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Abstract— Although driving and making use of a mobile phone is illegal, hands-free (HF) mobile phones 
are permitted. However, making use of a mobile phone hands-free causes cognitive distraction because 
the driver's awareness is split between the driving engagement and the use of the phone. This research 
study investigated the cognitive consequences of talking on mobile phones HF on drivers in real-time, by 
utilising novel machine learning methods on drivers’ physiological indicators, such as blood pressure (BP) 
and heart rate (HR). HR and BP data were used to measure the cognitive impact. An innovative model was 
developed that classified drivers’ cognitive function due to talking on a HF mobile phone in actual time 
while driving and addressed the entire driver age categories as a collective group. Each participant 
performed two numerical tasks which were distinguished by their level of complexity during driving and 
reversing into a bay. The findings indicate that the subjects' HR and BP increased under phone conditions 
and exceeded their HR and BP under no-phone conditions. Using a Feedforward neural network, the 
participants’ cognitive performance was classified, and 97%  precision was reached. Qualitative findings 
indicate that the subjects were subjected to considerable cognitive impacts while completing the tasks. 
This study stands out from related research by evaluating drivers' cognitive load during real-time driving, 
capturing their natural behaviour and significantly enhancing the external validity and generalisability of 
the results. A key innovation of this research is the application of advanced machine learning (ML) 
techniques, providing a deeper and more precise analysis of the cognitive repercussions of hands-free 
phone use while driving. By leveraging cutting-edge computing technologies, this work offers valuable 
insights without overlooking potential limitations. The findings contribute to public safety by informing 
policymakers, particularly those in the UK Department of Transport, about the hazards posed by hands-
free phone conversations during driving. This research provides crucial evidence that can shape future 
regulations and improve road safety measures. Policymakers, traffic safety experts, and researchers in 
transportation and human behaviour can benefit from these findings.  
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I. INTRODUCTION 

Considering their capacity to induce disinterest and cognitive disorientation, mobile phones are prohibited 
while driving [1]. As a substitute, drivers may use hands-free (HF) mobile phones [1,2]. Nonetheless, 
should the preceding vehicle slow down during a pivotal moment in the conversation, there is a likelihood 
of impact. This is because the upcoming driver might fail to react in time. The blood pressure and heart 
rate of adult drivers who experience this are higher [3,4,5]. 
 
An increase in physiological signals is directly correlated with an increase in task difficulty. When three 
levels of task difficulty were randomly ordered during driving, [6] found a near linear increase in heart 
rate. The findings demonstrate that heart rate is sensitive to incremental changes in cognitive workload. 
Moreover, [6] reported that basic cardiovascular measures (heart rate and blood pressure) increase with 
increasing cognitive workload. When task demands increased, such as entering a traffic circle, heart rate 
increased, and decreased as task demands decreased, such as driving on a two-lane highway. Furthermore, 
other studies have found that when task challenge increases, HR and BP increase, resulting in an increase 
in workload [3,4]. Therefore, HR and BP were chosen as physiological measures in this study to estimate 
cognitive function. 
 
Considering this, the authors propose that if HR and BP are higher during phone usage compared to during 
no-phone usage, the participant is loaded cognitively. Cognitive load refers to the level of details the brain 
can process at once, thus the driver may subsequently be disoriented [7,8,9]. Conversely, the subject is not 
loaded cognitively if the HR and BP during phone usage are lower than during no-phone usage. A proven 
approach to ascertaining the physiological effects resulting from cognitive workload is the use of the 
OMRON M7 Intelii IT Blood BP/ HR Monitoring device. With this device one can measure BP and HR 
to determine the effects of talking on HF mobile phone. It is clinically validated and generates accurate 
results regardless of where it is placed on the upper arm. In addition, it has Bluetooth capability that 
transmits all measurements to physicians using mobile phone software [10]. 
 
The present study applied two approaches. A qualitative approach was adopted based on research into 
cognitive load among drivers. It was the qualitative study responses that produced empirical findings about 
the cognitive function of the drivers, which were utilised to corroborate the ML technique results, thus 
validating the hypothesis. Experimental evidence indicates that engaging in mobile phones while driving 
contributes to unsafe driving, which is largely caused by cognitive, rather than physical distractions. 
Empirical data shows that hands-free phones are also linked to unsafe driving, like hand-held phones [11]. 
As in [11], this study employed a qualitative survey. Earlier investigations have primarily depended on 
average HR data analysis or on average HR and BP from one experiment to determine the study's outcomes 
[3,4,5,12]. Using physiological indicators of drivers' workload (HR and BP) and ML techniques, the 
present research has advanced beyond this level by classifying the cognitive function of drivers and 
recommending safety measures. 
 
Previous studies have used BP and HR to measure effort in task engagement. In a simulator, [4] researched 
the implications of talking on a mobile phone versus not talking on a phone on BP and HR. Results showed 
that talking on a mobile phone while driving increased BP and HR considerably, compared to driving 
without a mobile phone. Talking on a mobile phone as a secondary task from [4] is like previous work 
from [5,12]. Researchers have investigated the prevalence of mobile phone usage according to type, in 
terms of placing as well as receiving calls, based on the growing number of people using hands-free mobile 
phones. According to the results of the investigation, handheld users and hands-free users differed 
significantly. Among hands-free users, there was a higher percentage of drivers that admitted placing as 
well as receiving calls (at least once daily), with 43 percent placing and 47 percent receiving calls, 
compared to 17% and 21% for handheld users. Considering this, more research is needed to comprehend 
hands-free mobile phone usage [2]. 
 



The results following a much more thorough investigation into related research indicate that numerous 
papers such as [3,5,11,13] have extensively utilised driving simulation trials to investigate driver behaviour 
when using mobile phones. The present study used real-time driving (field research) to reflect participants' 
behaviour as it would occur naturally. Therefore, a practical recommendation can be derived immediately 
from that situation [14]. A critical examination of published studies indicates that previous research 
evaluating the generated impact from talking on mobile phones hands-free has not explored machine 
learning and has also not explored drivers of all age categories in a single unit [2,4,11,15]. Considering 
the points mentioned in this paragraph, it remains unclear how physiological markers such as BP and HR 
determine the cognitive function of drivers of all ages as one unit, when driving in actual time and talking 
on a HF mobile phone. Filling in this gap is the purpose of this study. By using all driver age groups as a 
complete cohort, an advanced model was created which categorised the cognitive function of drivers who 
talked on a HF mobile phone during driving in actual time. 
 
This study is inspired to strive to develop an Artificial neural network (ANN) that will not only predict the 
consequences of talking on HF mobile phones on driving performance but additionally identify the effects 
of additional cognitive stressors on drivers of all age groups when driving in actual time while talking on 
mobile phones hands-free. Biological nervous systems are like artificial neural networks. These artificial 
networks can be taught to provide results since they are composed of linked networks of neurons in a 
comparable manner to the human neural system. 3 types of characteristics describe them: first, the 
interactions among the different neuron layers. Second, the training procedure that adjusts network 
weights. Lastly, the process that transforms the measured input of a neuron into its output. The ANN 
algorithm is based on the principle that inputs are fed into hidden nodes, and their accumulated sums are 
summed up. As a result, the output of the concealed node is subsequently swayed in a particular order 
[16,17].  

Based on this research design, the classifier that produces the highest performance is the focus of the 
analysis. Therefore, we have limited the discussion of the algorithms' mathematical operands to artificial 
neural networks only. The accuracy of ANNs improves over time during learning from training data. Using 
these algorithms, data can be classified at high speeds once they have been fine-tuned for accuracy. 
Equation 1 below represents the basic mathematical operation of ANN.  

 
Y = W𝒳+ B 
Where 𝒳 is the input data 
Y = output 
W = weight of the neurons 
B = bias 
 

As the algorithm guesses the parameters 'W' and 'B', it measures the accuracy of the guess, which is 
sometimes called the loss. This data is used to make another guess. As this is repeated, the loss decreases 
progressively. Over time, the algorithm learns how to correctly match ′𝒳′  to 'Y'. Depending on the input, 
the parameters 'W' and 'B' can be changed or tweaked to achieve the desired result [16,17].  

This contribution employed a neural network to classify drivers' cognitive function based on physiological 
markers of driver workload (BP and HR) in 2 classes (1 or 0) through a multilevel perceptron neural 
network, such that a "0" stipulates that the driver is loaded cognitively and a "1" specify that the driver is 
not loaded cognitively. The authors achieved this by measuring the blood pressure and heart rate of drivers 
while talking on a hands-free mobile phone, collecting and analysing the data, building a network model 
using Python, and training, testing, and validating the data. 

 



II. RELATED WORK    

Speaking on a mobile phone hands-free while driving reduces drivers' alertness on the road. While driving, 
driving tasks and mobile phone use compete for drivers' attention [12]. During driving, the task may be 
disrupted. Consequently, the motorist behind may not be capable of reacting in a timely manner should 
the preceding vehicle slow down while the conversation is in progress [13]. The crash risk ratio did not 
differ between handheld and hands-free mobile phones, according to [18], indicating that the high accident 
risk ratio is primarily caused by conversational distraction, rather than physical distractions from holding 
up the phone or dialling. Mobile phone usage by type, for placing and receiving calls, has increased as 
more people use hands-free mobile phones. The results of the investigation showed remarkable differences 
between handheld and hands-free users. Drivers who made and answered calls (once a day or more) were 
more likely to be hands-free users, with forty-three percent of hands-free users placing calls and forty-
seven percent receiving calls, as opposed to seventeen percent and twenty-one percent respectively, for 
handheld users. The results indicate that further investigation needs to be conducted on mobile phone use 
while hands-free [2]. The effects of talking on a HF mobile phone have been investigated using blood 
pressure and heart rate measurements [4]. 

[19] describes a short-term cardiovascular strategy to assess drivers' mental workload using data from a 
driving simulator study. After a short increase in task demands (forty seconds), heart rate and blood 
pressure were measured as indicators of mental effort. The driving simulator study involved 15 drivers 
participating in six 1.5-hour sessions. To increase workload demands, short segments of fog (40 seconds) 
were used to induce two traffic density levels (7.5-minute segments). Systolic blood pressure increased as 
traffic density increased, and blood pressure variability decreased. When driving in fog under low traffic 
conditions, heart rate variability and blood pressure variability measures decreased, indicating an increased 
effort. The described short-term measures can be used to indicate cardiovascular reactivity as a function 
of workload. 

In the past three decades, machine learning research and applications have grown rapidly. In connection 
with accelerated technological developments, sophisticated ML algorithms, as well as the emergence of 
immense amounts of data, ML has advanced enormously. In this study, we investigate an effective, 
reliable, and feasible way to measure physiological results of HF mobile phone usage, based on HR and 
BP signals. Much work has been done on BP and HR evaluation, feature retrieval, and classification. BP 
and HR data classification continues to be largely reliant on feature retrieval. In recent years, machine 
learning methods for heart rate estimation and blood pressure prediction have been growing in popularity 
[20]. 

[20] carried out an extensive assessment of characteristic retrieval strategies in BP prediction that utilised 
photoplethysmography (PPG) indices. The characteristic retrieval strategies have been subsequently split 
between 3 separate categories to evaluate the relevance of every category. Category A consists of time-
based characteristics; Category B offers statistical characteristic retrieval, and category C offers frequency 
domain-based characteristics. The evaluation incorporated a few ML algorithms and measured each one's 
effectiveness based on various viewpoints. The research findings from 2 openly accessible datasets 
indicate that the features corresponding to category A were better dependable compared with other 
strategies for BP estimation. The study determined that deep learning models delivered more effective 
outcomes than all conventional machine learning techniques. Based on the findings of this case study, 
experts will be able to select the most suitable and effective approach to characteristic extraction and 
machine learning algorithms.    

A machine learning technique named classification tree was used to predict increased blood pressure based 
on body mass index (BMI), waist circumference (WC), hip circumference (HC), and waist hip ratio 
(WHR). Among 400 college students aged 16-63 (56.3% women), 400 data were collected. In the training 
group, 15 trees were calculated for each sex, using different numbers and combinations of predictors. It 
was found that BMI, WC, and WHR are the combinations that produce the best prediction for women, 
with the lowest deviation (87.42) and misclassification (.19). In the training set, the model's specificity 
was 81.22 percent, and sensitivity was 80.86 percent while in the test sample it was 65.15 percent and 



45.65 percent, respectively. With the lowest deviation (57.25) and misclassification (.16), BMI, WC, HC, 
and WHC were the best predictors for men. In the training set, this model had a sensitivity of 72% and a 
specificity of 86.25%, whereas in the test set, it had a sensitivity of 58.38% and a specificity of 69.70%. 
In terms of predictive power, the classification tree analysis outperformed the traditional logistic regression 
method. [21]. 

According to a new study, correlated variables (body mass index, age, exercise, alcohol, smoke level, etc.) 
were used to predict the systolic blood pressure using machine learning techniques, specifically artificial 
neural networks. Data was split into two parts, eighty percent for training the machine and twenty percent 
for testing its performance. The prediction system was constructed and validated using back-propagation 
neural networks and radial basis function networks. A backpropagation neural network is used to predict 
the absolute difference between the measured and predicted value of systolic blood pressure under 10mm 
Hg based on a data set with 498 participants. The probability value for men is 51.9% and for women it is 
52.5%. Based on the same input variables and network status, these values are 51.8% and 49.9% for men 
and women. As a result of this novel method of predicting systolic blood pressure, young and middle-aged 
people who don't measure their blood pressure regularly may receive early warnings of problems. In 
addition, due to daily fluctuations, isolated blood pressure measurement may not be very accurate. Medical 
staff can use this predictor as another reference value. According to the experimental results, artificial 
neural networks are suitable for modeling and predicting systolic blood pressure [22]. 

The importance of monitoring blood pressure continuously cannot be overstated; nonetheless, the 
traditional cuff BP monitoring methods are cumbersome for users. With ML algorithms, a cuff-less, non-
invasive, and continuous system for measuring blood pressure was proposed using a 
photoplethysmography (PPG) signal and demographic features. The feature extraction process was 
performed on 219 PPG signals. Time, frequency, and time-frequency properties of PPG signals were 
analysed. For diastolic blood pressure (DBP) and systolic blood pressure (SBP), each regression model 
was selected. The Relief feature selection algorithm and Gaussian process regression (GPR) outperform 
other algorithms in determining DBP and SBP, respectively. The ML model can be implemented in 
hardware systems to continuously monitor blood pressure and avoid any critical health conditions caused 
by sudden changes. [23]. 

To monitor and predict HR based on wearable sensor (accelerometer)-generated data, it is essential to 
analyse data analytics and machine learning. Therefore, this study explored various robust data-driven 
models, such as linear regression, support vector regression, autoregressive integrated moving average 
(ARIMA), k-nearest neighbor (KNN) regression, random forest regression, decision tree regression, and 
long short-term memory recurrent neural network algorithm. The accelerometer's univariant heart rate 
time-series data from healthy people can be used to make future HR predictions using a recurrent neural 
network algorithm. Under different durations, the models were evaluated. Based on a very recently 
collected data set, the results demonstrate that an ARIMA model with linear regression and walk-forward 
validation is effective for predicting heart rate for all durations and other models for durations longer than 
one minute. According to the results of this study, accelerometer data analytics can be used to predict 
future HR more accurately [24]. 

To determine which machine learning technique is most suitable in classifying fatal heart rate signals, a 
study focused on the most adopted and effective machine learning techniques, including artificial neural 
networks, support vector machines, extreme learning machines, radial basis function networks, and 
random forests. By applying the above-mentioned machine learning approaches, fatal heart rate 
measurements were classified as normal or hypoxic. To evaluate the success of the classifiers, confusion 
matrix and performance metrics were employed. Despite all machine learning approaches delivering good 
results, artificial neural networks yielded the best results with 99.73% sensitivity and 97.94% specificity. 
According to the study results, artificial neural networks outperform other algorithms [25]. 



A further literature survey of research in machine learning by this study, has unfolded some noteworthy 
algorithms which are typically utilised for evaluation and prediction. The notable algorithms include 
Artificial Neural Networks, random forest, Bayesian modelling, K-means clustering, KNN, and SVM 
[26,27,28,29]. For regression and classification analysis, Support Vector Machines (SVM) are very 
reliable and efficient. These models are supervised learning models. SVMs can also perform non-linear 
classification by employing the kernel trick, which involves projecting their inputs into high-dimensional 
feature spaces. Essentially, it draws a line separating classes. The margins are drawn in a way that 
diminishes the space separating the classes and the margins, thus reducing ambiguity in categorization. 
This approach is commonly adopted given that it has a high level of accuracy and uses minimal processing 
power [26]. 

The decision tree (DT) is typically utilised as a nonlinear classifier. The algorithm is also quick and easy 
to use when it comes to classifying and training large amounts of data.  In the form of a tree, a decision 
tree illustrates choices and their outcomes. Graph nodes indicate choices or events, and graph edges 
indicate conditions or decision rules. There are nodes and branches in every tree. An attribute is depicted 
by a node, and a value is depicted by a branch [26]. 

ML algorithms such as K-nearest neighbours (KNN) are often extensively implemented in supervised 
learning for addressing classification and regression tasks. Apart from functioning on relatively small 
amounts of data at a reasonable speed, the algorithm is also simple to implement and comprehend. In the 
KNN approach, an item is categorised according to the collective vote of its closest K-neighbors. Based 
on this technique, items are classified in relation to their closest K-neighbors, ranking them in the top 
popular group. As a training dataset, an entire dataset is utilised [27]. In a study, the mental workload of 
each subject was classified based on the HR variability (HRV) metric. A K-nearest neighbor method 
achieved an average classification accuracy of 98.77%. The highest average classification accuracy 
(80.56%) was achieved using HRV signals from 5 subjects for training and one subject for testing. The 
results of this study may improve operators' safety and well-being by analysing HRV signals that are 
indicators of mental workload in various subjects [30]. 

As opposed to SVMs or Decision Trees, Logistic Regression incorporates probability, and it can be 
adjusted online to incorporate new data easily (via gradient descent). As it returns probabilities, 
classification thresholds can be easily adjusted. It is possible to substitute the logistic model for 
discriminant analysis. There is no assumption about the structure of the independent variables, and there 
is no linear relationship between the predictors and target variables. Nonlinear effects can be handled by 
it. Nevertheless, reliable results require a large sample size [27]. 

ANN are one of the most efficient tools for data exploration and evaluation [28]. Feedforward neural 
networks are robust and massive deep learning models. Three layers of neurons are fused together; the 
input layer, the hidden layer, and the output layer. Using convolutional neural networks (CNNs), [31] 
separated heart sound signals into abnormal and normal without ECGs. According to the experimental 
findings, the developed CNN model has greater classification precision, better classification capability, 
and an elevated F-score, than the backpropagation neural network blood pressure model. A 99.01% 
classification precision rate is also achieved by the enhanced CNN.   

The present investigation explores heart rate and blood pressure as physiological markers of cognitive 
load. More task burden increases heart rate and blood pressure readings, making heart rate and blood 
pressure considered as one of the widely researched cognitive load indices [13,32]. The heart rate and 
blood pressure of the subjects in phone mode will be contrasted with the heart rate and blood pressure of 
the subjects in no-phone mode to measure the subjects' cognitive function. Employing data from heart rate 
and BP, the present research centred on classification of drivers’ cognitive load using ML. 

It is expected that the subjects' HR and BP will be higher for phone condition than for no-phone condition 
[33]. Therefore, the following hypothesis was proposed: "When a participant's HR and BP are higher in 
phone mode than in no-phone mode, the participant is viewed as cognitively loaded, culminating in poor 
performance. In contrast, the participant is not cognitively loaded. 



III. METHODOLOGY  

 
ANN, SVM, Logistic Regression, Decision tree, KNN and Random Forest ML techniques were applied 
to the data from blood pressure and heart rate signals. 
 

A.  Subject Selection  

Healthy drivers in the age groups of young (17–39), older (40–69), and elderly (70 and over) made up the 
participants. Sixteen subjects took part. Nonetheless, the five subjects' data were excluded due to technical 
problems encountered during the testing procedures. A sum of 214 simulated data points was produced as 
well as employed in this research [34]. This total also contains data from eleven subjects: 6 females and 
five males. The subjects' ages varied from 18 to 89 years, with a standard deviation of 16.8 and a mean 
age of 42.9. The contributors supplied their free and informed consent. Each participant completed two 
tasks, one simple and one difficult. Participants also completed questionnaires outlining their 
individualised perspectives on workload. The questionnaire asked about the age, gender, and driving 
experience level of the driver such as elderly, experienced or novice.  

Each item on the survey form reflects a weighted percentage value, with 0% being the lowest and 100% 
being the greatest. These boxes represent participants’ self-reported cognitive load. Following the 
experiment, each participant answered the questionnaire by checking the box that, in their opinion, best 
captures the effect of cognitive load based on their perception throughout the research (where '0' denotes 
no load and '100' denotes maximum load) [35,36]. 

B. Experiment  Protocol 

Using the Omron blood pressure monitor, the authors took data during control tasks, simple tasks, and 
difficult tasks. The subjects' BP and HR were recorded with this device. Bay parking in reverse with no 
phone use is the control task. Before starting the control task, participants' baseline HR and BP were 
taken. On completion of the control task and within the experimental time frame, new measurements of 
BP and HR were taken [4,32]. Reversing into the bay while on the phone is the phone task. The phone 
task is divided into 2 segments: a simple task (task 1) and a difficult task (task 2). One trial per task for 
everyone. The following is a simple task procedure: The investigator turns on the phone's power knob. 
The subject initiates an audio call with the word “Experiment”. The phone acknowledges as well as rings 
that number connected to “Experiment”. A previously taped message plays, thus: “Count from 50 up to 
200”. The subject answers the message while he or she drives to the bay and parks there. In the case of 
difficult tasks, a similar procedure is used, except using this instruction: “Count backwards from 100, 
taking away 3 each time”. 

The hypothesis for this study was formulated by concentrating on the progression of task complexity from 
simple to difficult tasks throughout the examination, thus allowing a thorough investigation of how drivers' 
performance changed with an increase in task difficulty. We therefore did not use task randomisation. A 
standardised procedure was used during which the research protocol was kept constant [37,38]. To ensure 
reliable results, all aspects of the protocol were kept the same. The authors ensured all subjects had no 
previous information about the tasks before the testing began to reduce any likelihood of order effects. To 
avoid anticipation, each experimental session had only one participant. Fig. 1 and fig. 2 shows the test site 
entrance and test site car park, while fig. 3 and fig. 4 shows driving in traffic and reverse parking in the 
test site car park. 

 
C. Data collection and Data Description  

For this study, data collection entails measuring and analysing variables of interest, such as blood pressure 
and heart rate, in a systematic way that allows testing hypotheses and evaluating results. To get HR and 
BP data, an OMRON M7 Intelii IT BP Sensor was utilised. The capability of Bluetooth is another 
advantage. Like mobile phones, it requires pairing for them to connect. "OMRON Connect" is the 



designation of the application. With the aid of phone holders, two mobile phones were mounted on the 
dashboard of the research car. One was used to video the experimental route (Samsung galaxy A12) while 
the other was used for talking hands-free (Samsung galaxy A52s 5G). The Omron blood pressure/heart 
rate measurer was connected to the experimental research phone via Bluetooth thus: The Bluetooth of the 
phone was turned on via settings and the Omron blood pressure/heart rate measurer was selected from the 
list of devices which appeared on the research phone, thereby allowing Bluetooth connection between the 
measuring device and the research phone. The measuring device was not mounted but rather was utilised 
when measurement was required. Measurement duration (45 seconds) is the same for every BP/HR 
measurement session. The measuring device measures both BP and HR at the same time and shows both 
BP and HR reading on the screen at the same time, and measurement was taken within the experiment 
time frame. The user manual states that OMRON digital blood pressure monitors don't need to be 
calibrated on a regular basis. When the device is powered on, it usually does a calibration self-check. If 
there is an issue, it will show an error message or other on-screen notification. Before every experiment, 
its functionality was verified. The cuff was examined for potential damage, such as air leaks, and for 
general wear and tear that might lead to device malfunctions. 

The subject's upper arm was bound with the cuff so that it was in line with the chest. Furthermore, the 
tubing was positioned over the middle of the subject's front arm. Stretching the cuff's edge ensures that the 
sensor is firmly fastened and uniformly tight. After pressing the "ON" button on the device, the cuff 
inflates. The measurements are obtained when the cuff has reached full inflation and stopped inflating and 
the readings on the screen are constant. Throughout the experiment, every measurement was sent instantly 
through Bluetooth to the researcher's mobile phone. The monitor measures numerical values that 
respectively indicate the participants' heart rate and blood pressure. The first column of an Excel 
spreadsheet's main data file displays the date, whilst the next column shows the measurement time. The 
subsequent columns show the participant's Systolic blood pressure in mmHg, Diastolic blood pressure in 
mmHg, and heart rate in bpm in the sequence from left to right.  

 
D. Feature Extraction and Data processing. 
 

The experiment for this study was designed so that BP and HR measurements were taken during the 
experimentation window [4,32] to guarantee precise and trustworthy readings. Here is a brief explanation 
of the procedures used to take BP and HR readings: Participants specified bay parking technique was 
described and then practised for fifteen minutes [39]. The subjects had a five-minute break [39]. The 
authors obtained baseline HR and BP values. The subjects drove from the car park entry point and carried 
out bay parking with no phone use. The subjects' BP and HR were taken again. The subjects took a break 
for five minutes [39]. The simple task began. The subjects proceeded from the car park entrance and carried 
out bay parking whilst talking on the phone. The subjects' HR and BP were measured. After resting for ten 
minutes [39], the experimenter repeated the simple task method using the difficult task. The driver's mean 
HR for simple and difficult tasks (phone mode), mean BP for simple and difficult tasks (phone mode), 
age, and gender are the input values used to assess the participant's cognitive function and for the 
ML categorisation. A binary class that indicates whether the driver is cognitively loaded is produced by 
the classifier. Class 1 indicates “not cognitively loaded”, while Class 0 indicates “cognitively loaded”. HR 
as well as BP are expected to increase in correlation with self-reported cognitive load. HR and BP have 
been selected as the sole physiological measures for this study because increased physiological signals 
such as HR and BP are directly correlated with increased task difficulty [3]. According to [6], a near linear 
increase in heart rate was observed when three levels of task difficulty were randomly ordered during 
driving. According to these findings, heart rate can distinguish incremental changes in cognitive workload 
with high sensitivity.  

 
 
 
 
 



 

                                                                                            
 
                                                                        Fig. 1: Test site entrance 
 
 

                                             
 

                   Fig. 2: Test site car park 
 
 

                                                    
                                            

                  Fig. 3: Driving in traffic 
 



 
 
 
 

                                           
 
                Fig. 4: Reverse parking 
 
 
 
 

E. Measurement Process Flow 

Figure 5 illustrates the project's key components in a block diagram. In the first block, BP and HR are 
recorded using a non-invasive sensor as detailed in Section ‘C’ above. Data processing includes finding 
the mean of the driver's HR for simple task and difficult task (phone mode) and finding the mean of the 
driver’s BP for simple task and difficult task (phone mode). Extrapolated values comprise the driver’s 
mean HR for simple task and difficult task (phone mode), the driver’s mean BP for simple task and difficult 
task (phone mode), and the driver’s gender and age. Blocks 3 – 5 illustrate the steps followed in the ML 
procedure in which modelling as well as classification tasks have been performed, which resulted in ANN 
reaching the optimum level of performance out of the 6 algorithms applied in this research. Section ‘F’ 
below illustrates the step-by-step sequence of the research process.  

 

F. Step-by-step Sequence of Investigation  
 

(1) Researcher meets subject at the testing site’s car park. 
(2) Researcher briefs subject at testing site’s car park (procedure). 
(3) Check subject’s driving license, issue date & another form of ID. 
(4) Document age, gender, and driver category (elderly, experienced or novice). 
(5) Document driving licence number. Subject signs declaration. 
(6) Check subject’s eyesight (read a car registration number twenty meters away). 
(7) The subject’s driving ability is tested in the experimental car. 
(8) Failure? Yes, the subject is withdrawn but continues otherwise. 
(9) Do a 15-minute illustration and practice session of the specific bay parking technique. 
(10) Subject rest for 5 min.  
(11) Measure baseline BP & HR using Omron M7 Intelli IT BP/HR monitor for 45 seconds. 
(12) The subject drives from the site entrance and parks in a bay without using a phone. 
(13) Measure subject’s BP & HR. 



(14) 5 min rest.  
(15) Subject drives towards the site entrance.  
(16) Researcher switches the phone power button on. The phone type is Samsung Galaxy A52s 5G. 
(17) Subject says “experiment”. 
(18) Subject listens and confirms voice recognition. 
(19) The phone says, “Calling experiment”. 
(20) The phone rings and switches on to pre-recorded message. 
(21) Message to subject: “Count from 50 up to 200”. 
(22) Subject begins the task as he or she drives from entrance towards the bays. 
(23) Subject finishes bay parking. 
(24) Subject’s BP & HR are recorded. 
(25) Subject rest for 10 minutes. 
(26) Subject drives towards the cite entrance.  
(27) Researcher switches the phone power button on. 
(28) Subject says “Jump”. 
(29) Subject listens and confirm voice recognition. 
(30) The phone says, “Calling Jump”. 
(31) The phone rings and switches on to pre-recorded message. 
(32) Message to subject: “Count backwards from 100 taking away 3 each time”.  
(33) Subject begins the task as he or she drives from entrance towards the bays. 
(34) Subject finishes the bay parking. 
(35) Subject’s BP & HR are recorded. 
(36) Subject fills out a survey form regarding perceived workload. 
(37) Subject is debriefed. 
(38) Researcher elucidates the study’s significance to science & public safety. 
(39) Researcher answers questions from subjects. 
(40) Subject is given a voucher for participating before departing. 
(41) Data processing. 
(42) 5 faulty samples were rejected. 
(43) Find the average of the drivers’ HR for simple tasks and difficult tasks (phone mode). 
(44) Find the average of the drivers’ BP for simple tasks and difficult tasks (phone mode). 
(45) Extract drivers’ average HR for simple tasks and difficult tasks (phone mode). 
(46) Extract drivers’ average BP for simple tasks and difficult tasks (phone mode). 
(47) Extract drivers’ gender and age. 
(48) Organize dataset in eleven columns and 214 rows (214 data points) using Excell spreadsheet. 
(49) Import data from the csv file “finaldataset.csv” using Python’s read () function. 
(50) Read data into a dataframe using Pandas read_csv (). 
(51) Encode categorised variables and separate training from testing data. 
(52) Print data information to ensure there are no null values. 
(53) Train and test the ML models. 
(54) Classify the cognitive function of drivers using ML classification algorithms. 
(55) Visualise the classified outputs. 
 

        

 
                                                      

 

 

 

 

 

 



 

     
                                                           Fig. 5: Research plan block diagram.  

 

                                              IV. MODELLING AND IMPLEMENTATION 

SVM, KNN, Logistic Regression, Decision Trees, Random Forests, and ANN were selected as part of the 
recommended procedure. At first, the data was analysed for every ML algorithm to train, test, and validate 
the hypothesis. Eighty percent of the data consisted of training data, while twenty percent consisted of 
testing data. Data was cleaned, processed and scaled to ensure consistency across the dataset. Data was 
tested to ensure true generalisation ability. However, the algorithm which gave the highest accuracy is the 
focus in terms of analysis and illustration in the present study’s design. ANN gave the highest accuracy. 
Therefore, the training and testing details for this algorithm have been described below in this section.  
 
The training algorithm for ANN in the present study is ‘backpropagation’. Artificial Neural Networks 
(ANNs) are trained using the supervised learning technique known as backpropagation, which iteratively 
modifies the network's weights in response to the discrepancy between the intended output and the actual 
goal. The network may learn from its failures and gradually improve its predictions by altering the 
connections between neurons and efficiently propagating this error information backwards down the 
network layers to adjust the weights and minimise the overall loss function [40]. 
 
The learning rate, which regulates how much the weights and biases are changed in each iteration during 
backpropagation, the weights connecting neurons between layers, and the biases associated with each 
neuron (which indicate the strength of connections) are the main parameters in backpropagation. Here's 
how back propagation makes use of these parameters: The network processes input data, calculating each 
neuron's output according to its weights and biases. The "error" is the difference between the actual target 
value and the expected output. The network propagates the fault backwards. To reduce the overall error 
and raise the prediction accuracy of the model, the method computes the gradient of the error function 
regarding these weights and biases [40]. 
 
Two datasets were created utilising related parameters that would affect the individuals' performance to 
validate the theory. The first dataset includes the driver's mean heart rate for simple and difficult tasks 
(phone mode), as well as the driver's mean blood pressure for simple and difficult tasks. The second dataset 
includes information collected from participants regarding their age and gender. As targets, binary data 
points were used. 0 denotes "cognitively loaded" and 1 denotes "not cognitively loaded”. 
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Six classifiers were used to compare classification accuracy. A model's accuracy, and how precisely the 
predictions align with the data, is an important factor in its performance [41]. It is therefore crucial to 
examine the precision of each model. To determine the model's accuracy, the authors collected a small 
portion of the dataset for validation. The six techniques were all implemented in Phyton programming 
language. Research has used this language to analyse data, develop algorithms, and model ML [42]. A 
description of the computing procedure is given in the following paragraphs. 
 
Some library tools for data processing, ML, and data display were imported using Python scripts. 
Additionally, the script can load and pre-process or prepare data, train, assess classifiers, as well as display 
model results. The employed dataset consists of two hundred and fourteen data points organised in eleven 
columns using an Excel spreadsheet. Physiological data such as HR and BP, as well as individual data 
such as gender and age are included in the columns. Inputs to the classifier include heart rate, blood 
pressure, gender, and age. The dataset contains both categorical and numerical data, and there are no 
missing values. 
 
Using codes, the computation process commenced with loading and reading relevant data. Python's read 
() function was used to import and read the relevant CSV file. Data was imported from the csv file 
"finaldataset.csv" as well as read into a dataframe using Pandas read_csv (), then processed and cleaned, 
which included dealing with invalid or missing values, encoding categorised variables, and separating 
training from testing data. With respect to the overall number of rows, the dataset has two hundred and 
fourteen observations, whereas the total number of columns suggests 11 variables. Data information was 
printed to make sure that there were no null values. The cognitive function of the drivers was then classified 
using ML classification algorithms. Reliability and precision evaluations were conducted on the machine-
learning models. With a 97% accuracy rate, the ANN model produced the best results. 
 
Weights and biases for all layers of the neural network are trainable parameters in the ANN. The number 
of parameters in each layer is calculated by multiplying the number of inputs by the number of neurons 
plus the number of biases. The size of the output may differ based on the amount of input batches used for 
training. To normalise the data-frame, we applied normalisation techniques and divided the dataset into 
training and testing. 650 is the epoch while the batch size is = 8. There was an increase in model accuracy 
over time as training as well as validation epoch numbers increased. According to the findings, the ANN 
model can make predictions based on well-fitting data. This research was designed to optimise the 
accuracy of all the classifiers during the classification process as can be seen in the epoch count for the 
ANN’s model accuracy graph in Fig. 14 below. In addition, analyses focus on the classifier which gives 
the best performance. Hence, the authors have scoped or limited the mathematical expression of the 
algorithms to ANN only.  
 
 
                                                       V. RESULT AND ANALYSIS 

This study's 214 simulated data points depict the participants to be analysed. Histograms were used in the 
results and analysis, as shown below. Histograms are graphs that display the distribution of continuous 
data. They show how frequently values fall into different groups. The height of each bar indicates how 
many objects in the dataset fit into a particular category. The values on the x-axis from Fig. 7 and Fig. 8 
show blood pressure groups, while Fig. 9 and Fig. 10 represent heart rate groups. The height of each bar 
indicates the proportion of data points (subjects) that fit in each blood pressure bracket and each heart rate 
bracket respectively. For instance, in Fig. 7, ten data points fit in the BP bracket (0-82) while 16 data points 
fit in the BP bracket (83-92) and so on. Similarly, the values on the x-axis in Fig. 11 represent the group 
values of participants’ percentage self-reported cognitive load. 

 

 



 

 

 

              
 

          Fig. 6: Participant’s age distribution                                            Fig. 7: Data points versus BP without phone 

   
 
 

                          
 
           Fig. 8: Data points versus BP with phone.                                     Fig. 9: Data points versus HR without phone 
                                                      
 
 
                                                                                       
 

                
               
      Fig. 10: Data points versus HR with phone                                          Fig. 11: Participants self-reported cognitive load. 
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                    Fig. 12: Data points versus BP differences between phone and no-phone use for all participants 
 
 
 
 

                           
 
                    Fig. 13: Data points versus HR differences between phone and no-phone use for all participants 
 
 

As shown in Fig. 6 above, 40-69 years are the biggest group (65%), whereas 70 years and above and 17-
39 are roughly 16% and 19% respectively. From statistical measures without a phone: Mean BP = 114.52, 
Max BP = 142, Min BP = 80 and SD = 15.35. The statistics of BP with phone are: Mean BP = 121.30, 
Max = 151, Min = 89 and SD = 13.19. Results for heart rate without phone: Mean HR = 71.07, Max HR 
= 110, Min = 55 and SD = 12.64. For HR with phone: Mean HR = 77.43, Max HR = 115, Min HR = 55 
and SD = 13.20. From results, the mean blood pressure and mean heart rate during phone use are greater 
than the mean blood pressure and mean heart rate during no-phone use. Thus, subjects’ mean BP with 
phone tasks is 6.78 mmHg more than the mean BP without a phone. Similarly, participants’ mean HR with 
phone tasks is 6.36 beats per minute more than the mean HR without a phone. This is due to the cognitive 
requirement in consequence of the extra cognitive burdens (simple task and difficult task).  
 
Since the reader is more likely to understand if the BP increment with and without phone is emphasised, 
as normal blood pressure (blood pressure when not driving) varies from subject to subject and some may 
be hypertensive, illustration focuses on BP increments from no-phone to phone usage and HR increments 
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from no-phone to phone usage. A graph showing data points versus blood pressure differences between 
phone and no-phone use and a graph showing data points versus heart rate differences between phone and 
no-phone use have been plotted as shown in fig. 12 and fig. 13 above. These graphs have been used to 
illustrate the relationships between the participants and BP differences and relationship between the 
participants and HR differences. The figures show that blood pressure and heart rate differences between 
phone and non-phone use are distributed across most of the subjects. 
 
The proportion of subjective cognitive load in percentage on account of the extra cognitive burdens (simple 
task and difficult task) is depicted in Fig. 11 above by randomly selecting approximately 25 data samples 
from the total data samples. 22 participants (data points) reported having a 70% or higher response rate. 
Participants reporting less than 70% in total = 3. The hypothesis for this study has been corroborated by 
the results as illustrated above and the self-reported cognitive load by the participants. From the results, 
this study’s contribution has demonstrated that based on drivers of all age categories as a single unit in real 
driving setting, the average BP and HR of the drivers increased whilst talking on mobile phone hands-free 
and exceeded those under no-phone condition. Table 1 below presents the accuracy results comparing each 
of the classifiers employed in this research. 
 
 
                                       Table 1: Accuracy results comparison 
 

Model Accuracy 
ANN 97% 
SVM 80% 
Logistic regression 82% 
K-Nearest Neighbor 71% 
Decision tree 72% 
Random forest 78% 

 
Fig. 14 shows the model precision graph for ANN. The authors ran the codes and achieved 97% training 
accuracy as best while the validation accuracy is 91 % as shown on the graph. Numerous studies in the 
literature have reported that ANN yields the best outcomes, even though several other ML techniques give 
satisfactory results [22, 25]. However, overfitting is a common problem with neural networks [43]. 
Therefore, the performance analysis of the ANN model for this study leans toward the training and 
validation accuracies due to this significant flaw. To determine whether an ANN model is overfitting or 
underfitting, it is essential to use both training and validation accuracies when assessing its performance. 
This allows for better model optimisation by pinpointing areas that require improvement, especially when 
it comes to adjusting model complexity and fine-tuning hyperparameters to improve generalisation on 
unseen data. Overfitting occurs when the training accuracy is much greater than the validation accuracy, 
indicating that the model has learned the data (including noise) too well and may not perform well on new 
data. The model may not be sophisticated enough to recognise the patterns in the data, indicating 
underfitting, if the accuracy of both training and validation is insufficient [43].   
 
A trained neural network's performance is frequently assessed using validation data, which is also used to 
choose the network that is thought to be best suited for the given task. [44]. The authors have tracked 
changes in training and validation accuracy with various hyperparameter settings (e.g., number of hidden 
layers, learning rate). The ideal parameters that maximise generalisation and reduce overfitting were 
found. To make sure the model isn't assessed on data it has previously seen during training, the authors 
divided the data into separate training and testing sets. Since validation accuracy is based on data that 
hasn't been used to train the model, it is a better predictor of how well the model will perform when it is 
exposed to fresh data than training accuracy. For a model to function well, the validation accuracy must 
be equal to or marginally lower than the training accuracy [44]. This claim is supported by the current 
study's 91% validation accuracy as shown on the model precision graph in fig. 14 below.  
 
 
 



 
 
 

                  
                                                           Fig. 14: Model precision versus epoch for ANN 

 
                                                                VI. DISCUSSION  

Driving while on a mobile phone has been banned owing to the inattention and cognitive dysfunction it 
causes. HF mobile phones are permitted during driving as an alternative. In adult drivers 18-66 years of 
age, however, HF mobile phone use during driving increases HR and BP [3,4,5]. Even so, the 
neurophysiological impact of additional cognitive demands (dual task) in young novice drivers (18-19 
years old) and older drivers (65+ years old) is unclear. It is unclear how neurophysiological markers such 
as HR and BP measure cognitive functions during driving and talking on a HF mobile phone. It is also 
uncertain if previous studies have employed real-time driving (field research) to reflect participants' 
behaviour as it would occur naturally. 

With advanced ML strategies to drivers' biological markers, such as HR and BP, this paper explored the 
cognitive implications of talking HF on mobile phones in actual time. To prove the hypothesis, quantitative 
as well as qualitative procedure were applied. The qualitative method relied on a survey, grounded in 
research on drivers' cognitive load. The participants' qualitative responses dispensed the empirical proof 
about their cognitive function that was employed to confirm the findings of the ML approaches; therefore, 
the hypothesis was proved. 

Only a few studies have investigated the physiological implications of talking HF on mobile phone during 
driving [3,4]. In the present investigation, talking on HF mobile phone during driving resulted in a 
substantial increase in BP and HR, much higher than when driving with no phone as was reported in related 
papers [3,4,5]. Findings show that participants’ mean BP with phone tasks is 6.78 mmHg more than the 
mean BP without a phone. Similarly, participants’ mean HR with phone tasks is 6.36 beats per minute 
more than the mean HR without a phone. This is due to the cognitive requirement which arose from the 
secondary cognitive demand (task due to phone use) as supported by the qualitative results. Feedforward 
neural networks were used to classify participants' cognitive performance, and 97% accuracy was 
achieved. The papers [7,8] supports the present study’s findings confirming that as task difficulty 
increases, HR and BP increases, causing increase in workload. 

The findings provide supplementary corroboration that talking on HF mobile phone causes cognitive 
distraction. This is rather concerning because several studies such as [1,4] have provided similar evidence. 
It can be argued that the increasing number of traffic events on urban roads is adding to the cognitive load 



on drivers as they are talking on HF mobile phones [45]. The additional mental impact that an increase in 
traffic events may have on drivers is beyond the scope of this research, 

With respect to self-reported cognitive load, by randomly selecting approximately 25 data samples from 
the total data samples. The subjective cognitive load across the subjects, in consequence of the extra 
cognitive burdens (simple and difficult task respectively), indicate that twenty-two participants reported 
having a 70% or higher reaction rate. Participants reporting less than 70% in total = 3. It can be argued 
that the sample used in this investigation is too low to draw conclusions. Nevertheless, the total findings 
from the 214 data points in this investigation (quantitative), correlate with the findings based on the 25 
data samples collected. 

The phone task employed in this study is a representation of talking on HF mobile phone as maintained 
by the study design. It can be argued that people on phone calls always talk about what they are familiar 
with, which may not increase the cognitive load significantly. However, like the present research, the study 
[46] also employed numerical tasks with differing levels of intricacies as secondary tasks while talking on 
HF mobile phone while driving which instigated various levels of workload in the distracted drivers and a 
significant result was achieved. Like [46], the present study provides additional insight. As in the present 
study, [47] demonstrated that subjects in a phone conversation had talked about unfamiliar content. In 
[47], the individuals had to listen to a full question, do a basic math problem, or solve a verbal challenge 
before they could respond appropriately to the phone conversation. "If three wine bottles cost ninety-three 
dollars, what is the cost of one wine bottle?" was an example of a numerical question used in [47]. These 
types of queries involve simultaneous storage and processing of information and therefore distract drivers 
by boosting their cognitive burdens. Moreso, talking during a conversation on the phone has been 
extensively studied [12,46,47,48]. 

 
The classification algorithms used in this study include ANN, SVM, Logistic Regression, KNN, Random 
Forest, and Decision Tree. As shown in previous literature, these algorithms are proven to be simple to use 
when identifying the category of new observations based on training data [21,22,25]. For instance, [21] 
highlighted the strength of classification Tree while [22] had applied ANN and asserted that ANN are 
suitable for model prediction. [25] have applied ANN, support vector machines, and random forests. 
According to [25], despite all machine learning techniques producing satisfactory results, ANN produced 
the best results with 99.73% sensitivity and 97.94% specificity. For large datasets, KNN is slow, while 
SVM needs a long training time [26,27]. A major disadvantage of decision trees is that they are prone to 
overfitting the training data, while neural networks have a greater computational burden, are prone to 
overfitting, and are empirical in nature [21]. Despite the drawbacks, related studies show remarkable 
strength and benefits from the use of these classifiers for data analysis and prediction, which led the authors 
to select these classifiers for the present study. 
 
There are alternative algorithms to the algorithms used in this study, including linear regression, Naïve 
Bayes, XGBoost and LSTM. The linearity of a linear regression model is one of its primary advantages: 
Besides being relatively simple to apply and performing well with linear data, it also has the drawbacks of 
being prone to underfitting and assuming the data is independent [49]. Naïve Bayes is a linear classifier 
that is faster when applied to big data, but it is sensitive to data quality, which is one of its main drawbacks. 
It can produce inaccurate or biased results if the data is noisy, incomplete, or imbalanced [50]. As with 
decision trees, XGBoost combines multiple decision trees to make predictions, but it has the disadvantage 
of requiring significant computational resources, especially when using large datasets or many iterations 
[51]. Long-short-term memory (LSTM) requires more memory to train and is easy to overfit [24]. 
However, machine learning has some potential limitations when it comes to analysing physiological data. 
The quality of the data provided to ML determines how smart and effective it can be. For accurate 
modelling, substantial data is often required [21,22,25]. By using machine learning algorithms, bias and 
discrimination may be maintained due to overfitting and underfitting of models. The use of ML may also 
reduce the critical thinking and judgement of the researcher or analyst if it is overused in the analysis. 
 



This study has some notable limitations and strengths. As a first point, despite the study's large sample 
size, it was limited to a convenience sample of drivers in London ranging in age from 18 to 89. For this 
study, we used a sample dataset from a small population rather than a population dataset. It is also noted 
by the authors that some ML studies have used limited or small sample sizes. For instance, [52] collected 
EEG data from 10 subjects in its experiment, from which only data from five subjects were analysed. Data 
from the other five subjects were ignored because of the higher degree of noise and artifacts. [53] selected 
12 participants for all recordings in its experiment while [54] recruited 15 male participants only in a study. 
The present study has overcome limitations due to small sample size through 214 simulated data from 11 
subjects (the 11 subjects inclusive). Several significant studies such as [55,56] have also employed data 
simulation to address shortcomings due to a small sample size. [55] has overcome limitations due to small 
sample size through advanced simulations on a realistic computer model of human anatomy without using  
a real MRI scanner and without scanning patients. [56] used simulation to generate a large validation 
dataset for comparing software prediction techniques. 
 
Strengths of the study includes equipment’s Bluetooth capability. Throughout the experiment, every 
measurement was sent instantly through Bluetooth to the researcher's mobile phone. Secondly, to optimise 
the generalisability of the findings from the field experiment for this study, this research has conducted 
experiments in a car whilst the participants were driving in real time. The experimental testing site is Wood 
Green driving test center, London. During the study, all the subjects drove the same car, which was 
authorised by the research ethics committee of the University of East London, specifically for the 
investigation. Identical research methods were followed for the entire subjects but driving situations for 
each driver were anticipated to vary due to external influences such as weather and the effects of other 
vehicles. Nevertheless, the simple and hard tasks were not introduced to the subjects earlier than the testing 
site entrance. One car at a time can be parked in the bay. Hence extraneous variables and other vehicles 
have a relatively minimal effect. 
 
The present study examined the cognitive ramification of talking on a HF mobile phone on drivers during 
driving. The distracted driving induced by commencing or terminating a call, trying to find a number to 
call, or mistakes such as the phone accidentally dropping, are various effects of mobile phone usage during 
driving that deserve further examination. With these modes of mobile phone usage, the risk of interference 
with driving may well increase further. A detailed study of this issue is also necessary. It is believed, 
however, that the use of hands-free phones has some notable advantages because there are drivers who 
depend on them for work, for example, delivery drivers, who need to find out about their next job, or taxi 
drivers who require accurate navigation applications, not to mention paramedics and police who must 
constantly be on the radio.  
 
 
                                                            VII. CONCLUSIONS   

The physiological impact on drivers due to talking HF on mobile phones was examined in real time, using 
BP as well as HR signals. To predict the effect on the participants, a model was created. HR and BP of 
participants increased during phone condition and exceeded those during no-phone condition. A survey 
was conducted to gather subjective data from each subject. In reliance on the responses that participants 
submitted to the qualitative survey, empirical proof was obtained pertaining to their cognitive function. 
After examination, the most suitable algorithms for the dataset were chosen. By employing the 
questionnaire responses, ML methods were verified. Therefore, the consequences of driving and talking 
on mobile phones hands-free (which differ individually among subjects) were validated. The Feedforward 
network reached ninety-seven percent accuracy. 

Based on statistical measures for BP without phone: Mean BP = 114.52, Max BP = 142, Min BP = 80 and 
SD = 15.35. The statistics of BP with phone are: Mean BP = 121.30, Max = 151, Min = 89 and SD = 13.19. 
Heart rate without phone: Mean HR = 71.07, Max HR = 110, Min = 55 and SD = 12.64. For HR with 
phone: Mean HR = 77.43, Max HR = 115, Min HR = 55 and SD = 13.20. The findings from statistic 



measures indicate as follows: Mean BP along with mean HR during phone mode are greater than mean 
BP as well as mean HR during no-phone mode. These findings from the quantitative study illustrate that 
while the HR and BP in the phone mode are greater than those during no-phone mode, the participant is 
loaded cognitively, causing poor task execution. A participant's performance is regarded as good if the 
values are lower. Similarly, the qualitative questionnaire form shows that participants' cognitive load 
elevated considerably when they performed the telephone tasks. The outcomes of this investigation 
validate the hypothesis. 

As part of discussion and analysis, earlier related research with similar findings was acknowledged and 
cited by the authors. The authors discussed the benefits and drawbacks of the classifiers applied in this 
research, and why these classifiers were selected for this study. The potential of using ML for classifying 
physiological data and how data simulation was used were discussed to overcome limitations due to small 
sample sizes by several studies. The authors have used both quantitative and qualitative techniques to 
address the study's research question and have achieved significant results as detailed above and have also 
improved the research by using machine learning approaches. By creating public understanding pertaining 
to shortcomings of talking on mobile phones HF, this research contributes to the United Kingdom’s 
Department of Transport and public safety. Consequently, the government can consider the existing 
findings regarding the precariousness of talking on a mobile phone HF while driving and will be able to 
measure and revise their road safety advancement strategies. 

Despite their numerous drawbacks, hands-free mobile phones can also offer some noteworthy advantages, 
such as making correspondence more convenient, particularly in emergencies. To reduce the risks inherent 
with distracted driving, this study generally encourages drivers to minimise discussion duration, indulge 
in only necessary conversations while driving, and possibly explore the use of voice command mobile 
phones. Our forthcoming research will concentrate on how the developed approach might be applied 
generally throughout the United Kingdom.  

 

Data availability statement 
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