

A Methodology for Modelling
Mobile Agent-Based Systems

(Mobile agent Mobility Methodology - MaMM)

DIVINA A. MELOMEY

A thesis submitted in partial fulfillment
 of the requirements of the
University of East London

for the degree of
Master of Philosophy

Research undertaken in the
School of Architecture, Computing and Engineering

2012

Acknowledgements

‘I know the thoughts that I have toward you, says the Lord, thoughts of peace and not of
evil, to give you a future and a hope’.

(Jeremiah 29:11)

I would like to thank my supervisory team for their support in my research.

I would also like to acknowledge the funding I received from The Allan and Nesta

Charitable Trust(ANFCT), Grant reference LPG/sw/Ferguson for sponsoring part of my

final year Ph.D tuition for 2007/8. I am also grateful to Letty Glaister for facilitating the

grant process.

I would like to express my appreciation to Dr. Godfried Williams (University of

Gloucestershire) for his interest, expertise, motivation and support in shaping and

developing my understanding of research. My gratitude goes to my parents Andrew and

Elizabeth Melomey, for their constant presence, love and support during this research

process. I also like express my appreciation to the Melomey and Atchoe family in the

UK, for their love, support and friendship during this period of research. Furthermore, I

would also like to thank Madam Elizabeth Odumang and Reverend Ebenezer Odai

Tettey for their encouragement, prayers and friendship.

Finally, to everyone that supported and encouraged, I say thank you.

Abstract

Mobile agents are a particular type of agents that have all the characteristics of

an agent and also demonstrate the ability to move or migrate from one node to

another in a network environment. Mobile agents have received considerable

attention from industry and the research community in recent times due to the

fact that their special characteristic of migration help address issues such as

network overload, network latency and protocol encapsulation. Due to the current

focus in exploiting agent technology mainly in a research environment, there has

been an influx of software engineering methodologies for developing multi-agent

systems. However, little attention has been given to modelling mobile agents. For

mobile agent-based systems to become more widely accepted there is a critical

need for a methodology to be developed to address various issues related to

modelling mobility of agent . This research study provides an overview of the

current approaches, methodologies and modelling languages that can be used

for developing multi-agent systems. The overview indicates extensive research

on methodologies for modelling multi-agent systems and little on mobility in

mobile agent-based systems. An original contribution in this research known as

Mobile agent-based Mobility Methodology (MaMM) is the methodology for

modelling mobility in mobile agent-based systems using underlying principles of

Genetic Algorithms (GA) with emphasis on fitness functions and genetic

representation. Delphi study and case studies were employed in carrying out this

research.

Table of Contents

List of Tables ... vii

List of Figures ... viii

Acknowledgements .. viii

Chapter 1: Introduction ... 1

1.1 Existing Approaches in Mobile Agent-based Systems 4

1.2 Research Aim and Objectives ... 5

1.3 Research Process ... 6

1.4 Thesis Structure .. 7

Chapter 2: Literature Review .. 9

2.1 Introduction ... 9

2.2 Background Theory ... 9

2.3 Definition of Software Agents .. 10

2.4 Existing Agent Modelling Languages .. 13

 2.4.1 Agent Unified Modelling Language ... 16

 2.4.2 Agent Modelling Language .. 17

 2.4.3 Specification Language for Agent Systems 18

 2.4.4 Caste-Centric Agent Modelling Language and Environment 18

 2.4.5 Autonomy Specification Language .. 19

 2.4.6 Other Extensions to UML .. 20

 2.4.7 AUML Deployment Diagram .. 21

 2.4.8 AUML Activity Diagram Extensions ... 22

2.5 Mobile Agent .. 24

 2.5.1 Multi-agent Systems Engineering Methodology 25

 2.5.2 GAIA Methodology .. 28

 2.5.3 TROPOS Approach ... 29

 2.5.4 Prometheus Methodology ... 30

 2.6 Mobile Agent .. 32

2.7 Traditional Software Development Models .. 35

 2.7.1 Waterfall Model ... 36

 2.7.2 Rapid Prototyping Model ... 37

 2.7.3 Evolutionary and Iterative Model ... 37

 2.7.4 Incremental Model ... 37

 2.7.5 Spiral Model .. 38

2.8 Discussion ... 38

2.9 Summary ... 39

Chapter 3: Research Methodology ... 40

3.1 Introduction ... 40

3.2 Delphi Technique/Study .. 41

 3.2.1 The Delphi Process ... 41

 3.2.2 Selection of Experts .. 41

 3.2.3 Data Collection Process .. 42

 3.2.3.1 Round 1 .. 42

 3.2.3.2 Round 2 .. 43

 3.2.3.3 Round 3 .. 45

 3.2.4 Analysis of Delphi Study Data ... 46

 3.2.5 Confidentiality of Delphi Study .. 48

3.3 Case Studies ... 48

 3.3.1 Data Collection and Analysis Process ... 48

3.4 Simulation ... 49

3.5 Summary ... 50

Chapter 4: Mobile Agent Modelling Modelling .. 51

4.1 Introduction ... 51

4.2 The Mobile agent Mobility Methodology (MaMM) 51

4.2 .1 Reasons for Developing the Mobile Agent Mobility Methodology .. 52

 4.2.2 Mobility Concepts and Design Requirement Considerations 53

4.3 Concepts of Multi-agent Systems .. 54

 4.3.1 Existing Concepts of Multi-agent Systems 54

 4.3.2 Proposed Concepts for Describing Mobile Agents 57

4.4 Composition of Agent System ... 58

4.5 Phases of MaMM .. 60

 4.5.1 Mobility Requirement Elicitation ... 60

 4.5.2 Fitness Classification ... 64

 4.5.2.1 Mathematical Modelling of Mobility Requirements 66

 4.5.2.2 Binomial Coefficient Application to Requirements 74

 4.5.2.3 Concepts underlying GA Problem Formulation 78

 4.5.2.4 Representation of Chromosomes in the Mobility Problem 83

 4.5.3 Code Transformation .. 89

 4.5.4 Mobility Implementation ... 91

 4.6 Simulation .. 91

 4.7 Simulation of Fitness function Using GA Concepts 92

 4.7.1 Objectives of Simulation ... 92

 4.7.2 Overview of Simulation .. 92

 4.8 Summary ... 94

Chapter 5: Simulation and Evaluation .. 96

5.1 Introduction ... 96

5.2 Mobility Fitness Functions Testing ... 96

 5.2.1 Step 1: Problem Setup. ... 97

 5.2.2 Step 2: Function Option for Problem Setup 98

 5.2.3 Step 3: Monitoring and Observation. .. 99

 5.3 Fitness Function Translation .. 100

 5.3.1 Test 1: Remote Method Invocation ... 100

 5.3.2 Test 2: Mobility Synchronisation ... 101

 5.3.3 Test 3: Rastrigin’s Function .. 103

 5.4 Simulation Results ... 104

 5.4.1 Results for Mobility Method Invocation Function 104

 5.4.2 Results for Mobility Synchronisation Function 105

 5.4.3 Results for Rastrigin’s Function ... 107

5.5 Evaluation of Simulation Results .. 108

5.6 Discussion of Simulation Test Results ... 111

5.7 Real Life Usefulness of Results .. 113

5.8 Summary ... 116

Chapter 6: Conclusions and Future Work ... 117

 6.1 Summary ... 117

6.2 Delphi Study ... 118

6.3 Case Studies .. 118

6.4 Mobile agent-based Mobility Methodology ... 119

 6.4.1 Simulation Testing and Evaluation of Results 121

6.5 Research Contributions .. 125

6.6 Future Work .. 127

References ... 129

Appendix A - Auto generated Codes ... 144

Appendix B - Delphi Study Data ... 148

Appendix C - Case Studies Interviews ... 155

Appendix D - Publish Papers/Journal Articles .. 161

List of Tables

Table 2.1 Analysis of Existing Modelling Languages for MAS 16

Table 2.2 Existing Multi-agent Systems Methodologies 25

Table 4.1 Generic and Mobility Requirements .. 75

Table 5.1 Final Point Co-ordinates ... 109

Table 6.1 Existing Multi-agent Systems Methodologies and MaMM................. 121

List of Figures

Figure 1.1 Research process.. 6

Figure 4.1 Agent-to-Mobile Agent Diagram. .. 59

Figure 4.2 Phases of MaMM. ... 60

Figure 4.3 Mobility Fitness Classification Model ... 65

Figure 4.4 Genetic Algorithm Flowchart ... 86

Figure 4.5 Mobility Design Layer Diagram .. 90

Figure 4.6 GA Optimization Tool .. 94

Figure 5.1 ‘@mobilityRMI’ function simulation Setup .. 97

Figure 5.2 ‘@mobilitysync’ Problem Setup ... 97

Figure 5.3 ‘@rastriginfcn’ Problem Setup ... 98

Figure 5.4 Population Options .. 98

Figure 5.5 GA Tool GUI for Genetic Operator Options 99

Figure 5.6 ‘@mobilityRMI’ Results.. 104

Figure 5.7 ‘@mobilityRMI’ function plot .. 105

Figure 5.8 ‘@mobilitysync’ function option ... 105

Figure 5.9 ’@mobilitysync’ function plot ... 106

Figure 5.10 ‘@mobilitysync’ function results ... 106

Figure 5.11 ‘@rastriginsfcn’ simulation results ... 107

Figure 5.12 ‘@rastriginsfcn’ simulation function plot... 108

Figure 5.13 ‘@mobilitysync’ plot function ... 110

Figure 5.14 ‘@mobilityRMI’ plot function .. 110

Figure 5.15 ‘@rastriginsfcn’ plot function .. 110

1

CHAPTER 1

Introduction

With the emergence of mobile and wireless information communication technology, the

focus of research in distributed computing has turned to addressing challenges relevant

to mobile entities and their environments. One area of such research is mobile

distributed computing to support and address mobility issues in the wired and non-wired

remote environment. This shift in software paradigm has resulted in the birth of the

mobile agent which is a new paradigm for distributed application development. The

mobile agent paradigm has broken down one of the major barriers in distributed

computing which is based on the client/server model. In the client/server model a client

needs to establish and maintain a reliable connection with a server(s) in order to

communicate although this is less efficient for a highly distributed environment.

Different researchers have defined the mobile agent in different ways. Milojicic (1999)

defined the mobile agent as an autonomous software program that can migrate from one

platform to another on a heterogeneous network, performing tasks on behalf of the user.

Jansen (2002) defined the mobile agent as ‘travelling agents’, these programs will

shuttle their being, code and state, across different resources. Cubaleska and Schneider

(2002) defined the mobile agent as a computational process that implements the

autonomous communicating functionality of an application. The platform is therefore

made up of the computational environment and the agent is also made up of the code

and state information that is needed to perform some form of computation (Jansen and

Karygiannis, 1999).

2

In the context of this research, a mobile agent can be defined a as an autonomous agent

that exhibits mobility characteristics such as persistency, robustness, security

assessment for its codes and environment, mobility transparency and fault tolerance.

Autonomous agents and multi-agents have become very important in both industrial and

academic research. These paradigms draw on concepts from distributed computing,

object oriented systems, software engineering, artificial intelligence, economics, game

theory, sociology and organisational science. The concept of autonomous agents offers

solutions to complex software systems through analysing, designing and implementation

(Jennings et al., 1998).

Jennings (2000) identified Agent Oriented Systems Engineering (AOSE) as having the

potential to considerably improve the practices of software engineering. It is suggested

that concepts of AOSE offer alternative ways of providing software solutions to complex

systems. AOSE adopts a multi-agent approach to systems development in an attempt to

solve complex problems. A general definition of an agent can be defined based on its

general characteristics. Agents are characterised by autonomy, social-ability,

interactivity, proactive/goal oriented, reactive, persistent and a desirable property such

as mobility, adaptation and rationality (Brustoloni, 1991; Smith et al., 1994; Wooldridge

and Jennings, 1995; Franklin and Graesser, 1996; Williams, 2007a). Existing literature

about multi-agent systems indicates that autonomous agents are intelligent. In this thesis

both autonomous and intelligent agents will be termed agent. Many applications can be

created using mobile agents, which means that agents can be integrated to support

mobility in several applications. Common applications which utilises mobile agents

include remote database searches, information retrieval and messaging applications

3

which usually carry active and real time content enroute to several remote locations.

Since the emergence of the agent paradigm, there has been an influx of different

approaches and methodologies to modelling agent systems. This indicates the level of

interest that agents have generated in both the commercial and academic research

environment. Several researchers have devoted considerable time and effort into

developing suitable frameworks and architectures for agents. However, there has been

little in the way of providing a systematic practical approach or methodology for

developing and addressing mobility issues in mobile agent based systems. There are

inherent complexities in using traditional approaches and/or methodologies for

engineering agent and mobile agent based systems. These complexities have led to ad-

hoc solutions being adopted whereby practical systems have been built from scratch.

The overall purpose of this research goal is therefore to develop a methodology using

the underlying principles of Genetic Algorithm (GA) approach to modelling mobility in

mobile agent based systems to support and overcome some of these shortcomings in

current engineering practice and also to improve upon previous attempts.

The rest of this chapter sets the background for the research work undertaken and

outlines the aims, objectives and contributions of this thesis. It introduces the

methodologies and approaches for developing mobile agent based systems and

identifies challenges and shortcomings that need to be overcome to develop the

methodology for modelling mobility in mobile agent systems.

4

1.1 Existing Approaches in Mobile Agent-based Systems

With the ever increasing proliferation of new technology owing to the widespread growth

in applications, the need to provide a strategy for the analysis, design and deployment of

these application systems has increasingly gained a sustained level of interest among

agent researchers(Omicini, 2001;Santandiyo et al., 2004;Self and DeLoach, 2004).

Attempts which have so far been made by the agent research community have focused

on the conceptual modelling of mobile agent-based applications. Methodologies that

attempt to address mobility issues are met with notational constraints and

implementation considerations. This is as a result of implementing the methodologies as

concepts thereby limiting the methodologies (Loukil et al., 2006). There is also lack of

consistency in definition for mobile agent in the current approaches that have been

developed to model the mobility for mobile agent (Chhetri et al., 2006). Many different

approaches to modelling mobility of mobile agent have focused attention on different

concepts relating their context specific definition (Belloni and Marcos, 2004). For

instance, most existing literature on methodologies and approaches associate the

mobility to the agent’s role or task which is assigned at any given time during the agent’s

lifecycle. The role assigned to the agent determines whether it will be stationary or

mobile in a multi-agent environment. In a multi-agent system or environment, mobility is

viewed as an attribute assigned to an agent or a role performed by the agent and is

usually specified in the itinerary of the agent. Meanwhile, the mobile agent as a

computational process has been shown to improve the latency and bandwidth usage in

distributed applications (Wooldridge et al., 2000). Given this background, it is necessary

to develop a methodology to model mobility of the mobile agent.

5

1.2 Research Aim and Objectives

Aim

The aim of this research is to identify and develop a methodology to model the mobility

of mobile agent-based systems. Having this in mind, the objectives of this work are:

Objectives

 To review methodologies and approaches and to identify deficiencies in current

practice.

 To develop a methodology to model mobility in mobile agent-based systems.

The methodology will be divided into phases to facilitate the ease in the

development process of mobile agent-based systems. The principle of dividing

the methodology into phases is to facilitate the development of the software and

to make it more manageable.

 To develop criteria for classifying mobility fitness based on mobility specific

requirements.

 To develop mathematical models based on mobility requirements identified and

derived from the Delphi study and case studies.

 To translate core mobility requirements modelled mathematically into mobility

fitness functions solvers for selecting mobility requirements for applications

development. The Rastrigin’s function will be used for benchmarking

performance of the mobility fitness functions.

 To design a layered diagram indicating where and how mobility requirements fit

into an online distributed architectural design.

6

1.3 Research Process

As in indicated in Figure 1.1, the research stages covered are as follows; comprehensive

and ongoing literature review of multi-agent approaches, methodologies and mobility

modelling. Delphi study was employed to solicit the views of experts in software

development in the area of online banking and Virtual Learning Environments (VLE) and

online games which indicated emerging views and patterns in systems development.

Results from this study gave strong pointers to which case studies were appropriate for

the methodology development. Case studies were also used for the evaluation and

refinement of the methodology which is known as MaMM. The mobility requirements

which were derived from both the Delphi study and case studies were simulated and

evaluated.

 Figure 1.1: Research Process

Delphi Study

Mathematically Modelling of
Mobility

Simulation, Testing and
Evaluation

Mobile agent-based Mobility
Methodology

Case Studies

Literature Review

7

1.4 Thesis Structure

In the rest of the thesis, a thorough and an ongoing literature review is presented. A high

level conceptual methodology is presented along with mobility design layer diagram and

mobility fitness as captured in the phases of the methodology.

 Chapter 2 reviews the background theory of software agents and agent

mobility, the traditional approach to software development processes, the

various approaches and methodologies that are available are all described in

detail. The limitations of agents are identified against generic requirements

for modelling mobility in mobile agent-based systems, which provide the

motivation for undertaking this research.

 Chapter 3 describes the research methodology employed in this research.

Delphi study and the case studies are discussed and the reasons why these

approaches are used. The GA tool used for simulating the results is

discussed.

 Chapter 4 presents the key mobility requirements, concepts and mobile

agent-based methodology. Concepts and theories that underpin the

methodology are discussed. Genetic Algorithms, genetic operators and

fitness functions are introduced to the methodology at the analysis phase of

the development process.

 Chapter 5 presents results from the modelling and simulation of the Mobile

agent-based Mobility Methodology (MAMM). In this chapter, Rastrigins’

function is used as a benchmark to measure the effectiveness and

performance with the mobility defined fitness function. In analysing the

8

computational complexity of this approach, an indication is provided that this

mobility methodology outperforms other state-of-the-art approaches and

methodologies and also explains the reasons why this methodology is better

in terms of the mobility and communication requirements for mobile agent-

based systems.

 Chapter 6 brings together the conclusions of this research and focuses on the

contributions and limitations that the mobility methodology is able to provide.

This chapter also outlines future work that can be undertaken to extend the

methodology as well as improving the mobility fitness function.

9

CHAPTER 2

Literature Review

2.1 Introduction

In this chapter, a literature review of work in the area of multi-agents and mobile agents

is presented. In the definition of an agent, mobility is an attribute/characteristic of the

agent, this means that to provide a definition for a mobile agent, it has all the properties

of an agent including mobility/migration. Researches into multi-agent systems were

therefore investigated in order to gain an insight into and extent to which agent mobility

has been exploited. Limitations of the existing approaches, methodologies, agent

modelling languages, common software development methodologies are highlighted

thus serving as a motivation for establishing research objectives for this thesis.

2.2 Background Theory

Software agents and Multi-Agents have become very important in research and software

development in recent years. Characteristics of software agents include autonomy, pro-

activeness, social-ability, re-activeness and mobility. To understand the mobile agent in

the context of this research, a historical background of how this has evolved is explained

and explored. Software agent concepts have been drawn from distributed computing,

object-oriented systems, software engineering, artificial intelligence, economics,

sociology, programming and organisational science(Brustoloni, 1991;Smith et

al.,1994;Wooldridge and Jennings, 1995; Franklin and Graesser, 1996) .

10

2.3 Definitions of Software Agent

There are several definitions for software agents all of which share similar characteristics

(Brustoloni, 1991;Smith et al.,1994;Wooldridge and Jennings, 1995; Franklin and

Graesser, 1996;Williams, 2007a). In this thesis, software agent is used interchangeably

with autonomous agent. The following identifies various definitions provided by different

researchers who have been working in this field:

Brustoloni (1991) definition is ‘Autonomous agents are systems capable of autonomous,

purposeful action in the real world’. He compared his autonomous agents to other agent

definitions, and stressed that his agent must of necessity live and act ‘in the real world’.

He also insists that his agents must be reactive; that is, agents must be able to respond

to external, asynchronous stimuli in a timely fashion.

Wooldridge and Jennings (1995) not only provided a definition, but also add an

explanation for autonomy, sensing and acting, allowing for a broad, yet clear and

concise, range of environments or platforms. Wooldridge and Jennings (1995) defined

an agent as ‘... a hardware or (more usually) software-based computer system that

enjoys the following properties:

 Autonomy: agents operate without the direct intervention of humans or

others, and have some kind of control over their actions and internal state;

 Social-ability: agents interact with other agents (and possibly humans) via

some kind of agent-communication language;

11

 Reactivity: agents perceive their environment, (which may be the physical

world, a user via a graphical user interface, a collection of other agents, the

INTERNET, or perhaps all of these combined), and respond in a timely

fashion to changes that occur in it;

 Pro-activeness: agents do not simply act in response to their environment,

they are able to exhibit goal-directed behavior by taking the initiative’.

An agent can have several characteristics such as the ability to be autonomous, learn,

react, be mobile, flexible, and communicative regarding its state, have a continuous

running process and be goal oriented. All agents must have at least these characteristics

as defined by these requirement; autonomy, reactive, continuous running process and

lastly be goal oriented (Franklin and Graesser, 1996).

White (1996) also defined an agent as an entity that occupies a specific place. This

entity can move and occupy different places at different times. This independent entity is

made up of procedures and the state of an agent. A place is referred to as a network of

computers that offer services to any mobile agent that enters it.

 These concepts put together offer solutions to complex software systems by analysing,

designing and implementing them (Jennings et al., 1998). Whenever an agent is

characterised by its ability to move or migrate autonomously in a network, then it is said

to be a mobile agent.

 Numerous approaches have been developed to model a multi-agent system which is

simply a situation of having more than one agent in the network environment with both

12

stationary and mobile agents (Wooldridge et al., 2000). The design of an agent using

different development approaches has been a popular activity in recent years although

one of the issues that have been under-developed is mobility in mobile agent-based

systems. Most designers assume mobility is part of a role assigned to the agent and

concepts to model this mobility have not matured sufficiently enough to support the

entire lifecycle of a mobile agent-based system (Wooldridge et al., 2000).

An interesting question which is worth considering before the background theory is

examined is why the need for a systematic approach for modelling the mobility in mobile

agent-based systems. Mobility issues which surface when modelling mobile agents for

migration on a heterogeneous network include the integrity of data, access control,

privacy of data and authentication, trust where an agent agrees to meet on a mutually

agreed secure host, persistency where a mechanism that permits vital information about

the migration activities of the agents to be kept so that a system can resume activities

after it has crashed or failed. Since mobile agents are able to migrate from one node to

another on a heterogeneous network, performing tasks on behalf of its user without the

user’s intervention, there is a need to model these mobile agents in order to address the

mobility issues as identified. Agent paradigm provides a solution for modelling and

implementing complex software system by associating their actions and behaviours to

the capabilities of humans.

13

2.4 Existing Agent Modelling Languages

Modelling languages enable software developers to specify requirements of software

systems during development processes and also to see the world as made up of

software agents. The need to develop/extend existing modelling languages has become

important because of the evolving dynamic requirements of agents (Melomey,2007;

Melomey et al., 2007a). Most of these modelling languages have been used to express

knowledge with respect to goals, tasks and concepts of agents (Melomey et al., 2007a).

The modelling language is a form of communication for modelling purposes. A modelling

language guides a developer to clearly represent the internal and external structures and

elements that influence agent representation either textually or visually. A visual

language allows domain knowledge developers to assemble programs quickly from

existing components with its related operations. Visual language offers an added

advantage which is to match between the systems to be modelled to the visual abstract.

Alternatively, human skills present a higher level of knowledge using textual languages

and the associated tool support (Levesque, 1984: Kremer, 1998; Blackwell, 2001).

Unlike the object oriented systems development methodology, AOSE (Kang et al., 2004)

has not reached the maturity stage where issues such as modelling languages for

system application from the requirement phase through to the implementation of the

entire software processes can be established. There is the need for modelling

language(s) to model the interaction of agents and their behaviors from the requirement

phase through to implementation. Modelling languages are important in order to give a

vivid description of agent systems and reasoning about mobility. Issues that often arise

14

when modelling agent systems are the representation of agents, validating and verifying

the agent systems and appropriate model representation.

Formal models with respect to mathematical and linguistic models are essential for

describing and reasoning about mobility of agents (Levesque, 1984: Kremer, 1998;

Blackwell, 2001). These issues have not, so far, been addressed and appear to have

been ignored. However, it is not only the agent’s behaviour that need to be modelled but

also stakeholders and users, and their interaction with the proposed system modelling

languages which should have the ability to capture both internal and external structures

of the agent. Even though it is portrayed that the agent has, or of necessity must have,

control over its internal structures, there is a need to show the transition from one phase

to the other. Control is left entirely to the agent at this point. Modelling for agent systems

requires a combination of visual and formal languages. A formal specification tends to

provide a solution for some weaknesses of the visual modelling language that may be

identified. A formal specification enables models to be defined using precise semantics.

Furthermore, to facilitate the transformation from one phase to other, for example from

the analysis phase to systems design phase, this requires specialist skill on the part of

the program developers and effective communication amongst developers. It is,

however, ineffective and inappropriate for communication and discussion with

stakeholders (Mauco et al., 2001; Dignum, 2003). Formalising visual languages for

conceptual modelling comes with its own set of challenges such as ambiguities of

meaning and expression of the graphical notations.

There are quite a number of modelling languages applied to mobile agents and agent

systems, most of which draw concepts from the unified modelling languages (Odell et

15

al., 2000). Table 2.1 provides a summary of existing modelling languages for Multi-agent

Systems (MAS) and attempts made in addressing mobility in agent systems Melomey

2007, Melomey et al., 2007). Criteria used for the comparative analysis in Table 2.1

were derived from distributed system mobility goals (Melomey et al., 2007a). Table 2.1

compares how well the existing modelling languages for MAS;

1. support and model mobility of agent systems

2. model static agent present in an environment and how the agents interact as

well as allocate resources upon request

3. provide dynamic modelling support for mobility. That is modeling the sequences

of interactions between agents and mobile agents from high level abstraction to

low level abstraction

4. preserve the consistency of mobile agents characteristic as it transforms itself

through the software process

5. support developers through CASE tool to analyse and design phases of the

software process in the systems lifecycle

6. model roles of agents and mobile agents, interfaces and interactions of agents

within and outside their environment (external structure moelling).

7. accommodate new and additional words, stereotypes and phrases for mobility

adaptation in a dynamic environment or platform (extensible and customisable).

16

Table 2.1: Analysis of Existing Modelling Languages for MAS

Results from Table 2.1 indicate the strength and weakness of each modelling language

for Multi-agent Systems (MAS). The following sub section will present each language in

detail with their strengths and weaknesses.

 2.4.1 Agent Unified Modelling Language

Agent Unified Modelling Language (AUML) is an extension to the unified modelling

language. There are no restrictions to the extensions one can make to UML. For

example, Mouratidis et al. (2003) provided extensions on deployment and activity

diagrams to model agent mobility in Tropos. Similarly, another approach in modelling

mobility was the extension of activity diagrams using UML 1.5 (Kang et al., 2003).

17

 2.4.2 Agent Modelling Language

Agent Modelling Language (AML) has features for capturing multi-agent systems. AML

combines both visual and formal language for modelling and agent specification, and it

draws its concepts from multi-agent systems theory (Cervenka et al., 2004). AML also

specifies models and document systems by extending UML 2.0. AML according to

Cervenka et al. (2004) is a semi visual modelling language based on the concepts of

multi-agent systems and also specifies the models and documents a system. It reuses

concepts from UML and also makes use of mechanisms for specifying and extending

UML-based languages. It is also easy to incorporate into UML based CASE tools. The

language syntax, semantics and notations are defined at AML meta-model and notation

level (Trencansky and Cervenka, 2005). AML therefore provides constructs for modelling

applications which represent and exhibit characteristics in multi-agent system.

Strengths of Agent Modelling Language

 The strength of AML is in capturing multi-agent systems using UML 2.0 to model agent

specification. AML has the ability to easily incorporate UML 2.0 to existing UML case

tools and to model static mobility and the agent execution environment.

Limitations of Agent Modelling Language

.AML does not model dynamic mobility. AML only models mobility through the design

phase. There were no construct or mobility supports to model mobility of the mobile

agent.

AML focus is on the development of multi-agent systems and not on mobile agent

systems (Cervenka and Trencansky, 2004; Cervenka and Trencansky, 2007). According

to Cervenka and Trencansky (2007) ‘…AML provides a rich set of modeling constructs

18

for modeling applications that embody and/or exhibits characteristics of multi-agent

systems’ and also ‘…. how entities can get to a particular node of the physical

infrastructure’. AML therefore provided constructs to model multi-agent systems only.

 2.4.3 Specification Language for Agent-Based Systems

Specification Language for Agent-Based Systems (SLABS) provides the developer with

language facilities together with features for formal specification as well as the

verification of agent based systems (Zhu, 2001). Its focus is geared towards the

development of large scale complex systems. According to Zhu (2001) SLABS is based

on a generalised model of agents rather than a specific agent theory, is decomposable

and integrates new concepts such as caste and provides language facilities for AOSE.

2.4.4 Caste-Centric Agent Modelling Language and Environment

A Caste-Centric Agent Modelling Language and Environment (CAMLE) is a language

based on the notion of caste and draws on the concepts of SLABS (Shan and Zhu,

2004). Caste by definition is a set of agents with the same behaviour and structure.

SLABS combine both graphical modelling with formal specification language by

automation. CAMLE introduced visual models at the design stage of the development

process which are caste, collaboration and behavioural. Diagrams in the caste model

specify relationships including their movement from one caste to the other (Shan and

Zhu, 2004; Zhu and Shan, 2005). Collaboration models include diagrams organised in a

hierarchical order depicting the interaction of agents and their relationship in the system.

Finally, the behavioural model diagrams define how agents decide on what action to

19

take and how it changes states depending on a given scenario. All these models come

with well defined associated notations.

2.4.5 Autonomy Specification Language

Autonomy Specification Language (ASL) is a language that allows for an exact

specification of activities which will be carried out by group of agents, deontic constraints

which place an imposition on these agents and the implications brought about by

executing activities on a specific constraint (Weib et al., 2006). ASL has its strength in

the operational modelling for specifying the autonomy of the agent. An ASL concept

defines roles through a set of activities as well as specifying the behaviours that it

conforms to or deviates from accepted norms of agent systems. In specifying the

behaviours, it enables behavioural prediction of agents through the roles they assume.

Furthermore, ASL enables software designers to specify the autonomy of agent as well

as allowing the detection and resolution of induced conflicts that occur during runtime.

Weib et al. (2005) argues that to be able to implement autonomy in a commercial,

scientific and industrial application, it can only be achieved through a systematic process

of rigorous modelling and verification. This will offer a high level of dependability on

systems that can be granted permission to act autonomously. Without this kind of

dependability, it will be difficult for agents to be used in the ecommerce, industrial and

scientific applications. ASL has an operational character which is expressive and also

flexible with reference to the autonomy of an agent (Weib et al., 2006).

20

Limitations of Autonomy Specification Language

 ASL constructs for modelling and assigning individual agents for a role has not yet been

explicitly defined or expressed and no mention were made of how mobility issues will be

handled (Weib et al., 2006). Weib et al. (2006, p.1) introduced ASL as a formal language

‘…that allows for a precise specification of the activities to be carried out by a set of

agents, the deontic constraints imposed on these activities, and the implications of

activity execution on particular constraints (i.e. constraint dynamics)’.

2.4.6 Other Extensions to UML

There have been attempts to model mobility of the mobile agent by extending UML 2.0

which is known as Agent UML (AUML). The AUML extensions are activity and

deployment diagrams.

AUML was proposed as an extension to UML to be used as a tool to model

communication protocols and interactions in multi agent system (Bauer, 1999; Odell

2000, Bauer et al., 2001). AUML has been used by some agent researchers to model

the extension of activity and deployment diagrams. These extensions model the static

views of the mobile agents rather than the dynamic view. Other languages that have

been used to model mobility are Agent Specification Language (ASL) (Weib et al., 2005)

and Agent-based Modeling language (AML). AML provides the definition for meta-

classes that are used to model the structure and behaviour of mobility of entities

(Cervenka and Trencansky, 2004).

21

 Baumeister et al. (2003) extended UML 2.0 to the AUML activity diagram in an

attempt to model mobility. The authors introduced new stereotypes such as

mobile, mobile location, clone and move to model mobility. Baumeister et al.

(2003) also introduced new concepts such as mobile objects, locations, nested

locations, actions and two notional variants. With the introduction of new

stereotypes and concepts, the authors attempted to answer the question; who is

performing an action and where the action is being performed. The authors used

swimlanes to represent objects to indicate who is performing an action and the

object’s mobility with respect to the object’s location.

Limitations of Other Extensions to UML

The AUML extensions made by Baumeister et al. (2003) provided a concept of nested

locations but this was not properly defined and illustrated. The mobile location

stereotype also lacked clarity. The AUML activity diagrams made by Baumeister et al.

(2003) were meant to model mobility, however, the sterotypes and concepts do not have

a direct bearing on agents nor mobile agents but rather objects and their mobility

relationships.

2.4.7 AUML Deployment Diagram

The deployment diagram in UML provides the physical resources in the system which

includes the connections, computers or nodes and components.

22

The proposal by Mouratidis et al. (2002) was to provide definition for origin, destination

and mobility path as an extension to deployment and activity diagram in order to model

mobility based on UML 2.0 meta-structures. The origin is the platform where the mobile

agent begins its execution and the destination is the platform where the mobile agent

finishes its execution. Mobility path is the path between the origin and destination.

Mouratidis et al. (2002) also provided notations for capturing mobility of agents in the

network.

2.4.8 AUML Activity Diagram Extensions

An activity diagram in UML demonstrates the dynamism of a system. This was achieved

by modelling the flow of activity. An activity is a representation of an operation in a class

of a system that results in changes in the system state.

The extension by Mouratidis et al. (2002) was based on UML 2.0 meta-structures for the

activity diagram which captures the sequence, concurrency and iteration of the mobile

agent. It provides answers to how it is able to get to its intended destination. The

extended activity diagram provides concepts that capture the sequence of movement,

mobility path details and decisions an agent makes regarding which path it should take

(Mouratidis et al., 2002). Diamond notations of UML were also used to capture situations

where a mobile agent has to decide which node to visit from the available options. These

knowledge statements are then converted to codes and added to the knowledge

database of the mobile agent during the implementation stage.

23

Poggi et al. (2004) also extended the deployment and activity diagrams in an attempt to

model mobility. The authors introduced concepts and notations such as home, mobility

path, and visitor. They also introduced dotted lines to represent messages and dashed

lines towards platforms where a mobile agent may visit. The activity diagram of UML

was also extended by introducing concepts such as bounce failure and return path which

indicate two statements with two arguments (Poggi et al., 2004). AUML is also able to

model the sequence of activities, concurrency and iteration of the movement of the

mobile agent.

Limitations of AUML Activity Diagram Extensions

The AUML deployment and activity diagram introduces additional concepts and

notations which model static mobility and dynamic mobility for agent-oriented software

development (Mouratidis et al., 2002; Poggi et al., 2004). However, AUML activity and

deployment diagrams were not able to model the dynamic mobility of the agent from one

node to the other (Mouratidis et al., 2002; Poggi et al., 2004). The extensions were able

to model only the static mobility (Mouratidis et al., 2002; Poggi et al., 2004). The AUML

activity diagram did not demonstrate the continuous established link whereby a mobile

agent can make an independent decision (Mouratidis et al., 2002; Poggi et al., 2004).

Also there was no mention of any form of itinerary for the mobile agent which is central

to the development of an internal structure for the mobile agent. For example,

Kosiuczenko (2003, p.1) used sequence diagram to model mobility of an object and

noted that ‘There are several kinds of UML diagrams for convenient modelling of

behaviour, but these diagrams can hardly be used for modelling mobility’ and then

introduced extension to model interaction of mobile objects by proposing ‘… a new

graphical notation for modelling interaction of mobile objects’. Kang et al.(2004, p.5)

24

concluded by pointing out ‘…that our interpretation of UML 2.0 Activity diagrams is

based on mobile calculus…’ Poggi et al.,(2004, p.14) also proposed ‘…an AUML

deployment diagram, that is an UML deployment diagram enhanced with agent based

concepts….’.

2.5 Existing Multi-Agent Approaches

The approaches available for modelling the mobility of mobile agents are predominantly

an extension to the Unified Modelling Language (UML) diagram. UML provides

unification and formalisation for methods of the numerous approaches to the object

oriented (OO) software systems lifecycle (Jacobson et al., 1998). UML is a specification

language for object modelling and a general purpose modelling language which includes

a standardised graphical notation used to create an abstract model of a system

(Jacobson et al., 1998). UML is made up of the following diagrams: use case, class,

sequence, collaboration, package and components diagrams.

The following section provides an overview of MaSE, GAIA, TROPOS and Prometheus

methodologies. Table 2.2 also provides a summary of existing Multi-agent Systems

(MAS) methodologies and their strengths in the phases of systems development.

25

YES – Strength of the Methodology NO – Limitation of the Methodology

Table 2.2: Existing Multi-agent Systems Methodologies

2.5.1 Multi-agent Systems Engineering (MaSE) Methodology

DeLoach et al.(2001) developed a Multi-agent Systems Engineering (MaSE)

Methodology. The approach used was to add the move command in the MaSE analysis

models with its associated transformation requirements and was incorporated in the

design functionality (Self and DeLoach ,2004). Design models were further translated

into java based agents that operate within a mobile agent environment. DeLoach (2004)

also introduced dynamic agents with one of the following properties:

Cloning: this is the ability of an agent to create a replica or an instance of itself either at

the same location or at different locations DeLoach et al (2001).

Instantiation: an agent having the ability to create instances of another class other than

itself.

26

Mobility: the ability of an agent to migrate from one node to another.

In MaSE, only the analysis and design phases of mobile multi-agent systems were

considered based on the following assumptions:

1. The agent determines when to move even though another agent or the agent

platform may advise the agent’s when to move.

2. The actual movement of an agent is handled by the appropriate mobile agent’s

platform protocol which is similar to FIPA’s Simple Migration Protocol (SMP). The

protocol with a request is sent to its mobile agent platform which terminates the

agent. It is then sent to the destination platform where it is restarted. The platform

is responsible for the movement and the agent is responsible for restarting itself

in an appropriate state.

MaSE methodology has two phases and seven steps (DeLoach, 2004). The author’s

focus was on the output models of the analysis phase i.e. role models and concurrent

tasks. In other words, the analysis phase defines a set of roles to be played by the agent

as well as a set of tasks that also define the behaviour of specific roles and lastly a set of

coordination protocols between those roles.

According to DeLoach (2004) a move activity within the state of the concurrent task

diagram returns two values which are Boolean value and a reason value. The Boolean

variable always returns either a success or failure. The reason value provides a reason

why there is a failure or a success. For example if the reason value is failure, it provides

the reason why a move failed and also provide the agent with knowledge to recover

successfully from failure.

27

Basically all the tasks from the analysis phase are translated into various components in

the design phase. This phase is where the internal agent architecture is defined. . Apart

from requesting <move>, each component of the mobile agent is designed to respond to

a <move> that is by being able to save its internal state and to restart from its new

location(Self and DeLoach,2003). Every agent has a component that is created to

oversee the operations and provide interaction between the components. The

component for the mobile agents should have the capacity to transform itself in order to

handle shutdown and re-initialisation of all the agent components.

Agent class in MaSE methodology is a model for the different types of agents in a

system (DeLoach et al., 2001). It is similar to the object class as in the object oriented

paradigm. In this particular case an agent class is defined by the role it plays in the

systems and not by attributes and methods as in the object oriented paradigm. Tasks

that are associated with a role automatically become a component of the agent class

depending on its role in the system (Self and DeLoach, 2003). The agent component is

responsible for completing most of the agent mobility function and actually determines

whether the agent should move or not after a move request is made.

Limitations of MaSE

The MASE methodology focused on the output models of the analysis phase of systems

development and failed to identify why mobility is needed and its association with the

requirements of the systems. Wood and DeLoach (2000, p.208) stated that ‘…the

methodology does not consider dynamic systems where agents can be created,

destroyed, or moved during execution’.

28

2.5.2 GAIA Methodology

Generic Architecture for Information Availability (GAIA) is a methodology for agent

oriented analysis and design (Wooldridge et al., 2000; Zambonelli et al., 2003). It is a

general methodology that can be applied in many phases of multi-agent systems.

According to Wooldridge et al. (2000) it handles both micro and macro level aspects of

the entire system.

GAIA methodology has been identified as suitable in large scale commercial

applications by the authors Wooldridge et al. (2000) and Juan et al., (2002), Zambonelli

et al.(2003). According to Wooldridge et al. (2000) agents in a GAIA system should have

at least 100 agents in typical applications. In this methodology, the requirements of the

system are independent which allows the analyst to adopt a systematic approach from

the requirement phase to the analysis phase.

GAIA borrows its terminology and notations from object oriented analysis and design.

GAIA is intended to help software engineers in understanding and modelling of complex

systems. The formal notation for the expression of permission in GAIA methodology is

based on FUSION notation for operation of schemata.

Strengths of GAIA Methodology

GAIA provides an approach for developing collaborative multi-agent systems providing

models for static interactions, services and interactions in a given environment covering

29

the analysis and design phases of systems development (Wooldridge et al. 2000; Juan

et al., 2002; Zambonelli et al.2003).

Limitations of GAIA Methodology

GAIA lacks the concepts and graphical notations to support the modelling and reasoning

of the agents’ mobility and the social interaction in an environment or platform. Huang et

al. (2007) identified these limitations in the GAIA design phase for which attempts were

made to provide extensions to designing and developing agent-based software.

Wooldridge et al. (2000, p.24) also cited that ‘ There are several issues remaining for

future work……the representation of inter-agent cooperation protocols within Gaia is

currently somewhat impoverished….we will need to provide a much richer protocol

specification framework’.

2.5.3 TROPOS Approach

TROPOS is a requirements-driven methodology (Perini et al., 2002;Castro et al., 2002).

It was developed to provide support for all the analysis and design activities during the

entire software development process. TROPOS covers the early and late requirement

phases, as well as the architectural design and implementation phases. It makes use of

actors, goals and actor dependencies. Bresciani et al. (2004) defined TROPOS as a

software methodology which allows the exploitation of the flexibility that is provided by

agent oriented programming. Agent oriented programming encourages the need to

accommodate open architectures that changes continuously and dynamically i.e.

evolution of new requirements and new components.

30

Strengths of TROPOS Approach

The greatest strength of Tropos approach lies in its identification of early and late

requirements for the system in the requirement phase of the systems development

process (Perini et al., 2002; Castro et al., 2002; Bresciani et al., 2004).

Limitations of TROPOS Approach

TROPOS was developed for multi-agent system applications and not for mobile agent

system application development according to Garzetti et al.(2002) and Bresciani et al.

(2004), hence it failed to provide the necessary processes and concepts to model

dynamic mobility for systems development. For instance , Castro et al., (2002, p.365)

explained that Tropos include the following ‘…methodology includes techniques for

generating an implementation from Tropos detailed design. Using agent-oriented

programming platform for implementation seems natural, given that the detailed design

is defined in terms of (system) actors, goals and inter-dependencies among them’. The

explanation did not include mobility of an agent.

2.5.4 Prometheus Methodology

Prometheus methodology is a more detailed process for specifying, designing, and the

implementation of intelligent agent systems (Padgham and Winikoff, 2002; Padgham et

al., 2005). The goal of this methodology is to have well defined deliverables which are

practical enough to be used by those who do not have an exclusive knowledge of agents

to be able to develop intelligent agent systems.

31

Padgham and Winikoff (2004) stated that Prometheus methodology is a software

methodology that is able to aid in the transition of agents from research laboratories to

industrial practice. It distinguishes itself from other methodologies by the following

features;

• provides detailed guidance on how each process should be carried out in

Prometheus.

• provides supports on the design of goal oriented agents and agents that have

plans

• gives coverage on activities from requirements specification of agents through to

detailed designs

• facilitates support tools in the form of Prometheus Design Tools (PDT) which are

available on the internet.

• aimed at these two markets (education and industrial developers), this

methodology was successfully implemented and was given positive feedback

and comments which was used to improve the methodology.

Padgham and Winikoff (2004) stressed that the Prometheus methodology is a general

purpose approach and that for the detailed stages it is allowed to make certain

assumptions.

The Prometheus methodology is defined as concepts, notations for capturing design and

also a technique that provides guidance on how to carry out steps in the processes. The

method has three main phases which are: the systems specification; the architectural

design; and the detailed design.

32

Limitations of Prometheus Methodology

Padgham and Winikoff (2005) stressed that the Prometheus methodology is a general

purpose approach for developing and implementing intelligent systems and therefore

does not provide notations and concepts for modeling mobility. Fletcher (2007, p.342)

concluded that ‘the key conclusion is that this methodology is very suitable for

developing static interactions between agents…’

 2.6 Mobile Agent

A mobile agent is an autonomous software program that can migrate from one platform

to another on a heterogeneous network performing task on behalf of the user (Milojicic,

1999). It is a computational process that implements the autonomous, communicating

functionality of an application and is able to migrate from one computer to another over a

network. The platform is made up of the computational environment and the agent is

also made up of the code and state information that is required to perform some form of

computation (Cubaleska and Schneider, 2002). In other words, the platform provides a

physical environment for the deployment of agents and agent can be said to have a set

of attributes called state which describe its characteristics. Agents communicate using

an Agent Communication Language (ACL).

Jansen (2002) defined a mobile agent as ‘traveling agents’, and these programs will

migrate their being, code and state, among resources.

33

A mobile agent has been defined in several ways by a number of authors, some of which

are presented as follows:

• Mobile agents are software abstractions that can migrate across the network

representing users in the various tasks as defined by Milojicic et al (1999).

• Jansen and Karygiannis (1999) defined a mobile agent as a computational

process that implements the autonomous, communicating functionality of an

application and is able to migrate from one computer to the other over a network.

This means that mobile agents are software agents that possess the ability to

move from one host to the other. A host platform may consist of more than one

agent. The platform is made up of the computational environment and the agent

is made up of the code and state information that is required to perform some

form of computation. The platform provides the physical environment for

deployment by the agent. The number of mobile agents required depends upon

the size and type of application.

A mobile agent is therefore characterised by its ability to migrate from one host to

another during execution. It is important to note, that its migration is not always from one

host to another host but from any place or location that will allow it to resume its

execution.

Mobile agents’ architectures have contributed to the solution of problems caused by

unreliable network connections, reduction of network loads and latency that is sending

agents to where data resides on networks and thereby reducing network bandwidth

34

consumption to a minimum. The ability of Mobile agents’ to sense their environment and

react dynamically to changes in the environment makes them very useful in the area of

intrusion detection. Mobile agents have been used in industrial and commercial

applications for example ecommerce, manufacturing, air traffic control, and real time

system and information management.

In this research the mobile agent is defined as autonomous agent that exhibits mobility

characteristics such as persistency, robustness, security assessment for its codes and

environment, mobility transparency and fault tolerance. Furthermore a mobile agent is

defined as a program that exhibits persistency, fault tolerance, synchronisation, remote

addressing and referencing, calling, invocation, execution, and remote code execution

and migration capabilities.

The mobile agent can be implemented using one of the following two technologies;

remote objects (Vinoski, 1997) or mobile code (Baldi et al. 1997). An example of remote

objects implementation is Aglets (Lange, 1997). An example of a mobile code

implementation is Telescript (White, 1996) and AgentTCL (Gray, 1995). There are other

Java-based mobile systems such as JADE (Java Agent Development Framework),

Aglets, Concordia and Voyager. JADE was developed by Telecom Italia and is

controlled via a remote graphical user interface and is available on the JADE website.

There are many benefits to be derived from the nature of distributed computing of agent

for which mobile agent plays a central role in performing task related to it. The benefits

are:

35

 Distributed knowledge expertise. There are times that knowledge required to

solve some type of problems may not reside in a central or single resource,

mobile agents are required to migrate to other environment or platforms in

search of solution where stationary agents are limited by resources.

 The nature of mobile agents in a distributed system allows for system

modularity as opposed to a monolithic program. Large complex systems are

broken down to smaller adaptive and proactive modules.

 Improve speed. Due to the parallelism which is a natural outcome of

modularity, agents and mobile agents have their own local memories and

processor.

 Modularity in mobile agent-based systems allows for efficiency in that only a

part of resource are used for providing solution for a problem.

There is currently no methodology for modelling the mobility of mobile agent other than

using existing multi-agent approaches to capture mobility as a role in multi-agent

development depending on the ad-hoc tasks assigned to an agent when needed

(DeLoach et al., 2001; Wooldridge et al., 2000; Zambonelli et al., 2003; Perini et al.,

2002; Castro et al., 2002; Padgham and Winikoff, 2002; Padgham et al., 2005).

2.7 Traditional Software Development Process Models

A popular and acceptable definition for a software development methodology is the

collection of processes, procedures, standards and policies used by a software

development team to practice software engineering in order to meet a particular

36

requirement. Somerville (2001) describes many of such software process models in his

book on software engineering. There are several steps procedures and activities

involved in systems development which include the waterfall model, rapid prototyping

model, spiral model, the evolutionary model and incremental model. There are also agile

and rapid applications development models.

There are several benefits why iterative and incremental techniques were chosen as part

of MaMM. They are:

 It helps to alleviate against earlier risk that might stem from architecture or

integration issues

 Allows for the delivery of an independent module to be implemented and

executed incrementally

 Allows progress to be monitored with the detection of problems being identified

and isolated.

2.7.1 Waterfall Model

This is a classic model introduced in the 1970’s by Winston W. Royce. The waterfall

model is usually modelled in cascade which begins with the establishment of a

specific requirement, followed by the design, implementation, system testing and

finally the release to customer (Royce, 1970). There is no iterative feature in the

waterfall model and it works well when the requirements are known and can be

address smoothly without having to go back over the previous steps.

37

2.7.2 Rapid Prototyping Model

This is commonly known as a ‘throwaway’ or ‘operational’ model. The development

process for the Rapid Prototyping Model (RPM) produces a program that performs

an important set of functions in the final software product (Isensee and Rudd, 1966).

The approach is mainly used to test the implementation method, a specific language

or user acceptance of a product. If successful, it serves as the basis for actual

product development after which the prototype is then thrown away or discarded

(Andrews, 1991). The difference between the waterfall model and the rapid

prototyping model is the speed in which the system is developed.

2.7.3 Evolutionary and Iterative Model

The evolutionary model offers a continuous feedback loop between each phase of

the software life cycle or systems development (Greer and Ruhe, 2004). The iterative

method is used incrementally thereby producing an executable release of the

software product. Developers and designers usually apply both the incremental and

iterative model effectively in procedural and object oriented programming.

2.7.4 Incremental Model

The purpose of this model is to develop a fully operational and quality system at

each development phase. The model is build and implemented in an incremental

fashion with various components of the system developed at different times and

integrated as a complete system when all the components are finished (Qui and

38

Riesbeck, 2008). The advantage this method offers to the developer/designer is the

ability to break down complex tasks into smaller manageable components.

2.7.5 Spiral Model

The spiral model was developed by Boehm (1988) and was developed as an

enhancement to the waterfall model. The spiral model adds a preceding risk analysis

to each cascade of the waterfall model and spiral model is mainly used in large scale

software development. This model has proved to be successful where the goal of the

system is software reuse and specific software objectives can be incorporated.

2.8 Discussion

In developing applications where it is advantageous to apply agent and mobile agent

concepts as part of the solution, it is imperative to ensure a high level of cohesion of

agents, mobility concepts and models through the development process which means

that the coupling among these elements in the systems is kept to a minimum. Complex

mappings of agent concepts from the analysis phase to the design phase needs to be

kept at minimum. When this is achieved it enhances agent understandability, traceability

and maintainability. To represent real world agents, they may be assigned with roles of

which some may need to be mobile. Collectively, all these function represented influence

the behaviour of the agent making decisions about mobile agents in a specific system

regarding the migration to and from a platform, the following requirements must be taken

into consideration for a robust solution; reliability; security; performance; fault tolerance;

and transparency. To address some of these issues, concepts for mapping agent,

describing agent’s behaviour, dealing with communications, specifying and constraining

agent migration are required. Also concepts for proving patterns to help designers

39

achieve transparency and other features must be considered. These issues are

fundamental in an open distributed system environment.

2.9 Summary

In this chapter, current literature about agent, modelling languages, agents approaches

and methodologies, common software development methodologies, mobile agent and

mobility concepts have been discussed. This has indicated some weaknesses and

limitations in the lack of a methodology to model mobility in mobile agent based systems.

These limitations make the existing approaches and methodologies inadequate for

modelling mobility in mobile agent based systems. In the light of such inadequacies,

chapter 3 will present the research methodology which justifies the choices and methods

made in this research.

40

CHAPTER 3

Research Methodology

3.1 Introduction

This study was conducted to gather information for the development of a methodology to

model and build mobile agent-based systems. The Delphi study was used to collect

expert views on emerging views and software practices in mobile agent software

development. The outcome of the Delphi study and the review of existing literature gave

a focus on the selection of the three case studies which exhibit the characteristic

requirements of mobile agents and the commonalities that exist among the requirements

for developing applications with a high level of migration in their specific environment.

Case studies have been used in research as a technique which is made up of thorough

investigation in an effort to provide in depth analysis of the processes being studied (Yin,

1994). Case studies can be used together with other data collection methods (Yin,

1994). The case studies were used to collect further details from experts and senior

analysts who contributed their individual perspective of how and what processes were

involved in the different types of online projects they were involved in when they were

interviewed. These provided greater insights into the dynamics of online systems

development. Mobility requirements identified were modelled and fitness functions were

formulated. The modelled mobility requirements were assigned fitness function for

evaluation and accuracy and simulated using a GA tool in the Matlab environment.

Simulation was suitable for this research because of the benefits it offers in solving

complex problems in systems development.

41

3.2 Delphi Technique/Study

The Delphi study was used in this thesis to solicit converging opinions (Dalkey and

Helmer, 1963; Linstone and Turoff, 1975; Hsu and Sanford 2007) such as emerging

trends, view from experts and software practices in mobile agent development as in

generating a consensus from an expert.

3.2.1 The Delphi Process (Number of Rounds)

Three rounds of questionnaires were used in this thesis. A number of early Delphi study

researchers accepted and agree that three rounds is enough to reach consensus from

experts in most cases (Cyphert and Grant, 1971; Brooks, 1979; Ludwig, 1997; Custer et

al.,1999).

3.2.2 Selection of Experts

According to existing literature, choosing appropriate experts for the study has a direct

correlation to the quality of outcome of the results and therefore the selection should be

dependent on expertise in the area of discipline (Judd, 1972; Taylor and Judd, 1989).

According to Delbecq et al., (1975), participants qualified to take part in a Delphi study

falls into three categories the decision makers in the top management who are likely to

make use of the results of the study; professional members and support team; and

finally, the respondents whose expertise are being sought after. The experts who

participated in this Delphi study were selected based on their expertise in projects they

have led and been involved in and their software practices for the types of project they

have led. The experts who participated were drawn from the National Health Trust

(NHS) UK, Barclays Bank Plc UK, HSBC Bank Plc UK, NatWest Bank UK and software

42

developers with over 15 years experience in leading diverse software projects in the

United States of America. Delphi studies have been used in a number of research areas

to identify and forecast on research issues. The number of respondent varies from 4 to

171 according to existing literature which is modifiable to suit research issues for which

expert views are being sought (Gustafson et al., 1973; Robertson et al., 2005). The size

of experts used for this study was seven which falls within the size needed for Delphi

study.

3.2.3 Data Collection Process

Once the experts were selected, three Delphi rounds were use to collect data from them.

Responses indicated which case studies were suitable for developing the methodology.

As in most Delphi studies the first round was open-end questions/issues which served

as a backbone for establishing the trends and software practices (Custer et al., 1999).

3.2.3.1 Round 1

The first round of the Delphi phrased the potential strengths, weakness, opportunities

and threats into issues pertaining to methodologies for modelling mobility of mobile

agent-based systems. The following were the issues that opinions were solicited on:

Issue 1

Do you follow any particular development lifecycle? (e.g. tradition method of software

development, Agile or other).

Issue 2

43

What qualities, in order of importance are critical for successful development and

implementation of online applications? (Qualities such as synchronisation, security,

concurrency, resilience/persistency, remote messaging, availability or others).

Issue 3

What are your preferences, if any, for methodology, modelling languages and

programming languages?

Issue 4

What development approach do you use (object oriented, agent oriented, and mobile

agent oriented or other)?

Issue 5

Are there any emerging issues in the development of online banking applications?

Issue 6

What can be done to improve existing mobile agent technologies/mobile technologies

and methodologies?

The responses gathered from the experts were subjective based on the judgments and

expertise of each. Their comments were analysed based on the strengths and

weaknesses of methodologies, qualities and features for the development and

implementation of online applications.

3.2.3.2 Round 2

Based on the responses of the experts from the first round of the Delphi, new and

emerging issues arose which needs further clarifications. These were further rephrased

and sent to different experts to respond to. The second round sought to clarify the non-

44

functional requirement order of importance, functionality issues in modelling,

programming and testing for mobility in mobile agent-based using a methodology.

Issue 1

In order of importance how would you rank the following non-functional requirements;

synchronisation, remote method invocation, availability and migration, scalability?

Issue 2

Are the methodology phases adaptable for online application such as on line banking,

gaming and Virtual learning environments? Please see Figure below and comment?

Mobility Requirement

Mobility Analysis

Mobility Design

Mobility Implementation

Elicit Mobile Agent Requirements

Analyse Mobility Requirements

Categorise mobility requirements using Classification
model

Apply GA fitness functions for optimising the selected mobility

requirements

Implement Mobility Code on platform

Transform Mobility design specification into
mobile code

capture mobile agent migration, interactive events and communication
structure

Specify Design

45

Issue 3

In term of back end integration, can the development phases be integrated with other

systems?

Issue 4

What are the critical functionality issues and challenges in programming for mobility?

Issue 5

List 3 main functions of agent software in online applications such as online banking?

Issue 6a

How will you test the functions of a mobile agent?

 Issue 6b

What data is essential for testing a mobile agent?

3.2.3.3 Round 3

The third round was based on the responses from the second round which were refined

and sent back to the experts for evaluation and modification of their responses. A draft of

MaMM phases was included for them to evaluate. The MaMM phases were results of

gaps found in the knowledge after reviewing literature, two rounds of Delphi and case

studies selected which stem from the responses on the Delphi study. See Appendix B

for issues emailed to experts and their responses.

46

3.2.4 Analysis of Delphi Study Data

Data collected from the responses were analysed which gave an indication of the

importance of selecting cases that exhibit the characteristics of autonomy, migration,

availability synchronisation and security. In this research, the focus was on mobility and

not on the security issues.

Some of the mobility requirements for developing mobile agent-based systems were

derived from the case studies introduced in this chapter. These mobility requirements

identified and derived from both the Delphi study (Appendix B) and case studies

(Appendix C) focused on open-ended structured issues in online application

development and formed the basis for MaMM development. The use of more than one

case scenario and the analysis from the Delphi study provided the basis for developing a

generalised mobility methodology.

The analyses of Delphi study highlighted the following:

 Use of variant approaches to systems development. Software development

houses use a variant of the traditional approach to systems application

development and the more contemporary approach such as Agile

development practices and Rapid Application Development (RAD) were

dependent on the scale of the project (Apedndix B, Expert Response 1,

Expert Response 2). For example in large projects, development teams tend

to depend more on the variant of traditional approach while small projects

leans more on Agile methodology.

 Order of importance of the mobility specific requirements. Emphasis was

placed on the order of importance of mobility requirements critical to the

47

development and implementation of mobility specific application. The order is

as follows; security, availability and migration, persistency/resilience,

synchronisation, remote method invocation and reliability as indicated by

Figure 3.4.1 given the number of experts who participated in the study

(Appendix B: Expert Response 1, Expert Response 2, Expert Response 3,

Expert Response 4). For example in online banking, Appendix B: Expert

Response 2 indicates the order of importance to be security, availability and

reliability. The reason being that in online banking, banks need to be seen as

doing the right things to safeguard against reputational damages, fraud and

the threat of regulatory sanctions. This order is applicable to all ecommerce

websites as well. On the other hand Appendix B: Expert Response 3 has the

order of importance as availability and migration, scalability, remote method

invocation and synchronisation.

 Challenges in software development. Some of the challenges in the software

development such as coding of methodology, language support for the

methodology, coding and programming style were indicated and/or

highlighted in Appendix B: Expert Response 2.

 Adaptability of some of the phases of MaMM draft. Responses indicated that

some phases are adaptable but not all due to diversity in software

applications and their specific requirements (Apedndix B: Expert Response 3,

Expert Response 4).

 Potential of integration with other existing systems. The MaMM has the

potential of being integrated with other existing systems. When experts’ views

were sought on the three most important functions of agent software in online

applications, they indicated the following; reduction of development time,

48

minimisation of human error and cost effectiveness (Apedndix B: Expert

Response 3, Expert Response 4).

3.2.5 Confidentiality of Delphi Study

The identity of all participants who responded to issues were treated with utmost

confidentiality as in all Delphi studies.

3.3 Case Studies

According to authors when multiple cases are selected for studies the cases must

complement each other which tend to make the studies more robust in order to make a

significant contribution (Herriott and Firestone, 1983; Yin, 1994). In this research three

different cases were considered which complement each other. The various data

collection methods for case studies are observation, interviews, documentary evidence

and participant observation. The method employed in this research for data collection

was observation. This observation method allows first witness accounts in the collection

of events as it unfolds (Vyas and Woodside, 1984). The senior systems analysts and

consultants who contributed to these cases were selected from the banking sector,

online gaming and VLE developers.

3.3.1 Data Collection and Analysis Process

The cases were studied by interviewing senior systems analysts and consultants. Seven

of them granted interviews, including two recorded ones and research notes were taken

in 2007-2008. Notes and transcripts can be found in Appendix C.

49

Each of them walked through the backend system’s development processes involved in

the online projects they have undertaken. Participants were assured of the confidentiality

of the interview. Online banks observed were HSBC Bank Plc UK, NatWest Bank UK

and Barclays Bank Plc (Melomey et al.,2008b).Online games that were observed were

puzzle games such noughts and crosses, scrabbles, mazes and war games (Melomey

et al.,2007; Melomey et al.,2008b). VLEs observed were UELplus and webct from

London university colleges (Melomey et al., 2008c; Durkee et al., 2009). Data collected

were analysed for MaMM development.

3.4 Simulation

Simulation has been used in research for many decades to study the use of models and

the complex relationships that exist between them. Simulation techniques have been

used in many research environments to aid in decision making, to gain more insight into

a system, as a guideline for research.

In this research, MATLAB was used as a platform for simulation and testing because it

offers a tried and tested scientific and engineering computing software environment. It

has been shown to offer a reliable high speed programming environment for a number of

computing fields. Since its inception it has been tested widely in several application sites

such as fault identification, neural network design, mixed-mode modelling, controller

structure selection, parametric and multi-objective optimisation, real-time and adaptive

control, parallel genetic algorithms and nonlinear system identification.

50

3.5 Summary

In this chapter, the various research processes employed in this research are discussed.

Results from the Delphi study were used as a strong indication to select complex case

studies. The evaluations of these case studies were used to build the Mobile agent-

based methodology. Requirements captured from the online cases were autonomy,

migration, synchronisation, persistency, concurrency, name services, transparency, fault

tolerance and security, however, mobility is the issue for consideration in this research

and not security. These sets of requirements run through all the online applications

cases. Distributed platform requirements were also discussed which form a base for the

development of all online application.

51

CHAPTER 4

Mobile agent Mobility Modelling

4.1 Introduction

This chapter presents phases of Mobile Agent-based Methodology (MaMM) to model

mobility which provides a platform for analysing, designing and implementing the ever

evolving complexities in mobile software and mobile agent based software development.

This provides a formal way of presenting mobility concepts and elements in a mobile

agent based systems.

4.2 The Mobile agent Mobility Methodology (MaMM)

The primary purpose of this methodology is to guide developers through the

development of mobile agent-based systems from the point where a business need is

identified and approved, to the point of implementation of the system. The way to apply

this methodology is indicated in Figure 4.2, where an output from one phase serves as

input to the next stage. The methodology is iterative throughout all the phases of

systems development. The phases are as follows: Mobility Requirement Elicitation,

Fitness Classification, Code Transformation, and Mobility Implementation. This process

provides a guide to capturing the business logic and problems underlying complex

mobility systems. The research contribution lies in the approach used to address mobility

issues in mobile agent-based systems development using fitness functions and a

mobility classification model.

52

4.2.1 Reasons for Developing the Mobile agent Mobility

Methodology (MaMM)

• Existing methodologies and approaches do not address core mobility issues in

systems development such as mobile agent-based applications. Mobility issues

such as messaging, location, synchronisation, persistency and migration are

poorly addressed or not considered (Belloni and Marcos 2004; Loukil, 2006;

Chhetri 2006).

• Current methodologies and approaches such as MaSE, Tropos, GAIA do not

address mobility issues in mobile agent systems. These methodologies only

focus on multi-agent systems development as discussed in the literature review

(Belloni and Marcos 2004; Loukil, 2006; Chhetri, 2006).

• MaMM addresses the dynamic nature of mobility requirements. These mobility

requirements are prioritised depending on the application environment, thereby

applying fitness criteria in determining the priority scale of mobility which are

based on the findings in this research.

• According to the studies conducted using the Delphi study, experts agreed that

the MaMM is adaptable in situations where mobility is a key feature and central

to the development of an application.

• MaMM has optimisation features embedded in the fitness functions which are

applicable to specific application development environments based on expert

opinions and judgments.

53

4.2.2 Mobility Concepts and Design Requirement Considerations

There have only been a few attempts to model the dynamics of mobility of an agent.

According to current literature, the methodologies are inadequate to specifically address

and model mobility in the development of mobile agent-based systems. Chhetri et al.

(2006) developed an ontology that describe mobility concepts, and the relationships that

exist between the concepts to model mobility issues. The concepts did not provide

adequate information regarding mobility among different components and/or interactive

agents. This is vital to the survival of mobile agents. The core concepts introduced did

not provide definitions for agents and mobile agents but suggested that an agent

becomes a mobile agent when it is assigned a role, as such mobility is seen as an

attribute (Chhetri et al., 2006). Some concepts from multi-agent researchers are relevant

to the development of MaMM in this research. This therefore implies that a designer

cannot reason about mobility of the agent during the requirement phase of systems

development. However, Chhetri et al. (2006) did not specify security of the mobile agent.

The following provides definitions used in modelling mobility in mobile agent-based

systems in this research.

54

4.3 Concepts of Multi-agent Systems

4.3.1 Existing Concepts of Multi-agent Systems

Agents

An agent comprises of code and state information required to undertake computational

processes. An agent lives in an environment or platform (White, 1996; Wooldridge and

Jennings, 1995). There are two types of agent and they are stationary and mobile agent.

Stationary agent

This is an agent that executes code on the same platform that it originated from. This

represents the platforms, which provide services and also enforces security (White,

1996; Wooldridge and Jennings, 1995).

Mobile agent

A mobile agent is an agent that is able to migrate from one platform to another across a

network. It has basic permission(s) that allows it, at the time of creation, to gain access

to services that are offered remotely and then sends results back to its home platform.

An agent therefore has a creator/owner that keeps a log of its movement history, its

resource requirements, its authentication keys, and access permissions (White, 1996;

Wooldridge and Jennings, 1995).

Platform

A platform provides the basic functions required to program mobile agent. An agent

platform therefore provides the computational environment in which an agent operates.

A platform will be modelled as networks of computers or nodes, irrespective of size. A

platform will be used interchangeably with a node. A platform will offer resource services

to other agents that enter it. A platform can be categorised into two types:

55

1. Home platform

This is the location from where an agent originates (Jansen and Karygiannis, 1999).

2. Host platform

 Any platform that a mobile agent can migrate to apart from its home platform (Jansen

and Karygiannis, 1999).

Task

A task is any action or series of actions an agent or mobile agent can perform (Jennings

et al., 1998; Zambonelli et al.,2003).

Goal

A goal is a specific objective an agent aims to accomplish. This is what motivates the

agents to meet for a mobility summit, hence establishing a mobility link in order to

achieve a goal (Wooldridge et al., 2000; Perini et al., 2002; Chhetri et al., 2006).

Mobility

There are two types of mobility; weak mobility and strong mobility (White, 1996;

Wooldridge and Jennings, 1995; Wooldridge et al., 2000).

1. Weak mobility

In weak mobility, a mobile agent stores no information on previous hosts visited during

migration. This type of mobility is suitable for the collection of online data to perform

basic control and configuration tasks from the various network elements, which

eventually leads to the reduction of network load. Weak mobility copies only the

execution code and executes a program from its initial state.

2. Strong Mobility

56

Strong mobility represents the migration of code, data and state. Strong mobility

accumulates and preserves information on all previous hosts visited during its migration.

It is also able to process data on any platform while preserving its state and form from

previous visits. Strong mobility copies both the code and state and is able to resume

execution where it stopped even though it might not have resources on the current

platform. Migration ceases when the mobile agent returns to its original starting platform.

Mobility migration therefore depends on the type of application. The number of mobile

agents needed per application will also depend on the size of the application. A mobile

agent has a goal and to accomplish this means it has to be broken down into tasks. To

achieve this goal, mobile agents must have some knowledge, basic permissions to

migrate to a platform and access level permission depending on the type of information

or assignment Mobile agents have an itinerary of the migration activities.

Permission(s)

Permission(s) will grant the right to execute an instruction or perform an action. This is

the ability to create another agent and to grant them rights to use certain resources in a

timeframe before termination occurs (Wooldridge et al., 2000).

Sleep Mode

This concept affects and monitors changing conditions. This scenario occurs in a

situation where an agent puts itself to sleep until such a time that it is triggered by an

event. For example, when a mobile agent is dispatched to book a trip for a later date, it

goes to sleep until on the day before the flight, it will then wake-up and inform the

57

traveller on the details of the flight and also communicate other information, such as a

delay if there is one (White, 1996; Zhu 2001).

4.3.2 Proposed Concepts for Describing Multi-Agents

Resources

Resources are vital if mobile agents are to perform migration tasks on a home or host

platform. This includes bandwidth, buffer space, disk storage, network access to file

servers and print services and process time.

Interactive Events

Interactive events involve establishing a link(s) or a session between or among agents

and mobile agents on platform(s). An interactive event occurs if the agents and mobile

agents can identify each other regardless of the platform or zone.

For example, an interactive event allows two or more agents and/or mobile agents to

meet on the same platform. Here, a mobile agent can decide and migrate to meet

another stationary agent on a server platform for a service. Two different agents on a

similar mission of booking a flight can meet each other at either the same or different

reservation server platform. In this situation mobility summit might be the common place

where agents meet for such transactions.

Mobility Itinerary

Itinerary represents the mobility plan of the mobile agents’ movement.

58

Zone

A zone is modelled as a collection or a group of platforms operated by the same

authority. A mobile agent should provide enough authorisation and authentication to the

destination zone otherwise access will be denied. A mechanism will therefore be

provided to verify the authority of a mobile agent migrating from zone to zone. Authority

will limit what platforms and agents can do at any point in time.

Knowledge Base

These are pre loaded information that the mobile agent is dispatched with in order to

make a decision. These are migration or route related information.

Classification Model

This is a mobility determinant model made up of four groups, three of which must be

satisfied for an application to be accepted for a mobility application. This is dependent of

the requirement elicited for the application.

4.4 Composition of Agent System

Agent system comprises of agents, mobile agents, platforms and resources. Figure 4.1

illustrates the composition of agents, mobile agents, platforms and resources that can

form a complete zone. It shows how mobile agents are able to migrate and interact from

a home platform to host platform. Each platform is made up of stationary agents, mobile

agents and platform resources. Stationary agents can communicate with other stationary

agents based on the task assigned to the mobile agents, and also able to gain access to

platform resources. Platforms on a cluster, operated by the same authority are referred

to as a zone. If a mobile agent migrates to another cluster which is operated by a

59

different authority then the mobile agent must have that particular zone’s authority to

have access to the zone’s platform resources in order to continue the task assigned to it.

Figure 4.1: Agent-to-Mobile Agent Diagram

Interactive event

Home Platform Host platform

Stationary
Agents

Mobile
Agents

Stationary

 Agents

Mobile
Agents

Resources

Resources

60

Figure 4.2: Phases of MaMM

4.5 Phases of MaMM

4.5.1 Mobility Requirement Elicitation

 Mobility requirement phases are defined in sufficient detail for example mobility

concepts, safety specifications (which include how to use the software), maintenance,

data and database definition, security specifications of the mobile agent (which include

threats to the mobile agents and platforms), functions, entity types and interfaces are

identified for the system design to proceed. This phase includes developing the

requirements for the various components of the system and examines and gathers

desirable objectives from stakeholders view points. This is achieved to determine why an

Mobility Requirement Elicitation

Fitness Classification

Code Transformation

Mobility Implementation

Elicit Mobile Agent Requirements

Analyse Mobility Requirements

Categorise mobility requirements using Classification
model

Apply GA fitness functions for optimising the selected mobility
requirements

Implementation Mobility Code on
platform

Transform Mobility design specification into
mobile code

Capture mobile agent migration, interactive events and communication
structure such as mobility links

Specify Design

61

application is needed, what the application will do and for whom it is being developed.

This phase falls under two categories which are functional and non-unctional

requirements.

Most systems designers such as real time designers and embedded software designers

use IEEE STD 830-1998 as a basis for the majority of the software specification applied

to both large and small projects. The standard also provides a baseline for validation and

verification. Some of the issues that the standard addresses are functionality, external

interfaces, performance and attribute and design constraints imposed on an

implementation.

Designers in the mobile agent community also have Object Management Group (OMG)

Mobile Agent Facility (MAF) Specification which can be applied to any applications

development to make it MAF compliant. MAF is a standard which provides a facility

where agents’ platforms from different vendors can be interoperable. This facility gives

the designer the flexibility of incorporating it with this mobility methodology during the

development process.

A systems lifecycle requirement is an iterative process that occurs during the entire

process (Sommerville, 2004). This process involves eliciting and analysing the

requirement of the application domain. It involves the participation of stakeholders and

end users with regard to what is required by the system. In this way, the designer is able

to differentiate between the system and user requirements. At this stage and based on

information gathered, the designer will be able to cluster the mobility specific

62

requirement from general requirements of the system. Interactive elements are also

identified and documented.

The way to approach the elicitation process is to cluster high interactive events and

activities together as this might give an indication of reasoning about mobility. If the

proposed system is heavily interactive in combination with other functional elements

then building a mobile agent based system is a possible alternative. Reasoning about

the mobility and its classification at this requirement phase must be identified before

entering into the fitness classification phase of the methodology. A mechanism on how

applications and mobile agents could authenticate themselves on the distributed

platform should be defined as well as the detection of facilities of a specific network. In

reasoning about mobility, another issue worth noting is the classification of business

requirements and technology requirements. Under business requirement the

developer/designer may consider new business models and remote access to the

systems. Technology requirements may also consider the portability of the application

under development to suit stakeholder needs, advanced state-of-the-art capability and

the distributed architectural environment.

The following guide enables the developer to identify the mobility goals in a given set of

system specifications:

 Where client locations are geographically dispersed

 Targeted towards large and highly mobile clients

 Where additional services and service components need to be added in real time

 A need for presence with regard to services that must be available at all time

 High volume of interactive events

63

 A need for uninterrupted access or reliability in the synchronisation process

 When application is needed for personal productivity in order to achieve real and

transformational value, for example in healthcare. This could be from small to

large organisational set-ups.

An example of a functional set of requirements for election software (Internet Policy

Institute, 2001; Grimm et al., 2006) is;

 Integrity. Casting votes must be correctly tallied. Votes should be easily

modified and deleted votes should be detected.

 Auditability and Verifiability. The system should be capable of verifying and

tallying all final votes and should demonstrate authentic vote records. The

system should also allow for the recount of votes cast.

 Accuracy. There must be multiple backup systems available. Election

systems should record votes correctly.

 Transparency. Each voter should have a general knowledge of the voting

process

 Eligibility, authentication and uniqueness. One eligible vote per one voter

should be allowed to preserve election fairness. A voter should not be able to

vote more than once.

 Reliability. The election system should be robust such that there will be no

loss of votes counted in the event of power failure.

 Provide an audit trail. The system must contain both paper and computerised

backup for recounting votes cast and the total number of votes cast, should a

64

dispute arise. This means that anonymous records of votes cast will be

retained and a record of individual voters, in order to check against ghost

names in the electoral register.

4.5.2 Fitness Classification

This phase deals with analyses of the needs of the user and based on the outcome, the

user requirement is developed. A detailed functional requirement and mobility

requirement is created which clarifies any discrepancies, conflicts and any

misunderstanding that might have occurred during the mobility requirement phase.

Models of the mobile agent based systems are produced and refined to reflect the

function of the system.

This phase involves the identification of all interactive components and how they link to

platform resources and mobile entities. The linkages between mobile agents, stationary

agents, resources and platform must be clearly defined. The communication structure to

be adopted must also be clearly demarcated. Interaction and behavioral characteristics

of mobile agents should also be analysed at this point for adaptability to various devices.

This ensures seamless connectivity and transparency in the system. During this phase

attention must be paid to data resources that may need continuous synchronisation with

the platform. Mobility models developed should specify interaction models, movement

capture models and design models that will ensure the systems meet the required

specification. At this stage, the intended use of the system is analysed where functional

and data requirements are specified. The mobility model indicates how software process

and mobile processes interact together in mobile agent-based systems and how these

65

processes create and use mobile data. When an application to be developed (such an

internet voting system or an internet banking application) is found to exhibit functional

and non-functional requirements such as autonomy, migration, availability, persistency

and messaging, then at least three of the four categories in the classification model must

be followed as shown in Figure 4.3.This mobility classification model evolved from the

case studies interviews presented in chapter 3.

Figure 4.3: Mobility Fitness Classification Model

In this research, mobility platform requirements can be classified into four main

categories as indicated in Figure 4.3, these are:

 1. Timing requirements - Latency (response times) and Synchronisation

2. Behavioural requirements - Polymorphism, Inheritance, Persistency, Calling,

 Invocation, location, message passing;

3. Addressing requirements – Location, Naming Services and Encoding,

4. Security requirements - Availability, Self Protective, Fault tolerance and Certified

Time
Latency
Synchronisation

Behavioural
Polymorphism
Inheritance
Persistency
Calling
Invocation
Location

Security
Availability
Self Protective
Fault Tolerance

Addressing
Location
Naming services
Encoding

66

4.5.2.1 Mathematical Modelling of Mobility Fitness Requirements

Addressing

There are certain elements that need to be present for an entity (agent) to be able to

travel from its platform of origin Hpi to a host platform Vpn. These elements are required

to perform an address resolution prior to the process migration. The three elements that

need to be present are:

 Receiver identification (R.ID)

 Packet identification (P.ID)

 Transmission Frequency of physical layer (TF)

Let R be the set requirement R.ID, P.ID, TF

Let H be the set header fields that contains the control information

 Let L be the length of the packet

 Let p be the payload type

 Let s be the sequence numbers

 Let i be the integrity check information

 HR ⊆

where R is the set of requirement R.ID, P.ID, TF and H is the set header of fields that

contains the control information

67

Each computing platform is identified by an assigned address. A process will be able to

migrate if it contains a header field carrying the control information. The address

resolution client which is the host platform needs to verify the integrity, authenticity and

the logical address for resolving information sent across different platforms.

A platform which is hosting each mobile agent needs to ensure that the mobile agents

on its platform have a valid server and that the address resolution is also valid.

Authorisation of the available address to be used should be provided by both the host

platform and mobile agent servers in order to ensure the validity of the address.

Replication

High availability of services is paramount to mobile distributed computing as this

enhances performance. Replication is a technique that is used to maintain copies of data

in a geographically dispersed environment and also as a back up in the event of the loss

of data or a systems failure (Coulouris, Dollimore & Kindberg, 2005). The fitness of a

replica will be measured in real time by the function of the differences in elapsed time.

This ensures consistency and correctness at anytime for the events. This is represented

as follows:

() fftF tt 11:
−+

+

Where ft+1 is the current time replica server was Created/Accessed/Resolved. This can

be expressed as { }RACf t ttt ,, 1 111 + +++ =

where C t+1 is the current time the replica server was created,

and A t+1 is the current time the replica server was accessed.

and R t+1 is the current time the replica server was resolved.

68

 ft-1 is last known time a replica was Created/Accessed/Resolved. This can be

expressed as

{ }RACf t ttt ,, 1 111 − −−− =

where C t-1 is the last known time the replica server was created,

and A t-1 is the last known time the replica server was accessed.

and R t-1 is the last known time the replica server was resolved.

Alternatively, replication can be calculated by;

{ }nxxxf ,..)(1=

where x is a replica which includes binding relationship variable which are object,

location and interface.

Let o be object/agent

Let l be location

and let i be interface

{ }xx olioli
xf ,...)(=

Remote Method Invocation

 A method is transparently invoked from process A to process B across a network, as if it

were a local method, is termed a Remote Method Invocation (RMI) (Coulouris et al.2005;

Williams, 2000). This holds true for an object oriented language rather than a procedural

language. Invoking a method remotely involves two processes:

1. A reference to the remote object.

69

2. A registry to store remote references.

Let n be the number of identified elements for solution X

 ix be elements in X

)(xf the fitness of ix

The fitness of F can then be defined as

∑
=

=
n

i
n xi

fXF
1

1)()(; n >0

The average fitness for the elements in the mobility requirements is identified as:

VH pnpi
xF →:)(

Persistency

The Object Management Group (OMG) service stipulates a typical structure for

persistency. This should consist of persistent Identification (ID), persistent object,

persistent object manager, persistent data store and protocol. A persistent object or

entity that need to travel from the Home platform piH to visit n number of visiting

platform pnV requires a reference ID, a dynamic state that lives for the duration of the

process and a persistent state that will be used for reconstruction of the dynamic state in

the case of a failure. These conditions qualify for an entity to be mobile in an

environment.

Persistency with respect to transparency needs certain elements to be able to move

from one location to another in this case from piH to pnV . These include;

70

 stability

 recovery

 refining object interface

 activating and deactivation of the object

 relocation

To measure activation and deactivation

Let activation be 1

 and

deactivation = 0

then

function ∫
∆+

=∆→ a
d

a
d

a
d

dxxfa
dxF)()(

Hence

function ∫
∆+

=∆→
RR

R
dxxfRxF)()(

Naming services

The Sun Microsystems naming services system administration guide defines naming

services as a central repository that computers, end users, and applications use to

communicate together across the network. In this work, we also define name services as

integrated services that manage all name information and hierarchies, and also as an

autonomous feature for transparency and persistency of entities. The purpose is to

provide a basic function and mapping service of name to address on the network. In

71

order to obtain the remote computer’s address, the program must request assistance

from say piH from the Domain Name Services (DNS) database running on that

platform. DNS is a naming service which provides identification for computers on the

internet. The name server uses piH as part of the request to find the IP address of the

remote computer. The name server returns this IP address to the piH only if the host

name is in its database. It uses a logical tree to resolve names as part of the service

Synchronisation

Synchronisation is important to maintain consistency of processes from host platform to

visiting platform at any given time (Coulouris et al., 2005). The concept of clock

synchronisation deals with the understanding of the occurrence ordering of events as

produced by the current processes. These events occur between the message sender

and message recipient, for example from process A to process B. Clock synchronisation

is required to provide the mechanism that can assign numbers sequentially based on the

agreement between the sending and receiving processes. Several algorithms have been

developed to achieve this over past decades. Lamport (1978) introduced the concept of

an event happening before another in distributed environment. The notion is illustrated

between event a and b; ba → where event a ‘happens before’ event b. Another

algorithm developed by Lamport and Meilliar-Smith (1985) requires a reliable connected

network to handle a fault situation. Christian (1989) developed an algorithm which

measures the local time at which a message is sent oT and the time at which a

message is received 1T . This is done by issuing a remote procedure call to a time

server to obtain the time. The delay in the network is then estimated as
2

01 TT + . Hence

72

the new time can be said to be the time returned by the server in the addition to time

elapsed by the server to generate the timestamp. This is expressed by

Time new = Timeserver +
2

01 TT + .

The Berkeley algorithm which was developed by Gusella and Zatti (1989), was based on

the assumption that any computer on the network has an accurate time which can be

used for synchronising time between processes. This assumption can introduce delays

and losses depending on the network which is due to the distributed nature in accessing

the network and the processing capabilities on the learning system.

Let S be Synchronisation

 Hp be Home platform

 Vp be Visiting platform

 Vpn be n visiting platform

 Pn be n number of processes

The timescale for measuring change in synchronisation is δ s important where s

(Synchronisation) is a derivative of the)(xf which is s
f
δ

δ . Measuring the short time

for n process is dependent on how fast changes occur in the system. The time range

between which n process leaves Hp and arrives at Vpn can be expressed as:

 ∫
+

=→
tt

t

dtsftxF
δ

δ)()(where the interval is [ttt δ+,]

such that if f is a continuous real value function defined by the limits [ttt δ+,] and

73

hence

)()()()(tFttFdtsftxF
tt

t

−+==∆→ ∫
+

δ
δ

where)(xF is a complex system during its evolution

Function synchronisation is dependent on [time, location]

This produces elements for the mobility fitness to be selected for the mobile agent-based

system development and the associated documentation. An interaction analysis is

performed to define series of interaction between business activities and data. Before

the mobility design is achieved detailed analysis and a model regarding the user and

systems interaction must be produced, the platform location and constraints must be

specified, messaging must also be clearly defined.

This expression therefore represents a fitness function in an inverse relationship to a

fitness solution.

Let { }nxxXF ,..)(1=

The fitness function { }nxxmU ,..)(1=

 Where U (m) = (1/e+x) 2

A designer can also employ combinatorics to choose a set of mobility elements from a

large set of distributed systems requirements for complex systems which is known as

choose function (n choose k).

74

4.5.2.2 Binomial Coefficient Application to Requirements

Table 4.1 lists both generic and mobile requirements for the development of distributed

system. The list is not only limited to what the table provides so a developer has the

choice of adding more requirement elements to the list depending on the type of

application. The requirements for developing mobile distributed systems were derived

and assigned bit strings in order to be able to apply binomial coefficient to provide

solution. Binomial coefficients 







k
n

 also known as choice number or choose function are

read as ‘n choose k’ (Conway and Guy, 1996). Combinatorics is a branch of

mathematics which is concerned with solving problems and in computer science it is

used for estimating the number of elements of certain sets. In the case of ‘n choose k’,

this is interpreted as the number of ways of picking k from the unordered outcomes of n

number of possibilities.

75

Generic & Mobility
Distributed Requirement

Variable
Number Bit Strings

Mobility Fitness
Function
Representation
Element(F)

Binary
Value

Abstraction 1 1 f3 10000001
Addressing 2 1 f11 10000010
Availability 3 1 f13 10000110
Calling 4 1 f7 10001100
Concurrency 5 0 n/a 10001110
Encoding 6 1 f8 10011110
Fault Tolerance 7 0 n/a 10000111
Inheritance 8 1 f5 10000011
Invocation 9 1 f8 11000011
Latency 10 1 f2 10011001
Location 11 0 n/a 10100011
Message Passing 12 1 f9 10110001
Mobility 13 0 n/a 10001011
Naming 14 1 f10 11010011
Openness 15 0 n/a 10010010
Persistency 16 1 f6 11011011
Polymorphism 17 1 f4 10101001
Replication 18 1 f14 10011011
Resource
Sharing(Scheduling) 19 0 n/a 10000100
Scalability 20 0 n/a 11111000
Security 21 0 n/a 11001100
Self Protective and Certified 22 1 f15 10011010
Synchronisation 23 1 f1 11100010
Transparency 24 0 f16 10111000

Table 4.1: Generic and mobility requirements

For example 







2
4

 gives 6 as the number of possible combinations of two elements that

could be derived from the set of numbers{ }4,3,2,1 . This will be{ }2,1 ,{ }3,1 ,{ }4,1 ,

{ }3,2 ,{ }4,2 , { }4,3 . These six combinations are known (in binomial) as k-element subsets

of an n-element set; hence this is the number of ways k combinations can be taken from

a set of n elements. The binomial coefficient is therefore implemented as binomial []kn, .

The value of the binomial is usually represented by

76

() !
)1)...(2)(1(

!!
!

n
knnnn

knk
n

k
n

Ckn
+−−−

=
−

≡







≡ For example, the requirement

element in table 4.1 can be represented by real numbers with mobility elements

represented as even numbers in the table. In translating this in to MATLAB;

let C be all combinations

C = nchoosek (n,k) where n and k are non-integers which returns the value ()!!
!

knk
n
−

C= nchoosek (v,k) where v is the row vector with length n which creates a matrix of all

possible combinations of all n requirement elements . The matrix C will contain ()!!
!

knk
n
−

rows and k columns. From the MATLAB command windows, for every two sets of

requirement elements one of them is a mobility requirement element, then the command

nchoosek (2:2:24,12) returns the even numbers from two to twenty-four, taken twelve at

a time:

>> nchoosek(2:2:24,12)

ans =

 Columns 1 through 10

 2 4 6 8 10 12 14 16 18 20

 Columns 11 through 12

 22 24

From table 4.1 nchoosek (2:2:24, 12) translates to the following requirements in order in

which they occur; addressing, calling, encoding, inheritance, latency, message passing,

naming, persistency, replication, scalability, self protection and certified, transparency.

77

Alternatively if we choose a small data set then the command nchoose k (2:2:12,3)

returns the even numbers from two to twelve, taken five at a time

>> nchoosek(2:2:12,5)

ans =

 2 4 6 8 10

 2 4 6 8 12

 2 4 6 10 12

 2 4 8 10 12

 2 6 8 10 12

 4 6 8 10 12

These combinations represent different combinations of mobility requirements

highlighted in table 4.1. From table 4.1 choosing a small data set with the command

nchoosek (2:2:12,3) translates to:

Addressing calling encoding inheritance latency

Addressing calling encoding inheritance message passing

Addressing calling encoding latency message passing

Addressing calling inheritance latency message passing

Calling encoding inheritance latency message passing

Calling encoding inheritance latency message passing

78

Whenever a binomial coefficient is expressed as a gamma function such as ()1! +Γ= zz ,

binomial coefficients are generalised in a way that allows non-integers to be expressed

as arguments which includes complex numbers for n and k. Gamma is implemented

as []z and gamma function is a natural extension of factorial to all complex and real

number arguments (Arfken,1985).

To translate for use into MATLAB , the identified generic and mobility requirements in

Table 4.1 will be represented as a set of n elements, while the mobility fitness element is

represented as k combinations of a set of n elements.

The next section explains how the concept of GA is used in formulating the mobility

problem and evaluating fitness criteria using fitness functions modelled in section

4.5.2.1.

4.5.2.3 Concepts underlying GA Problem Formulation:

Genetic Algorithms (GA)

GA is a search method motivated by evolutionary biology where evolution models are

formed based on crossover, mutation and a selection process (Goldberg and Deb,

1991). This random search method provides effective solutions to optimisation problems

in computing. The solutions are usually represented in a binary bit string.

Historically, GAs can be linked to Holland (1975) who described the ability to encode

complex structures into a bit strings to make it more manageable. He also explained that

79

with appropriate control structures, rapid improvement can be made under

transformation conditions such that a population of bit string can evolve as in a similar

way of the animal population (Bonner et al., 1996). GAs have been applied to several

application problems as an aid in finding the optimal solutions to problems, thereby

reducing costs and maximising efficiency in many industrial applications.

The evolution begins with a randomly generated population of individuals which usually

happens in generations. The fitness of every single individual in the population is

evaluated and multiple individuals are randomly selected based on their fitness from the

current population and are modified to form a new population (Fogel, 1995). This new

population of individuals is used in the next iteration of the algorithm. The algorithm is

normally terminated when the maximum number of generations has been reached. GA

has two main components which are the genetic representation of the domain solution

and the fitness function used to evaluate the solution (Fogel, 1995) .

The following are important terminologies associated with GA and these are population,

chromosomes, genes, genotype, phenotype and candidate solution:

Population

A population is an abstract representation called chromosomes which is also known as

individuals is used to optimise problems which can evolve into better solutions (Back,

1996).

Chromosome

A chromosome is made of a very long strand of deoxyribonucleic acid (DNA) and

contains many genes of about hundreds to thousands. Genes consist of DNA which

80

contains the code used to synthesize a protein. Genes vary in size, depending on the

sizes of the proteins for which they code. The genes on each chromosome are arranged

in a particular sequence, and each gene has a particular location on the chromosome. In

addition to DNA, chromosomes contain other chemical components that influence gene

function (Holland, 1975).

Genotype

Genotype is the gene type of an organism; the alleles of a certain characteristic. The

genotype is the genetic makeup, for example all of your genes are what comprise your

genotype. The genotype is a person's unique combination of genes or genetic makeup.

Thus, the genotype is a complete set of instructions on how that body is supposed to

function and be built (Holland, 1975).

Phenotype

Phenotype is the way genes express themselves example short, tall, or green. The

expression of genes is called phenotype, the traits that results when the instructions in

your genes are carried out or expressed. The phenotype differs to some extent from the

genotype because not all the instructions in the genotype may be carried out or

expressed. Therefore how a gene is expressed is determined not only by the genotype,

but also by the environment which includes illnesses and diet and other factors

(Goldberg, 1989).

Candidate solution

Candidate solution is the possible solution usually represented with a bit string. An

example of a set of candidate solution is

100011101001111010011001111000101000101110011011

81

The above represents possible solutions within which a solution could be found.

Genetic Operators

GAs has two important operators which are crossover and mutation (Baker, 1985;

Goldberg and Deb, 1991; Haupt and Haupt, 1998; Larranaga et al., 1998; Wilson et al.,

2003 and Ware et al., 2003). To prepare data for GA, data must be encoded and

encoding a chromosome should in a way represent information about the solution.

Encoding is represented in a binary string.

Crossover

Crossover is also known as recombine. After deciding on the encoding to use, the

genetic operator selects genes from parent chromosomes to create a new offspring or a

child. The easiest way to achieve this is to select a crossover point randomly (Ray and

Bandyopadhyay, 2005; Tsai et al., 2002) then everything before this point is copied from

the first parent and everything after the crossover, from the second parent, is also copied

to form a new child or offspring. More decisions regarding the crossover can be made

based on the following; the complexity of the problem, the encoding of the chromosome

and the level of experience of the designer.

Mutation

Mutation takes place after a crossover has been performed. Mutation changes offspring

randomly (Goldberg, 1989; Lima et al., 2005). With binary encoding, selected bits could

be randomly switched from 0s to 1s or 1s to 0s.

82

GA is a model based on natural selection and evolution where the stronger individual in

the population survives into the next generation. The GA tool which utilises GA principles

have a number of benefits which have made it a popular choice for many applications

particularly in engineering and employs easy to understand techniques for providing

solutions to complex problems. For example, GA and the Direct Search (GAD) tool box

provide a platform where functions can be defined with several variables. GAD tool box

also have constraint handling capabilities which are encountered in the course of

formulating solutions to optimisation problems and can be better handled than the

traditional mathematics optimisation techniques.

In this research, population, chromosome, genes, phenotype, genotype and candidate

solution are represented using bit string from Table 4.1.

Problem Formulation

In this research, in order to enable mobility on an agent platform, the core requirements

for modelling mobility are represented and modelled using the principles of Genetic

Algorithm. Mobile agent applications are usually built and deployed on distributed

platforms. There are three important requirements which are critical and essential to

mobility on such a platform. These requirements are remote method invocation,

synchronisation and persistency. Current literature on approaches and methodologies

for modelling agent systems has failed to capture these three essential requirements

that enable mobility in mobile agent systems. Hence, this methodology developed in this

research offers industry practitioners the opportunity of developing a mobile agent based

system that captures persistency, invocation and synchronisation as essential mobility

requirements for modelling related applications.

83

This section is the mobility problem formulation using GA concepts briefly explained in

section 1. The initial population of the distributed system requirements is represented by

the following chromosomes set;

1000000011000001010000110100011001000111010011110100000011000001111000

0111001100110100011100110001100010111101001110010010110000111010100110

011011100001001111100011001100100110101110001010111000

4.5.2.4 Representation of Chromosomes in the Mobility Problem Formulation

Chromosome

For example a chromosome is denoted by the bit strings as indicated in Table 4.1;

 =100011101001111010011001111000101000101110011011

The above represents possible solutions within which a mobility solution could be found.

Genotype

Genotypes representations are bit string encodings for all the candidate solutions. From

Table 4.1 each requirement has an associated binary value which is used for encoding

the candidate solutions for example;

Addressing and availability, then invocation and calling and location

= 1000001010000110110000111000110010100011

Concurrency and encoding, latency and synchronisation, and mobility and replication

=100011101001111010011001111000101000101110011011

84

. The search space is 5.05.0 ≤≤− x and the fittest will always be within the boundaries

of the range. This is indicated by the final point co-ordinate at which termination occur as

tabulated in Table 5.1.

Phenotype

Phenotype representations are the combination of one or more of the candidate

solutions. Each of the genotype is assigned a fitness to evaluate its accuracy, for

example in Table 4.1 the mobility requirement is each assign f1 to f16 which has

modelled. The fitness function is a derivative of the criteria for specifying fitness. The

following functions have been derived using the general GA fitness function to evaluate

the genotype to create new individuals;

 { }nxxXF ,..)(1=

The fitness function { }nxxmU ,..)(1=

 Where U (m) = (1/e+x) 2

At the point of termination each requirement/variable is assign a fitness score known as

final point co-ordinate. The best individual(s) falls within the range 5.05.0 ≤≤− x .

1. F1 is fitness representation for candidate solution of synchronisation. The fitness

function for evaluating this candidate solution is as follows:

 ∫
+

=→
tt

t

dtsftxF
δ

δ)()(where the interval is [ttt δ+,]

85

 such that if f is a continuous real value function defined by the limits [ttt δ+,]

2. F8 is fitness representation for candidate solution of invocation

∑
=

=
n

i
n xi

fXF
1

1)()(; n >0

3. F6 is fitness representation for candidate solution of persistency

∫
∆+

=∆→ a
d

a
d

a
d

dxxfa
dxF)()(

and ∫
∆+

=∆→
RR

R
dxxfRxF)()(

Candidate solutions

Candidate solutions are the individuals’ solutions in the genotype. These individuals are

possible solutions to the mobility problem. An example of a large set of candidate

solution from Table 4.1 is

1000000011000001010000110100011001000111010011110100000011000001111000

0111001100110100011100110001100010111101001110010010110000111010100110

011011100001001111100011001100100110101110001010111000

The above represents possible solutions within which a mobility solution could be found.

86

Figure 4.4: Genetic Algorithm Flowchart

The steps towards the solution of the mobility problem are formulated in the following

and also in Figure 4.4:

1) Generate an initial population of random individuals, made up of variables in Table 4.1

2) Perform the following sub-steps iteratively until the maximum number of generation is

reached, or the termination criterion has been satisfied:

a) Using the following mobility fitness function, each at a time to evaluate each candidate

solution:

87

• ‘@mobilitysync’,

• ‘@mobilityRMI’ and

• ‘@rastriginsfcn’.

Rastrigins function ‘@rastriginsfcn’ is being used for benchmarking because it is often

used for testing Genetic Algorithms. The function point of Rastrigin computes and

generate a given number of different points inside the function domain performing

searches on each variable or genes and retaining the best results in this case the fittest

individuals. It is used for optimising solutions in Genetic Algorithm due to the fact that it

performs well with a high number of variables with high reliability.

b) Create a new population by applying the following genetic operators:

• Reproduction: a randomly chosen individual is copied from the current generation

to the next.

• Crossover: operates on two individuals in the population, and produces two new

offspring

• Mutation: Create a new offspring by mutating a chromosomes.

3) If the termination criterion is satisfied, or the maximum number of generations is

reached, the current best individual in the population is proposed as the mobility solution

to the problem.

PSEUDO CODE

 Algorithm GA is

88

 // start with an initial time

 t := 0;

 // initialise a random population of individuals

 initpopulation P (t);

 // evaluate fitness of all individuals in population

 evaluate P (t);

 // test for termination criterion (fitness for mobility)

 while….

do…..

 // increase the time counter

 t := t + 1;

 // select sub-population for offspring production

 P' := selectparents P (t);

 // recombine the "genes" of selected parents

 recombine P' (t);

 // flip the mated population stochastically

 mutate P' (t);

89

 // evaluate it's new fitness

 evaluate P' (t);

 // select the survivors from actual fitness

 P := survive P,P' (t);

 od

 end EA.

4.5.3 Code Transformation

This phase establishes the physical characteristics of the operating environment. Major

subsystems and their mobility inputs and outputs are defined and migration processes

are allocated to resources. This phase should also provide a mechanism on how the

core mobility element will interface between various applications and other resources on

the distributed platform environment. A typical layer diagram guide for the mobility

designer is shown in Figure 4.5. The diagram is made up of distributed platform layers

which provide the base environment for all mobility application developments such as

the mobile agent. The top layer is the mobility platform layer for the mobile agent

functionalities and above the top layer is the internet /online applications as illustrated in

Figure 4.5.

90

 Internet/Online Applications

 Mobility Platform Layer/ API

 Distributed Platform/Environment

Figure 4.5: Mobility design layer diagram

In this phase the designer has the option of integrating the favoured development

environment such as proprietary or standard J2EE or mobile agent development tool.

For example a library and a preferred application framework could be added such as

Java, C++, Eclipse and others. Various categories of testing can also be developed at

this point. For example simulating the environment and testing for interoperability of the

system.

Wireless Application Protocol (WAP), Session Initiation Protocol (SIP), Intelligent Network
Application Part (INAP) and other available networks

Calling Naming Message Passing

Persistency

Synchronisation

Encoding Invocation Addressing Migration

Concurrency Security Autonomy Fault Tolerance

User Interaction Platform location Data Session Device Capabilities

91

4.5.4 Mobility Implementation

Mobile code is a an executable code which runs in remote locations and require some

form of security check before the execution takes place on the platform. The mobile

code must be authenticated and authorised by the platform where it intends to execute

which is as a results of the complexity of interactions between mobile agent

components. Security issues such as threat to the mobile agent and trust related issues

will be developed as future work for this mobility implementation as the focus of this

research is on mobility.

4.6 Simulation (How the GA tool works)

The evaluation of mobile agent based system is very challenging and hence requires a

carefully planned methodical approach and the selection of a suitable tool to accomplish

the selection of the mobility requirements. When a suitable methodology or approach

has been identified, the next step is to evaluate it by using simulation or prototyping or

alternatively a combination of these. These two evaluation approaches both have their

advantages and disadvantages for the mobile agent-based system. Evaluation using a

prototyping method has the advantage of demonstrating the feasibility of a proposed

system. Prototyping demonstrate how a system will work in the real environment and

provides the opportunity to improve the current functionality of the system, which can be

discarded when the actual system is built. This provides a limited approach due to the

fact that prototyping may not necessarily be translated to a large scale situation and may

not function satisfactorily in a real situation. Evaluation of the mobile agent based system

using simulation, enables the assessment and measurement of the systems

functionality, performance, robustness, scalability, validity and many other measurable

features of a system. However, simulation on its own is not able to capture all the vital

92

aspects of the system under consideration. Simulation models more often than not are

simplified version of the actual system, which means that some of the important features

and functionality may have been omitted.

4.7 Simulation of Fitness Function Using GA Concepts

4.7.1 Objectives of Simulation

The aim of the simulation is to test the fitness of each mobility requirement variable in a

population using the Genetic Algorithm (GA) concepts. The fitness functions evaluated

were synchronisation, invocation and persistency. The aim of the evaluation was to

assess the performances in each function with respect to best individuals in a given

population.

The criteria for assessment were;

 best individuals in relation to best and mean fitness

 objective function value in relation to the number of iterations

 objective function value with approximation and boundaries between 0 and1

4.7.2 Overview of Simulation

This simulation uses principles of Genetic Algorithms (GA) for optimising mobility

requirements. This GA mimics the principle of biological evolution which can modify a

population of individuals using genetic operators such as selection, mutation and

crossover as explain 4.5.2.1.

93

Figure 4.6 indicate all features present in the Genetic Algorithm and Direct Search

(GADS) Toolbox 2.4.1 that are use to simulate optimisation problems. The GADS

Toolbox provides standard algorithm options for solving complex problems and is

accessible through both Graphical User Interface (GUI) and the MATLAB command line

window. The GUI enables the user to define a problem, select algorithm option and

monitor progress and performance. In this research, GUI is used and the algorithm

option was substituted with user-defined mobility fitness function. The progress and

performance of variables were then monitored. The GA optimization tool provides the

options of creating population, choosing and applying genetic operators such as parent

selection, crossover and mutation.

Algorithms can be customised by providing user-defined functions. Problems can also

be represented in a variety of formats including variables that are a mixture of integer

and complex numbers. In this research, user-defined functions thus the mobility fitness

functions were used. Fitness functions can also be vectorised in some cases to improve

the execution speed. There are also features to allow for the automatic code generation

of the optimised solution in the m-file. The automatic code can be exported and run from

the command line, if required, to preserve the work or to generate routines.

94

Figure 4.6 GA Optmization tool

MathWorks, http://www.mathworks.co.uk/help/toolbox/gads/f6453.html (Accessed 27/01/12)

4.8 Summary

In this chapter, the methodology for modelling mobile agent-based systems has been

presented. Functions for the requirement elements were formulated and discussed. The

MaMM showed how Genetic Algorithm principles can be used to select mobility

http://www.mathworks.co.uk/help/toolbox/gads/f6453.html

95

requirements for application development as presented in the various case studies. The

GA tool which utilises GA principles demonstrates how the required variables can be

selected, crossed over and mutated in order to achieve system goals. Given this

background insight, chapter 5 will present the testing and simulation results of the

MaMM.

96

CHAPTER 5

Simulation Testing and Evaluation

5.1 Introduction

The GA tool which utilises GA principles was used to simulate the mobility variables

selection in a given population using two solvers which were modelled mathematically

using mobility requirement parameters. These mathematical models were further

translated into Matlab fitness functions which were @mobilityRMI and @mobilitysync

while Rastrigins’ function a well known Genetic Algorithms solver for measuring

performance (Rastrigin and Erencheyn, 1975), was used to benchmark the mobility

function solvers. The results are analysed and discussed in section 5.6.

5.2 Mobility Fitness Functions Testing

The simulation process involves the following steps:

1. The first step involves selecting the GA from a list of ‘solvers’ and specifying the

‘fitness function’, ‘constraints’ (if there are any) and the ‘number of variables’.

2. The second is to decide which ‘options’ are appropriate for the simulation. The

options include ‘population’, ‘fitness scaling’, ‘selection’, ‘reproduction’, ‘mutation’,

‘crossover’ and ‘plot functions’.

3. The third step is to start the simulation while observing the results.

97

 5.2.1 Step 1: Problem Setup

In this research, the ‘solver’ is the GA and the ‘fitness function’ will be ‘@mobilityRMI’,

‘@mobilitysync’ and ‘@rastriginsfcn’ while the ‘number of variables’ is set at 20 which

represents the number of mobility requirements. These are represented as shown in

Figures 5.1, 5.2, 5.3 and 5.4 respectively.

Figure 5.1: MobilityRMI function simulation setup

Figure.5.2: Mobilitysync problem setup

98

Figure 5.3: Rastrigin’s problem setup

5.2.2 Step 2: Function Options for Problem Setup

The next step is to specify the type and size of population as indicated in Figure 5.4.

Figure.5.4: Population options

Figure 5.5 indicate the options that are selected and these are ‘ranking’, ‘stochastic

uniform’, ‘elite count’ and ‘adaptive feasible’. ‘Rank’ is a ‘raw fitness score’ that is graded

according to the position of each individual. ‘Adaptive feasible’ ensures adaptability in

terms of both the successful and unsuccessful generation.

99

Figure 5.5: GA Tool GUI for genetic operator options

5.2.3 Step 3: Monitoring and Observation

The options made for the ‘plot functions’ are the ‘best fitness’, ‘best individual’ and

‘stopping criteria’. These tests indicate the optimised visual results for the fitness of each

individual while the ‘solver’ is still running. The purpose of the ‘plot function’ is to plot the

various aspects of the Genetic Algorithm during execution. The ‘best fitness’ plots the

‘best fitness value’ in each generation against the ‘number of iterations’, while the ‘best

individual’ plots all vector entries of each individual with the ‘best fitness function value’.

The ‘stopping criteria’ plot the ‘stopping criteria levels’. After the simulation has been set-

up and the options defined, the ‘solver’ is run and results are shown in the view results

window together with the number of iterations for observation and monitoring.

100

5.3 Fitness Function Evaluation

In this section, the mobility is modelled mathematically as part of the core mobility

requirements which were identified as remote method invocation, synchronisation and

persistency. These were translated into mobility fitness functions similar to the Rastrigin

function. Rastrigin’s function was used for benchmarking performance of the mobility

fitness function. Rastrigin’s function is a widely accepted function for testing performance

of Genetic Algorithms and the search space is -5.12<xi< 5.12, however, in this research

the search space is scaled down to 0.10.1 ≤≤− x to allow for some margin of error for

comparison in the selection of mobility variables. The variables for persistency were

integrated in the remote method invocation in order to complete the fitness function

component of the remote method invocation. The following fitness sections 5.3.1 to 5.3.3

indicate a step-by-step translation of mathematical models for remote method

invocation, persistency and synchronisation into mobility fitness functions which were

used for the simulation:

5.3.1 Test 1: Mobility Remote Method Invocation

MOBILITY REMOTE METHOD INVOCATION FUNCTION

The following mobility fitness function of Remote Method Invocation (RMI)

defines a function:

 where)(xf is the fitness of ix

The fitness of F can then be defined as

101

∑
=

=
n

i
n xi

fXF
1

1)()(; n >0

This fitness of F was translated in the following fitness function solver for use with the

GA tool with the following lines of codes;

function scores = mobilityRMI(pop)

%Author: Divina Melomey
%University of East London
% mobilityRMI compute mobility RMI function
%22/06/2009

 scores = 1/30.0 * size(pop,2) + sum(pop .^2);

The simulation was defined as @mobilityRMI fitness function as shown in Figures 5.1 to

5.5.

5.3.2 Test 2: Mobility Synchronisation Function

MOBILITY SYNCRONISATION FUNCTION

The function F(x) was expressed as:

 ∫
+

=→
tt

t

dtsftxF
δ

δ)()(where the interval is [ttt δ+,]

such that if f is a continuous real value function defined by the limits [ttt δ+,] .

Hence

)()()()(tFttFdtsftxF
tt

t

−+==∆→ ∫
+

δ
δ

where)(xF is a complex system during its evolution

Function synchronisation = [time, location]

102

Synchronisation = 2 *(0.63*location)*(0.63*location)

The time required for an object or physical quantity to move from one location to the

other can be expressed as 0 to 1-1/e (63.2%), with the final value of t as 1-e-kt . The time

required for physical quantity or object to fall to the (36.8%) of its initial value when it

varies with time t is e-kt .

The integral function was translated into the following codes to define the fitness function

to be used on the GA tool which is as follows:

function F = mobilitysync(pop)

%Author: Divina Melomey
%University of East London

% mobilitysync compute mobilitysync function

% this considers the use of quad function with complex values for
%limit of integration. this function computes the integral between two
%specified end points where the limits are t and change in t plus t
%in this case i

%F1 = quad('sin(z)', -1+i, 2-i) %Calculate integral in MATLAB
%'sin(z)' defines the function where z is a complex variable

% F = quad ('sin(z)', i, 1-i) % calculate integral for mobility
% synchronisation

%22/06/2009

 F = quad('sin(z)', i, 1-i);

The simulation was defined and shown in Figure 5.8 with the ‘plot function’ option set to

‘stopping’ in order to access conditions that are likely to terminate the function as

illustrate in Figures 5.9 and 5.10.

103

5.3.3 Test 3: Rastrigin’s Function

RASTRIGIN’S FUNCTION

The function is defined by the following:

With the following search space of

where x = 0 and

 n = the number of variables and

i = 1, 2,…n

The Rastrigin’s function is highly multimodal which produces a large number of local

minima and regularly distributed. Its global minimum occur when f(x) = 0; x (i) = 0 and

 i = 1:n

The following codes define the Rastrigin’s function which the fitness function solver runs

on and is as follows:

function scores = rastriginsfcn(pop)
%RASTRIGINSFCN Compute the "Rastrigin" function.

% Copyright 2003-2004 The MathWorks, Inc.
% $Revision: 1.3.4.1 $ $Date: 2004/08/20 19:50:22 $

 % pop = max(-5.12,min(5.12,pop));
 scores = 10.0 * size(pop,2) + sum(pop .^2 - 10.0 * cos(2 * pi .*
pop),2);

Rastrigin’s function is a typical example of a non-linear multimodal function which was

first proposed by Rastrigin (Rastrigin and Erenshteyn, 1975; Torn and Zilinskas, 1989;

Muhlenbein et al., 1991) and is used to test the performance of GAs.

104

The Rastrigin’s function simulation setup is indicated in Figure 5.3.

5.4 SIMULATION RESULTS

5.4.1 Results for the Mobility RMI Function

After running the simulation using ‘@mobilityRMI’ function, the ‘solver’ terminated after

74 iterations with the ‘minimum objective value’ of 1.6 as shown in figure 5.6. The ‘plot

function’ for the ‘best fitness’ and ‘best individual’ is illustrated in Figure 5.7. The auto-

code generated can be found in Appendix A.

Figure 5.6: ‘@mobilityRMI’ results

105

Figure 5.7 ‘@mobilityRMI’ function plot

5.4.2 Results for the Mobility Synchronisation Function

After running the simulation for ‘@mobilitysync’, the result is indicated by the visual plot

in Figure 5.8 and Figure 5.9 after 51 ‘iterations’ is given in Figure 5.10 with ‘minimum

objective value’ of 2.12. Automatic generated code for reuse and preservation is also

provided in Appendix A;

Figure 5.8 ‘@mobilitysync’ function option

106

Figure 5.9: ‘@mobilitysync’ function plot

Figure 5.10: ‘@mobilitysync’ function results

107

5.4.3 Results for Rastrigin’s function

The solver ‘@rastriginsfcn’ produced simulation results after 58 iterations. The following

figures display the results as shown in Figures 5.11 and 5.12 with a ‘minimum objective

function’ value of 38.49. ‘Plot functions’ selected identifies the ‘best fitness’ and ‘best

individuals’. The ‘plot function’ displays, monitors and outputs results visually during

runtime as illustrated in Figure 5.12. The automatic code generated for Figures 5.11,

5.12 is provided in Appendix A.

Figure 5.11: ‘@rastriginsfcn’ simulation results

108

Figure 5.12: ‘@rastriginsfcn’ simulation function plot

5.5 Evaluation of Simulation Results

This section provides a comparative analysis of all the results from the simulations and

testing conducted using the fitness function solvers ‘@mobilitysync’, ‘@mobilityRMI’ and

‘@rastriginsfcn’ to evaluate the fitness of the individual variables in a given population.

The purpose of this analysis is to compare variable ‘final point co-ordinates’ at which the

simulation is terminated. The comparison is based on three main areas and they are; the

‘number of fitter individuals’ at termination, the ‘elite count’ and the ‘minimum objective

function value’ with respect to iterations in a given ‘population’.

109

For each of the functions the evaluation was run at least 10 times and the average

values were chosen. Table 5.1 indicates the ‘final point co-ordinates’ at which the

simulation terminates for each of the variables for fitness functions ‘@mobilitysync’,

‘@mobilityRMI’ and ‘@rastriginsfcn’ with the evaluation functions and the number of

iterations at 51, 54 and 65 respectively.

Final Point at which Genetic Algorithm Terminates
Variable
Number Requirements

Genetic Algorithm Solver
@mobilitysync @mobilityRMI @Rastriginsfcn

1 Abstraction 0.393 0.092 -0.034
2 Addressing 0.707 0.005 -0.036
3 Availability 0.752 0.099 -1.003
4 Calling 0.923 0.05 -0.01
5 Concurrency 0.227 0.161 0.936
6 Encoding 0.088 0.82 0.154
7 Fault Tolerance 0.266 0.078 0.958
8 Inheritance 0.199 -0.269 0.111
9 Invocation 0.497 0.056 0.994

10 Latency 0.323 0.055 0.032
11 Location 0.225 -0.06 0.017
12 Message Passing 0.833 0.111 0.001
13 Synchronisation 0.44 0.043 0.963
14 Naming 0.441 0.076 0.037
15 Openness 0.411 -0.032 0.061
16 Persistency 0.749 0.159 -1.004
17 Polymorphism 0.698 -0.246 1.042
18 Replication 0.661 0.243 1.997
19 Transparency 0.661 0.243 0.967

20
Self Protective and
Certified 0.777 0.121 1.072

 Table 5.1: Final Point Co-ordinates

Table 5.1 enables all the evaluation functions or fitness to be compared with the

Rastrigin’s function which was used to benchmark performance. At this ‘final point

coordinates’ the ‘minimum objective value’ for fitness functions ‘@mobilitysync’,

110

‘@mobilityRMI’ and ‘@rastriginsfcn’ were 0.70, 1.04 and 24.08 respectively with the

following ‘function plots’:

Figure 5.13: ‘@mobilitysync’ plot function

Figure 5.14: ‘@mobilityRMI’ plot function

Figure 5.15: ‘@rastriginsfcn’ plot function

111

The next section discusses the results of the simulation and testing of the fitness

function for selecting mobility requirements.

5.6 Discussion of Simulation Results

This section provides a detailed discussion of the simulation test results for the fitness

function solvers ‘@mobilitysync’, ‘@mobilityRMI’ and ‘@rastriginsfcn’. Figures 5.13, 5.14

and 5.15 indicate the ‘number of variables’ against the ‘current best individual’.

Table 5.1 is the outcome of the GA evaluation of the requirement variables highlighted in

columns one and two. The variables were selected from Table 4.1. The interval or

search space for the fitness functions ‘@mobilitysync’ and ‘@mobilityRMI’ is

5.05.0 ≤≤− x . This means that variable whose ‘final point co-ordinate’ is within this

search space is among the ‘fittest individual’ selected for the next generation. Any ‘final

point co-ordinate’ which is outside this interval is discarded.

In benchmarking the results from mobility fitness functions with the Rastrigin’s, the

search space is scaled down to 0.10.1 ≤≤− x from its original search space of -5.12<xi<

5.12 to allow for margin of error for the selection of the ‘fittest individuals’ to be

compared with the mobility selection variables.

The ‘final point co-ordinates’ for fitness function @mobilitysync within the interval

5.05.0 ≤≤− x are Abstraction, Addressing, Concurrency, Encoding, Fault Tolerance,

Inheritance, Invocation, Latency, Location, Synchronisation, Naming and Openness.

These are the fittest individuals that have been selected for the next generation and the

112

rest are simply discarded. Results from Table 5.1 indicate that Availability, Calling

Message Passing, Polymorphism, Transparency and Self Protective and Certified are all

discarded.

The ‘final point co-ordinates’ for fitness function ‘@mobilityRMI’ within the

interval 5.05.0 ≤≤− x are Abstraction, Addressing, Availability, Calling, Concurrency,

Fault Tolerance, Inheritance, Invocation, latency and Location and Message passing,

Synchronisation, Naming, Openness, Persistency, Polymorphism, Replication,

Transparency and Self Protection and Certified. These are the fittest individuals that

have been selected for the next generation and the others are simply discarded. In this

run and iteration the variable ‘encoding’ is discarded.

 According to Table 5.1, Rastrigin’s function’s fittest individuals are Abstraction,

Addressing, Calling, Concurrency, Fault Tolerance, Inheritance, Invocation, Latency and

Location and Message passing, Synchronisation, Naming, Openness and Transparency.

The individuals discarded are Availability, Persistency, Polymorphism, Replication, and

Self Protection and Certified.

The ratio of the individual discarded for the fitness function ‘@mobilitysync’:

‘@mobilityRMI’: ‘@Rastriginfcn’ is 7:1:5. This means that when the fitness functions

evaluated the requirements, the fitness function ‘@mobilitysync’ discarded more

individuals during the fitness selection process than ‘@Rastriginfcn’. The fitness function

‘@mobilityRMI’ only had one to discard.This means that the ‘@mobilitysync’ rigorously

sifted through all the variables that were essential for mobility development as compared

to that of the ‘@mobilityRMI’ and these results compared favourably well to the results

from ‘@Rastriginfcn’. Furthermore, the mobility fitness functions are meant to support

113

the development process and not to replace the human effort. The mobility fitness

function will serve as a support tool for software developers to specify and design the

mobility requirements of the system to meet systems requirements more closely that

human effort alone.

5.7 Real Life Usefulness of Results

Online Banking Scenario

The subsidiary online banking operations in remote locations across the world rely

heavily on security, availability, autonomy, migration, synchronisation, persistency,

concurrency, name services, transparency and fault tolerance of their processes.

Migration and remote access to data for example are critical functions in their

operations. This set of requirements allows bank customers to apply for accounts online,

logon and manage their finances. Customers can create regular payments and standing

orders for their nominated accounts, update their personal information and send secure

emails to their respective banks. The outcomes of this research when applied in the

above banking scenario will enable automatic selection of processes based on efficient

criteria of a set of variables. This will further result in the development of better system

function and customer experience. The Mobility Requirement Elicitation, Fitness

Classification and Code Transformation phases also enable the capturing of core and

critical requirements peculiar and unique to the distributed systems application area.

Table 4.1 highlights the requirements necessary for analysing information processes that

require remote access to data and migration of similar data resource. The assigned

numbers are referred to as variables which describe the following requirements;

Abstraction, Addressing, Availability, Calling, Concurrency, Encoding, Fault Tolerance,

114

Inheritance, Invocation, Latency, Location, Message passing, Mobility/Migration,

Naming, Openness, Persistency, Polymorphism, Replication, Resource sharing,

Scalability, Security, Self Protection and Certified, Synchronisation and Transparency.

 From Table 4.1 the simulation process begins with the problem. During the iteration,

‘best fitness’ and ‘best individual’ are monitored.

The outcome of the simulation is based on ‘number of fitter individuals’ selected for the

banking application. In this scenario, those variables selected for the simulation are

concurrency, fault tolerance, synchronisation, naming services and openness. The rest

are simply discarded. This is 5 out of 10 variables previously identified by the banking

application software developer. These 5 variables represent the precise fitness

specification to be used in the development of the mobile agent banking application. This

however does not replace entirely the developer’s expert judgement but rather

compliments the effort of coming out with the appropriate specification for the

development. The developer benefits from using the ‘number of fitter individuals’ to

compliment his effort in deciding on the appropriate specifications needed for developing

the mobile agent banking application. To the developer, this will serve as an

independent tool for addressing migration issues in mobile agent application

development. Another benefit to the developer is the tool’s ability to select ‘number of

fitter individuals’ in solving complex and unpredictable problems associated with the

migration of mobile agent banking application.

This process can be automated and form the basis for case tool development since this

is the first time in mobile agent research that the underlying principles of Genetic

Algorithms fitness functions have been used in selecting system requirements for the

115

development of mobility agent-based applications. This provides another benefit to the

developer of the online banking scenario discussed earlier.

It is therefore recommended that both mobility function ‘solvers’ should be used in order

to compare results for the same problem. There is a high industry demand for CASE tool

environments that can effectively support the software specific process such as mobility

capture in the software development process. For example, in a safety critical

environment modelling mobility using MaMM will enable the mobility requirements to be

captured and supported in the development environment which is a benefit that current

methodologies fail to address. Current methodologies such as MaSE methodology

focused on the output models of the analysis phase of systems development and failed

to identify why mobility is needed and its association with the requirements of the

systems (DeLoach et al., 2001). Since MaSE did not recognise mobility as a

requirement, it did not also consider remote method invocation, synchronisation and

persistency as essential component for developing mobile agent-based systems. Also,

GAIA lacks the concepts to support the modelling and reasoning of the agents’ mobility

and the social interaction in an environment and therefore paid less attention to the core

mobility requirements of remote method invocation, persistency and synchronisation for

developing mobile agent-based systems (Wooldridge et al., 2000; Huang et al., 2007).

Furthermore, Tropos and Prometheus methodologies did not consider these core

mobility requirements at all as focus were mainly on development of multi-agent systems

(Perini et al., 2002; Castro et al., 2002; Bresciani et al., 2004; Padgham and Winikoff,

2004). These methodologies were developed for non-mobile agent systems and as such

the requirements selected are not essential for developing mobile agent systems. The

development of MaMM using the mobility fitness function is a new contribution this

research is bringing to the field. MaMM is captured in the Figure 4.2.

116

For the first time in mobile agent research, mobility fitness functions are used to select

and evaluate mobility requirements for software development. The results from the

evaluation have also proven to be more efficient at selecting requirements than human

effort. Current methodologies capture mobility as a component and high level system

requirement in a distributed system environment. Again, current methodologies also lack

the ability to formalise and effectively support systems which put mobility as a high

priority in the systems development process.

5.8 Summary

In this chapter the fitness function solvers for mobility were tested and were used to

select mobility requirements without the intervention of the user for the first time. This is

the first time in mobile agent research that a mobility methodology has enabled a tool to

independently select mobility requirements. Results from the testing of fitness functions

‘@mobilitysync’ and ‘@mobilityRMI’ were presented and compared with the test results

from the Rastrigin’s function solver which was used as a benchmark to measure

performance and selections of fittest individuals for mobility applications development.

The results for fitness function simulation ‘@mobilitysync’ fall within the range

5.05.0 ≤≤− x and that for fitness function ‘@mobilityRMI’ fall within the range of

5.05.0 ≤≤− x . This means that at all times, regardless of the function ‘solver’ used, the

fittest will always fall within the range 5.05.0 ≤≤− x . Based on the results displayed,

the ‘@mobilitysync’ and ‘@mobilityRMI’ fitness functions performed comparatively better

in selecting the mobility requirements when benchmarked with the well known

Rastrigin’s function for measuring performance and effectiveness of Genetic Algorithms.

117

CHAPTER 6

Conclusions and Future Work

6.1 Summary

The last few years have seen the proliferation of approaches and methodologies for

modelling multi-agent systems with little attention to mobile agent systems development.

This thesis addresses the lack of a mobility methodology to model mobility in mobile

agent-based systems. Current developments in agent technology and pervasiveness of

distributed computing have change the focus of research to mobile agent technology

exploitation. There is currently no methodology for developing the mobility of the mobile

agent-based systems using fitness function for the selection of mobility requirements.

This thesis presents a methodology for modelling the mobility of mobile agent based

systems.

The first part of this thesis solicited converging opinions from experts using Delphi Study.

Case studies were also used to collect further details from experts on how and what

processes were involved in different types of online applications and furthermore to

evaluated the draft of the methodology. The feedback from the case studies gave an

indication of how the methodology should be developed. Mobility requirements derived

from both Delphi study and the case studies were simulated using fitness function

modelled mathematically. The methodology developed from this thesis is known as

Mobile agent-based Mobility Methodology (MaMM).

118

The aim of this research was to develop a methodology for modelling mobility in mobile

agent-based system using a GA approach. This has been presented in MaMM which is

made up of four phases. MaMM will assist developers to model mobility through all the

phases of applications development. Bottom up approach was used, drawing on

expertise, attributes, properties and elements embodied in Delphi study, case studies

and simulation environment. The conclusions will therefore re-examine the results in

terms of the success in achieving the aims and objectives identified for this research

programme.

 6.2 Delphi Study

 The Delphi study was used to solicit emerging opinions from experts and the results

gave a strong indication of the types of complex case studies to select for the

methodology development. The Delphi study was used to gather information relevant to

the development of MaMM from experts on software development (Chapter 3).

6.3 Case Studies

Case studies were used to identify mobility requirements, test and evaluate the

methodology (Chapter 3). This is illustrated in Figure 1.1 which indicates how the

process fed into each other from the bottom to the top. These mobility requirements

were the core for developing mobile agent-based systems which were general mobility

requirements and are not necessarily used for all applications as each application is

unique as tabulated in Table 4.1. There are three important requirements identified from

the case studies which are critical and essential to mobility on mobile agent-based

platform. These requirements are remote method invocation, synchronisation and

119

persistency. In order to enable mobility on mobile agent platform, the core requirements

for modelling mobility are modelled using the principles of Genetic Algorithm. Mobile

agent applications are usually built and deployed on distributed platforms.

6.4 Mobile agent-based Mobility Methodology (MaMM)

Mobility in mobile agent-based system is the process by which a mobile agent migrates

from one platform or location to another autonomously. This methodology known as

MaMM, models mobility by bringing together key aspects of earlier approaches for

modelling mobility, which is independent of any specific approach in the applications

development process. MaMM is a four phased system comprising of Mobility

Requirement, Fitness Classification, Code Transformation and Mobility Implementation.

This has a focus on the application of Genetic Algorithms for fitness selection of mobility

requirements (Chapter 4).

Limitations in the modelling of mobile agent methodologies and approaches have been

highlighted and the original contribution of MaMM has provided new insights of the

process. Current methodologies such as MaSE methodology focused on the output

models of the analysis phase of systems development and failed to identify why mobility

is needed and its association with the requirements of the systems (DeLoach et al.,

2001). Since MaSE did not recognise mobility as a requirement, it did not also consider

remote method invocation, synchronisation and persistency as essential component for

developing mobile agent-based systems. Also, GAIA lacks the concepts to support the

modelling and reasoning of the agents’ mobility and the social interaction in an

environment and therefore paid less attention to the core mobility requirements of

120

remote method invocation, persistency and synchronisation for developing mobile agent

based systems (Wooldridge et al., 2000; Huang et al., 2007). Furthermore, Tropos and

Prometheus methodologies did not consider these core mobility requirements at all as

focus were mainly on development of multi-agent systems (Perini et al., 2002; Castro et

al., 2002; Bresciani et al., 2004; Padgham and Winikoff, 2004). These methodologies

were developed for non-mobile agent systems and as such the requirements selected

are not essential for developing mobile agent systems. The development of MaMM

using the mobility fitness function is a new contribution this research is bringing to the

field. MaMM is captured in the Figure 4.2. Table 6.1 recaptures the strength and

limitation of each existing Multi-agent Systems methodologies together with that of the

MaMM. The conceptual and abstraction levels of MaMM has been developed and

rigorously tested in Chapter 4 and Chapter 5 and as such satisfies the requirement,

analysis and design phases of the methodology as indicated in Table in Figure 6.1.

However, though the implementation phase has been conceptually tested it has not

gone through the rigour the other methodologies have undergone and as such it scores

No for the implementation phase.

.

121

YES – Strength of the Methodology NO- Limitation of the Methodology

Table 6.1: Multi-agent Systems Methodologies and MaMM

Mobility fitness functions were then developed from mathematical models of the mobility

requirements. These requirements were based on the selected case studies that exhibit

characteristics of mobile agents. The mobility requirements were then simulated using a

GA tool and the various results were benchmarked against Rastrigin’s function.

Rastrigin’s function is a widely accepted function for testing performance of Genetic

Algorithms.

6.4.1 Simulation and Evaluation of Results

Mobility fitness functions are modelled mathematically using the core mobility

requirements which were identified as remote method invocation, synchronisation and

122

persistency. These were translated into mobility fitness functions similar to the

Rastrigin’s function; Rastrigin’s function was used for benchmarking performance of the

mobility fitness functions. Rastrigin’s function is widely use for testing performance of

Genetic Algorithms and the search space is -5.12<xi< 5.12, however, the search space

was scaled down to 0.10.1 ≤≤− x to allow for some margin of error for comparison in

the selection of mobility variables.

The following observations were made when the outcomes of mobility fitness functions

were benchmarked with the Rastrigin’s functions.

The mobility fitness functions ‘@mobilitysync’ and ‘@mobilityRMI’ closely selects the

mobility requirement variable for the development of mobile agent-based systems given

the ‘population’ and the ‘number of variables’. The mobility fitness functions select

requirement variables from the fitness range 5.05.0 ≤≤− x while Rastrigin’s function

selects from a range 0.10.1 ≤≤− x . The requirements that do not pass the fitness test

are those that do not fall within the fitness range and are discarded whereas those that

pass the fitness test are used to model mobility of the mobile agent in the second part of

the fitness classification phase MaMM. Another important finding from the study was that

the phases of MaMM are adaptable as confirmed by responses from the Delphi study.

The second phase of the MaMM which is known as ‘fitness classification’, analysed the

need for mobility using mobility fitness classification model which groups mobility

development needs in four categories The model was developed from the outcome of

the case studies based on time, behavioural, addressing and security needs. Three of

123

these categories must be satisfied for any of the mobility applications development. The

fitness of mobility requirements were modelled mathematically based on element

composition of the requirements defined and was applied at the ‘fitness classification’

phase of the MaMM. Two of the mobility requirements at the core of any mobility

application, the remote method invocation and the synchronisation were then

transformed into a fitness functions in order to select the fittest mobility requirements

given the population and the number of variables for such applications. The mobility

fitness function were ‘@mobilitysync’, ‘@mobilityRMI’ and Rastrigin’s function

‘@Rastriginfcn’ for benchmarking the mobility fitness function results. The GA tool was

use to run the fitness selection which meant that whatever requirements survived into

the next generation were the fittest of the requirement for further development. This

means that when the mobility fitness functions evaluated the requirements, requirements

that are not selected are discarded. Furthermore, the mobility fitness functions are

meant to support the development process and not to replace the human effort. The

mobility fitness function will serve as a support tool for software developers to specify

and design the mobility requirements of the system to meet systems requirement more

closely that human effort alone. This process can be automated and form the basis for

case tool development since this is the first time in mobile agent research that Genetic

Algorithms fitness functions have been used in selecting system requirements for mobile

agent-based applications development.

Fitness functions and the GA simulation tool which utilises GA principles were also

integrated into the Fitness Classification phase of MaMM to select the mobility

requirement for mobile agents based on applications development. These mobility

requirements were simulated on a GA simulation platform and results were

124

benchmarked against Rastrigin’s function selection. As in any distributed systems

architecture, consideration is given to existing standards such as FIPA and MASIF,

hence the mobility design layer diagram in chapter 4 indicates which layer in the

distributed environment or platform that the mobility applications is built on. The mobility

platform layer lies on top of the distributed platform layer and above this, is the online

applications layer. This serves as a guide for mobility application developers in agent-

based systems.

Mobile Agent System Interoperability Facility (MASIF) and the Foundation for Physical

Intelligent Agents (FIPA) are standards which provide support and management for

software agents, the execution environment and resources. MASIF and FIPA are part of

the Object Management Group (OMG) whose work on Mobile Agent Facility (MAF) was

to promote inter-operability amongst agent platforms and to provide all interfaces

between agent and agent systems. This research outcome was developed giving

consideration to MASIF and MAF standards with respect to basic concerns like the

agent management, migration and tracking from one platform to another. MASIF

primarily identifies a distributed agent environment with reference to a place, and in this

research it is known as a platform in MaMM where mobile agents visit and executes its

codes. Another aspect of MASIF is the support for region or localisation of authority

which is similar to a zone in MaMM in terms of providing security accesses to migration

of agents within a zone. The FIPA 2000 specification is related to agent mobility,

heterogeneous interaction of agents, agent based systems, communication and agent

transport, which are issues not covered by MASIF, however, in this research

communication issues were considered.

125

6.5 Research Contributions

This thesis makes significant contributions to the state of the art in the following ways: a

Mobile agent-based Mobility Methodology (MaMM) to model mobility in a mobile agent

based system. MaMM is made up of four phases which provide a guide in the formal

analysis, design and implementation of mobile agent based systems.

 The methodology is a guide to direct the development of solutions in respect of

modelling mobility of mobile agents. The research phases proposed are not new but

rather similar to incremental and developmental methodologies which have been tried

and tested (Boehm 1988, Greer and Ruhe, 2004, Qui and Riesbeck, 2008). Feedback

proposed between the phases at each iteration will assist in the design of systems and

will be ready to face the uncertainties in complex problem domains. This is the first time

that a fitness function has been used to select the requirement for developing mobility

mobile agent-based application. The following are the key aspects of the contributions:

1. A Mobile agent Mobility Methodology (MaMM) which describes the phases of

mobility systems development. The four phases of the MaMM are the mobility

Requirement Elicitation, Fitness Classification, Code Transformation and Mobility

Implementation. For the first time in mobile agent research, this work introduces

Genetic Algorithm (GA) principles for selecting and assessing the fitness of the

mobility elements during the Fitness Classification phase of the system

development process. This involves using Genetic Algorithm principles to select,

mutate and perform crossover functions on a specified number of variables in a

given population. These variables and other parameters when specified using

GA principles, together with the fitness function generated from the formulated

126

mobility function. This further provides an optimised solution for each variable

when benchmarked with Rastrigin’s function.

2. The Design layer diagram is a distributed mobility platform which specifies the

core requirements for the development of all mobility applications. This diagram

illustrates mobility requirements necessary to design online based applications.

This design diagram shows how these mobility requirements were derived from

the generic mobility requirement for designing distributed applications from

selected online cases.

3. The Mobility Fitness Classification model. This classifies high interactive activities

using a quadrant-like model in which at least three of the groupings must be

satisfied in order to develop mobile agent-based online applications. The

groupings are time, behavioural, addressing and security.

4. The mobility design layer diagram. This demonstrates how mobility applications

can be built on distributed platform architecture. This is a three layered diagram

and comprises of bottom layer, middle layer and top layer. The bottom layer is

the distributed platform layer which sets the basis for building mobile

applications, the middle layer is the mobility platform which specifies the mobility

elements that must present in mobile applications which forms the basis for the

mobility fitness functions and the top layer is the internet/online layer.

5. Fitness functions for mobility. These were modelled for the entire mobility

requirements for developing mobile applications. Modelling these mathematically

took into consideration the components that make up each of the mobility

requirements identified.

127

6. Fitness functions for Genetic Algorithm. For the first time in mobile agent

research, fitness functions have been modelled to select and determine the

performance of mobility variables using Genetic Algorithm tool in a specified

population size, in developing mobile agent applications.

It is possible for mobile agents to be modelled if interactive activities are high, for

example where mobile agents are required to visit many platforms to gather and return

information or to report from remote locations. Information and data therefore needs to

be available and updated in a real-time fashion. MaMM is able to model migration of

mobile agents to reap the benefits of mobile agents system. Some of the benefits are the

reduction in the consumption of network bandwidth, reduction in latency and an increase

in fault tolerance. The MaMM approach will also assist software developers to easily

conceptualise solutions to complex software systems.

6.6 Future Work

The results from the simulation and testing demonstrate that the methodology developed

is successful in the selection of mobility requirements to develop mobile agent-based

systems. Possibilities for future work are:

 The automation of fitness selection process which will serve as a basis for a

further research for CASE tool development for the software industry.

 The deployment of MaMM as a CASE tool in industry with automated

features for fitness selection of mobility requirements in mobile agent-based

software development. Automating mobility using fitness function could help

software developers to specify and design the mobility requirements of the

128

system more closely, compared to current methodologies such as MaSE,

GAIA, Prometheus and Tropos (Wooldridge et al., 2000; DeLoach et al.,

2001; Perini et al., 2002; Castro et al., 2002; Bresciani et al., 2004; Padgham

and Winikoff, 2004; Huang et al., 2007). An open end question in this regard

is how much cost is involve in deploying the CASE tool in a large and

complex network and other related constraints.

 The development and integration of security mechanisms as part of the

developed MaMM. Security functions can also be developed to explore the

strength of the MaMM from a security perspective. A reflective blind spot that

was not adequately compensated for will be the introduction of additional

complexities which might cause the system to fail in obscure ways or even

lead to the exploitation of other vulnerabilities that might be identified. A

possible research question at this point is; how can security be integrated as

part of the methodology?

Finally, although the results from the research shows that GA is more efficient in

selecting fitness requirements after benchmarking, further research can be conducted in

the following areas;

 what are the performance issues when deployed on large systems with

higher data processing requirements? Example, in handling high volume

image data on high performance networks.

129

References

ADLER, M. & ZIGLIO, E. (1996) Gazing into the oracle: The Delphi Method and its
application to social policy and public health, London, Jessica Kingsley
Publishers, pp.3-33.

ANDREWS, D. C. (1991) JAD: A crucial dimension for rapid applications development.
 Journal of Systems Management. Volume 42(3), pp. 23-31.

ARFKEN, G. (1985) The Gamma Function (Factorial Function), Orlando, FL: Academic
 Press, pp 339-341 and pp 534-572.

ARLOW, J., QUINN, J. & EMMERICH, W. (1999) Literate Modelling- Capturing Business

Knowledge with UML IN BEZIVIN, J. & MULLER, P. A. (Eds.) Proceedings of
UML’98, Lecture Notes in Computer Science (LNCS) Mullhouse France, Volume
1618, Springer Verlag, pp.165-172.

BÄCK, T. (1996) Evolutionary Algorithms in Theory and Practice, New York Oxford
University Press.

BAKER, J. E. (1985) Adaptive Selection Methods for Genetic Algorithms Foundation of
 Genetic Algorithms (FGA1) pp. 101-111.

BALDI, M., GAI, S. & PICCO, G. P. (1997) Exploiting Code Mobility in Decentralized and

Flexible Network Management Proceedings of the First International Workshop
on Mobile Agent, Berlin, Germany , pp. 13-26.

BALMELLI, L. (2007) An Overview of Systems Modeling Language for product and
Systems language for product and systems development. Journal of Object
Technlogy, Volume 6(6), pp. 149-177.

BANCROFT, M. & AL-DABASS, D. (2004) A Combat Simulation Aid for Dungeon and
 Dragons. Proceedings of 5th Game-On International Conference. Vol.
 1&2, Reading, UK, pp.61- 72.

BAUER , B. (1999) Extending UML for the Specification of Interaction Protocols.
 Proceedings of the First International Workshop, AOSE 2000, Lecture Notes in
 Computer Science (LNCS), Volume 1957, Limerick, Ireland, pp121-140.

BAUER, B. (2001) Agent UML A Formalism for Specifying Multiagent Software Systems.

International Journal of Software Engineering and Knowledge Engineering 11(3),
pp. 207-230.

BAUER, B. & ODELL, J. (2005) UML 2.0 and agents: how to build agent-based systems
with the new UML standard. Journal of Engineering Applications of Artificial
Intelligence, Volume 18 (2), pp. 141-157.

BAUMEISTER, H., KOCH, N., KOSIUCZENKO, P. & WIRSING, M. (2003) Extending
Activity Diagrams to Model Mobile Systems. In Aksit, M., Mezini, M. & Unland, R.

(Eds.) International Conference NetObjectDays, NODe 2002. LNCS. Erfurt, Germany.

130

BELL, W. (1997) Foundations of Futures Studies: Human Science for a New Era.

History, Purposes, and Knowledge, New Brunswick (NJ): Transaction Publishers,
Volume 1.

BELLONI, E. & MARCOS, C. (2004) MAM-UML: An UML Profile for the Modeling of
Mobile-Agent Applications. In proceedings of 24th International Conference of
the Chilean (SCCC 2004), Lecture Notes in Computer Science, No.350,
Arica, Chile.

BLACKWELL, L., VON KONSKY, B. & ROBEY, M. (2001) Petri Net Script: A Visual
Language for Describing Action, Behaviour and Plot. In proceedings of
Australasian Computer Science Conference (ACSC '01), pp 29-37, Gold Coast,
Qld., Australia, pp.3-13.

BOEHM, B. W. (1988) A Spiral Model of Software Development and Enhancement.
IEEE Computer, pp. 61–72.

BONNER, M., MAYER, S., RAGGL, A. & SLANY, W. (1995) FLIP++: A Fuzzy Logic
Inference Processor Library. Fuzzy Logic in Artificial Intelligence. Proceedings of
The 1995 International Joint Conference on AI, LNCS, Montreal, Canada,
Springer, pp.66-76.

BOOTH, S. & HULTEN, M. (2003) Opening Dimension of Variation: An empirical study
 of learning in a web-based discussion. Instructional Science Volume 36, No.1&2,
 pp. 65-86.

BRAZIER, F., DUNIN-KEPLICZ, B., JENNINGS, N. R. & TRUER, T. (1995) Formal

Specification of multi-agent systems: a real world case. Proceedings of the first
International Conference on Multi-agent Systems (ICMAS-95), San Francisco.
USA, pp. 25-32.

BRESCIANI , P., GIOGINI, P., GIUNCHIGLIA, F., MYLOPOULOS, J. & PERINI, A.
(2004) TROPOS: An Agent –Oriented Software Development Methodology.
Journal of Autonomous Agents and Multi-Agent Systems, Vol. 8(3), pp. 203-236.

BRESCIANI, P. & SANNICOLÒ , F. (2002) Requirement Analysis in TROPOS: a Self
Referencing Example. In proceedings of the NODe 2002 agent related
Conference on Agent Technologies, Infrastructures, Tools, and Applications for
e-Services. J. Miller, H. Tianfield, R. Unland, R. Kowalszyk ed., Lecture Notes in
Computer Science, Springer-Verlag, Erfurt, Germany, pp. 21-35.

BRUSTOLONI, J. C. (1991) Autonomous Agents: Characterization and Requirements,
Carnegie Mellon Technical Report CMU-CS-91-204. Pittsburgh, Carnegie Mellon
University

CAIRE, G., COULIER, W., GARIJO, F., GOMEZ-SANZ, J., PAVON, J., KEARNEY, P. &

MASSONET, P. (2004) MESSAGE: A Methodology for the Development of
Agent-Based Appplications, Springer, Lecture Notes in Computer Science,
No.3155, Springer-Verlag, pp.547-59 .

131

CASTRO, J., KOLP, M. & MYLOPOULOS, J. (2002) Towards Requirements-Driven

Information Systems Engineering: The Tropos Project. In Information Systems,
Elsevier, Amsterdam, The Netherlands, , Volume 27, pp. 365-389.

CERVENKA, R., AND TRENANSKY, I. & CALISTI, M. (2005) Modeling Social Aspects

of Multiagent Systems. The AML Approach IN MULLER, J. P. & ZAMBONELLI,
F. (Eds.) The Fourth International Joint Conference on Autonomous Agents &
Multi Agent Systems (AAMAS 05). Workshop 7 : Agent –Oriented Software
Engineering (AOSE), Universiteit Utrecht, The Netherlands, pp. 85-96.

CERVENKA, R. & TRENCANSKY, I. (2004) Agent Modeling Language, Language
specification. Whitestein Technologies AG, Technical report, Version 0.9.

CERVENKA, R. & TRENCANSKY, I. (2007) Agent Modeling Language (AML): A
Comprehensive Approach to Modeling Multi Agent System, Basel, Birkhauser
and Informatica, Volume 29 pp. 391-400.

CERVENKA, R., TRENCANSKY, I., CALISTI, M. & GREENWOOD, D. (2005) AML
Agent Modeling Language . Towards Industry Grade Agent –Based Modeling. In
Odell, J., Giorgini, P., Muller, J. P. & (Eds.) Proceedings of Agent Oriented
Software Engineering V: 5th International Workshop, AOSE 2004,
New York, USA, Springer-Verlag, pp. 31-46.

CHEN, S.-C., LI, S.-T. & SHYU, M.-L. (2003) Model-Based System Development for
Asynchronous Distance Learning. International Journal of Distance Education
Technologies, Volume 1, pp. 39-54.

CHHETRI, M. B., PRICE, R., KRISHNASWAMY, S. & LOKE, S. W. (2006) Ontology-
Based Agent Mobility Modelling. Proceedings of the 39th Annual Hawaii
International Conference on System Sciences (HICSS'06), Hawaii, pp.45-54.

CHRISTIAN, F. (1989) A Probabilistic Approach to Distributed Clock Synchronization.
Distributed Computing Volume 3, pp 146-158.

CONWAY, J. H. & GUY, R. K. (1996) Choice Numbers. In the Book of Numbers, New
York, Springer-Verlag, , pp.266-267, 274, .

COULOURIS, G., DOLLIMORE, J. & KINDBERG, T. (2005) Distributed Systems,

Concepts and Design, Addison-Wesley Publishers.

CUBALESKA, B. & SCHNEIDER, M. (2002) Detecting DoS Attacks in Mobile Agent
Systems and using Trust Policies for their Prevention. In proceedings of the 6th
World Multiconference Systemics, Cybernetics and Informatics, Volume 4,
Orlando, USA, pp.177-184.

CUSTER, R. L., SCARCELLA, J. A. & STEWART, B. R. (1999) The modified Delphi
technique: A rotational modification. Journal of Vocational and Technical
Education, 15 (2), pp. 1-10.

CYPHERT, F. R. & GANT, W. L. (1971) The Delphi technique: A case study. Phi Delta

132

Kappan, 52, pp. 272-273.

CYSNEIROS, L. M., WERNECK, V. & YU, E. (2005) Evaluating Methodologies: A
Requirements Engineering Approach Through the Use of an Exemplar The
Journal of Computer Science and Technology, Special Issue on Software
Requirements Engineering, Volume 5(2), pp. 71-79 .

DALKEY, N. C. & HELMER, O. (1963) An experimental application of the Delphi method
to the use of experts. Management Science, 9(3), pp. 458-467.

DELBECQ, A. L., VAN DE VEN, A. H. & GUSTAFSON, D. H. (1975) Group techniques
for program planning, Glenview, IL: Scott, Foresman, and Co.

DELOACH, S. A. (2004) The MaSE Methodology. In Federico; Gleizes, M.-P. Z., Franco
(Eds.) In Methodologies and Software Engineering for Agent Systems, The
Agent-Oriented Software Engineering Handbook Series : Multiagent Systems,
Artificial Societies, and Simulated Organizations Kluwer Academic Publishing,
pp.35-46.

DELOACH, S. A. (2006) Multiagent Systems Engineering of Organization-based
Multiagent Systems. 4th International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS'05). LNCS Vol 3914,. St. Louis,
MO., Springer, pp.109-125.

DELOACH, S. A., WOOD, M. F. & SPARKMAN, C. H. (2001) Multiagent Systems
Enginering. The International Journal of Software Engineering and Knowledge
Engineering, Volume 11(3).

DEPKE , R., HECKEL , R. & KUESTER, J. M. (2001) Roles in Agent Oriented Modeling.
International Journal of Software Engineering and Knowledge Engineering, 11,
281-302.

DIGNUM, V., MEYER, J. J., DIGNUM, F. & WEIGAND, H. (2003) Formal Specification
of Interaction in Agent Societies. Formal Approaches to Agent-Based Systems
(FAABS), Lecture Notes in Artificial Intelligence, Springer-Verlag, Volume 2699.

DURKEE, D., BRANT, S., NEVIN, P., ODELL, A., WILLIAMS, G., MELOMEY, D.,
ROBERTS, H., IMAFIDON, C., PERRYMAN, R. & LOPES, A. (2009)
Implementing e-learning and Web 2.0 innovation: Didactical scenarios and
practical implications Industry and Higher Education Volume 23, Number 4, pp.
293-300.

EID, M., ARTAIL, H., KAYSSI, A. & CHEHAB, A. (2005) Trends in Mobile Agent
Applications. Journal of Research and Practice in Information Technology,
Volume 37 No.4, pp. 331-351.

ERRFMEYER, R. C., ERFFMEYER, E., LANE, I. M. & (1986) The Delphi Technique: An
Empirical Evaluation of the Optimal Number of Rounds Group & Organization
Studies, 11, pp.120-128.

FIPA http://www.fipa.org.

http://www.fipa.org/

133

FLETCHER, M. (2007) Evaluating the Prometheus methodology through a case study

on designing an agent-based holonic control system. International Journal of
Manufacturing Research, Volume 2, pp. 342 – 361.

FOGEL, D. B. (1995) Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence, Piscataway, NJ, IEEE Press.

FOSTER, I., KESSELMAN , C., NICK , J. & TUECKE, S. (2002) Grid Services for
Distributed System Integration Computer. IEEE, Volume 35, No.6, pp. 37-46.

FOX, G. (2003) Messaging Systems: Parallel Computing the Internet and the Grid.
Proceedings of 10th European Parallel Virtual Machine/Message Passing
Interface (PVM/MPI) User’s Group Meeting, LNCS 2840, Venice, Italy, pp.1-9.

FRANKLIN, S. & GRAESSER, A. (1996) Is It an Agent, or just a Program?: A Taxonomy
for Autonomous Agents Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages. Lecture Notes in Computer
Science 1193, Springer-Verlag, pp. 21-35.

FUKUTAKE, H., OKADA, Y., NIJIMA, K., & (2004) 3D Visual Component based voice
on input/output interfaces for interactive graphic applications. Proceedings
International Conference on Computer Games: Artificial Intelligence, Design and
Education (CGAIDE 2004), Microsoft Campus, Reading, UK, pp.216-220.

GALLI, D. L. (1999) Distributed Operating Systems: Concepts and Practice, Prentice
Hall.

GARCIA-OJEDI, J. C. & ARENAS, A. E. (2004) Extending the Gaia Methodology with
Agent UML. Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), New York, USA,
pp.1456-1457.

GARZETTI, M., GIOGINI, P., MYLOPOULOS, J. & SANNICOLÒ , F. (2002) Applying
Tropos Methodology to a real case study: Complexity and Criticality analysis.
Italian workshop on "Dagli OGGETTI agli AGENTI - Dall'informazione alla
Conoscenza (WOA02) , Milano, Italy, pp. 7-13.

GAVRILOVSKA, A., KUMAR, S., SUNDARAGOPALAN, S. & SCHWAN, K. (2005)
Platform Overlays: Enabling In-Network Stream Processing in Large-scale
Distributed Applications. In Proceedings of 15th International Workshop on
Network and Operating Systems Support for Digital Audio and Video, NOSSDAV
Communications of the ACM : Skamania, Washington, pp.171-176.

GINSBURG, L. (1998) Integrating Technology into Adult Learning. Technology, Basic
Skills, and Adult Education: Getting Ready and Moving Forward, Information

Series, pp37-46,.

GOLDBERG, D. E. (1989) Genetic Algorithm in Search, Optimization and Machine
Learning. Machine Learning New York Addison-Wesley.

134

GOLDBERG, D. E. & DEB, K. (1991) A Comparative Analysis of Selection Schemes
Used in Genetic Algorithms Foundation of Genetic Algorithms (FGA1), Volume 1
pp 69-93.

GRAY, R. S. (1995) Agent Tcl: A transportable agent system. Proceedings of the CIKM
Workshop on Intelligent Information Agents, Baltimore, USA, pp 42-48.

GREER, D. & RUHE, G. (2004) Software release planning: an evolutionary and iterative
approach. . Information and Software Technology Volume 46 Pages 243-253.

GRIMM, R., KRIMMER, R., MEIßNER, N., REINHARD, K., VOLKAMER, M., WEINAND,
M. & HELBACH, J. (2007) Security Requirements for Non-political Internet
Voting. IN proceedings of the 2nd International workshop on Electronic Voting.
Lecture Notes in Informatics 86 pp. 203-212.

GUSELLA, R. & ZATTI, S. (1989). The Accuracy of Clock Synchronization Achieved by
TEMPO in Berkeley UNIX 4.3BSD IEEE Transactions on Software Engineering,
Volume 15(7) pp.847-853.

GUSTAFSON, D. H., SHUKLA, R. K., DELBECQ, A. & WALSTER, G. W. (1973) A
comparison study of differences in subjective likelihood estimates made by
individuals, interacting groups, Delphi groups and nominal groups. Organizational
Behavior and Human Performance, 9(2), pp. 280 - 291.

GÜTL, C., PIVEC, M., TRUMMER, C., GARCÍA-BARRIOS, V. M., MÖDRITSCHER, F.,
PRIPFL, J., & UMGEHER, M. (2005) AdeLE (Adaptive e-Learning with Eye-
Tracking): Theoretical Background, System Architecture and Application
Scenarios. European Journal of Open, Distance and E-Learning (EURODL),
Issue 2005/II.

HAUPT, R. L. & HAUPT, S. E. (1998) Practical Genetic Algorithms, New York, NY, John
Wiley & Sons.

HEATON-SHRESTHA, C., EDIRINGHA, P., BURKE, L. & LINSEY, T. (2005) Introducing
a VLE into campus-based undergraduate teaching: Staff Perspectives on its
impact on teaching. International Journal of Educational Research Vol. 43, pp
670-386.

HENNING, M. (1998) Binding, Migration, and Scalability in CORBA. Communications of
the ACM, Volume 41, No.10, pp.62-71.

HERRIOTT , R. E. & FIRESTONE, W. A. (1983) Multisite Qualitative Policy Research:
Optimizing Description and Generalizability. Educational Research, 12 pp. 14–
19.

HOLLAND, J. (1975) Adaptation in Natural and Artificial Systems, The MIT Press.

HSU, C.-C. & SANDFORD, B. A. (2007) The Delphi Technique: Making Sense Of

Consensus Practical Assessment, Research & Evaluation, Volume 12, No.10,
pp.1-8.

135

HUANG, W., EL-DARZI, E. & JIN, L. (2007) Extending the Gaia Methodology for the
design and development of agent-based software systems. Proceedings of the
31st Annual IEEE International Computer Software and Applications Conference
(COMPSAC 2007), Peking (Beijing), China, pp. 159-165.

HUGET, M.-P. (2005) Modeling Languages for Multi-agent Systems. Proceedings of the
6th International Workshop on Agent-Oriented Software Engineering (AOSE-
2005) at AAMAS 2005., Volume 3950, Utrecht, The Netherlands, pp.16-27.

IEEE STD 830-198 (1984) IEEE Recommended Practice for software Requirements
Documentations Specification.

INTERNET POLICY INSTITUTE (2001) Report of the National Workshop on Internet
Voting. Maryland, University of Maryland, USA.

ISENSEE, S. & RUDD, J. (1966) The Art of Rapid Prototyping, International Thomson
Computer Press, London.

JACOBSON, I., BOOCH, G. & RUMBAUGH, J. (1998) The Unified Software
Development Process, Addison Wesley.

JANSEN, W. (2002) Intrusion Detection with Mobile Agents. Computer Communications,
Special Issue on Intrusion Detection Systems, Volume 25(15), pp.1392-1401.

JANSEN, W. & KARYGIANNIS, T. (1999) Mobile Agent Security, National Institute of
Standards and Technology (NIST) special publication 800-19.

JENNINGS, N. (2000) Building Complex Software Systems: The Case for an Agent-
Based Approach Communications of the ACM, Volume 44(4), pp.35-41.

JENNINGS, N. R & Wooldridge, M (2000) Agent-Oriented Software Engineering.
Proceedings of the 9th European Workshop on Modelling Autonomous Agents in
a Multi-Agent World : Multi-Agent System Engineering (MAAMAW-99), Lecture
Notes in Computer Science 1647 , Valencia, Spain, Springer, pp.1-7.

JENNINGS, N. R. (1999) Agent Oriented software Engineering. Proceedings of the 9th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World:
MultiAgent System Engineering, LNAI 1647, Valencia , Spain, pp.1-7.

JENNINGS, N. R. (2000) On Agent-Based Software Engineering Artificial Intelligence
Journal 117 (2), pp.277-296.

JENNINGS, N. R., SYCARA , K. & WOOLDRIDGE , M. (1998) A Roadmap of Agent
Research and Development. International Journal of Autonomous Agents and
Multi-Agent Systems Volume 1, pp. 7-38.

JUAN, T., PEARCE, A. & STERLING, L. (2002) ROADMAP: Extending the Gaia
Methodology for Complex Open Systems. In Proceedings of the first international
joint conference on Autonomous agents and Multi-agent systems (AAMAS2002),
 Bolognia, Italy, pp.3-10.

136

JUDD, R. C. (1972) Use of Delphi methods in higher education. Technological
Forecasting and Social Change, 4 (2), pp. 173-186.

KANG, M., WANG, L. & TAGUCHI, K. (2004) Modelling Mobile Agent applications in
UML 2.0 Activity Diagrams. Proceedings of 6th International Conference on
Enterprise Information Systems (ICEIS 2004), Porto, Portugal, pp.31-46.

KINNY, D., GEORGEFF, M. & RAO, R. (1993) A Methodology and Modelling Technique
for Systems BDI agents. IN VAN DE VELDE, W. & PERRAM, J. W. (Eds.) Agent
Breaking away : proceedings of the Seventh European Workshop and on
modelling autonomous agents in Multiagents world, LNAI1038. Berlin, Germany,
Springer-Verlag, pp.56-71.

KLEIN, C., RAUSCH, A., SIHLING, M. & WEN, M. (2001) Extension of the Unified
Modeling Language for Mobile Agents. IN HALPIN, K. S. A. T. (Ed.) In Unified
Modeling Language: Systems Analysis, Design and Development Issues, pp116-
128. Idea Group Publishing Book.

KOHN, R. (2005) Transparent Mobility in Mobile IPv6: An Experience Report. Journal of
Computer Science and Technology, Volume 5(4), pp.1-5.

KOSIUCZENKO, P. (2003) Sequence Diagrams for Mobility IN KROGSTIE, J. (Ed.)
Advanced Conceptual Modeling Techniques: ER 2002 Workshops, ECDM,
MobIMod, IWCMQ, and eCOMO, LNCS 2784,.Tampere, Finland, Springer,
Berlin, pp. 147-158.

KOTAY, K. & KOTZ, D. (1994) Transportable Agents. IN YANNIS LABROU AND TIM
FININ, E. (Ed.) Proceedings of the Third International Conference on Information
and Knowledge Management (CIKM), Workshop on Intelligent Information
Agents, Garthersburg, Maryland, Springer-Verlag New York, LLC, pp.447-455.

KREMER, R. (1998) Visual Languages for Knowledge Representation.In proceedings of
Eleventh Workshop on Knowledge Acquisition, Modeling and Management,
Alberta, Canada, pp.124-129.

KUHN, P. (2007) Closer view of Health. Advances for Health Information Executives.
Volume 11, pp 33.

LAMPORT, L. (1978) Time, Clock and Ordering of Events in Distributed Systems.
Communications of ACM Volume 21(7), pp.558-565.

LAMPORT, L. M.-S., P. M. (1985) Synchronizing Clocks in the Presence of Faults.
Journal of ACM Volume 32, pp.52-78.

LANGE, D. B., OSHIMA, M., G, K. & KOSAKA, K. (1997) Aglets: Programming Mobile
Agents in Java. IN MASUDA , T. (Ed.) Proceedings of Worldwide Computing and
Its Applications, (WWCA’97) Lecture Notes in Computer Sciences
1274,Tsukuba, Japan, Springer Verlag, pp.253-266.

LARRANAGA, P., KUIJPERS, C., MURGA, R., INZA, I. & DIZDAREVIC, S. (1999)

137

Genetic algorithms for the traveling salesman problem: A review of
representations and operators. Artificial Intelligence Review. 13, pp 129–170.

LEVESQUE, H. J. (1984) Foundations of a functional approach to knowledge
representation Artificial Intelligence Journal, Volume 23, pp. 155-212.

LIMA, C., SASTRY, K., GOLDBERG, D. E., LOBO, F. & (2005) Combining competent
crossover and mutation operators: A probabilistic model building approach.
Proceedings of the 2005 Genetic and Evolutionary Computation Conference.
New York, NY, USA.

LIMA, E. F. A., MACHADO, P. D. L., SAMPAIO, F. R. & FIGUEIREDO, J. C. A. (2004)
An approach to Modelling and Applying Mobile Agent Design Patterns. ACM
Software Engineering Notes, Volume 29, No.3, pp. 1-8.

LINSTONE, H. A. & TUROFF, M. (1975) The Delphi Method. Techniques and
Applications. , Addison-Wesley.

LOUKIL, A., HACHICHA, H. & GHEDIR, K. (2009) MA-UML: a conceptual approach for
mobile agents' modelling. International Journal of Computer Science and
Network Security, Volume 3(2-3), pp.277-305.

LUDWIG, B. (1997) Predicting the future: Have you considered using the Delphi
methodology?. Journal of Extension, 35 (5), pp. 1-4.

MALINS, J. & PIRIE, I. (2005) Developing a Virtual Learning Environment for Art and
Design: A Constructivist Approach. European Journal of Higher Arts Education,
European League of Institutes of the Arts.

MARQUES, P., SIMÕES, P., SILVA, L. M., BOAVIDA, F. & SILVA, J. G. (2000) Mobile
Agent Systems: From Technology to Applications. Proceedings of Conference on
Object-Oriented Programming Systems, Languages & Applications (OOPSLA
2000) Workshop on Experiences with Autonomous Mobile Objects and Agent
Based System. Minneapolis, USA.

MAUCO, M. V., RIESCO, D. & GEORGE, C. (2001) Using a scenario model to derive
the functions of a formal specification 8th Asia-Pacific Software Engineering
Conference (APSEC 2001), Macau, China, pp.329-332.

MELOMEY, D. (2006) Evaluating the Security of Mobile Agent Platforms. In proceedings
1st Annual Conference on Advances in Computing and Technology (ACT 2006.)
School of Computing and Technology. East London, United Kingdom, pp. 48-54.

MELOMEY, D. (2007) A Comparative Study on Modelling language in Agent Systems. .
23rd British Colloquium for Theoretical Computer Science. Report and abstracts:
Bulletin of the EATCS. Oxford University Number 92, pp. 165-186.

MELOMEY, D. (2008) Mobility Challenges in Online Application Development. 24th
British Colloquium for Theoretical Computer Science. Report and abstracts:
Bulletin of the EATCS, Number 95, pp. 262-263.

138

MELOMEY, D., IMAFIDON, C. & WILLIAMS, G. (2007) A Comparative Study of
Modelling Languages for Agent Systems. Systems and Information Science
Notes (SISN) Volume 1, pp. 207-212.

MELOMEY, D. & MOURATIDIS, H. (2006) Evaluating the Security of Mobile Agent
Platforms. Proceedings of Advances in Computing and Technology Conference
AC&T 2006). Crown Plaza, London, UK.

MELOMEY, D., MOURATIDIS, H. & IMAFIDON, C. (2007). An Evaluation Current
Approaches for Modelling Mobility of Agent. Proceedings of 2nd Annual
Conference on Advances in Computing and Technology (ACT’2007). London,
United Kingdom, pp. 71-78.

MELOMEY, D., WILLIAMS, G. & IMAFIDON, C. (2007) Mobility Requirements on Game
Platforms: An Agent Perspective. In proceedings of 11th International
Conference on Computer Games: AI, Animation, Mobile, Interactive Multimedia &
Serious Games. , University of La Rochelle, La Rochelle, France, pp. 162-167.

MELOMEY, D., WILLIAMS, G., IMAFIDON, C. & PERRYMAN, R. (2008) A Fitness
Function for Capturing Mobile Agent Mobility on Games Platform 12th
International Conference on Computer Games: AI, Animation, Mobile, Interactive
Multimedia & Serious Games. . Louisville, Kentucky, USA, pp.71-76.

MELOMEY, D., WILLIAMS, G., IMAFIDON, C. & PERRYMAN, R. (2008) Modelling
Mobile Agent Mobility in Virtual Learning Environment (VLE) using Fitness
function. In proceedings of International Conference on Student Mobility and ICT.
University of Maastricht, Maasstricht, Netherlands, pp. 159-165.

MILOJICIC, D., KOTZ, D., LANGE, D., PETRIE, C. & RYGAARD, C. (1999) Mobile
agent applications. IEEE Concurrency.

MOCKAPETRIS, P. & DUNLAP, K. (1988) Development of the Domain Name System.
Communications of ACM SIGCOM, pp. 123-133.

MONARCH, I. & WESSEL, J. (2005) Autonomy and Interoperability in System of
Systems Requirements Development. In the proceedings of 16th International
Symposium on Software Reliability Engineering (ISSRE 2005), IEEE Computer
Society 2005., USA.

MOURATIDIS, H., ODELL, J. & MANSON, G. (2002) Extending the Unified Modeling
Language to model Mobile Agents. Proceedings of the Agent Oriented
Methodologies Workshop (at the OOPSLA 2002), Seattle - USA.

MÜHLENBEIN, H., SCHOMISCH, D. & BORN, J. (1991) The Parallel Genetic Algorithm
as Function Optimizer. Parallel Computing, 17, pp. 619-632.

MURATA, T., ISHIBUCHI, H. & TANAKA , H. (1996) Multi-objective genetic algorithm
and its application to flowshop scheduling Computers and Industrial Engineering
30, pp. 957–968.

NEEMA, S., SZTIPANOVITS, J., KARSAI, G. & BUTTS, K. (2003) Constraint-

139

Based Design-Space Exploration and Model. Synthesis. Proceedings of Third
International Conference on Embedded Software (EMSOFT), Lecture Notes in
Computer Science (LNCS) 2855 Philadelphia, PA, USA.

OBJECT MANAGEMENT GROUP (2000) Persistence Object Service Stand-alone
document.

OBJECT MANAGEMENT GROUP'S (OMG) (2000) Mobile Agent Facility (MAF).

ODELL, J. (2002) Objects and Agents Compared. Journal of Object Technology,

Volume1, No.1, pp. 41-53.

ODELL, J., PARUNAK, H. & BAUER, B. (2000) Extending UML for Agents. Proceedings

of Agent-Oriented Information systems Workshop at the 17th National
Conference on Artificial Intelligence (AAAI-00). Austin, Texas, USA, pp.3-17.

OMICINI, A. (2001) SODA: Societies and Infrastructures in the Analysis and Design of
Agent-based Systems. Proceedings of the 1st International Workshop, AOSE
2000 on Agent-Oriented Software Engineering. Limerick, Ireland, pp. 185-193.

OVERMARS, M. (2004) Game Design in Education. Proceedings International
Conference on Computer Games: Artificial Intelligence, Design and Education (
CGAIDE 2004) Reading, UK, pp.193-200.

PADGHAM, L. & WINKOFF, M. (2002) Prometheus: A Methodology for Developing
Intelligent Agents. Proceedings of the Third International Workshop on Agent
Oriented Software Engineering, at AAMAS 2002, LNCS, Springer, Heidelberg,
vol. 2585, Bologna, Italy, pp. 174-185.

PADGHAM, L., WINKOFF, M. & POUTAKIDIS, D. (2005) Adding debugging support to
the Prometheus methodology Engineering Applications of Artificial Intelligence,
Agent-oriented Software Development, Volume 18, pp. 173-190.

PAJO, K. & WALLACE, C. (2001) Barriers to the uptake of web-based technology by

university teachers. Journal of Distance Education Volume 16, pp. 70-84.

PERINI, A., BRESCIANI, P., GIUNCHIGLIA, F. & MYLOPOULOS, J. (2002) Towards An
agent Oriented approach to Software Engineering. Technical Report DIT-02-
0015 University of Trento, Italy.

POGGI, A., RIMASSA, G., TURCI, P., ODELL, J., MOURATIDIS, H. & MANSON, G.
(2004) Modeling Deployment and Mobility in Multiagent Systems using AUML in
Agent Oriented Software Engineering IV. In Giorgini, P., Muller, J. P. & Odell, J.
(Eds.) Lecture Notes in Computer Science 2935. Springer-Verlag

POSTEL, J. & ANDERSON, C. (1994) White Pages Meeting Report.

QIU, L. & RIESBECK, C. (2008) An Incremental Model for Developing Educational

Critiquing Systems: Experiences with the Java Critiquer. Journal of Interactive
Learning Research, 19 pp. 119-145.

140

RAHWAN, I., JIAN, T. & STERLING, L. (2003) Integrating Social Modelling with Agent
Interaction through Goal Oriented Analysis. Computer Systems Science and
Engineering , special issue; Software Engineering for Multi agent systems.

RAO, B. R. (1995) Making the Most of Middleware. Data Communications International
Volume 24 pp. 89-96.

RASHID, A. & CHITCHYAN, R. (2003) Persistence as an Aspect. Proceedings of the
2nd International Conference on Aspect-Oriented Software Development Boston,
Massachusetts, pp. 120-129.

RASTRIGIN, L. & ERENSHTEYN, R. (1975) The Group of Algorithms. Proceedings of IV
International Joint Conference of Artificial Intelligence. Tbilisi, USSR, vol. 3 pp.
138-144.

RAY, S. S., BANDYOPADHYAY, S. & PAL, S. K. (2005) New operators of genetic
algorithms for traveling salesman problem: : Application to Microarray Gene
Ordering Berlin, Springer Berlin / Heidelberg.

ROACH, M. P. & STILES, M. J. (1998) COSE - A Virtual Learning Environment founded
on a Holistic Pedagogic Approach. CTI: Software for Engineering Education, No
14, pp.5-11.

ROBERSON, Q. M., COLLINS, C. J. & OREG, S. (2005) The effects of recruitment
message specificity on applicant attraction to organizations. Journal of Business
& Psychology, 19, pp. 319 - 340.

ROMAN, G.-C., PICCO, G. P. & MURPHY, A. L. (2000) Software Engineering for
Mobility: A Roadmap. IN FINKELSTEIN, A. (Ed.) In Proceedings of 22nd
International Conference on Software Engineering Future of Software
Engineering. Limerick, Ireland, ACM Press, pp. 241-258.

ROWE, G. & WRIGHT, G. (1999) The Delphi technique as a forecasting tool: Issues and
analysis. International Journal of Forecasting, 15(4), pp. 353 - 375.

ROYCE, W. (1970) Managing the Development of Large Software Systems.
Proceedings of IEEE Western Electronic Show and Convention (WesCon) Los
Angeles, USA, pp. 382-338.

SAMPSON, D., KARAGIANNIDIS, C., ANDREA, S. & FABRIZIO, C. (2002) Knowledge-
on-Demand in e-Learning and e-Working Settings. Educational Technology and
Society, Volume 5, No. 2.

SELF, A. L. & DELOACH, S. A. (2003) Designing and Specifying Mobility within the
Multiagent Systems Engineering Methodology. Special Track on Agents,
Interactions, Mobility, and Systems (AIMS) 18th ACM Symposium on Applied
Computing (SAC 2003). Melbourne, Florida, USA.

SHAN, L. & ZHU, H. (2004) CAMLE: A Caste-Centric Agent-Oriented Modelling
Language and Environment,. Proceedings of Software Engineering for Large-
Scale Multi-agent Systems — SELMAS'04 at 26th International Conference on

141

Software Engineering (ICSE'04), IEEE Computer Society 2004. Edinburgh, UK.

SIMATIC, M., CRAIPEAU, S., BEUGNARD, A., CHABIDON, S., LEGOUT, M.-C. &
GRESSIER, E. (2004) Technical and Usage issues for Multiplayer games.
Proceedings International Conference on Computer Games: Artificial
Intelligence, Design and Education (CGAIDE 2004) Reading, UK, pp. 134-138.

SMITH, D. C., CYPHER , A. & SPOHRER , J. (1994) KidSim: Programming Agents
Without a Programming Language. Communications of the ACM, 37, pp. 55-67.

SOMMERVILLE, I. (2001) Software Engineering Addison Wesley.

SPELLMAN, P. T., SHERLOCK, G., ZHANG, M. Q., IYER, V. R., ANDERS, K., EISEN,

M. B., BROWN, P. O., BOTSTEIN, D. & FUTCHER, B. (1998) Comprehensive
identification of cell cycle regulated genes of the yeast saccharomyces cerevisia
by microarray hybridization. Molecular Biology Cell 9.

SPENCE, D., CROWCROFT, J., HAND, S. & HARRIS, T. (2005) Location Based
Placement of Whole Distributed Systems. In the proceedings of the 2005 ACM
Conference on Emerging Network Experiment and Technology. Toulouse,
France, pp. 124-134.

STEINKE, S. (1995) Middleware Meets the Network. LAN: The Network Solutions
Magazine Volume 10 p. 56.

STILES, M. (2000) Developing Tacit and Codified Knowledge and Subject Culture within
a Virtual Learning Environment International Journal of Electrical Engineering
Education 37, pp 13-25.

STILES, M. & YORKE, J. (2007) Technology supported Learning? Tensions between
innovation, and control and organisational and professional cultures.
Organisational Transformation and Social Change, Volume 3.

SUN MICROSYSTEM, I. (2003) System Administration Guide: Naming and Directory
Services (DNS, NIS, LDAP). Sun Microsystem, Inc.

SUTANDIYO, W., CHHETRI, M. B., KRISHNASWAMY, S. & LOKE, S. W. (2004)
Experiences with Software Engineering of Mobile Agent Applications. In the
proceedings of the Australian Software Engineering Conference (ASWEC 2004).
Melbourne, Australia, pp. 339-348.

SZOLOVITS, P., DOYLE, J., LONG, W. J., KOHANE, I. & PAUKER, S. G. (1994)
Guardian Angel: Patient-Centred Health Information Systems. 545 Technology
Square, Cambridge, MA, 02139, TR-604, Massachusetts Institute of Technology,
Laboratory for Computer Science.

TAYLOR, R. E. & JUDD, L. L. (1989) Delphi method applied to tourism, New York,
Prentice Hall.

THORN, D., PALMER, I. & WILLIAMS, E. (2004) MMORG on Mobile Devices?
Considerations when designing distributed Adventure games. Proceedings

142

International Conference on Computer Games: Artificial Intelligence, Design and
Education (CGAIDE 2004) Reading, UK, pp. 150-154.

TÖRN, A. & ZILINSKAS, A. (1989) Global Optimization. Lecture Notes in Computer
Science, No 350, Springer-Verlag, Berlin, p.255.

TRENCANSKY, I., & CERVENKA, R. (2005) Agent Modeling Language (AML): A
Comprehensive Approach to Modeling MAS. Informatica (Slovenia), 29, pp. 391–
400.

TSAI, H. K., YANG, J. M. & KAO, C. Y. (2002) Applying genetic algorithms to finding the
optimal gene order in displaying the microarray data. In the proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), New York, pp
610-617.

VINOSKI, S. (1997) Integrating Diverse Applications Within Distributed heterogeneous
Environment. IEEE Communication Magazine, Volume 14,pp. 46-55.

VYAS, N. & WOODSIDE, A. G. (1984) An Inductive Model of Industrial Supplier Choice
Processes. Journal of Marketing volume 48 pp. 30–45.

WARE, J. M., WILSON, I. D. & WARE, J. A. (2003) A Knowledge-Based Genetic
Algorithm Approach to Cartographic Map Generalisation. Journal of Knowledge
Based Systems, Vol. 16/5-6, pp 295-303.

WAYNE, J. & KARYGIANNIS, T. (1999) Mobile Agent Security. National Institute of
Standards and Technology(NIST).

WEIB, G., FISCHER, F., NICKLES, M. & ROVATSOS, M. (2005) Operational Modelling
of Agent Autonomy: Theoretical Aspects and Formal Language. In the
proceedings of the Sixth International Workshop (AOSE-2005), AAMAS 2005,
pp1-15.

WEIB, G., FISCHER, F., NICKLES, M. & ROVATSOS, M. (2006) operational Modelling
of Agent Autonomy: Theorectical Aspects and Formal Language. Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 3950.

WHITE, J. E. (1994) Telescript Technology. The Foundation of the Electronic
Marketplace, General Magic White Paper.

WHITE, J. E. (1996) Mobile Agents, in Software Agent. IN BRADSHAW, J. (Ed.) In
Software Agents,. AAAI Press and MIT Press.

WILLIAMS, G. & JAHANKHANI, H. (2006) Authenticating E-learners and Virtual
Learning systems. IN HOANG NGUYEN, T. & PRESTON, D. S. (Eds.) At the
Reader/Probing the Boundary Series. Rodopi Series.

WILLIAMS, G. B. (2007) Online Business Security Systems, Springer.

WILSON, I. D., WARE, J. M. & WARE , J. A. (2003) A genetic algorithm approach to

cartographic map generalisation. Journal of Computers in Industry Volume 52, pp

143

291-304.

WOOD, M. & DELOACH, S. A. (2000) An Overview of the Multiagents Systems
Engineering Methodology. In the proceedings of the First International Workshop
(AOSE-2000). Berlin, Germany Springer-Verlag, pp.207-221.

WOOLDRIDGE, M. (1994) Coherent Social Action. In the proceedings of the Eleventh
European Conference and Artificial Intelligence (ECAI-94). Amsterdam, The
Netherlands, pp. 279-283.

WOOLDRIDGE, M., JENNINGS, N. & KINNY, D. (2000) The Gaia Methodology for
Agent Oriented Analysis and design. Journal of Autonomous Agents and Multi-
Agents Systems, Volume 3(3), pp. 285-312.

WRIGHT, T. (2004) Naming Services in Multi-Agent Systems: A Design for Agent-Based
White Pages. In Proceedings of Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS) New York, pp.1478-
1479.

YEO, A., ANANDA, A. & KOH, E. (1993) A Taxonomy of Issues in Name Systems
Design and Implementation Communications of ACM SIGOPS Operating
Systems Review, vol.27, pp.4-18.

YIN, R. K. (1994) Case Study Research: Design and Methods Thousand Oaks, CA
Sage Publications.

ZAMBONELLI, F. & JENNINGS, N. R &, Wooldridge, M. (2003) Developing Multiagent
Systems: The Gaia Methodology. ACM Transactions on Software Engineering
and Methodology, Volume 12, pp. 317–370.

ZENG, X., MEHDI, Q. H. & GOUGH, N. E. (2004) Implementation of VRML and Java for
Story Visualisation Tasks. In the proceedings International Conference on
Computer Games: Artificial Intelligence, Design and Education (CGAIDE 2004)
Reading, UK, pp.122-126.

ZHU, H. (2005) SLABS: A Formal Specification Language for Agent-Based Systems.
International Journal of Software Engineering and Knowledge Engineering, Vol.
11, pp. 529-558.

ZHU, H. & SHAN, L. (2005) Caste-Centric Modelling of Multi-Agent Systems: The
CAMLE Modelling Language and Automated Tools. Model-driven Software
Development, Research and Practice in Software Engineering Volume II, pp. 57-
89.

144

Appendix A - Auto-generated Codes

Auto-generated code for @mobilityRMI function
function mobilityRMIcreatefigure(X1, YMatrix1, yvector1)
%mobilityRMI CREATEFIGURE(X1,YMATRIX1,YVECTOR1)
% X1: vector of x data
% YMATRIX1: matrix of y data
% YVECTOR1: bar yvector

% Auto-generated by MATLAB on 23-Jun-2009 14:21:42

% Create figure
figure1 = figure('PaperSize',[20.98 29.68],'NumberTitle','off',...
 'Name','Genetic Algorithm');

% uicontrol currently does not support code generation, enter 'doc
uicontrol' for correct input syntax
% In order to generate code for uicontrol, you may use GUIDE. Enter
'doc guide' for more information

% uicontrol(...);

% Create subplot
subplot1 = subplot(2,1,1,'Parent',figure1,'Tag','gaplotbestf');
% Uncomment the following line to preserve the X-limits of the axes
% xlim([0 100]);
hold('all');

% Create xlabel
xlabel('Generation','Interpreter','none');

% Create ylabel
ylabel('Fitness value','Interpreter','none');

% Create multiple lines using matrix input to plot
plot1 =
plot(X1,YMatrix1,'Parent',subplot1,'Marker','.','LineStyle','none');
set(plot1(1),'Tag','gaplotbestf','DisplayName','Best fitness',...
 'Color',[0 0 0]);
set(plot1(2),'Tag','gaplotmean','Color',[0 0 1],...
 'DisplayName','Mean fitness');

% Create title
title('Best: 1.6362 Mean: 1.6625','Interpreter','none');

% Create subplot
subplot2 = subplot(2,1,2,'Parent',figure1,'Tag','gaplotbestindiv');
% Uncomment the following line to preserve the X-limits of the axes
% xlim([0 21]);
box('on');
hold('all');

% Create xlabel

145

xlabel('Number of variables (20)','Interpreter','none');

% Create ylabel
ylabel('Current best individual','Interpreter','none');

% Create title
title('Current Best Individual','Interpreter','none');

% Create bar
bar(yvector1,'EdgeColor','none','Tag','gaplotbestindiv','Parent',subplo
t2);

% Create legend
legend1 = legend(subplot1,'show');
set(legend1,'FontSize',8);

Auto-generated code for @mobilitysync function

function mobiliysyncstoppingoptioncreatefigure(yvector1)
%mobiliysync stopping optionCREATEFIGURE(YVECTOR1)
% YVECTOR1: bar yvector

% Auto-generated by MATLAB on 23-Jun-2009 14:44:58

% Create figure
figure1 = figure('PaperSize',[20.98 29.68],'NumberTitle','off',...
 'Name','Genetic Algorithm');

% uicontrol currently does not support code generation, enter 'doc
uicontrol' for correct input syntax
% In order to generate code for uicontrol, you may use GUIDE. Enter
'doc guide' for more information

% uicontrol(...);

% Create subplot
subplot(1,1,1,'Parent',figure1,'Tag','gaplotstopping',...
 'YTickLabel',{'Generation','Time','Stall (G)','Stall (T)'},...
 'YTick',[1 2 3 4],...
 'CLim',[1 2]);
% Uncomment the following line to preserve the X-limits of the axes
% xlim([0 100]);
box('on');
hold('all');

% Create xlabel
xlabel('% of criteria met','Interpreter','none');

146

% Create title
title('Stopping Criteria','Interpreter','none');

% Create bar
bar(yvector1,'Horizontal','on','Tag','gaplotstopping');

Auto-generated code for rastrigin’s function

function Rastriginsfcncreatefigure(X1, YMatrix1, yvector1)
%Rastrigin's function CREATEFIGURE(X1,YMATRIX1,YVECTOR1)
% X1: vector of x data
% YMATRIX1: matrix of y data
% YVECTOR1: bar yvector

% Auto-generated by MATLAB on 30-Jun-2009 18:13:23

% Create figure
figure1 = figure('PaperSize',[20.98 29.68],'NumberTitle','off',...
 'Name','Genetic Algorithm');

% uicontrol currently does not support code generation, enter 'doc
uicontrol' for correct input syntax
% In order to generate code for uicontrol, you may use GUIDE. Enter
'doc guide' for more information

% uicontrol(...);

% Create subplot
subplot1 = subplot(2,1,1,'Parent',figure1,'Tag','gaplotbestf');
% Uncomment the following line to preserve the X-limits of the axes
% xlim([0 100]);
hold('all');

% Create xlabel
xlabel('Generation','Interpreter','none');

% Create ylabel
ylabel('Fitness value','Interpreter','none');

% Create multiple lines using matrix input to plot
plot1 =
plot(X1,YMatrix1,'Parent',subplot1,'Marker','.','LineStyle','none');
set(plot1(1),'Tag','gaplotbestf','DisplayName','Best fitness',...
 'Color',[0 0 0]);
set(plot1(2),'Tag','gaplotmean','Color',[0 0 1],...
 'DisplayName','Mean fitness');

% Create title
title('Best: 7.9274 Mean: 8.7864','Interpreter','none');

% Create subplot

147

subplot2 = subplot(2,1,2,'Parent',figure1,'Tag','gaplotbestindiv');
% Uncomment the following line to preserve the X-limits of the axes
% xlim([0 21]);
box('on');
hold('all');

% Create xlabel
xlabel('Number of variables (20)','Interpreter','none');

% Create ylabel
ylabel('Current best individual','Interpreter','none');

% Create title
title('Current Best Individual','Interpreter','none');

% Create bar
bar(yvector1,'EdgeColor','none','Tag','gaplotbestindiv','Parent',subplo
t2);

% Create legend
legend1 = legend(subplot1,'show');
set(legend1,'FontSize',8);

148

Appendix B - Delphi Study

Expert Response 1

Issue 1
Do you follow any particular development lifecycle? (e.g. tradition method
of software development, Agile or other).

We tend to use Agile development practices where we can, especially on small
projects. When working on larger projects we are more constrained by ITil and
Prince Methodologies

 Issue 2
What qualities, in order of importance are critical for successful
development and implementation of online eHealth? (Qualities such as
synchronization, security, concurrency, resilience/persistency, remote
messaging, availability or others).

Security and Patient Confidentiality should always be the main concern for any
system used in Health.

Following this the main issues would be resilience/persistency, you need a
method of holding the data securely and can survive a power loss.
Losing any data would cause people to lose faith in the system and they would
revert back to the older proven methods Synchronization would also be a major
issue, I would not allow any system containing to pass patient identifiable
information to sync through any network that was not trust authorised, including
the 3G network.

 Issue 3
What are your preferences, if any, for methodology, modelling languages
and programming languages?

I prefer the RAD approach to development, it prevents feature creep, and
issues can be resolved much quicker using this approach which leads to
higher satisfaction.

For modelling we tend to use UML and use case diagrams and object
diagrams, I am also fond of Flow Diagrams to map out how certain events
will pan out Programming Languages - C#

 Issue 4
What development approach do you use (object oriented, agent oriented,
Mobile agent oriented or other)?

149

OO

Issue 5
Are there any unanswered questions in the development of for eHealth
aplications?

Issue 6
What can be done to improve existing mobile agent technologies/mobile
technologies and methodologies?

Mobile Technologies have come of age recently, Blackberry, Android and Apple
all produce devices that can lever power from multiple areas – GPS tracking to
keep staff members safe to integrated database to hold the information, my main
concern is battery life.

Expert Response 2

Issue 1
Do you follow any particular development lifecycle? (e.g. tradition method
of software development, Agile or other).

Some of the teams I work with follow an agile methodology largely based on
scrum with some customizations. The main adaption is the use of Lean
workflows and queue limits to try and keep a smooth pipeline of work flowing
through.

The other teams I work with use a colloquial version of traditional waterfall.

Issue 2
What qualities, in order of importance are critical for successful
development and implementation of online banking? (Qualities such as
synchronization, security, concurrency, resilience/persistency, remote
messaging, availability or others).

Security, availability and reliability are paramount because not only does the
online banking site have to do the right things it has to be *seen* to do the right
things. Reputational damage, fraud and the threat of regulatory sanctions far
outweigh other concerns.

Beyond that it is really the same set of qualities as any other ecommerce site -
usability, performance (including scalability) and - from the owner's viewpoint -
manageability.

150

Issue 3
What are your preferences, if any, for methodology, modelling languages
and programming languages?

Methodology: agile/lean variant
Modelling languages: very basic UML
Programming languages: java/C-sharp

Issue 4
What development approach do you use (object oriented, agent oriented,
mobile agent oriented or other)?

Largely object-oriented. Mobile variants are not used in my environment and I
struggle to see their applicability currently.

Issue 5
Are there any emerging issues in the development of online banking
applications?

This is not my area of speciality though I nderstand how these intelligent software
works. I work mostly on internal bank systems.

Issue 6
What can be done to improve existing mobile agent technologies/mobile
technologies and methodologies?

 I have little exposure to mobile agent methodologies or technologies.

Expert Response 3

Issue 1
In order of importance how would you rank the following non-functional
requirements; synchronisation, remote method invocation, availability and
migration, scalability?

In Chronological order.
1. Availability and migration
2. Scalability
3. remote method invocation
4. synchronisation

151

Issue 2
Is the methodology phases adaptable for online application such as on line
banking, ehealth, gaming and Virtual learning environments? Please see
figure 1 and comment?

Yes, to certain extend. However still I would go through manually to double
check.
The reason being the mobility can be made generic to certain extend and highly
doubt it can cater all the requirements as application can differ. If it’s guaranteed
as shown in the diagram then yes it can be.

Issue 3
In term of back end integration, can the development phases be integrated
with other systems?

Yes it can be, as long as the data layer is independent and cross server
supportive.

Issue 4
What are the critical functionality issues and challenges in programming
for mobility?

Coding methodology, Coding standard and programming cycle, Language
support and Integration.

Issue 5
List 3 main functions of agent software in online banking/ehealth?

1. Reduces the development time.
2. Cost effective.
3. Reduces the human error.

Issue 6a
How will you test the functions of a mobile agent?

By performing a small task of conversion process with small known application
and checking the functionality of the application on the new platform and running
the source application in parallel.

Issue 6b
What data is essential for testing a mobile agent?
Dependent applications, basic data, both environments and basic knowledge of
the test application.

152

Figure: Mobile Agent Mobility Methodology (MaMM) Phases

Expert Response 4

Issue 1

In order of importance how would you rank the following non-functional
requirements; synchronisation, remote method invocation, availability and
migration, scalability.

This is application dependent, however from emerging development
requirements. The following are essential non functional requirements.

Synchronisation, availability, invocation, migration, scalability.

Issue 2

Mobility Requirement

Mobility Analysis

Mobility Design

Mobility Implementation

Elicit Mobile Agent Requirements

Analyse Mobility Requirements

Categorise mobility requirements using Classification
model

Apply GA fitness functions for optimising the selected mobility

requirements

Implement Mobility Code on platform

Transform Mobility design specification into
mobile code

capture mobile agent migration, interactive events and communication
structure

Specify Design

153

Are the methodology phases adaptable for online application such as on
line banking, ehealth, gaming and Virtual learning environments? Please
see figure 1 and comment?

Yes. These environments require some aspects of mobility. We suggest that the
first phase of the methodology focuses on elicitation of mobility requirements
(Delete Agents and Mobile agents). It is also simpler to interpret the “Fitness
classification model” phase as the design phase. This means you will not need
“design” at the code transformation phase. Rather code the fitness functions and
process requirements. These suggestions will streamline the methodology. We
suggest you have guidelines for using the methodology.

Issue 3
In term of back end integration, can the development phases be integrated
with other systems?

To some extent yes and no, as it will be more flexible for systems that deliver
business needs that require mobility.

Issue 4
What are the critical functionality issues and challenges in programming
for mobility?
.
Synchronisation and language choice. The former is a major challenge for most
distributed platforms. The later is a question of language structure. For example
java technology copes better with agent based applications. It is also inefficient in
some instances, although mobility friendly.

Issue 5
List 3 main functions of agent software in online banking/ehealth?

Not a useful question in our opinion, as there are several functions. The obvious
ones are remote data access, message sharing with users of the platform.

Issue 6a
How will you test the functions of a mobile agent? Please explain your
answer.
No immediate view.

Issue 6b
What data is essential for testing mobility of a mobile agent?
Non structured data will be useful. This is data from different sources and formats
accessible remotely by the agent.

154

Figure 1: Mobile Agent Mobility Methodology (MaMM) Phases

Mobility Requirement

Mobility Analysis

Mobility Design

Mobility Implementation

Elicit Mobile Agent Requirements

Analyse Mobility Requirements

Categorise mobility requirements using Classification
model

Apply GA fitness functions for optimising the selected mobility

requirements

Implement Mobility Code on platform

Transform Mobility design specification into
mobile code

capture mobile agent migration, interactive events and communication
structure

Specify Design

155

Appendix C - Case study Interviews

Transcript 1
What do you look out for when developing online banking applications?
A system that is reliable,
Scalable that is adding components to the system thereby growing the system
User friendly
Maintenance
Do you consider functions like synchronisation and availability?
Synchronisation is relevant when it comes to database development. You want to
have a system that is available so that when something goes wrong or a system
fails you can recover.
This is achieved through replication. We replicate data across all the data centres
which located at different place.

What about message passing and method invocation?
We use client /server programming architecture. A thin client will make a call via
http to the server. The client will have the URL to launch the application and a
communication will be established between the client and the server backend for
downloadable java applets.

Do you use agent in your online banking application development?
No. not really.

What security processes do you have for developing online banking
applications?
We use encryption algorithms for communicating and passing messages
between the server and client. We also use SSL

How important is migration in online banking?

Data migration comes into place when we do implementation from one system to
another or from one version to the other. Sometimes third party software is used
in which case in house programmers write codes to adapt to the software to do
the job.

What processes are involved in ensuring that a data is available?
This depends on a lot of factors. We recommend that clients have a dedicated
digital line or channel that is reliable We use keep record of packet transmitted
and availability is ensured through packet headers lost packets are retransmitted,
more packets retransmission means there is a problem.

Do you have communication architecture for online banking?

Yes, it depends on what the application does, what you want to achieve.

156

We use tunnelling, SSL to ensure secure transmission between the two
applications.

What development process is being used by the development team?
Agile. Businesses do want application that takes longer time to develop as they
will loose business customers and more important the application will be of no
use as it will be outdated.
Agile enable codes to push on live environment to be tested and it encounter a
problem it will be rewritten push back for testing. agile allows the developer to
meet business requirement.

What are the processes involved in implementation?
· Receive codes from developers
· Run out through the UAT environment to test pieces of the code
· Mini data implementation
· Prepare live environment for implementation
· Prepare configuration file
· Prepare database environment
· Prepare back up environment to ensure you can recover in the event of
failure or when something goes wrong
· Move to release
· Upgrade different environment
· A test is run in the live environment to check if the system is useable
· Sign off

Thank you for your time.
This expert was contacted again with a draft of the MaMM phases for evaluation.
This was he said.
What is your opinion of the development phases of MaMM on the page?
Can you please comment?
This better methodology than the tradition methodology. Some of the activities
involve in migration will slow the process down which means that there will be
delay in implementation and inability for the application to be available to the
market.

Interview 2

Do you use mobile agents in the backend systems development? What role
if any does agent play in back end systems in the online banking
environment if any?

Intriguing questions indeed however I want to respond by saying that ;
 In the business I am in (Backend Fulfillment systems)we do not use mobile
agents while I do see a benefit to using them for online applications but solely for

157

the purpose of response/scalability within the existing architecture. Im not sure it
would be suitable for high volume data intensive processes.

On the backend, we don't use agents at all. Our processes are directed to
run on specific server banks and those Banks are load balanced to handle
volume. We also incorporate agent listeners based on passed input but again
they are not mobile.

Interview transcript 3

What functions are important for you when you developing backend
application?

It depends on the bank's usage, what the business community needs it for which
is our primary aim as a bank. We also incorporate security standards like
encryption. We perform some function in house and some functions are
performed offshore.

 Robust application. We perform function and non function requirement
assessment when we receive business requirement. The business analyst
develops technical requirements and gives it the applications development team
after which it goes through testing.

Tell me about performance?
it depends on the infrastructural back ups.

What methodology do you use in your applications development?
Agile. We have different relationship with third parties who does most of the
application development offshore which down to some specific application.

Interview 4

Tell me about the challenges in designing games in a large organisation
such as yours?
In a large organisation where you're building a platform and building a system,
there are lots of people involved.

How do you go about designing games for more than one person?
We have to define the multi-player experience, when two or more people play
against each other. We wanted people to experience the game as if they were
creating their own narrative, as compared to a single player when they're
experiencing a story you created for them.

158

When you listen to a group of people who just played a fun multiplayer game
together, it sounds as if they are telling the story of something they just did in
reality. Getting to that point in designing a game is challenging.

Interview 5

What functions are important in games design or development?

The most basic function or element is fun. Games are interactive.
They must challenge you, and reward you when you rise to the challenge.
In my view, the game begins the moment a person touches a console everything
builds from that.

Who is a games designer?
The second skill is being a good communicator because you have to keep
communicating with other people
on the team. But communication is not only about talking. A good communicator
is a good listener above all.
A game designer is at the hub of the development process. He doesn't make the
game, but he's the central link to everybody else: the coders, the graphic artists,
the sound designers, the scriptwriters and so on.

Are there any processes involved in games development?

I'm giving you a generic answer, because once again, it's on a case by case
basis. First you work on the content to outline the main points of the game, key
game mechanism, the theme, what we want the player to experience and so on.

Once this is done, the next step is to do a design document. It starts from the
concept and elaborates. It defines all game play mechanisms, interface system
and so on. It also described the main building blocks of the game.

For example if this was a combat game, we would describe all the fighters, how
they looked and what they did. We would also define the art style, which is very
important. The goal of this document is to be able to budget the game. Here, you
get an idea of what you have to do.

How many 3D designs, how many animations, backgrounds and so on. It is also
used by the coders to see what they have to code and where the challenges lie
ahead. It is also used to sell the project to a publisher, since most of the time, a
publisher will not buy a game on a simple concept.

159

Anyone can put out a concept, but once again, implementation is the key to
success. It reassures them that the developer has apprehended the difficulties
and knows how much it's going to cost.

To give you an idea, the first document is usually around 15 pages, the design
document is around 150 pages and the third document, called the production
document, takes up where the design document left off. You specify everything in
detail.

Once again, this is in theory, it doesn't always work like that. In some cases the
design document is very small so the publisher can test out ideas, and the
production document is built up as we go.

What type of programming language do you use in the games
programming?

Good question, You have to learn C++ because it teaches you a way of looking
at things.
Already just the notion of Objects.... You have object in the program and objects
in the games.
On the other hand, the heaviness of C++ - that it is easily portable and everyone
can recover your sources - is really the inverse. If you really want to master your
code, you have to learn C. Start with C++, then code in C.

How important is iteration and modularity in game design?

An iterative design is more vital for any product that has to incorporate new or
untried features. It will let you fit the design to those deadlines. If development is
slipping, you may have to trim some features (or even drop them entirely), but
the modularity inherent in the design allows you to use iteration while still keeping
control.

What other feature(s) indicate a good game design?

As the game is built, if changes need to be made, the core vision keeps them
focused on the final goal.
 It ensures that the game features serve a common thematic purpose. For
example, if you intend to make a strategy game that assists the player to plan
attacks easily, you might think twice about a multilayered interface that, although
original, militates against the core vision of ease-of-use.
Most computer games today use high interactivity, as the player has a strongly
proactive role.
The story should unfold directly from what the player sees and does, because the
player’s expectations are that his role is proactive, which means he will be
impatient if forced to sit back and be told a story.

160

Persistence—You can get engrossed for hundreds of hours, experiencing the
ultimate in escapist entertainment.
Multiplay—Entertainment software empowers groups of people with the ability to
create a mutual narrative.

The inhabitants of the game world can have their own independent existence.
Autonomy—The true payoff of interactivity is that the user can make the product
deliver what he wants.

Interview 6

How do you customise a VLE to suit the requirement of your institution?
VLE could be customised for different solutions or environments. This included
upgrading to a later version, adding and customising the user interface, creating
graphics, testing and installing extra modules especially some for administration
purpose.

Tell me about the processes involved from a developer/designer point of
view to integrate VLE in the university’s environment?

It is expected that a VLE will be capable of delivering multimedia course
materials via a conventional web browser and its associated plug-ins. Other
architectures are not excluded provided they offer similar functionality, but they
will be unlikely to conform to IMS Content specifications.
our VLE operate in client-server mode and the facilities offered are available from
a range of Web browsers on PCs, Apple Macs and Unix-based workstations
(including Linux on PCs), although support for offline working may require a client
side VLE that can communicate and synchronise with the server based VLE.
The server software must run on either Unix or Windows NT Server.

161

Appendix D -Published Papers/ Journal Articles

1. Melomey. D. and Mouratidis, H. (2006). ‘Evaluating the Security of Mobile
Agent Platforms’. In Proceedings 1st Annual Conference on Advances in
Computing and Technology (ACT’2006) (London, United Kingdom, 24th
January), pp. 48 -54.

2. Melomey. D., &Mouratidis, H. and C. Imafidon (2007). ‘An Evaluating the
Security of Current Approaches for Modelling Mobility of Agent’. In
Proceedings 2nd Annual Conference on Advances in Computing and Technology
(ACT’2007),London, United Kingdom, 24th January, pp. 71-78.

3. Melomey D., & C. Imafidon and G. Williams(2007). ‘A Comparative Study of
Modelling Languages for Agent Systems’. Systems and Information Science
Notes (SISN) volume No. 2 July 2007, pp 207-212.

4. Melomey D., & G. Williams and C. Imafidon (2007). ‘Mobility Requirements on
Game Platforms: An agent perspective’. In proceedings of 11th International
Conference on Computer Games: AI, Animation, Mobile, Educational & Serious
Games. 21st-23rd November , Université de La Rochelle, France (Jul), pp 162-
167.

5. Melomey D., & G. Williams , C. Imafidon and R. Perryman (2008). ‘A Fitness
Function for Capturing Mobile Agent Mobility on Game Platforms’”. In
proceedings of 12th International Conference on Computer Games: AI,
Animation, Mobile, Educational & Serious Games. 30thJuly-2nd August, Galt
House Hotel, Louisville, Kentucky, USA.

6. Melomey D., & G. Williams , C. Imafidon and R. Perryman (2008). ‘Modelling
Mobile Agent Mobility in Virtual Learning Environment (VLE) using Fitness
function’. In proceedings of International Conference on Student Mobility and
ICT. 19-20 November 2008, pp 159-165.University of Maastricht, Maasstricht,
Netherlands.

162

7. Melomey D. (2008). ‘Mobility Challenges in Online Application
Development’. In 23rd British Colloquium for Theoretical Computer Science.
2008 - BCTCS24 - Durham University, 7-10 April 2008. Report and abstracts:
Bulletin of the EATCS, Number 95, pp262-263, June 2008, An invited talk.

8. Durkee D., Brant S., Nevin P., Odell A., Williams G, Melomey D., Imafidon C.,
Perryman R. & Lopes A (2009). ‘Implementing e-learning and Web 2.0
innovation: Didactical scenarios and practical implications’. Industry and
Higher Education, Volume 23, Number 4, pp. 293-300.

Evaluating the Security of Mobile Agent Platforms

Divina Melomey, Haralambos Mouratidis
Innovative Informatics Group, School of Computing and Technology, University of East

London, U.K.

 dmelomey@yahoo.com, haris@uel.ac.uk

Abstract: Mobile agents are software entities that can migrate autonomously throughout a

network from host to host. This means they are not bounded to the platform they begin

execution. This feature of agents makes them a very attractive technology, and in fact it has

been argued many times in the literature that mobile agents help to reduce network traffic and

perform tasks more efficient. However, security issues have not yet been fully investigated

and in fact, mobile agent platforms sometimes they neglect the security issues involved with

agent mobility. This paper presents a security related evaluation of 8 main mobile agent

platforms.

1. Introduction
Developing complex computerised

systems has proved to be a difficult task.

Actually, it has been argued that developing

software for domains like

telecommunications represents one of the

most complex tasks humans undertake.

Agent technology introduces an

alternative approach in developing complex

computerised systems. According to this, a

complex computerised system is viewed as a

multi-agent system in which autonomous

software agents (subsystems) interact with

each other in order to satisfy their design

objectives. Such approach provides

designers with more flexibility in their

development. The actual design of the

system takes place by specifying a multi-

agent system as a society, similar to a

human society, consisting of entities that

possess characteristics similar to humans

such as mobility, and intelligence with the

capability of communicating.

The concept of a software agent,

however, is not uniquely defined.

Researchers have given definitions of the

concept according to some typical

characteristics, some operational

characteristics or some cognitive functions

that agents should implement.

One of the most promising features of

software agents is mobility. Mobile agents

are software entities that can migrate

autonomously throughout a network from

host to host. This means they are not

bounded to the platform they begin

execution. However, this feature of agents

although makes them a very attractive

technology, it also makes the development

of platforms (known also as frameworks and

environments) that will support mobile

agent systems very challenging. One of the

main challenges is to develop platforms

which will allow a secure migration of

mobile agents. Many issues are involved,

with respect to security, such as securing the

mobile agent from a malicious platform,

security the platform from malicious agents

and so on.

Although, many different platforms have

been proposed by researchers, we believe

that security, unlike some other non

functional requirements such as

performance, has not really thought of

during the development of these platforms.

This paper indicates the results of an

evaluation, with respect to security, of 8

major agent platforms. Our findings justify

the above claim regarding the lack of

adequate security mechanisms of these

platforms. Section 2 presents a brief

introduction to mobile agent migration,

whereas Section 3 discusses the security

implication of mobile agent systems. Section

4 discusses the evaluation and section 5

concludes the paper and presents ideas for

future work.

2. MOBILE AGENT

MIGRATION
A mobile agent is made up of code and state

information, which is needed to perform

some form of computation [8]. Therefore,

for a mobile agent to execute, an agent

platform is required, which is made up of

the computational environment.

A mobile agent is characterized by its ability

to migrate, during execution, from one host

to another as well as between different

platforms; even these are running in the

same host (see Figure 1 for a partial

graphical representation).

Figure 1: A mobile agent system [8]

A mobile agent either performs a hop or a

multi-hop. A hop is defined as the

movement of an agent from its home

platform to another platform. Similarly, a

mobile agent is said to multi-hop when it

hops through various platforms.

3. SECURITY

IMPLICATIONS IN

MOBILE AGENT SYSTEMS
Security threats in mobile agent systems can

be categorised into four main categories [8]:

(a) Agent to agent attack, when a malicious

agent attacks another agent; (b) Agent to

platform, when an agent attacks a platform;

(c) Platform to an agent, when a platform

launches an attack on an agent; (d) External

to an agent, when other (non agent) entities

attack an agent.

3.1 Agent to agent

This is usually in the form of (i)

masquerade, in which one agent assumes

the identity of another to deceive an

unsuspecting agent and gain access to

sensitive information; (ii) denial of services

to another agent, which is usually in the

form of spam messages sent repeatedly to an

agent in order to consume its resources; (iii)

unauthorized access, where an agent

interferes directly with another agent by the

invocation of its public methods if the

agent’s home platform has no control

mechanism in place; (iv) repudiation, which

occurs when an agent denies participation on

a transaction; (v) eavesdropping, where an

agent can gain access to information about

other agents’ activities, by using services

provided by the platform.

3.2 Agent to Platform

This is usually in the form of (i) masquerade

where an agent tries to gain access on a

platform by assuming the identity of another

agent; (ii) Denial of Service, in which an

agent disallows access to services on the

agent’s platform;(iii) unauthorized access, in

which an agent gains unauthorised access to

a platform and is capable of causing harm to

that platform.

Home

platform
Agent Agent platfor

m

Network

Agent

Platform

3.3 Platform to an agent

This is usually in the following forms: (i)

masquerade, where a platform can assume

the identity of another platform in an

attempt to deceive another agent with

regards to an intended destination as well as

its security policy; (ii) denial of service,

where a platform ignores service request or

may terminate request without notification;

(iii) eavesdropping, when confidential and

sensitive information is monitored and

interpreted by agent platform; (iv) alteration,

when an agent arrives at the platform and

exposes its code, state and data to the

platform. A malicious platform will attempt

to modify the code, state and data of the

visiting agent unknowingly to the agent.

This alters the integrity of the agent.

3.4 Other to agent

This occurs in the following ways: (i)

masquerade, where an agent makes a request

from a platform either remotely or locally.

An agent or a remote platform can assume

the identity of another to get unauthorized

access to resources to which it is not entitled

to; (ii) denial of Service, where an entity can

access agent platforms server either

remotely or locally where an agent with

malicious intent can interfere with services

that are offered by the platform and inter-

platform communication; (iii) unauthorised

access ; If remote access to the platform is

not properly secured or protected, entities

can get access easily and free through

scripts available on the internet that can be

used to subvert operating system in order to

gain control of all systems resources; (iv)

Copy and replay; when a mobile agent

migrate from one host to the other, it

exposes itself to security threat, the message

it is migrating with can be intercepted and

replay or clone for retransmission [8].

Figure 2 provides a summary of threat per

each category.

Threats

A
g
en
t
to

A
g
en
t

A
g
en
t
to

P
la
tf
o
rm

P
la
tf
o
rm

to
 A
g
en
t

O
th
er

E
n
ti
ti
es
 t
o

A
g
en
t

Masquerade

X

X

X

X

Denial of

Service

X

X

X

X

Unauthorized

access

X

X

X

Eavesdropping

X

X

Alteration X

Figure 2: Threats per category

 3.5 Security requirements
In general, mobile agent systems have the

same requirements as general computer

systems. These requirements as suggested in

[8] are:

1. Confidentiality; any data that is

stored privately on a platform or

carried by an agent should remain

confidential. Intra platform and inter

platform communication must also

remain confidential and must be

ensured by agent framework,

2. Integrity; ensuring that there is no

unauthorized modification of the

agent framework.

3. Availability; Data and services to

both local and remote agents must be

made available by the agent

platform. Data that is shared must be

available in a form that can be used

as well as capacity to handle

availability of large volumes of

request by visiting platform and

remote agent.

4. Anonymity; that there should be a

balance between the needs of an

agent for privacy with the needs of

an agent for platform to hold an

agent accountable for their actions.

5. Accountability; .all actions must be

accountable for by the agent i.e. all

processes, operations, meetings of an

agent on any given platform.

Accountability is necessary for

building trust among agent platforms

and agent. Audit logs are invaluable

source for platform recovery of

security breach.

4. Platform Evaluation

Literature provides a wide range of available

agent platforms [4, 6, 8, 13]. For the purpose

of our evaluation we have identified some of

these platforms, which we think are the most

appropriate for our research. The selection

was based on the following criteria:

• It supports mobility. A basic

requirement for any mobile agent

infrastructure is its ability to migrate

autonomously from one computer or

host computer to the other. First,

agent should be able to migrate with

its entire codes as it goes along and

be able to run on any server.

Secondly, some servers only require

a pre installation of agents’ code;

such servers do not need transfer of

codes to resume execution. Lastly,

with some servers, no code is carried

by the agent but rather contains a

reference to its code base.

• It should be free to use and active.

All platforms chosen for this

evaluation are available for free

download. Moreover, the project is

still active meaning the platform is

supported either by the developers or

from a user group.

• It is written in a language that is

widely known with preference to

java and scripting language. All the

platforms for this evaluation are

written in java except for Telescript

which uses the scripting language

but it compatible with java platforms

and also widely known.

Following the above criteria, we have

identified the following platforms for our

evaluation: Ajanta, Aglet, Voyager,

Concordia, Telescript, Agent Tcl, Tacoma,

and JADE.

4.1 Criteria for assessment
Criteria for performing evaluation of the

selected platforms have been developed

based on the security countermeasures and

requirement of mobile agent platforms. In

total, forty-one criteria were identified.

However, due to lack of space we focus on

six of them1.

Criterion 1: Audit Log for the platform

should trace agent falsely repudiating an

action.

Criterion 2: Safe code interpreter should

evaluate all codes.

Criterion 3: Agents should be held

accountable for their action by using audit

trails

Criterion 4: The agents function should be

encrypted.

Criterion 5: support of fault tolerance

mechanisms.

Criterion 6: Support for authentication and

access lists when authorised agents join a

transaction

The following table indicates the evaluation

of the platforms with relation to the above

criteria.

1 2 3 4

NOT

SUPPORTED

POORLY

SUPPORTED

ADEQUATELY

SUPPORTED

FULLY

SUPPORTED

1
 Please refer to [15] for the complete list of criteria

PLATFORMS CRITERION

1 2 3 4 5 6 7 8

Criterion 1 1 1 1 1 1 1 1 1

Criterion 2 4 4 1 1 1 1 1 4

Criterion 3 3 1 3 3 1 3 3 3

Criterion 4 4 4 1 2 4 1 1 2

Criterion 5 4 1 4 4 1 4 1 4

Criterion 6 3 1 3 4 4 1 3 4

Key

Platform 1 AJANTA

Platform 2 AGENT TCL

Platform 3 VOYAGER

Platform 4 CONCORDIA

Platform 5 TELESCRIPT

Platform 6 TACOMA

Platform 7 AGLETS

Platform 8 JADE

Table 1: The evaluation

4.2 Discussion about the evaluation

Criterion 1: All platforms except Agent Tcl

and Telescript provide adequate support.

JADE provides full support, mainly because

it is based on FIPA specification. Under

FIPA 98 specification, an automated

mechanism is used to record platform

activities in an audit log which is protected.

This takes place in order to maintain

accountability at platform level, especially

with regards to repudiation.

Criterion 2: Fully supported by Ajanta,

Agent Tcl and JADE. Ajanta provides (or

loads) code on demand from a specified

agent server. Moreover, agents execute a

protected domain that is isolated, in order to

prevent agent interference. The function of

the safe code interpreter is to execute

commands requiring access to system

resources. JADE, Aglet, Voyager and

Comcordia use byte code for verification,

whereas Agent Tcl uses safe code and

Tacoma uses firewalls.

Criterion 3: Adequately supported by

Ajanta, Voyager, Concordia, Tacoma, Aglet

and JADE. Ajanta’s full support is based on

the fact that the audit trail should indicate

the host identity and that f the next (host) as

well as its (agent) intended destination.

Concordia, Aglets and JADE check if the

previous host is a trusted one, whereas

Ajanta does this poorly [12].

Criterion 4: With encrypted functions, the

host must have full control over the mobile

code by encrypting it using some agreed

conversation algorithms. Ajanta and

Telescript fully support this, whereas

Concordia provides adequate support.

Criterion 5: To avoid tampering and ensure

that a code reaches its destination, a Fault

Tolerance Mechanism is used. This

mechanism when in place helps to achieve

replication and voting. Voyager, Tacoma

and Concordia fully support this feature,

whereas JADE provides adequate support.

If an exception is encountered that it cannot

be handled, the system’s server can take

appropriate actions to assist that specific

application to recover. Moreover, it should

be able to determine the cause of the crash.

For this reason, Ajanta supports itinerary

abstraction.

Criterion 6: Fully supported by Ajanta and

adequately supported by Agent Tcl,

Concordia and JADE. JADE achieves this

on its runtime environment by enforcing the

use of authentication and access lists when

joining a transaction. On the other hand,

Agent Tcl uses safe Tcl in enforcing access

restriction based on its authenticated

identity.

The results of the evaluation were analysed

graphically and tabulated. Although more

than one platforms demonstrated adequate

support for most of the evaluation criteria,

our analysis of the evaluation demonstrated

that JADE offers the best support for

security amongst all the platforms, followed

closely by Aglets and Agent Tcl. Figure 3

illustrates a comparison of the different

platforms against the full set of forty-one

criteria.

All Platforms

0

1

2

3

4

5

1 5 9 13 17 21 25 29 33 37 41

Criteria

P
ro

te
c

ti
o

n
 S

c
o

re AJANTA

AGENT TCL

VOYAGER

CONCORDIA

TELESCRIPT

TACOMA

AGLETS

JADE

Figure 7: The comparison

5. CONCLUSIONS
Security threats to mobile agents have been

explored in this paper. A list of evaluation

criteria were illustrated together with an

evaluation of 8 main mobile agent platforms

against those criteria. The presented set of

criteria was derived by considering general

security requirement of networked systems

as well as special implications of mobile

agent systems. The chosen platforms went

through the evaluation process and the

values assigned were justified on the basis

of their ability to meet the requirement in the

following order; not supported, poorly

supported, adequately supported and fully

supported.

Our work is not complete. Future work

involves expanding our evaluation criteria

to include more specialised criteria, and the

development of more experiments in order

to validate from an implementation point of

view our results.

5. References:

[1] Bellifemine F., Giovanni Caire, Tiziana Trucco,

Giovanni Rimassa, “JADE Administrator’s Guide”,

February 2003

[2] Burbeck K., Garpe D., Nadjm-Tehrani S.,

“Scale-up and Performance Studies of Three Agent

Platforms” Proceedings of International

Performance, Communication and Computing

Conference, Middleware Performance workshop,

(Phoenix, Arizona, USA), pp.857-863, Apr. 2004

[3] Dancus Andrei, “JADE- A FIPA compliant Java

Agent Development Framework” Worcester

Polytechnic Institute, Spring 2002

[4] Ferguson,Tracy(2004), “Mobile Agents and E-

Commerce”, CPSC 820 Final Report, Clemson

University, Computer Science Department, April

2004

 [5] FIPA Agent Management Specification,

2004/18/03

 [6] Fischmeister S., Vigna G. & Kemmerer R.A.

“Evaluating the Security Of Three Java-Based

Mobile Agent Systems” Proceedings of the

International Conference on Mobile Agents (MA

2001) 31-41 LNCS 2240, Springer-Verlag Atlanta,

GA, December 2001

 [7]Helmer Guy, Johnny S.K. Wong, Vasant

Honavar, Les Miller, Yanxin Wang. “Lights agent

for Intrusion Detection” The Journal of Systems and

Software 67, pp 109-122, 2003

 [8] Jansen, Wayne & Karygiannis, Tom “Mobile

Agent Security, National Institute of Standards and

Technology (NIST) special publication 800-19,

October, 1999

 [9] Kadhi N., Boury P., “Statistic Analysis of Java

Cryptography Applets”. In proceeding of

ECOOP2001 (Budapest) Workshop on java Formal

Verification, 2001

 [10] Kapse,Padma “ Security in Mobile Agents”,

CSE Security Research Group or Secure Systems

Research Group, 2003

[11] Karnik N, Vora M, Ahmed T., & Singh R.

“Mobile Agent Programming in Ajanta”

Proceedings of the 19th IEEE International

Conference on Distributed Computing Systems,

Austin, Texas, May 1999, pp. 190-197

[12] Karnik N and Tripathi ”design Issues in Mobile

Programming Systems 2, IEEE Concurrency 1092-

3063, 1998

 [13] Shiao, Dan (2004), “Mobile Agent: New

Model of Intelligent Distributed Computing “, IBM,

China, October 2004.

[14] Wheeler Thomas, “Voyager Architecture Best

Practices” Recursion software Inc, March 2005

[15] Melomey, Divina, “Security of Mobile Agent

Platforms”, MSc Thesis, University of East London,

2005

.

An Evaluation of Current Approaches for Modelling Mobility of Agents

Divina Melomey, Haralambos Mouratidis, Chris Imafidon
Innovative Informatics Group

School of Computing and Technology, University of East London, U.K.
{divina, haris , chris12}@uel.ac.uk

Abstract
The development of agent-based systems requires methodologies and modelling languages that are
based on agent related concepts. Towards this direction, research has proposed a large number of
Agent Oriented Software Engineering (AOSE) approaches to modelling mobility of agents. This
paper will evaluate the current approaches and methodologies with respect to modelling mobile agent
systems and it will propose a number of concepts required to adequately model agent mobility.

1. Introduction.

An agent is a computer program that
demonstrates characteristics such as social
ability, reactivity, pro-activeness, and
autonomy (Wooldridge and Jennings
1995).Mobile agents are special types of
agents that possess all the characteristics of
an agent but they also demonstrate the
ability to move or migrate from one node of
a network to another. Mobile agents
(Milojicic et al., 1999) (Jansen and
Karygianni,1999) have received
considerable attention from industry and
research community, since their special
characteristics help to address network
issues such as network overload, network
latency, and protocol encapsulation, just to
name a few .
Due to the popularity of the agent
technology, mainly in the research
environment, there has been an influx of
software engineering methodologies for the
development of multi-agent systems (i.e.
systems that consist of more than one agent).
Current approaches model static agents and
little or no attention has been given to the
modelling of mobile agents. Nevertheless,
for mobile agent systems to become widely
acceptable there is a need for a methodology

to be developed which addresses various
issues related to the mobility of agents. For
instance, methodologies should assist
developers to determine at the onset which
agents should remain stationary and which
needs to migrate on the network and hence
how these could be modelled.
This paper provides an overview of current
approaches and modelling languages for
modelling multi-agent systems, and their
limitations with respect to mobile agent
systems modelling. It proposes a set of
concepts and a modelling language
necessary for modelling mobile agent
systems.
The layout of the paper is as follows; section
1 provides an introduction to agent
technology while section 2 presents the state
of the art and limitations (with respect to
agent mobility) of existing approaches and
modelling languages. Section 3 presents the
concepts to model mobility of mobile agents
while section 5 concludes the paper and also
presents future works.

2. State of the art and Limitations of
existing approaches and modelling
languages:

A number of approaches and modelling
languages have evolved since the emergence
of agent technology. Notably among
approaches for modelling agent systems that
have emerged are Gaia (Wooldridge et al.,
2003), MESSAGE (Caire et el., 2000),
TROPOS (Bresciani et al., 2003) and Multi
Agent Systems Engineering (MASE) (Self
& DeLoach, 2003), Prometheus(Padgham
and Winkoff, 2002). Some of the approaches
mentioned above mostly concentrated on
design issues such as modelling static
mobility. Few attempts were also made at
modelling the dynamics of mobility of the
agents. There are inadequate concepts to
specifically model mobility of mobile
agents.

Chhetri et al. (2006) developed ontology
that describe concepts, and the relationships
that exist between them to model mobility
issues. The core concepts defined does not
include a continuous link that depicts
mobility among different components or
interactive agents, which presumes the
survival of mobile agents. Their ontology
did not implicitly define what agent and
mobile agent are but presume an agent
becomes a mobile agent when it is assigned
a role and also see mobility as attribute. This
therefore implies that a designer cannot
reason about mobility during the
requirement phase of systems development.
Their ontology did not specify security to
mobile agent.

2.1 Overview of Current Approaches

There are other approaches to model
mobility of agent. These approaches do not
form a complete methodology on their own,
but they stem from the component, elements
and diagrams of the Unified Modelling
Language (UML).UML provides unification
and formalization for methods of numerous

approaches to the object oriented software
systems lifecycle while Agent UML provide
same functionality but for agent oriented
systems. An approach such as Gaia was not
built on UML. Agent Modeling Language(
AML) is also another modelling language
specified as an extension to UML 2.0(
Cevenka et al.,2005) (Cevenka et al.,2005b)
(Cevenka and Trencansky,2004). Some
approaches such as Gaia did not use UML at
all.

2.1 Gaia Methodology

The Gaia methodology (Juan et al., 2002)
focuses on analysis and design of agent
based system. It provides analyst tools to
develop a system from the systems
requirement to detailed design which allows
for direct implementation of the system
(Wooldridge et al., 2000). Gaia models a
complex system using agent concepts. Gaia
defines responsibility when it assigns roles
to agents.

However, Gaia lacks concepts and graphical
notations to support modelling and
reasoning about mobility of agents’ vis-à-vis
their social interaction with each other in a
multi agent environment.

2.2 TROPOS

TROPOS as a requirements-driven
methodology was developed to support
analysis and design activities (Bresciani et
al., 2004) (Castro et al., 2002). TROPOS
covers the early and late requirement phases,
as well as the architectural design and
implementation phases. Its greater strength
lies only in identifying early requirements
for the system in spite of the fact that it has a
broader coverage of the entire software
development process.

However, TROPOS has not been developed
with mobile agents in mind and therefore it
fails to provide the necessary processes and
concepts to model mobility of agents
(Bresciani et al., 2004).

2.3 MaSE Methodology

Multi-agent Systems Engineering (MaSE) is
a methodology (DeLoach & Self, 2001),
(DeLoach, 2004),(DeLoach, 2006). From all
the available AOSE methodologies, it is
only MaSE that managed to model some
aspects of agents’ mobility using UML. In
particular, MaSE makes provision of tools
which enables developers/designers to
specify where and which location an agent
can migrate to, which task and
communication processes should be retained
and which should not (Self & DeLoach,
2003). However, they only focused on the
output models of the analysis phase of the
systems lifecycle, and they also fail to
identify why mobility is needed by some
agents, and the association with the system
requirements.

2.4 AUML Extensions
As mentioned above, apart from the
methodologies for the development of agent
systems, there have been few efforts to
develop modelling languages and definition
of some concepts that can be employed for
the modelling of agent and mobile agent
systems. In particular, Poggi et al. (2004)
extended AUML deployment and activity
diagrams with concepts and notations such
as home, mobility path, destination, visitor,
dotted lines to represent messages and dash
lines with arrows pointing towards platforms
that a mobile agent might be visiting. These
concepts and notations have been introduced
to extend the deployment diagrams (Poggi et
al. 2004). All these concepts and notations
introduced are geared towards modelling the

static movement of the mobile agent,
without paying particular attention to the
dynamic mobility of an agent. Another
important issue for mobile agent systems is
security. However, the proposed concepts
and notations fail to allow developers to
consider security issues that might be
present on their mobile agent systems.
Furthermore the issue of time was also not
addressed by the proposal put forward by
(Poggi et al., 2004). For instance, it is not
possible to model when a mobile agent
decides to move from one node to another. .

Regarding activity diagrams, Poggi et al.
(2004) introduced concepts such as return
path, bounced failure and notations to
indicate two statements with two arguments.
These concepts and notations are intended to
capture the dynamics of the agents i.e.
concurrency, sequence and iterations of the
movement of the mobile agent. This
extension only captured the sequence of
activities and knowledge provided by the
designer so that a mobile agent can make an
informed choice.

However, this was not fully realized since
there was no continuous established link for
which the mobile agent can make
independent decision on its movement i.e. to
and from it previous platform. There was
also no indication whether a mobile agent
has the necessary permissions to visit certain
platforms. In addition, there was no mention
or indication whether the agent has any kind
of itinerary or not, and the kind of activities
it does on its way to accomplish a task or a
goal.

Similar to the work by Poggi et al (2004),
Baumeister et al (2003) presented new
stereotypes such as mobile, mobile location,
at location, clone and move to model
mobility in mobile systems which is an

extension to activity diagram. New concepts
such as mobile objects, locations and actions
to moving mobile objects were introduced
by the authors. Location that is contained in
another is called nested location was also
considered. Two notional variants were also
introduced. These are location and
responsibility centred. These provide
answers such as who is performing an action
and where the action is being performed.
Swimlanes were introduced to represent
objects showing who is performing a
particular action as well as mobility of an
object with respect to topology of location

However, the concept of nested location was
not properly defined and illustrated. The
idea of mobile location lacked clarity. Even
though the extension to the activity diagram
was to model mobility in mobile systems,
concepts introduced has no direct bearing to
neither agents nor mobile agents. All
references were made to objects.

(Kosiuczenko, 2003) introduced the
stereotype class move in sequence diagram
to model mobile objects. It further
introduced stereotypes for cloning objects
which are create and copy. Mobile objects in
this extension can change its location when
it performs a jump action. Concepts on
nested topology were also presented by the
authors. Changes do take place during the
life line of a mobile objects and hence the
ability to trace mobile objects that perform
the jump action. The lifeline therefore
contains all the jumps right from the first
place the mobile objects appeared.
According to the author, the lifelines contain
all jump arrows of the mobile object and its
host and ends where the lifeline of the
mobile object ends or terminates.

This extension, however, focused on objects
and not agents. There is also no formal

semantics for modelling the sequence
diagram, hence lack of tool support to aid
the analyst to perform a thorough analysis of
systems.

2.5 Agent Modeling Language (AML)

AML is specified as an extension to UML
2.0 is a semi visual modelling language. It is
used to specify, model and document
systems that incorporate concepts and
features of multi agent systems theories and
existing abstract models such as TROPOS,
Gaia, MESSAGE,UML, PASSI, Prometheus
and MaSE (Trencansky and Cervenka,
2004b). In modelling the deployment of
Multi Agent systems (MAS), AML
attempted to provide support for mobility by
identifying the following main elements: the
agent execution environment, the hosting
property, dependencies i.e. the move and
clone, and lastly actions of move and clone
(Trencansky and Cervenka, 2004b).
However, there was no supporting model or
construct to model the mobility of the agent.
No mention was made of mobile agents and
how their movement can be captured.
Clearly, AML focus is not on mobile agent
but rather on multi agent systems.

3. Building an Ontology for Modelling
Agent Mobility

As mentioned and proved above, there is no
single approach to guide the designer to
reason about mobility from conception of an
idea to its completion. An approach for
modelling mobility issues of agent-based
systems should have a set of modelling tool,
a highly expressive modelling language and
well documented semantics to assist
software engineers to reason and model
agent mobility issues as well as
incorporating security where necessary.

Below we present a list of concepts (along
with their definition) that we have found are
necessary to be included in a complete
ontology for modelling mobile agent
systems.

3.1 Mobility Concepts

To overcome some of the limitations
identified in the earlier section, this paper
therefore presents a new and enhanced set of
concepts to model the mobility of agents.
Due to lack of space we present only brief
definitions of concepts. These concepts are
software agent, stationary agent, mobile
agent, platform, home platform, host
platform, , summit, mobility link, weak
mobility, strong mobility, itinerary, task,
goal, zone, permissions, sleep mode and
knowledge base.

Software Agent
As mentioned above, software agent can be
either stationary or mobile. It is important
therefore to allow developers to model both
types of agents. An agent comprises of code
and state information needed to carry out
some kind of computation. We differentiate
a software agent to stationary agent and
mobile agent.

Stationary Agent is an agent that is
stationary. In other words, an agent which
executes in the place it started. Stationary
agent does not move.

Mobile Agent
This is an agent capable of moving among
different platforms.

Platform
For an agent (and therefore mobile agent) to
run, a platform is required; in other words an
agent platform provides the computational
environment in which an agent operates. For

the purpose of modelling mobile agents, our
work models a platform as networks of
computers or independent nodes,
irrespective of size. A platform offers
resource services to other agents that enter
it. For modelling mobility, two types of
platforms are required.

Home Platform
This is the location where an agent
originates.

Host Platform
 Any platform a mobile agent migrates to
apart from its home platform.

 Summit
Summit allows two or more agents and/or
mobile agent to meets in the same computer.
Here, a mobile agent decides to migrate to
meet with another stationary agent on a
server platform for a service.

Mobility Link
A Mobility Link establishes a link or a
session between or among agents. A link can
be established only if the agents can identify
each other. A mobility link can be
terminated by either agent at both ends of
the established mobility link. Whiles a link
is established, an agent must not move to
another place or location on the platform;
should this happen, the mobility link will be
implicitly terminated. Therefore in this
context mobility link will be used to
synchronise agents that want to meet for a
summit. Mobility link allows a connection
to be made regardless of the distance. It also
enables a mobile agent to obtain a service
remotely and the return to its home platform.
A user’s agent for example should be able to
obtain flight information and book a flight
for the user. On its return to the home
platform, the user’s mobile agent should be

able explain to the user, the type of ticket
booked, be it first class or economy.

Weak Mobility
This involves a situation where an agent
gathers or stores no information on previous
host visited. This is suitable to collect on
line data to perform simple control and
configuration tasks from several networks
elements. It also leads to the reduction of
network load.
Weak mobility copy only code. Program
execution starts from initial state e.g. java
applets

Strong Mobility
This preserves accumulated information
upon migration. In addition it is able to
process data from network elements. It is
also able to preserves its state and form
during previous visits.
Strong mobility copies code and execution.
It resumes execution where it stopped but
doesn’t necessarily have same resources on
current platforms.
Migration process ceases at originating site.

 Itinerary
Itinerary represents the mobility plan of the
mobile agents’ movement.

Task
A task is any action or series of actions an
agent or mobile agent can perform as part of
its itinerary and its goals.

Goal
A goal is a specific objective an agent aims
to accomplish. This is what motivates it to
meet for a summit, hence establishes a
mobility link in order to achieve this goal.

Zone
This a collection or a group of platforms
operated by the same authority. To this end,

a source mobile agent should provide
enough proof to the destination zone else
access will be denied.
A mechanism therefore will be provided to
verify the authority of a mobile agent
migrating from zone to zone.
Hence authority will limits what platforms
and agents can do at any point in time.

Permissions
Permissions will grant the right to execute
an instruction or perform an action i.e.
ability to create another agent and to grant
them rights to use certain resources and a
life to live such as a few hours or days after
which it terminates.

Sleep Mode
This affects and monitors changing
conditions. This occurs the moment a
mobile agent put itself to sleep until such as
a time it needs to be active. For example
when a trip is book for a later date, on the
day of the flight, the mobile agent awake
and inform about any delay and/or of the
details of the trip.

Knowledge Base
These are rules that will be loaded in to the
mobile agent at the start time which will
enable the mobile agent to make an
informed decision.

4. Conclusion and future work

In this work, we have examined the existing
methodologies and approaches used in
modelling agent mobility; we have
presented critical concepts needed to model
mobility. There are still more of these
mobility concepts than space will allow us.
Our primary aim, in this paper, was to
evaluate all current approaches for
modelling mobility. Our research indicated
lack of a complete approach to model all the

issues related to modelling mobile agents.
The approaches are also not complete in
themselves, in that they lacked proper
illustrative examples; all examples used are
not complex enough to reveal weaknesses in
the approach.
In our future work, these concepts will be
modelled and evaluated using an exemplar
with a supporting modelling tool as well as a
supporting documentation.

5. References:

Bauer B., Müller J. P., Odell J. "Agent
UML: A Formalism for Specifying
Multiagent Interaction,", 22nd International
Conference on Software Engineering
(ISCE), .Agent-Oriented Software
Engineering, Paolo Ciancarini and Michael
Wooldridge eds., Springer-Verlag, Berlin,
pp. 91-103, 2001.
Baumeister, Nora Koch, Piotr Kosiuczenko,
and Martin Wirsing. “Extending Activity
Diagrams to Model Mobile Systems”. In
M. Aksit, M. Mezini, and R. Unland,
editors, Objects, Components, Architectures,
Services, and Applications for a Networked
World. International Conference
NetObjectDays, NODe 2002, Erfurt,
Germany, Oct. 7-10, 2002. Revised Papers,
volume 2591 of LNCS, pages 278-293.,
2003.
Bergenti, Federico; Gleizes, Marie-Pierre;
Zambonelli, Franco (Eds.) Kluwer
Academic Publishing (available via
Springer), 2004.
Bresciani, P. Giogini, F. Grunchiglia, J.
Mylopoulos, and Perini A. “Tropos:An
Agent-Oriented Software Development
Methodology”. Journal of Autonomous
Agents and Multi-Agent Systems. Kluwer
Academic Publishers, 2004

Caire, G., Coulier, W., Garijo, F.,Gomez-
Sanz, J., Pavon., J. Kearney, P. and

Massonet. P.” MESSAGE: A Mehtodology
for the Development of Agent-Based
Appplications, To appear at Methodologies
and Software Engineering for Agent
Systems, edited by Federico Bergenti,
Marie-Pierre Gleizes and Franco
Zambolleni, to be Published by Kluwer
Academic Publishing, 2004

Castro, J., Kolp M., and Mylopoulos. J.
“Towards Requirements-Driven Information
Systems Engineering: The Tropos Project”.
In Information Systems, Elsevier,
Amsterdam, The Netherlands, 2002.
Cervenka R.and Trenansky I. “Agent
Modeling Language”. Version 0.9.
Technical report, Whitestein Technologies,
2004.
Cervenka R.and Trenansky I., and Calisti
M.. “Modeling Social Aspects of Multiagent
Systems. The AML Approach”. In J.P.
Muller and F. Zambonelli, editors, The
Fourth International Joint Conference on
Autonomous Agents & Multi Agent
Systems (AAMAS 05). Workshop 7 : Agent
–Oriented Software Engineering (AOSE),
pages 85-96, Universiteit Utrecht, The
Netherlands, 2005
Cervenka R. and. Trenansky I, and Calisti
M., Greenwood D.. “AML: Agent Modeling
Language. Toward Industry-Grade Agent-
Based Modeling”. In J. Odell, P. Gioginin,
and J.P. Muller, editors, Agent-Oriented
Software Engineering V: 5th International
Workshop, AOSE 2004,pages 31-46,
Springer-Verlag, Berlin, 2005.
Cysneiros L. M., Werneck V. and Yu E.
“Evaluating Methodologies: A
Requirements Engineering Approach
Through the Use of an Exemplar”. The
Journal of Computer Science and
Technology, Vol. 5No.2

DeLoach Scott A..”Multiagnet Systems
Engineering of Organization-based

Multiagent Systems”. 4th International
Workshop on Software Engineering for
Large-Scale Multi-Agent Systems
(SELMAS'05). May 15-16, 2005, St. Louis,
MO. Springer LNCS Vol 3914, Apr 2006,
pp 109 - 125.

DeLoach Scott A., Wood Mark F. and
Sparkman Clint H., “Multiagent Systems
Enginering”, The International Journal of
Software Engineering and Knowledge
Engineering, Volume 11 no. 3, June 2001.

DeLoach Scott A.. “The MaSE
Methodology. In Methodologies and
Software Engineering for Agent Systems”.
The Agent-Oriented Software Engineering
Handbook Series: Multiagent Systems,
Artificial Societies, and Simulated
Organizations, Vol. 11. Bergenti,
Ivan Trencansky, Radovan Cervenka: Agent
Modeling Language: A Comprehensive
Approach to Modeling MAS. Informatica
(Slovenia) 29(2) 391-400(2005)
Jansen,W. and Karygianni,T.(1999)“Mobile
Agent Security, National Institute of
Standards and Technology (NIST) special
publication 800-19 , October,1999

Jennings N. R., Sycara K. and Wooldridge
M. (1998) “A Roadmap of Agent Research
and Development” International Journal of
Autonomous Agents and Multi-Agent
Systems 1 (1) 7-38.

Jennings N. R, Wooldridge M..”Agent-
Oriented Software Engineering
(2000)”. Proceedings of the 9th European
Workshop on Modelling Autonomous
Agents in a Multi-Agent World : Multi-
Agent System Engineering (MAAMAW-99)
Juan T.,Pearce A., and Sterling L.,.
“ROADMAP: Extending the Gaia
Methodology for Complex Open Systems”.
In Proceedings of the first international joint

conference on Autonomous agents and
multiagent systems (AAMAS2002),
Bolognia, Italy, pages 3--10, 2002.

Kang M, Taguchi K.” Modelling Mobile
Agent Applications by Extended UML
Activity Diagram”. ICEIS(4) 2004: 519-522
Kosiuczenko P..”Sequence Digrams for
Mobility”. Krogstie J. (ed.): Advanced
Conceptual Modeling Techniques: ER 2002
Workshops, ECDM, MobIMod, IWCMQ,
and eCOMO, Tampere, Finland, October 7-
11, 2002, LNCS 2784, Springer, Berlin, 12
pages, 2003.

Milojicic D., Kotz D., Lange D., Petrie C.,
Rygaard C. “Mobile agent applications”
IEEE Concurrency July to September 1999

Szolovits P., Doyle J., Long W. J.,. Kohane I
and. Pauker S. G. “Guardian Angel: Patient-
Centred Health Information Systems”. TR-
604, Massachusetts Institute of Technology,
Laboratory for Computer Science, 545
Technology Square, Cambridge, MA,
02139, May 1994

White J.E. “Mobile Agents, in Software
Agent”, JM Bradshaw, Editor. MIT Press ...
In Software Agents, J. Bradshaw, editor,
MIT Press, 1996, pp. 437-472
Wooldridge, M., Jennings, N.R. and Kinny,
D. “The Gaia Methodology for agent
oriented analysis and design”. Autonomous
Agents and Multi-Agent Systems, 3(3),
2000, pp 285-312

Yu, E., Cysneiros L.M. “Agent-Oriented
Methodologies- Towards a Challenge
Exemplar” in Proc of the 4th International
Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS 2002)
Toronto May 2002.

Padgham L. and Winkoff, M., Prometheus:
A Methodology for Developing Intelligent
Agents , Proceedings of the Third
International Workshop on Agent-Oriented
Software Engineering, at AAMAS 2002,
July,2002, Bologna, Italy.

Poggi A., Rimassa G., Turci P., Odell J.,
Mouraidis H., and Manson G. Modelling
Deployment and Mobility Issues in
Multiagent Systems using AUML, in Agent
Oriented Software Engineering IV, P.
Giorgini, J. P. Muller, J. Odell (eds.),
Lecture Notes in Computer Science 2935,
Springer-Verlag 2004.

Self A. &. DeLoach Scott A. “Designing
and Specifying Mobility within the
Multiagent Systems Engineering
Methodology”. Special Track on Agents,
Interactions, Mobility, and Systems (AIMS)
at The 18th ACM Symposium on Applied
Computing (SAC 2003). March 9 - 12,
2003, Melbourne, Florida, USA.

Wooldridge, M. and Jennings N. R. (1995),
"Agent Theories, Architectures, and
Languages: a Survey," in Wooldridge and
Jennings Eds., Intelligent Agents, Berlin:
Springer-Verlag, 1-22

Zambonelli F.,. Jennings N.R and
Wooldridge M. “Developing Multiagent
Systems: The Gaia Methodology”. ACM
Transactions on Software Engineering and
Methodology, 12(3): 317-370, July 2003.

 A Comparative Study of Modelling Languages for Agent Systems

Divina Melomey, Chris Imafidon and Godfried Williams
Email: {divina; chris12; G.Williams}@uel.ac.uk

School of Computing and Technology
University of East London, Dockland Campus

London, UK

Abstract:

Agent Oriented Software Engineering (AOSE) is an
emerging field in Software Engineering. This paradigm is
based on the concept of agent, an autonomous computing
entity. Some of the benefits AOSE provides to system
developers are concepts and notations that relate to real life
situations. These concepts include knowledge, behaviour,
beliefs and desires, as well as characteristics similar to
human’s intelligence and mobility. This paper examines
recent research in agent modelling languages and compares
common modelling languages such as Agent Unified
Modelling Language (AUML), Specification Language for
Agent-Based Systems (SLABS), A Caste-Centric Agent
Modelling Language and Environment (CAMLE), Agent
Modelling Language (AML) and Autonomy Specification
Language (ASL) for modelling an agent with respect to
mobility. The criterion for comparison is based on functions
of modelling languages, characteristics as well as semantic
structure.

Keywords: agents, mobile agent, modelling languages.

1. Introduction

A modelling language is a form of communication tool that
enhance communication between software developers and
management. Modelling languages guides developers to
clearly represent internal and external structures for textual
and visual representation. Software modelling languages
enable software developers to specify requirements of
software systems during software development by
conceptualizing the world in the form of entities known as
agents. Software agents are characterised by autonomy, social
ability, proactively and reactivity. These characteristics of the
agent, calls for a more robust modelling language in
capturing agent requirements. These characteristics dictate
the need for an agent modelling language capable of
capturing these requirements.
 Software agents draw its fundamental concepts historically
from artificial intelligence, distributed computing and
objected oriented systems engineering.
 There is the need to advance pre existing modelling
languages to model the evolving requirements of agents.
Most of these modelling languages have been used to express
knowledge in domain areas with respect to goals, tasks and
vocabulary for expressing concepts underlying agent
applications.

Section 2 presents motivations underpinning the need to
study agent based modelling languages. Section 3 gives an
overview of existing modelling languages. Section 4
highlights criteria for assesses the effectiveness of modelling
languages. Section 5 presents the results on the comparison;
whiles section 6 presents conclusions and future work.

2. Necessity for Modelling Languages

Unlike object oriented systems development methodology,
AOSE [12] has not reached its maturity stage where issues
such as modelling languages for requirements specification
phase through to the implementation of the entire software
development process is captured. It is paramount therefore to
have modelling language(s) that models interaction of agents,
their behaviours from the requirement phase throughout to
implementation. Modelling languages provide a vivid
description of agent systems and also serve as tools for
capturing the reasoning underlying mobility. Issues that
usually arise when modelling agent systems include agent
representation, validation, verification and representation of
mathematical and linguistical requirements. These issues
have not been addressed and seem to have been ignored.

2.1 Common Requirements

The main requirements that need to be captured comprise
functional and non functional depending on the area of
application. Agent behaviour, service and application needs,
stake holders, users as well as their interaction with the
proposed system are considered as functional requirements.
Non functional requirements cut across issues such as
mobility, security, performance, and synchronization and user
friendliness of the agent. This paper discusses mobility
requirements of an agent and the elements necessary for
developing a methodology that could capture such
requirements.

2.2 Challenges Associated with Mobility

Modelling languages are required to capture both internal and
external structures of the agent. Even though it is portrayed
that agents must have control over their internal structures,
there is the need to show the transition from one phase to the
other as well as the point which control is left entirely to the
agent.
 The modelling of agent systems requires a combination of
visual and formal languages. Formal specification tends to
provide solutions that address weaknesses associated with

visualization Formal specification enables models to be
defined using precise semantics. Furthermore, it facilitates
the transformation from one phase to another, for example
from the analysis phase to systems design phase of the
development process. This therefore requires some specialist
skills on the part of developers. This is effective for
communication amongst developers but ineffective and
inappropriate for communication and discussion with
stakeholders. Formalising visual languages for conceptual
modelling comes with a set of challenges such as,
unambiguities in meaning and expression of graphical
notations. In the next section, we will examine some of the
existing modelling languages and their effectiveness in the
various phases of the development process.

3. Overview of Modelling Languages

There are quite a number of modelling languages for
modelling mobile agents and agent systems, most of which
draw concepts from unified modelling languages [7]. This
paper presents both text formalisation and visual based
languages.
 A visual language allows the domain knowledge
developers to assemble programs quickly from existing
components with it related operations. Visual language offers
an added advantage when there is a match between the
system to be modelled and the visual abstract. On the other
hand, human skills present a higher skill level in terms of
knowledge using textual languages with its associated tool
support.
 The main languages assessed are Agent Unified Modelling
Language (AUML)[6], Specification language for Agent-
Based Systems (SLABS)[4], A Caste-Centric Agent
Modelling Language and Environment(CAMLE)[9], Agent
Modelling Language (AML)[13] and Autonomy
Specification Language(ASL)[1].

3.1 AUML

AUML is an extension to the unified modelling language.
There are no restrictions to the extensions one can make to
UML. Some researchers have made attempts on extending
UML. Mouratidis et al. [2] provided extensions on
deployment and activity diagrams to model agent mobility.
Similarly, another approach to model mobility was the
extension of activity diagrams using UML 1.5 [11].

 3.2 AML

AML has features for capturing multi agent systems. AML
combines both visual and formal language for modelling and
agent specification. It draws its concepts from multi agent
systems theory. AML also specifies models and document
systems by using the extending UML 2.0.

 3.3 SLABS

SLABS provide the developers with language facilities
together with features for formal specification as well as the
verification of agent based systems. Its focus geared toward
the development of scale complex system. SLABS is based
on a generalised model of agents rather than a specific agent

theory and it is decomposable. It integrates new concepts
such as caste and provides language facilities AOSE.

 3.4 CAMLE

CAMLE is a language based on the notion of caste and draws
on the concepts of SLABS. Caste by definition is a set of
agents with the same behaviour and structure. SLABS
combine both graphical modelling with formal specification
language by automation. CAMLE introduced visual models
at the design stage of the development process. These models
are caste, collaboration and behavioural. Diagrams in caste
model specify caste in the systems and their relationships
including their movement from one caste to the other.
Collaboration model includes diagrams organized in a
hierarchical order depicting the interaction of agents and their
relationship in the system. Lastly, the behavioural model
diagrams define how agents decide on what action to take
and how it changes it states depending on a given scenario.
All these models come with its associated notations well
defined.

3.5 ASL

ASL has its strength in the operational modelling for
specifying the autonomy of the agent. An ASL concept
defines roles through a set of activities as well as specifying
the behaviours that conforms to or deviates from accepted
norms of agents system. In specifying the behaviours it
enables behavioural prediction of agent through the roles they
assume. Furthermore, ASL enables software designers to
specify autonomy of agent as well as allowing the detection
and resolution of induced conflicts that occur during runtime.
 The modelling languages mentioned in this section have
each their own strengths and weaknesses. There is therefore
the need for cohesion of models and concept through each
phase of the software development process. Below is a
timeline of modelling languages used to model agent systems
and mobile agent since year 2000.

Figure1. Agent Languages Timeline.

TIMELINE FOR AGENT MODELLING LANGUAGES

ASL,2005 AML,2005

CAMLE,2003

SLABS,2001

AUML,2000

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

ODELL ET AL. ZHU ZHU & SHAN WEIB ET AL. CERVENKA ET
AL.MODELLING LANGUAGES

YE
AR

Criteria have therefore been defined based on the function
and attributes of modelling languages for the comparative
analysis. These functions are further dependent on the type of

application for which mobile agent and for that matter agent
has been cited as a possible solution.

4. Criteria for Comparative Analysis

Criteria for comparison have mainly been derived from
distributed system mobility goals as well as some attributes
that shape quality software. These cover transparency,
security, robustness, consistency, synchronization,
concurrency, visual adaptation, verification, validation,
model support and many more.

4.1 Reasoning Behind Selected Criteria

Complex mappings of agent concepts between analysis phase
to the design phase needs to be kept at minimum. When this
is achieved it enhances agent understandability, traceability
as well as maintainability. In taking decisions about mobile
agent in a specific system regarding the migration to/from a
platform, the following should be taken into consideration;
Robustness; reliability, security, performance and fault
tolerance. Another issue is transparency. For agent to be
extensible, open and fault tolerance, software designers must
protect users from the issues of dealing with the actual
platform of the service, concurrent access, and migration. To
address some of these issues, concepts for mapping agent,
concepts for describing agent’s behaviour is needed.
Concepts for dealing with communication, specifying and
constraining agent migration are also needed. Concepts for
proving pattern to help designers achieve transparency and
other features must also be considered. For example, agent
and mobile agents, internal and external structure and
processes that some how relates to entities in complex
problem. These issues are fundamental in open distributed
system environment. Below are the criteria and a brief of
each of them:

 Criterion 1: Visual/ graphical modelling.
Visual or graphical modelling provides a natural way of
expressing an idea. It also serves as a communication
medium for expressing knowledge and idea throughout the
development process. Formal or visual models all aims to
describe real world system from a complex problem domain
perspective.
 Criterion 2: Consistency.
This criterion helps to preserves the models, agent concepts
as the mobile agent transforms itself throughout the software
processes.
 Criterion 3: Verification.
 This is very important in all phases of systems development
to ensure that the correct product is being produced and the
correct process is being followed.
 Criterion 4: Validation.
It is equally important to carry out validation through all the
development phases to ensure that the end product is usable
in its intended environment and the operational needs are
met.
 Criterion 5: Well defined semantics and syntax.
Meanings of data for agents and how they are used must be
consistent and unambiguous throughout all the phases of
systems development. Set of rules to be applied during the
exchanges of agent as it transforms itself through the phase
should adhere to standard as defined.

 Criterion 6: Well documented.
Complete and clearly defined systems documentation is
required for maintenance. Documentation must be provided
both at the systems level and user level. Systems
documentation should outline the objectives of the entire
systems, precise requirements as agreed between the
developers and the stakeholders at the start of the project,
how this requirement specification are
implemented, how various agents and mobile
agents interacts in the systems and their
functions, and how all these requirements
expressed in the chosen programming codes
 Criterion 7: Mobility Support.
 Modelling languages that models agent systems should also
be able to model mobility.
 Criterion 8: Static model support.
Modelling languages should be able to model static agents
present in an environment or platform to show how these
agents interacts and how they allocate resources when
requested. Modelling languages should be able to model how
these static agents reactive to their environment.
 Criterion 9: Dynamic model support.
Modelling languages should be able to model the sequences
of interactions between the agents and mobile agents from
high level abstraction to low level abstraction. In other words,
the transformation of agents and mobile agents should be
supported as it transforms itself from requirement
specification phase through to implementation phase of the
development process. This includes the time the agent is
created, executed and terminated, changes in interfaces and
the mobility of other agent.
 Criterion 10: Internal Structure Modelling.
Modelling Language should have the ability to model the
internal state of the agent, what triggers it to
move such as the goals and plan, why the agent
decides to suspend, execute, terminate or move to
another node or environment. In other words,
the preconditions, invariant and post conditions
should be modelled early in the requirement
phase of the software development process. The
sequences of execution should also be modelled.
For an agent to reach a goal, the agent must have
plan(s).
 Criterion 11: External Structure Modelling.
Modelling languages should be able to model roles of
agents and mobile systems, interface and
interactions of agents within and outside their environment as
well as complex interactions in the system.
 Criterion 12: Case Study for Evaluation.
Case study plays a vital role in scientific research. Ability to
target a specific problem and design task to evaluation cannot
be over emphasised in the modelling languages. This gives
researchers a basis for assessing the strengths and weaknesses
and the variety of techniques of the modelling language.
 Criterion 13: Extensible and Customizable.
Modelling languages should be flexible enough to
accommodate new and additional words, phrases,
stereotypes, grammar and rules. Modelling languages should
have a mechanism to accommodate the mobility and
dynamics of agents to suit different types of application. This
is very important for agent adaptation and the changing
needs of the environment and other
communication agent.

 Criterion 14: CASE Tools support.
Case tools support developers to analyse and design phases
of software development process in the systems lifecycle.
Integrated case tools will ensure agents communicate and
interact together in providing solution to complex problems.

4.2 Methodology for rating Agent Modelling under Criteria
outlined in section 4.1

Rating of agent modelling language under the criteria was
based on case studies and document sampling in published
literature. We rated the criteria defined for existing agent
modelling languages on a scale of 1 to 3 where 1- not at all
supported, 2-partially supported 3- fully supported. Each
criterion has been rated in comparison to the other modelling
languages.

Table 1. Comparative Analysis.

CRITERIA \MODELLING LANGUAGE AML ASL AUML SLABS CAMLE
Visual/Graphical 3 1 2 1 2
Formal Structure 2 3 2 3 3
Consistency 3 2 2 3 3
Verification 1 1 1 3 3
Validation 1 1 1 3 3
Well defined semantics& syntax 3 2 2 3 3
Well documented 3 1 2 3 3
Extensible & customizable 3 1 2 1 1
Mobility support 2 1 2 1 2
Static model support 3 2 2 2 2
Dynamic model support 3 3 2 2 2
Internal structure 3 3 2 1 1
External structure 3 2 2 3 3
Case study for evaluation 1 1 1 1 3
CASE Tool Support 3 1 1 1 3

 5. Discussion

Market forces drive the need for software houses to improve
upon the efficiency in the design of cutting edge solutions
and software products to support systems. Lapses in the
requirement specification and analysis stage have created a
huge gap and while this seems to be the most important phase
crucial to the development of the product [8]. Balmelli [8]
emphasises that this phase sees the transition of customer
needs into product function and lack of support at this phase
to realisation of product requirements. This in effect hinders
the communication and understanding between stake holders
and systems developers and modellers.
 It is therefore imperative for modelling languages to
be highly visual for communication between customers and
developers. AML which draws its fundamental concepts from
UML had addressed this one to some extent. CAMLE has
models such as collaborative model which specifies the
interaction of agents, behavioural models which specifies
how agents’ decisions are made, as well as partial support for
graphics representation. Visual modelling has a powerful way
of representing and communicating knowledge. It is one area
that had been the back bone of success in Object Oriented
(OO) Technology.
 In OO Technology, CASE Tools have provided
means of capturing business processes and also provided
support for model construction as in companies such as
British Airways [5]. Examples of CASE Tools being used in

the industry are Rational Rose and System Architect. To
extract knowledge in CASE Tools one need to have
knowledge of it and some level of understanding of graphical
modelling. Modelling language therefore plays a vital role
and as such is an important feature for automation. AML and
CAMLE [3] provided a full support for CASE Tool
automation.
 Designing an application for safety critical systems,
precision and correctness of the software is very important.
Validation cannot also be overemphasised in all application
area. To this end, SLABS and CAMLE has made ample
provision to rigorously verify and validate all phases of
systems development.
 The development of software systems, sometimes
lack effective formal representation of knowledge. This
affects the ability to make decisions for large scale systems.
SLABS and CAMLE provide facilities for representing high
level concepts. It is apparent on table 1 and the appendices
that modelling mobility is a challenge giving the issues other
models have been able and not able to address.
 It has therefore been relegated to the design phase.
Modelling languages that attempted to model mobility from
the table were AML and CAMLE and ASL.
 ASL focuses on operational modelling of agent,
fully support formal representation of agent, modelling of
internal structure and support for dynamic models. AML
comparatively provides support for modelling the external
and internal structure of the agent, has a well defined
semantics and syntax, as well as a full documentation for its
processes.
 AUML is an extension of the Unified Modelling
language. Even though UML has advanced functionalities
and advanced features in modelling objects, AUML is still at
its infantry stage of language development and as such much
needs to be done for it to reach maturity. There have been
attempts to model mobility by languages such as CAMLE,
AUML and AML but only at analysis and design phase of the
development process. The timeline in figure 1 and appendices
reiterate that modelling languages for modelling agent has
not reached its maturity. There is still a lot to be done in
validating the languages to optimise its usefulness in order to
reap the benefits of modelling mobile agents.

6. Summary

Based on the complexity of software problems and the
evolution of agent as an alternative for providing solution for
complex problem, criteria for comparing the existing
languages to ensure its relevance and usefulness in software
development process were introduced based on their
functions and features required for modelling agents with
respect to mobility. Results from the comparative study
presented shows that no single language possess all the
functionality for modelling agent systems. In the same study
the strengths and weaknesses of each of the languages has
been established as shown in table 1. This means that a future
hybridization is possible in order to model all phases of
software development just as we now have for the unified
modelling language.

7. Future Work

Future work will focus on an empirical study as a means of
reassessing the rating of the criteria for each agent modelling
language. We will also expand the scope of the criteria by
looking specifically into goals of distributed mobility that we
believe underpin requirements necessary for developing a
methodology that captures mobility in software agents.

References

G. Weib, . Fischer, M. Nickles and M. Rovatsos, Operational
modelling of Agent Autonomy: theoretical Aspects and
Formal language. J.P. Muller and F. Zambonelli (Eds.):
AOSE 2005, LNCS 3950, pp. 1-15. 2006.
H. Mouratidis, J. Odell, and G. Manson. Extending the
Unified Modeling Language to model Mobile Agents. In the
Proceedings of the Agent Oriented Methodologies
Workshop, OOPSLA 2002, Seattle - USA, November 2002
H. Zhu and L. Shan., Caste-Centric Modelling of Multi-
Agent Systems: The CAMLE Modelling Language and
Automated Tools, in Beydeda, S. and Gruhn, V. (eds) Model-
driven Software Development, Research and Practice in
Software Engineering, Vol. II, Springer, 2005, pp57-89.
H. Zhu, SLABS: A Formal Specification Language for
Agent-Based Systems, International Journal of Software
Engineering and Knowledge Engineering, Vol. 11. No. 5,
pp529-558. Nov. 2001
J. Arlow, J. Quinn, W. Emmerich. Literate Modelling-
Capturing Business Knowledge with UML. In J. Bezivin
and P.A. Muller, editors, Proc. UML’98, Mullhouse France,
volume 1618 LNCS, pp. 165-172, Springer Verlag, 1999
J.Odell, H.Parunak, B.Bauer, Extending UML for Agents. In
the proceedings of Agent-Oriented Information systems
Workshop at the 17th National Conference on Artificial
Intelligence, 2000.
I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software
Development Process, Addison Wesley, 1998.
L. Balmelli, An Overview of Systems Modeling Language
for product and Systems language for product and systems
development. T.J. Watson Center and Tokyo Research
Laboratory, IBM, 2006.
L. Shan and H. Zhu, CAMLE: A Caste-Centric Agent-
Oriented Modelling Language and Environment, Proc. of
SELMAS’04 at ICSE’94, May 2004, Edinburgh, UK, IEE
2004, pp66-73.
M. Kang, L. Wang and K. Taguchi. Modelling Mobile Agent
applications in UML 2.0 Activity Diagrams, 519-522, ICEIS
2004, Proceedings of 6th International Conference on
Enterprise Information Systems, Porto , Portugal, April 14-
17, 2004.
M. Wooldridge, Coherent social action. In proceedings of the
Eleventh European Conference and Artificial Intelligence
(ECAI-94), Amsterdam, The Netherlands, 1994.
N. R. Jennings “Agent Oriented software Engineering” Proc.
12th International Conference on Industrial and Engineering
Applications of AI, Cairo, Egypt, 4-10. Also appearing in
Proc. 9th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW-99), Valencia ,
Spain 1999.
[1] R.Cervenka, I Trencansky, M.Calisti, D.Greenwood:

AML Agent Modeling Language . Towards Industry
Grade Agent –Based Modeling. In J.Odell, P.Giorgini,
J.Muller, (eds): Agent Oriented Software Engineering V:

5th International Workshop, AOSE 2004, pp. 31
Springer-Verlag 2005.

Appendix A

A.1 Graphical representation for Visual/ graphical
 Support

AML

ASL

AUML

SLABS

CAMLE

0

1

2

3

Visual/Graphical

Su
pp

or
t R

at
in

gs

AML ASL AUML SLABS CAMLE

A.2 Graphical representation for Formal Structure
 Support

AML

ASL

AUML

SLABS CAMLE

0

1

2

3

Formal Structure

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

A.3 Graphical representation for Consistency
 Support

AML

ASL AUML

SLABS CAMLE

0

1

2

3

Consistency

Su
pp

or
t R

at
in

gs

AML ASL AUML SLABS CAMLE

A.4 Graphical representation for Verification
 Support

AML ASL AUML

SLABS CAMLE

0

1

2

3

Verif ication

Su
pp

or
t R

ati
ng

s

AML ASL AUML SLABS CAMLE

A.5 Graphical representation for Validation support

AML ASL AUML

SLABS CAMLE

0

1

2

3

Validation

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

A.6 Graphical representation for Well defined semantics
& syntax

AML

ASL AUML

SLABS CAMLE

0

1

2

3

Well defined semantics& syntax

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

A.7 Graphical representation for well documented

AML

ASL

AUML

SLABS CAMLE

0

1

2

3

Well documented

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

A.8 Graphical representation for Extensibility and
customizability support

AML

ASL

AUML

SLABS CAMLE

0

1

2

3

Extensible & customizable

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

A.9 Graphical representation for Mobility support

AML

ASL

AUML

SLABS

CAMLE

0

1

2

3

Mobility support

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

A.10 Graphical representation for Static model support

AML

ASL AUML SLABS CAMLE

0

1

2

3

Static model support

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

A.11 Graphical representation for Dynamic model
 support

AML ASL

AUML SLABS CAMLE

0

0.5

1

1.5

2

2.5

3

3.5

Dynamic model support

Su
ppo

rt R
atin

gs

AML ASL AUML SLABS CAMLE

A.12 Graphical representation for Internal Structure
 Support

AML ASL

AUML

SLABS CAMLE

0

1

2

3

Internal structure

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

A.13 Graphical representation for External Structure
 Support

AML

ASL AUML

SLABS CAMLE

0

1

2

3

External structure

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

A.14 Graphical representation for Case Study for
Evaluation

AML

ASL AUML SLABS

CAMLE

0

1

2

3

CASE Tool Support

Su
pp

or
t R

ati
ng

s

AML ASL AUML SLABS CAMLE

A.14 Graphical representation for CASE Tool Support

AML

ASL AUML SLABS

CAMLE

0

1

2

3

CASE Tool Support

Su
pp

ort
 Ra

tin
gs

AML ASL AUML SLABS CAMLE

MOBILITY REQUIREMENTS ON GAME PLATFORMS: AN AGENT PERSPECTIVE

Divina Melomey, Godfried Williams and Chris Imafidon
School of Computing and Technology

Docklands Campus
University of East London

United Kingdom,
E-mail: {divina,G.Williams,chris12}@uel.ac.uk

KEYWORDS

Mobile Agents, Distributed Systems, Mobility,
Game Platforms

ABSTRACT

Game theory has been used as a tool in the past few years to
address several social issues and also to provide explanation
to resource based problems in academia. Games are used to
simulate real life events where an individual pursues an
interest either selfishly to the detriment of others or
collaboratively. This sometimes can lead to conflicts or
sometimes fierce competitions. Competition in general, leads
to a group or an individual adopting a strategy to win.
Elements of competition for mobility resources on game
platforms lead to constraints that have to be managed and
optimized effectively. This paper evaluates mobility
requirements for mobile agents on game platforms and
proposes a first level generic model for capturing such
requirements.

1.0 INTRODUCTION

Autonomous agents and multi agents have become very
important in research and development. These paradigms
draw concepts from distributed computing, object oriented
systems, software engineering, artificial intelligence,
economics, game theory, sociology and organizational
science. This concept offers solutions to complex software
systems through analyzing, designing and implementing them
(Jennings et al. 1998).
Jennings
 (2000) identified Agent Oriented Systems Engineering
(AOSE) as having the potential of improving considerably
the practices of software engineering. This is because the
concepts of AOSE are complementary to providing software
solutions to complex systems. They attempted to give
reasons why in certain problems, the best way of solving
them is by adopting a multi agent approach to systems
development. There is no general consensus definition for
what an agent is but there are general characteristics by
which an agent could be identified. Agents are characterized
by autonomy, social/interactive, proactive/goal oriented,
reactive, persistent and a desirable property such as mobility,
adaptation and rationality (Brustoloni 1991) (Smith et
al.1994) (Wooldridge and Jennings 1995)(Franklin and

Graesser, 1996), (Melomey and Mouratidis 2006) ,(Williams
G.B. 2007a). (Melomey et al. 2007a)(Melomey et al. 2007b).

1.1 MOBILE AGENTS

A mobile agent is an autonomous software program that can
migrate from one platform to another on a heterogeneous
network performing task on behalf of the user (Milojicic,
1999). It is a computational process that implements the
autonomous, communicating functionality of an application
and is able to migrate from one computer to the other over a
network. The platform is made up of the computational
environment and the agent is also made up of the code and
State information that is needed to perform some form of
computation (Cubaleska and Schneider, 2002). In other
words, the platform provides the physical environment for
deployment of the agent; an agent can be said to have set of
attribute called state which describes its characteristics.
Agents communicate via an Agent Communication Language
(ACL).

Jansen (2002) defined mobile agent as “traveling agents”,
these programs will shuttle their being, code and state,
among resources.”

In this research we define mobile agent as autonomous agent
that exhibit mobility characteristics such as persistency,
robustness, security assessment for its codes and
environment, mobility transparency and fault tolerance.

We also define a mobile agent as program that exhibits
persistency, fault tolerance, synchronization, remote
addressing and referencing, calling , invocation , execution,
remote code execution and migration capabilities.

A mobile agent on a game platform should satisfy certain
requirements to enable it migrate from one platform to
another, as well as exercising mobility via remote access
during the period in which a game is in session or being
played. This paper evaluates generic mobility requirements
for distributed platforms with specific emphasis on game
platforms and game applications that exhibit social
adaptation, intelligence, collaboration, autonomy as well as
key features peculiar to mobile agents.

2.0 GENERIC REQUIREMENTS OF
DISTRIBUTED PLATFORMS

Distributed systems platforms have requirements that are
generic to all platforms for all types of distributed
applications. All applications must satisfy these
requirements. These requirements are resource sharing,
openness, concurrency transparency, scalability, transparency
and fault tolerance(Galli 1999).

Resource Sharing
The platform controls all resources including allocation and
access control and concurrency. A resource manager is
allocated the responsibility for sharing resources anywhere
on the system and also interactive activities on the platform.

Platform Openness
Platform openness involves enabling the integration with
existing components by adding new ones, publishing
component interfaces, resolutions of interfaces issues relating
to heterogeneous processors in the distributed environment.

Concurrency
Concurrency allows accesses and updates of shared
resources, without which the integrity of the systems might
be compromised. Executions of components are done in
concurrent processes.
Scalability
Distributed system platform allows more users to be included
and adapts quickly to its environment. It is achieved by
adding faster processors to accommodate the new additions
hence scalability. Component must therefore be designed to
be scalable.

Fault Tolerance
All networks, software and hardware are susceptible to
breakdown hence any distributed system platform must be
design to be able to recover after a breakdown. Fault
tolerance on a platform maintains a certain level of reliability
for such systems and achieved through recovery and
redundancy.

Transparency
Transparency on distributed systems platform makes
information available for access whether it is remote,
location base, migration, scalability, concurrency,
performance or failure without any interference.

Mobility
Another key requirement of distributed System Platform is
mobility. Mobility in distributed systems is demonstrated
through both physical and logical migration(Roman et al
2000). In physical migration, a process or program travels
across the physical network from node to node or server to
server via designated network routes’ using the IP addresses
system. In logical migration, there is remote execution of
processes and programs through a remote procedure calling
or remote method invocation system. This is achieved at the
back of Client Server Stubs implemented on the system.

The next session will discuss specific requirements of
mobility in a distributed systems platform.

3.0 MOBILITY REQUIREMENTS ON
DISTRIBUTED SYSTEMS

Mobility requirement are key design elements that needs to
be satisfied in distributed systems applications. Distributed
platforms should be configured to have the ability to monitor
and control resources per client request as well as the
activities of clients on the platform. Another requirement is
the ability to identify the location of the client at all times
and the hardware on which the resource being accessed is
located. There is the need for entities/components and
distributed platform including local and remote platform to
trust each other in order to share and access resources. This
means that security of both platforms and agent’s platforms
both static and mobile must not be compromise.

For effective use of resources in a distributed platform,
resource and location must be available for all distributed
applications (Spence et al. 2005). This is essential for users
to experience a low latency rate and minimum network or
communication failure. In order to ensure reliability of
distributed network as well as latency, the location of
application components must be taken in to consideration
during platform design. Resource must be available and close
to cluster of users to ensure there are minimum delay
propagation delays, maximum throughput and also minimum
network failures. Foster et al (2002) also identified some
common requirements relating to delivery of service
common to distributed system mobile environments. These
were security semantics, resource management, distributed
work flows, fault tolerance and problems determination
services and other metrics that are unique to an individual
application yet important as a requirement in a distributed
environment.

Other issues in the implementation of a distributed system
are addressing, encoding and synchronization. If
components on a distributed environment have to locate
each other, both client and server must have address. This
section of the paper summarizes Mobility Requirements on
Distributed Systems, covering addressing, encoding,
synchronization, persistent, invocation, calling, naming
and message passing.

Addressing

Servers must broadcast their address by making it reachable
to clients for access to resources and services. This is usually
achieved by looking it up in a look up table in a naming
service or server or a server’s registry. Addressing is made
up of the name of the host and port number of the host
(Henning, 1998). For example a server makes itself available
by binding itself to a port in order to be contacted by a client.
Servers and clients may not necessarily be located physically
together hence the type of communications between them
could either be in the form of message passing or data
streaming. Communication will only be successful when host
names together with port numbers to be used are agreed by
participating parties on the distributed platform.

Encoding

This is a formating technique for streams of data being
transferred. This helps developers to structure complex data
(Neema et al 2003). Encoding may be used to transform data
streams based on specific application. This can be achieved
through pre processed data on hardware component that is
not running a core application. This hardware component
will usually be dedicated for executing streams of transmitted
data (Gavrilovska et al 2005)

Synchronization

“Synchronization is mainly to ensure that times, associated
and recorded with respect to the occurrence of network
events are consistent and valid” (Williams G. B 2007b).
Synchronization takes place when participating parties that is
clients and servers on the platform agree to some level of
protocol agreement regarding sending and receiving of data.
These transfer data protocols could pertain to how messages
are relayed or requested. Components are reached via a
known location and data is exchanged usually using a
predefined set of communication protocol. In other words
there are governing rules that enable synchronisation. These
rules are usually presented in the literature as algorithmic.

Persistence

Persistence entities permit communications directly between
the server and the client. Persistent entities allows for direct
communication between client and server. For example if the
server's transport end point is disconnected as a result of
server shutdown, all the client's references into that server
become invalid, and no further communication is possible.
Persistent entities are able to recover from such a shut down
or systems breakdown because they have a state (Spencer
1996).

Method Invocation

Methods can be invoked and executed remotely when
interface and address information are known. Method
invocation depends largely on method. There are two types
of invocation and they are local and remote invocation. With
the local invocation a local entity is passed by copying using
a standard object serialization while in the remote invocation
it is a remote object that is passed by reference to its proxy.
Method invocation can be implemented remotely in two
ways: Remote Method Invocation and Common Object
Oriented broker Architecture (CORBA). RMI is java only
distributed object model and easy to use. It is also able to
integrate with CORBA. RMI minimizes the differences
working with local and remote entities. Secondly, it
minimizes the complexity of asks while supporting
distributed garbage collection. CORBA on the other hand, is
language independent thus it can be written in any language.
CORBA is an OMG standard and more matured hat RMI
hence has capabilities well defined Colouris el al (2001),
WilliamsG B (2000).

Interface Definition Language

It is a language that is used to describe the interface of a local
or remote interface. Interface definition language are
basically used to declare constructs used to export methods
and further made available to clients. Invoked methods
usually have specific typed parameters and return values.
Parameters could be strings or numeric types. These
declarations are usually independent of programming
language employed after which it is compiled by an interface
definition language compiler to produce declarations that are
required by a specific language. OMG defines it as a
specification language uses a common set of data types used
for defining complex data types.

Naming Services

Entities have names by which they are known. Entities are
mapped to their names and location. Entities in distributed
platform shares and exchange data among themselves hence
there is a need for a service mechanism to be responsible for
creating, naming and managing these entities independently.
Name servers manage all name information and name
hierarchies. Naming service is autonomous and indispensable
feature for persistent and transparency of an entity. Naming
services allows entities to identify each other and the location
where an entity originates from. According to Yeo et al
(1993) naming services is divided into three parts. They are
whit pages for mapping symbolic names to network
addresses, yellow pages which provide directory services
which provide support for searches that are based on the
description of software entities, and lastly broadcast based
discovery useful for locating entities on a local area network
(Mockapetris and Dunlap 1988) (Postel and Anderson 1994).

4.0 NATURE OF GAME PLATFORMS

The underpinning architecture of game platforms are
distributed in nature, according to the research conducted by
the authors. Overmars M(2004), in the paper game maker
uses object oriented event driven approach for game maker
application. The initial observation made is that mobility on
distributed platforms could be achieved via inheritance,
polymorphism and abstractions. These characteristics of
objects enable mobility. This proposition is subject to further
investigation and further analysis. Hiromichhi et al (2004),
emphasize on components base development approach. The
system described in their paper “3D visual component based
voice input and output interfaces for interactive
development” highlights the use of intelligent boxes that
contain 3D objects. According to this paper the essential
aspect of the box is a component known as the model-display
object (MD) structure. This component is made up of two
objects, the controller and viewer (MVC) structure. The
states value of a model is held in a box. Variable spaces
called slot store these states. It is important to note that
components based platforms are distributed based.

Fundamentally this platform employs the TCP/IP protocol
stack for Client-Server interaction or socket communication.
There is also an indication of clear messaging between boxes
that form the base architecture. These stores the state values
of a box. The component nature of the platform allows plug-
in application such as “Microsoft Speech API”. Similar game
applications have also demonstrated the need for effective
distributed systems in supporting game applications.

Bancroft M & Al-Dabass D,(2004) also employ visual C++ a
Microsoft OO language in the development of their game
platform. What is not however clear is whether, the language
was chosen because of the author’s familiarity or the object
nature of the language. One thing which strikes us is the fact
that Visual C++ enabled the game to be deployed effectively.
It is important to note that the nature of the application needs
to statisfy mobility requirements.

Zeng X, Mehdi Q.H, and Gough (2004) describe the
implementation of a game platform using VRML and JAVA
for visualization tasks. The paper focuses discussions on a
visualizer graphic engine (architecture). Their work
indicates that event sending aspects of VRML could be
deemed as a strong characteristic of mobility within the
infrastructure. VRML allows interactivity in real time. Their
paper explores the feasibility of binding VRML and JAVA to
provide real time communication. The notion here is that
object based technologies play pivotal role in building
interactive game platforms. VRML provides virtuality whiles
JAVA based technologies facilitate communication on
distributed platforms. It is essential also to note from this
work that sociological issues highlighted stamp out the need
to appreciate and understand dynamicity of mobile
interactions. The need for mobile systems to occupy time and
space, highlights the need for mobility. Other reseachers such
as Simatic M et al (2004) in their work “technical and usage
issues for mobile multiplayer games” highlights issues
relating to communication middleware prototype compliant
to Open Mobile Alliance specifications.
They also examined the work of “Group des ‘Ecoles des
Telecommunication” known as MEGA (MultiplayEr Games
Architecture). According to them, the common issues with
mobile multi-player games are abstraction, latency,
consistency and databases (DBMS).These could also be
considered as essential mobility requirements.

Thorn D, Slater D(2004) also discuss things to consider
when developing distributed adventure games by examining
platforms and technologies available for the development of
MMORPG(Massively Multi-player Online Role Playing
Games). There is a discussion on potential technologies that
are likely to help acelerate development in that area.
Common components of platforms include SMS Server
(SMS Technology). MMS (Multi-Media Messaging). LBS
(Location Based Services), usage of GSM cells help to locate
players in different communities. There is also the use of
GPS satellite with custom made receivers’ Short range
positioning beacons (SRPB) uses Wi-Fi connections and blue
tooth technology Williams(~2007).

Solinger D, Ehlert P Rothkrantz (2005) describe autonomous
agent that controls airplane dog fights. Dogfights agent
provides independent reasoning during artificial piloting.
This is based on the intelligent Cockpit environment (ICE).
The architecture for this application comprise of MCFS
(Microsoft Combat Flight Simulation) interacting via the
TCP/IP protocol. The system is implemented using visual
C++ each object in the agent architecture is implemented
using C++ class. The work of Bouillot N, (2005) fast event
ordering and perspective consistency in time sensitive
distributed multi-player games emphasize usefulness of
consistency model, as a means of ensuring synchronization.
This also brings to light that consistency, synchronization
contribute to enabled and effective mobility on distributed
platforms.

5.0 ENABLING AGENT MOBILITY
ON GAME PLATFORMS

The distributed nature of game platforms as exposed in this
investigation underpins and highlights the fact that mobile
agents deployed on game platforms need to satisfy certain
key characteristics in order for agents to exhibit mobility.
This work provides new insights and directions necessary in
capturing essential requirements when designing mobile
agents for distributed system applications such as computer
and internet games. According to our findings mobility
platforms requirements can be classified into four main
groups, these are; 1. Timing requirements - Latency
(response times) and Synchronization 2. Behavioral
requirements - Polymorphism, Inheritance, Persistency,
Calling, Invocation, location, message passing;
3. Addressing requirements – Location, Naming and
Encoding, 4. Security requirements - Availability, Self
Protective, Fault tolerance and Certified Figure 1 summarizes
generic requirements for distributed and mobility platforms.
According to our study mobility

Distributed Platform
 Requirements

Figure 1 -
Generic Distributed Mobility Platform

6.0 CONCLUSIONS

Our work for the first time has classified mobility
requirements for distributed based applications into the
following four main categories.
1. Timing requirements - Latency (response times) and
Synchronization 2. Behaviorial requirements -
Polymorphism, Inheritance, Persistency, Calling, Invocation,
location, message passing; 3.Addressing requirements –
Location, Naming and Encoding, 4. Security requirements -
Availability, Self Protective, Fault tolerance, Replication and
Certified Figure 1 summarizes generic requirements for
distributed and mobility platforms. According to our study of
mobility , the authors believe that these are critical success
factors that a mobile agent has to satisfied in order to exhibit
effective and efficient mobility on distributed platforms.

7.0 REFERENCES

Brustoloni, J.C. 1991. "Autonomous Agents:
Characterization and Requirements." Carnegie Mellon
Technical Report CMU-CS-91-204, Pittsburgh: Carnegie
Mellon University

Bancroft M. and D. Al-Dabass 2004. “A Combat Simulation
Aid for Dungeon and Dragons”. In Proceedings of 5th Game-
On International Conference, pp 60-65. Reading, UK.

Cubaleska, B. and M. Schneider 2002 “Detecting DoS
Attacks in Mobile Agent Systems and using Trust Policies
for their Prevention” , Policy Workshop, International
Workshop on policies for Distributed Systems and Networks
POLICY 2002: 198-201

Foster I., C. Kesselman , J.Nick , S.Tuecke 2002. “Grid
Services for Distributed System Integration Computer.”
IEEE, 35(6).

Fukutake H., Y. Okada and K. Niijima 2004. “3D Visual
Component based voice on input/output interfaces for
interactive graphic applications.” In Proceedings of 5th
Game-On International Conference, pp 20-24.

Franklin S. and A. Graesser 1996. “It an Agent, or just a
Program?: A Taxonomy for Autonomous Agents.”
Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages, Springer-Verlag,
Institute for Intelligent systems University of Memphis.

Galli D.L. 1999. “Distributed Operating Systems: Concepts
and Practice”. Prentice Hall, 1st Edition

Gavrilovska A., S. Kumar., S.Sundaragopalan., and K.
Schwan 2005. ``Platform Overlays: Enabling In-Network
Stream Processing in Large-scale Distributed Applications'',
In Proceedings of 15th International Workshop on Network
and Operating Systems Support for Digital Audio and Video,
NOSSDAV (Skamania, Washington, Jun 13-
15).Communications of the ACM : 158113987

Henning M. 1998 “ Binding, Migration, and Scalability in
CORBA.” Communications of the ACM, Vol. 41, No 10
(Oct.)

Jansen W. 2002. “ Intrusion Detection with Mobile Agents”.
Computer Communications, Special Issue on Intrusion
Detection Systems, vol. 25, num. 4, September.

Jennings N. R. 2000. "On Agent-Based Software
Engineering" Artificial Intelligence Journal 117 (2) 277-296.

Jennings N. R., K. Sycara and M. Wooldridge 1998. “A
Roadmap of Agent Research and Development”
International Journal of Autonomous Agents and Multi-
Agent Systems 1 (1) 7-38.

Melomey. D., and Mouratidis, H. (2006). “Evaluating the
Security of Mobile Agent Platforms”. In Proceedings 1st
Annual Conference on Advances in Computing and
Technology (ACT’2006) (London, United Kingdom, 24th
January), pp. 48 -54.

Mobility, Security, Synchronization,
Concurrency, Scalability, Resourse
Sharing(Scheduling), Fault tolerance
Transparency, Platform Opennes

Mobility Platform Requirements

Synchronization, Latency,
Abstraction, Polymorphism,
Inheritance, Persistency,
Calling, Invocation, Message
Passing, Naming, Addressing,
Encoding, Availability,
Replication, Self Protective and

Melomey. D., H. Mouratidis, H. and C. Imafidon (2007). “
An Evaluating the Security of Current Approaches for
Modelling Mobility of Agent”. In Proceedings 2nd Annual
Conference on Advances in Computing and Technology
(ACT’2007),London, United Kingdom, 24th January, pp. 71-
78.

Melomey D., C. Imafidon and G. Williams(2007). “ A
Comparative Study of Modelling Languages for Agent
Systems”. Vol 1, No 2, (Jul), pp 207-212

Milojicic D., D. Kotz, D. Lange , C. Petrie, C. Rygaard
1999. “Mobile agent applications” IEEE Concurrency (July
to September) pp 80-90

Mockapetris, P., K. Dunlap 1988 “Development of the
Domain Name System”. Communications of ACM
SIGCOM, Stanford, CA, pp. 123-133.

Neema S., J. Sztipanovits., G. Karsai. And K. Butts 2003.
“Constraint-BasedDesign-Space Exploration and Model.
Synthesis.” Proceedings of Third International Conference
on Embedded Software (EMSOFT) , LNCS 2855, pp. 290-
305.
Overmars M. 2004. “Game Design in Education.” In
Proceedings of 5th Game-On International Conference, pp
9-18. Reading,UK.

Postel, J., C. Anderson, 1994. “White Pages Meeting
Report”, RFC 1588, (Feb.)

Roman, G.-C., G.P Picco, and A.L.Murphy, 2000. “Software
Engineering for Mobility: A Roadmap,”In Proceedings of
22nd International Conference on Software Engineering
Future of Software Engineering, A. Finkelstein (ed.), (invited
paper) pp. 241-258.

Simatic M., S. Craipeau, A. Beugnard, S. Chabidon, M-C
Legout, E. Gressier. “ Technical and Usage issues for
Multiplayer games”. In Proceedings of 5th Game-On
International Conference, pp 134-138. Reading,UK.

Smith, D. C., A. Cypher and J. Spohrer 1994, "KidSim:
Programming Agents Without a Programming Language,"
Communications of the ACM, 37, 7, 55-67

Spence D., J. Crowcroft,S. Hand. and T.Harris 2005.
“Location Based Placement of Whole Distributed Systems.”
In Proceedings of the ACM conference on Emerging
networking experiments and technologies. PP 124—134.

Thorn D., I. Palmer and E. Williams 2004. MMORG on
Mobile Devices? Considerations When designing distributed
Adventure games”. In Proceedings of 5th Game-On
International Conference, pp 150-154. Reading,UK.

Williams G.B 2000 “Technical Notes in RMI” Achival &
Unpubished Work

Williams G.B 2007a. “Artificial Intelligence” Existing &
Emering Techniques” Google 1st Edition

Williams G.B 2007b. “ Online Business Security Systems”.
Spinger , 1st Edition.

Wright T. 2004. “Naming Services in Multi-Agent Systems:
A Design for Agent-Based White Pages”. In Proceedings of
Third International Joint Conference on Autonomous Agents
and Multiagent Systems- AAMAS pp 1478-1479

Yeo, A., Ananda, A., Koh, E. 1993 “A Taxonomy of Issues
in Name Systems Design and Implementation”,
Communications of ACM SIGOPS Operating Systems
Review, New York, NY, July , pp. 4-18

Zeng X., Q.H. Mehdi and N.E. Gough 2004.
“Implementation of VRML and Java for Story Visualisation
Tasks”. In Proceedings of 5th Game-On International
Conference, pp 112-126. Reading,UK.

A FITNESS FUNCTION FOR CAPTURING MOBILE AGENT MOBILITY ON GAME

PLATFORMS

Divina Melomey, Godfried Williams, Chris Imafidon, Roy Perryman
School of Computing and Technology

Docklands Campus
University of East London

United Kingdom,
E-mail: {divina,G.Williams.chris12}@uel.ac.uk

KEYWORDS

Fitness Function, Genetic algorithm, Mobile
Agents, Distributed Systems, Mobility, Mobile
Game Platforms

ABSTRACT

Genetic algorithm has been used to model problem scenarios
where there is the need to optimize resources. Mobile games
require effective strategies to ensure remote access to data
and processes in a transparent manner. The criteria necessary
for capturing and modeling mobility in such systems can be
ambiguous and cumbersome, if an effective selection criteria
is not adopted. The deployment of mobile agents in mobile
games require the use of a selection criteria for capturing and
modeling mobility in a manner that make effective use of
available features of system resources optimally. This work
explores and exploits a fitness function using genetic
algorithm as a criteria for selecting requirements and
characteristics key to modeling mobility for a mobile agent
deployed on a mobile game platform.

INTRODUCTION

Mobility requirements on mobile game platforms causes the
need to have an intelligent program function that utilizes
system resources effectively. The application of mobile
agents serves as a driver for meeting this functional
requirement. It has also become an essentially criteria for
achieving mobility as a functional goal. The paradigms
underlying mobile agents is drawn from distributed
computing, object oriented systems, software engineering,
artificial intelligence, economics, game theory, sociology and
organizational science concepts Melomey et al (2007).

Jennings (2000) described Agent Oriented software
Engineering (AOSE) as essential to improving software
engineering, given that AOSE complements software
solutions for complex systems. Multi agent approach to
systems development is also becoming important in systems
development. There is no general consensus definition for
what an agent is but there are general characteristics by
which an agent could be identified. Agents are characterized
by autonomy, social/interactive, proactive/goal oriented,
reactive, persistent and a desirable property such as mobility,

adaptation and rationality (Brustoloni 1991) (Smith et
al.1994) (Wooldridge and Jennings 1995)(Franklin and
Graesser, 1996), Williams G.B.(2007a). Melomey D(2007),
Melomey D (2006).

MOBILE AGENTS

A mobile agent is an autonomous software program that can
migrate from one platform to another on a heterogeneous
network performing task on behalf of the user (Milojicic,
1999). It is a computational process that implements the
autonomous, communicating functionality of an application
and is able to migrate from one computer to the other over a
network. The platform is made up of the computational
environment and the agent is also made up of the code and
State information that is needed to perform some form of
computation (Cubaleska and Schneider, 2002). In other
words, the platform provides the physical environment for
deployment of the agent; an agent can be said to have set of
attribute called state which describes its characteristics.
Agents communicate via an Agent Communication Language
(ACL).

Janson (2000) defined mobile agent as “traveling agents”,
these programs will shuttle their being, code and state,
among resources.”

A mobile agent as autonomous agent that exhibit mobility
characteristics such as persistency, robustness, security
assessment for its codes and environment, mobility
transparency and fault tolerance Melomey D et al (2007).

 “A mobile agent on a game platform should satisfy certain
requirements to enable it migrate from one platform to
another, as well as exercising mobility via remote access
during the period in which a game is in session or being
played” Melomey et al (2007). This paper evaluates generic
mobility requirements for distributed platforms with specific
emphasis on game platforms and game applications that
exhibit social adaptation, intelligence, collaboration,
autonomy as well as key features peculiar to mobile agents.

COMMON DISTRIBUTED SYSTEM
REQUIREMENTS

Distributed systems platforms have requirements that are
generic to all platforms for all types of distributed
applications. All applications must satisfy these
requirements. These requirements are resource sharing,
openness, concurrency transparency, scalability, transparency
and fault tolerance(Galli 1999).

Resource Sharing, Platform Openness, Concurrency,
Scalability, Fault Tolerance, Transparency, Mobility
Melomey et al (2007).

MOBILITY REQUIREMENTS ON
DISTRIBUTED SYSTEMS

Mobility requirement are key design elements that needs to
be satisfied in distributed systems applications. Distributed
platforms should be configured to have the ability to monitor
and control resources per client request as well as the
activities of clients on the platform. Another requirement is
the ability to identify the location of the client at all times and
the hardware on which the resource being accessed is
located. There is the need for entities/components and
distributed platform including local and remote platform to
trust each other in order to share and access resources. This
means that security of both platforms and agent’s platforms
both static and mobile must not be compromise.

For effective use of resources in a distributed platform,
resource and location must be available for all distributed
applications (Spence et al. 2005). This is essential for users
to experience a low latency rate and minimum network or
communication failure. In order to ensure reliability of
distributed network as well as latency, the location of
application components must be taken in to consideration
during platform design. Resource must be available and close
to cluster of users to ensure there are minimum delay
propagation delays, maximum throughput and also minimum
network failures. Foster et al (2002) also identified some
common requirements relating to delivery of service common
to distributed system mobile environments. These were
security semantics, resource management, distributed work
flows, fault tolerance and problems determination services
and other metrics that are unique to an individual application
yet important as a requirement in a distributed environment.

Other issues in the implementation of a distributed system
are addressing, encoding and synchronization. If
components on a distributed environment have to locate
each other, both client and server must have address. This
section of the paper summarizes Mobility Requirements on
Distributed Systems, covering addressing, encoding,
synchronization, persistent, invocation, calling, naming
and message passing.

Addressing

Servers must broadcast their address by making it reachable
to clients for access to resources and services. This is usually
achieved by looking it up in a look up table in a naming
service or server or a server’s registry. Addressing is made
up of the name of the host and port number of the host
(Henning, 1998). For example a server makes itself available
by binding itself to a port in order to be contacted by a client.
Servers and clients may not necessarily be located physically
together hence the type of communications between them
could either be in the form of message passing or data
streaming. Communication will only be successful when host
names together with port numbers to be used are agreed by
participating parties on the distributed platform.

Encoding

This is a formatting technique for streams of data being
transferred. This helps developers to structure complex data
(Neema et al 2003). Encoding may be used to transform data
streams based on specific application. This can be achieved
through pre processed data on hardware component that is
not running a core application. This hardware component
will usually be dedicated for executing streams of transmitted
data (Gavrilovska et al 2005)

Synchronization

“Synchronization is mainly to ensure that times, associated
and recorded with respect to the occurrence of network
events are consistent and valid” Williams G B (2007)b.
Synchronization takes place when participating parties that is
clients and servers on the platform agree to some level of
protocol agreement regarding sending and receiving of data.
These transfer data protocols could pertain to how messages
are relayed or requested. Components are reached via a
known location and data is exchanged usually using a
predefined set of communication protocol. In other words
there are governing rules that enable synchronisation. These
rules are usually presented in the literature as algorithmic.

Persistence

Persistence entities permit communications directly between
the server and the client. Persistent entities allows for direct
communication between client and server. For example if the
server's transport end point is disconnected as a result of
server shutdown, all the client's references into that server
become invalid, and no further communication is possible.
Persistent entities are able to recover from such a shut down
or systems breakdown because they have a state (Spencer
1996).

Method Invocation

Methods can be invoked and executed remotely when
interface and address information are known. Method
invocation depends largely on method. There are two types
of invocation and they are local and remote invocation. With
the local invocation a local entity is passed by copying using
a standard object serialization while in the remote invocation
it is a remote object that is passed by reference to its proxy.
Method invocation can be implemented remotely in two
ways: Remote Method Invocation and Common Object
Oriented broker Architecture (CORBA). RMI is java only
distributed object model and easy to use. It is also able to
integrate with CORBA. RMI minimizes the differences
working with local and remote entities. Secondly, it
minimizes the complexity of tasks while supporting
distributed garbage collection. CORBA on the other hand, is
language independent thus it can be written in any language.
CORBA is an OMG standard and more matured than RMI
hence has capabilities well defined Colouris el al (2001),
WilliamsG B (2000).

Interface Definition Language

It is a language that is used to describe the interface of a local
or remote interface. Interface definition language are
basically used to declare constructs used to export methods
and further made available to clients. Invoked methods
usually have specific typed parameters and return values.
Parameters could be strings or numeric types. These
declarations are usually independent of programming
language employed after which it is compiled by an interface
definition language compiler to produce declarations that are
required by a specific language. OMG defines it as a
specification language uses a common set of data types used
for defining complex data types.

Naming Services

Entities have names by which they are known. Entities are
mapped to their names and location. Entities in distributed
platform shares and exchange data among themselves hence
there is a need for a service mechanism to be responsible for
creating, naming and managing these entities independently.
Name servers manage all name information and name
hierarchies. Naming service is autonomous and indispensable
feature for persistent and transparency of an entity. Naming
services allows entities to identify each other and the location
where an entity originates from. According to Yeo et al
(1993) naming services is divided into three parts. They are
white pages for mapping symbolic names to network
addresses, yellow pages which provide directory services
which provide support for searches that are based on the
description of software entities, and lastly broadcast based
discovery useful for locating entities on a local area network
(Mockapetris and Dunlap 1988) (Postel and Anderson 1994).

GAME PLATFORMS

The core architecture of game platforms are distributed in
nature, according to the research conducted by Overmars
M(2004), object oriented was key to the event driven
approach for game maker application. Our analysis revealed
that mobility on distributed platforms could be achieved
through inheritance, polymorphism and abstractions. These
characteristics of objects enable mobility on game platforms.
Hiromichhi et al (2004), emphasize on components base
development approach. The system described in their paper
“3D visual component based voice input and output
interfaces for interactive development” highlights the use of
intelligent boxes that contain 3D objects. According to this
paper the essential aspect of the box is a component known
as the model-display object (MD) structure. This component
is made up of two objects, the controller and viewer (MVC)
structure. The states value of a model is held in a box.
Variable spaces called slot store these states. It is important
to note that components based platforms are distributed
based.
Fundamentally this platform employs the TCP/IP protocol
stack for Client-Server interaction or socket communication.
There is also an indication of clear messaging between boxes
that form the base architecture. These stores the state values
of a box. The component nature of the platform allows plug-
in application such as “Microsoft Speech API”. Similar game
applications have also demonstrated the need for effective
distributed systems in supporting game applications.

Bancroft M & Al-Dabass D,(2004) also employ visual C++ a
Microsoft OO language in the development of their game
platform. What is not however clear is whether, the language
was chosen because of the author’s familiarity or the object
nature of the language. One thing which strikes us is the fact
that Visual C++ enabled the game to be deployed effectively.
It is important to note that the nature of the application needs
to satisfy mobility requirements.

Zeng X, Mehdi Q.H, and Gough (2004) describe the
implementation of a game platform using VRML and JAVA
for visualization tasks. The paper focuses discussions on a
visualizer graphic engine (architecture). Their work
indicates that event sending aspects of VRML could be
deemed as a strong characteristic of mobility within the
infrastructure. VRML allows interactivity in real time. Their
paper explores the feasibility of binding VRML and JAVA to
provide real time communication. The notion here is that
object based technologies play pivotal role in building
interactive game platforms. VRML provides virtuality whiles
JAVA based technologies facilitate communication on
distributed platforms. It is essential also to note from this
work that sociological issues highlighted stamp out the need
to appreciate and understand dynamicity of mobile
interactions. The need for mobile systems to occupy time and
space, highlights the need for mobility. Other researchers
such as Simatic M et al (2004) in their work “technical and
usage issues for mobile multiplayer games” highlights issues
relating to communication middleware prototype compliant
to Open Mobile Alliance specifications.
They also examined the work of “Group des ‘Ecoles des
Telecommunication” known as MEGA (MultiplayEr Games
Architecture). According to them, the common issues with

mobile multi-player games are abstraction, latency,
consistency and databases (DBMS).These could also be
considered as essential mobility requirements.

Thorn D, Slater D(2004) also discuss things to consider
when developing distributed adventure games by examining
platforms and technologies available for the development of
MMORPG(Massively Multi-player Online Role Playing
Games). There is a discussion on potential technologies that
are likely to help accelerate development in that area.
Common components of platforms include SMS Server
(SMS Technology). MMS (Multi-Media Messaging). LBS
(Location Based Services), usage of GSM cells help to locate
players in different communities. There is also the use of
GPS satellite with custom made receivers’ Short range
positioning beacons (SRPB) uses Wi-Fi connections and blue
tooth technology Williams(~2007).

Solinger D, Ehlert P Rothkrantz (2005) describe autonomous
agent that controls airplane dog fights. Dogfights agent
provides independent reasoning during artificial piloting.
This is based on the intelligent Cockpit environment (ICE).
The architecture for this application comprise of MCFS
(Microsoft Combat Flight Simulation) interacting via the
TCP/IP protocol. The system is implemented using visual
C++ each object in the agent architecture is implemented
using C++ class. The work of Bouillot N, (2005) fast event
ordering and perspective consistency in time sensitive
distributed multi-player games emphasize usefulness of
consistency model, as a means of ensuring synchronization.
This also brings to light that consistency, synchronization
contribute to enabled and effective mobility on distributed
platforms.

ENABLING AGENT MOBILITY ON
GAME PLATFORMS

The distributed nature of game platforms as exposed in this
investigation underpins and highlights the fact that mobile
agents deployed on game platforms need to satisfy certain
key characteristics in order for agents to exhibit mobility.
This work provides new insights and directions necessary in
capturing essential requirements when designing mobile
agents for distributed system applications such as computer
and internet games. According to our findings mobility
platforms requirements can be classified into four main
groups, these are; 1. Timing requirements - Latency
(response times) and Synchronization 2. Behavioural
requirements - Polymorphism, Inheritance, Persistency,
Calling, Invocation, location, message passing;
3.Addressing requirements – Location, Naming and
Encoding, 4. Security requirements - Availability, Self
Protective, Fault tolerance and Certified Figure 1
summarizes generic requirements for distributed and mobility
platforms. According to our study mobility

Distributed Platform
 Requirements

Figure 1 -
Generic Distributed Mobility Platform, Source:
Melomey et al (2007)

GENETIC ALGORITHM

In this section we introduce genetic algorithm as a tool for
formulating a fitness function for modeling mobility in
mobile agents.

Genetic algorithm is a randomised search method based on
the biological model of evolution through mating and
mutation. This randomised search method is effective for
constraint based problems. These problem solutions are
encoded into bit strings that are tested for fitness; the best
strings are combined to form new solutions using methods
similar to the Darwinian process of survival of the fittest and
exchange of DNA which occurs during mating in biological
systems. Williams G, B (2007a).

Genetic algorithm is usually traced to John Holland. In his
publication Holland J (1975) Holland describes the ability of
simple representations (bit strings) to encode complicated
structures and simple transformations which have enough
power to improve such structures. He also showed that with
the proper control structure, rapid improvements of bit
strings could occur under certain transformations, so that a
population of bit strings could be made to evolve as a
population of animals would. One important result was that
even in large and complicated search spaces, genetic
algorithms would tend to converge on solutions that were
globally optimal or nearly so Williams G B (2007a).

Mobility, Security, Synchronization,
Concurrency, Scalability, Resourse
Sharing(Scheduling), Fault tolerance
Transparency, Platform Opennes

Mobility Platform Requirements

Synchronization, Latency,
Abstraction, Polymorphism,
Inheritance, Persistency, Calling,
Invocation, Message Passing,
Naming, Addressing, Encoding,
Availability, Replication, Self
Protective and Certified

FITNESS FUNCTION FOR MOBILE
AGENT MOBILITY

“Fittest function is derived from the criteria specified for
fitness. For example in the natural world of sports, sportsmen
and women have to pass a fitness test in other to be selected
for a tournament. In this same regard a program is considered
fit if it meets a certain criteria designed to pass fitness and be
selected. Such a criterion for program fitness could include,
loosely coupling and highly cohesive of the individual
modules, procedures that form the program. Fitness therefore
can be represented using different program inputs. Searching
for the fittest program is mainly based on probability of the
fittest function in the population of a particular generation.
Programs can either be selected or passed over after this
process” Williams G B (2007a).

The GA based mobility function for mobile agents modelling
represents a set of functional and non functional requirements
as binary string structures. Fitness criteria matching the
binary string structures will be considered fit to optimise the
development of a mobile agent based system. We believe this
because a measure of the degree of match between binary bit
string representations of the key function and non functional
requirements can be defined. This representation is also
effective as different levels of complexity can still be
introduced into the matching function.

Now to get the optimal result for mobile agents mobility the
principles involved in building genetic algorithm are applied.

• All key functional and non functional requirements had

their fitness initialised to zero
• Fitness function of the mobile agent is based on the

similarity of key requirements
• A key requirements, is randomly selected
• A sample of key requirements of size µ is selected from

the repository of requirements without replacement
• The score of each mobile agent is compared against the

selected requirement. The mobile agent with the highest
score had its score added to its fitness value. Fitness of
all other mobile agent remains unchanged.

• The mobile agents are returned to the mobile agent
population with the process repeated a number of times.

• Based on the fitness computed, a GA simulation is
carried out with crossover and mutation to evolve the
mobile agent population through one generation of
evolution.

• The process is then repeated from selection of key
requirements till convergence in the mobile agent
population.

In establishing whether optimal solution will be made up of
mobile agents with specialist mobility or generalist mobility
features and capabilities depends on the sample size µ (the
control parameter).

 STEPS FOR IMPLEMENTING
FITNESS FUNCTION

 Randomly create an initial population of mobile
agents m(0)

1. Compute the fitness function u(m) for each
individual mobile agent m in current population
m(t)

2. Define probability for selection p(m) for each
individual mobile agent in m(t), such that the
probability p(m) is equal to u(m)

3. Generate m (t + 1)
4. Select individual mobile agents using probability

m(t) producing new agents known as offspring via
crossover, mutation or reproduction.

 MOBILE AGENT MOBILITY
FITNESS FUNCTION

Let F be the function denoting key mobility requirements for
a mobile agent. f1 to f15are elements in the same set F.

f1 = Synchronization
f2 = Latency,
f3 = Abstraction
f4 = Polymorphism
f5 = Inheritance
f6 = Persistency
f7 = Calling
f8 = Invocation
f9 = Message Passing
f10 = Naming
f11 = Addressing
f12 = Encoding
f13 = Availability
f14 = Replication
f15 = Self Protective and Certified

 F(X) = (x1…..xn)
The fitness function u(m) = (x1…..xn)

Where u(m) = (1/e+x)2

The above expression represents a fitness function in an
inverse relationship to a fitness solution.

The fitness solution derived from the fitness function is
applied applied in the second of the four major phases thus;

1. Mobility requirement 2. Mobility analysis 3.
Mobility design and 4. Implementation of code.

See figure 2 for conceptual view of mobility model as part of
the generic methodology.

Figure 2: Mobility Model

CONCLUSIONS & FUTURE WORK

In this work we classified and modeled mobility
requirements using a fitness function derived from genetic
algorithm. The criteria for formulating the function has been
based on ; Timing requirements - Latency (response times)
and Synchronization , Behavioural requirements -
Polymorphism, Inheritance, Persistency, Calling, Invocation,
location, message passing; Addressing requirements –
Location, Naming and Encoding, Security requirements -
Availability, Self Protective, Fault tolerance, Replication and
Certification. The fitness function expressed will be
exploited in more detail as a bench mark in determining
whether a mobile agent satisfies key requirements for
exhibiting mobility on a game platform generic requirements
for distributed and mobility platforms.

REFERENCES

Brustoloni, J.C. 1991. "Autonomous Agents:
Characterization and Requirements." Carnegie Mellon
Technical Report CMU-CS-91-204, Pittsburgh: Carnegie
Mellon University

Bancroft M. and D. Al-Dabass 2004. “ A Combat Simulation
Aid for Dungeon and Dragons”. In Proceedings of 5th
Game-On International Conference, pp 60-65. Reading,UK.

Cubaleska, B. and M. Schneider 2002 “Detecting DoS
Attacks in Mobile Agent Systems and using Trust Policies
for their Prevention” , Policy Workshop, International
Worksop on policies for Distributed Systems and Networks
POLICY 2002: 198-201

Foster I., C. Kesselman , J.Nick , S.Tuecke 2002. “Grid
Services for Distributed System Integration Computer.”
IEEE, 35(6).

Fukutake H., Y. Okada and K. Niijima 2004. “ 3D Visual
Component based voice on input/output interfaces for
interactive graphic applications.” In Proceedings of 5th
Game-On International Conference, pp 20-24.

 Franklin S. and A. Graesser 1996. “it an Agent, or
just a Program?: A Taxonomy for Autonomous
Agents.” Proceedings of the Third International
Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, Institute for Intelligent
systems University of Memphis.

Galli D.L. 1999. “Distributed Operating Systems: Concepts
and Practice”. Prentice Hall, 1st Edition

Gavrilovska A., S. Kumar., S.Sundaragopalan., and K.
Schwan 2005. ``Platform Overlays: Enabling In-Network
Stream Processing in Large-scale Distributed Applications'',
In Proceedings of 15th International Workshop on Network
and Operating Systems Support for Digital Audio and Video,
NOSSDAV (Skamania, Washington, Jun 13-
15).Communications of the ACM : 158113987

Henning M. 1998 “ Binding, Migration, and Scalability in
CORBA.” Communications of the ACM, Vol. 41, No 10
(Oct.)

Holland J, "Adaptation in Natural and Artificial
Systems"; 1975

Jansen W. 2002. “ Intrusion Detection with Mobile Agents”.
Computer Communications, Special Issue on Intrusion
Detection Systems, vol. 25, num. 4, September.

Jennings N. R. 2000. "On Agent-Based Software
Engineering" Arti.ficial Intelligence Journal 117 (2) 277-
296.

Jennings N. R., K. Sycara and M. Wooldridge 1998. “A
Roadmap of Agent Research and Development”
International Journal of Autonomous Agents and Multi-
Agent Systems 1 (1) 7-38.

Melomey D, Williams G B, Imafidon C, Perryman R 2007.
11th International Conference on Computer GAMES: AI,
Animation, Mobile, Educational and Serious Games

Milojicic D., D. Kotz, D. Lange , C. Petrie, C. Rygaard 1999.
“Mobile agent applications” IEEE Concurrency (July to
September) pp 80-90

Mockapetris, P., K. Dunlap 1988 “Development of the
Domain Name System”. Communications of ACM SIGCOM,
Stanford, CA, pp. 123-133.

Neema S., J. Sztipanovits., G. Karsai. And K. Butts 2003.
“Constraint-BasedDesign-Space Exploration and Model.

Mobility
Requireme

Mobility
Design

Mobility
Analysis

Impleme
ntation

Synthesis.” Proceedings of Third International Conference
on Embedded Software (EMSOFT) , LNCS 2855, pp. 290-
305.
Overmars M. 2004. “Game Design in Education.” In
Proceedings of 5th Game-On International Conference, pp
9-18. Reading,UK.

Postel, J., C. Anderson, 1994. “White Pages Meeting
Report”, RFC 1588, (Feb.)

Roman, G.-C., G.P Picco, and A.L.Murphy, 2000. “Software
Engineering for Mobility: A Roadmap,”In Proceedings of
22nd International Conference on Software Engineering
Future of Software Engineering, A. Finkelstein (ed.), (invited
paper) pp. 241-258.

Simatic M., S. Craipeau, A. Beugnard, S. Chabidon, M-C
Legout, E. Gressier. “ Technical and Usage issues for
Multiplayer games”. In Proceedings of 5th Game-On
International Conference, pp 134-138. Reading,UK.

Smith, D. C., A. Cypher and J. Spohrer 1994, "KidSim:
Programming Agents Without a Programming Language,"
Communications of the ACM, 37, 7, 55-67

Spence D., J. Crowcroft,S. Hand. and T.Harris 2005.
“Location Based Placement of Whole Distributed Systems.”
In Proceedings of the ACM conference on Emerging
networking experiments and technologies. PP 124—134.

Thorn D., I. Palmer and E. Williams 2004. MMORG on
Mobile Devices? Considerations When designing distributed

Adventure games”. In Proceedings of 5th Game-On
International Conference, pp 150-154. Reading,UK.

Williams G.B 2000 “Technical Notes in RMI” Achival &
Unpubished Work

Williams G.B 2007a. “Artificial Intelligence” Existing &
Emering Techniques” Google 1st Edition

Williams G.B 2007b. “ Online Business Security Systems”.
Spinger , 1st Edition.

Wright T. 2004. “Naming Services in Multi-Agent Systems:
A Design for Agent-Based White Pages”. In Proceedings of
Third International Joint Conference on Autonomous Agents
and Multiagent Systems- AAMAS pp 1478-1479

Yeo, A., Ananda, A., Koh, E. 1993 “A Taxonomy of Issues
in Name Systems Design and Implementation”,
Communications of ACM SIGOPS Operating Systems
Review, New York, NY, July , pp. 4-18

Zeng X., Q.H. Mehdi and N.E. Gough 2004.
“Implementation of VRML and Java for Story Visualisation
Tasks”. In Proceedings of 5th Game-On International
Conference, pp 112-126. Reading,UK.

Modelling Mobile Agent Mobility in Virtual Learning Environment
(VLE) using Fitness function

Divina Melomey, Godfried Williams, Chris Imafidon, Roy Perryman

University of East London, School of Computing and Technology
Docklands Campus, United Kingdom,

E-mail: {divina,G.Williams,chris12, perryman }@uel.ac.uk

Abstract: Virtual learning Environments are driven by distributed systems. Effective
distributed systems communications requires intelligent mobility as a vehicle to enabling
seamless resource sharing and access to services. The nature of VLEs requires software tools
for managing and making learning enjoyable and less painstaking. Mobile agents enable
different software and services to collaborate in information sharing, adapt to new service
requirements, demonstrate cooperation in a system environment, however being independent
and autonomous. These requirements are essential in achieving mobility in VLEs. This work
presents a novel fitness function as a key feature of a generic software methodology for
modeling mobile agent mobility in VLEs.

Introduction
 Virtual Learning Environments (VLEs) are group of software used for managing and enhancing
learning electronically (Roach & Stiles, 1998). This facilities and functionality enables tutors, instructors and
students communicate online (Ginsburg, 1998). VLE should have the capabilities to enhance student learning
experience based on the requirements of the programme a student is enrolled hence enriching students learning
experience. Heaton-Shrestha, , Ediringha, Burke and Linsey (2005) also defined VLE as web-based software
products providing sets of internet tools to enable teaching materials to be managed. Pablo and Wallace (2001)
explained the VLE is not only dependent on the its accessibility, availability and the integration of the
technology for the benefits of students but rather on the willingness of tutors to embrace and use computers for
the delivery of course materials. Apart from VLE supporting teaching, learning and certain administrative
functions, it also has the ability to facilitate communications among learners (Booth & Hulten 2003). The modes
of communication are both asynchronous and synchronous. Again, VLE mode of delivery can be synchronous,
asynchronous and/or both (Chen, Li & Shyu, 2003). These forms of communications are emails, booking
appointments, negotiating assignment deadlines, social interactions with other students via blackboard learning.

 This paper reports on a study conducted to ascertain the requirement for developing Virtual Learning
Environments (VLEs) and how these needs are met using fitness function for modelling the solution to meet the
requirements and demands of such as system. The systems used for this study was University of East London
blackboard Learning System called UEL Plus. We realized that UEL Plus has multiple features to support
teaching and learning. UEL Plus provides an improved communication, access to resources and advanced
assessment capabilities. Our study focused fundamentally on the UEL Plus which part of VLE. The rest of the
paper is organized as follows: Section 2 will describe end user categories and section 3 will highlight the mobile
agents as a solution. Section 4 will introduce mobile agent fitness function and Section 5 will discusses the
mobility in VLE in section 6 draws conclusions.

2.0 User Categories
 We identified two main user groups for this study. They are front-end and back-end users. According
to Sampson, Karagiannidis, Schenone and Cardinali (2002) formal, vocational, life long and occasional learners
fall under the front end users category while individuals, software houses and other organization whose main
interest are developing management learning and virtual learning software. Basic functions and or task on a
VLEs are;

1. Authentication and authorization
2. Editing and saving personal settings
3. Navigation through the site
4. Using available communication tools
5. Building course content
6. Assessment
7. File Upload

Front end users need these basic functions to be user friendly and easily accessible. This form of interactions
between users and the software is at the heart of e-learning development.

mailto:%7d@uel.ac.uk

 Back end users uses information and input from the front end users to map up these functions of the
front end users to the solution provided by back end users with respect to developing knowledge repositories
and resources.

3.0 Mobile Agents an Alternative Solution
 Our experiences in evaluating UEL Plus identified certain areas where an agent could be used in
modeling interactions and communications during the systems development as we believe that it will
considerably improve performance and front end user experiences of UEL Plus. The areas where we had
feedback relating to front end user experiences were:

 Uploading of files
 Maintaining files and folders on VLE
 Using communication tools for creating asynchronous discussion, emails and chat
 Monitoring and tracking progress of students
 Other emerging technologies that could be added on

Based on these feedbacks, we proposed a solution into the modelling of mobility in mobile agent for VLEs. Gutl
et al. (2004) identified three main objectives as an innovative solution in e-learning systems. These objectives
were;

 Personalized retrieval of information,
 Presentation and management of relevant learning material in a timely fashion; ability to support

teaching and learning paradigms and lastly
 An improvement on knowledge with respect to front end users behaviour in human to computer

interaction.

In the following section we will show how we used the fitness function to model solutions for the critical areas
of applications that require mobility such as VLEs.

4.0 MOBILITY FITNESS FUNCTION
Mobility fitness function is a function derived from an algorithm, based on the concept of survival of the fittest
in genetics. In this section we defined elements for the mobility requirement for the mobile agent. The list is not
exhaustive but only a representation for the fitness function.

Let F be the function denoting key mobility requirements for a mobile agent.
Let f1 to f15 be elements in the same set F.

f1 = Synchronization
f2 = Latency
f3 = Abstraction
f4 = Polymorphism
f5 = Inheritance
f6 = Persistency
f7 = Calling
f8 = Invocation
f9 = Message Passing
f10 = Naming
f11 = Addressing
f12 = Encoding
f13 = Availability
f14 = Replication
f15 = Self Protective and Certified

Melomey, Williams, Imafidon, & Perryman (2008) established the implementation of generic mobility fitness
function based on the following steps:

 Initial population should be randomly created for mobile agent m(0)
 the fitness function U(m) should be computed for each individual mobile agent m in current

population m(t)
 probability for selection p(m) for each individual mobile agent in m(t) should be defined, such that

the probability p(m) is equal to U(m)
 m (t + 1) generated

 Selection of individual mobile agents using probability m(t) to produce new agents which is known
as offspring via crossover, mutation or reproduction

Let F(X) = (x1…..xn)

The fitness function U (m) = (x1…..xn)

Where U (m) = (1/e+x) 2

 n
U (m) = m (t) +∑ m (t+1) f(x)
 x=1
The above expression represents a fitness function in an inverse relationship to a fitness solution.

The fitness solution derived from the fitness function is applied in the second of the four major phases thus;

1. Mobility requirement
2. Mobility analysis
3. Mobility design and
4. Implementation of code.

4.1 Fitness Function for VLE
 In the following subsection we will show how we used our fitness function to provide solution for VLE
issues identified in section 2.
Addressing

There are certain elements that need to be present for an entity say agent to be able to travel from its
platform of origin Hpi to a host platform Vpn. These requirements are required to perform address resolution
prior to process migration. Three elements that need to be present are:
Receiver identification (RID)
Packet identification (PID)
Transmission Frequency of physical layer (TF)

Let R be the set requirement RID, PID, TF

Let H be the set header fields that contains control information
 L be length of the packet
 p be payload type
 s be sequence numbers
 i be integrity check information

R ⊆ H

Each computing platform is identified by global assigned address. A process will be able to migrate if
it contains a header field carrying control information. The address resolution client which is the host platform
needs to verify the integrity, authenticity and the logical address for resolving information sent across different
platforms.

A platform hosting each mobile agent need to ensure mobile agents on its platform has a valid server
and address resolution is also valid. Authorisation of available address to be used should be authorised by
servers in order to ensure validity of the address.

Replication

High availability of services is paramount to mobile distributed computing as it enhances performance.
It is a technique that is used to maintain copies of data in geographically dispersed environment and also as a
back up in the event of loss of data or a systems failure (Coulouris, Dollimore, & Kindberg, 2005). The fitness
of a replica will be measured in real time by the function of the differences in elapsed time. This ensures
consistency and correctness at anytime for events. This represented as:

F (t): ft+1 – ft-1
 Where ft+1 is the current time replica server was accessed
 ft-1 last known time a replica was accessed

Remote Method Invocation (RMI)
 A method transparently invoked from process A to process B across a network as if it were a local
method is termed as remote method invocation (Coulouris et al.2005; Williams 2000). This holds true for object
oriented language rather than a procedural language. Invoking a method remotely involves two processes:

1. a reference to the remote object
2. a registry to store remote references

Let n be the number of identified elements for solution X
 xi be elements in X

 f(xi) the fitness of xi

The fitness of F can then be defined as

 n
F (X) = 1/n ∑ f (xi); n>0
 i=1

We define the average fitness above as average fitness for the elements in the mobility requirements as
identified.

F(x): Hpi  Vpn

Persistency

The Object Management Group (OMG) service stipulates a typical structure for persistency. This
should consist of persistent ID, persistent object, persistent object manager, persistent data store and protocol. A
persistent object or entity that need to travel from Home platform (Hp1) to visit (n) number of visiting platform
(Vpn) require a reference ID, a dynamic state that lives the duration of the process and a persistent state that will
be used for reconstruction of the dynamic state in case of a failure. These conditions qualified for an entity to be
mobile in an environment.

Naming services

The Sun Microsystem naming services system administration guide defines naming services as a
central repository that computers, end users, and applications communicate together across the network. In this
work, we also define name services as integrated services that manages all name information and hierarchies
and also as an autonomous feature for transparency and persistency of entities (Melomey et al. 2007). Its
function is to provide basic function and mapping of name to address on the network. In order to get the remote
computer’s address, the program must request assistance from say Hp1 from the domain name services (DNS)
database running on that platform. DNS is a naming service which provides identification for computers on the
internet . The name server uses Hp1 as part of the request to find IP address of the remote computer. The name
server returns this IP address to the Hp1 only if the host name is in its database. It uses a logical tree to resolve
names as part of the service

Synchronization

Synchronization is important to maintain consistency of processes from Hp to Vpn at any given time
(Coulouris et al.2005). The concept of clock synchronization deals with the understanding of ordering of events
occurrence as produced by current processes. These events occur between message sender and message
recipient for example from process A to process B. Clock synchronization is required to provide mechanism that
can assign numbers sequentially based on agreement between sending and receiving processes. Several
algorithms were developed over past decades. Lamport (1978) introduced the concept of an event happening
before another in distributed environment. The notion is illustrated between event a and b; ab where a
“happens before” b. Another algorithm developed by Lamport and Meilliar-Smith (1985) require a reliable
connected network to handle fault. Christian’s algorithm measures in local time the time at which a message is
sent (T0) and the time at which a message is received (T1). This is done by issuing a remote procedure call to a
time server to obtain the time. The delay in the network is then estimated as (T1- T0)/2 (Christian, 1989). Hence
the new time can be said to be the time returned by the server and in addition to time elapsed by the server to
generate the timestamp. This is expressed by
Time new = Timeserver + (T1- T0)/2. There is also the Berkeley algorithm which was developed by Gusella and
Zatti (1989). Berkeley algorithm was based on the assumption that any computer on the network has an

accurate time which can be used for synchronizing time between processes. This assumption may introduce
delays and losses depending on the network and also due to the distributed nature in accessing the network and
the processing capabilities on the learning system.
Let S = Synchronization
 Hp = visiting platform
 Vp = visiting platform
 Vpn = n visiting platform
 Pn = n number of processes

The timescale for measuring Δs is important where S which synchronisation is a derivative of the f(x) which is
Δf/Δs. Measuring the short time for n processes is dependent on how fast changes occur in the system. The time
range between which n process leaves Hp and arrives at Vpn can be expressed as:

 t+ Δt
F(x)  Δt = ∫ f(s) dt where the interval is [t, t+Δt]
 t
F(x) is a complex system during its evolution; the system may change its own F

5.0 Discussion

In our study using UEL Plus, we analyzed feedback, identified student lecturer issues and evaluated
mobility solutions for back-end user category. Solutions we designed using mobile agent oriented approach
addressed synchronization, remote method invocation, addressing and naming services, persistency and
replication of data. We examined the persistency of data and how they were mapped into the objects. We
enabled the mobile entity to have an internal mechanism which acts as a persistency layer such that it will
encapsulate database access from other objects. In this manner, data persist after any form of interruption and
interaction occurs during the course. A fitness function for modelling and testing features appropriate for
persistency of objects is critical in such as environment.

Front end users are more interested in up to date, timely and current state of databases. This implies

that concurrent data access and update of repositories should be synchronized. This is more crucial when it
comes to coursework submission for group projects, where continuous and joints updates are required from
individual team members when approaching deadlines. Synchronization then becomes an issue for the back end
users to deal with in order to ensure consistency of data, processes and clock synchronization of various remote
devices connected to the network infrastructure. Our work indicates that there is a connection between
replication of data at various server locations with respect to change in time among primary and secondary
servers. This also applies to resolution of names and addresses.

We had the understanding that front-end users were looking for a unified point of authentication for

ensuring coherent and an organized teaching and learning resource platform. Consistent and coordinated naming
of objects and identification of processes underpins the need for metadata as a means of providing effective
mobility. These needs are met based on the conditions that must be met for remote method or data invocation’s
fitness function criteria. The fitness function measures the suitability for elements mobility in the VLE.

6.0 Conclusion

In this paper, we presented an overview of VLE and user categorization. We also presented fitness
function for mobility as alternative solution to traditional approaches in eliciting requirements for implementing
mobility in VLEs. This mobility fitness function was further illustrated by applying it for mobility element
requirements specification. This was further narrowed down to individual mobility requirement mapped unto
their fitness solution applicable to the development of VLE and it was used to provide a solution tailored for
simulating effective mobility in UEL Plus.

Currently, work is being done to integrate this fitness function as part of a generic methodology for
capturing mobility in mobile agent based systems and applications. This when concluded will provide a standard
methodology for building applications where mobile agents are seen as an alternative approach to information
systems development.

References

Booth, S., & Hulten, M. (2003). Opening dimension of variation: An empirical study of learning in a web-based
discussion. Instructional Science Vol.36 (No.1&2), 65-86.

Chen, S.-C., Li, S.-T., & Shyu, M.-L. (2003). Model-Based System Development for Asynchronous Distance
Learning. International Journal of Distance Education Technologies, Vol.1 (No. 4), 39-54.

Christian, F. (1989). A Probabilistic Approach to Distributed Clock Synchronization. Distributed Computing
Vol. 3, 146-158

Coulouris, G., Dollimore, J., & Kindberg, T. (2005). Distributed Systems, Concepts and Design (4th ed.):
Addison-Wesley Publishers.

Ginsburg, L. (1998). In Technology, Basic Skills, and Adult Education: Getting Ready and Moving Forward.
Information Series (No. 372).

Gusella, R., Zatti, S. (1989). The Accuracy of ClocK Synchronization Achieved by TEMPO in Berkeley UNIX
4.3BSD.IEEE on Software Engineering, Vl.15 (No.7).

Gütl, C., Pivec, M., Trummer, C., García-Barrios, V. M., Mödritscher, F., (2005). AdeLE (Adaptive e-Learning
with Eye-Tracking): Theoretical Background, System Architecture and Application Scenarios.
European Journal of Open, Distance and E-Learning (EURODL)(2005/II).

Heaton-Shrestha, C., Ediringha, P., Burke, L., & Linsey, T. (2005). Introducing a VLE into campus-based
undergraduate teaching: Staff Perspectives on its impact on teaching. International Journal of
Educational Research Vol. 43(6), 670-386.

Lamport, L (1978). Time, Clock and Ordering of Events in Distributed Systems. Communications of ACM
Vol21(No. 7).

Lamport, L & Melliar-Smith, P. M.(1985). Synchronizing Clocks in the Presence of Faults. Journal of ACM
Vol.32(No. 1), 52-78.

Melomey, D., Williams, G., Imafidon, C., & Perryman, R. (2008). A Fitness Function for Capturing Mobile
Agent Mobility on Games Platform Paper presented at the 12th International Conference on Computer
Games: AI, Animation, Mobile, Interactive Multimedia & Serious Games. , Louisville, Kentucky,
USA.

Melomey, D., Williams, G., & Imafidon, C. (2007). Mobility Requirements on Game Platforms: An Agent
Perspective Paper presented at the 11th International Conference on Computer Games: AI, Animation,
Mobile, Interactive Multimedia & Serious Games. , University of La Rochelle, La Rochelle, France.

Object Management Group (2000). Persistence Object Service Stand-alone document.
 Pajo, K., & Wallace, C. (2001). Barriers to the uptake of web-based technology by university teachers. Journal

of Distance Education Vol. 16(No.1), 70-84.
Roach, M. P., & Stiles, M. J (1998). COSE - A Virtual Learning Environment founded on a Holistic Pedagogic

Approach. CTI: Software for Engineering Education (No.14).
Sampson, D., Karagiannidis, C., Andrea, S., & Fabrizio, C. (2002). Knowledge-on-Demand in e-Learning and

e-Working Settings. Educational Technology and Society, Vol.5 (No. 2), 107-112.
Sun Microsystem, Inc. (2003). System Administration Guide: Naming and Directory Services (DNS, NIS,

LDAP).
Williams, G.B. (2000). Technical Notes in RMI. Archival and Unpublished.

Implementing e-learning
and Web 2.0 innovation

Didactical scenarios and practical
implications

David Durkee, Stephen Brant, Pete Nevin, Annette Odell,
Godfried Williams, Divina Melomey, Hedley Roberts,
Chris Imafidon, Roy Perryman and Anna Lopes

Abstract: This paper examines the practical implications for teachers
wishing to incorporate e-learning and Web 2.0 technologies into their
pedagogy. The authors concentrate on applied didactical scenarios and
the impacts of e-learning innovations. The methods applied stem from
grounded theory and action research. An analytical framework was
derived by inverting problem-based learning (PBL). Three practices at the
University of East London (UEL) are examined in the context of this
framework, using, respectively, a formal virtual learning environment,
Facebook and Skype. The paper’s findings have implications and provide
guidance for those planning and implementing online collaboration and
learning in education and industry.

Keywords: e-learning; Web 2.0; communities of practice; Facebook;
Skype; VLE

The authors are with the University of East London. David Durkee is in the Department of
International Development: 3rd World, School of Social Sciences, Media and Cultural
Studies (SSMCS). Stephen Brant is with UELconnect. Pete Nevin and Hedley Roberts are
in the School of Architecture and Visual Arts (AVA). Godfried Williams, Divina Morley, Chris
Imafidon and Roy Perryman are with the School of Computing, Information Technology
and Engineering (CITE). Anna Lopes is in the Department of Anthropology, SSMCS.
Contact: David Durkee, International Development: 3rd World Programme, University of
East London, 2–4 University Way, London E16 2RD, UK. E-mail: durkee@uel.ac.uk.

Overcoming barriers to lifelong learning requires
innovation in practice to keep pace with technological
and social realities. Where computing has become more
ubiquitous, some groups have managed to successfully
implement e-learning and Web 2.0 technologies. While
qualified innovation and best practice prove essential
elements in advancing the quality and delivery of
learning, as Valcke and DeWever (2006, p 40) observe,
few studies define the precise role of information

technologies (IT) in education (p 40). To that end, in
this paper we describe a series of didactical scenarios
with an applied role for IT.

In many contexts, a virtual learning environment
(VLE) successfully acts as a one-stop-shop for students’
online study needs. In theory, a university’s VLE can be
used to facilitate the professional development of
students. However, various inhibiting factors appear to
limit the potential of the VLE in several learning and

INDUSTRY & HIGHER EDUCATION Vol 23, No 4, August 2009, pp 293–300

teaching scenarios. First, the VLE does not easily allow
anyone but those in the development and delivery team
to upload information or resources. Although the
concept of Web 2.0 has been prevalent in recent years,
whereby students and teachers alike can construct
knowledge and meaning together, only a few UK
universities have effectively implemented their VLEs in
this manner. This means that in most cases students do
not have a means of disseminating knowledge and
information among themselves or of contributing to the
bank of learning resources. Second, most VLEs are
closed internal systems that limit access to students and
teachers who are registered at the institute. Many
courses require students to produce work in various
media. The ability to share work-in-progress or
examples of completed work (either with tutors or with
other students) is therefore something that technology
needs to facilitate. In addition, students’ future
employers will require a facility with technology as an
employability skill: the development of professional
skills is thus partially achieved through the integrated
experience of online publishing. A VLE obviously
requires intentional log-in: publishing within a VLE
consequently restricts the number of people who may
see what has been published. Third, there is a problem
with the frequency of student log-ins to VLEs. With a
VLE, or even a university e-mail account, students may
log in once a week, or even just once a semester, if at
all. Thus using the VLE as a communication tool may
miss the mark, because students may not get
information at the right time. Obviously, it can be
argued that students, as part of their education, should
be able to choose when and where they spend their time.
Moreover, if they want the resources and they are
available, surely they will get them. However, the
question remains, where are the students and what are
they doing?

In this paper, we assess how teachers can implement
IT tools effectively to allow students to work and learn
together actively as part of their preparation for their
future careers. Two of the three practices described in
this paper adopt IT tools frequently used by students
(Facebook and Skype) to complement the classroom
experience. In our analysis, the most pervasive didactic
scenarios have one of two key features: (a) the
connection of remote students to resources (whether
course materials, a teacher or even an event to facilitate
participation); and (b) the involvement of a remote
expert. The first scenario is characterized by the fact
that the students are studying outside the traditional
classroom and are enabled to connect to learning
resources. Elsewhere in this special issue of Industry
and Higher Education, examples are provided of this
scenario in the cases of prospective students who follow

an online preparatory course before the start of their
academic programme using Web videoconferencing
(Giesbers et al, 2009), professionals who undertake
part-time study using Wikis (McLuckie et al, 2009), and
a learning programme designed to enhance analytical
skills using discussion forums (Rehm, 2009).

Conversely, the second scenario has the students in
the classroom and the resources (the expert, a CEO,
research papers) at a remote location. Here, the tutor
may use the Internet to connect to the resources.
However, if they are sitting at computers in the lesson,
the students may also access those resources online. The
defining characteristic of the second scenario is the
remoteness of the resources, while the students and
teacher are often in the same location, such as a
classroom. This scenario seems to be often considered
but less often implemented, and yet it affords a
significant opportunity to enhance educational delivery
through the use of remote resources, which may be an
expert on a live feed, or podcasts and online videos.
Thus the two generic scenarios are differentiated by the
physical presence or non-physical presence of resources,
students and teachers.

Methods
In this paper, we apply grounded theory (Dick, 2005), a
research methodology based on action research. An
investigation of best practices at the University of East
London (UEL) identified various factors that could be
incorporated into an analytical framework based on an
inversion of problem-based learning. These factors
related to cognitive organization/framing, authentic
problems, student autonomy/team choice and common
interests, prior knowledge/misconceptions, and teacher
support/demonstrations. Taking these factors into
account, we were able to calibrate the range of best
practices and practical innovation in evidence. In
essence, the range extended from the use of the official
virtual learning environment, UELPlus, to the use of
social networks such as Facebook and Skype.

In the case of Facebook, students at UEL’s School of
Architecture and Visual Arts (AVA) used the site in
cooperation with the teacher. Three advantages of using
Facebook in class are:

• it allows a more varied group to become involved,
including those normally ‘locked out’ of a VLE
because they have no password – such as alumni,
practitioners and potential employers;

• it allows students to ‘publish’ work both for critical
appraisal and as part of their professional
development, providing input for external
examiners; and

Implementing e-learning and Web 2.0 innovation

INDUSTRY & HIGHER EDUCATION August 2009294

• both tutors and students can post information on
relevant events (such as exhibitions).

In the case of Skype, a presenter (an external expert) had
to be at a conference in Geneva while teaching at UEL
(Durkee and Brant, 2008). By using Skype in a live
learning laboratory setting, the presenter could be
physically present at Geneva and at the same time teach
his class online using synchronous communication
tools. In other words, through Internet technologies for
sending live audio and video, the teacher was able
participate in person.

In the VLE case, we concentrated on the technical
aspects relating to the architecture of virtual learning
environments – in particular on areas of innovation
related to mobility and trust. Our approach adopts the
frequently-used Community of Inquiry model proposed
by Garrison et al (2001) as a template and tool. This
distinguishes three elements: ‘cognitive presence’,
‘social presence’ and ‘teaching presence’. To these we
add a fourth, ‘technical barriers’. One should note that
the priority here is not the use of Facebook or more
generally Web 2.0 technology, but rather the selection
of the technology that will best foster a community of
practice. This point applies regardless of whether the
didactical scenario features remote students or remote
resources. If the right technology is chosen for
interactions among participants, students will become
engaged in a community of practice, and the
opportunities for learning in that community appear to
increase as a function of the number of its members.

Vignettes
Cognitive presence

Our work shows that best practice with regard to
cognitive presence must recognize the degree to which
participants are able to ‘construct meaning through
sustained communication’ (Garrison et al, 2001). The
ability to construct meaning from interaction may be
easier for those in the classroom, who are working
together in a real-time environment. We found that
blended learning environments provided an excellent
means of improving cognitive certainty and maximizing
the benefits of technology for e-learning applications.

The Skype case. Bromme et al (2005) observe that it is
more difficult to establish common ground in an
asynchronous than in a synchronous activity. How, then,
can lifelong learners and their teachers learn together
effectively when separated geographically? Using Skype
or Instant Messenger may help learners to communicate
effectively with the instructor despite geographical
distance. Most assume that, as a communication tool,
Skype can provide a synchronicity for discourse.

However, because of the way Skype was used in the
UEL setting, students could not immediately react when
they had a question, as they would have been able to do
in a one-to-one conversation. This raises an important
point for those interested in connecting to remote
resources: a remote lecturer or presentation is for the
most part asynchronous for the students. While the
video feed may be live, and happening in real time, if
students cannot ask their questions as and when they
occur to them, the communication becomes
asynchronous. Thus, in the case of the remote
presentation using Skype, this dynamic was lost to a
certain extent. Where the speaker normally cues the
audience, in this case the audience actually became
increasingly silent due to the affective pauses. The live
learning lab achieved more than simple technology
demonstration or offering a remote presentation: the
audience was able to experience the physical and
psychological reality of this form of learning. For
example, the room was very quiet until the time came
for questions, and the participants could thus understand
how such an attentive silence imparts a certain degree of
psychological stress that is seldom discussed when
considering technologies for distance applications. In
this way, the students experienced a visual example of
the possibilities and limits of IT for knowledge
acquisition in distance learning environments.

We conclude, like Bromme et al, (2005, p 95), that
paralinguistics (intonation, pitch, hesitation, gesture,
etc), missing in such a learning environment, are very
important in establishing an understanding and
promoting interaction between audience and presenter.
Thus when auditory yes/no cues or such gestures as
nods are absent, the presenter must be more careful in
designing the structure of the communication; otherwise
audience response will be lacking. It is important to
concentrate on enabling alternative means of interaction
– such as circulating a wireless keyboard for typing
questions.

The Facebook case. The use of Web 2.0 technologies,
and social networking sites in particular, originated at
UEL from feedback in one of its annual Student
Satisfaction Surveys. The point was made in the 2007
survey that communication systems could be improved
to effect, in particular, a rapid dissemination of
information in the AVA community. Many courses in
AVA require students to produce work in various
media, and the ability to share work-in-progress or
examples of completed work (with either tutors or other
students) is therefore something that technology needs
to facilitate. In addition, a facility with technology is an
important employability skill in this field. Professional
skills development is therefore partly achieved through

Implementing e-learning and Web 2.0 innovation

INDUSTRY & HIGHER EDUCATION August 2009 295

integrated experiences of online publishing (as in the
case study below). The decision to experiment with
social networking software (SNS), and with Facebook
in particular, was partly based on the fact that many
students are familiar with the software and frequently
log on to it anyway (Sclater, 2008). This was confirmed
by research done at the School. Of 226 students who
completed a survey about technologies with which they
were familiar before joining AVA, 70 knew about
VLEs, but only 31 had used one. On the other hand, 202
knew about Facebook and 165 were currently using it.
All 37 respondents studying for a BA in Graphic
Design, for example, knew about Facebook, and 35
were already using it. The need for support in
developing expertise in an unfamiliar technology was
therefore considerably reduced and the technology itself
was not a barrier to easy communication.

Interestingly, the use of Facebook offers the tutor an
opportunity for valuable synchronous communication,
because he or she is meeting the students in ‘their’
environment. It could be argued that this teaching
approach mimics the patterns of students’ typical
interaction, and provides a certain type of auto-
synchrony to the discourse that might be absent when a
presenter comes in live on a Skype feed. The synchrony
results from the act of being present. Students can see
who else is there, and can turn to a friend or ask a
question of the tutor as and when they need. However,
because many of the current tools in the environment
limit the type of interaction to text, a certain amount of
asynchrony cannot be avoided. Nonetheless, one tutor
noted:

‘Facebook has been a revelation. I believe it certainly
wouldn’t be possible to achieve the same result in
any other way. It would take so much administration
and labour, but with Facebook the administration is
minimal. Integration is a key word. I can organize all
the blogs they have set up around the group, I can
post information or resources, I can chat at any time
and deal with possible problems in a direct and
human way.’

Furthermore, since this is a student environment, the
participating tutor appears more as a peer and less as the
expert.

Social presence

According to Tu and McIsaac (2002), social presence is
the interplay of two variables: intimacy and immediacy.
They contend that ‘intimacy’ may be established
through haptics, such as eye contact and body posturing.
If something reduces the comfort level, argue Tu and
McIsaac, people will change their behaviour to return to

an ‘optimal comfort level’ so that the interaction can
continue. ‘Immediacy’, they explain, refers not to the
physical but to the psychological perception of
closeness that results from verbal and non-verbal cues.

It was found that immediacy relates directly to the
perception of the tutor’s effectiveness. Where the tutor
is present and available, the students respond in kind.
Similarly, frustration and other negative sentiments
concerning on the tutor’s efficacy are closely associated
with a lack of immediacy (Tu and McIsaac, 2002). In
terms of best practice, therefore, the goal is to select
those technologies that provide an opportunity for the
tutor to be present without needing to be active all the
time. It is important to bear in mind that it is the
perception of immediacy, and not its actuality, that
yields the effect. Thus a good technological interface
can improve social presence through immediacy.

The Facebook case. Figure 1 presents extracts from
communications between a tutor and two of his
students. The extracts illustrate how social interaction
occurred using Facebook. By reacting quickly to the

Figure 1. Communications between tutor and students in
the Facebook case.

Implementing e-learning and Web 2.0 innovation

INDUSTRY & HIGHER EDUCATION August 2009296

concerns of the students, the tutor established social
presence. In the second extract, by integrating social and
teaching elements, the tutor tried to help the student to
continue working on his assignment despite his personal
problems.

Teacher presence

De Laat et al (2006) examine the nature of online
teaching in a networked learning community. They
focus on how Internet technologies can promote
collaboration and cooperative connections in at least
three dimensions: ‘learner / learner’; ‘learner /
teacher’; and ‘community / resources’. Their research
points to changing roles for both teachers and students.
In their vision, the teacher becomes a guide on the side
(p 2). Students assign roles and schedule activities
instead of simply exploring or regurgitating content to
complete a task. Since it has already been shown that
the teacher must engineer the environment to get the
most from it, even if this is simply considering where
the resources are located and how the students will
access them, there will still be a teacher presence.
Goodyear (2002) found that ‘teaching online requires
new skills for the teacher as well as a different attitude
towards teaching or being a teacher’. One of the greatest
challenges for the teacher is to demonstrate the
relevance of the media (Goodyear, 2002, p 4). Blended
learning helps greatly with this. Mixed learning
overcomes the online danger of miscommunication, as
people can discuss points face to face on a regular basis.
In this approach, the online communication becomes a
continuation and an extension of a discourse that is
already underway. Moreover, since it supports and
supplements the discourse, rather than taking
responsibility for the primary dialogue, the online
dynamic can be much freer.

The Skype case. In the Skype case, the teacher played a
dominant role as he was directly instructing his class at
the beginning of the session. The experience of the live
learning lab confirmed that two key factors to consider
in facilitating equality and fairness are the role of the
technology and the method allowed for interventions.
Had a keyboard been used at the end of the presentation,
the question and answer session might have been more
substantial. While less can be done in this environment
in terms of looking at an individual or being able to hear
those who are talking at the back of class, the teacher
must take an active role in making the learning
environment one in which students can make
themselves heard and can feel at ease to practise what
they are learning.

The Facebook case. A tutor may be perceived
differently in a social networking context and therefore

needs to manage his or her presence carefully. From the
extracts in Figure 1, it is clear that the tutor reacted in
an open and constructive manner, as recommended by
De Laat et al (2006) and Anderson et al (2001). He also
reacted promptly and adopted a coaching style. This
approach is also evident in the extracts presented in
Figure 2 – in this case, a student is concerned about
copyright laws.

Figures 1 and 2 provide examples of how, using
Facebook, students take part in a community of
practice: they become part of something bigger than just
their class or their specific university studies. Their
actions and interactions on the site help to nurture an
approach and attitude conducive to lifelong learning.
They may interact with their fellow students or with
people with whom they will be working. The examples
show that presence need not be conceptualized only for
the present course. Rather, tutors should think of the

Figure 2. Communication between students and tutor on
copyright using Facebook.

Implementing e-learning and Web 2.0 innovation

INDUSTRY & HIGHER EDUCATION August 2009 297

personal development of their students and aim to
facilitate their transition from learner to practitioner.

Technical barriers
The VLE case. Valcke and DeWever (2006), by
concentrating on the process, move the discussion from
whether to use IT to what type of IT should be used. In
so doing, they effect a shift in the focus of analysis and
investigation. The basic functions of VLEs are:
authentication and authorization; editing and saving
personal settings; navigation through the site. The
‘fitness function’ approach applied to the VLE controls
the amount of complexity for the front-end user. The
fitness variable can be adjusted to lower the cognitive
entry barrier for new students or to allow for more
devices to be used for accessing the VLE. Thus the
fitness function pre-selects the most basic level of skills
that the students will need to operate and use the
system. Thus, while new students may or may not have
the computer skills required to use the VLE when they
arrive at the university, the considerable simplification
produced by the fitness function means that most will
find little difficulty in accessing learning materials from
the outset. That simplification also decreases the number
of students who will need a remedial course before they
can make use of the system.

However, it is important to note that the fitness
function, in its simplification role, does not guarantee
that all of the system’s functionality will be accessible.
Given the existence of the function, tutors and
administrators may expect that their students will be
able to use the VLE with no problems and access all the
materials presented there, but this is not the case – there
may be a considerable skills gap in some students which
will leave them unable to use the system to its full
potential. As a point of best practice, therefore,
activities should be built into first-year modules to
introduce students to the specific IT skills.

Front-end users expect databases to be up-to-date.
Data access and the update of repositories should
therefore be synchronized. This is especially important
with regard to coursework submission for group
projects, in which continuous and joint updates are
required from individual team members when
approaching deadlines. Synchronization then becomes
an issue for the back-end users, who must ensure
consistency of data, processes and the clock
synchronization of various remote devices connected
to the network infrastructure.

We noted that front-end users were looking for a
unified point of authentication for ensuring coherence
and an organized teaching and learning resource
platform. Consistent and coordinated naming of objects
and identification of processes underpin the need for

metadata as a means of providing effective mobility.
Currently, work is being done to integrate the fitness
function as part of a generic methodology for capturing
mobility in mobile agent based systems and
applications. This will provide a standard methodology
for building applications in which mobile agents are an
alternative approach to information systems development.

As a point of best practice, our findings underscore
the need for a single sign-on or point of entry, as this
optimizes added-value transactions and ensures
friendliness in a VLE. The importance attributed to user
credentials cannot be underestimated, and the idea of
federation may be extended by including service
providers as well as end users. There is a strong case for
service providers to have to submit credentials for
verification and mutual authentication. Multi-factor
authentication using a federated approach addresses key
concerns such as user friendliness, usability, access
to data and concurrency issues, performance, and
migration and mobility among e-learners.

Facebook case. An alternative approach, as applied in
the Facebook case, involves a system selected according
to the designers’ perceptions of what communication
methods the students are using. By choosing a system
which most students are already using, technical barriers
can be diminished significantly. There are no problems
with availability if Facebook is used: it just runs and is
available to most students from virtually anywhere
(especially now that it has a mobile version which
makes it easily accessible from such devices as mobile
phones). If a system is used in which students simply
are present, pushing information is no longer an issue.

Discussion
The application of technology in teaching can
significantly enhance learning and understanding.
However, the use of IT tools is circumscribed by the
inherent benefits, limits and even risks of each
technology. Technology can thus be both enabler and
limiter at the same time. Furthermore, while many
educators understand this paradox in theory, their
practical experience is lacking. Moreover, little has been
published with regard to practical didactical scenarios.
A key factor underpinning the success of using IT to
support learners is the role of the technology in
promoting learning and in the delivery of content. Both
the Skype and Facebook cases highlight the value of
participatory learning. The audience and the students
learn through the interaction. Thus it is important to
underscore the significance of participation as a learning
device. The participants become practitioners through
presence.

Implementing e-learning and Web 2.0 innovation

INDUSTRY & HIGHER EDUCATION August 2009298

There is a more generic problem with regard to
cognitive presence and the quality of the information
available. In an environment like the Internet, in which
anyone can publish, anyone can be an expert. This
means that searching for reliable information can be like
looking for a needle in a haystack: while true expert
information is available, it needs to be sought out and
distinguished from the mass of less expert information.
There can also be problem of too much information
available, leaving the searcher at or beyond saturation
point. The sense of overload can be compounded by
information that lacks structure or organization. In fact,
all these potential problems can occur when using a
system like Facebook for pedagogical practice. The
environment can become too ‘rich’.

In the future, it would interesting to code the
student–student, teacher–student and student–teacher
dialogues using content analysis (Rourke et al, 2001) to
assess the length and type of explanation. This would
help us to ascertain whether there were any assumed a
priori differences in the knowledge taken for granted or
the style of communication. Such analysis could be
especially helpful in understanding the role of
community membership and in answering the question
of Bromme et al (2005, p 98), ‘What change does the
expert make to his explanations in order to adapt them
to the recipient’s knowledge?’

Conclusions
Little has been done in the field of distance learning and
e-learning with regard to juxtaposing practice and
research. A tendency appears in the literature for
research to advance and inform. Continuing down that
path didactically will shape the future known with the
present known. In other words, the system will produce
more and more of the same, albeit perhaps better
validated. Studies are designed and teaching is observed.
The ‘model of community inquiry’ proposed by Garrison
et al (2001), with our addition of technical barriers, has
proved helpful in identifying points of best practice. The
fact that it could be applied to three very different projects
is particularly relevant and demonstrates clearly the
importance of presence when considering the practical
implications of e-learning and Web 2.0 technologies.

As has been argued, a critical factor is the choice of
an appropriate technology, as it this will directly
influence all forms of presence. Where it is not possible
to choose, then it is important to consider the design
with great care. How can the delivery be engineered to
provide the least degree of non-cognitive uncertainty
and the highest level of immediacy?

With regard to the teachers, even if their role has
changed, it is still vital that they are present and that

they ensure equality and fairness in the learning
environment. The greatest technical barrier is not
making use of the technology. When correctly applied,
the technology can overcome many barriers and enable
a paradigm of learning anytime and anywhere, with
substantial benefits to learners.

References
Anderson, T., Rourke, L., Garisson, D., and Archer, W. (2001),

‘Assessing teaching presence in computer conferencing’,
JALN, Vol 5, No 2, pp 1–17.

Bromme, R., Hesse, F., and Spada, H., eds (2005), Barriers and
Biases in Computer-Mediated Knowledge Communication
and How They May Be Overcome, Computer-Supported
Collaborative Learning Series, Vol 5, Springer, New York.

Bromme, R., Jucks, R., and Runde, A. (2005), ‘Barriers and
biases in computer-mediated expert–layperson
communication: an overview and insights into the field of
medical advice’, in Bromme, R., Hesse, F., and Spada, H.,
eds (2005), Barriers and Biases in Computer-Mediated
Knowledge Communication and How They May Be
Overcome, Computer-Supported Collaborative Learning
Series, Vol 5, Springer, New York, pp 89–118.

De Laat, M., Lally, V., Lipponen, L., and Simons, R. (2007),
‘Online teaching in networked learning communities: a
multi-method approach to studying the role of the teacher’,
Instructional Science, Vol 35, No 3, pp 257–286.

Dick, B. (2005), ‘Grounded theory: a thumbnail sketch’, Version
1.07w, Resource Papers in Action Research,
www.scu.edu.au/schools/gcm/ar/arp/grounded.html,
accessed 18 March 2009.

Durkee, D., and Brant, S. (2008), ‘Enhancing teaching through
technology: challenges and possibilities’, Live Learning
Laboratory UEL Learning and Teaching Conference, London,
2008.

Garrison, D., Anderson, T., and Archer, W. (2001), ‘Critical
inquiry in a text-based environment: computer conferencing
in higher education’, The Internet and Higher Education,
Vol 2, No 2–3, pp 87–105.

Giesbers, B., Rienties, B., Gijselaers, W.H., Segers, M., and
Tempelaar, D.T. (2009), ‘Social presence, Web
videoconferencing and learning in virtual teams’, Industry
and Higher Education, Vol 23, No 4, pp 301–309.

Goodyear, P. (2002), ‘Online learning and teaching in the arts
and humanities: reflecting on purposes and design’, in
Chambers, E.A., and Lack, K., eds (2002), Online
Conferencing in the Arts and Humanities, Institute of
Educational Technology, Open University, Milton Keynes,
pp 1–15.

McLuckie, J., Naulty, M., Luchoomun, D., and Wahl, H. (2009),
‘Scottish and Austrian perspectives of delivering a Master’s:
from paper to virtual and from individual to collaborative’,
Industry and Higher Education, Vol 23, No 4, pp 311–318.

Rehm, M. (2009). ‘Unified in learning – separated by space:
case study of a global learning programme’, Industry and
Higher Education, Vol 23, No 4, pp 331–341.

Rourke, L., Anderson, T., Garrison, D., and Archer, W. (2001),
‘Methodological issues in the content analysis of computer
conference transcripts’, International Journal of Artificial
Intelligence in Education, http://aied.inf.ed.ac.uk/members01/
archive/vol_12/rourke/full.html.

Sclater, N. (2008), ‘Web 2.0, personal learning environments,
and the future of learning management systems’, Research
Bulletin No 13, EDUCAUSE Center for Applied Research
Boulder, CO, www.educause.edu/ecar.

Schober, M.F., and Clark, H.H. (1989), ‘Understanding by
addressees and overhearers’, Cognitive Psychology, Vol 21,
pp 211–232.

Implementing e-learning and Web 2.0 innovation

INDUSTRY & HIGHER EDUCATION August 2009 299

Tu, C., and McIssac, M. (2002), ‘The relationship of social
presence and interaction in online classes’, American
Journal of Distance Education, Vol 16, No 3,
pp 131–150.

Valcke, M., and De Wever, B. (2006), ‘Information and
communication technologies in higher education: evidence-
based practices in medical education’, Medical Teacher,
No 28, pp 40–48.

Implementing e-learning and Web 2.0 innovation

INDUSTRY & HIGHER EDUCATION August 2009300

	2012_DivinaMelomey_MPhil_Thesis
	DIVINA A. MELOMEY
	A thesis submitted in partial fulfillment
	Research undertaken in the
	Acknowledgements
	I would like to thank my supervisory team for their support in my research.
	I would also like to acknowledge the funding I received from The Allan and Nesta Charitable Trust(ANFCT), Grant reference LPG/sw/Ferguson for sponsoring part of my final year Ph.D tuition for 2007/8. I am also grateful to Letty Glaister for facilitati...
	I would like to express my appreciation to Dr. Godfried Williams (University of Gloucestershire) for his interest, expertise, motivation and support in shaping and developing my understanding of research. My gratitude goes to my parents Andrew and Eli...
	Finally, to everyone that supported and encouraged, I say thank you.
	Abstract
	Table of Contents
	List of Tables
	CHAPTER 1
	Introduction
	1.2 Research Aim and Objectives
	Aim
	CHAPTER 2
	Literature Review
	2.1 Introduction
	2.2 Background Theory
	2.3 Definitions of Software Agent
	2.4.1 Agent Unified Modelling Language
	2.4.2 Agent Modelling Language
	2.4.3 Specification Language for Agent-Based Systems
	2.4.4 Caste-Centric Agent Modelling Language and Environment
	2.4.5 Autonomy Specification Language
	2.4.6 Other Extensions to UML
	There have been attempts to model mobility of the mobile agent by extending UML 2.0 which is known as Agent UML (AUML). The AUML extensions are activity and deployment diagrams.
	2.4.7 AUML Deployment Diagram
	2.4.8 AUML Activity Diagram Extensions
	2.5 Existing Multi-Agent Approaches
	2.5.1 Multi-agent Systems Engineering (MaSE) Methodology
	2.5.2 GAIA Methodology
	Strengths of GAIA Methodology
	2.5.3 TROPOS Approach
	2.5.4 Prometheus Methodology
	Limitations of Prometheus Methodology
	2.6 Mobile Agent
	2.7 Traditional Software Development Process Models
	2.7.1 Waterfall Model
	2.7.2 Rapid Prototyping Model
	2.7.3 Evolutionary and Iterative Model
	2.7.4 Incremental Model
	2.7.5 Spiral Model
	2.8 Discussion
	2.9 Summary
	CHAPTER 3
	Research Methodology
	3.3 Case Studies
	3.3.1 Data Collection and Analysis Process
	3.4 Simulation
	Simulation has been used in research for many decades to study the use of models and the complex relationships that exist between them. Simulation techniques have been used in many research environments to aid in decision making, to gain more insight ...
	In this research, MATLAB was used as a platform for simulation and testing because it offers a tried and tested scientific and engineering computing software environment. It has been shown to offer a reliable high speed programming environment for a n...
	3.5 Summary
	CHAPTER 4
	4.1 Introduction
	4.2.2 Mobility Concepts and Design Requirement Considerations
	Agents
	Stationary agent
	Mobile agent
	Platform
	Home platform
	This is the location from where an agent originates (Jansen and Karygiannis, 1999).
	Host platform
	Task
	Goal
	Permission(s)
	Interactive Events
	Mobility Itinerary
	Zone
	4.5.1 Mobility Requirement Elicitation
	4.5.2 Fitness Classification
	Figure 4.3: Mobility Fitness Classification Model
	Addressing
	Replication
	Remote Method Invocation
	be elements in
	Persistency
	Naming services
	Synchronisation
	Let S be Synchronisation
	The timescale for measuring change in synchronisation is s important where s
	Let
	4.5.2.2 Binomial Coefficient Application to Requirements
	Table 4.1: Generic and mobility requirements
	4.5.2.3 Concepts underlying GA Problem Formulation:
	Figure 4.4: Genetic Algorithm Flowchart
	4.5.3 Code Transformation
	Mobility Platform Layer/ API
	Distributed Platform/Environment
	Figure 4.5: Mobility design layer diagram
	4.5.4 Mobility Implementation
	4.7 Simulation of Fitness Function Using GA Concepts
	4.7.1 Objectives of Simulation
	The aim of the simulation is to test the fitness of each mobility requirement variable in a population using the Genetic Algorithm (GA) concepts. The fitness functions evaluated were synchronisation, invocation and persistency. The aim of the evaluati...
	The criteria for assessment were;
	best individuals in relation to best and mean fitness
	objective function value in relation to the number of iterations
	objective function value with approximation and boundaries between 0 and1
	4.7.2 Overview of Simulation
	Figure 4.6 GA Optmization tool
	MathWorks, http://www.mathworks.co.uk/help/toolbox/gads/f6453.html (Accessed 27/01/12)
	4.8 Summary
	CHAPTER 5
	Simulation Testing and Evaluation
	5.1 Introduction
	The GA tool which utilises GA principles was used to simulate the mobility variables selection in a given population using two solvers which were modelled mathematically using mobility requirement parameters. These mathematical models were further tra...
	5.2 Mobility Fitness Functions Testing
	The simulation process involves the following steps:
	The first step involves selecting the GA from a list of ‘solvers’ and specifying the ‘fitness function’, ‘constraints’ (if there are any) and the ‘number of variables’.
	The second is to decide which ‘options’ are appropriate for the simulation. The options include ‘population’, ‘fitness scaling’, ‘selection’, ‘reproduction’, ‘mutation’, ‘crossover’ and ‘plot functions’.
	The third step is to start the simulation while observing the results.
	5.2.1 Step 1: Problem Setup
	In this research, the ‘solver’ is the GA and the ‘fitness function’ will be ‘@mobilityRMI’, ‘@mobilitysync’ and ‘@rastriginsfcn’ while the ‘number of variables’ is set at 20 which represents the number of mobility requirements. These are represented a...
	Figure 5.1: MobilityRMI function simulation setup
	Figure.5.2: Mobilitysync problem setup
	Figure 5.3: Rastrigin’s problem setup
	5.2.2 Step 2: Function Options for Problem Setup
	The next step is to specify the type and size of population as indicated in Figure 5.4.
	Figure.5.4: Population options
	Figure 5.5: GA Tool GUI for genetic operator options
	5.2.3 Step 3: Monitoring and Observation
	5.3 Fitness Function Evaluation
	5.3.1 Test 1: Mobility Remote Method Invocation
	The simulation was defined as @mobilityRMI fitness function as shown in Figures 5.1 to 5.5.
	F = quad('sin(z)', i, 1-i);
	5.3.3 Test 3: Rastrigin’s Function
	Figure 5.6: ‘@mobilityRMI’ results
	Figure 5.8 ‘@mobilitysync’ function option
	Figure 5.9: ‘@mobilitysync’ function plot
	Figure 5.10: ‘@mobilitysync’ function results
	Figure 5.11: ‘@rastriginsfcn’ simulation results
	Figure 5.12: ‘@rastriginsfcn’ simulation function plot
	5.5 Evaluation of Simulation Results
	This section provides a comparative analysis of all the results from the simulations and testing conducted using the fitness function solvers ‘@mobilitysync’, ‘@mobilityRMI’ and ‘@rastriginsfcn’ to evaluate the fitness of the individual variables in a...
	For each of the functions the evaluation was run at least 10 times and the average values were chosen. Table 5.1 indicates the ‘final point co-ordinates’ at which the simulation terminates for each of the variables for fitness functions ‘@mobilitysync...
	Table 5.1: Final Point Co-ordinates
	Table 5.1 enables all the evaluation functions or fitness to be compared with the Rastrigin’s function which was used to benchmark performance. At this ‘final point coordinates’ the ‘minimum objective value’ for fitness functions ‘@mobilitysync’, ‘@mo...
	Figure 5.13: ‘@mobilitysync’ plot function
	Figure 5.14: ‘@mobilityRMI’ plot function
	Figure 5.15: ‘@rastriginsfcn’ plot function
	5.8 Summary
	CHAPTER 6
	Conclusions and Future Work
	6.1 Summary
	6.2 Delphi Study
	References
	% Uncomment the following line to preserve the X-limits of the axes
	% Uncomment the following line to preserve the X-limits of the axes

	1
	2.2
	Abstract
	2. State of the art and Limitations of existing approaches and modelling languages:
	3. Building an Ontology for Modelling Agent Mobility
	As mentioned and proved above, there is no single approach to guide the designer to reason about mobility from conception of an idea to its completion. An approach for modelling mobility issues of agent-based systems should have a set of modelling too...
	Below we present a list of concepts (along with their definition) that we have found are necessary to be included in a complete ontology for modelling mobile agent systems.
	3.1 Mobility Concepts
	To overcome some of the limitations identified in the earlier section, this paper therefore presents a new and enhanced set of concepts to model the mobility of agents. Due to lack of space we present only brief definitions of concepts. These concepts...
	This is an agent capable of moving among different platforms.
	Platform
	4. Conclusion and future work

	3.3
	4.4
	Franklin S. and A. Graesser 1996. “It an Agent, or just a Program?: A Taxonomy for Autonomous Agents.” Proceedings of the Third International Workshop on Agent Theories, Architectures, and Languages, Springer-Verlag, Institute for Intelligent syste...

	5.5
	STEPS FOR IMPLEMENTING FITNESS FUNCTION
	Randomly create an initial population of mobile agents m(0)
	MOBILE AGENT MOBILITY FITNESS FUNCTION
	F(X) = (x1…..xn)
	Franklin S. and A. Graesser 1996. “it an Agent, or just a Program?: A Taxonomy for Autonomous Agents.” Proceedings of the Third International Workshop on Agent Theories, Architectures, and Languages, Springer-Verlag, Institute for Intelligent syste...

	6.6
	Introduction
	2.0 User Categories
	4.0 MOBILITY FITNESS FUNCTION
	Melomey, Williams, Imafidon, & Perryman (2008) established the implementation of generic mobility fitness function based on the following steps:
	Initial population should be randomly created for mobile agent m(0)
	Selection of individual mobile agents using probability m(t) to produce new agents which is known as offspring via crossover, mutation or reproduction
	Let F(X) = (x1…..xn)
	4.1 Fitness Function for VLE

	Synchronization
	5.0 Discussion
	In our study using UEL Plus, we analyzed feedback, identified student lecturer issues and evaluated mobility solutions for back-end user category. Solutions we designed using mobile agent oriented approach addressed synchronization, remote method invo...
	Front end users are more interested in up to date, timely and current state of databases. This implies that concurrent data access and update of repositories should be synchronized. This is more crucial when it comes to coursework submission for group...
	We had the understanding that front-end users were looking for a unified point of authentication for ensuring coherent and an organized teaching and learning resource platform. Consistent and coordinated naming of objects and identification of process...
	6.0 Conclusion
	References

	7th
	8th

