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Abstract—Deepfake technology, facilitated by deep learning
algorithms, has emerged as a significant concern due to its poten-
tial to deceive humans with fabricated content indistinguishable
from reality. The proliferation of deepfake videos presents a
formidable challenge, propagating misinformation across various
sectors such as social media, politics, and healthcare. Detecting
and mitigating these threats is imperative for fortifying defenses
and safeguarding information integrity.

This paper tackles the complexities associated with deepfake
detection, emphasizing the necessity for innovative approaches
given the constraints of available data and the evolving nature of
forgery techniques. Our proposed solution focuses on leveraging
facial features and transfer learning to discern fake videos from
genuine ones, aiming to identify subtle manipulations in visual
content. We systematically break down videos into frames, em-
ploy the Haar cascade algorithm for facial recognition, and utilize
transfer learning to extract discriminative features. We evalu-
ate multiple pre-trained models, including VGG16, ConvNeXt-
Tiny, EfficientNetB0, EfficientNetB7, DenseNet201, ResNet152V2,
Xception, NASNetMobile, and MobileNetV2, for feature extrac-
tion. Subsequently, we feed these features into a Deep Artificial
Neural Network (DANN) for deepfake detection and employ en-
semble learning to combine the strengths of the best-performing
models for enhanced accuracy.

We found that the ensemble model comprising ConvNextTiny,
EfficientNetB0, and EfficientNetB7 showed enhanced accuracy in
detecting deep fakes compared to alternative models achieving
up to 98% accuracy through ensemble learning.

Index Terms—Deepfake detection, video classification, Transfer
learning, EfficentNetB0, DenseNet, Ensemble learning

I. INTRODUCTION

Deepfakes are fake images and videos that are generated by
deep learning algorithms. Deep Fake technology currently ex-
ists in three categories including Lip syncing, FaceSwap, and
puppet-master. Lip syncing enables the manipulation of facial
expressions and synchronized speech, achieving a remarkable
level of realism. FaceSwap deep fake video technique replaces
the original face with a target person’s face to make a video,
where the target person appears to do the activities performed
by the source person. The original facial expression and
actions remain unchanged, only the face is replaced, so that it
appears to be authentic, though it is not entirely genuine.

Modern Deepfake technology employs deep neural net-
works in encoder-decoder or Generative Adversarial Networks
(GANs) architecture on face images to automatically map
the facial expressions of the source to the target. Generative
Adversarial Networks (GANs), the recent trend for deep fake
creation, consist of two neural networks: the generator and
the discriminator. The generator attempts to create realistic
content, such as images or videos, while the discriminator
evaluates and distinguishes between authentic and generated
content. This adversarial process continues iteratively until the
generator produces convincingly realistic content. New Deep
fake generation software utilizes these advanced algorithms to
make fake content that looks just like the real thing.

Deepfake videos, particularly in the dynamic field of cy-
bersecurity, are a considerable threat, for spreading misinfor-
mation across various domains such as social media, politics,
and healthcare. These videos increase risks such as identity
theft and phishing attacks, undermining digital trust. It can
lead to misunderstanding, influencing decision-making, and
posing significant threats to democracy, national security, and
society. Humans are usually incapable of distinguishing these
deepfakes from authentic content. It is, therefore, crucial to
combat the spread of AI-powered misinformation and enhance
the online environment by distinguishing real news, images,
and videos from synthesized ones. This paper addresses the
challenges in identifying deepfakes, highlighting the need for
innovative solutions considering the data limitations and the
ongoing evolution of deceptive techniques.

A. Challenges in Deep Fake Video Detection

The use of AI techniques in creating deep fake has made
it difficult to spot fake videos and images, making it tricky to
tell if a video or picture is genuine or fake. To detect these
fake contents, we need intelligent methods that utilize a deep
understanding of deepfake technology along with artificial
intelligence. Existing AI techniques for detecting deep fake
videos pose this as a binary classification challenge. These
techniques utilize both hand-crafted features-based approaches
and deep learning-based methods for identifying the deepfake.



Hand-crafted features focus on the traces left by computer
programs that are used to create deepfakes, while deep learning
methods automatically find unique features using convolu-
tional networks to tell if a video is genuine or not. The deep
learning solution, however, requires a huge amount of data
for training AI algorithms to achieve a good performance
level. Another challenge for deep fake detection is to achieve
high model generalization, that measures the performance of
algorithms on unknown datasets.

Related experiments [1] have proved that the generaliza-
tion performance of existing deepfake detection algorithms is
still insufficient for cross-dataset detection tasks. Furthermore,
deep fake detection algorithms presented in the literature
often employ frame-based binary classification. However, this
technique has its drawbacks. On one hand, it is computation-
ally intensive, making it unsuitable for real-time deep fake
detection. On the other hand, the exceptionally realistic visuals
in deepfake content present a considerable challenge, making
it difficult to distinguish manipulated videos from authentic
ones. Lastly, all the state-of-the-art deep fake detection models
are based on black-box, models that lack interpretability and
transparency.

This paper addresses these challenges associated with
real-time deepfake video detection by proposing a transfer
learning-based solution utilizing a convolution neural network
on the facial features extraction and developing a deep learning
neural network model for deepfake identification. The rest of
the paper is organized in the following sections. The next
section describes the related work, followed by the adopted
methodology for deep fake video in Section 3. Section 4
presents the results and analysis of the experiments and finally,
a conclusion is drawn in the last section of the paper.

II. RELATED WORK

Deep fake video detection research is in its early stages and
is normally considered a binary classification problem, aiming
to differentiate authentic and fake videos through deep learning
algorithms. Researchers have employed multiple techniques
that include eye blinking [2], visual and face warping artifacts
[3] [4], Head pose, and temporal inconsistencies between
adjacent frames of video, fed in machine learning algorithms
for detecting the video forgery. Among the methods that have
been suggested for deepfake detection, convolution neural
networks (CNN) have been a popular choice. CNNs have
shown great ability and scalability for applications regard-
ing image and video processes when compared with other
methods for supervised learning in computer vision. Various
approaches have demonstrated the use of CNN along with
other learning models like Recurrent Neural Networks (RNN)
[5], Long Short-Term Memory Networks (LSTM) [6], and
Capsule Networks [7] and have shown good results for deep
fake detection. Sabir et al. [8] developed a dense recurrent
convolution (RCN) model over the Face Forensics++ dataset,
utilizing spatiotemporal features of video frames to detect
deep fakes. Likewise, Guera and Delp [9] utilized time-
based irregularities to propose a temporal-aware pipeline for

fake video detection. Their proposed method consists of a
fully connected network of CNN and long short-term mem-
ory (LSTM). They employed Frame-level features extracted
through CNN and fed those into LSTM to form a temporal
sequence descriptor for classifying doctored videos from real
ones. Montserrat et al. [10] proposed an automatic weighting-
based CNN-RNN framework. Wu et al. [11] proposed a novel
manipulation detection framework, named SSTNet, exploiting
both low-level artifacts and temporal discrepancies. The use of
a biological signal [12], eye blinking [3], and heartbeat signals
[13] are also demonstrated by researchers to detect deep fake
content. Researchers [4] exploited artifacts observed during the
face-warping phase of the deepfake generation, to detect the
deepfake video. Their proposed method is evaluated on two
deepfake datasets, namely the UADFV and DeepfakeTIMIT.
Xinyi Ding et al. [14] employed transfer learning to identify
face-swapped images. Their study was based on pre-trained the
ImageNet model of ResNet-18 for object recognition, which
was then fine-tuned on a public dataset for deepfake detection
purposes. However, the stability of their presented approach
was compromised due to the overfitting problem.

III. METHODLOGY
Deep fake video detection can be viewed as a natural ex-

tension of image classification tasks. However, it poses greater
challenges than image classification because it incorporates
an additional temporal dimension. This dimension arises from
the contextual relationship between the current and previous
frame. Furthermore, like other machine learning classification
tasks, effective deep fake video detection demands robust
generalization techniques and a considerable amount of data
for comprehensive training, which may not always be feasible.
To tackle these challenges comprehensively, we developed
a hybrid model that integrates transfer learning to enhance
generalization and address the issue of data scarcity, along with
ensemble learning to further improve the accuracy of deepfake
video detection. The pipeline of our proposed hybrid model as
shown in Fig. 1, includes several stages: video pre-processing,
transfer learning for feature extraction, video classification
through deep ANN models, and finally, ensemble learning for
improving accuracy. We describe each of these stages in the
following subsections.

A. Dataset
We utilized the publicly available FaceForsenic++ dataset

[15] for our experiments with the proposed deepfake detection
pipeline. FaceForensics++ is a forensic dataset comprising
1000 authentic video sequences. Four automated face manipu-
lation techniques including Deepfakes, Face2Face, FaceSwap,
and NeuralTextures were applied to these authentic videos
generating 1000 manipulated videos for each category, pro-
viding a diverse set of manipulated content for research and
development in the domain of facial image forensics.

B. Video Pre-processing
Our proposed methodology presented in Fig. 1, involves

the classification of multiple frames in a video. The predic-



Fig. 1. Proposed Pipeline for Deepfake Detection.

tions from each frame are then combined to determine the
authenticity of the entire video, distinguishing between real
and fake content. During the video processing stage, frames
are extracted from the video clips. For the FaceForsenic++
data set, a total of 17416 frames were extracted from each
of the fake and real videos. However, this dataset is slightly
imbalanced with 8,000 frames in the fake category and 9,416
frames in the real video category. Face extraction from each
of these frames was then accomplished by utilizing the Haar
Cascade algorithm [16].

To augment the dataset and improve the model’s robustness
and generalization, we implemented data augmentation tech-
niques using the TensorFlow Keras library. This involved the
random rotation of faces between 0 and 45 degrees, as well as
horizontal and vertical flipping. Additionally, to introduce the
variety in the images, we introduced a 20% zooming factor and
a 10% shift in the width and height dimensions to make the
images either small or bigger. Following the same procedure,
lighting conditions were also randomly varied by adjusting
brightness and contrast within the value range of 0.7 to 1.2.
Subsequently, features were extracted from these manipulated
faces through transfer learning, a process elaborated upon in
the next section.

C. Feature Extraction through Transfer Learning

Transfer learning is a machine learning technique that
involves leveraging the feature representation learned by a

TABLE I
IMAGENET PRETRAINED MODELS

Model ModelSize Parameters Top1-Accuracy
VGG16 528 138.4 71.30

NASNetLarge 343 88.9 82.5
EfficientNetB7 256 66.7 84.30
ResNet152V2 232 60.4 78.00

InceptionResNetV2 215 55.9 80.30
ConvNeXtTiny 109.42 28.6 81.30

ResNet50 98 25.6 74.90
Xception 88 22.9 79.00

DenseNet201 80 20.2 77.30
NASNetMobile 23 5.3 74.40
EfficientNetB0 29 5.3 77.10
MobileNetV2 14 3.5 71.30

pre-trained model, often trained on extensive datasets like
ImageNet. ImageNet constitutes a vast dataset containing over
14 million annotated images categorized into more than 21,000
groups or classes. The pre-trained Imagenet model trained on
one task is reused with a few or more weights adjusted, along
with the addition or removal of some new layers, for a second
related task. This process significantly reduces the model
development time and improves the performance compared
to an isolated learning model.

Researchers have identified two types of transfer learning:
inductive and transductive transfer learning. Inductive transfer
learning focuses on applying knowledge across different tasks,
where the target task is distinct from the source task. On the
other hand, transductive transfer learning involves scenarios
where the tasks remain the same, but the datasets employed
for these tasks are different. Both these approaches utilize the
pre-trained Imagenet models, which are convolution neural
network models consisting of several convoluted layers and
one fully connected layer. Several such pre-trained CNN
models have been proposed such as AlexNet [17], GoogleNet
[18], and VGG [19].

Table 1 shows the characteristics of Imagenet models. In
choosing a pre-trained model for image classification, we fo-
cused on performance, considering top-1 accuracy for precise
predictions and the number of parameters for computational
efficiency. Additionally, we factored in the deployment plat-
forms (web or mobile) to ensure compatibility. As can be
seen from the Table 1, the architecture of the EfficientNetB0
model is well suited for real-time application due to its
balance between model accuracy and computational efficiency
represented through model parameters and size. On the other
hand, the CNN architecture of DenseNet201 is parameter-
efficient due to its dense connections and consequently fa-
cilitates effective feature extraction. DenseNet is thus a good
choice for learning complex patterns and capturing facial cues
in manipulated facial images of the deepfake content.

Following this strategy, we chose eight pre-trained models
including Xception, VGG16, RasNet50V2, EfficientNetB0,
EfficientNetB7, MobileNetV2, DenseNet201, and ConvNeXt-
Tiny, in a transductive transfer learning approach and tested
their performance as feature extractors on FaceForsenic++



dataset. The final or fully connected layers of both of these
pre-trained models were removed and all the remaining layers
were set to a frozen state. We employed max pooling due to
its ability to capture the most discriminative features for the
given input face images. Feature vectors were thus constructed
by fine-tuning these pre-trained models over the training and
testing data set, achieved by dividing the pre-processed data
with a ratio of 0.3. The generated feature vectors extracted
from each of these models were then separately fed into a
deep neural network model for binary classification, described
in the next section.

Fig. 2. Performance of Chosen ImageNet Models as Feature Extractor

D. Deep ANN Model

The Deep artificial neural network ANN classifier was
constructed with two hidden layers having 50 hidden neurons
and one classification layer with a sigmoid function. To avoid
overfitting and minimize the loss function, we employed adap-
tive Moment Estimation or Adam optimizer for the training.
The choice of the Adam optimizer was made because of its
fast convergence and adaptive learning rate. An early stopping
technique was used to avoid overfitting. The accuracy of these
deep ANN models was evaluated on confusion matrix, F1-
score, precision, and recall rate. The training accuracy of these
models along with the confusion matrix is shown in Fig. 2 and
Fig. 3 respectively.

E. Ensemble Learning

The final phase of our proposed methodology focuses on
improving the accuracy of the deep fake detection classifiers.
We employed ensemble learning to improve the predictive
performance by leveraging the strengths of the individual
models. Researchers have shown more than one approach

Fig. 3. Confusion Matrix of Chosen ImageNet Models as Feature Extractor

to implementing ensemble learning, which includes Bagging,
Boosting, Stacking, Voting, Blending, Adaptive boosting, etc.
However, in this work, we utilized the model aggregation ap-
proach and implemented soft voting and weighted techniques
to effectively combine the predictions of individual classifiers.

In the soft voting approach, we combined predictions
of individual classifiers leveraging the probability estimates
provided by each classifier for every class. The ensemble
aggregates these probabilities through averaging. The final
prediction is determined by selecting the class with the highest
aggregated probability.

In another approach of weighted soft computing, we as-
signed weights to each of the classifiers based on their
reliability. The weight was chosen by looking at the testing
accuracy of the model, the model that attained the highest
testing accuracy was weighted most, and consequently, the
model with the lower testing accuracy was given the lower
weight. The final prediction was made by combining the
contributions from each classifier based on their weights.

The final ensemble predictions from soft voting and
weighted approaches were evaluated on an unseen test dataset.
The next section describes the performance accuracy of all the
trained models both before and after the ensembling.

IV. RESULT & DISCUSSION

In evaluating the performance of our models, we employed
training and testing accuracy as the key metrics, along with
additional measures such as F1-score, precision, recall, and
Area under Curve(AUC). The precision, recall, and F1-score
were calculated using equations 1,2, and 3, where TP, FP, and
FN represent True positive, False positive, and False negative
respectively. The AUC as a performance metric was chosen
because it comprehensively evaluates a model’s capacity,
particularly for an imbalanced dataset to distinguish between



positive and negative classes. Its value ranges from 0 to 1 with
an AUC value of 1 indicating the perfect classification and a
value less than 0.5 is considered random performance, and the
model is considered a bad classifier. The training and testing
curves of these models as obtained during the training of the
models are shown in Fig. 2(a) and Fig. 2(b) respectively, while
other performance measures are shown in Fig. 4.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1Score =
2 ∗ Precision ∗Recall

Precision+Recall
(3)

It can be seen from the Fig. 2(a) that no single model
emerged as the unequivocal winner across all performance
criteria. Significantly, ConvNeXtTiny and VGG16 exhibited
outstanding performance on the training dataset, achieving an
impressive accuracy of 99%. Following closely, EfficientnetB0
and MobileNetV2 attained a training accuracy of 97% and
96% respectively.EfficientNetB7 and DenseNet201 yielded
accuracies of 93%. The models Xception and RasNet50V2,
however, exhibited relatively lower training accuracy of 84%
and 80% respectively and NASNetMobile turned out to be the
least training efficient with training accuracy of 74%.

The testing accuracy, which assesses the performance of
these models on unseen data, is illustrated in Fig. 2(a).
Intriguingly, ConvexNextTiny and EfficientNetB0 emerged
as victors, achieving testing accuracies of 91% and 90%,
respectively, followed by EfficientNetB7 and DenseNet201 at
81%, and VGG16 at 80%. On the other hand, ResNet152V2,
MobileNetV2, and Xception demonstrated approximately 70%
testing accuracy, while NASNetMobile exhibited the lowest
accuracy at 64%.

The confusion matrix illustrated in Fig. 2(b) presents a
comparative analysis of the performance of multiple models
concerning their ability to correctly identify true negatives
(TN) and true positives (TP) in distinguishing between real
and fake videos. As can be seen from this figure ConvNeXt-
Tiny demonstrated the highest TN score of 773, followed by
EfficientNetB0 and EfficientNetB7, indicating their superior
accuracy in identifying real videos. This trend was similarly
observed for TP, with ConvexNeXtTiny leading with a value
of 946, followed by EfficientNetB0 and EfficientNetB7 with
scores of 928 and 915, respectively.

These results suggest that all three models exhibit a strong
capability in detecting fake videos from real ones, with
ConvexNextTiny emerging as the top performer, followed by
EfficientNetB0 and EfficientNetB7. VGG16 and DenseNet201
models also showed competitive performance, albeit slightly
lower than the top three. On the other hand, NasNetMobile
demonstrated the least efficiency in this task.

Figure Fig. 4 shows the performance matrix of these models
in terms of precision, recall, AUC, and F1-score. ConvNeXt-
Tiny also exhibited the highest recall rate of 0.95 succeeded by

EfficientNetB0, EfficientNetB7, DenseNet201, VGG16, and
MobileNetV21, with values of 0.942, 0.937, 0.916, 0.934,
and 0.955, respectively. Regarding precision, VGG16, Con-
vextNeXtTiny, and EfficientNetB0 emerged as top performers,
each achieving a precision value of 0.94, closely pursued by
EfficientNetB7, MobileNet, and DenseNet201, with a preci-
sion rate of 0.93,0.92,91 respectively.

Concerning the AUC metric, the ConvexNeXtTiny model
once more outperformed others, achieving a value of 0.95,
closely followed by EfficientNet B0, EfficientNet B7, VGG16,
and MobileNetV2. In contrast, DenseNet exhibited an AUC
value of 0.90. As expected, XceptionNet, NasNetMobile, and
ResNet152V2 showed values nearing 0.7.

In conclusion, these results emphasize the significance of
choosing suitable models for video authentication purposes,
particularly highlighting the promising performance of smaller
models such as ConvexNextTiny and various versions of
EfficientNet in discerning real from fake videos.

Fig. 4. Performance Comparision of the Trained Models

After analyzing performance and striving to enhance test-
ing accuracy, we adopted an ensemble strategy. This in-
volved combining ConvNextTiny with EfficientNetB0 and
EfficientNetB7, pairing VGG16 with DenseNet201, and align-
ing MobileNetV21 and Xception with NASNetMobile and
ResNet152V2, respectively, using a Voting technique outlined
in the final section. The outcome was an improved testing
accuracy, as depicted in Table 2. It can be seen from Table
2 that both of the adopted ensemble learning produced a
positive effect in increasing the testing accuracy along with
the improvement in precision, recall, and AUC.

It can be seen from Table 2.0 The ensemble model com-
prising ConvNextTiny, EfficientNetB0, and EfficientNetB7 has
enhanced accuracy to over 98% through soft voting and over
90% through average weight technique, proving to be notably
more effective by consistently improving across all metric
measurements.

We also compared the performance of the proposed ap-
proach with [20]. [20] employed the EfficientNet model on
FaceForsenic++ and achieved an accuracy of 85.84% and ACU



of 72.17 for their proposed EfficientNet to detect the deep fake.
However, the performance of EfficientNet models both B0 and
B7 surpassed that of [20] achieving over 90% accuracy.

TABLE II
PERFORMANCE COMPARISION OF ENSEMBLING TECHNIQUE

Model Accuracy F1score Recall Precision AUC
ConvNexttTiny .89 0.91 0.95 0.94 0.95
EfficientNetB0 .87 0.94 0.94 0.94 0.94
EfficientNetB7 .81 0.93 0.93 0.93 0.93

Soft Voting .98 0.96 0.96 0.95 0.95
Weighted.Voting .94 0.97 0.97 0.96 0.96

VGG16 .81 0.94 0.93 0.95 0.95
DenseNet201 .80 0.91 0.91 0.91 0.90

MobileNetV21 .72 0.93 0.95 0.92 0.93
Soft Voting .83 0.94 0.93 0.96 0.92

Weighted Voting .85 .95 0.94 0.96 0.93
XceptionNet .72 0.72 0.70 0.73 0.69

NASNetMobile .64 0.65 0.70 0.60 0.58
ResNet152V2 .70 0.60 0.73 0.51 0.47

Soft Voting .72 0.72 0.73 0.70 0.65
Weighted Voting .72 0.73 0.72 0.71 0.66

V. CONCULSION

In conclusion, our study was dedicated to addressing the
challenge of detecting deep fake videos. We introduced a
solution involving transfer learning to overcome the limitations
posed by insufficient training data and to facilitate feature
extraction. The evaluation of our method, employing vari-
ous performance metrics such as accuracy, precision, recall,
AUC, and F1-score, yielded promising results. The individual
models, ConvexNextTiny, EfficientNetB0 EfficientNetB7, and
DenseNet201, demonstrated robust performance across mul-
tiple metrics, showcasing high precision, recall, and F1-score
values. Moreover, our ensemble methods, including the voting
and weighting approach, surpassed the individual models,
achieving even greater precision, recall, and F1-score. No-
tably, consistent, and high AUC values across all models and
ensembles underscored their excellent discriminatory ability.
We found the ensemble model consisting of ConvNextTiny,
EfficientNetB0, and EfficientNetB7 improved the deep fake
detection accuracy as compared to other models.

Our findings highlight the effectiveness of our approach,
emphasizing the potential of combining transfer learning and
ensemble methods for robust deep fake video detection with
a specific emphasis on facial features. We specifically demon-
strated that the resource-efficient nature of ConvexNextTiny,
EfficientNetB0 EfficientNetB7, and DenseNet201, make it
suitable for dynamic video detection. In the context of the crit-
ical issue of deep fake video detection, our study contributes
to the establishment of a trustworthy digital environment by
showcasing the efficacy of transfer learning in this domain.
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