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Abstract Multi-target regression algorithms are designed to predict multiple
outputs at the same time, and allow us to take all output variables into account
during the training phase. Despite the recent advances, this context of machine
learning is still an open challenge for developing a low-cost and high accurate
algorithm. The main challenge in multi-target regression algorithms is how to
use different targets’ information in the training and/or test phases. In this
paper, we introduce a low-cost multi-target Gaussian process regression (GPR)
algorithm, called joint GPR (JGPR) that employs a shared covariance matrix
among the targets during the training phase and solves a sub-optimal cost
function for optimization of hyperparameters. The proposed strategy reduces
the computational complexity considerably during the training and test phases
and simultaneously avoids overfitting of the multi-target regression algorithm
upon the targets. We have performed extensive experiments on both simulated
data and 18 benchmark datasets to assess the proposed method compared with
other multi-target regression algorithms. Experimental results show that the
proposed JGPR outperforms the state-of-the-art approaches on most of the
given benchmark datasets.
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1 Introduction

Conventional machine learning (ML) algorithms are often designed for the
prediction of a single target (output variable). However, there are other types
of data that contain multiple targets. For these types of data, the conventional
ML algorithms can independently be implemented for each target (Li et al.,
2014). Although establishing this strategy is a straightforward solution, it does
not use the other outputs’ information in the training and/or test phases.
Muti-target regression algorithms, which are the subset of multi-task learning
(MTL) (Zhang and Yang, 2021), are used to predict multiple and continuous
outputs at the same time (Zhen et al., 2018).

MTL algorithms (also called transfer learning) are built for the simulta-
neous implementation of relevant tasks. In the MTL algorithms, a current
task uses the other related tasks’ information for achieving a better perfor-
mance (Zhang and Yang, 2017). The concept of MTL has been derived from
the human-learning paradigm in which people gain knowledge from previous
learning tasks (Xu et al., 2018). Multi-target regression has a similar definition
in which the goal is to predict multiple outputs simultaneously (Spyromitros-
Xioufis et al., 2016; Petković et al., 2020). The MTL is a general form in which
the input samples and the number of those samples can be different for each
task, while, in multi-target regression problems, input samples are the same
for all targets. Generally, the MTL-based algorithms can also be employed for
multi-target regression problems but not vice versa; however, in most cases, the
MTL-based algorithms force enormous calculation costs due to their general
form.

Various multi-target regression algorithms have been introduced, which
are the extended versions of the baseline ML algorithms. Spyromitros-Xioufis
et al. (2016) proposed input space expansion such that the other outputs are
fed into the input space for each target. Tsoumakas et al. (2014) employed a
random linear target combination scenario, in which new output variables are
created via random multiplications of available outputs. Melki et al. (2017)
introduced a multi-target support vector regression-based correlation chain to
take the outputs’ correlation into account. Struyf and Džeroski (2005) pro-
posed a constraint-based system to build a multi-objective regression tree.

On the other side, some researchers have tried to design MTL-based Gaus-
sian process regression (GPR) algorithms. Bonilla et al. (2008) proposed an
MTL-based GPR algorithm that uses the Kronecker product to extract the
correlation between the targets. Nguyen et al. (2014) proposed a collabora-
tive GPR-based algorithm to draw the tasks’ correlations by sharing multiple
sets of inducing samples. Also, there are lots of attempts to elicit the out-
puts’ correlations through the convolutional process (Álvarez and Lawrence,
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2011; Álvarez et al., 2010). The earlier MTL-based GPR algorithms force huge
computational costs for multi-target regression problems.

Despite all the recent advances in this topic, lots of efforts are underway
to design a low-cost and high accurate algorithm. The accuracy of an im-
plemented algorithm on one hand, and the complexity, on the other hand,
are two main challenges of the MTL or multi-target regression algorithms.
Although the MTL-based algorithms can handle the multi-target regression
problems, they might implicate huge calculation costs due to the structure
of implemented techniques in the general form. A more complex structure of
an algorithm does not give always a better performance; because, when an
ML algorithm becomes more and more complex, only the training error may
reduce, but the test error increases due to the overfitting effect (Hastie et al.,
2009).

The overfitting problem occurs when an ML algorithm is fit to the training
data too well in the presence of noise (Liu et al., 2008). Various techniques
have been introduced to avoid this problem. The regularization (Hastie et al.,
2009; Tibshirani, 1996) is used in a wide range of ML algorithms to prevent
overfitting of a regression model. In (Srivastava et al., 2014), the authors pro-
posed a dropout connection strategy for deep neural networks to hinder the
model from co-adapting too much in which the units are randomly removed
during the training process. The basic idea behind most techniques for solving
the overfitting problem is to prevent the hyperparameters of a model to reach
a globally optimum point (Hastie et al., 2009). Therefore, the sub-optimal so-
lution can avoid the overfitting of a learning algorithm. The overfitting also
can be prevented by stopping the iteration when the validation data error in-
creases. However, we do not have access to the validation data most of the
time.

In multi-target regression problems, the tasks (targets) have a common
set of features, and thereby, it helps to reduce the complexity calculation
of the multi-target regression algorithms. On the other hand, the concept
of overfitting reduction by finding a sub-optimal solution can either help to
increase the accuracy or to reduce the complexity. Hence, there are two facts

1. The input features are common for output variables in multi-target regres-
sion problems. This fact can help to reduce the complexity.

2. The overfitting problem can be solved by finding a sub-optimal solution.
By using this fact, we can reduce the complexity and at the same time
enhance the accuracy.

The key idea behind multi-target regression algorithms is the transfer of
knowledge between the targets. In this paper, we introduce a GPR-based
multi-target regression algorithm that combines the transfer of knowledge be-
tween the targets and overfitting reduction concepts by solving a sub-optimal
solution. The proposed method, named joint Gaussian process regression (JGPR),
maximizes the log-likelihood of the joint probabilities with a shared covariance
matrix over the targets. The proposed JGPR algorithm not only benefits from
a low-complexity structure in the training and test phases, but also achieves
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better accuracy in the test phase compared with conventional GPR (CGPR) in
a toy problem. Unlike the existing works, the JGPR uses a shared covariance
matrix in a completely joint optimization process for all targets. This subtle
assumption significantly reduces the complexity in the optimization process,
and at the same time, avoids overfitting of the model upon the targets. Ex-
perimental results on 18 diverse benchmark datasets show that the proposed
JGPR outperforms other multi-target regression algorithms. It is because the
JGPR is not overfitted when all targets take part during the training process.
This paper is the extended version of our previous work (Nabati et al., 2021)
in which we only used a 2D-based algorithm for a fingerprint-based positioning
problem, and also, we did not perform sufficient mathematical analyses such
as convergence and complexity. In summary, the main contributions of this
paper can be summarized as follows

– We propose a novel multi-target Gaussian process regression algorithm,
named joint Gaussian process regression (JGPR), which not only benefits
a low-complexity structure but also prevents the regression algorithm from
overfitting problem and enhances the accuracy.

– We perform a mathematical convergence analysis for the proposed JGPR
algorithm and conclude that the proposed method is converged in the op-
timization process.

– We provide a complexity analysis for the proposed JGPR algorithm and
conclude that it has a lower calculation cost even compared with the con-
ventional GPR algorithm in multi-target regression problems.

The rest of this paper is organized as follows: In section 2, we present the
conventional Gaussian process regression framework. Our proposed algorithm
is explained in section 3. Experimental results and conclusions are presented
in section 4 and 5, respectively.

Notations : We use lower-case letters to show scalers (e.g., u), bold-face
lower-case letters to indicate vectors (e.g., u) and bold-face capital letters to
denote matrices (e.g., U). Also, ui demonstrates the ith element of u, Ui and
Ui show the ith row and ith column of U, respectively. The ( .̂ ) symbol is used
to show the test dataset.

2 Conventional GPR (CGPR)

In this section, we present a background for conventional GPR in the train-
ing and test phases. This section helps the reader to better understand the
proposed JGPR in the next section.

2.1 Training Phase of CGPR

Gaussian process regression is one of the most popular non-linear ML algo-
rithms and has a wide variety of applications (Williams and Rasmussen, 2006;
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Nguyen et al., 2018). This algorithm can predict the variance besides the out-
puts, which is derived from the Bayes rule. The goal of CGPR in the training
phase is to obtain a non-linear function that maps the input features to a
single output variable. We commence via the assumption that a non-linear
relationship between input features and a single output variable is as follows

fi = µ(xi) + ε ∀xi, (1)

where x is the input vector, µ is a function that converts the input features to
the desired target, and ε ∼ N (0, σ2

n) models the noise. In the training phase,
the function values µ(xi) are unknown; however, we have access to the noisy
observations fi and the goal is to obtain the function µ with a training dataset.
We shall first consider the training dataset as follows

X =


x11 x12 · · · x1M
x21 x22 · · · x2M

...
...

. . .
...

xN1 xN2 · · · xNM

 , f =


f1
f2
...
fN

 , (2)

where X ∈ <N×M is the input matrix with M features and N observations,
and f is the vector of outputs. We can assume a zero-mean Gaussian process,
and hence, the joint distribution of input observations can be written in the
following form

f ∼ GP(0,C), (3)

where C ∈ <N×N is the covariance matrix, which must be positive definite
(Ambikasaran et al., 2016). Each element of this matrix cij is calculated by
two pairs of input observations via kernel functions K(Xi,Xj), where Xi and
Xj are the ith and jth row of the matrix X in (2). There are several kernel
functions to calculate the elements of covariance matrix. In this paper we use
squared exponential kernel KSE(Xi,Xj) = γ2 exp

(
−d2(Xi,Xj)

/
l2
)

to capture
non-linear dependencies of input features and Noise kernel Kn(Xi,Xj) = σ2

nδij
to model the noise ε in (1), where δij = {1 if i = j, 0 o.w}. Therefore, the
combined kernel can be written as follows

K(Xi,Xj) = γ2 exp

(
−d

2(Xi,Xj)

l2

)
+ σ2

nδij , (4)

where θ = [γ, l, σn]T is the vector of hyperparameters that should be op-
timized in the training phase, and d is the Euclidean distance between two
vectors Xi and Xj . In order to optimize the hyperparameters, the multivari-
ate probability density function (PDF) of observations can be maximized as
follows

θ̃ = arg max
θ

log(p(f)) = arg min
θ

(− log(p(f))), (5)

where p(f) is the multivariate PDF as follows

p(f) =
1

(2π)
N/2|C|

1
/2

exp(−1

2
fTC−1f), (6)
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Thus, the objective function in (5) can be written as follows

L(θ) = − log p(f) =
1

2
log |C|+ N

2
log(2π) +

1

2
fTC−1f . (7)

The Eq. (5) is a non-convex optimization problem; however, a gradient-based
optimizer can be used to solve this problem for a locally optimum point such
as conjugate gradient algorithm (Nocedal and Wright, 2006). The conjugate
gradient requires the first order gradient, which for the jth hyperparameter
can be derived as follows

∇L(θj) = −1

2
tr((ssT −C−1)

∂C

∂θj
) where s = C−1f , (8)

where ∂C
∂θj
∈ <N×N is a squared matrix, and its elements are calculated by

gradient of the jth hyperparameter. The ∇L(θj) is calculated for all hyper-
parameters, and then, they can be fed to the jth element of gradient vector
ϑ = [∇L(θ1),∇L(θ2), . . . ,∇L(θG)]T , which here G = 3, since there are three
hyperparameters for defination of kernel function in (4). The hyperparameters
in θ are updated till reaching a convergence point.

2.2 Test Phase of CGPR

The optimized function for prediction of outputs in the test phase is derived
from the Bayes theorem. Initially, the joint distribution of the test and train
observations is written as follows(

f

f̂

)
∼ N

[(
0
0

)
,

(
C C(x, x̂)
C(x̂,x) C(x̂, x̂)

)]
(9)

where f̂ is a vector contains the outputs of test data, C = C(x,x) ∈ <N×N
is the covariance matrix between train observations, C(x̂,x) = CT (x, x̂) ∈
<N̂×N is the covariance matrix between the test and train observations, and

C(x̂, x̂) ∈ <N̂×N̂ is the covariance matrix between the test observations. The
posterior distribution can be derived by conditioning over the training obser-
vations f̂ |f as follows

f̂ |f ∼ N (µ, Φ)
µ = C(x̂,x) C−1f
Φ = C(x̂, x̂)−C(x̂,x)C−1C(x, x̂)

(10)

where µ is prediction of the output values, and Φ is the posterior covariance
matrix whose diagonal elements are predicted variances for the elements of µ.
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Fig. 1 Multi-Task Learning structure.
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Fig. 2 Multi-Target Regression structure.

3 Proposed Joint GPR (JGPR)

This section describes the proposed multi-target regression algorithm, named
joint Gaussian process regression (JGPR). The structures of the MTL and
multi-target regression algorithms are illustrated in Fig. 1 and Fig. 2, re-
spectively. As can be seen in the multi-target regression structure, the input
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features are the same for all targets, and this structure helps to reduce the
complexity. Initially, the train and test phases of the JGPR are explained in
detail. Then, a pre/post-processing step is proposed that can be performed
before and after the training and test phases of JGPR, which is a crucial step
to get equal information from all targets in the optimization process. Finally,
we discuss the convergence and complexity analyses of the proposed JGPR.

3.1 Training Phase of JGPR

The CGPR is independently implemented for each output in multi-target
regression problems. Nevertheless, all outputs can contribute in the train-
ing phase. Although there are other MTL-based GPR algorithms, most of
them have high complexity, because they have been designed for multi-task
problems. The proposed algorithm has lower complexity even compared with
CGPR for L dimensional outputs, which will be discussed in section 3.5. The
basic idea behind this algorithm is to use a shared covariance matrix with the
same hyperparameters across the targets. This strategy prevents the model
from overfitting problem since it is not fit to a single target as well. Assum-
ing that there are L targets, and F is a matrix that consists of all targets on
its columns, the distribution of input observations over these outputs can be
written as follows

Fi ∼ GP(0,C), where i = 1, 2, ...L (11)

where C is the shared covariance matrix over all targets and is filled with
a user-defined kernel function as discussed in the previous section. The joint
distribution of these targets is as follows

p(F) = p(F1,F2, · · · ,FL)
= p(FL|FL−1,FL−2, · · · ,F1) p(FL−1|FL−2, · · · ,F1) · · ·
p(F3|F2,F1) p(F2|F1) p(F1)

(12)

where p(F) = p(F1,F2, · · · ,FL) is the joint distribution of all targets. In
(12), the posterior distributions cannot be derived, since they have a shared
covariance matrix and hyperparameters. Even if the restriction does not exist,
posterior derivation increases the complexity. Here, it can be assumed that
outputs are independent, since we already modeled the dependency of output
observations by a shared covariance matrix. Therefore, Eq. (12) is simplified
as follows

p(F) = p(F1,F2, · · · ,FL) =
L∏
i=1

p(Fi) (13)

We propose the following optimization problem to obtain the hyperparameters

θ̃ = arg max
θ

log(p(F1,F2, · · · ,FL))

= arg min
θ

(− log(p(F1,F2, · · · ,FL)))
(14)
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where the objective function is calculated as follows

L(θ) = − log(p(F1,F2, · · · ,FL))

=
1

2
log |C|+ N

2
log(2π) +

1

2
[F1]TC−1F1+

1

2
log |C|+ N

2
log(2π) +

1

2
[F2]TC−1F2+

...
1

2
log |C|+ N

2
log(2π) +

1

2
[FL]TC−1FL

=
1

2

L∑
i=1

log |C|+N log(2π) + [Fi]
T
C−1Fi

(15)

The first-order gradient ∇L(θj) is needed for optimization process, where θj
indicates the jth hyperparameter. Therefore, we derive the gradient of objec-
tive function as presented below

∇L(θj) =
∂(− log(p(F1,F2, · · · ,FL)))

∂θj

= −
L∑
i=1

(
1

2
[Fi]

T
C−1

∂C

∂θj
C−1[Fi]

T−1

2
tr(C−1

∂C

∂θj
))

= −1

2

L∑
i=1

tr((Si[Si]
T −C−1)

∂C

∂θj
)

= −1

2
tr((

L∑
i=1

Si[Si]
T − LC−1)

∂C

∂θj
), where Si = C−1Fi

(16)

where Si is calculated for each target independently. The term
∑L
i=1 Si[Si]

T −
LC−1 plays a transfer knowledge role for optimization of the hyperparameters,

and ∇L(θj) shows a sub-optimal direction. Here, the term
∑L
i=1 Si[Si]

T −
LC−1 also is interpreted as the overfitting reduction part; because it hinders

the hyperparameters from adapting to a single target as well. The Si
th

can be
calculated in matrix form for calculation of ∇L(θj) as follows

∇L(θj) = −1

2
tr((SST − LC−1)

∂C

∂θj
)

where, S = C−1F
(17)

Then, a gradient-based algorithm can be utilized to optimize the hyperparam-
eters (e.g., conjugate gradient algorithm).
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3.2 Test Phase of JGPR

All targets have the same kernel function with the same hyperparameters
during the training and test phases, and due to having a shared covariance
matrix, the joint distriction of targets can be expressed as follows(

Fi

F̂i

)
∼ N

[(
0
0

)
,

(
C C(x, x̂)
C(x̂,x) C(x̂, x̂)

)]
i = 1, 2, ..., L

(18)

The same scenario of (10) can be used to obtain the posterior distribution for
each target. Therefore, we can write the following distribution for prediction
of the ith target

µi = C(x̂,x) C−1Fi

Φi = C(x̂, x̂)−C(x̂,x)C−1C(x, x̂)
i = 1, 2, ..., L

(19)

As can be seen, each target has its own prediction function µi, because the
real train outputs Fi are different for each target. However, all targets have
the same posterior covariance matrix Φi. The posterior covariance matrix is
not used for prediction of outputs; however, we will discuss this issue in section
3.3 in more detail.

3.3 Target Equalization

The proposed JGPR algorithm is more robust when all targets’ values are in
the same range. This condition helps the ∇L(θj) to extract equal information
from each output variable, since the matrix S is directly related to the gradient
direction and computed by S = C−1F. However, sometimes the outputs are
not in the same range and have diverse effects on the gradient direction ∇L(θj).
To tackle this problem, the output variables can be normalized or standardized
before the training phase. Generally, the scaling function can be written in the
following form

Fisc =
Fi − ηi
Ωi

, i = 1, 2, ..., L (20)

where Fi is the real values of the ith train target, Fisc is the scaled values of
the ith target, ηi and Ωi are defined based on standardization or normaliza-
tion process. In the normalization process, these two parameters are described
below

ηi = min(Fi)
Ωi = max(Fi)−min(Fi)
i = 1, 2, ..., L

(21)

and in the standardization process, the mentioned parameters are defined as
follows

ηi = mean(Fi)
Ωi = variance(Fi)
i = 1, 2, ..., L

(22)
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After the normalization process, all outputs fall into the [0, 1] range, and
by using the standardization process, the output variables have a zero-mean
normal distribution with unit variance. In the training phase, the model is
trained via the Fsc instead of F. Therefore in the test phase, the predicted
outputs are in the same range as Fsc. We can rescale the distribution of the
estimated outputs to real ranges via the following equations

µire = µireΩ i + ηi
Φire = Φire Ω

2
i

i = 1, 2, ..., L
(23)

where µire and Φire are the ith rescaled estimated target and corresponding
covariance matrix, respectively. This pre/post-processing also can solve the
problem presented in section 3.2, which concerns the equal estimated of pos-
terior covariance matrix for all targets in (24), since the covariance matrices
for each target are different for all targets due to the Ω2

i term in (23).

3.4 Convergence Analysis of JGPR

In this section, we provide a theoretical analysis for the convergence of pro-
posed JGPR algorithm. Initially, we need the below Lemma to provide a rig-
orous proof for the JGPR.

Lemma: If a sequence is bounded from below and monotonically decreased,
it will converge.

It should be proved that the objective function in (15) is bounded from

below. We know that the inequality 0 <
∫ Fi′′

Fi′

∫ θ′′

θ′
p(Fi,θ) dθdFi < 1 holds for

the ith target, where
∫ Fi′′

Fi′ . dF
i and

∫ θ′′

θ′
. dθ are translated to

∫ Fi′′
N

Fi′
N

· · ·
∫ Fi′′

1

Fi′
1

.dFiN · · · dFi1
and

∫ γ′′
γ′

∫ l′′
l′

∫ σ′′n
σ′n

. dσndl dγ, respectively. The same concept holds for joint dis-

tribution of all targets p(F;θ) as follows

0 <

∫ F′′

F′

∫ θ′′

θ′
p(F;θ) dθ dF < 1

0 <

∫ F′′

F′

∫ θ′′

θ′

L∏
i=1

p(Fi;θ) dθ dF < 1

(24)

where the multiple integral
∫ F
′′

F′
.dF is translated to

∫ FL′′

FL′
∫ F(L−1)′′

F(L−1)′ · · ·
∫ F1′′

F1′ . dF
LdFL−1 · · · dF1.

The above inequality can be multiplied by a constant
1

ς

0 <
1

ς

∫ F′′

F′

∫ θ′′

θ′

L∏
i=1

p(Fi;θ) dθ dF <
1

ς

ς = (FL
′′ − FL

′
) · · · (F1′′ − F1′)(θ′′ − θ′)

(25)
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where (Fi
′′ − Fi

′
) and (θ′′ − θ′) are translated to (Fi

′′

N − Fi
′′

N ), (Fi
′′

N−1 −
Fi
′′

N−1), · · · , (Fi′′1 − Fi
′′

1 ) and (γ′′ − γ′)(l′′ − l′)(σ′′n − σ′n), respectively. Now,
we can get the – log from the above inequality

ξ < − log

(
1

ς

∫ F′′

F′

∫ θ′′

θ′

L∏
i=1

p(Fi;θ)dθdF

)
(26)

where ξ = log (ς) and from the Jensen’s inequality (Kuczma, 2009) we can
write

ξ <
1

ς

∫ F′′

F′

∫ θ′′

θ′
− log

(
L∏
i=1

p(Fi;θ)

)
dθ dF

ξ <
1

ς

∫ F′′

F′

∫ θ′′

θ′
L(F;θ) dθ dF

(27)

The middle term of the above inequality is the average of L(F,θ) over the
ranges of Fi and θ, where 1 ≤ i ≤ L. For simplicity we use F to indicate all

targets (Fi
th

). Here, there are two possible presumptions for L(F,θ)

1. L(F,θ) is higher than that of ξ for all ranges of F and θ. In this case,
the L(F,θ) is bounded from below because of the primary assumption
L(F,θ) > ξ.

2. L(F,θ) is higher than that of ξ for some ranges of F and θ, and smaller
than that of ξ for the other ranges. We shall first consider the symbol ∆̄
for sum of the areas where L(F,θ) > ξ, and the symbol ∆− for sum of

the areas where L(F,θ) < ξ. Then with respect to (27), we can conclude
that ∆̄ > ∆− , and ∆− must finite. In order to prove the finiteness of ∆− ,

the inequality (27) can be decomposed into several parts such that L(F,θ)
does not cross over the ξ on those regions. Therefore, the inequality (27)
can be written as follows

ξ <
1

F′′ − F′
1

θ′′ − θ′
(∆̄+∆− ) (28)

where ∆̄+∆−/(F
′′ − F′)(θ′′ − θ′) is the average of L(F,θ) over all regions.

The inequality (28) holds when ∆̄ > ∆− , and ∆− must be finite. This means

that L(F,θ) is bounded from below. Since sum of the regions under the ξ
must be finite, it implies the limitation of L(F,θ) under the constant ξ.

It can be concluded that the L(F,θ) is converged; because, it is bounded from
below and monotonically decreases by a gradient based algorithm.

3.5 Complexity Analysis

Here, we compare the multiplication complexity of the proposed JGPR and
CGPR in multi-target regression problems. The O notation is used to indicate
the order of complexity.
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Complexity of CGPR in the Training Phase: The conjugate gradient
algorithm for optimization process only needs ∇L(θ) to optimize the hyper-
parameters, where the complexity of the first-order gradient is O(N3) due to
the need for inversion of covariance matrix in (8). The other operations such
as matrix elements’ calculations of ∂C

∂θj
and C lead to O(MN2) computation

cost. Assuming that M � N , the complexity of CGPR is O(N3) in the train-
ing phase. Therefore, the implementation of CGPR in multi-target regression
algorithm forces O(LN3) calculation cost.

Complexity of CGPR in the Test Phase: Calculation of matrix ele-
ments in (10), including C(x̂, x̂) and C(x̂,x) have O(MN̂2) and O(MNN̂)
costs, respectively. The other conclusions are based on the assumption that
M � N and N̂ � N are satisfied. To calculate the µ we must pay O(N3),
O(N2) andO(N̂N) computation costs for A1 = C−1, A2 = A1f and C(x̂,x)A2,
respectively. Therefore, the complexity of calculating µ is O(N3). Also, to cal-
culate the Φ we must pay O(N3), O(N2N̂) and O(N̂2N) computation costs
for A1 = C−1, A2 = A1C

T (x̂,x) and C(x̂,x)A2, respectively. Therefore, the
complexity of calculating Φ is O(N3). When this process implemented for L
targets, the complexity will be O(LN3) for both µ and Φ.

Complexity of JGPR in the Training Phase: The proposed JGPR in
the training phase is not implemented for each target independently. We use a
shared covariance matrix for all targets and need the gradient of the introduced
objective function, which has been stated in (17). To calculate the gradient
of objective function in (17), we must pay O(LN2 +N3) cost for S = C−1F.
Therefore, if L ≤ N , the complexity of calculating S is O(N3). Also, the
complexity calculation of SST is O(LN2). By doing so, the complexity of
calculating ∇L(θ) equals to O(N3). While this process is not repeated for
each target independently. Thus, the complexity of JGPR in the training phase
equals to O(N3).

Complexity of JGPR in the Test Phase: To calculate the µi in (19),
the C(x̂,x) C−1 is the same for all targets, which forces O(N3) complexity
due to inversion of the training covariance matrix. Then, it is multiplied by
Fi with complexity of O(N̂N), and for the L targets the complexity equals to
O(LN̂N). If N̂ � N and L̂� N , the complexity calculation of targets equals
to O(N3). Since the posterior covariance matrix Φi is equal for all targets in
(19), the complexity of this process is O(N3).

4 Experiments

In this section, we perform extensive experiments in both the simulated data
and real-world datasets to show the effectiveness of the proposed JGPR algo-
rithm. Accuracy is measured in terms of root mean squared error (RMSE) and
relative root mean squared error (RRMSE). The simulated data figuratively
helps to understand the effect of simultaneous optimization in the training
phase of JGPR to reduce the overfitting problem, and the real-world datasets
show the robustness of the proposed algorithm compared with that of others.
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4.1 Evaluation Metrics

In the first experiment, we compare our proposed JGPR algorithm with the
CGPR in a toy problem. In the second experiment, the JGPR is scrutinized on
18 real-world benchmark datasets and compared with other algorithms. The
RMSE or RRMSE metrics are used for the experiments, which are defined as
follows

RMSE =

√√√√ 1

N̂

N̂∑
i=1

(yi − ŷi)2 (29)

and

RRMSE =

√√√√√√√√√√
N̂∑
i=1

(yi − ŷi)2

N̂∑
i=1

(yi − ȳ)
2

(30)

where N̂ is the number of test observations, ŷi is the ith estimated test value,
yi is the ith real test value, and ȳ is the average of outputs within the training
set. In this paper, y = f̂ and ŷ = µ. For multi-target regression problems,
the RMSE and RRMSE are independently computed for each output variable,
and the averages of RMSEs (aRMSE) and RRMSEs (aRRMSE) are reported.

The JGPR has been written in the R programming language using Mi-
crosoft Open R (MOR version 3.5.3) due to its parallel computation ability
and high-speed performance. We run the implemented code on 64-bit operat-
ing system PC with the processor Intel(R) Core(TM) i7-6700 CPU 3.4 GHz,
and 16 GB RAM.

4.2 Experiment 1

In this experiment, we use 8 shifted sinusoidal functions for generating multi-
target samples. Then, Gaussian noise with zero mean and 0.8 deviant is added
to the generated samples of these 8 functions independently as follows

Fi = sin(x+ 0.2i) + εi, i = 1, 2, ..., 8 (31)

where εi ∼ N (0, 0.8). Here, we compare the JGPR with CGPR in terms of
RMSE, which is depicted in Table 1. The last column in this table shows the
average RMSE (aRMSE). As can be seen in Table 1, the proposed JGPR on
most targets have better performance compared with CGPR. The reason is
that sometimes the CGPR algorithm is overfitted in the training phase, as
depicted in Fig. 3. In this figure, the green solid lines show real sine functions,
the cyan points are noisy observations which are used for the training phase,
deep pink dotted lines are the outputs predicted by CGPR, and dashed blue
lines are outputs predicted by the JGPR algorithm.
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Fig. 3 Simulation results for the toy problem in experiment 1, consists of 8 shifted sinusoidal
functions.

Table 1 Comparison of CGPR and proposed JGPR in terms of RMSE, where Ti is the ith

target.

T1 T2 T3 T4 T5 T6 T7 T8 aRMSE

JGPR 0.285 0.443 0.234 0.416 0.414 0.476 0.344 0.474 0.386
CGPR 0.319 0.832 0.249 0.544 0.489 0.465 0.345 0.534 0.472

4.3 Experiment 2

In this experiment, we use 18 real-world datasets to compare the proposed
JGPR with the other algorithms. We directly report the results from (Zhen
et al., 2018) and (Spyromitros-Xioufis et al., 2016), and follow the same simu-
lation methodologies that have been performed in (Spyromitros-Xioufis et al.,
2016). In the following, we describe the datasets and the strategies which are
conducted for simulations.

Solar Flare (SF): The solar flare dataset (Lichman, 2013) consists of two
versions, and the goal is to predict 3 output variables from 10 input features.
The outputs are not continuous variables. However, the regression algorithms
can be used to predict these categorical variables.

JURA: In this dataset (Goovaerts et al., 1997), seven heavy metals concen-
trations, in addition to the land and rock types, have been collected at 359
locations. Three out of seven metals that are more expensive than the others
are used for output variables, and the outputs are continuous.

Water Quality (WQ): The water quality dataset (Džeroski et al., 2000)
consists of 14 output variables that have been gathered for six years from
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most of the Slovenian rivers, and the outputs are categorical variables. Also,
there are 16 physical and chemical input features to predict the outputs.
Energy Building (ENB): The energy building dataset (Tsanas and Xifara,
2012) has been generated by Ecotect software on 12 buildings. The goal is to
find a relation between building features (including surface area, wall area,
etc.) and two continuous output variables (heating cool and loading cool).
These two variables are needed to maintain comfortable indoor air conditions.
Electrical Discharge Machining (EDM): The EDM dataset (Karalič and
Bratko, 1997) has two categorical output variables and 16 continuous input
features. The goal is to decrease the machining time via reproducing human
operator behavior that adjusts the values of output variables.
SLUMP: In this dataset (Yeh, 2007), the slump flow is used as an output
variable to create high-performance concrete. However in (Spyromitros-Xioufis
et al., 2016), the researchers use 3 output variables. Both of the input features
and output variables are continuous.
ANDRO: The Andromeda dataset (Hatzikos et al., 2008) has been collected
by the under-water system based on a set of sensors. The goal is to predict
the quality of seawater, which is determined by 6 continuous variables (the
outputs) based on 30 continuous input features.
Occupational Employment Survey (OES): There are two versions for
the OES dataset (Spyromitros-Xioufis et al., 2016), which have been collected
in 1997 (OES97) and 2010 (OES10). In both versions, each sample includes
full-time equivalent employees across many employment types. Among the
employment types, 10 variables have randomly been selected as outputs.
OSALES: The goal of this dataset (Spyromitros-Xioufis et al., 2016) is to find
a function for the prediction of online sales of consumer products. There are
12 output variables and 413 input features. The missing values are imputed
by samples’ mean.
See Click Predict Fix (SCPF) : In this dataset (Spyromitros-Xioufis et al.,
2016), the goal is to find the number of clicks, views, and comments (The
outputs), which show the reaction of people on 311 topics. There are 23 input
features (including city, source, etc.) and the missing values are imputed by
samples’ mean.
Airline Ticket Price (ATP): There are two versions for this dataset (Spyromitros-
Xioufis et al., 2016). One of them (ATP1D) concerns the prediction of the ticket
price for the next day, and the goal of the other one (ATP7D) is to predict
the ticket price after 7 days with 411 input features.
River Flow (RF): In the river flow dataset (Spyromitros-Xioufis et al., 2016),
the goal is to find the river network flows for 48 hours in the future based on
previous states in the past (6, 12, 18, 24, 30, 36, 48 past hours). There are two
versions for this dataset (RF1 and RF2), and the missing values are imputed
by samples’ mean.
Supply Chain Management (SCM): The SCM dataset (Spyromitros-
Xioufis et al., 2016) has two versions with the goal of predicting the mean
price for the next day (SCM1D) and 20 days (SCM20D) in the future. There
are 280 and 61 input features for SCM1D and SCM20D, respectively.
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Table 2 A summary description of 18 benchmark datasets used in experiments.

Dataset Observation (N) Inputs (M) Targets (L) k-fold cv Cat O AAC

SF1 323 10 3 10 3 0.231
SF2 1066 10 3 10 3 0.199
JURA 359 15 3 10 7 0.199
WQ 1066 16 14 10 3 0.095
ENB 768 8 2 10 7 0.975
EDM 154 16 2 10 3 0.005
SLUMP 103 7 3 10 7 0.417
ANDRO 49 30 6 10 7 0.396
OES97 334 263 16 10 7 0.786
OES10 403 298 16 10 7 0.822
OSALES 639 401 12 10 3 0.621
SCPF 1137 23 3 10 3 0.734
ATP1D 337 411 6 10 7 0.795
ATP7D 296 411 6 10 7 0.677
RF1 9125 64 8 5 7 0.391
RF2 9125 576 8 5 7 0.391
SCM1D 9803 280 16 2 7 0.638
SCM20D 8966 61 16 2 7 0.596
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Fig. 4 pairwise correlation between targets of WQ dataset. The right-skewed shows the
positive correlation and the left-skewed means negative correlation.

A summary of these datasets is stated in Table 2. Due to the high compu-
tations, two-fold and five-fold cross-validation is used for large datasets. Some
of the outputs are not continuous, and the ranges of these values are limited;
therefore, we tick them as categorical variables. We also define a criterion,
named the average of absolute correlation (AAC), which shows the average of
targets’ correlation for a dataset. The Pearson correlation coefficient (Benesty
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Table 3 aRRMSE performance of proposed JGPR algorithm compared with others.

MMR ST SST ERC RLC MORF M-SVR AKRF MTFL MROTS OKL M-KRR JGPR

SF1 95.8 113.5 106.8 108.9 116.3 128.2 102.1 111.4 111.2 115.5 105.9 110.4 85.9
SF2 98.4 114.9 105.5 108.8 122.8 142.5 104.3 113.5 112.7 120.1 100.4 116.6 75.5
JURA 58.2 58.9 59.1 59.0 59.6 59.7 61.1 61.8 60.8 62.5 59.9 63.3 58.1
WQ 88.9 90.8 90.9 90.6 90.2 89.9 89.9 91.8 96.2 91.3 89.1 92.0 91.9
ENB 11.1 11.7 12.1 11.4 12.0 12.1 22.0 23.4 31.6 25.7 13.8 26.3 6.4
EDM 71.6 74.2 74.0 74.1 73.5 73.4 73.7 74.0 85.1 81.2 74.1 83.3 68.9
SLUMP 58.7 68.8 69.5 68.9 69.0 69.4 71.1 72.9 68.1 77.8 69.9 78.9 55.1
ANDRO 52.7 60.2 57.9 56.7 57.0 51.0 62.7 62.3 80.3 63.5 55.3 63.9 48.4
OES97 49.7 52.5 52.4 52.4 52.3 54.9 55.7 58.1 81.8 60.5 53.5 58.7 47.16
OES10 40.3 42.0 42.1 42.0 41.9 45.2 44.7 44.6 53.2 55.8 43.2 48.9 39.3
OSALES 70.9 74.8 72.6 71.3 74.1 75.3 77.8 77.5 168.2 80.0 71.8 79.9 79.8
SCPF 81.2 83.7 83.1 83.0 83.5 83.3 82.8 83.1 89.9 90.1 82.0 85.5 80.4
ATP1D 33.2 37.4 37.2 37.2 38.4 42.2 38.1 41.2 41.5 40.4 36.4 38.0 23.3
ATP7D 44.3 52.5 50.7 51.2 46.1 55.1 47.75 53.1 55.3 54.9 47.5 48.6 24.6
RF1 8.9 9.7 9.4 9.1 12.1 12.3 10.9 11.4 98.3 15.4 11.2 17.9 8.9
RF2 9.5 10.2 9.7 9.5 13.0 14.8 14.4 15.7 110.3 19.8 11.8 15.9 9.0
SCM1D 31.8 34.8 33.6 33.0 34.5 35.2 36.7 36.8 43.7 44.9 34.2 37.1 30.9
SCM20D 38.9 47.5 41.3 39.4 44.3 48.2 49.3 65.5 64.3 45.6 44.3 49.8 37.6

et al., 2009) between two vector variables is calculated as follows

ρ(u,w) =
E
[
(u− ū)

T
(w − w̄)

]
√
E
[
(u− ū)

T
(u− ū)

]
E
[
(w − w̄)

T
(w − w̄)

]

=

N∑
i=1

(ui − ū)(wi − w̄)√
N∑
i=1

(ui − ū)
2
N∑
i=1

(wi − w̄)
2

(32)

whereN is the number of all samples, u = [u1, u2, ..., uN ] and w = [w1, w2, ..., wN ]
are two output vectors, ū and w̄ are averages of u and w, respectively. The
AAC is defined as follows

AAC =
1

ω

L∑
i=1

i∑
j=2

∣∣ρ(Fi,Fj)
∣∣ (33)

where ω = L2−L
2 is the number of elements in lower triangular of the corre-

lation matrix. L2 is the number of all elements in the correlation matrix, L
the number of diagonal elements must be subtracted from the number of all
elements. Considering only the lower triangular elements, the result L2 − L
must be divided by 2. The summations

∑L
i=1

∑i
j=2 probe the elements in the

lower triangular matrix, and |.| returns the absolute value.
We compare the JGPR with other algorithms including multi-layer multi-

target regression (MMR) (Zhen et al., 2018), single-target regression (ST)
(Spyromitros-Xioufis et al., 2016), stacked single target (SST) (Spyromitros-
Xioufis et al., 2016), ensemble of regressor chains (ERC) (Spyromitros-Xioufis
et al., 2016), random linear target combinations (RLC) (Tsoumakas et al.,
2014), multi-object random forests (MORF) (Kocev et al., 2007), multi-dimensional
support vector regression (M-SVR) (Sánchez-Fernández et al., 2004), multi-
task feature learning (MTFL) (Argyriou et al., 2007), multi-output regression
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with output and task structures (MROTS) (Rai et al., 2012), output kernel
learning (OKL) (Dinuzzo et al., 2011) and multi-target kernel ridge regression
(mKRR) (Alvarez et al., 2011).

The aRRMSE of algorithms for 18 benchmark datasets have been reported
in Table 3. As can be seen, the JGPR has superior accuracy on most of the
given benchmark datasets unless in WQ and OSALES datasets. The experi-
ments show that the JGPR does not work properly for the categorical output
variables as well as continuous ones. The WQ and OSALES datasets contain
the categorical variables on their targets. Also, the experimental results show
that the JGPR does not need any correlation between the targets. Fig. 4(a)
shows the pairwise correlation between the output variables of the WQ dataset.
As shown, the correlations between the outputs are small. On the other side,
the OSALES dataset has sufficient correlation on its outputs, while JGPR
does not increase the accuracy of this dataset as well as the other methods. In
Fig 4(b), we plot the pairwise correlation between outputs for the OSALES
dataset. We conclude that the categorical variable is a poisonous factor for
the proposed JGPR, while it outperforms the accuracy over the datasets with
continuous output variables.

5 Conclusion

In this paper, we studied the multi-task learning and multi-target regression
problems and presented the main difference between them. We emphasized
that the input features are different for the targets in multi-task learning prob-
lems, while for multi-target regression is not the case. We proposed a novel
multi-target regression-based GPR algorithm, named joint GPR (JGPR), which
solves a sub-optimal cost function to optimize the hyperparameters of a shared
covariance matrix between the targets. The proposed method improved the ac-
curacy of conventional GPR in a toy problem and the other state-of-the-art
approaches on 16 out of 18 benchmark datasets. Experiments show that the
JGPR is not overfitted over each target during the training phase. Solving the
sub-optimal solution also helped to reduce the complexity. In the test phase,
we did not use other outputs’ information, while it can be considered as future
work to design an algorithm for capturing the other targets’ information in
the test phase.
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