mol] 

based on the conductivity   and the concentration c . Typical ionic conductors or 

electrolytes are in the liquid state of aggregation. Acids, bases, saline solutions or 

molten salts apply to this category. The contamination mechanisms in the oil occur with 

all the oxidation and nitration by-products or acid combustion products reaching into 

the oil. If more than one ionic substance is present in a medium all individual 

conductivity values sum up to the overall ionic conductivity based on equation 4.17.   
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(4.17)  

    

where the charge number of the ions is 

i

z , the ionic concentration is 

i

c , Faraday’s 

constant is Fd [C/mol], the diffusion coefficient is 

i

D [m²/s], the gas constant is 

314472.8R [J/(mol·K)] and temperature is T [K]. 
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4.2.5 IR – Spectroscopy 

The electromagnetic wave spectrum can be divided into several different wavelength 

areas. The infrared area is subdivided into near-infrared (NIR, IR-A) with wavelength 

of (0.75 – 1.4 μm), short-wavelength infrared (SWIR, IR-B) with (1.4 – 3 µm),  

mid-wavelength infrared (MWIR, IR-C) with (3 – 8 µm), long-wavelength infrared 

(LWIR, IR-C) with (8 – 15 µm) and far infrared (FIR) with (15 – 1,000 µm) wavelength 

(Byrnes, 2009: 21 – 22). The IR analysis is based on interaction of photons and 

molecules. Energy transfer occurs in the way of molecule rotation, molecule oscillation 

and electron excitation (Boeker and Grondelle, 1999: 329 – 332). The infrared spectrum 

for analysis purposes is typically a graphical representation of the IR-transmission over 

the wavelength. The measured parameters with IR-spectroscopy are usually based on 

either the transmission or the absorption which is then plotted on the axis of the ordinate 

in IR-graphs (Bell, 1972). The transmission illustrates the IR-transmittance through the 

medium as a function of wavelength. The transmission 

IR

T  represents the intensity if the 

IR-beam passing through the medium I , divided by the intensity of the initial  

IR-beam 

0

I , see equation 4.18. If no energy is absorbed  1
IR

T  100% is passed 

through (Kauppinen and Hollberg, 1997).  
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(4.18)  

    

For oil condition analysis purposes the IR-absorption A  per measuring distance [A/cm] 

is a widely used laboratory analysis method. The absorption is defined as the logarithm 

to the base of 10 of the inverse transmission (Mitra and Kebbekus, 1998). 
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(4.19)  

    

The interpretation of spectra becomes simplified as specific absorption bands, (also 

referred to as group frequencies,) can be assigned to specific molecular parts  

(Meislish et al., 1977). Tables are available to look up the absorption bands for the 

molecules or molecular parts of interest in order to be able to interpret the IR-analysis 

results. IR-spectroscopy is widely used in laboratory oil analysis. The IR-oil condition 

sensors could in general be used to detect certain substances like soot or polymers in the 

oil.
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It can also be programmed to measure other bands such as for oxidation by-products. 

Due to reliability concerns and cost issues, an automotive application is very unlikely. 

This measurement principle is therefore only presented in this work to provide a more 

complete technological overview.  

 

4.3 Physical Related Oil Condition Parameters  

4.3.1 Quartz Resonator Viscosity/Density Measurement  

Influence of Liquid Properties on Quartz Resonator 

The influence of mass absorption on quartz resonators was theoretically defined by 

Sauerbrey (1959). The resulting frequency shift 

m

f  [Hz] is given in the ‘Sauerbrey 

Equation’ as: 
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(4.20)  

    

with an electrode area A [m²], mass loading m [kg] and a fundamental resonance 

frequency    df
QQ

 2//

0

  [Hz] depending on the piezoelectric stiffened elastic 

constant 

Q

  [Pa], the density 

Q

  [kg/m³] for quartz and the thickness d  [m]. Equation 

4.20 shows that for a defined resonant configuration the frequency shift is linear with 

mass loading. Based on Sauerbrey’s work Kanzawa and Gorden (1985) presented an 

empirical model to determine the resonant frequency shift due to loading with a liquid 

having the viscosity 

L

  and the density

L

 . 
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(4.21)  

    

The complex oscillation characteristic of quartz in a liquid media cannot be simulated. 

Models are used to describe the electrical behaviour of the quartz and to obtain 

feedback of physical media properties in terms of viscosity and density. The most 

common equivalent circuit model is the ‘Butterworth-van-Dyke Model’ (BVD-Model) 

(Liebau, 1998). Figure 4.8 shows the simple BVD-Model to introduce the parameters. 
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Figure 4.6: Simple Butterworth-van-Dyke model 

 

 The oscillating quartz mass is expressed by the inductance L , the mechanical elasticity 

by the capacitor 

S

C  and dissipative energy losses caused by radiation and friction 

defined by R . The only ‘real’ existing physical value is the parallel capacitance 

P

C   from 

the plate capacitor defined by the electrode/quartz substrate. 

 

   

The oscillating quartz mass is expressed by the inductance L [H], the mechanical 

elasticity by the capacitor 

S

C  and dissipative energy losses caused by radiation and 

friction defined by R . The only ‘real’ existing physical value is the parallel capacitance 

P

C  from the plate capacitor defined by the electrode/quartz substrate with 

rQ

 as the 

quartz permittivity, 

El

A  the electrodes area and 

Q

d  the quartz thickness. 
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(4.22)  

    

The other entire model parameters are related to 

P

C  as summarised below (Liebau, 

1998). 
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with the piezoelectric coupling coefficient 

0

K  and the number of harmonics h .  
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(4.24)  

    

where 

S

 [1/s] is the series resonant frequency.  
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R  includes the quartz viscosity 

Q

  [Pa·s] and 

66

c is a quartz constant. The interaction 

between the physical oil properties of viscosity and density and the influence on the 

electrical properties of the resonator are now derived. These equations are the 

theoretical fundamentals for all quartz resonator applications or modes. The individual 

application of the most common viscosity measuring application in liquid media is the 

‘BVD-Model’ and according to Figure 4.6 this is expanded to include the fluid 

properties of viscosity and density of the quartz resonator configuration. The following 

brief descriptions of the ‘Thickness Shear Mode’ and the ‘Tuning Fork’ flexural 

resonator will only be focused to highlight the specific aspects of each device.  

 

Thickness Shear Mode (TSM) Resonator 

Crystalline quartz based ‘Thickness Shear Mode’ (TSM) resonators, also referred to as 

‘Quartz Crystal Microbalance’ (QCM), are widely used as mass-sensitive devices to 

measure the properties of liquid or gaseous media (Martin et al., 1994; Kaspar et al., 

2000). TSM sensors consist of an AT-cut quartz disc with electrodes patterned on both 

sides of the disc (Hauptmann, 1990: 158 – 160). An electrode in direct contact with the 

measuring media is not favourable as the media could affect the electrode, i.e. acid oil 

contaminants could corrode the electrode. Vectron therefore developed the ‘Thickness 

Shear Mode – Monolithic Piezoelectric Sensor’ (TSM-MPS) geometry where both 

electrodes are placed on the bottom side of the quartz disc within the housing and are 

therefore not in contact with the oil. Only the quartz surface is exposed to the medium 

(Schweyer et al., 1997). TSM sensors typically operate in a frequency range of 5 – 30 

[MHz] (Kaspar et al., 2000). When excited at resonance the crystal vibrates and causes 

in-plane displacement of the quartz. Surface oscillation radiates a damped shear wave 

into the contacting fluid with a decay length typically in [μm] depending on the fluid 

viscosity and density where 

s

f  [Hz] is the series resonance frequency of the undamped 

device (Kanazawa and Gordon, 1985). The decay length  is given by the equation 

4.26. 
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Tuning Fork (TF) Flexural Resonator 

‘Tuning Fork’ (TF) resonators are made of mono crystalline quartz typically cut in the 

x-y plane and are known for stable resonant frequency (Dobrinski et al., 2007). 

Electrodes of opposite polarities are positioned on adjacent sides of the prongs. A 

sinusoidal electrical voltage is then applied to the prongs and induces a mechanical 

stress which leads to a periodic, elastic bending of the resonator material. This vibration 

produces a corresponding electrical current through the electrodes. The time between 

stimulating a sinusoidal voltage and the resulting sinusoidal current depends on the 

electrical impedance of the system. This impedance is a function of the excitation 

frequency, the elastic properties of the material, the hydrodynamic properties of the 

sensor surface, and the physical properties of the surrounding medium. The geometry of 

the prongs also defines the resonant frequency which for the oil condition sensor 

application is 768,32

0

f [Hz] (Matsiev, 1999). The TF technology for oil condition 

monitoring was developed by Symyx and is currently used by Hella/Symyx and 

Measurement Specialties (Bennett et al., 2006; Dobrinski et al., 2007). Matsiev (2000) 

found that the acoustic waves from the elastic bending process radiate into the 

contacting fluid with a decay length   as defined by equation 4.26 for the TSM. In 

contrast to TSM resonators, there is no theory or equation available to connect the 

Tuning Fork flexural resonator response, i.e. frequency shift f  to the properties of the 

surrounding liquid. Flexural resonators produce a far more complicated three-

dimensional hydrodynamic flow in a liquid than the simple one-dimensional decaying 

viscous wave produced by TSM resonators (Matsiev, 1999). A controller measures the 

electrical current produced by the stimulation of the ‘Tuning Fork’ with a sinusoidal 

alternating voltage of 768,32

0

f  [Hz] via the sensor electrodes. The impedance is 

then calculated and provides together with the excitation frequency and the measured 

oil temperature, a digital signal at the sensor data interface. An external microcontroller 

calculates the dynamic viscosity, density, permittivity, and the conductance by 

application of a mathematical ‘fit algorithm’ developed by Hella and based on the 

electromechanical equivalent model according to the ‘BVD-Model’ for the TF 

application (Dobrinski et al., 2007). The mechanical and hydrodynamic influence of the 

surrounding medium is described in the ‘BVD-Model’ by a term Z(ω), which is given 

for the Tuning Fork according to the following equation  

(Buhrdorf et al., 2005: 292). 

    

 

   jBjAZ  1  
(4.27)  
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In equation 4.27 the surrounding medium is described by the dynamic viscosity and the 

specific density and  is based on the TF resonant frequency. The values A and B are 

geometrical factors that in normal measurement conditions only depend on the resonator 

geometry and mode of oscillation. In practical applications the first step is to determine 

the vacuum parameters from one frequency sweep of the unloaded TF sensor. In the 

next step the sensor is submerged into a reference fluid with known density and 

viscosity, and another frequency sweep of the sensor impedance (now in the fluid) is 

performed. The parameters A and B are now determined. The sensor is now fully 

calibrated and ready for measurements. Finally, during the measurements, frequency 

sweeps are continuously performed, and the unknown values of fluid density, viscosity 

and dielectric permittivity are evaluated by the ‘fit algorithm’ within the sensor 

microcontroller. 

  

4.3.2 Indirect Viscosity Measurement 

Oil level measurements with a capacity device within a tube-like sensor configuration 

offer the possibility of an indirect viscosity measurement using the capillary viscosity 

measurement principle (Möller and Nasser, 2002: 177). The fundamental principle is 

based on the ‘Hagen-Poiseuille’ equation (Spurk, 1996: 160 – 164): 

    

 

lV

tpr








8

4



  (4.28)  

    

where r  [m] is the inner radius of the tube, p [Pa] is the pressure loss over the tube 

length, t [s] is the flow time of the medium, V


 [m³/s] is the volume stream per second 

and l [m] the tube length. Substituting the pressure loss over the tube length by the 

product of density, gravity 81.9g [m/s²] and the hydrostatic pressure height h [m]  
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(4.29)  

    

and the kinematic viscosity  can then be obtained, which gives: 
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Daimler evaluated in a former research project viscosity measurement with the Temic 

QLT 75G sensor based on oil movement, i.e. the change of the measured oil level with 

this sensor to derive the viscosity based on equation 4.30 (Lorenz, 2007). The effect of 

low viscosity results in fast level change over time and high oil viscosity has the 

opposite effect. The system uses the oil movement in the sump when the vehicle brakes 

and no lateral acceleration is measured, which is schematically illustrated in Figure 4.7. 

   

 

 

 

   

 

Figure 4.7: Oil movement during braking (Lorenz, 2007) 

 

 Braking causes an oil level change h .With the stream diameter of the sensor A  the level 

change defines an oil volume stream V


 which goes into the ‘Hagen-Poiseuille’ equation 

to derive the kinematic viscosity  .   

 

   

Figure 4.8 shows the measurement of the oil level during braking of the vehicle 

indicated by the two straight slopes that are calculated by measuring the fluid level at a 

time t and after a defined time of xxx [ms] again. The measurement is triggered by a 

signal on the vehicle bus which indicates that the vehicle brakes and no lateral 

acceleration occur at the same time. The parameters in Figure 4.8 are ’Viscosity 

Gradient down’  dVGN _  when the oil flows out (down) of the capacitor due to the 

negative acceleration from the braking and ’Viscosity Gradient up’  uVGN _  when the 

oil flows back upwards after the braking sequence. The measurement frequency is 

selected to be fast enough to measure level changes even with inclined gradients.  
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Figure 4.8: Viscosity gradient number during braking (Lorenz, 2007) 

 

 

The oil level measurement h during braking of the vehicle is indicated by the two straight 

slopes that are calculated by measuring the fluid level at a time t and after a defined time 

of xxx [ms] again. The parameters are ’Viscosity Gradient down’  dVGN _  when the oil 

flows out (down) of the capacitor due to the negative acceleration from the braking and 

’Viscosity Gradient up’  uVGN _  when the oil flows back upwards after the braking 

sequence. 
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The viscosity measurement is now based on the following equations and with regard to 

Figure 4.7 where A [m²] represents the stream diameter of the sensor. 
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With equation 4.30 this provides the final equation to derive the viscosity value from 

the relative oil movement and is given by: 
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This algorithm was developed by the Daimler R&D Department to use an established 

and reliable oil level sensor to generate the permittivity value and also a viscosity 

measurement. The benefit of this approach is to use a well-known and reliable device 

with the Temic QLT sensor. The viscosity values are not as accurate as data from quartz 

resonator sensors, however the sensor has proven to work reliably and the indirect 

viscosity measurement is a very cost efficient solution. The viscosity measurement 

needs a precise longitudinal oil movement to obtain more accurate results. 
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4.4 Main Challenge with Oil Condition Monitoring 

With regard to the initial research objective the following theoretical discussion 

introduces a novel view about what is identified by the sensor during engine operation. 

Figure 4.9 provides a graphically representation of the approach to condition monitoring 

and outlines the key challenge which will be developed as a theoretical basis to the 

discussion.  

   

 

 

 

   

 

Figure 4.9: ‘Black-box’ model of the oil circuit 

 

 

The model parameters that we have certain knowledge of are the initial fresh oil value of 

permittivity, the conductivity and viscosity. Multiple oil contamination occurs during engine 

operation which affects the oil to an unknown intensity illustrated by each box where 

n indicates the number of molecules  . The aim of the condition monitoring and the oil 

condition parameters measured by the sensor (permittivity, conductivity and viscosity) is 

to obtain a correlation to the oil condition without having any prior knowledge about the 

actual oil consistency resulting in any polarisability, conductivity or viscosity. The oil circuit 

is assumed to be a ‘black-box’ approach as it is not possible to know the actual condition 

of the oil without a complete oil analysis. All that is ‘seen’ by the sensor element is the 

resulting value of an unknown quantity of influencing parameters which will affect the 

initial value. 

 

   

For this model the parameters that we have certain knowledge of are the initial fresh oil 

value of permittivity, the conductivity and viscosity. As outlined in Chapter 3 multiple 

oil contamination occurs during engine operation which affects the oil to an unknown 

intensity. The aim of the condition monitoring and the parameters measured by the 

sensor is to obtain a correlation to the oil condition without having any prior knowledge 

about the actual oil consistency resulting in any polarisability, conductivity or viscosity. 

These effects are illustrated by each box where n indicates the number of molecules  

affecting the oil. 



Chapter 4 - Oil Condition Measurement Techniques and the Influence of Oil Contaminants  

79 

The oil circuit is assumed to be a ‘black-box’ approach as it is not possible to know the 

actual condition of the oil without a complete oil analysis. All that is ‘seen’ by the 

sensor element is the resulting value of an unknown quantity of influencing parameters 

which will affect the initial value. In adopting this critical standpoint, the following 

theoretical considerations support the position of this initial hypothesis. All of the 

present measurement techniques are ‘sum parameters’ and a subsequent separation of 

individual effects with only one value, e.g. permittivity, conductivity or viscosity is not 

possible. 
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4.4.1 Theoretical Influence of Multiple Contaminants on the 

Permittivity Value 

Table 4.1 outlines typical permittivity values of the key contamination substances and 

provide an indication in what direction and with what intensity these effects can 

potentially influence the overall permittivity value. 

   

 
Table 4.1: Permittivity values and influencing direction of key contaminants 

 

   

 

 

 

   

Most of the substances are, with different intensity, susceptible to one or more of the 

previously discussed polarisation mechanisms. To quantify the overall polarisability 

contributed by the presented mechanisms, see equations 4.13, 4.14 and 4.16, the 

‘Clausius-Mossotti-Equation’ is usually applied (Atkins, 1988: 594; Ivers-Tiffée and 

von Münch, 2007: 131): 
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From equation 4.36 it can be derived that the resulting permittivity of any medium 

depends only on the polarisability contributed by each molecule within the volume 

exposed to the alternating electric field of the sensor element. Based on the possible 

contamination effects it must be hypothesised that during engine operation the initial 

fresh oil polarisation distribution defined by the sum of lubricant and contaminant 

molecules is continuously changing. Following this consideration the product n  in 

equation 4.36 can be replaced by  
sum

n  summarising all the effects identified in 

Figure 4.9. 
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From the illustrated dispersion and loss spectrum in Figure 4.5 it can be seen that even 

with a multi-frequency approach the traceability of individual contaminants using 

dielectric measurement is questionable as the spectrum does not change for f < 10

9 

[Hz]. 

All sensors for automotive applications use frequencies f < 10

6 

[Hz] due to cost and 

electromagnetic compatibility reasons. There is currently no proven evidence about the 

actual benefits from using multiple-frequency measurements to obtain more detailed 

results. The difficult aspect here is to interpret the results correctly if differences can be 

measured. Table 4.1 outlines the intensity and direction of the permittivity of key 

contaminants. As the contamination effects in the lubricant are very complex and occur 

simultaneously it is not possible to draw conclusions from the different measurement 

results at various frequencies. The conclusion for the permittivity value with regard to 

the summarised theoretical facts is that all contaminants, except fossil fuel, increase the 

polarisability and therefore the permittivity of the lubricant. This summative parameter 

is measured by the sensor and a subsequent differentiation into the individual 

degradation effects requires additional information such as from an additional sensor. 

The strategy of processing the input signals within an oil condition algorithm will play a 

crucial role in predicting the current contaminant situation. 
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4.4.2 Theoretical Influence of Multiple Contaminants on the 

Conductivity Value 

Table 4.2 outlines the typical conductivity values of the key contamination substances 

and gives an indication in what direction and with what intensity these effects will drive 

the overall value. The conductivity values vary significantly with temperature and 

concentration. The values provided therefore only provide an indication of the expected 

intensity and direction of influence (Römpp, 2009).  

   

 
Table 4.2: Conductivity values and influencing direction of key contaminants 

 

   

 

 

 

   

The ‘Nernst-Einstein-Equation’ defines that the resulting conductivity of electrolytes is 

mainly based on the number of charged ions and the ionic concentration, see equation 

4.17. Table 4.2 indicates that especially the acid degradation products increase the ion 

conductivity significantly. Fuel, regardless if fossil diesel or biodiesel (B100) does not 

affect the lubricant conductivity noticeably. It must be considered that this value can 

vary due to the use of additives in the fuel which increase the conductivity to prevent 

electrostatic charging. However, as with permittivity, the conductivity is a summative 

parameter and individual components cannot be precisely identified solely on the 

conductivity value. 
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4.4.3 Theoretical Influence of Multiple Contaminants on the 

Viscosity Value 

Table 4.3 provides the absolute viscosity value for fresh oil and the relative viscosity 

change with each of the listed contaminants. The reason for this approach is based on 

the fact that contaminants like soot or polymerisation products are not liquid or gaseous 

and therefore by definition have no viscosity. With the presence of these substances in 

the oil, the kinematic viscosity changes in accordance with the concentration of each 

contaminant as shown in Table 4.3.  

   

 
Table 4.3: Viscosity values and influencing direction of key contaminants 

 

   

 

 

 

   

All results obtained are from observations of used oil analysis showing the individual 

contamination effects. Fuel and soot is relative to weight-% [wt-%] and oxidation and 

nitration is related to IR-absorption per centimetre [A/cm]. Three different chemical 

mixture processes are present as the contaminants mix with the oil. They are divided 

into homogenisation (mixing of soluble liquids), emulsification (mixing of limited 

soluble products) and suspension (mixing of solids in liquids). Homogenisation occurs 

with fuels mixing with the oil or acids formed in the oil. However, the amount of acids 

in the oil is too low to affect the viscosity value and has therefore not been listed in the 

table. 
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Emulsification is present with oxidation or nitration by-products resulting in jelly-like 

long chained polymerisation products. Suspension occurs with soot loading of the oil or 

solid abrasion elements in the oil. Modern oil formulations can keep a certain amount  

(~ 3 – 4 %) of solid substances in suspension to maintain the viscosity but this effect is 

not considered here. As the viscosity is also temperature dependent the kinematic 

viscosity at 100 [°C] is the reference value for all data. The values presented therefore 

only provide an indication of the expected intensity and direction of influence.  

During operation the lubricant can therefore be considered as a blend of different 

viscosity mixtures. Each blend component included in the engine oil is considered as an 

individual dilution and can be characterised by the individual kinematic viscosity υ  

[mm²/s]. (Evaporation, volatilisation losses and temperature effects are not considered 

here). The ‘Viscosity Blend Number’ (VBN) for any substance is given as (Maples, 

2000): 

    

 

   975.108.0lnln534.14  VBN  

(4.38)  

    

The VBN of the final blend can be derived by the definition from Kendall and Monroe 

(Stepina and Vesely, 1992): 
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where χ

A

 to χ

n

 are the mass fraction of each blend component, i.e. oil with the different 

contaminants. The overall kinematic viscosity is derived by solving equation 4.38 for υ: 
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Equation 4.40 shows the resulting viscosity value that is measured by the viscosity 

sensor. This shows that the sum of blend components determine the viscosity. A 

subsequent separation of the individual effects based on the measured viscosity value is 

therefore not possible.  
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4.5 Summary 

This chapter presented the theoretical sensing principles of current oil condition sensors. 

It also illustrates how the lubricant contaminants can affect each of the sensor 

parameters. The intention was to summarise all underlying theoretical aspects in order 

to build a pathway to the key challenge – the presence of multiple contaminants in the 

oil and the resulting effect on the sensor data. The aim was to move by this theoretical 

investigation one step forward based on the status of research in this area outlined in 

Chapter 1. The theoretical research outlined that the major oil sensor parameters of 

permittivity, conductivity and viscosity are all summative parameters. Also without 

knowledge of the oil constitution is it not possible to derive information which 

individual effect has led to a sensor data change, as illustrated in Figure 4.10.  

   

 

 

 

   

 

Figure 4.10: Viscosity values and influencing direction of key contaminants 

 

 

All major oil sensor parameters of permittivity, conductivity and viscosity are summative 

parameters. Without knowledge of the oil constitution is it not possible to derive 

information of which the individual effect has led to a change of the individual sensor data. 

 

   

The next quantitative research step is to investigate the strength and significance of each 

of the main contaminants on the permittivity, conductivity and viscosity value based on 

used oil analysis data. The aim is to determine which of the concurrent effects has a 

dominating influence on the sensor data. A summary of the underlying effects in this 

chapter will be beneficial to justify or explain the quantitative findings of the results in 

the next chapter.  
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Chapter 5 

5 Characterisation of Lubricant Contaminants 

Influence on Sensor Data 

5.1 Introduction 

This chapter will investigate and characterise the interactions of the identified key 

lubricant contaminants fuel, soot, oxidation and nitration on the sensor parameters of 

permittivity, conductivity and viscosity. As the research will use empirical oil analysis 

data, a brief illustration will present how the data for this research was generated and 

retrieved. The definition and requirements of the selected data will be provided and will 

establish an understanding of the data generation. A discussion of the potential errors in 

the raw data and how these can be detected, corrected or eliminated will show how 

carefully the data was screened before the first statistical pre-analysis was undertaken. 

The first step in the characterisation of the data uses correlation analysis, both visual 

and calculated, to identify if a linear model of the sensor data is sufficient to 

characterise the interactions of the oil contaminants. The characterisation of strength 

and significance of the lubricant contaminants and functions of the contaminants uses 

multiple regression analysis. The outcome of this chapter will provide information 

about the oil condition assessment and monitoring to understand the most dominant 

effects in the oil, that cause changes in the sensor data. 
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5.2 Empirical Data Source – Oil Diagnosis System 

Oil analysis data was retrieved from an oil analysis database called ‘Oil Diagnosis 

System’ (ODIS). The purpose of this database is to store all engine oil analysis data 

from vehicle trials and engine bench test runs. Oil samples are taken in fixed intervals 

during all vehicle or engine tests. These oil samples are internally analysed in the 

chemical laboratory at Daimler. The purpose of this regular oil analysis during engine 

development is to monitor all oil analysis values in order to detect irregular values 

during testing before an engine failure occurs. Another reason for this analysis is to be 

able to trace differences in the oil data that might have occurred with different test 

profiles or modified engine setups. Figure 5.1 illustrates the process from taking the oil 

sample from the engine to the final output of the data analysis. 

   

 

 

 

   

 

Figure 5.1: ODIS oil analysis and storage steps 

 

   

According to this sequence, the oil samples are taken from the vehicle or engine and are 

analysed by the Daimler oil laboratory. The analysis is based on standardised test 

procedures and specifications as well as internal test methods defined by Daimler. Table 

5.1 outlines which analysis methods were applied with regard to the key lubricant 

contaminants and the oil sensor values. Most analyses are based on DIN standards or, if 

no standard exists, on Daimler internal standards. Table 5.1 also provides an indication 

of the typical accuracy of each method if this is not defined in accordance with the 

standard or method. The permittivity and conductivity measurement is related to the 

dielectric measurement of the oil condition sensors presented in the previous chapter.  
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Table 5.1: Sensor and oil parameters in the ODIS lab analysis content 

 

   

 
Analysis / Measurement Unit Standard Accuracy 

Permittivity  [1] DAI n.a. 

Conductivity [pS/cm] DAI n.a. 

kinematic Viscosity – 100 [°C] [m²/s] DIN 515

  

 2 (1999) ± 0,7% (max) 

Diesel fuel – 350 [°C] [wt. - %] DIN 51380 (1990) ± 0.8% (max) 

FAME [wt. - %] DIN 51380-2 (n.a.) ± 0.4% (max) 

Soot [wt. - %] DIN 51452 (1994) ± 10% (max) 

Oxidation [A/cm] DIN 51453 (2004) ± 5% (max) 

Nitration [A/cm] DIN 51453 (2004) ± 5% (max) 

 

 

   

The sum of the fossil and FAME diesel fuel, outlined in Table 5.1, will be used as the 

‘fuel’ value for all further studies in this work. This definition is consistent with the real 

situation in the oil sump where both fuel components are present at the same time and 

are mixed to give an overall fuel value which affects the sensor measurement. 
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5.3 Empirical Data - Definitions and Requirements 

The empirical data population for modelling and statistical analysis in this research was 

selected by the criteria explained below. The following requirements were drawn for 

each data set in order to provide a representative analysis outcome: 

 Contaminants - The oil analysis data needs to contain complete measurements of the 

key contaminants fuel, soot, oxidation and nitration. The fuel data value for the 

further analysis will be the sum of the measured fossil fuel and the measured biofuel 

content. The two types of fuel will not be investigated separately. The fuel which is 

considered herein is only diesel and biodiesel respectively as Chapter 3 outlined the 

potential higher reliability risk. 

 Sensor data - The previous investigation and discussion of commercially available 

oil condition sensors identified permittivity, conductivity and viscosity as the most 

established lubricant condition monitored parameters for automotive applications. 

The oil analysis investigated will therefore only consider analyses that contain this 

data. All the sensor data was measured off-line in the laboratory as illustrated in 

Figure 5.1. Permittivity and conductivity was measured at 100f  [kHz] and 

provides comparable results as with the actual on-board sensors. As viscosity is 

strongly temperature dependent all measurements are taken at 100 [°C] to have a 

fixed and comparable point.  

 Engine – The most critical lubricant degradation effects potentially occur in practice 

with the use of biodiesel. Therefore only diesel engine oil data will be considered in 

this investigation. Analysis results were only selected where the ‘comment’ row for 

the analysis did not indicate potential failures or irregular observations of the engine 

during the test run. This could result in higher levels of particular contaminants that 

cause a distortion in the measurement of other contaminants.  
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 Load profile – The derived data samples cover the full bandwidth of load profiles 

from engine test bench to vehicle test runs. This provides a general picture for all 

potential engine applications. Typical engine test bench and vehicle trial 

programmes include high load with DPF regeneration, low load with idling, cold / 

hot climate testing, transient load cycles, urban test cycle and accelerated conditions 

such as trailer operation or high speed tests. The oil analysis data from the vehicle 

tests were generated with different car models, all with the same engine type. The 

empirical data therefore aims to have the highest possible consistency for oil 

degradation occurring for an extensive range of operational profiles. 

 Fuels – The data samples contain oil analysis data from test runs which were 

conducted with complete fossil diesel fuel (B0) and various biodiesel blends 

according to current European fuel standard (B5/B7) and test fuel up to B10 RME. 

This provides good correlation with applications where the actual biodiesel level in 

standardised fuel can vary with every filling. B10 test fuel is the only fuel which has 

a constant level of 10 [wt.-%] FAME with every batch.  

 Engine oils - The oils in the sample data used for analysis are approved service-fill 

oils from different lubricant manufacturers according to Mercedes-Benz 

specification ‘MB 229.31’ and ‘MB 229.51’ and the current diesel factory-fill oil. 

No particular oil was chosen as a basis for the study. This definition is consistent 

with application behaviour as during an engine lifetime different engine oils are 

used either for the oil drain or as a top up during the drain interval. Oil analysis 

results were completely removed if the type of engine oil was not correctly labelled 

or could not correctly be determined. If the infrared spectroscopy measurement 

could not correctly identify the type of used oil, a note in the ‘comment’ row of the 

analysis documentation indicates a potential oil mixture or unidentifiable oil.  



Chapter 5 - Characterisation of Lubricant Contaminants Influence on Sensor Data 

91 

5.4 Potential Source of Errors in the Empirical Data 

The Ishikawa diagram in Figure 5.2 presents the potential sources of error in oil analysis 

raw data (Ishikawa, 1990). The aim is therefore to consider the potential effect on the 

data, for each cause of error. The Ishikawa Diagram does not indicate scale of error, but 

assumes that any error can have the same scale of impact and thus to identify the 

number of errors is important. Another issue to consider is if the error might be 

identifiable in the raw data set and which method could be applied to detect the faulty 

data. The measure of how a detected error may be eliminated or corrected is also 

provided. A qualitative estimation of the potential impact on the data accuracy and the 

probability of such an error is summarised based on the experience of best practice. The 

discussion of potential errors in the data outlines the principle of removing faulty values 

of raw data from the empirical oil analysis data set. This will improve the accuracy of 

the subsequent modelling and statistical analysis and prevent the occurrence of having 

outliers or noise in the data which will distort the results. The details of this failure 

consideration are provided in Appendix A. 

   

 

 

 

   

 

Figure 5.2: Ishikawa-diagram: Potential error sources in oil analysis data 

 

 

Qualitative summary of main error reasons in the oil data – the effects are not weighted. 

Errors caused by people form the largest group of potential error sources in the raw oil 

analysis data.  

 

   

It is noticeable that errors caused by people form the largest group of potential error 

sources in the raw oil analysis data. The only instruments to identify resulting outliers in 

the sensor parameters are visual methods such as bivariate correlation plots and box-

plot diagrams (Fox, 2008: 37 - 49). 
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The raw data inspection of conductivity has turned out to be very difficult as the data is 

noisy and no clear bivariate correlations could be observed to identify outliers. The 

focus of the data cleaning was therefore necessary for the permittivity and viscosity 

values.  

If the visual inspection indicated potential outliers for a sensor parameter, the 

plausibility was checked based on the data plots and the theoretical influences identified 

in Chapter 4. The particular analysis of potential outliers was cross-checked if the 

measured level of one or more lubricant contaminants provided potentially outlying 

sensor parameters. If this plausibility check proved to be valid, the analysis data was left 

in the complete data set. If no logical reasons from the oil analysis data could be derived 

then this particular oil analysis was discarded from the data set. It is important to 

establish that deleting implausible single analysis results is the only way to achieve 

accurate data for the statistical analysis.  
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5.5  Empirical Data Analysis 

The purpose of examining the empirical data is to characterise which contaminant or 

combination of contaminants influences the oil condition sensor data. Over 180 oil 

analysis data sets were used for this investigation. Initially, over 220 raw data sets were 

first checked for errors or potential outliers as described. The first step of the 

investigation used a bivariate correlation plot matrix which allowed a first qualitative 

assessment of the visual correlations. The subsequent correlation analysis according to 

Pearson verified if a linear relationship exists between the dependent sensor data and the 

independent engine oil contaminants (Mohr, 2003). The derived correlation factors 

together with the shape of the scatterplots were used as an indicator to determine the 

most suitable approach for the multiple regression models. One of the key research 

objectives of this work was to investigate and assess the concurrent influences of the 

contaminants on the sensor data. A multiple regression model will therefore be used to 

investigate the strength and significance of the influencing parameters and to derive a 

knowledge base for this field of research (Fox, 2008). The sensor data forms the 

dependent variables and the contaminants are the independent or explanatory variables 

of the mathematical model. The statistical tools to conduct the following data analysis 

were Minitab 15 and Matlab R2009a. 

 

5.5.1 Matrix Plot – Lubricant Contaminants vs. Sensor Data 

Figure 5.3 shows the scatterplot matrices of the over 180 selected measurement data 

points for each parameter. The dependent sensor variables permittivity, conductivity 

and kinematic viscosity are plotted on the ordinate. The predictor or independent 

variables are the major lubricant contaminants of fuel dilution, soot, oxidation and 

nitration and are plotted on the abscissa.  
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Figure 5.3: Matrix plot – oil and sensor data correlation 

 

 

The blue dots represent empirical used diesel engine oil data. The correlation between the 

contaminants fuel, soot, oxidation and nitration and the sensor data permittivity, conductivity 

and viscosity is assessed. Permittivity shows good correlation with soot and oxidation. No 

clear correlation between any of the contaminants and conductivity. Viscosity correlates with 

fuel, soot and oxidation.  

 

   

Based on a visual inspection of the data from the matrix plot the following correlation 

trends can be observed:  

 The predictor variables soot and oxidation generally increase in a linear fashion with 

permittivity.  

 Nitration shows very moderate correlation with permittivity, and a lot of scatter 

between 0 and 5 [A/cm].  

 The fuel plot shows also only a low correlation with permittivity.  

 There is no clear correlation observable between any of the contaminants and the 

conductivity value.  

 Fuel, soot and oxidation are linearly correlated with kinematic viscosity.  

A significant negative slope of the viscosity can be observed with increasing fuel.  
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 Increasing soot and oxidation values show a positive correlation with viscosity. 

Nitration shows no correlation with viscosity.  

From a visual inspection of the interactions of the main contaminants of the sensor data 

with regard to the theoretical findings in Chapter 4 the following correlations are clearly 

identifiable. For permittivity and viscosity the interactions and observed trends are 

clearly identified as expected from a theoretical standpoint. It was expected that 

nitration would have had a stronger impact on all of the parameters. However, the 

overall nitration of the used oil analysis samples is low and the resulting acidification is 

probably too low. The correlation results for conductivity are surprising as it was 

expected that the contaminants which cause the formation of acids such as oxidation 

and nitration and also soot as a partially conducting substance, and would have had a 

clear influence on conductivity. However it might require higher concentrations in the 

oil to measure a significant response. 
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5.5.2 Correlation Analysis 

The aim of the correlation analysis was to assess if a quantitative linear relationship 

exists between the dependent sensor data and the independent engine oil contaminants. 

The null hypothesis that was tested defined H

0

: r(X

i

, Y

i

) ≤ |0,5| indicating that no linear 

correlation between the dependent and independent variable exists. The alternative 

hypothesis was defined as H

a

: |0,5| < r(X

i

, Y

i

) ≤ |1| indicating the assumption of a linear 

relationship between the two rows of data. The threshold of r < 0.5 was sufficient for 

this analysis as some scatter remained even after the initial data inspection. The values 

used for the statistical analysis have proved to be reasonable from the initial data 

screening. The remaining scatter indicates the complexity in the analysis due to the 

contrary influences on the sensor data. Table 5.2 shows the results of the correlation 

analysis. The correlation analysis provides for each value the corresponding p-value 

from the significance test based on F-statistics (Mohr, 2003). The significance level to 

test the hypothesis is defined as p < 0.05. 

   

 
Table 5.2: Correlation analysis matrix  - oil contaminants vs. sensor data 

 

   

 

 
Fuel Soot Oxidation Nitration 

Permittivity r = - 0.104 r = 0.932 r = 0.758 r = 0.463 

 p = 0.123 p < 0.001 p < 0.001

  

  p < 0.001 

Conductivity r = 0.098 r = 0.189 r = 0.161 r = 0.211 

 p = 0.143 p = 0.004 p = 0.016 p = 0.002 

Kin. Viscosity r = - 0.741 r = 0.582 r = 0.439 r = 0.198 

 p < 0.001 p < 0.001 p < 0.001 p = 0.003 

 

 

   

On the vertical axis of the correlation matrix in Table 5.2 are the dependent sensor 

variables. On the horizontal axis are the influencing variables fuel, soot, oxidation and 

nitration.  

 Fuel shows no correlation with permittivity confirming the null hypothesis and the 

result is not significant.  

 Soot and oxidation have a very strong positive correlation with permittivity so the 

null hypothesis can be rejected and the result is significant.  

 Nitration shows no correlation with permittivity confirming the null hypothesis, the 

result is significant.  
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 Fuel, soot, oxidation and nitration show no correlation with conductivity and the 

null hypothesis of no linear relationship of the variables on conductivity is 

confirmed. Except for fuel the results are significant.  

 Fuel has the strongest correlation with viscosity which is negative and the result is 

significant and the null hypothesis can be rejected. 

 Soot correlates with viscosity and the result is statistically significant, the null 

hypothesis can be rejected. 

 Oxidation and nitration show no correlation confirming the null hypothesis and the 

results are statistically significant. 

The correlation analysis has shown that not all lubricant contaminants correlate in a 

linear way with the sensor parameter. Conductivity particularly has shown no clear 

linear trend in the analysis. The analysis verified that the linear multiple regression 

model to investigate the multiple influences on the sensor data is not sufficient.    
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5.5.3 DoE Modelling of Sensor Data to Characterise Oil 

Contaminants Influence 

The previous correlation analysis in section 5.5.2 provided a first indication of the 

existence of linear relationships of oil contaminants and sensor data. However, the 

correlation analysis was a discrete and linear analysis where the bivariate correlations 

were examined individually. Multiple regression analysis was used to obtain a ‘Design 

of Experiments’ (DoE) model which expressed the relationship between the dependent 

sensor variables permittivity, conductivity and kinematic viscosity and the concurrent 

independent contaminants fuel, soot, oxidation and nitration. The model enabled an 

examination of the strength of the explanatory variables on the sensor data. This 

research step provides knowledge about the dominating effects within the ‘black-box’ 

oil sump that have an impact on the measured sensor data. A closer look to the 

curvature of the bivariate scatterplots in Figure 5.3 indicates, that the curvature for 

recognisable correlations is either linear or changes in an exponential fashion without 

changing directions. The selected DoE model enables an investigation and assessment 

of the concurrent influences and the individual strength of the sensor data based on used 

oil analysis data using a 2

nd

 order polynomial regression model. The ‘Multiple 

Regression Analysis’ (MRA) and the ‘Analysis of Variance’ (ANOVA) were applied to 

examine the strength and significance of the identified main contaminants for each 

sensor parameter (Fox, 2008). The following analysis presents the results derived from 

the nonlinear multiple regression model for each of the dependent variables, i.e. 

permittivity, conductivity and kinematic viscosity at 100 [°C]. The explanatory 

variables are scaled before the regression analysis to provide better comparability of the 

regressor effects. This was necessary as from Figure 5.3 it is recognised that the 

contaminants have a different absolute range of values. The presentation of the 

regression data is summarised in the tables 5.3, 5.4, 5.6, 5.7, 5.9, 5.10 and will be used 

to examine the model parameters in more detail. The first column shows the individual 

coefficient value. The second column shows the standard deviation of each coefficient 

which provides an estimate of the reliability of the coefficients estimate which is 

influenced by measurement noise and assumed model structure. 



Chapter 5 - Characterisation of Lubricant Contaminants Influence on Sensor Data 

99 

The third column of the table contains the t-value from the distribution test (Fox, 2008). 

The t-statistics tests whether each estimated coefficient β
i
 has a significant influence on 

the dependent variable. The initial null hypothesis for testing each single coefficient is 

defined as H

0

: β
i

 = 0 versus H

a

: β
i
 

 

≠ 0, i.e. the coefficient has an influence on the 

dependent variable. The significance level for the t-test value is p < 0.05. The p-value is 

given in the fourth column indicating the significance level in order to assess the 

probability and whether the coefficient contributes to the model. 

If the p-value indicates for a certain coefficient that the null hypothesis is valid,  

i.e. p > 0.05, the particular explanatory variable or function of more than one 

explanatory variable will be removed from the regression model and the analysis will be 

repeated. If the significance test identifies non-significant explanatory variables or terms 

that can be ruled out due to logical grounds then the principle of marginality is applied  

(Fox, 2008: 135) This specifies that a model including a high-order term should also 

include the lower-order ‘relatives’ of that term, i.e. the main effects that compose the 

interaction. The iteration of the regression analysis therefore starts with the individual 

removal of the highest order terms

2

nm

X , then the product terms of functions of more 

than one explanatory variable 

onm

XX   and then the lowest order terms with one 

explanatory variable

nm

X . The derived regression equation together with the 

adjusted R² value defines the percentage of the dependent variable in the nonlinear 

regression equation. Based on the final regression model is the overall quality of the 

model tested using the ANOVA data. The main part that is used is the F-statistics 

testing the significance of the coefficient of determination R² to assess the overall 

quality of the model (Fox, 2008). The null hypothesis is defined as H

0

: β
i
 = β

i+1
 =…= 

β
i+n

 = 0 expressing that none of the coefficients contribute to the overall quality of the 

model. The null hypothesis can be rejected if the alternative hypothesis defined as H

a

: at 

least one β
j
 

 

≠ 0 is confirmed and the corresponding p-value of the F-statistics indicates 

the result is significant. 
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Permittivity Model 

The initial full nonlinear regression model of the permittivity value is provided by 

equation 5.3.  
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(5.3)  

    

The full coefficient list together with the t-values and the corresponding p-values are 

summarised in Table 5.3 indicating which explanatory variables or functions of 

explanatory variables are not statistically significant to model the permittivity value. 

   

 
Table 5.3: Initial regression model – predicted variable: Permittivity 

 

   

 
Multiple Regression Analysis 

Predictor Coefficient Standard 

Deviation 

t p 

Constant 2.4594 0.0108 228.4735 < 0.05 

Fu

  

 l 0.0267 0.0222 1.2030 0.2307 

Soot 0.1306 0.0205 6.3787 < 0.05 

Oxidation 0.0256 0.0619 0.4135 0.6798 

Nitration 0.0493 0.0574 0.8584 0.3919 

Fuel² -0.0061 0.0107 -0.5732 0.5673 

Fuel*Soot -0.0055 0.0134 -0.4097 0.6826 

Fuel*Oxidation 0.0816 0.0269 3.0326 < 0.05 

Fuel*Nitration -0.0714 0.0398 -1.7933 0.0747 

Soot² -0.0133 0.0112 -1.1795 0.2399 

Soot*Oxidation 0.0798 0.0348 2.2942 < 0.05 

Soot*Nitration -0.0895 0.0384 -2.3333 < 0.05 

Oxidation² -0.1052 0.0439 -2.3964 < 0.05 

Oxidation*Nitration -0.0989 0.0954 -1.0368 0.3013 

Nitration² 0.1776 0.0754 2.3553 < 0.05 

 

Standard Error of 

the Estimate 

R² Adjusted R²  
  

0.0245 94.96 % 94.54 % 
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Analysis of the coefficients of the permittivity model shows clearly that not all 

explanatory variables or functions of explanatory variables contribute to the model with 

statistical significance, i.e. p < 0.05. Based on the defined iteration rule the  

non-significant explanatory variables are removed from the model starting with the 

highest order term, i.e. soot², then the permittivity is re-modelled without this term. 

Terms which can be ruled out based on grounds of logic are also removed from the 

model. This procedure is repeated until all explanatory variables are statistically 

significant. The final result is a polynomial regression model for permittivity after 

several iterations containing only empirical significant and theoretical defensible 

variables and is provided in equation 5.4. 

    

 

 

Oxidation

SootFuelOxidationSootFueltyPermittivi





1.0

16.002.047.2,,

 

(5.4)  

    

The full coefficient list of the final permittivity model together with the t-values and the 

corresponding p-values is summarised in Table 5.4. This also includes the R² values, 

indicating the percentage of the permittivity variable which can be explained by 

reference to the combined influence of the remaining explanatory variables. 

   

 
Table 5.4: Final regression model – predicted variable: Permittivity 

 

   

 
Multiple Regression Analysis 

Predictor Coefficient Standard 

Deviation 

t p 

Constant 2.4718 0.0063 389.7502 < 0.05 

Fuel 0.0241 0.0046 5.2484 < 0.05 

Soot 0.1628 0.0053 30.8417 < 0.05 

Oxidation 0.0999 0.0098 10.2332 < 0.05 

 

Standard Error of 

the Estimate 

R² Adjusted R²  
  

0.0285 93.04 % 92.93 % 
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The strength of the coefficients contributing to the final permittivity regression model is 

visualised using a bar chart, see Figure 5.4. All of the coefficients with the related error 

bars are statistically significant and outline which explanatory variable, i.e. lubricant 

contaminant has the most dominant impact on the permittivity value. The bar chart of 

the corresponding t-test values outlines the significance of each of the coefficients to the 

derived permittivity model, see Figure 5.5. The critical t-test value to assess the 

significance of each explanatory variable is (t

95

 = 1.6525) (Mohr, 2003), see Figure 5.5. 

   

 

 

 

   

 

Figure 5.4: Final permittivity model - strength of coefficients 

 

 

Each bar indicates the strength of the coefficient to contribute to the permittivity model. Soot 

plays a major role in predicting permittivity followed by oxidation. The influence of fuel is 

comparatively small.  
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Figure 5.5: Final permittivity model - significance of coefficients  

 

 

Each bar represents the significance of the particular coefficient to contribute to the 

permittivity model. The red lines represent the critical t-test value (+/- 1.6525). All coefficients 

to the permittivity model are statistically significant. 

 

   

From the regression model results in Table 5.4 and the charts in Figure 5.4 and 5.5 it is 

clear that soot plays a major role in predicting permittivity. Oxidation also has a 

considerable influence on permittivity. The influence of fuel on the permittivity is 

comparatively small. 

All of the coefficients are positive confirming the theoretical discussion in the previous 

chapter that all chemical changes in the oil result in increasing polarisable components 

causing an increase in permittivity.  

 The results for soot and oxidation fully align with the expectations from the 

theoretical considerations.  

 The statistically significant influence of fuel can be explained by the amount of 

biodiesel in most of the fuel that has contaminated the oil having a higher 

permittivity than fossil fuel. 
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 An interesting result is that nitration does not play a role in predicting the model as 

the resulting acids from the nitration process normally increase the polarity of the oil 

from theoretical aspect. The reason for these findings is that it is most likely due to 

the low overall nitration value compared to the significantly higher oxidation 

content in the used engine oils derived from the empirical data.  

 Another interesting observation is that interactions of the explanatory variables do 

not have an effect on the permittivity data and it is only the main effects of the 

contaminants soot, oxidation and fuel that cause permittivity increase.  

 The adjusted R² value in Table 5.4 indicates that 92.93 % of the variability in 

permittivity can be explained by reference to the combined influence of fuel, soot 

and oxidation, which is a very significant result. 

 The ANOVA summary for permittivity as a function of fuel, soot and oxidation in 

Table 5.5 contains the F-test value and the p-value of the complete model F = 798.2, 

p < 0.05. From the F-table the required critical value of (F95 = 1.26) can be derived 

(Moore, 1999). Since F(calculated) >> F(table) the null hypothesis can clearly be 

rejected. This result proves that the derived model as a whole reflects a real and 

significant association between the dependent variable permittivity and the 

independent explanatory variables as a group. 

   

 
Table 5.5: ANOVA – predicted variable: Permittivity 

 

   

 
ANOVA 

     

 
df Sum of Squares Mean of Squares F p 

Regression 3 2.1161 0.7054 798.1988 < 0.05 

Residual 179 0.1582 0.0009   

Total 182 2.2743    
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Conductivity Model 

The initial full nonlinear regression model of the permittivity value is provided in 

equation 5.5.  
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 (5.5)  

    

The full coefficient list together with the t-values and the corresponding p-values 

indicates which explanatory variables or functions are not statistically significant. 

   

 
Table 5.6: Initial regression model – predicted variable: Conductivity 

 

   

 
Multiple Regression Analysis 

Predictor Coefficient Standard 

Deviation 

t p 

Constant 2.1209 0.4505 4.7077 < 0.05 

Fuel 0.4605 0.9275 0.4965 0.6202 

Soot 1.1424 0.8566 1.3336 0.1841 

Oxidation 0.6662 2.5916 0.2571 0.7975 

Nitration -0.5493 2.4018 -0.2287 0.8194 

Fuel² -0.3492 0.4488 -0.7781 0.4376 

Fuel*Soot 1.3950 0.5614 2.4849 < 0.05 

Fuel*Oxidation -0.0916 1.1263 -0.0813 0.9353 

Fuel*Nitration -0.5220 1.6672 -0.3131 0.7546 

Soot² 1.0162 0.4706 2.1596 < 0.05 

Soot*Oxidation 1.1047 1.4550 0.7592 0.4488 

Soot*Nitration -1.4564 1.6060 -0.9068 0.3658 

Oxidation² -1.4445 1.8372 -0.7862 0.4328 

Oxidation*Nitration 2.6037 3.9931 0.6520 0.5153 

Nitration² -0.9743 3.1562 -0.3087 0.7579 

 

Standard Error of 

the Estimate 

R² Adjusted R²  
  

0.3924 13.88 % 6.7 % 
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Analysis of the coefficients of the conductivity model shows that almost none of the 

explanatory variables or functions of explanatory variables contribute to the model with 

statistical significance, i.e. p < 0.05. The final result of a polynomial regression model 

for conductivity after the defined re-modelling iterations contains only empirical 

significant and theoretical defensible variables and is provided in equation 5.6. 
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(5.6)  

    

The full coefficient list of the final conductivity model together with the t-values and 

the corresponding p-values is summarised in Table 5.7. This also includes the R² values, 

indicating the percentage of the conductivity variable can be explained by reference to 

the combined influence of the remaining explanatory variables. 

   

 
Table 5.7: Final regression model – predicted variable: Conductivity 

 

   

 
Multiple Regression Analysis 

Predictor Coefficient Standard 

Deviation 

t p 

Constant 1.8652 0.1923 9.7015 < 0.05 

Fuel 0.7626 0.2234 3.4130 < 0.05 

Soot 1.3397 0.2772 4.8331 < 0.05 

Fuel*Soot 1.0676 0.3276 3.2594 < 0.05 

Soot² 1.0998 0.3326 3.3070 < 0.05 

 

Standard Error of 

the Estimate 

R² Adjusted R²  
  

0.3751 12.48 % 10.51 % 
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The strength of each of the coefficients contributing to the final conductivity regression 

model is visualised using a bar chart, see Figure 5.6.  

   

 

 

 

   

 

Figure 5.6: Final conductivity model - strength of coefficients 

 

 

Each bar indicates the strength of the coefficient to contribute to the conductivity model. Soot 

plays a strong role in predicting conductivity followed by the influence of fuel. Oxidation and 

nitration do not contribute to the model. The error bars are relatively large compared to the 

permittivity model. 
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The bar chart of the corresponding t-test values for each predictor outlines the 

significance of each coefficient against the critical t-test value, see Figure 5.7. 

   

 

 

 

   

 

Figure 5.7: Final conductivity model - significance of coefficients  

 

 

Each bar represents the significance of the particular coefficient to contribute to the 

conductivity model. The red lines represent the critical t-test value (+/- 1.6525). All coefficients 

to the conductivity model are statistically significant. The significance is much smaller 

compared to the permittivity model. 
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All of the coefficients are positive confirming the theoretical discussion in Chapter 4.  

 The regression model results in Figure 5.6 and 5.7 show that soot plays a strong role 

in predicting conductivity. The result for soot is as expected from the theoretical 

considerations. 

 Fuel has also a considerable influence on conductivity. The strong and statistically 

significant influence of fuel provides an interesting observation and can be 

explained by the amount of conducting additives in modern fuels which prevent 

electrostatic charging. 

 An unexpected finding is that the acids formed in the oxidation and nitration process 

do not play a role in predicting the model since the resulting acids where expected to 

increase the ion conductivity from a theoretical basis. The potential reason for these 

findings could be that ionic conductivity caused by the formed acids from oxidation 

and nitration require higher acid concentrations in the oil to be clearly measurable. 

The used oils still had enough alkaline reserve to prevent a stronger acidification of 

the oil leading to more ion conductivity.  

 The adjusted R² value in Table 5.7 indicates that 10.51 % of the variability in 

conductivity can be explained by reference to the combined influence of soot and 

fuel which shows a very poor result with regard to the result for permittivity.  

 The ANOVA summary for permittivity as a function of soot and fuel in Table 5.8 

contains the F-test value and the p-value of the complete model F = 6.34, p < 0.05. 

Since F(calculated) > F(table) the null hypothesis can be rejected. This result proves 

that the derived model as a whole reflects a real and significant association between 

the dependent variable conductivity and the independent explanatory variables as a 

group. However, the model has a very low overall quality compared to the findings 

for permittivity. 

   

 
Table 5.8: ANOVA – predicted variable: Conductivity 

 

   

 
ANOVA 

     

 
df Sum of Squares Mean of Squares F p 

Regression 4 29.0983 7.2746 6.3460 < 0.05 

Residual 178 204.0471 1.1463   

Total 182 233.1454    
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Kinematic Viscosity @ 100 [°C] Model 

The initial full nonlinear regression model of the kinematic viscosity with all possible 

explanatory variables and functions of it is provided in equation 5.7.  
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(5.7)  

    

Table 5.9 presents the complete coefficient calculation together with the significance 

test results for each variable.  

   

 
Table 5.9: Initial regression model – predicted variable: Viscosity 

 

   

 
Multiple Regression Analysis 

Predictor Coefficient Standard 

Deviation 

t p 

Constant 11.3477 0.2549 44.5066 < 0.05 

Fuel -3.0338 0.5249 -5.7794 < 0.05 

Soot 0.4867 0.4848 1.0039 0.3169 

Oxidation 8.2646 1.4667 5.6348 < 0.05 

Nitration -4.0864 1.3593 -3.0063 < 0.05 

Fuel² 0.8209 0.2539 3.2325 < 0.05 

Fuel*Soot -0.2919 0.3177 -0.9191 0.3594 

Fuel*Oxidation -1.5307 0.6374 -2.4015 < 0.05 

Fuel*Nitration 0.5077 0.9435 0.5381 0.5912 

Soot² 0.2921 0.2663 1.0968 0.2743 

Soot*Oxidation -0.5818 0.8234 -0.7066 0.4808 

Soot*Nitration 0.5636 0.9089 0.62 0.5361 

Oxidation² 1.4541 1.0398 1.3984 0.1638 

Oxidation*Nitration 6.8959 2.2599 3.0514 < 0.05 

Nitration² -5.7348 1.7862 -3.2106 < 0.05 

 

Standard Error of 

the Estimate 

R² Adjusted R²  
  

0.5603 88.35 % 87.38 % 
  

 

 

   

 



Chapter 5 - Characterisation of Lubricant Contaminants Influence on Sensor Data 

111 

The p-values of the predictor variables of the viscosity model indicate that not all 

explanatory variables or functions of explanatory variables contribute to the model with 

statistical significance, i.e. p < 0.05. Based on the defined iteration rule the  

non-significant explanatory variables are removed from the model starting with the 

highest order term, i.e. soot², and then the viscosity is re-modelled without this term. 

From theoretical considerations negative coefficients for the ‘Nitration’ values are not 

logical. The re-modelling of viscosity according to the defined procedure was repeated 

until the remaining explanatory variables are all statistically significant and theoretically 

defensible. The final result is a polynomial regression model for viscosity containing 

only statistical significant variables and is provided in equation 5.8. 

    

 

 
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(5.8)  

    

The complete table of the remaining predictors of the final kinematic viscosity model 

includes the R² values which indicate the percentage of the kinematic viscosity variable 

which can be explained by reference to the combined influence of the remaining 

explanatory variables and is provided in Table 5.10. 

   

 
Table 5.10: Final regression model – predicted variable: Kinematic viscosity @ 100 [°C] 

 

   

 
Multiple Regression Analysis 

Predictor Coefficient Standard 

Deviation 

t p 

Constant 11.1573 0.1977 56.4334 < 0.05 

Fuel -3.4735 0.2514 -13.8139 < 0.05 

Soot 0.4309 0.1286 3.3519 < 0.05 

Oxidation 3.49201 0.3459 10.0928 < 0.05 

Fuel² 0.9564 0.2368 4.0395 < 0.05 

Fuel*Oxidation -1.8080 0.3453 -5.2359 < 0.05 

Oxidation² 2.2150 0.4652 4.7619 < 0.05 

 

Standard Error of 

the Estimate 

R² Adjusted R²  
  

0.4068 87.03 % 86.59 % 
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Figure 5.8 shows the contribution of each explanatory variable and interaction of 

regressor to the final viscosity regression model and indicates which lubricant 

contaminant has the most dominant impact on the viscosity. 

   

 

 

 

   

 

Figure 5.8: Final viscosity model - strength of coefficients 

 

 

Each bar indicates the strength of the coefficient to contribute to the viscosity model. Fuel and 

oxidation are the main effects influencing the viscosity sensor value. The influence of soot on 

the viscosity value is relatively small. In the mixed term of fuel and oxidation it is fuel that 

dominates the direction towards lower viscosity. This effect might change with higher 

oxidation values. 
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The bar chart of the corresponding t-test values for each predictor outlines the 

significance of each coefficient against the critical t-test value. 

   

 

 

 

   

 

Figure 5.9: Final viscosity model - significance of coefficients 

 

 Each bar represents the significance of the particular coefficient to contribute to the viscosity 

model. The red lines represent the critical t-test value (+/- 1.6525). All coefficients to the 

viscosity model are statistically significant. The significance is high confirming the quality of 

the viscosity model. 

 

 

 

 

From the regression model results in Table 5.10 and the charts in Figure 5.8 and 5.9 the 

following observations can be drawn.  

 All of the derived results for the strength and significance of the contaminants on 

viscosity fully align with the expectations from the theoretical considerations 

defined in Chapter 4. 

 Fuel and oxidation can clearly be identified as main effects influencing the viscosity 

sensor value.  

 The influence of soot is also considerable but was expected to be higher.  
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 Fuel seems to be the most dominating effect in the interaction with oxidation due to 

the negative sign of this product. This is probably due to the fact that the 

polymerisation process of the used oils is not in an advanced stage. It can be 

expected that oxidation will dominate the product of fuel and oxidation at a certain 

point in time.  

 Again nitration does not play a role in predicting the model due to the low overall 

nitration values and due to the fact that no oil insoluble reaction products have been 

formed in the oil which would have caused an increase in viscosity.    

 The adjusted R² value in Table 5.10 indicates that 86.59 % of the variability in 

viscosity can be explained by reference to the combined influence of fuel, soot and 

oxidation which is a significant result.  

 The ANOVA summary Table 5.11 for the kinematic viscosity model as a function 

of fuel, soot and oxidation contains the F-test value and the p-value of the complete 

model F = 196.84, p < 0.05. This result proves that the derived model as a whole 

reflects a real and significant association between kinematic viscosity at 100 [°C] 

and the identified independent explanatory variables and functions of these variables 

as a group. 

 
 

 

 
Table 5.11: ANOVA – predicted variable: Kinematic viscosity @ 100 [°C] 

 

   

 
ANOVA 

     

 
df Sum of Squares Mean of Squares F p 

Regression 6 480.41 80.07 196.84 < 0.05 

Residual 176 71.59 0.41   

Total 182 551.99    
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5.6 Summary 

The research in this chapter uses empirical data of used diesel engine light duty oils to 

study the influence of the main lubricant contaminants on permittivity, conductivity and 

viscosity. The initial identification of the most suitable regression model outlined that a 

linear model is not sufficient to study the effects. The characterisation of lubricant 

influences on the sensor parameters provides information about which contaminant in 

the ‘black-box’ oil sump has the strongest impact on each of the sensor values. Changes 

of permittivity are mainly caused by soot and oxidation. However, fuel also has an 

important influence. Conductivity increases could only be verified with increasing soot 

and higher fuel content. Acid components in the oil from the oxidation and nitration 

process had no provable influence on conductivity. Viscosity increase was primarily 

caused by oxidation and by the effects of soot. Viscosity decrease is caused by fuel 

dilution which is also dominating in the interaction of fuel and oxidation based on the 

analysis which was undertaken. However, strongly oxidised oils in real applications 

cause the viscosity to increase even with fuel dilution, as the polymerisation will 

dominate the direction of viscosity change from a certain level on. This is typically not 

the case for oxidation levels within regular oil drain intervals and such effects were 

therefore not observed in this work. The impact of nitration on the permittivity and 

viscosity models would probably have been higher with higher nitration values in the 

used oils. As nitration of oils is nowadays a rare problem with diesel and gasoline 

engines the findings are justifiable (van Basshuysen and Schäfer, 2002). The quality of 

the three DoE models with regard to the R² values and the F-test values proves that the 

derived permittivity and viscosity model reflect a reliable and significant association 

between the contaminants and the sensor values. The R² and F-test value for 

conductivity proved no connection between the contaminants and the sensor values. The 

research identified that permittivity and viscosity are able to provide reliable 

information about changes of the oil condition. The modelling of an oil condition 

algorithm will therefore be based on these two values. 
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Chapter 6 

6 Oil Condition Model 

6.1 Introduction 

The previously derived characterisation of the interaction of contaminants and selected 

sensor parameters provide the starting position for the considerations in this chapter. 

The research in this chapter will go one step further in defining a new way to monitor 

the lubricant condition using permittivity and viscosity data. The aim is therefore to find 

an efficient and reliable solution to predict the current oil condition and to forecast the 

remaining oil drain mileage. The premise for a suitable condition model will be 

presented in an initial step. The intended contrast to the few existing lubricant condition 

monitoring approaches which were presented in Chapter 1 will be reviewed. This will 

provide an overview of how the monitoring concept in this research will follow an 

individual and novel pathway to assess the oil condition and the remaining oil drain 

mileage. The scheme of the condition rating algorithm is presented by subdividing the 

complete model into functional subgroups. All parts of the developed concept are 

discussed in detail and the relevant theoretical background to solve the research 

objective for each step is presented. The aim of this chapter is to provide all 

considerations and theoretical background necessary to develop the innovative 

condition model for a reliable and efficient monitoring approach. 
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6.2 Oil Condition Model Approach  

This section will provide the rationale for the selection of the intended oil condition 

rating model approach. Based on the initial literature review and the few reported oil 

condition algorithms the following aspects can be identified for the different models. 

The comparison between the classification performance of neural networks,  

Dempster-Shafer method and Bayes theorem conducted by Krallmann (2005) outlines 

that neural networks show better classification results compared to the other methods. 

Neural networks proved to work well and to provide reliable condition statements. 

Krallmann fed the raw sensor data into the neural network to obtain directly a condition 

status. The main drawback with each of these investigated methods was a lack of 

transparency of how the method derived the outcome of the condition status. Due to the 

lack of clarity in the results is it difficult to improve the outcome or to adapt the 

algorithm for dedicated applications. Neural network applications are not efficient in 

terms of ECU capacity and the actual effort-benefit ratio of such a sophisticated method 

for the few input and output data needs to be considered. The linear regression model 

developed by Lorenz (2007) provides a more suitable condition status outcome. It is 

also efficient in terms of storage and computing capacity. The analysis uses viscosity 

and permittivity sensor data to predict the fuel and soot content using a regression 

analysis. The simple threshold model as studied by Murukesan (2008) or the extended 

application of a decision tree algorithm by Dobrinski et al. (2008) use experimentally 

derived sensor values to develop thresholds to classify the raw sensor data. The benefit 

of these systems is their robustness and the computation efficiency. The accuracy of the 

results depend significantly on the defined resolution of the measurement steps. With 

this algorithm design, typically the actual underlying degradation effect is of minor 

interest as only the absolute sensor value change is assessed.   

To address the identified points of optimisation in the existing condition models and to 

focus on an innovative approach the following initial requirements of the oil condition 

model development have been formulated:        

 The lubricant rating model should provide a reliable and accurate lubricant 

statement with sufficient resolution to quickly react to sudden oil condition changes 

in order to achieve the best monitoring and remaining mileage prediction 

performance.
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 The transparency of the model should be easy to understand to follow the current 

condition prediction without expert knowledge. This will also enable easy adaption 

and transfer of the model to other engine types in future. 

 The mathematical and programmable resources should be efficient to obtain a fast 

algorithm. It must be suitable for on-board purposes complying with storage and 

processor capacity constraints of the engine control unit. 

The model will first predict the contaminants from the sensor data input and in a 

sequential step will provide a condition statement based on this prediction. It is 

proposed that this will yield the most accurate output as individual effects can be 

assessed individually to avoid interference. Chapter 4 outlined the inadequacy of using 

single, bivariate sensor information to derive the contaminant situation from theoretical 

grounds. The research in Chapter 5 identified permittivity and viscosity as the most 

reliable sensor input data. The investigation yield further the results that fuel, soot and 

oxidation are the key contaminants having the most dominant effect on the sensor 

measurements. Based on these findings, the defined requirements and the model targets 

the decision is to use a model approach based on bi-directional linear characteristic 

maps (Fox, 2008). The new idea that will be investigated for the application in this 

research work with the characteristic maps will be to assess the three-dimensional shape 

and gradient change of permittivity and viscosity to predict the fuel, soot and oxidation 

level in the oil. For each contaminant an individual map will be modelled based on a set 

of experimental data. Characteristic maps are widely used in the combustion engine 

applications and have proved to reliably model combustion or exhaust parameters that 

cannot be measured directly (Wenzel, 2006). The use of a characteristic map for oil 

condition monitoring is a completely novel approach and this investigation will verify 

the suitability for the application. 
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6.3 Scheme of the Oil Condition Rating Model 

Figure 6.1 shows the main components of the oil condition rating model. The input 

parameters of permittivity and viscosity have proved to provide the most reliable 

information of oil condition changes. 

   

 

 

 

   

 

 Figure 6.1: Oil condition rating model 

 

 

The oil condition model consists of three core elements. The initial block ‘Characteristic 

Maps – Contaminants’ is to model an individual characteristic map for fuel, soot and 

oxidation based on viscosity and permittivity. The individually predicted contaminant values 

are used as input for the next section of the algorithm the ‘Condition Status’ block to 

calculate a rating of the overall oil condition status as a percentage value starting from 0 to 

100 % with 100 % indicating fresh oil. The ‘Mileage Forecast’ block will then convert the 

derived condition status to forecast the remaining mileage until the next drain interval. 

 

   

The purpose of the initial block ‘Characteristic Maps – Contaminants’ is to model an 

individual characteristic map for fuel, soot and oxidation. These contaminants have 

proved to have a significant influence on viscosity and permittivity and are therefore 

used to derive the oil condition status. Each of the characteristic maps shall predict the 

respective contaminant based on the viscosity and permittivity input data. The 

individually predicted contaminant values are then used in the next section of the 

algorithm as the input of the ‘Condition Status’ block for the calculation of the overall 

oil condition status. The lubricant status is then estimated as a percentage value starting 

from 0 to 100 % with 100 % indicating fresh oil. The ‘Mileage Forecast’ block will then 

convert the derived condition status in percentage terms to a forecast of the remaining 

mileage to the next drain interval. The premise and considerations of each of these 

elements will be investigated in detail in the following section. 
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6.3.1 Characteristic Map Modelling 

The following explanation will develop the principal of the modelling of the 

characteristic lubricant contaminant maps (Linssen, 2010). This modelling uses the two 

input variables permittivity and viscosity and the empirical oil condition analysis data 

from the previous chapter. Figure 6.2 illustrates the principle of the applied piecewise 

bi-linear mapping procedure where x and y represent the input data and the blue dots 

represent the empirical target data where 

p

z is one data point to explain the mapping 

procedure as an example.  

   

 

 

 

   

 

Figure 6.2: Oil condition rating model 

 

 

General scheme of the bi-linear mapping procedure where x and y represent the input data 

and the blue dots represent the empirical data where

p

z  is one data point. The piecewise 

bi-linear mapping procedure uses the four surrounding map values 

5421

,,, zzzz  to predict 

p

z

 

ˆ
 using a linear regression.  

 

   

All of the plotted characteristic map values 

151

zz 
 

are unknown. As illustrated in 

Figure 6.2 the measured data point 

p

z
 

is surrounded by four map values. The area of 

these four map values 

5421

,,, zzzz  now need to be modelled around the particular data 

point 

p

z to then provide a similar predicted value 

p

z

 

ˆ
when the same input values 

p

x and 

p

y are applied to the characteristic map (Press et al., 2007: 132 – 133).  
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This procedure is repeated for all existing data points and equation 6.1 can now be 

rewritten for 

p

z in matrix format where the interpolation functions 

n

f  form a 

 pn   matrix F and the characteristic map values

n

z form the unknown  1p  

matrix

CM

Z . 

    

 

 

CMp

ZFz   

(6.2)  

    

As the matrix F and the unknown characteristic map matrix

CM

Z are modelled with the 

empiric data 

p

z then the map needs to be able to predict the values 

p

z

 

ˆ
later on with the 

input data equation 6.2 can be written as: 

    

 

 

CMp
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ˆ
 

(6.3)  

    

The position of each cell point of the map in the z-direction is modelled using the least 

square method (Fox, 2008: 79 ff.). The least square method aims to match the data 

points of the unknown characteristic map 

CM

Z as close as possible to the empiric data 

p

z to achieve an accurate prediction of 

p

z

 

ˆ
. This method therefore aims to minimise the 

sum of the squared individual residuals

i

e . 
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Using equation 6.3 in equation 6.4 results in 
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(6.5)  

    

Expanding equation 6.5 leads to equation 6.6 where the characteristic map 

CM

Z  forms 

the unknown matrix at the beginning of the modelling process. 
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A minimal grid fit error 

CM

E in the modelling requires: 
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Using the premise of the minimal error defined in equation 6.7 and the result of 

equation 6.6 will lead to equation 6.8. 
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(6.8)  

    

Rewriting equation 6.8 leads to the final equation for the unknown characteristic map 

matrix

CM

Z . 

    

   
p

TT
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(6.9)  

    

Equation 6.9 is now the general form of the linear least-square design matrix  

(Fox, 2007: 195). 

The general procedure of modelling a characteristic map to predict an unknown value 

based on a set of known input variables has now been derived in detail. If the cell of the 

characteristic map grid does not contain any data point during the modelling this 

characteristic map cell value is normally set to 0. As the existing modelling data 

typically does not fill every individual cell, this would result in a very irregular map. In 

other words, equation 6.9 will provide an undetermined set of equations, i.e. there are 

more variables in 

CM

Z  than linearly independent equations. Some type of regularisation 

must therefore be introduced. 
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To avoid this and to interpolate between adjacent quadrants containing data points 

greater than 0 requires the gridfit error 

CM

E  based on the standard error of the 

regression

E

S now to be expanded by the product of a smoothing factor and a matrix 

H containing the so called ‘penalty terms’.  

There are two possibilities to adjust the map to increase the predictive performance. 

One is to set the smoothing factor  to a fixed value and to adjust the resolution of the 

map. The other is to define a fixed matrix size of the 

CM

Z matrix and then adjust the 

smoothing factor . The trade-off with the first version is the increasing size of the 

CM

Z matrix. The coded terms of the H matrix form gradients and curvatures to bridge 

and link empty cells of the grid with adjacent cells containing data points greater than 0. 

Adjusting the map towards a finer resolution therefore causes an increase in the 

H matrix size. For automotive applications a characteristic map matrix of the size of 

about  2020 is favourable as a larger matrix requires more storage capacity. A fixed 

value of  and a varying map resolution can also lead to localised smoothing instead of 

global smoothing which is preferable to achieve a more universal map. 

The most common approach is to define the size of the 

CM

Z matrix first and then adjust 

the smoothing factor  during the modelling process. The aim is to achieve an optimum 

method between accuracy and universality of the model in terms of predicting the 

unknown data. A small smoothing factor improves the prediction of the data values and 

contributes to the accuracy expressed in the 

2

R value of the map. Attention must also be 

given to ensure that the universality is not lost if it can be expected that the actual data 

during operation can vary from the data used for modelling. The goal is therefore to 

design an optimum approach between accuracy and efficiency to achieve a smooth map 

that will allow the forecast of unknown data points during operation. The probability 

that the location of data points in the grid cells during the operation of the algorithm is 

equal to the data points used to design the map is very low. Designing the characteristic 

map therefore requires the modelling areas of the map which are not defined with data 

points during the modelling phase as some grid cells are empty. The goal is to forecast 

all unknown data points with a high accuracy in the entire mapping range. C in equation 

6.10 is referred to as the overall cost of the modelling process to interpolate between the 

non-empty quadrants in order to achieve a smooth curvature map and to forecast data 

points which were not covered during the design process. 
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Using equation 6.5 the overall costs can now be written as: 
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To achieve a minimal gridfit error, refer to equation 6.7, then equation 6.12 needs to be 

equated to 0. 

    

  

02

22

220











FzZB

FzZHFF

ZHFzZFF

Z

C

T

pCM

T

pCM

B

T

CM

T

pCM

T

CM

  





 

(6.12)  

    

Solving equation 6.12 leads again to an expression for the characteristic map 

matrix

CM

Z , which is similar to equation 6.9, but this time including the smoothing 

factor and the H matrix to forecast all values within the data range of the 

CM

Z matrix. 

The modelling of the characteristic maps in this research work was conducted using an 

expanded gridfit function (D’Errico, 2005). This is a part of the MathWorks online 

catalogue for Matlab code which is based on the presented theoretical steps explained in 

this section. The gridfit function enables the modelling of a characteristic map from a 

combination of experimental data and manual calibration. The most important aspect in 

the modelling is the definition of data points, the characteristic map size resolution and 

the smoothing adjustment using a graphic user interface (Linssen, 2010). The output of 

the map modelling consists of the 

CM

Z matrix provided as absolute values and a three-

dimensional plot of the map. The data is used to plot the correlation of the experimental 

data versus the predicted data and to calculate the coefficient of determination R² to 

assess the quality of the modelled map. The flow-chart in Figure 6.3 illustrates the steps 

involved to model each of the characteristic maps. 
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Figure 6.3: Flow-chart – characteristic map modelling 
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The first step is to initialise the input data

ii

YX , , viscosity and permittivity. The 

experimental data set contains measured or manually adapted input and output data, i.e. 

the individual contaminant

i

Z . The predicted value

pi

Z  is also initialised. The next step 

is to transform the data in order to achieve equal proportions which enable more 

accurate modelling (Fox, 2007: 66 - 68). The setup of the grid area and the definition of 

the supporting nodes require knowledge of the intended application. The typical size of 

maps to be used in automotive applications is approximately  2020  . The 

experimental data used to model the grid needs to be reviewed to define reasonable 

supporting nodes, i.e. minimum and maximum values for each map. Tuning the smooth 

curvature setup when modelling the characteristic map 

iCM

Z is the fundamental task in 

the modelling process. This step has a significant influence on the modelling outcome 

as it defines the accuracy and the robustness of the model. Every characteristic map is 

typically modelled on the basis of experimental data containing the input and respective 

output values. The map is modelled to fit around this particular data and enables to 

predict similar output values compared to the experimental data with the input values 

applied during operation. A low level of smooth curvature of the map will provide high 

accuracy to model and forecast the particular experimental data set. These maps are 

typically characterised by a very rough surface shape. Such a map will be highly 

accurate if it can be assumed that all data during the operation is nearly identical to the 

experimental data used to model this map. The trade-off of such a map is the lack of 

accuracy if the data during operation is different from the experimental data used to 

model the map. This is the general case during operation due to different input values or 

noisy data. Also since repeated measurements of the same data sample to model the 

map are not generally available, potential noise on the data needs to be taken into 

account during the modelling. For practical applications a smoother, less rough map is 

preferred as this provides higher robustness and provides better compensation of noise 

on the data. The accuracy of the iterative manual modelling process can be assessed by 

two aspects. One is the calculation of the R² value between the measured and the 

predicted value for each map. This provides a measure of the achieved accuracy of the 

map. The roughness of the map which provides information of the robustness of the 

model needs to be assessed on a visual basis. Awareness of the underlying theories and 

interactions must be taken into account in order to obtain a characteristic map that will 

reliably predict the contaminants value of interest. In most cases an iterative 

improvement process is required to model the optimal map solving the forecasting 

problem, i.e. the lubricant contaminants based on permittivity and viscosity. The next 

step after modelling the three characteristic maps to predict fuel, soot and oxidation is to 

obtain the resulting lubricant condition status. 
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6.3.2 Lubricant Condition Rating 

All the equipment of a system is subject to stress during operation. This stress causes 

damage and reduces the deterioration reserve of the particular part. If the condition of a 

part falls below a specific damage limit the functionality is no longer ensured and 

damage to the component part can occur. The damage of component parts can be 

subdivided into two main categories (DIN 40041, 1990): 

 Immediate or spontaneous damage 

 Continuous or drift damage 

The focus of the consideration with engine oil is on continuous damage of the lubricant 

during the engine operation. The damage of the oil occurs in the form of the degradation 

effects during engine operation. Immediate damage of the oil is very rare and occurs 

only in the case of mechanical engine failure such as a broken head gasket leading to 

immediate glycol dilution of the oil with a spontaneous gelling and viscosity increase. 

The characteristic of continuous damage is that the damage reserve of the operating part 

is continuously consumed and the lifetime of the part is therefore reduced and therefore 

limited. Drift damages allow a continuous monitoring and knowledge of the limit of 

damage enables the prediction of imminent breakdown. The status definition of the 

operating part requires condition monitoring and knowledge of the actual damage limit 

of the part. The following consideration is therefore focused on the definition of the 

condition status of the lubricant. The general operation and damaging process of an 

operating part is illustrated in Figure 6.4 (Sturm cited by Engelhardt, 2007: 18). The 

input variable vector U defines the usage of the operating part which causes 

corresponding stress of the part. In the case of the engine oil this is the contact with 

exhaust gases, shearing in the bearings, contact with friction surfaces in the combustion 

chamber etc. The influencing variables N are the resulting unknown disturbances, e.g. 

poor (bio-)fuel quality, soot loading or thermal stress affecting the oil condition which 

accelerate the degradation. The output variable vector Y is the remaining ability of the 

lubricant to fulfil its defined functions in the engine. The stress caused by the operation 

responds in the damaging processes which will over time influence the operating 

process. The impact due to damage or wear influences the operation and damage 

parameter and leads to different output characteristics of the operating part, i.e. oil 

condition. 
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Figure 6.4: Operation and damaging process of an operating part (Sturm cited by 

Engelhardt, 2007: 18) 

 

 

The input variable vector U defines the usage of the operating part which causes 

corresponding stress of the part. The influencing variables N are the resulting unknown 

disturbances, e.g. poor (bio-)fuel quality, soot loading or thermal stress affecting the oil 

condition which accelerate the degradation. The output variable vector Y is the remaining 

ability of the lubricant to fulfil its defined functions in the engine. The stress caused by the 

operation responds in the damaging processes which will over time influence the operating 

process. The impact due to damage or wear influences the operation and damage 

parameter and leads to different output characteristics of the operating part, 

 

   

The output characteristic of the lubricant is defined by the permittivity value which 

indicates the lubricant damage caused by polar contaminants. The viscosity value 

indicates the damage caused by effects having an impact on the flow properties. 

There are numerous methods to define the condition status which can be divided into 

five main categories (Engelhardt, 2007):  

 Direct methods 

 Indirect methods 

 Parameter based methods 

 Load/Stress based methods 

 Reliability based methods 
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The basis for all methods to describe the condition status is the processing of the input, 

influencing and output variables. In some cases it is impossible to quantify all the input 

and influencing variables. The lubricant condition monitoring is therefore only based on 

the assessment of the output variables to derive the actual condition status. A universal 

approach to describe the state condition of parts therefore does not exist. It requires an 

engineering solution to define the condition status for each operating part or application 

which meets the requested accuracy, reliability and efficiency. 

The condition status according to Reichard (cited by Engelhardt, 2007: 19 - 20) can be 

illustrated using two mathematical functions. In the step f

1

 the observation dimension O 

is the input, influencing and output variable transformed into a characteristic dimension 

C. This is expressed by equation 6.13: 

    

 
f

1

: O |R  C

m

|R

n  

(6.13)  

    

In step f

2

 is the characteristic dimension C transformed into a scalar value z representing 

the condition status of the operating part. The scalar value z is typically provided in a 

normalised fashion from 0 to 1 (Fox, 2007: 79). 

    

 
f

2

: C |R  1,0 z

n  

(6.14)  
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Figure 6.5 illustrates the general process to describe the condition of operating parts. 

   

 

 

 

   

 

Figure 6.5: Process to describe the operation condition (Engelhardt, 2007) 

 

 

The condition status can be illustrated using two mathematical functions. In the step f1 the 

observation dimension O is the input, influencing and output variable transformed into a 

characteristic dimension C. In step f2 is the characteristic dimension C transformed into a 

scalar value z representing the condition status of the operating part. The scalar value z is 

typically provided in a normalised fashion from 0 to 1. 

 

   

From the five main categories to derive the condition status of component parts the 

proposed condition rating model can be categorised to the direct methods. The direct 

method is characterised by having a sensor that measures directly or via known 

correlations, the condition of the part, i.e. the lubricant. The elements of the observation 

dimension O therefore consist only of the data of the output variables Y, i.e. the sensor 

data. This approach is in general the most accurate way to determine the condition 

status of parts (Engelhardt, 2007: 21). To obtain the actual condition status as a scalar 

value a damage threshold or limit needs to be defined. 

The predicted oil contamination from each modelled characteristic maps is compared 

with the individual damage limit. The distance from each damage limit is used to derive 

the overall oil condition rating. The definition of the damage limits for the condition 

algorithm will be considered in the following step using the stress or load based method 

(Engelhardt, 2007: 26). The stress based method evaluates the stress that affects the 

condition of the operating part. The correlation between the applied stress, i.e. the 

contaminant, and the change in the oil condition uses empirical oil analysis data. The 

principle of this method is to ascribe the applied stress, i.e. the contaminant, to the 

resulting damage or loss of initial condition of the oil.  
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All of the contaminants with significant statistical influence on the sensor data affect the 

viscosity. An assessment of the damaging influence of the contaminants on the viscosity 

data will therefore be used to define the damage limits. For the oxidation limit the loss 

of alkaline reserve expressed by the TBN value will also be taken into account. 

Permittivity proved to be the most sensitive sensor parameter to predict the contaminant 

level in the oil but it cannot be used to define damage levels of the oil caused by 

contaminants as it has no characteristic engine oil performance parameter. The selected 

data from the engine oil database consists of over 400 diesel engine oil analysis 

samples. The assessment of the damage level of the particular contaminant uses 

bivariate scatterplots. 
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Fuel Rating 

Figure 6.6 shows the viscosity value as a function of fuel dilution.  

   

 

 

 

   

 

Figure 6.6: Damage limit fuel - viscosity over fuel dilution 

 

 

The blue dots represent the used diesel engine oil data. The red line indicates the lower 

viscosity limit of 9.3 [mm²/s] for SAE 30 grade oils defined by the SAE J 300 (SAE J300, 

2009). This lower limit is defined as the damage limit for the damage parameter. From the 

data plot it can be observed that the operating parameter of viscosity starts to fall below the 

damage limit with fuel concentrations of 7.8 – 8.0 [wt-%]. The fuel damage limit is therefore 

defined as 8.0 [wt-%]. 

 

   

The characteristic dimension C is defined by the operating parameter, the kinematic 

viscosity at 100 [°C] and the damage parameter fuel 

Fuel

D on the lubricant performance. 

    

 

   %150  wtD
Fuel

 

(6.15)  

    

The red line indicates the lower viscosity limit of 9.3 [mm²/s] for SAE 30 grade oils 

defined by the SAE J 300 (SAE J300, 2009). This lower limit is defined as the damage 

limit for the damage parameter as low viscosity is critical regarding higher potential 

wear. Alternatively the accumulated fuel is prone to oxidation processes and a more 

conservative damage limit is therefore favoured. From the data plot in Figure 6.6 it is 

observed that the operating parameter of viscosity starts to fall below the damage limit 

with fuel concentrations of about 7.8 – 8.0 [wt-%]. 
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The maximum fuel damage limit 

MaxFuel

D
 

is therefore defined as: 

    

 

 %8  wtD
MaxFuel

 

(6.16)  

    

The scalar predicted condition value  iz
Fuel

 

ˆ
 is defined by the i-th predicted fuel value 

obtained from the characteristic map for fuel  iz
Fuelp

 

ˆ
 at a certain sampling point. 
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(6.17)  

    

 

Soot Rating 

Figure 6.7 shows the viscosity value as a function of soot loading of the oil.  

   

 

 

 

   

 

Figure 6.7: Damage limit soot - viscosity over soot concentration 

 

 

The blue dots represent the used diesel engine oil data. The two red lines indicate the 

upper viscosity limits of 12.5 [mm²/s] for SAE 30 grade oils and 16.3 [mm²/s] for SAE 40 

grade oils (SAE J300, 2009). From the data plot it is observed that the majority of data 

points up to 3 [wt-%] are below the upper limit for SAE 40. The soot damage limit is 

therefore defined as 3 [wt-%]. 
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The characteristic dimension C is defined by the operating parameters kinematic 

viscosity at 100 [°C] and the damage parameter soot

Soot

D  on the lubricant performance. 

    

 

   %30  wtD
Soot

 

(6.18)  

    

The two red lines indicate the upper viscosity limits of 12.5 [mm²/s] for SAE 30 grade 

oils and 16.3 [mm²/s] for SAE 40 grade oils (SAE J300, 2009). From the data plot in 

Figure 6.7 it is observed that the majority of data points up to 3 [wt-%] soot are below 

the upper limit for SAE 40. The maximum soot damage limit 

MaxSoot

D  is therefore 

defined as: 

    

 

 %3  wtD
MaxSoot

 

(6.19)  

    

The i-th predicted condition value  iz
Soot

 

ˆ
 is defined by the soot value obtained from 

the characteristic map for the predicted soot level  iz
Sootp

 

ˆ
. 
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Sootp

Soot
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(6.20)  
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Oxidation Rating 

Figure 6.8 shows the kinematic viscosity as a function of oxidation. 

   

 

 

 

   

 

Figure 6.8: Damage limit oxidation - viscosity over oxidation level 

 

 

The blue dots represent the used diesel engine oil data. The two red lines indicate the 

upper viscosity limits of 12.5 [mm²/s] for SAE 30 grade oils and 16.3 [mm²/s] for SAE 40 

grade oils (SAE J300, 2009). The data plot shows that the critical viscosity values 

exceeding the SAE 40 limit occur with oxidation level > 30 [A/cm]. The oxidation damage 

limit is therefore defined as 30 [A/cm]. 

 

 

 

 

The characteristic dimension C is defined by the operating parameters kinematic 

viscosity at 100 [°C] and the damage parameter oxidation

Oxi

D . 

    

 

   cmAD
Oxi

/400 
 

(6.21)  

    

The two red lines indicate the upper viscosity limits of 12.5 [mm²/s] for SAE 30 grade 

oils and 16.3 [mm²/s] for SAE 40 grade oils (SAE J300, 2009). The data plot in Figure 

6.8 shows that the critical viscosity values exceeding the SAE 40 limit occur with 

oxidation level > 30 [A/cm]. Lower viscosity levels in this region of oxidation are most 

likely due to the dominating thinning effects of the fuel in the oil. It must be considered 

that it is only a matter of time until the oxidation at this level dominates the viscosity 

change towards a higher viscosity level due to polymerisation. 
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The TBN against oxidation plot in Figure 6.9 is used to confirm the assessment based 

on the evaluation of the oxidation impact on the lubricant operating parameter TBN.  

   

 

 

 

   

 

Figure 6.9: Damage limit oxidation - TBN over oxidation level 

 

 

The blue dots represent the used diesel engine oil data. The generally accepted 

engineering limit in the industry to consider an oil drain is when the TBN value has dropped 

below 50 % of its fresh oil value. This is indicated by the red shaded area. The lowest 

possible TBN value that can be measured relatively accurately is 2 [mg KOH/g]. The data 

plot shows that the TBN value decreases considerably towards the oxidation value of 30 

[A/cm]. The noticeable impact of oxidation on the lubricant performance for oxidation levels 

> 30 [A/cm] is consistent with the observations of the oxidation influence on viscosity and 

confirms the damage limit for oxidation with 30 [A/cm].  

 

 

 

 

All of the used engine oils are modern low ash diesel engine oils. The low ash 

formulation was developed to prevent DPF blocking (Sappok and Wong, 2010). The 

ash reduction based on other additive components and additive treatment rates result in 

lower initial TBN values compared to conventional oil. Most fresh oil TBN values are 

in a region of 6 – 7 [mg KOH/g]. There is no hard threshold to judge when the TBN 

value has reached its limit as the TBN depletion is not a linear function over time. The 

generally accepted engineering limit in the industry to consider an oil drain is when the 

TBN value has dropped below 50 % of its fresh oil value. This is indicated in Figure 6.9 

by the red shaded area. Another issue is that the TBN value can even with today’s 

methods only be determined with an accuracy of about ± 10 %. Also the lowest possible 

TBN value that can be measured relatively accurately is 2 [mg KOH/g]. The data plot in 

Figure 6.9 shows that the TBN value decreases considerably towards the oxidation 

value of 30 [A/cm]. 



Chapter 6 - Oil Condition Model 

137 

There is only one critical TBN value that falls below the indicated engineering limit. 

However, it is apparent from the data plot that the TBN level is significantly reduced 

between 30-40 [A/cm]. The noticeable impact of oxidation on the lubricant performance 

for oxidation levels > 30 [A/cm] is consistent with the observations of the oxidation 

influence on viscosity shown earlier. A reliability focused oxidation damage 

limit

MaxOxi

D
 

is therefore defined as: 

    

 

 %30  wtD
MaxOxi

 

(6.22)  

    

The scalar predicted condition value  iz
Oxi

 

ˆ
 is defined by the i-th predicted oxidation 

value  iz
Oxip

 

ˆ
obtained from the characteristic map for oxidation. 
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(6.23)  
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Lubricant Condition Rating 

All of the assessed characteristics show a linear decreasing condition i.e. progressive 

damage. Most applications of the stress based condition evaluation method define the 

overall damage of a part or system by adding all identified individual damage values 

(Engelhardt, 2007: 27). This proposal will not be applied here as this research work has 

shown that all contaminants have an equally high potential in damaging the lubricant 

condition and subsequently the engine. To achieve maximum engine protection it is 

defined that the lowest independent rating of each of the three predicted condition 

values  iz
OxidationSootFuel //

 

ˆ
defines the overall i-th oil condition prediction  iz

Oil

 

ˆ
, refer to 

equation 6.24.  
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ˆ
,

 

ˆ
,

 

ˆ

 

ˆ iziziziz
OxiSootFuelOil


 

(6.24)  

    

The algorithm steps to derive the oil condition are schematically summarised in the 

flowchart in Figure 6.10. For each interval i the respective fuel, soot and oxidation 

prediction from each characteristic map is compared with the defined damage 

thresholds for each contaminant. The individual condition values  iz
OxidationSootFuel //

 

ˆ
 are 

predicted according to equations 6.17, 6.20 and 6.23. The predicted overall oil condition 

rating of the i-th interval is calculated according to equation 6.24. There is no rule for 

the length of the interval steps i. As the oil condition changes are in general relatively 

slow a sampling interval of 10 [km] / 6.22 [mi] for the prediction absolutely sufficient.
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Figure 6.10: Flow-chart – oil condition rating process 

 

 

 

 

 

6.3.3 Mileage Forecast 

The remaining mileage forecast algorithm presented in this section is guided by a set of 

conditions which are explained in a first step.  

Monitoring and forecasting area 

Most of the current Mercedes-Benz passenger cars have a fixed maintenance interval of 

25,000 [km] / 15,534 [mi]. The aim of the mileage algorithm concept is to forecast 

whether this regular interval can be maintained without any risk to the reliability for the 

engine due to degraded oil. As the algorithm design is conservative to maximise 

reliability, it is assumed that with the regular oil drain interval at 25,000 [km] /  

15,534 [mi] at least one of the damage limits 

nMax

D of fuel, soot and oxidation is 

reached, see equations 6.17, 6.20 and 6.23. 
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The monitoring and mileage forecast area where the algorithm operates is illustrated 

with the grey shaded area in Figure 6.11. This assumes that the fresh oil quality starts at 

100 % and is continuously consumed until the condition becomes 0 % at the maximum 

mileage. 

    

 

 

 

   

 

Figure 6.11: Remaining mileage forecasting area 

 

 

The monitoring and mileage forecast area where the algorithm operates is illustrated with 

the grey shaded area. This assumes that the fresh oil quality starts at 100 % and is 

continuously consumed until the condition becomes 0 % at the maximum mileage. 

 

 

 

 

 

Condition progress 

The general condition of the operating parts is monitored at discrete points 

ni ,3,2,1 and is assigned the following characteristic: 

    

 

 1,0
i

z  

1,,2,1

1




nizz
ii

  

(6.25)  

    

It is assumed that for all operating parts the condition status over the lifetime or the 

operating time will remain at the previous condition status or will be lower than when 

the condition status was sampled at discrete intervals, see equation 6.25. The general 

assumption is that the status of a part cannot improve during its operation without 

maintenance. The dynamic of the condition loss can be described as progressive, linear 

or degressive, see Figure 6.12. 
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Figure 6.12: Characteristic condition progress 

 

 The general assumption is that the status of a part  iz cannot improve during its operation 

without maintenance. The dynamic of the condition loss can be described as progressive, 

linear or degressive. 

 

 

 

 

One distinctive aspect which conflicts with the general condition equation 6.25 which 

needs to be taken into consideration regarding the engine oil condition is the process of 

oil top-ups. Although oil drain is regarded as the main maintenance activity where the 

oil is replaced, oil top-ups between the drain intervals where partial maintenance occurs 

must also be considered. Since the fresh oil additives can improve the condition status 

 iz
Oil

 

ˆ
of the oxidation process or can result in a thinning of the soot particles per 

volume then equation 6.26 must also be considered with equation 6.25 where 

0

I  is the 

point in time of the oil top-up. 

    

 

For oil top up: 

 1,0
i

z  

nii

IIizz
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001

,,  

(6.26)  

    

The effect of a sign reversal in the condition progress will only be temporary as the 

degradation will continue after a certain delay when the amount of fresh additives 

becomes depleted. This is illustrated schematically in Figure 6.13. By definition, the 

resulting mileage forecast cannot exceed the overall drain interval of 25,000 [km] / 

15,534 [mi] even in the case of an improvement in the oil condition due to the addition 

of fresh oil. 
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Figure 6.13: Characteristic oil condition progress – sign reversal with top up 

 

 

Oil drain is regarded as the main maintenance activity where the oil is replaced. Oil top-ups 

between the drain intervals where partial maintenance occurs must also be considered 

since the fresh oil additives can improve the condition status and can cause a temporary 

sign reversal. 

 

 

 

 

 

Mileage forecasting principle 

Models used to predict the remaining lifespan of the oil assess the condition loss 

gradient in order to identify structural interruptions in the gradient which can cause 

faster or slower condition loss. The general assessment to predict the future end of use 

of the operating part uses linear regression analysis which enables approximating the 

progress of the regression interval, see the scalar format in equation 6.27 and in matrix 

form in equation 6.28 (Fox, 2008: 79). 
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(6.27)  

    

 

  XY  

(6.28)  

    

The response variables 

i

y or respectively the  1n  response vector Y  contains the 

predicted condition value 

i

z

 

ˆ
from the previous condition rating. The regressor

i

x is a 

defined mileage sampling point where a new condition status  iz
Oil

 

ˆ
is calculated. This 

is in the matrix form defined by the  2n  design matrix X . The important aspect of 

linear regression analysis is the estimation of the unknown regression coefficients 

0

 and

1

  which is in the matrix form defined by the  12   parameter vector. The error 

terms 

i

  are in the matrix form defined by the  1n  vector . 
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Typical end of useful life prediction methods assess a retrospective interval 

 ,

 

ˆ

nW  with n  and there are three methods of defining the forecasting windowW

 

ˆ

.  

The regression using an expanding window considers all data from the current point in 

time n back to the beginning of the analysis. This results in a continuous increase in 

data. The resulting observation vector and the regressor matrix are: 
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(6.30)  

    

Changes in the gradient have a relatively low impact on forecasting the results as all the 

data, including the data before the gradient change, are used to derive the parameter 

matrix. The convergence characteristic is therefore poor. 

With the regression using a fixed window size cW 

 

ˆ

, which is referred to as rolling 

window, the amount of data used to predict the end of life can be defined individually. 

The resulting response vector and the regression matrix are:  
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(6.32)  

    

The beneficial aspect with this approach is the dimension of the window which limits 

the amount of data to adjust the precision of the prediction. If the window is too large 

the forecast will be slow and inaccurate. A small window size increases the accuracy 

but may lead to rapid changes in the forecast. However, there is no specific rule to 

choose the appropriate size of the window. By applying this method requires sufficient 

knowledge about the component to be monitored and how quickly structural 

interruptions are expected. 
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Another approach is the weighted window method where the observed condition value 

i

z is weighted by a factor

i

 . The weighting factor in this case is defined according to 

equation 6.33 (Engelhardt, 2007). 

    

 

ini 
 , with ni ,3,2,1 ,  1,0  

(6.33)  

    

This method results in an exponential weighting of the values

i

z where the latter values 

have more influence on the regression than the previous values. The resulting 

observation vector and the regressor matrix are defined as: 
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The settings of   has a significant influence on the forecast characteristic. A smaller 

value of   cause previous values to have less influence and the prediction might be 

unstable. Larger values of   have a stronger influence on all 

i

z  values and might result 

in an inert forecast performance. There are no rules to determine , and it must be 

adapted for the intended application based upon engineering judgement and experience 

(Engelhardt, 2007).  

The intended design of the mileage forecast algorithm is to achieve an efficient and lean 

solution. A low number of data points and an effective calculation approach are 

therefore being favoured to save processor and storage capacity resources. From the 

forecasting models presented the rolling window approach has been selected with a 

window size of c = 100 [km] / 62.15 [mi] and a rolling forward step size of 

x
i
 = 10 [km] / 6.215 [mi]. This means that the regression steps are 10 [km] / 6.215 [mi] 

where the window is shifted forward and the calculated condition value  iz
Oil

 

ˆ
 plus the 

9 previously examined oil condition form the response variables: 
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One condition of the algorithm is the slope which is defined in the linear regression 

as

1

 , see equation 6.27. The slope is referred to as the nominal condition loss gradient 

and is defined by the fixed maximum oil interval: 
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The only unknown value which is calculated using linear regression with the 10 values 

in the window is the offset 

0

 of the calculated regression slope at the end of the 

window. The remaining mileage 

0

x  is calculated by extrapolating from this offset with 

the nominal condition loss gradient until %0
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Figure 6.14 illustrates the mileage forecast scheme using the rolling window approach 

and the shifting of the nominal condition loss gradient based on the calculated offset. 

The orange dots represent the individual condition results in percentage within the 

defined rolling window derived from the previous condition rating.   

   

 

 

 

   

 

Figure 6.14: Rolling window remaining mileage forecasting principle 

 

 

A rolling window approach has been selected with a window size of c = 100 [km] / 62.15 

[mi] and a rolling forward step size of x

i

 = 10 [km] / 6.215 [mi]. The regression steps are 10 

[km] / 6.215 [mi] where the window is shifted forward and the calculated condition value   

plus the 9 previously examined oil condition values are used to calculate the current offset. 

The nominal condition loss gradient is then shifted, based on the offset and extrapolates to 

predict the next oil drain interval. 

 

 

 

 

The implementation of a driver information concept based on the outcome of this 

algorithm will not be discussed in this research work. 
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Figure 6.15 illustrates the algorithm using a flow chart to summarise the main steps of 

the mileage forecast calculation process. 

   

 

 

 

   

 

Figure 6.15: Flow chart mileage forecast 

 

 

 

 

One aspect that will need to be adapted for practical vehicle use is that the window is 

not only rolled mileage-wise but also time-wise. This is particularly important for 

vehicles that idle a lot such as taxis or chauffeur driven cars.   
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The time between 10 [km] / 6.215 [mi] steps may be too long to ensure an appropriate 

mileage forecast. The rolling forward mechanism therefore needs to be adapted to count 

the mileage and also the engine operation time. A reasonable sampling time must be 

evaluated and the event, i.e. sampling mileage limit or sampling time limit, that occurs 

earlier triggers the forward rolling of the window. 

6.4 Summary 

This chapter has presented the initial conditions and innovative aspects of the oil 

condition algorithm to support a reliable and efficient lubricant monitoring system. The 

model has shown three main functional blocks of the algorithm. The map modelling 

characteristic, the calculation of the condition status and the mileage forecast. The 

approach of using modelled characteristic maps to predict the current contaminant status 

can be regarded as one of the novel research outcomes of this work. The theory of the 

applied piecewise bi-linear map modelling characteristic is presented in detail to 

contribute knowledge to this research area. The oil condition rating uses the outcome of 

the predicted contaminants of fuel, soot and oxidation from the characteristic maps and 

is driven by conservative design considerations to maximise reliability. The discussion 

of the rating method includes the quantitative definition of the individual lubricant 

damage threshold for each contaminant based on used oil analysis data. The derived 

overall lubricant condition status is the key input component for the mileage forecast. 

This part of the algorithm monitors the condition status of the oil to identify the regular 

drain interval. Different forecasting models are presented and the rolling window was 

chosen as it is the most efficient approach in combination with the linear regression 

model. Flow-chart diagrams illustrate the algorithms of all three functional steps of the 

monitoring concept. The knowledge derived can therefore easily be transferred for all 

other engine types. The presentation of the lubricant condition monitoring concept is 

driven by the engineering target to minimising risk and maximise reliability, whilst also 

taking practical considerations into account such as computational and hardware 

efficiency. The next chapter will assess the performance of this monitoring concept.  
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Chapter 7 

7 Model Validation 

7.1 Introduction 

This chapter presents the results of the individual elements of the oil condition 

modelling concept. This starts with an analysis of the modelled characteristic maps for 

fuel, soot and oxidation. The condition for the modelling of these maps will be 

discussed together with an assessment of the prediction accuracy of the experimental 

data. The complete model validation consists of four consecutive steps. The first step 

was to generate an adequate data base. However, due to lack of consistent data about the 

oil, cost and efficiency it was decided to develop a vehicle simulation to generate 

artificially used oil data. The second step of the validation process was to assess the 

accuracy of the initial oil contamination data versus the outcome of the predicted values 

from the fuel, soot and oxidation map. The next step was to verify the overall accuracy 

of the lubricant condition rating on the basis of the predicted fuel, soot and oxidation 

values from the modelled maps. The final part of the validation tests the oil drain 

prediction forecast performance of the algorithm. The outcome of the model validation 

will provide a clear picture of the performance of the individual components of the oil 

condition monitoring concept presented in this research. 
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7.2 Analysis of Modelled Contaminant Maps  

The modelling of each of the characteristic maps to predict fuel, soot and oxidation in 

the lubricant was conducted using Matlab 7.8.0 (R2009a). The map modelling process 

used was an advanced gridfit function of Matlab which is available from MathWorks 

and allows the definition of the input and output data range for each map. This enables 

an optimal utilisation of the map area as the grid size is limited to  2020   in order to 

meet the ECU capability. The map area can be matched to achieve an optimal data 

distribution. A predefined area can be spanned which will only cover the expected data 

range. The viscosity range spans [6 – 18] [mm²/s] and the mesh resolution is set to 0.5 

[mm²/s] in the range from [7 – 14] [mm²/s]. The other steps are set to 1.0 [mm²/s]. This 

setup allows good modelling of the grid in the most relevant viscosity area. The 

permittivity input dimension is defined to cover the range [2.0 – 2.8] [1] and the mesh 

size is adjusted to have a resolution of 0.025 [1] in the range [2.15 – 2.3] [1]. With 

normal lubricant ageing during engine operation this area provides the most relevant 

zone. In this area the maps can be modelled with a fine mesh size to be able to detect 

the beginning of any severe degradation effects. The other mesh steps for permittivity 

are set to [0.05] [1]. The grid mesh setup allows a sufficient degree of modelling 

freedom within the limited map size of  2020  . Engineering and expert knowledge 

can be implemented to manually calibrate the maps in specific regions. This not only 

allows the map to be modelled around the limited experimental data but also to 

implement a specific response characteristic for certain parts of the map to achieve 

better commonality. The map areas can be adapted to follow a predefined shape based 

on engineering considerations to optimise individual areas. This is useful if the 

experimental data does not fully cover all areas but a typical map response is expected 

from a knowledge of the underlying effects. If the experimental data proves to be noisy 

in some areas of the map, then manual calibration can be used to model the map to fixed 

values, thus providing a meaningful output. The following data of each contaminant 

map provides the engineering conditions premise to verify the model. The coefficient of 

determination, R², provides an indication of the predictive accuracy with respect to the 

experimental data. 
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7.2.1 Fuel Map     

The fuel map model is able to predict the fuel range covering [0 – 25] [wt.-%]. The 

input dimensions of viscosity and permittivity are the same for all maps as previously 

explained. The fuel map model is illustrated using a three-dimensional plot as shown in 

Figure 7.1. where the black dots illustrate the position of the experimental data. 

   

 

 

 

   

 

Figure 7.1: Characteristic map - fuel 

 

 

The fuel map model is able to predict the fuel range covering [0 – 25] [wt.-%] fuel. The 

black dots illustrate the position of the experimental data. The shape of the map is 

dominated by the viscosity input. The main gradient changes occur when the viscosity 

decreases below 11 [wt.-%]. A strong permittivity input influence is observable, especially in 

the region > 2.4 [1] in combination with low viscosity values < 10 [mm²/s]. 

 

   

The shape of the map is modelled to introduce high viscosity dependence and 

permittivity sensitivity for higher permittivity values. The following characteristics can 

therefore be observed: 

 It is noticeable that the shape of the map is dominated by the viscosity input. The 

main gradient changes occur when the viscosity decreases below 11 [wt.-%] which 

results in an equivalent increase of the predicted fuel content.  

 A strong permittivity input influence is observable, especially in the region > 2.4 [1] 

in combination with low viscosity values < 10 [mm²/s].  
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As the experimental data did not cover the full map area manual adaption was necessary 

to improve the accuracy and commonality of the map.  

 For viscosity input of 6 [mm²/s] and permittivity > 2.4 [1] the fuel prediction is set 

to the maximum value of 25 [wt.-%]. 

 For the region of the map where the viscosity values are 6 – 14 [mm²/s] at a high 

permittivity of 2.8 [1], a linear fuel decrease from 25 – 10 [wt.-%] is modelled 

towards lower viscosity.  

 In the map area of viscosity > 14 [mm²/s] and low permittivity values the fuel map 

is set to 0 [wt.-%].  

The full fuel map matrix 

FuelCM

Z  is shown in the Appendix B and illustrates the regions 

of manual calibration. Measured viscosity loss as the key input variable mainly 

dominates the fuel prediction. High permittivity values as an indicator for polar 

substances from fuel or resulting oxidation products support this prediction. The 

challenge in the map modelling is that the experimental data only covers a subset of the 

entire map; however, the requirement is to provide the best compromise between 

accuracy and commonality for the potential input combinations. Engineering judgement 

is therefore required to find an appropriate balance between these two aspects. The 

shape of this fuel map shows high smooth curvature and is expected thus to provide a 

good commonality. The aim to model commonality with a smoother map results in 

lower R² values. Figure 7.2 shows the correlation plot of the experimental fuel values 

measured in the laboratory versus the predicted values from the modelled fuel map. The 

value of the calculated coefficient of determination R² indicates that 80.84 % of the data 

are explained by the model. 
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Figure 7.2: Accuracy of the modelled fuel map 

 

 

Correlation plot of the experimental fuel values measured in the laboratory versus the 

predicted values from the modelled fuel map. The value of the calculated coefficient of 

determination R² indicates that 80.84 % of the data are explained by the model. 
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7.2.2 Soot Map 

The operational range of the soot map to predict the soot content in the lubricant is 

defined as 0 – 4 [wt.-%]. The end of oil drain analysis show typically moderate soot 

levels in the range of 2 – 3.5 [wt.-%]. High soot levels are a typical indicator of 

combustion problems or hardware problems such as injector nozzle cooking caused by 

glycerines from the biodiesel. Figure 7.3 shows the final model of the soot map based 

on the experimental data including additional manual adaption.  

   

 

 

 

   

 

Figure 7.3: Characteristic map - soot 

 

 

The operational range of the soot map to predict the soot content in the lubricant is defined 

as 0 – 4 [wt.-%] soot. The black dots represent the position of the experimental data. The 

soot prediction is dominated by permittivity. Viscosity plays a minor role in the prediction. 

 

   

Based on the map gradients in viscosity and permittivity shown in Figure 7.3 the 

following observations can be made:  

 The soot prediction is dominated by the permittivity input.  

 Viscosity plays an inferior role as the maximum soot level is too low to cause a 

strong viscosity impact.  

 Slight changes in the gradient of the viscosity direction occur at the centre of the 

map for viscosity values of 8 – 14 [mm²/s] and permittivity values of 2.4 – 2.6 [1]. 
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Since the range of the used oil data does not fully cover equally the entire area of the 

map then minor manual adjustments are required in the upper and lower map band to 

ensure a specific response.  

 For viscosity values 6 – 18 [mm²/s] and permittivity values of 2.0 and 2.05 [1] the 

soot prediction is set to 0 [wt.-%].  

 For a permittivity of 2.1 [1] it is defined as 0.1 [wt.-%] to achieve a smooth 

transition to the start of the gradient increase in permittivity.  

 The same adjustment is manually modelled at the upper band of the map for all 

viscosity values 6 – 18 [mm²/s].  

 Permittivity values of 2.75 [1] are defined as 3.7 [wt.-%] soot.  

 The maximum soot value of 4 [wt.-%] is manually modelled at a permittivity of  

2.8 [1].  

All other map shaping is based on the experimental data with a map smoothing 

adjustment which allows the best compromise for a smooth map surface while having a 

sufficient coefficient of determination R². The full characteristic soot map matrix 

SootCM

Z   with the manually modelled areas is provided in Appendix B. The accuracy of 

the map to predict the soot content has a R² value of 88.37 % which is very good 

considering the trade-off between smoothness and accuracy, see Figure 7.4. 
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Figure 7.4: Accuracy of the modelled soot map 

 

 

Correlation plot of the experimental soot values measured in the laboratory versus the 

predicted values from the modelled soot map. The value of the calculated coefficient of 

determination R² indicates that 88.37 % of the data are explained by the model. 
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7.2.3 Oxidation Map 

The range of prediction for the oxidation is defined as 0 - 45 [A/cm] which covers the 

most relevant area to monitor the oxidation status during vehicle operation. Figure 7.5 

shows the modelled oxidation map based on the experimental data including the 

additional manual calibration. 

   

 

 

 

   

 

Figure 7.5: Characteristic map - oxidation 

 

 

The range of prediction for the oxidation is defined as 0 - 45 [A/cm]. The black dots 

represent the position of the experimental data. The map shows a relatively constant 

increase in the oxidation prediction with increasing permittivity. The oxidation increase in 

the viscosity direction starts at viscosity input levels > 13 [mm²/s] and the gradient is much 

steeper. 

 

   

The modelling of this map is based on experimental data which increased up to 

oxidation levels around 25 [A/cm]. This level of oxidation can sometimes occur and is 

below the defined damage level of 30 [A/cm].  
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From the modelled map the following observations can be summarised: 

 The map shows a relatively constant increase in the oxidation prediction with 

increasing permittivity values which is expected due to the potential acidification of 

the oil from the oxidation process.  

 The oxidation increase in the viscosity direction starts at viscosity input levels  

> 13 [mm²/s] and the gradient is seen to be much steeper compared with the 

oxidation increase in the permittivity direction. From a theoretical standpoint this is 

correct as the polymerisation is delayed due to the initial acidification of the oil.  

 An important aspect with this map is the constant oxidation increase with increasing 

input variables.  

 The slight curvature in the centre of the map results from the experimental data 

where it seems that the polymerisation process is about to begin but has not really 

affected the viscosity yet. 

To improve the prediction accuracy of the map it is manually adapted at positions where 

no experimental data were available.  

 For viscosity values of 6 – 9.5 [mm²/s] and permittivity values of < 2.1 [1] the 

oxidation prediction was defined as 0 [A/cm]. With this input combination it was 

unlikely that oxidation products in the oil would have been formed yet.  

 The map is also manually adapted for a viscosity value of 18 [mm²/s] and 

permittivity value of 2 [1]. The gradient here aims to predict oxidation in the oil 

which results from a rapid viscosity increase due to polymerisation without having a 

strong influence on the permittivity value.  

 For the complete viscosity range 6 – 18 [mm²/s] and the maximum permittivity 

value of 2.8 [1] the oxidation prediction is defined as 45 [A/cm]. 
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The full list of coefficients of the oxidation map with the manually modelled areas is 

provided in the map matrix 

OxidationCM

Z  in Appendix B. The map shows a smooth 

curvature which enables good practical application and accurate prediction results. It 

must be recognised that taking oxidation measurements in the laboratory is difficult due 

to the number of potential failures from interference with bonds in the same spectrum. 

The accuracy achieved for the modelled characteristic map as indicated by the 

calculated coefficient of determination R² gives a value of R² = 70.78 %, see Figure 7.6. 

   

 

 

 

   

 

Figure 7.6: Accuracy of the modelled oxidation map 

 

 

Correlation plot of the experimental oxidation values measured in the laboratory versus the 

predicted values from the modelled oxidation map. The value of the calculated coefficient of 

determination R² indicates that 70.78 % of the data are explained by the model. 
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7.3 Oil Condition Model Validation 

This section provides details of the steps which were required to validate the 

performance of the oil condition model in this work. It starts with an insight of the data 

which was generated for the assessment. The complete oil condition model assessment 

is subdivided into three individual components. The first part is an assessment of the 

accuracy for predicting the capability of each of the three contaminant maps. The 

statement of the accuracy of the maps in Chapter 7.2 was only provided in relation to 

the data base used to model the maps. The study in this step uses the maps together with 

a different data set to assess the predicted outcome of each contaminant. The next step 

of the model validation looks at the overall lubricant condition rating result and 

compares the rating based on the initial contaminant data with the derived rating from 

the characteristic maps. Details of the condition rating method were presented in 

Chapter 6.3. The final step of the model validation tests the algorithm’s remaining 

mileage forecasting capability. This statement will provide the most interesting 

information from a customer’s point of view as based on this information the actual 

warning or information to the driver will be generated in a real application. 

 

7.3.1 Data Generation – Vehicle Simulation 

Testing of the algorithm requires a substantial data basis. A representative number of 

vehicles need to provide the full data set consisting of the sensor data permittivity and 

viscosity as well as the oil analysis results of the fuel, soot and oxidation level in the oil. 

Furthermore the data per vehicle needs to cover the complete oil drain interval range in 

regular steps in order to assess the contaminant prediction progress and the performance 

of the remaining mileage forecast. Data covering all these requirements could not be 

retrieved from the oil data base and could not be generated from vehicle trials in the 

course of this research due to the cost and time aspects. To be able to validate the 

algorithm it was decided to use artificially generated data from a vehicle simulation 

developed in the course of this research work. The data aims to simulate the oil ageing 

process during the vehicle operation with current diesel engines. Three different types 

of vehicle usage, i.e. load profiles, were generated having individually designed 

characteristics which are summarised in Table 7.1. The ‘Taxi’ profile was designed to 

meet a typical low load operation profile with idling, stop and go and many short trip 

driving distances. 
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Most single driving distances are less than 20 [km] / 12.43 [mi] as is typical for urban 

taxi operation but also for customers with extremely short driving distances like the 

school run and shopping trips. The ‘Normal’ driver profile represents the regular driving 

characteristics where most of the trips are short to medium distance. The single driving 

distance is typically between 10 [km] / 6.22 [mi] and 50 [km] / 31.08 [mi]. This is the 

driving distance for people going to work by car every day, visiting friends or relatives 

who live not close by or who visit for instance shopping sites or cultural events on the 

weekends. The ‘Long Distance’ profile represents the load profile of a commercial sales 

representative or a business customer using the car mainly for long distances to visit 

customers or business partners where over 50 % of the single driving distances are 

further than 25 [km] / 15.54 [mi]. Table 7.1 provides a contaminant mileage dependent 

slope factor ‘Contaminant_slope’. It is defined that the fuel, soot and oxidation slope is 

decreasing with longer driving distances. With longer driving distances less fuel 

accumulation occurs as the engine and the lubricant is at the operating temperature. 

DPF regeneration can be fully completed during longer driving distances and less fuel is 

diluted into the oil due to aborted regeneration. The formation of soot particles is 

temperature dependent and less soot gets formed when the engine is operating at its 

normal temperature as this is the case with longer driving distances. The slope factor for 

oxidation is chosen to be equal to the fuel factor as the presence of fuel in the oil 

promotes the oxidation process. The simulated driving profile of Table 7.1 also contains 

distortion or noise factors for each contaminant ‘d_Contaminant’ to be able to generate 

noise on top of the random contaminant values. Due to the volatile character of fuel in 

the oil and the fact that more fuel enters the oil with short distance driving, the 

distortion factor for fuel is higher with short distances. The distortion factor for soot and 

fuel are constant as no mileage dependent effects exist. For all of the profiles, the 

mileage distribution (%), the slope factors (Contaminant_slope) and the distribution 

numbers (d_Contaminant) are based on engineering considerations and expert 

knowledge. The numbers for each profile are summarised in Table 7.1. 
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Table 7.1: Simulated load profiles   

 

   

 

Mileage  

[km]/[mi] 

0/ 

0 

0.001/ 

0.00062 

5/ 

3.11 

10/ 

6.22 

1

 

 / 

9.32 

20/ 

12.43 

25/ 

15.54 

50/ 

31.08 

75/ 

46.61 

100/ 

62.15 

Taxi % 0 6 15 25 20 15 10 5 2 2 

Normal % 0 1 2 12 15 20 25 15 5 5 

Long Dist. % 0 1 2 5 10 15 17 10 20 20 

Fuel_slope 1.5 2 4 2 1.25 1 0.95 0.85 0.6 0.3 

Soot_slope 1.5 2.25 3.25 1.75 1 0.975 0.95 0.85 0.8 0.75 

Oxidation_slope 1.5 2 4 2 1.25 1 0.95 0.85 0.6 0.3 

d_fuel 1 1 1 1 0.75 0.75 0.75 0.5 0.5 0.5 

d_soot 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

d_Oxidation 1 1 1 1 1 1 1 1 1 1 

 

 

   

The number of vehicles n = 1,000 is generated which provides a suitable data basis to 

test the algorithm. The driving profile distribution is defined as  

5 % ‘Taxi’, 65 % ‘Normal’ and 30 % ‘Long Distance’. The accumulated mileage per 

vehicle is 25,000 [km] / 15,534 [mi]. The first step of the algorithm generates the 

vehicle type by generating n_vehicle numbers block distributed [0 …1]. The numbers 

from 0.0 – 0.05 are assigned to the ‘Taxi’ profile, the numbers from 0.05 – 0.7 are 

assigned to the ‘Normal’ drivers and from 0.7 – 1 are the ‘Long Distance’ drivers. A 

loop over each of the three vehicle groups is used to generate for each vehicle in the 

particular group 20 block distributed numbers per loop. Each number is converted into a 

single driving distance using linear interpolation and the predefined distribution of the 

distance from Table 7.1. Every new generated driving distance for each vehicle is added 

to the previous generated overall mileage. This process is repeated until every vehicle 

from all three load profiles reached an overall mileage of > 25,000 [km] / 15,534 [mi] 

simulating the oil drain interval. Based on the different driving profiles and the random 

mileage the number of generated single driving distances to reach the maximum 

mileage, is different for each simulated vehicle. This approach aimed to simulate a 

variety of real customer’s driving characteristics for the data generation. As a next step 

the contaminants need to be defined. For all contaminant values are the parameter 

minimum value, maximum value and the damage value defined which is assumed to be 

reached at the maximum mileage 

Max

M  25,000 [km] / 15,534 [mi]. The nominal slope 

for each contaminant is calculated as: 

 

 

Max

M

minContlimCont

nominalslopeCont

__

__




 

(7.1)  
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A virtual oil refill probability during the oil drain interval is also introduced. This 

random factor is used to simulate a temporary oil condition improvement during the 

interval due to the top up of fresh oil. The next step is the generation of the simulated 

contaminants for each of the previously generated single driving distances of each of the 

n_vehicles. A loop over the i = 1 … n vehicles is used while the accumulated mileage is 

< 

Max

M . The random oil top up number is generated using a block distributed [0 … 1] 

number which is compared with the predefined thresholds for each driving profile. If 

the random number is lower than the threshold the refill factor is set to 1 which means 

no oil refill. If the random number is higher than the threshold the refill factor is set to 

0.9 which means a 10 % improvement of the latest soot or oxidation value. It is defined 

that the soot value improves by a refill due to thinning of the soot particles. The 

oxidation value improves due to the fresh additives and better alkaline reserve which 

improves the oxidation inhibition. From practical experience the fuel value in a used oil 

sample is not typically affected by an oil refill and it is therefore defined that the fuel 

value remains unchanged with an oil refill. The single driving distance of the i-th 

vehicle is read from the previously random generated driving distances, see Figure 7.7. 
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Figure 7.7: Single driving distance and contaminant generation 

 

 

The algorithm generates the vehicle type by generating n_vehicle numbers block 

distributed [0 …1]. The numbers from 0.0 – 0.05 are assigned to the ‘Taxi’ profile, the 

numbers from 0.05 – 0.7 are assigned to the ‘Normal’ drivers and from 0.7 – 1 are assigned 

the ‘Long Distance’ drivers. A loop over each of the three vehicle groups is used to 

generate for each vehicle in the particular group 20 block distributed numbers per loop. 

Each number is converted into a single driving distance using linear interpolation and the 

predefined distribution of the distance from Table 7.1. Every new generated driving 

distance for each vehicle is added to the previously generated overall mileage. This 

process is repeated until every vehicle from all three load profiles reached an overall 

mileage of > 25,000 [km] / 15,534 [mi] simulating the oil drain interval. Based on the 

different driving profiles and the random mileage the number of generated single driving 

distances to reach the maximum mileage is different for each simulated vehicle. The added 

contaminant for each single driving distance per vehicle uses the nominal slope for each 

contaminant, which are the driving distance dependent ‘contaminant_slope’ factor and the 

driving distance dependent distribution factor defined in Table 7.1. 
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The added contaminant for each single driving distance per vehicle uses the nominal 

slope for each contaminant, the driving distance dependent ‘Contaminant_slope’ factor 

and the driving distance dependent distribution factor defined in Table 7.1. The term 

‘Cont’ is used here and can be for either fuel, soot or oxidation. As a first step the 

contaminant increase calculated without the random distribution factor ‘d_Contaminant’ 

can be written as: 

    

 

 slopeContdistancedrivingnominalslopeContaddCont ____ 
 

(7.2)  

    

The standard deviation factor ‘d_Contaminant’ of the normal distribution is taken from 

Table 7.1. The random process for every driving distance provides an additional random 

contaminant increase or decrease. This random process mainly represents evaporation 

losses of the fuel but also measurement tolerances of the soot or oxidation 

measurement. This effect is aimed to bring the simulated contaminant data closer to real 

data from the used oil analysis. 

The random effect for each contaminant is generated by the multiplication of the 

nominal contaminant slope, the single driving mileage, the distribution factor and a 

normal distributed random number and is defined in equation 7.3.  

    

 

 

 0,~_

___





tContaminand

distancedrivingnominalslopeContrandCont

 

(7.3)  

    

Figure 7.8 summarises the principle of the three elements contributing to the generation 

of each random contaminant, which are the nominal slope, the mileage dependent 

‘Contaminant_slope’ factor and the random deviation for each simulated single driving 

distance m

i

 using the ‘d_Contaminant’ random process. 
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Figure 7.8: Elements of the mileage dependent contaminant simulation 

 

 

The random effect for each contaminant is generated by the multiplication of the nominal 

contaminant slope, the mileage dependent ‘Contaminant_slope’ factor and the random 

deviation for each simulated single driving distance mi using the ‘d_Contaminant’ random 

process. 

 

   

The final added fuel contaminant value for each individually simulated driving distance 

can now be defined as: 

    

 

 randFueladdFueloldFuelnewFuel ____ 
 

(7.4)  

    

For soot and oxidation the random oil refill factor can also be implemented and the new 

contamination value for each single driving distance is defined as: 

      

 

 

randOxidation

addOxidationoldOxidationfactorRefillnewOxidation

randSootaddSootoldSootfactorRefillnewSoot

_

____

_____







 

(7.5)  
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All random processes in this simulation are designed so that they can never generate 

values below zero as zero contamination during real engine operation is not possible. 

After completing the single driving distances the i-th vehicle is tested if the accumulated 

mileage exceeds the maximum mileage of 25,000 [km] / 15,534 [mi]. All mileage steps 

greater than the virtual oil drain interval distance are removed. The complete algorithm 

to simulate the driving profiles and the different oil ageing characteristics is illustrated 

using a Nassi-Shneiderman diagram (DIN 66261, 1985), see Figures 7.9 and 7.10. 

   

 

 

 

   

 

Figure 7.9: Nassi-Shneiderman diagram of the vehicle oil ageing simulation (a) 
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Figure 7.10: Nassi-Shneiderman diagram of the vehicle oil ageing simulation (b) 
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The following section presents the results of the simulated driving profiles and the 

corresponding virtual engine oil contamination for each load condition. The bar chart on 

the left hand side of Figure 7.11 shows the single driving distribution of the ‘Taxi’ 

profile. According to the specifications in Table 7.1 the majority of driving distances are 

short trips below 25 [km] / 15.54 [mi] per trip. The cumulative percentage is plotted on 

the right hand side of Figure 7.11. The blue solid line represents the accumulated 

distance profile versus the dashed black line representing the definition from Table 7.1. 

This shows that 90 % of the accumulated overall mileage is within 25 [km] /  

15.54 [mi] per trip. The typical urban Taxi profile is therefore considered to provide an 

accurate simulation. 

   

 

 

 

   

 

Figure 7.11: Driving distance simulation – ‘Taxi’ profile 

 

 The blue bar chart on the left hand side shows the single driving distribution of the ‘Taxi’ 

profile. According to the specifications in Table 7.1 the majority of driving distances are 

short trips below 25 [km] / 15.54 [mi] per trip. The cumulative percentage is plotted on the 

right hand side. The blue solid line represents the accumulated distance profile versus the 

dashed black line representing the definition from Table 7.1. 
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The green bar chart on the left hand side of Figure 7.12 shows the single driving 

distribution of the ‘Normal’ driving profile. According to the specifications in Table 7.1 

this profile has more components with individual driving distances higher than 25 [km] 

/ 15.54 [mi] per trip. The cumulative percentage is plotted on the right hand side of 

Figure 7.12. The green solid line represents the accumulated distance profile versus the 

dashed black line representing the definition from Table 7.1. The characteristic indicates 

that 75 % of the trips are within 25 [km] / 15.54 [mi] which can be assumed as a typical 

one way trip to work. About 15 % of the accumulated overall mileage comes from 

single trips having a distance of up to 50 [km] / 31.08 [mi]. The other 10 % of the 

accumulated mileage are up to 100 [km] / 62.15 [mi] which can be assumed as holiday 

or weekend trips. The generated profile reflects a good driving profile of the normal 

customer such as the use of a family car within one oil drain interval. 

   

 

 

 

   

 

Figure 7.12: Driving distance simulation – ‘Normal’ driving profile 

 

 

The green bar chart on the left hand side shows the single driving distribution of the 

‘Normal’ driving profile. According to the specifications in Table 7.1 this profile has more 

components with individual driving distances higher than 25 [km] / 15.54 [mi] per trip. The 

cumulative percentage is plotted on the right hand side. The green solid line represents the 

accumulated distance profile versus the dashed black line representing the definition from 

Table 7.1. 
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The red bar chart on the left hand side of Figure 7.13 shows the single driving 

distribution of the ‘Long Distance’ driving profile. According to the specifications in 

Table 7.1 this profile has half of the individual driving distances with mileages higher 

than 25 [km] / 15.54 [mi] per trip. The cumulative percentage is plotted on the right 

hand side of Figure 7.13. The red solid line represents the accumulated distance profile 

versus the dashed black line representing the definition from Table 7.1. The 

characteristic indicates that 60 % of the trips are within 50 [km] / 31.08 [mi] which can 

be assumed as the travel to work or to clients residing in a close vicinity. The other  

40 % of the accumulated overall mileage comes from single trips having a distance of 

up to 100 [km] / 62.15 [mi] which can be assumed as longer business trips to customers 

and business locations. The generated profile fits well with the intention of providing a 

long distance scenario as a contrast to the other profiles with mainly short to mid 

distance trips. 

   

 

 

 

   

 

Figure 7.13: Driving distance simulation – ‘Long Distance’ driving profile 

 

 

The red bar chart on the left hand side shows the single driving distribution of the ‘Long 

Distance’ driving profile. According to the specifications in Table 7.1 this profile has half of 

the individual driving distances with mileages higher than 25 [km] / 15.54 [mi] per trip. The 

cumulative percentage is plotted on the right hand side. The red solid line represents the 

accumulated distance profile versus the dashed black line representing the definition from 

Table 7.1. 
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The corresponding simulated fuel contamination of the oil plotted over the drain 

interval for each profile is shown in Figure 7.14. Each line represents one simulated 

vehicle over the oil drain interval. The influence of the introduced random process is 

well recognisable.  

 A fuel accumulation of more than 10 [wt.-%] for the worst case condition with the 

blue ‘Taxi’ profile is reasonable due to idling and many short trip, stop and go 

cycles.  

 The green accumulation shows the ‘Normal’ driving profile which shows the 

defined damage limit for fuel accumulation of 8 [wt.-%] indicated by the horizontal 

red line.   

 The red lines show the accumulation of the ‘Long Distance’ profile. The aim of 

having less fuel in the oil with this simulation due to the hotter operation works 

well. The fuel content is about 5 - 6 [wt.-%] at the maximum mileage which is not a 

concern.  

The fuel accumulation simulation for the three different profiles shows a good 

comparison with the real fuel accumulation results of used engine oil in these scenarios. 
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Figure 7.14: Simulated fuel accumulation in the oil for the different driving profiles 

 

 

The blue lines represent the fuel accumulation of the ‘Taxi’ profile. The green lines 

represent the fuel accumulation of the ‘Normal’ profile. The red lines represent the fuel 

accumulation of the ‘Long Distance’ profile. The red bar indicates the defined fuel damage 

limit of 8 [wt-%]. The fuel accumulation simulation for the three different profiles shows a 

good comparison with the real fuel accumulation results of used engine oil in these 

scenarios. 
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The soot loading of the oil plotted over the drain interval for each profile is shown in 

Figure 7.15. The influence of the random process and the random oil refill for some 

vehicles is well recognisable.  

 A soot content of more than 3 [wt.-%] for the worst case condition with the blue 

‘Taxi’ profile is realistic due to the cold driving operation.  

 The green accumulation shows the ‘Normal’ driving profile which ends up between 

2.2 and 3.1 [wt.-%]. The damage limit defined for soot of 3 [wt.-%] is indicated by 

the horizontal red line.  

 The red lines show the accumulation loading of the ‘Long Distance’ profile. The 

soot content is about 2.0 to 2.6 [wt.-%] and is below the defined threshold due 

mainly to suitable engine operation temperature.  

The soot accumulation simulation for the three different profiles shows realistic soot 

values which are found in real used oil analysis. It is assumed that no extraordinary high 

soot content values are caused by any hardware defects. 
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Figure 7.15: Simulated soot accumulation in the oil for the different driving profiles 

 

 The blue lines represent the soot loading for the ‘Taxi’ profile. The green lines represent the 

soot accumulation of the ‘Normal’ profile. The red lines represent the soot loading of the 

‘Long Distance’ profile. The red bar indicates the defined soot damage limit of 3 [wt-%]. The 

soot accumulation simulation for the three different profiles shows realistic soot values 

which are found in real used oil analysis. 
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Figure 7.16 shows the oxidation of the oil plotted over the drain interval for each 

simulated profile. The influence of the random process and the random oil refill is well 

recognisable.  

 Due to the high fuel content for the ‘Taxi’ profile the oxidation level is considerably 

higher. The simulated oxidation level is in the range of 35 - 43 [A/cm] and exceeds 

the defined damage limit of 30 [A/cm] indicated by the horizontal red line.  

 The green lines from the ‘Normal’ driving profile are in the range of 22 - 32 [A/cm] 

at the maximum mileage. A substantial number of vehicles would therefore have 

reached the full drain interval with this driving profile.  

 Due to the low initial fuel content for the ‘Long Distance’ profile shown with the 

red lines, causes moderate oxidation over the drain interval. The levels at the 

maximum mileage are in the range of 15 - 26 [A/cm].  

The oxidation simulation for the three different profiles again correlates well with the 

real used oil analysis for those special profiles. 
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Figure 7.16: Simulated lubricant oxidation progress for the different driving profiles 

 

 The blue lines represent the oxidation level for the ‘Taxi’ profile. The green lines represent 

the oxidation level of the ‘Normal’ profile. The red lines represent the oxidation level of the 

‘Long Distance’ profile. The red bar indicates the defined oxidation damage limit of  

30 [A/cm]. The oxidation simulation for the three different profiles again correlates well with 

the real used oil analysis for those special profiles. 

 

   

The simulated data for the three profiles for fuel contamination, soot loading and 

oxidation provided realistic figures. The generated data of the 1,000 virtual diesel 

engine vehicles now provides the basis for further assessment of the different engine oil 

condition algorithm. 
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7.3.2 Characteristic Maps Assessment 

This assessment verifies the accuracy of each of the characteristic maps which have 

been developed for fuel, soot and oxidation according to the block diagram shown in 

Figure 7.17. 

   

 

 

 

   

 

Figure 7.17: Scheme of the characteristic contaminant maps assessment 

 

 

The simulated artificial oil contaminant data for the different types of vehicle profile forms 

the data input shown on the left hand side of the block diagram. This contaminant data is 

the input to simulate the oil condition sensor for data permittivity and viscosity using the 

developed DoE-models for permittivity and viscosity. The simulated sensor data are 

indicated by the blue dashed box and are used as the data basis to verify the characteristic 

maps. The simulated permittivity and viscosity sensor data provide the input for the three 

characteristic maps to predict the fuel, soot and oxidation level on the right hand side. The 

outcome of the characteristic map assessment provides a measure of the accuracy of each 

of the predicted contamination values compared with the initially simulated values using the 

calculated coefficient of determination R².   
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The simulated artificial oil contaminant data for the different types of vehicle profile 

forms the data input shown on the left hand side of the block diagram. This contaminant 

data is used to simulate the oil condition sensor for data permittivity and viscosity. This 

is achieved by using the DoE-models for permittivity and viscosity from Chapter 5. The 

analysis in Chapter 5 proved that permittivity and viscosity are a function of fuel, soot 

and oxidation and can therefore be used to generate simulated sensor data. This is 

indicated by the blue dashed box and is used as the data basis to verify the characteristic 

maps. The simulated permittivity and viscosity sensor data provide the input for the 

three characteristic maps to predict the fuel, soot and oxidation level, see the right hand 

side of Figure 7.17. The approach using vehicle simulation from this part is no different 

to an actual vehicle. 

The outcome of the characteristic map assessment provides a measure of the accuracy 

of each of the predicted contamination values compared with the initially simulated 

values using the calculated coefficient of determination R². Based on the previous 

attempts to introduce random processes and due to the large number of vehicles with 

three different profiles, a good real world correlation of the simulation can be achieved. 

The results for the fuel, soot and oxidation prediction are illustrated using a correlation 

plot which provides information of the data density. Each plot allows an assessment of 

the accuracy of the individual prediction, also the areas with high and low data point 

accumulation.  

  



Chapter 7 - Model Validation 

180 

Figure 7.18 shows the correlation plot of the fuel values using the vehicle simulation on 

the abscissa versus the predicted fuel content in the oil from the characteristic maps on 

the ordinate.  

   

 

 

 

   

 

Figure 7.18: Assessment of the fuel prediction quality 

 

 

Correlation plot of the fuel values using the vehicle simulation on the abscissa versus the 

predicted fuel content in the oil from the characteristic maps on the ordinate. The coefficient 

of determination R² indicates that the model explains 93.54 % of the data. The plot of 

density indicates that most of the fuel data points are in the region < 4 [wt.-%]. 

 

   

 The coefficient of determination obtained with R² = 93.54 % is an excellent result. 

This confirms the selected modelling strategy for smooth curvature and therefore 

more general maps to predict the contaminants in the oil. 

 The plot shows conservative results for fuel values < 3 [wt.-%] which means the 

predicted fuel value is higher than the actual fuel value in the oil.   

 For fuel values > 3 [wt.-%] the predicted fuel result is about 0.5 [wt.-%] lower than 

the actual fuel content.  

 For higher fuel values > 7 [wt.-%] the prediction tends towards the actual values. 
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 The plot of density indicates that most of the fuel data points are in the  

region < 4 [wt.-%].  

 The result proved that the map is able to predict reliably the fuel content for an 

unknown data set.  

 

The soot correlation plot in Figure 7.19 shows the soot values from the vehicle 

simulation on the abscissa and the predicted soot content in the oil from the 

characteristic maps on the ordinate.  

 The accuracy of the overall soot prediction is indicated by the R² value of 94.71 % 

which is again an excellent result. 

 The soot prediction shows a safe characteristic up to soot values of 2.9 [wt.-%]. 

 The predicted soot content is about 0.2 – 0.3 [wt.-%] higher than the actual value, 

especially with very low soot values < 0.25 [wt.-%]. 

 The soot data points are evenly spread from 0 to 3 [wt.-%] and a higher data point 

accumulation can be seen for low soot values < 0.5 [wt.-%]. 

 The results show that the modelled map is able to reliably predict the soot content 

for an unknown data set. The selected modelling approach for a smooth curvature 

soot map to provide high commonality is confirmed. 
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Figure 7.19: Assessment of the soot prediction quality 

 

 

The soot correlation plot shows the soot values from the vehicle simulation on the abscissa 

and the predicted soot content in the oil from the characteristic maps on the ordinate. The 

coefficient of determination R² indicates that the model explains 94.71 % of the data. The 

data density shows that the soot data points are evenly spread from 0 to 3 [wt.-%] and a 

higher data point accumulation can be seen for low soot values < 0.5 [wt.-%].  
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Figure 7.20 shows the correlation plot of the oxidation values using the vehicle 

simulation on the abscissa versus the predicted oxidation content in the oil from the 

characteristic maps on the ordinate.  

   

 

 

 

   

 

Figure 7.20: Assessment of the oxidation prediction quality 

 

 

The correlation plot shows the oxidation values using the vehicle simulation on the abscissa 

versus the predicted oxidation content in the oil from the characteristic maps on the 

ordinate. The coefficient of determination R² indicates that the model explains 83.82 % of 

the data. The data density plot shows that most of the data are < 20 [A/cm]. 

 

   

 The coefficient of determination is lower compared to the previous results but the 

value of R² = 83.82 % still provides a good result. 

 For low oxidation values the predicted oxidation values are about 6 [A/cm] too high.  

 For oxidation values > 7.5 [A/cm] the predicted values are about 5 [A/cm] too low. 

The prediction tends to improve with higher oxidation values.  

 The difference at 30 [A/cm] is only 2.5 [A/cm] too low which is an acceptable 

result. 
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The defined oxidation damage limit of 30 [A/cm] was chosen on a conservative basis to 

maximise reliability. There is therefore no reliability concern due to the slight offset in 

the oxidation prediction. The oxidation data points show a high concentration for 

oxidation values from 0 – 15 [A/cm] on the abscissa. The rest of the oxidation data 

points are sufficiently spread over the range up to 30 [A/cm]. The outcome verifies that 

the modelled oxidation map has good ability to provide a suitable prediction of the 

oxidation content for an unknown data set. The accuracy of this prediction model is an 

encouraging outcome as oxidation measurements are difficult in the laboratory and 

require sophisticated measurement equipment. The approach to model a smooth 

curvature map with high commonality is successfully confirmed. 
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7.3.3 Lubricant Condition Rating Performance 

Figure 7.21 shows schematically how in the lubricant condition rating is conducted. 

   

 

 

 

   

 

Figure 7.21: Scheme of the condition rating validation 

 

 

The lubricant rating performance is assessed by generating two condition statements. One 

is generated with the simulated contaminant data from the vehicle simulation. The oil 

condition from the predicted fuel, soot and oxidation values from the characteristic maps is 

generated separately as shown in the lower part. The coefficient of determination R² 

provides a measure of the accuracy of the rating performance of the two independently 

derived condition statements.  

 

   

Based on verifying the accuracy of the individual characteristic maps to predict fuel, 

soot and oxidation this validates the assessment performance of the overall oil condition 

rating. The accuracy is assessed by deriving the condition of the oil from the original 

simulated fuel, soot and oxidation data per vehicle which is shown in the upper part of 

Figure 7.21. The oil condition from the predicted fuel, soot and oxidation values from 

the characteristic maps is generated separately as shown in the lower part of Figure 

7.21. The two independently derived data sets obtained from the oil condition 

statements are compared using a correlation density plot, see Figure 7.22. 
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The oil condition status is expressed in percentage where 100 % is defined as the fresh 

oil condition. The assessment of the resulting condition rating performance of the 

algorithm uses the coefficient of determination R². 

   

 

 

 

   

 

Figure 7.22: Assessment of the oil condition rating performance 

 

 

The two independently derived data sets obtained from the oil condition statements are 

compared using a correlation density plot. The oil condition status is expressed in 

percentage where 100 % is defined as the fresh oil condition. The coefficient of 

determination R² for the condition rating indicates that the model explains 93.85 % of the 

data. The density shows the high data point concentration for the region from 100 - 60 %. 
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The following observations and conclusions can be derived from the result in Figure 

7.22:  

 The coefficient of determination for the condition rating is R² = 93.85 % which 

provides a very good result.  

 The plot shows that the condition rating from the characteristic maps is too low 

which means a reliability orientated rating outcome. 

 The rating is significantly too low for fresh oil values but becomes better with 

condition ratings of about 80 %. The condition rating at that point is 5 - 10 % lower 

than the rating with the original data. 

 The rating for the last 10 % shows the highest accuracy.  

 The data density shows the high data point concentration for the region from  

100 - 60 %. The rest of the data is evenly distributed over the remaining condition 

rating range.  

 The remaining offset for the condition forecast can be adjusted using a correction 

function in the next step of the algorithm when the oil condition rating is converted 

into the remaining mileage forecast.  
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7.3.4 Remaining Mileage Forecast Capability 

The assessment of the remaining mileage forecast performance is illustrated in Figure 

7.23 and uses the two independent condition rating statements together with a correction 

function. 

   

 

 

 

   

 

Figure 7.23: Scheme of the remaining mileage forecast performance validation 

 

 

The previously generated condition rating result is used in combination with a correction 

function to derive two remaining mileage data. One based on the simulated vehicle data 

(upper part) and one data set based on the predicted contaminants (lower part). The overall 

comparison is conducted by assessing the coefficient of determination R² derived from the 

two remaining mileage forecasts.  

 

   

The remaining mileage calculation was presented in detail in Chapter 6 and provides a 

linear correlation between the derived condition prediction and the remaining mileage 

based on a maximum mileage of 25,000 [km] / 15,534 [mi]. In order to improve the 

remaining mileage forecast performance a correction function is used to minimise the 

identified offset in Figure 7.22. A 4

th

 order polynomial is used to reduce the offset and 

is given as: 

    

 

  
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(7.6)  
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With the correction function applied the two independently derived mileage forecasts 

are compared using a correlation density plot, see Figure 7.24. The remaining mileages 

from the original data are plotted on the abscissa and the remaining predicted mileage 

data from the characteristic maps plotted on the ordinate. The performance assessment 

of the algorithm is conducted using the calculated coefficient of determination R². 

   

 

 

 

   

 

Figure 7.24: Assessment of the remaining mileage forecasting performance 

 

 

The two independently derived remaining mileage forecast results are assessed using a 

correlation density plot. The coefficient of determination R² for the condition rating indicates 

that the model explains 99.47 % of the data. The density shows an even data distribution. 

 

   

 The correction function improved the mileage forecast significantly. The offset is 

almost completely reduced over the data range with the only remaining deviation 

occurring at the first 1,250 [km] / 780 [mi] which is acceptable as no significant oil 

degradation can be expected for this short driving distance.  

 The R² value of 99.47 % is an exceptionally good result and proves the high 

performance of the mileage forecast which is based on the high performance of the 

previous steps for the developed oil condition algorithm.  
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7.4 Summary 

This chapter has investigated the performance of the oil condition monitoring algorithm 

in the course of this research. The approach using vehicle simulation to generate 

artificial oil data for three different load profiles was presented and shown realistic 

simulation basis. The basic items of this novel algorithm were the modelled 

characteristic maps to predict fuel, soot and oxidation based on viscosity and 

permittivity input. The modelled results showed that for each map there was a good 

accuracy achieved based on using real engine oil data. The modelling focus developed 

smooth curvature maps in order to achieve commonality and to improve the predictive 

performance for unknown data. The assessment of the maps with the simulated vehicle 

data fully confirmed this approach and provided very good individual contaminant 

predictions. The derived oil condition rating based on the predicted fuel, soot and 

oxidation data showed satisfactory results with some minor offsets. The application of a 

simple correction function enabled the accuracy of the final step of the algorithm, the 

mileage forecast, which is the key output data of the oil condition algorithm. The 

validation of the oil condition algorithm concept accurately and reliably monitored the 

engine oil condition status over the oil drain interval. The initial research decision to use 

characteristic maps as the core of this algorithm proved to be a good choice to 

successfully solve this research problem. 
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Chapter 8 

8 Conclusion and Further Work 

8.1 Conclusion 

Based on the research objectives of this work the discussion of the achievements and 

conclusions will summarise all the areas where the research presented in this thesis has 

provided a significant contribution to knowledge.  

The initial theoretical part of this research work summarised all the known potential 

lubricant degradation effects during engine operation and in particular with regard to the 

use of the current generation of biofuels. A qualitative risk assessment was conducted 

which outlined biodiesel as potentially the most critical fuel. The influence of the 

various degradation effects on the oil condition were investigated based on current 

sensor measurement principles to provide a comprehensive insight into all the relevant 

theoretical aspects for the consideration of the research programme. A ‘black box’ 

model was used to outline the challenge of oil condition monitoring based on 

summative measurement methods. From the initial theoretical considerations it was 

concluded that it is not possible to separate the individual contamination effects using 

single sensor data or bivariate correlations.  

The theoretical considerations were supported by a statistical analysis which 

investigated how the presence of multiple contaminants in the oil affects the most 

common sensor data of permittivity, conductivity and viscosity. This analysis was based 

on used engine oil data which enabled a quantitative assessment of the strength and 

significance of the key contaminants on the sensor data. 
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‘Design of Experiments’ (DoE) models were developed for the permittivity, 

conductivity and viscosity data and expressing mathematically the relationship between 

the contaminants having a significant influence on each of the sensor data. The findings 

of the multivariate analysis identified that the effects on permittivity and viscosity 

provided reliable information about oil condition changes. The analysis also showed 

that an increase in permittivity is strongly influenced by soot and oxidation. However 

the change in the viscosity data is mainly affected by the presence of fuel and oxidation 

in the oil where the effects have opposite influence on the viscosity change. 

Conductivity showed no reliable information in detecting changes in the oil condition 

due to the presence of contaminants.  

The concept of an oil condition algorithm in this research was aimed at addressing 

accuracy and efficiency in predicting the outcome. The novel algorithm model which 

was developed was subdivided into three functional blocks. The core aspect of the 

algorithm was the use of characteristic maps based on bi-linear regression to predict the 

fuel, soot and oxidation levels in the oil using permittivity and viscosity as the input 

data. The original aspect contributing significant knowledge to this work was the 

assessment of the three-dimensional characteristic maps based on the input data to 

predict single contaminant values. The modelling procedure for the map was derived in 

detail including all relevant theoretical background information. The strategy selected 

for the modelling process aimed to achieve high commonality and accepting lower R² 

values for the experimental data. Based on the predictions using three contaminant 

components a method to assess the overall condition status is derived. This overall 

assessment method included a scheme of identifying damage thresholds for each 

contaminant and deriving the corresponding condition rating based on experimental 

data. The condition rating method was intentionally chosen to be conservative as the 

worst individual contaminant rating defines the overall rating result. The derived 

condition status provided the input for an oil drain forecast method which monitors the 

status within the predefined maximum mileage. Also the use of a rolling window 

approach provided reliable forecasting results with sufficient sensitivity for condition 

changes. The mileage forecasting method that was developed shifted the condition loss 

gradient which was defined by the maximum mileage based on the actual condition 

assessment within the rolling window in order to reliably predict the oil drain interval. 
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Another achievement from this research was the vehicle simulation for different driving 

profiles and the corresponding simulation of oil degradations. The selected profiles 

were for a ‘Taxi’, ‘Normal’ driving and ‘Long Distance’ driving. The resulting 

simulation of fuel, soot and oxidation levels in the oil showed a high correlation 

compared with the use of real oil analysis based on engineering judgement.  

The quantitative assessment of the simulated contaminant levels compared with the 

predicted levels obtained from each characteristic map showed excellent prediction 

performance. The achieved values of R² confirmed the modelling strategy towards 

higher commonality of the maps. This proved to be beneficial in the prediction of 

unknown contaminant situations which differed from the experimental data set which 

was initially used to model each map. The derived overall condition rating and mileage 

forecast prediction also showed very good results.   

The results from this research have shown that this new oil condition algorithm concept 

using bi-linear characteristic maps has enabled the compromise between predictive 

accuracy and an efficient and transparent algorithm structure. Validation of the results 

confirms that the algorithm has the potential to minimise and prevent oil condition 

related engine failures regardless of the actual fuel used. This approach can therefore be 

used in future real vehicle applications when the oil stress will increase due to higher 

biofuel usage or vehicle operation in global regions where there are low fuel quality 

standards.  
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8.2 Further Work 

The development approach could also be applied to other engine or vehicle applications. 

Potential further research areas would be the use in petrol engines or commercial 

vehicles such as trucks or vans. The research would need to investigate whether the 

strength and significance of the contaminants on the sensor data with other vehicle or 

engine types is the same as found in this work and how the characteristic maps need to 

be re-modelled.  

A further study could look for an oil condition rating using weighting factors which 

depend on the absolute value and on the speed of the contaminant value changes. This 

could provide information about how severe the oil condition is affected by 

contaminants, which would have a direct influence on the rating and the mileage 

forecast. 

The research in this work had two input variables, permittivity and viscosity, but three 

contaminants to be predicted which were fuel, soot and oxidation. A fundamental sensor 

study could search for an additional condition value to have the same input data 

dimension as contaminant dimension to further improve the accuracy. As sensor 

implementation is always a cost sensitive aspect could a further sensor study search for 

a less expensive but reliable oil condition measurement system suitable for mass 

production. 

Since the successful demonstration of the algorithm abilities using simulated data, it 

could be considered to conduct a field trial study to assess the performance of the 

developed algorithm concept in a real application. The comparison of the results would 

confirm the algorithm performance and would also provide information on how close 

the performance results from the simulation in this research are compared with field 

trial results.  

The mileage forecasting model could be refined to predict an oil drain which is only 

based on the current contaminant prediction without maximum mileage restriction. One 

research objective would be to develop a driver information system about the actual oil 

condition and the remaining mileage. It could also be considered to predict the overall 

vehicle maintenance which would require linking the status of all vehicle parts needing 

regular maintenance. Information of the vehicle condition could be sent via mobile 

phone to the garage to automatically book a service date. 
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An investigation of alternative methods of oil analysis is recommended to improve the 

basis for future research work. The separation of fossil fuel and biodiesel content in the 

oil (from various feedstock) should be studied. Better methods of quantifying the 

lubricant oxidation and nitration level should be considered to enable more precise 

measurements and results. The analysis should provide more accurate oxidation and 

nitration measurements regardless of the actual chain reaction process (acidification or 

polymerisation) and should be robust against interference with other bonds (e.g. esters). 

The overall carbon balance should also be investigated to provide a transparent 

quantification of the potential benefit with the use of biofuels. The CO

2

 savings with the 

use of biofuels should be compared to the amount of energy (and thus CO

2

) required by 

the agricultural industry to produce the biofuels. The lower energy content of biofuels in 

comparison to fossil fuels must be considered. The use of higher biofuel blends will 

likely result in shorter oil drain intervals and the increase in engine oil consumption 

should be taken into account in the carbon balance. Potential technical failures with the 

use of biofuels and the resulting additional carbon required to produce the spare 

components should also be estimated. 
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Potential error source: People - false reading of values. 

Potential effect: Storage of wrong analysis values in the database - potential outliers. 

Identifiable: Typically not - only in the case of significant outliers. 

Method: Visual data inspection using bivariate correlation plots and box-plot diagrams 

- plausibility check.  

Measure: Deleting of entire analysis result from the complete data set if outliers 

identified. No correction model exists as the correct value cannot subsequently be 

reproduced.  

Potential impact on data accuracy: High. 

Probability estimation: Low, due to qualified laboratory staff. 

 

Potential error source: People - incorrect manual operation of equipment. 

Potential effect: Inaccurate analysis results - potential outliers, noise. 

Identifiable: Typically not - only in the case of significant outliers. 

Method: Visual data inspection using bivariate correlation plots and box-plot diagrams 

- plausibility check. 

Measure: Deleting of data set if outliers identified - no correction model exists as the 

true value cannot subsequently be reproduced. 

Potential impact on data accuracy: Medium. 

Probability estimation: Low, due to precise procedures and qualified laboratory staff. 
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Potential error source: People - false or mixed allocation of measured values to a 

particular engine/vehicle test run. 

Potential effect: Faulty data set for this engine run. 

Identifiable: Typically not if the values are in the range with the other data. 

Method: None. 

Measure: None. 

Potential impact on data accuracy: High, as the correlations of contaminants and 

sensor data might be inaccurate for this data set. 

Probability estimation: Medium, due to many manual intermediate steps. 

 

Potential error source: People - wrong allocation of oil sample to a particular 

engine/vehicle test run. 

Potential effect: Complete data is wrong set for this particular engine run. 

Identifiable: In general not as the values might be in the typical range as with other test 

results. 

Method: None, as typically not identifiable. 

Measure: None. 

Potential impact on data accuracy: Low, as only one type of engine was considered 

and the correlations for contaminants and sensor data will still be provided. 

Probability estimation: Typically low due to precise labelling of oil samples. 
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Potential error source: People - false manual data input into the database. 

Potential effect: Wrong data for this oil analysis data set of a particular engine run. 

Outliers or noise in the data can occur. 

Identifiable: Only in the case of significant outliers. 

Method: Visual data inspection using bivariate correlation plots and box-plot diagrams, 

plausibility check. 

Measure: Deleting of data set if outliers identified - no correction model exists as the 

true value cannot be reproduced. 

Potential impact on data accuracy: High, as the correlations of contaminants and 

sensor data might be wrong for this data set. 

Probability estimation: Low, due to qualified and experienced laboratory staff. 

 

Potential error source: Process – incorrect oil sample taking from the engine. 

Potential effect: Measured contaminants might be biased if an inhomogeneous oil 

sample is taken. The resulting oil and sensor data does not represent the actual oil 

condition.  

Identifiable: No, as the real values are unknown. 

Method: None. 

Measure: None. 

Potential impact on data accuracy: Low, as the range of contaminants within different 

potential oil layers does not provide extreme variation. 

Probability estimation: Low, as all oil samples were taken according to a defined oil 

sampling procedure. 
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Potential error source: Equipment – calibration of laboratory equipment. 

Potential effect: Incorrect measurements.  

Identifiable: Typically not if the measurements are still within the range of all data for 

this particular parameter. 

Method: None. 

Measure: None. 

Potential impact on data accuracy: Low, as the measurements will likely still in an 

acceptable range with regard of the entire range of a particular parameter. 

Probability estimation: Low, as all laboratory equipment is regularly calibrated. 

 

Potential error source: Measurement – false measurement. 

Potential effect: Faulty or wrong measured parameter in the case of a systematic failure 

due to violation of defined analysis procedure. Outliers or noise in the data can occur. 

Identifiable: Typically not if the measurements are still within the range of all data for 

this particular parameter.  

Method: Visual data inspection using bivariate correlation plots and box-plot diagrams 

- plausibility check. 

Measure: Deleting of data set if outliers identified - no correction model exists as the 

true value cannot be reproduced. 

Potential impact on data accuracy: Medium, as the correlations of contaminants and 

sensor data might be inaccurate for this particular data set. 

Probability estimation: Low, due to well defined analysis procedures and qualified 

laboratory staff. 
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Potential error source: Environment – interference of contaminants. 

Potential effect: Faulty or wrongly measured parameter - resulting correlation results 

might be wrong. Noise in the data is very likely. 

Identifiable: Typically not - only in the case of significant outliers. 

Method: Visual data inspection using bivariate correlation plots and box-plot diagrams 

- plausibility check. 

Measure: Deleting of data set if implausible outliers identified – correction not possible 

as the true value cannot be determined. 

Potential impact on data accuracy: Medium, as the correlation of contaminants and 

sensor data would be wrong for this particular parameter. 

Probability estimation: Low, as the initially defined data range of the individual 

contaminants was selected with regard to the measurement range of each analysis 

method to prevent the interference of effects. 

 

Potential error source: Machine – data from failed engines. 

Potential effect: High levels of contaminants, distortion of standard analysis methods. 

Storage of wrong analysis values in the database, potential outliers. 

Identifiable: If contaminant and abrasion metal content is at an abnormal level. 

Method: Visual data inspection using bivariate correlation plots and box-plot diagrams 

- plausibility check.  

Measure: Deleting of entire analysis result from the complete data set if outliers 

identified. No correction model exists as the correct value cannot subsequently be 

reproduced.  

Potential impact on data accuracy: High. 

Probability estimation: Low - as identified problems during test runs are typically 

documented. 
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Table B.1: Data matrix – characteristic fuel map 
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Table B.2: Data matrix – characteristic soot map 

 

   

 

 

 

   



Appendix Part B: Data Matrix - Characteristic Maps 

221 

   

 
Table B.3: Data matrix – characteristic oxidation map 

 

   

 

 

 

   

 

 


