
Running Head: NEURAL SYNCHRONY AND RESPONSIVITY  1 

 

MANUSCRIPT IN PRESS, Trends in Cognitive Sciences 

 

 

Interpersonal neural entrainment during early social interaction 

 

 

Wass, S.V.(1), Whitehorn, M.(1), Marriott Haresign, I.(1), Phillips, E.(1), Leong, V.(2,3)  

 

1 - University of East London, London, UK 

2 - University of Cambridge, UK 

3 – Nanyang Technological University, Singapore 

 

*Correspondence: Dr Sam Wass, Department of Psychology, University of East London, 

Water Lane, London E15 4LZ. Email: s.v.wass@uel.ac.uk 

 

 

 

Abstract (100-120 words) 

 

Currently, we understand much about how children’s brains attend to and learn from 

information presented while they are alone, viewing a screen – but less about how interpersonal 

social influences are substantiated in the brain. Here, we consider research that examines how 

social behaviors affect not one, but both partners in a dyad. We review studies that measured 

interpersonal neural entrainment, considering two ways of measuring entrainment: concurrent 

entrainment (e.g. ‘when A is high, B is high’ – also known as synchrony) and sequential 

entrainment (‘changes in A forward-predict changes in B’). We discuss possible causes of 

interpersonal neural entrainment, and whether it is merely an epiphenomenon, or may play an 

independent, mechanistic role in early attention and learning.  
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NOTE: IN THIS ‘WORKING’ VERSION THE GLOSSARY, SIDE BOXES AND 

FIGURES ARE INCLUDED AT THE END OF THE TEXT. IN THE EVENTUAL 

PUBLISHED MANUSCRIPT, THESE SIDE BOXES WILL BE INTERSPERSED 

THROUGH THE TEXT.  

 

 

Tracking dynamic, social influences on early attention and learning 

 

During the first years of our lives, in particular, our waking hours are spent almost entirely in 

the company of others. Yet currently, and paradoxically, most of our knowledge of how the 

developing brain functions during social interaction comes from studies that examine 

individual humans in isolation [1-4]. From early life, however, we know that social factors 

influence how we allocate our attention and learn. For example, nine-month-old infants learn 

new speech sounds better through live interaction with an adult than through watching an 

equivalent video of someone speaking [5]. When a 16-month-old infant initiates an exchange 

by pointing to an object, their memory retention for functions subsequently demonstrated on 

that object is increased [6]. And when a parent pays attention to a particular object whilst 

interacting with their 12-month-old infant, this immediately increases the infants’ own duration 

of attention to that object [7]. Yet we presently understand little about how these transient, 

interpersonal influences are substantiated in the brain. 

 

Recent research, building on advances in adult [3] and animal [8] social neuroscience, has 

begun to explore these dynamic, social influences by doing two things differently: first, rather 

than recording from one individual brain in isolation, they record from two interacting brains 

concurrently (sometimes known as hyperscanning) [9]; second, rather than examining uni-

directional influences using pre-designed, screen-presented experimental stimuli, they 

examine naturally occurring moments of reciprocal influence during free-flowing 

interpersonal naturalistic interactions (see Figures 1, 2). This research is starting to uncover a 

range of important new discoveries about which brain regions are active during social 

interaction, that illustrate the importance of studying social interaction in ecologically valid 

contexts. For example, mentalizing and reward networks show markedly different patterns of 
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activity during live interaction, compared to when passively viewing equivalent social stimuli 

on a screen [3, 4].  

 

Here, we examine a different question: what this research has taught us about the neural 

temporal dynamics of early social interactions. In the first part of the review, we consider two 

important and well-researched aspects of social interaction: ostensive cues (signals that are 

sent during social interaction to indicate communicative intent), and contingent 

responsiveness (behaviors that indicate communicative sensitivity within an interaction).  We 

conclude that the uni-directional neural correlates of both - i.e. how one partner transiently 

influences the other, with both partners considered independently – are fairly well understood; 

but that our understanding of how ostensive cues and contingent responsiveness alter the 

interpersonal neural dynamics of the interaction – i.e., how the partners inter-relate to one 

another - is currently limited.  

 

In the second part of the review, we consider research that has directly examined interpersonal 

neural dynamics by measuring interpersonal neural entrainment during social interaction. We 

describe key methodological challenges in measuring entrainment and outline the evidence for 

the different types of entrainment that emerge during early social interaction. Building on the 

evidence for uni-directional influences described in part 1, we also consider the mechanisms 

through which bi-directional interpersonal neural entrainment could be achieved and 

maintained. In the final section, we discuss whether interpersonal neural entrainment is merely 

an epiphenomenon; or whether it may play a mechanistic role during early attention and 

learning. 

 

 

Ostensive signals 

 

Social interactions are complex, fast-moving and multi-layered: they require the brain to 

process rapidly changing information from multiple visual and auditory sources in a time-

sensitive manner. During social interaction, we use signals known as ostensive cues (see 

Glossary) to indicate communicative intent; these tend to be concentrated on moments where 

the ‘sender’ wants to convey particularly important information to the ‘receiver’ [10]. 

Historically, the majority of previous research has examined how adults use ostensive cues 

towards children, consistent with pedagogical approaches that primarily emphasize a flow of 
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information from an adult ‘sender’ to a child ‘receiver’. However, more recent research has 

recognized that even young infants also use ostensive cues, too [11, 12]. Rather than acting as 

purely passive recipients of information ‘sent’ by an adult, they also play an active role as 

‘senders’ of information (such as interrogative cues), which influence learning exchanges [13-

15] [16, 17]. Thus, in addition to studying the direction of influence from adult ‘sender’ to child 

‘receiver’, recent approaches are acknowledging that children can also act as ‘senders’ of social 

information, and adults as ‘receivers’ [13].  

 

Ostensive cues lead to a range of changes in behavior during the time period immediately 

following the cue [10]. Although ostensive signals are uni-directional by definition (insofar as 

they are signals ‘sent’ from partner a to partner b), extensive research suggests that they also 

affect the relationship between partner a and partner b. Specifically, research has shown that 

ostensive cues lead to increased behavioral entrainment (see Glossary and Box 1) in the time 

period following the ostensive cues. For example, ostensive cues such as direct eye gaze lead 

to increases in behavioral mimicry [18] and the mirroring of facial affect [19]. Similarly, in 

language, increased vocal mirroring is observed following the use of child-directed speech 

contours [20]. Direct eye gaze [21], child-directed speech [22], and pointing [23] all lead to 

increases in gaze following, which is another form of sequential behavioral entrainment (see 

Box 2).  

 

Considerable research has investigated the transient uni-directional effects of ostensive cues 

(i.e. how the ‘receiver’, considered independently, is affected by the ‘sending’ of a social 

signal). This research has suggested that both child and adult brains are highly sensitive to 

ostensive cues [24]: for example, infants show larger neural ERP responses (specifically, a 

larger amplitude N170 component) to images of faces showing direct compared to averted gaze 

even shortly after birth [25]. During live adult-infant play, cortical activity (measured from the 

level of oxyhemoglobin in the medial prefrontal cortex) increases in seven-month-old infants 

during direct gaze compared with averted gaze [26, 27]. Similarly, child-directed speech (CDS) 

evokes greater neural responses (a larger amplitude N250 ERP component) in 6-12-month-old 

infants compared with adult-directed speech [28], and during live interactions, fluctuations in 

the child-directedness of speech correlate with fluctuations in prefrontal cortex activity in 9-

15-month-old infants [29]. And in addition to neural activity directly in response to the gaze 

cue, neural responsiveness is also increased for objects presented immediately following an 

ostensive cue. For example, when an adult gazes first to a nine-month-old infant’s face before 
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looking to a screen-presented object, the infant’s evoked neural responses to the subsequently 

presented object are greater (measured as a larger amplitude Nc ERP component) [30] (see also 

[31]).  

 

As yet, though, and despite the evidence reviewed above that ostensive cues cause immediate 

changes in the relationship between partner a’s and partner b’s behavior, little research has 

investigated the bi-directional neural effects of ostensive cues (i.e. how ostensive cues alter the 

relationship between the two partners’ neural activity in the time period following the cue). In 

order to assess how ostensive cues alter the interpersonal neural dynamics of the interaction, it 

is necessary to examine change from the perspective of not one, but both members of the dyad.  

 

 

Contingent responsiveness 

 

Another strand of research has investigated the role of contingent responding during a social 

interaction: how the ‘receiver’ indicates communicative sensitivity within an interaction by 

consistently responding to behaviors from the ‘sender’. Considerable evidence suggests that 

both children and adults are highly sensitive to whether or not their partner is responding 

contingently to their social signals [14, 24, 32, 33]. For example, one study observed 6.5- and 

9.5-month-old infants’ reactions to adults who either responded to the infants’ gaze cues by 

following their gaze towards an object (‘congruent looking’) or looked in the opposite direction 

(‘incongruent’). Older, but not younger, infants showed a visual preference for the congruent 

actor and showed greater neural reactivity to the stimulus cued by the congruent (compared to 

the incongruent) adult [34].  

 

Behavioral research also suggests that interactions featuring greater behavioral contingency in 

both members of the dyad are also more effective as teaching exchanges. For example, in a 

task in which adults presented word labels either contingently in response to infant 

vocalizations or non-contingently, only infants who received labels contingently in response to 

their own attention learned the association [35] (see also [6, 13, 14, 36]). However, not all 

forms of contingency are equally effective: during videoed interaction only particular types of 

contingent responding (mirroring, and marking with a smile) were predictive of the growth of 

these behaviors over time [18].  
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Considerable research has investigated the uni-directional correlates of contingent responding 

(i.e. how the ‘receiver’ of a social signal is influenced by the ‘sender’). This research has 

suggested that observing someone else perform an action involves neural activity in the 

‘observer’ becoming more like neural activity in the person performing the action [37, 38]. 

This pattern is similar to the actor-observer correspondences documented while watching and 

performing actions [39] and while watching someone else experience pain, anger and reward 

[40, 41]. There is also some evidence that, in more contingently responsive social partners, 

these actor-observer correspondences are stronger [38] (see also [42]).  

 

Recent research also suggests that similar principles might also apply in different contexts, 

such as when considering how adults’ brain activity tracks infants’ attention patterns during 

naturalistic play. The study recorded dual-EEG from parents and 12-month-old infants during 

free-flowing play (see Figure 1a, 1b). By tracking the continuous fluctuations of brain activity 

in the adult and attention patterns in the infant, their results suggested that adults’ neural 

activity entrained to fluctuations in the child’s attention, independent of the adult’s own 

attention [43] (Figure 2). Where the adult showed greater neural entrainment to the child’s 

attention, the child was more attentive [43].  

 

As yet, though, and although contingent responsiveness is inherently a bi-directional 

behavioral phenomenon (because it describes the relationship between the two partners’ 

behaviors), little research has investigated how contingent responding alters the bi-directional 

neural dynamics of the interaction. Previous research has mainly considered actor-observer 

similarities by recording separately from actors and observers; in order to investigate 

interpersonal neural dynamics, it is necessary to record from both partners concurrently.  

 

  

Measuring interpersonal neural entrainment in development  

 

So far, we have considered two well-researched topics within early social interaction: ostensive 

cues and contingent responsiveness. We have concluded that the uni-directional neural 

correlates of both of these - i.e., influences of the ‘sender’ on the ‘receiver’, with the two 

partners considered independently – are fairly well understood. But we have also concluded 

that our understanding of how ostensive cues and contingent responsiveness alter the 
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interpersonal neural dynamics of the interaction – i.e., how the partners’ neural activity inter-

relates to one another - is currently limited.  

 

In this section, we consider another strand of research that has directly investigated 

interpersonal neural dynamics, by measuring interpersonal neural entrainment. In side box 1 

we present a formal definition of entrainment, distinguishing two ways of measuring 

entrainment: concurrent entrainment (e.g., ‘when A is high, B is high’ – also known as 

synchrony), and sequential entrainment (‘changes in A are followed by changes in B’). We 

discuss several crucial methodological caveats in measuring entrainment. In side boxes 2 and 

3 we summarize recent research into interpersonal entrainment at the other levels - behavior 

(box 2) and physiology (see box 3). As we emphasize in these boxes, previous research 

suggests that behavioral and physiological entrainment is not ‘all-or-none’. Rather, during 

social interaction, the parent-child dyad oscillates between states of high and low synchrony 

[44]. Different types of entrainment are observed at different spatiotemporal scales; and 

interactions can show excessive as well as insufficient entrainment.   

 

Research with adults [3, 45] and animals [8, 46] has also already shown that interpersonal 

entrainment develops during social interaction, independent of features such as shared 

entrainment to common environmental influences (see box 1). Previous research with adults 

has also suggested that interpersonal neural entrainment influences learning [47, 48].  

 

Interpersonal entrainment at the second-to-minute scale  

Of the range of methods available to researchers for studying in vivo neural activity in infants 

and children, the two most commonly used techniques are fNIRS and EEG. fNIRS, which 

measures changes in blood oxygenation in the cortex [49], has a relatively high spatial 

resolution but a low temporal resolution: the hemodynamic response lags neural activity by 

approximately 2 seconds and takes approximately 5 seconds to reach its peak value [50], 

meaning that this technique is best equipped to examine the co-fluctuation of brain activity 

over time-scales of seconds or minutes.   

  

Building on a rapidly emerging body of research in adults (reviewed [45]), a number of studies 

have used fNIRS to examine how brain activity co-fluctuates between children and adults 

during social interaction. For example, one study [29] used fNIRS to examine entrainment  

between 9-15-month-old infants and an unfamiliar adult, and to examine how this differed 
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between social interaction and when conducting separate activities in the same room. 

Concurrent and sequential entrainment was measured by calculating the cross-correlation in 

deoxy-hemoglobin levels. Relative to bootstrapping analyses (see Box 2), significant 

concurrent entrainment was observed only during interaction in 11 of 57 channel pairs (mainly 

in frontal areas); of note, however, the bootstrapping analyses would not have controlled for 

shared entrainment to the audio-visual environment (see box 1), which was more similar during 

the interaction condition. Peak associations were observed with infant brain activity forward-

predicting adult brain activity by ~3 seconds.  

 

Another study [51] used wavelet transform coherence to examine concurrent entrainment in 

the 0.02-0.1Hz range between 5-year-old children and their parents while solving a Tangram 

puzzle either together or individually, separated by a screen. They recorded from right and left 

frontal and temporo-parietal areas and observed entrainment that was strongest in the right 

frontal and temporo-parietal areas. Stronger neural entrainment correlated with increased 

behavioral synchrony, and with better problem-solving success while working together. Of 

note, however, visual sensory input would also have been more similar during the cooperation 

condition (see box 1 and further discussions below). A third study controlled for this by 

positioning 5-9-year-old children and adults facing forwards, in silence, conducting a computer 

task that involved either cooperative or competitive behavior (see Figure 1a). Using wavelet 

transform coherence they observed greater concurrent entrainment in 0.08-0.5Hz power 

fluctuations across left prefrontal and frontopolar optode pairings between children and their 

parents only during the cooperative condition, and not with an unfamiliar adult – even though 

the conditions were otherwise tightly matched: auditory and visual information would have 

been identical between conditions, mutual gaze was not permitted, and movements were not 

more synchronous during the cooperation condition [52]. These replicate other findings using 

the same paradigm [53, 54].   

 

Interpersonal synchrony at the sub-second scale 

EEG measures electrical brain activity at the sub-second scale but has a low spatial resolution, 

making strong conclusions about the neural generators of entrainment hard to draw [55]. 

Studies using EEG generally decompose neural activity into frequency bands, the most 

commonly studied of which in developmental research are theta (c.3-6Hz/4-7Hz in young 

children/adults) and alpha (c.6-9Hz/8-12Hz in children/adults). Activity in these bands has 

been associated with attention and learning [56, 57].  
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Building on a large body of dual EEG research with adults [58], one recent study examined the 

relationship between social learning and concurrent neural entrainment in adult – 12-month-

old infant dyads [59]. Parents modelled positive or negative emotions towards objects, and 

infants’ subsequent choices were examined. Some infants tended to choose the positively-

modelled object, and others the negatively-modelled; but for both groups, parent-infant neural 

entrainment (phase synchrony in 6-9Hz, corresponding to the infant alpha band) during 

teaching predicted the likelihood of social learning on a given trial. Interpersonal entrainment 

was most predictive of learning across central and parietal electrodes [59]. Finally, trial-to-trial 

increases in interpersonal neural entrainment were associated with greater maternal use of 

ostensive signals such as eye contact and speech pitch modulation. 

 

Another recent study recorded concurrent and sequential entrainment in neural activity in eight-

month-old infants and adults while an adult recited nursery rhymes while alternating between 

direct gaze and indirect gaze with the infant [60] (see Figure 1a and 1f). A control condition, 

direct-oblique, was also presented in which adults’ face angle was the same as for indirect gaze, 

but their eyes were looking at the infant. Recording at the vertex only, separate bi-directional 

Granger-causal influences (child->adult and adult->child) were identified during live 

interaction that were stronger during direct and direct-oblique compared to indirect gaze in 

both theta and alpha bands. The auditory environment did not differ between conditions, and 

speech-brain entrainment also did not differ between conditions, suggesting that entrainment 

was independent of the shared environment. Infants who vocalized for longer also had a 

stronger neural influence on the adult [60].  

 

A third study measured how both concurrent and sequential entrainment differed between 

parental positive and negative affect [61]. Graph theory analyses suggested that parents’ and 

12-month-old infants’ interpersonal neural networks were more closely connected during 

maternal positive affect, and that mother to infant directional influences were stronger during 

positive affect.  

 

These studies have shown that fine-grained (sub-second) neural entrainment develops during 

social interaction. Next, we consider how this entrainment develops.  
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How is entrainment achieved and maintained?  

 

Building on work already conducted with adults and animals, the studies reviewed above have 

suggested that aspects of interpersonal neural entrainment develop during early adult-child 

interaction. As yet, however, our understanding of how entrainment is achieved and maintained 

is limited. Here, building on the discussion of uni-directional influences in part one of the 

review, we speculate about two complementary, but distinct, possible causes of neural 

entrainment. First, we discuss how the evoked responses that both children and adults show in 

response to ostensive cues such as gaze onsets could involve concurrently phase resetting, 

leading to phase entrainment. In the second, we discuss how actor-observer correspondences 

could lead to concurrent patterns of neural activity, potentially causing neural entrainment even 

in the absence of behavioral entrainment.  

 

Neural entrainment as a consequence of behavioral cues 

Social interactions involve the development of behavioral entrainment, both concurrent and 

sequential – including movements, gaze patterns, vocalizations and facial expressions (see Box 

2). Evidence reviewed above also suggests that ostensive cues cause immediate, transient 

increases in behavioral entrainment. Since brain-behavior correspondences are equivalent 

across different individuals, this behavioral entrainment is also likely to cause neural 

entrainment. Indeed, some of the studies we reviewed have noted significant correlations 

between the degree of behavioral synchrony observed in dyads, and the neural synchrony 

observed [51].  

 

The EEG studies reviewed above have, consistent with adult [58] and animal studies [8, 46], 

also documented phase entrainment during social interaction at much finer time-scale (up to 

9Hz) than the second-to-second scale over which behavioral entrainment has been observed. 

This more fine-grained entrainment may also, however, have behavioral causes. As described 

above, behavioral ostensive cues are known to cause strong neural evoked responses, even in 

newborn infants. One possibility is that ostensive cues might operate as  ‘edges’ in a similar 

way to the acoustic ‘edges’ (i.e. sharp increases in signal intensity) in the speech amplitude 

envelope that are known to drive theta- and delta-rate phase entrainment to cause speech-brain 

synchrony [62]. Phase resetting could take place in both partners to ostensive cues such as gaze 

onsets and vocalizations, and this could be one driver that allows phase entrainment to be 

achieved and maintained (see Figure 3). One prediction that would test this hypothesis would 
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be to assess whether interpersonal neural entrainment, on both a second-to-second and a sub-

second scale, shows transient increases in the time window immediately following ostensive 

cues (see Outstanding questions).  

 

Neural entrainment arising from higher-order cognitive processes? 

Some of the studies reviewed above have [52, 54], however, also documented neural 

entrainment that cannot be explained solely by behavioral entrainment – consistent with 

recent animal research that observed neural activity in socially interacting mice under 

conditions in which behavioral synchrony and shared entrainment to external sensory input 

were tightly controlled for [8]. Using in vivo recordings from populations of neurons in the 

dorsomedial prefrontal cortex, the results of this animal research suggested that concurrent 

entrainment (synchrony) was driven by behavior-encoding neurons that show overlapping 

activity when an action is performed by themselves, and when the same action is performed 

by a social partner [8] (see section above, on contingent responsiveness and actor-observer 

correspondences).  

 

Adult studies have further built on this, by suggesting in addition that neural entrainment may 

reflect higher-order cognitive processes such as comprehension, engagement and shared 

understanding [63, 64]. In one study, for example, concurrent inter-participant entrainment in 

neural activity was recorded while adult participants listened to a real-life auditory narrative 

compared to a temporally scrambled version; inter-participant entrainment was increased in 

default mode network areas (including medial prefrontal cortex) when participants had a 

shared understanding of a story [65] (see also [66]). These results suggest that entrainment is 

not just a consequence of concurrent brain-behavior correspondences and sensory cue-based 

phase-resetting, as described above; rather, that neural entrainment may also be a 

consequence of temporally concurrent patterns of activity, driven shared understanding in 

addition to shared entrainment to sensory cues [37, 67, 68]. As yet, however, no research has 

investigated this from the perspective of early learning.  

 

As we describe further in the Outstanding Questions, further work also remains to uncover 

whether, and if so how, these separate causes contribute to neural entrainment during early 

learning.  For example, one area for future investigation is the degree to which interpersonal 

entrainment may potentially affect later stages of information processing more than earlier 

stages [38, 69]. Research with five-month-old infants has shown that different ostensive cues 
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(eye gaze and vocalizations) show differing patterns of activation in low-level processing 

regions, but overlapping patterns of activation in frontal areas [70]. It is possible that similar 

patterns would be observed for interpersonal entrainment – but no research has yet investigated 

this.  

 

 

Is synchrony ‘just’ an epiphenomenon?  

 

In this final section, we consider whether interpersonal neural dynamics, quantified by 

measuring entrainment, are best seen ‘simply’ as epiphenomena – as secondary consequences 

of common entrainment to behavioral cues and of actor-observer correspondences. 

Alternatively, we hypothesize two possible mechanistic routes through which interpersonal 

neural entrainment might play a causal role during early learning.  

 

First, there are inherent differences in brain function between infants and adults: developing 

brains are intensely stochastic [71, 72], with altered intra-brain connectivity [73] and 

entrainment to external stimuli [74]. One key function of social interaction is allostasis 

(helping to maintain a stable state) [75], achieved via bi-directional, dynamical mutual 

adaptation within the dyad (see also [19, 76]). For children, then, entrained states might involve 

more mature patterns of functional activity; transient phases of child-adult entrainment could 

thus serve as a transitional stage towards mature function.  

 

Second, human perception is known to rely on oscillatory processes which shape conscious 

experience [77]. Research has suggested that the phase of neural activity at the time of stimulus 

presentation may relate systematically to the excitability of neural populations and the 

magnitude of event-related responses [78, 79] (although see [80]); accordingly, perceptual 

stimuli that are delivered during a high excitability oscillatory phase may be more likely to be 

detected and encoded than stimuli that arrive at an inhibitory oscillatory phase [79, 81]. During 

an interaction, we may use social cues to ‘nudge’ our partner into a transient state of 

entrainment – such that, for example, parent-initiated mutual gaze might trigger a short-term 

increase in parent-child phase synchrony. The effect of this would be to ensure that, for the 

duration of the existence of a high synchrony state, high excitability oscillatory phases co-

occur, thus ensuring that information (e.g. word labels) is presented at optimal phases for 
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encoding by the ‘receiver’ (see Figure 3). In the Outstanding Questions section, we outline 

some predictions to test these hypotheses.  

 

 

Concluding remarks 

 

In this review, we have evaluated the evidence for how social behaviors affect not one, but 

both partners in a dyad. We have concentrated on two important and well-researched aspects 

of early social interaction: ostensive cues (signals that are sent during social interaction to 

indicate communicative intent), and contingent responsiveness (behaviors that indicate 

communicative sensitivity within an interaction). We have concluded that the uni-directional 

effects of each - i.e. how one partner transiently influences the other, with both partners 

considered independently - are well understood.  But we have concluded that our 

understanding of how ostensive cues and contingent responsiveness alter the interpersonal 

neural dynamics of the interaction – i.e., how the partners inter-relate to one another - is 

currently limited. 

 

We have also reviewed a smaller corpus of more recent research that has taken a different 

approach, by recording from two individuals concurrently during social interaction and 

measuring interpersonal neural entrainment. We concluded that, consistent with animal and 

adult research, this evidence suggests that interpersonal neural entrainment does develop 

during social interaction. Building on the discussion of uni-directional influences in part one 

of the review, we have discussed how concurrent and sequential neural entrainment may arise 

as a result of two causes: first, as a consequence of shared entrainment to behavioral cues such 

as ostensive cues, and, second, as a consequence of actor-observer correspondences and shared 

understanding. And we have hypothesized two possible mechanistic routes through which 

interpersonal neural entrainment may play a causal role during early learning. 

 

Our understanding of how early social interaction affects the bi-directional neural dynamics of 

the two partners (i.e. how the two patterns of brain activity relate to one another) is still at an 

early stage. Many important and fundamental questions remain (see Outstanding Questions). 

Perhaps the two most important aspects of the results hitherto are, first, that social influences 

affect early learning exchanges at a variety of different temporal scales, including both sub-

second as well as second-to-minute temporal scales; and, second, that these interactions are a 
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consequence of bi-directional sensitivity, in which both partners - child and adult – influence 

each other.  
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Side Box: Glossary (450 words) 

 

Allostasis: The process by which internal equilibrium is maintained.  

 

Contingency: The dependent temporal relationship between the occurrence of two events.  

 

Cross-correlation: A measure of the similarity between two time-series as a function of the 

displacement of one relative to the other. Cross-correlations examine whether changes in one 

time-series tend to anticipate, or follow on from, changes in another.  

 

Dyadic attention: Two-way sharing of attention - either between a person and an object, or a 

person and another person.  

 

EEG: Electro-encephalography – a method for recording naturally occurring electrical brain 

activity.  

 

Entrainment: In this paper we consider two forms of entrainment. The first is concurrent 

entrainment (a zero-lag relationship between two time series, e.g. ‘when A is high, B is high’ 

or ‘when A is high, B is low’), which is commonly known as synchrony. The second is 

sequential entrainment (‘changes in A forward-predict changes in B’). See Box 1 for further 

details of how these terms are quantified.  

 

ERP: Evoked response potential or event-related potential. 

 

fNIRS: Functional Near-Infrared Spectroscopy – a method for recording blood oxygenation 

levels near the scalp.  

 

Granger causality: A method for quantifying sequential entrainment by analyzing how one 

time-series influences another; similar to cross-correlations, but incorporating information 

about the self-similarity of each time series.   

 

Hyperscanning: Neuroimaging studies that record brain activity in two individuals at the same 

time.  
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Ostensive signals: Cues from a communicator to generate an interpretation of communicative 

intention in an addressee.   

 

Partial directed coherence: A technique to examine cross-spectral Granger-causal 

relationships in multivariate time series.  

 

Phase entrainment: Concurrent entrainment in the phase of ongoing oscillatory activity.  

 

Phase resetting: An abrupt shift (e.g. advancement or delay) in the phase of on-going 

oscillatory activity, usually in response to perturbation by a sensory cue.  

 

Phase-locking value: A technique for estimating concurrent entrainment between the phase 

series of two signals.  

 

Synchrony: In this paper, we treat the term synchrony as synonymous with concurrent 

entrainment. See Box 1 for further details.  

 

Triadic attention: Three-way sharing of attention – generally between two people and an 

object.   

 

Wavelet transform coherence: A technique that can be used to measure both concurrent and 

sequential synchrony of two signals in the time-frequency plane.   

 

 

Side box 1: types of interpersonal entrainment and measurement caveats (400 words) 

 

The concept of entrainment, and the related concept of synchrony, are immensely rich topics 

that have been studied across all domains of knowledge [82-85]. Within cognitive 

neuroscience, extensive previous research has examined how different units within a brain, 

(from individual neurons to brain regions), entrain to one another (intra-personal entrainment) 

[86-88]. Previous research has also examined entrainment between individual brains and 

temporal structures in the environment (stimulus-brain entrainment) [89].   
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In this article we focus on two forms of interpersonal entrainment [19, 90]:  

 

• Concurrent entrainment (see Figure 1c) – a zero-lag relationship, e.g. ‘when X is high, Y 

is high’ – measured using techniques including Phase-Locking Value [91], Wavelet 

Coherence [92] and others. Concurrent synchrony is undirected (A→B is indistinguishable 

from B→A). Concurrent entrainment is treated as synonymous with the term ‘synchrony’.  

 

• Sequential entrainment (see Figure 1d) – ‘changes in X forward-predict changes in Y’ – 

measured using techniques derived from Granger Causality [93], including Generalized 

Partial Directed Coherence [94]. Sequential entrainment is directional (A→B  B→A).   

 

Entrainment can also be estimated based on different aspects of the signal:  

 

• amplitude. Some fNIRS studies [95] and most fMRI studies [96] measure co-

fluctuations in the amplitude of the signal – which, depending on the method, measures 

blood oxygenation/deoxygenation (fNIRS), the BOLD signal (fMRI)), or voltage (for 

EEG).  

• phase. Many EEG studies measure the alignment of oscillatory phase between two 

signals. [59, 61].  

• combinations. Many fNIRS studies measure wavelet coherence, which includes both 

amplitude and phase [51, 52]. Other studies measure e.g. phase-amplitude coupling 

(see [97]). 

 

In the case of child-adult interactions, one complication is that adults and children have 

different dominant frequency bands of naturally occurring brain activity [98]. Although the 

majority of studies hitherto have not addressed this, techniques for measuring cross-frequency 

coupling are available [55].  

 

Researchers measuring interpersonal neural entrainment face a number of methodological 

caveats [90]: 

 

The first is that common intrinsic properties of the neural signal itself can create a false 

impression of entrainment [90]. For example, two adults, each with a dominant alpha rhythm 
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of 10Hz, might show consistent phase relationships between their alpha rhythms even in the 

absence of any communication [90]. Similar considerations apply when considering variability 

in amplitude and power of the signal, where co-occurring oscillatory activity may be 

attributable to other sources (such as autonomic activity [99]). 

 

A second problem is that neural activity is also influenced by common environmental 

perturbations. For example, neural activity synchronizes to temporal structures in speech [89], 

and differentiating neural interpersonal entrainment from synchrony attributable to shared 

external perturbation can be highly challenging [100]. This is particularly true for naturalistic 

paradigms where factors such as the acoustic environment cannot be completely controlled for. 

  

Common techniques for addressing these problems often use bootstrapping approaches in 

which corresponding epochs from each dyad are either temporally translocated (‘shuffled’) or 

phase scrambled and the entrainment analysis is performed repeatedly.  In this way, it is 

possible to estimate how the observed entrainment would differ from the entrainment observed 

by chance (e.g. [29]). Of note, however, this approach does not control for environmental 

influences in naturalistic studies where the environment differs between dyads. Because of this 

inherent problem, most hyperscanning studies do not measure absolute levels of synchrony, 

but rather examine relative changes in coupling between different experimental conditions 

(such as the presence or absence of mutual gaze) – while keeping other factors constant (such 

as the acoustic environment).  

 

 

 

Side box 2: behavioral entrainment (400 words) 

 

Research into concurrent and sequential behavioral entrainment in parent-child dyads has a 

long history [101, 102], and includes investigations using both qualitative [103] and 

quantitative [104] methods. Entrainment has been investigated at multiple levels of behavior, 

including: 

 

Vocalizations. Patterns of sequential entrainment during vocal exchanges between adults and 

infants have been identified at multiple scales [105, 106]. Weaker adult-infant coordination 
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has been associated, for example, with increased attachment problems and poorer cognitive 

outcomes [106, 107].   

 

Facial affect. Concurrent and sequential entrainment in facial affect has been identified during 

tabletop play [19] that changes over time and differs between fathers and mothers [108]. 

Stronger child->parent and parent->child influences associate with, for example, later child 

self-control [109] and symbolic competence [110]. Not all findings associate increased 

entrainment with positive outcomes [111] (see Box 3).   

 

Eye gaze. Two principal types of eye gaze entrainment are of interest: 

a) Concurrent partner gaze, referred to a ‘mutual gaze’. Mutual gaze during infancy 

positively correlates with later attention control [112] and is reduced in some atypical 

dyads [113] [114]. 

b) Sequential entrainment in object gaze, referred to as ‘gaze following’ – i.e. that one 

partner’s look towards an object forward-predicts the other partner’s look. Although 

gaze following has been extensively investigated using simplified screen-based 

paradigms, research suggests that in ‘real-world’ naturalistic settings (see e.g. Figure 

1) infants actually follow parents’ gaze only rarely [115]. 

Both types of gaze entrainment, concurrent mutual gaze and sequential gaze following, are 

often combined as joint, or triadic attention –the three-way sharing of attention between a 

partner and an object, which involves both mutual gaze and gaze following [116].  

 

Touch. Current research may over-emphasize the role of gaze during shared parent-child 

attention and learning: gaze is a predominant feature of Western parent-child interaction, but 

less so in other cultures [117]. Similar to the distinction between mutual gaze and joint 

attention, research has examined both touching one another during parent-child interactions 

[118], and combined touch to an object [115].  

 

Inducing behavioral entrainment. Some research has experimentally induced behavioral 

entrainment – suggesting, for example, that this can be effective at promoting shared 

understanding in adult-child dyads [119, 120] 

 

 

Side box 3: physiological entrainment (400 words) 



Running Head: NEURAL SYNCHRONY AND RESPONSIVITY  20 

 

Whereas some research into parent-child interactions has examined how, for example, 

individual heart-beats become coordinated over time [121], most research has studied how 

autonomic arousal co-varies across time windows (both concurrent, and sequentially - see Box 

1). Some research has administered how patterns of change co-vary within dyads by 

administering experimental stressors in the lab [122, 123]; other research has examined how 

autonomic arousal levels co-fluctuate in naturalistic, home settings [124, 125].  

 

Parents use diverse tactics to maintain allostasis 

One central aim of social interaction is thought to be to help individuals (particularly young 

individuals) to maintain a stable state - a process known as allostasis [75]. How parents respond 

to changes in their child in order to maintain allostasis is thought to vary contingent on context. 

Short-term increases in concurrent parent-child physiological entrainment were observed, for 

example, negative affect vocalizations from the child [124]. When the initial arousal level of 

the parent is low, parent increase their own arousal in response to increases in child arousal – 

matching their own arousal state to their child’s; but when the initial arousal level of the parent 

is high, parents respond to increases in the child’s arousal in the opposite way - by decreasing 

their own arousal [124]. This suggests that adults employ diverse tactics to maintain allostasis 

within the dyad [72, 75] – dynamically connecting, or disconnecting, their own level of arousal 

from their child’s [76].    

 

‘There when you need me’ vs ‘Always on’ 

Arousal levels in typical dyads do not routinely co-fluctuate in naturalistic settings [124]. 

Instead, typical parents selectively respond to ‘peak’ changes in their child’s arousal, but not 

otherwise. Parents with depression under-respond to ‘peak’ moments of child arousal [111] 

(see [126] for comparable neuroimaging results). In contrast, parents with higher anxiety 

showed no difference in responsivity to ‘peak’ child arousal moments but were more 

responsive to small-scale fluctuations in their child, and showed higher parent-child 

entrainment overall [125]. These observations echo similar behavioral findings [111] and 

question whether optimal outcomes always associate with greater parent-child entrainment.  

 

 

Side box: Outstanding questions [2000 chars] 
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• Intra-brain entrainment has been shown to play an important role in attention and 

learning; how does inter-brain entrainment relate to intra-brain entrainment?  

 

• Are later stages of stimulus processing relatively more influenced by interpersonal 

influences than earlier stages?  

 

• Do concurrent and sequential entrainment reflect the same or distinct phenomena, in 

terms of underlying causes and consequences?  

 

• Does interpersonal entrainment show transient increases in the time window 

immediately following an ostensive cue? And are these increases driven by temporally 

co-occurring phase resetting in response to the ostensive cue?  

 

• Does greater adult-child neural entrainment at the time of a learning event associate 

with more effective learning? If so, are differences mediated by an increased likelihood 

of learning items (e.g. word labels) being presented during high excitatory oscillatory 

phases? 

 

• How does inter-personal entrainment change over development? Other aspects of 

development show a transition from co-regulation (within the dyad) to self-regulation 

(within the individual) over time. Is the same true for early learning? If so, is 

interpersonal neural entrainment more important during early learning than later on?  

 

• Does atypical development manifest unusual patterns of neural responsivity and 

entrainment? Certain clinical populations show excessive behavioral and physiological 

entrainment (see Boxes 2 and 3); is more interpersonal neural entrainment always 

better?  

 

 

 

 

Figures 
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Figure 1: Behavioral paradigms used to measure interpersonal neural entrainment. a) 

examples of the experimental set-ups described in the main text, used by: left [43, 127]; middle 

[60]; right [52]; b) examples of raw data collected using the paradigms from [43, 127]; even 

from this raw data sample some significant patterns noted overall data can be seen – such as 

that parents pay more attention to infants during joint play than vice versa [115], and that 

infants are more inattentive during solo play than joint play [127]. c) example of a 30-second 

segment of data illustrating the further range of different types of events that can be identified 

in naturalistic interactions. 
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Figure 2: Neural activity in the parent entrains to attentional fluctuations in the child. From 

[43]: a) schematic illustrating the analysis; b) cross-correlation between child EEG and child 

gaze, showing an association between child neural activity and child attention; c) cross-

correlation between adult EEG and adult gaze, also showing an association between adult 

neural activity and adult attention; d) cross-correlation between adult EEG and child Gaze, 

showing an association between the adult’s neural activity and the child’s attention. 

Subsequent analyses showed that the association between the adult’s neural activity and the 

child’s attention was independent of the adult’s own attention. Whereas the child EEG-child 

gaze and adult EEG-adult gaze relationships were predictive (i.e. the strongest associations 

were found between neural activity at a given moment and attention c.750ms after that 

moment), the adult EEG-child gaze associations were reactive (i.e. the strongest associations 

were found between the child’s attention at a given moment and the adult’s neural activity 

c.750ms after that moment). 
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Figure 3. Schematic illustrating a mechanistic role for interpersonal entrainment during 

early learning. In a mutual responsive interaction, there is a mutual timely exchange of phase-

resetting cues between partners. Social ostensive signals may act as synchronizing cues that 

trigger transient increases in interpersonal entrainment through phase-resetting, leading 

subsequently produced maternal speech to arrive at a high receptivity phase for optimal 

encoding by the infant.  
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