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Abstract

Massive Open Online Courses (MOOCs) have gained in popularity over the last few years.

The space of online learning resources has been increasing exponentially and has created

a problem of information overload. To overcome this problem, recommender systems that

can recommend learning resources to users according to their interests have been pro-

posed. MOOCs contain a huge amount of data with the quantity of data increasing as new

learners register. Traditional recommendation techniques suffer from scalability, sparsity

and cold start problems resulting in poor quality recommendations. Furthermore, they can-

not accommodate the incremental update of the model with the arrival of new data making

them unsuitable for MOOCs dynamic environment. From this line of research, we propose a

novel online recommender system, namely NoR-MOOCs, that is accurate, scales well with

the data and moreover overcomes previously recorded problems with recommender sys-

tems. Through extensive experiments conducted over the COCO data-set, we have shown

empirically that NoR-MOOCs significantly outperforms traditional KMeans and Collabora-

tive Filtering algorithms in terms of predictive and classification accuracy metrics.

1 Introduction

Since the advent of the first MOOCs in 2008 [1], MOOCs have added a new dimension to edu-

cation systems. The main attraction for learners is the access to free open education courses.

The number of MOOCs and the number of students registered in MOOCs are growing every

year using platforms such as edX, Coursera, Udacity, NetEase and iCourse [2]. By the end of

2019, more than 900 universities were offering MOOCs with 13500 courses available, and

around 110 million registered students [3], providing learners with a wide variety of choices.

With such a high number of courses available, learners face the problem of selecting courses

without being overwhelmed by multiple learning choices [4], which has been termed as the

information overload [5] problem. Information filtering systems also known as recommender

systems can overcome this problem by helping learners to find suitable courses from the space

of available resources.
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With the increased usage of MOOCs, data produced by MOOCs is also increasing. This

data contain information about the interests and behaviors of learners and courses in which

they are registered [6]. Recommender systems have been used widely by commercial and social

platforms [4] and recommender systems can use educational data to provide recommenda-

tions to learners [7]. One purpose of these recommender systems is to help the learner by rec-

ommending different related learning objects or elements. As well as improving the learners’

experience, recommender systems have also played a vital role in increasing the popularity of

MOOCs and much of the previous research work has focused on the design of such recom-

mender systems. Research to date has mostly focused on the implementation of recommender

systems in MOOCs, particularly course recommender systems which has been the most pro-

lific research line since 2012 [8].

Recommender systems consist of two basic elements: items and users. Users give their rat-

ing about items, and the recommender system gives recommendations to users for new items

[9]. We denote users by U ¼ fu1; u2; � � � ; uMg, here M is the total number of users using the

system i.e. jUj ¼ M. The Term I ¼ fi1; i2; � � � ; iNg is the set of all the items where jI j ¼ N
where N is total number of items in the system. By using users and items, the system maintains

profiles. The user profile is defined by its characteristics such as ratings provided on items, age,

gender, and location. Each user has a unique identification to discriminate them from other

users [9]. Items are defined by their characteristics as with the course recommender system the

characteristics of each course are name, description, category and so on.

Each user gives ratings to some of the items in the system. These ratings are represented by

ðriujði; uÞ 2 DÞ; here D � I � U is the set of user-item pair that have been rated. jDj ¼ T
denotes the total number of ratings made by users. Generally, each user rates a small number

of items, so jDj ¼ T � jI � Uj ¼ N. In a real data-set, it is common to have T/(M × N)ffi

0.01. A (M × N) matrix R is called a user-item rating matrix. Ratings given by users can be con-

sidered as elements of this matrix R.

Although a considerable number of recommender systems in MOOCs have been proposed

and implemented, only a few authors have discussed the time and space complexity of their

proposed and implemented algorithms [4, 10–13]. MOOCs produce a large amount of data

that can be used for recommender systems and researchers should focus on developing sys-

tems that scale well with the increase in data. The aim of this study is to contribute to the devel-

opment of an accurate and practical algorithm for MOOCs which will utilize rating data of

learners for recommendations. The proposed algorithm is a fast rating based recommender

algorithm that can work with large data sets. The proposed algorithm processes each data

point only once, so it requires less memory and time. It is a local learning algorithm [14],

which is similar to Platt [15] and a modified model of Bassam [16]. It is efficient, scalable,

incremental and generalizes well for large data sets.

The rest of the paper is structured as follows. Section 2 provides an overview of the litera-

ture pertaining to recommender systems in MOOCs. Section 3 describes the recommendation

algorithm. Section 4 discusses the experimental setup and results of algorithm on the COCO

data-set. Section 5 concludes the research findings and discusses future work.

2 Related work

As discussed above, the implementation of course recommender systems is a key focus of the

existing research on recommender systems in MOOCs [8]. A possible reason for this focus

could be the availability of data and the interests of MOOC providers because course recom-

mender systems can help improve both the enrolment numbers and students’ learning experi-

ences. Most of the work on the implementation of recommender systems for courses uses
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traditional recommendation methods which include content-based filtering (CBF) and collab-

orative filtering (CF) [17]. Previous studies also have introduced association rule mining and

hybrid algorithms [18, 19] along with collaborative and content-based filtering for course rec-

ommendation [11, 20].

Boratto et. al [20] used collaborative filtering, matrix factorization and hybrid recommen-

dation for calculating recommendations to learners. The purpose of this work was to identify

the effect of an item’s popularity on recommendation results and the research showed popular

items effect the recommendation list of the recommender system.

Yanhui et. al [21] used content based and collaborative filtering recommender systems to

firstly categorise courses on the basis of course information, then courses and learners are

divided into fuzzy clusters with collaborative filtering being used for clustering. Each course

and learner can be linked in more than one cluster, and if a learner and a course are in more

than one similar cluster it means that they are similar and that the learner could be interested

in that course. A score is maintained for each course on the basis of similarity between the

course and the learner. Then a score based top down ranking of courses is listed.

The algorithm designed in [22] considered user profile and performance while making rec-

ommendations. Instead of considering all users, this algorithm considered only similar users

while performing a recommendation. This recommender system was designed separately

from the website leaving the burden of recommendation on the system. This system consists

of four parts. In the first part, the system performs implicit rating based on user learning

behavior and stores them. Then by using these ratings, the system finds a neighboring cluster

using learner data. Then the system is trained to find feature vectors and the parameter vector,

which are then used for recommendations. This system uses implicit rating which is not reli-

able because with a change in the model of rating generator, ratings will change as well.

Ahera et al. [10] used K-means for clustering and an Apriori rule algorithm to recommend

courses to students. In this work, only those courses were considered which had more than

100 students registered and only those students who had registered in at least five courses.

There was no consideration given to new users and item scenarios. The recommendation sys-

tem in [23] utilized association rules mining to analyse learner activities. The Parallel FP-

growth algorithm of MLlib machine learning library was used to design recommendation

system. A decentralized approach was used for data processing and analysis to get a better

performance.

Symeonidis et al. [24] designed a course recommender system using a multi-dimensional

matrix, such as matrix factorization with collaborative filtering called xSVD++. This algorithm

uses information from external sources, user skills and course characteristics to predict course

trends and ratings. This algorithm uses course ratings, learner skills and course skills to per-

form recommendations.

Apaza et al. [25] matched the syllabus of colleges with other courses available on MOOCs.

Latent Dirichlet Allocation (LDA) is used to infer topics from the college syllabus and

MOOCs. These topics and grading information are used by a content based recommendation

system to calculate recommendations. This algorithm can only provide recommendations to

students who have grading and college syllabus information.

More recently, researchers have started to use neural networks, pattern mining, and deep

learning for pre-processing of data and recommendation [8]. Campos et al. implemented a

course recommender system using knowledge re-use in ecosystems and [26] considered the

context of the learner while performing recommendations. Obeidat et al. [27] utilized student

course history to find similar students and designed a collaborative recommender system that

uses data-mining techniques for pattern identification between course. Clustering of students

is performed on the basis of their history which is then used to generate association rules
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through an Apriori algorithm. This work showed that the usage of user study history for rule

generation produces good results, but this system cannot be used for new users without any

history.

Zhang et al. [28] used deep belief networks (DBN) to propose a personalized course recom-

mendation system. In his work he used DBN for recommendation generation, feature extrac-

tion and classification. Through DBN, users’ course interest data is mined and utilized for

recommendation.

Sabnis et. al [17] carried out an analysis of the importance of course recommender systems

by analyzing different recommendation techniques that are used for course recommendation.

According to this study CF and CBF cannot give results in the case of new users. They con-

cluded that every approach has pros and cons so selecting an approach totally depends upon

the scenario for which it will be used. They suggested hybrid approaches can be used to get the

benefits of different approaches.

Researchers have also designed recommender systems for different types of learning ele-

ments, such as video clips, next page and additional helpful resources to the learner. Kopeinik

[29] compared existing recommender algorithms that provide a recommendation of learning

resources and tags to annotate these resources. Onah and Sinclair [30] recommended a suit-

able learning path to learners by considering scores on concept-based quizzes; a low score indi-

cated that the learner needed to read more resources related to a concept, so this system

recommended instructional material to learners according to their profile.

Although a considerable number of recommender systems in MOOCs have been proposed

and implemented, only a few have discussed the time and space complexity of their proposed

and implemented algorithms [4, 10, 11, 13]. MOOCs produce a large amount of data that can

be used for recommender systems and researchers should focus on systems that scale well with

the increase in data. One reason for overlooking this aspect is that research has mostly focused

on offline processing of data. Batch/offline algorithms use existing data-sets for training and

recommendations. Time and memory space required for the training process is dependant

upon the type of data-set that is being used.

Only a few researchers have used ratings for recommendation of courses and learning ele-

ments. Ratings can help recommending courses when other data about learners and courses

are not available. The present research work aims to design a scalable and practical generalized

rating based recommender system that will use ratings given by learners or by the MOOC pro-

vider to any element (e.g. course, learning element, video, peer) in the MOOC to generate

recommendations.

3 Novel online Recommendation algorithm for Massive Open

Online Courses (NoR-MOOCs)

This section explains the proposed algorithm for MOOCs named as the ‘Novel Online Recom-

mendation Algorithm for Massive Open Online Courses (NoR-MOOCs)’. It is a fast rating

based recommender algorithm that can work with large data sets. NoR-MOOCs processes

each data point only once hence it requires less memory and time. It is a local learning algo-

rithm which is similar to Platt [15] and a modified model of Bassam [16] and [31]. It is effi-

cient, scalable, incremental and generalizes well while handling large data sets.

Before going into the details of the proposed algorithm, some important concepts used in

this algorithm are explained. They are voting, hyper-spheres and generations. This algorithm

groups data points in the form of hyper-spheres where every hyper-sphere has a dynamic

radius, which is computed after each generation. These hyper-spheres are fuzzy and can

overlap.
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3.1 Voting

Voting is used for compression of the data-set. In voting, an active learner is compared with

the center of every hyper-sphere. Voting gives results in the form of weights -1 to 1; where -1

shows that learners and a hyper-sphere are opposite to each other and 1 shows both are similar

[32]. During the voting process, a weight is assigned to every hyper-sphere on the basis of the

value of the distance between an active learner and a hyper-sphere. That weight value is then

used to compute the final recommendation for the learner.

3.2 Hyper-sphere

Each hyper-sphere represents a group of similar learners. Each hyper-sphere has a center, den-

sity of hyper-sphere and a dynamic radius which is re-calculated after every generation.

• Center: Every hyper-sphere has a center which contains a record of the number of times

every course is rated by all learners and the average rating given by each learner to the

courses. It is updated when a new learner is added into the hyper-sphere.

• Density of hyper-sphere: Density of hyper-sphere is the number of learners in every hyper-

sphere. It shows the size of the hyper-sphere.

• Radius: This algorithm maintains a dynamic radius of every hyper-sphere. Radius is used to

define a boundary around the hyper-sphere. The value of the radius is used to decide

whether or not a point will become part of the hyper-sphere or not. When a new point arri-

ves, the distance of that point from the center is measured and compared with the value of

radius of that hyper-sphere. If the radius is larger than the distance, then that point falls into

the currently considered hyper-sphere.

• Generation: Generation is a defined size of points. After processing a certain number of

points, the algorithm re-defines the radius of the hyper-spheres. This makes it possible that

every hyper-sphere has a different radius. Generation is a parameter that is tuned for the

algorithm.

3.3 Training process

For the first learner (data point), there will be no hyper-sphere available, so the algorithm com-

putes the center of hyper-sphere from the first learner and set its radius to a default value (see

section 4.2.1). For subsequent learners, there will be two scenarios, either the learner resides in

one or many existing hyper-spheres or they reside outside of all existing hyper-spheres.

• If the learner resides in existing hyper-spheres and has similarity with one or more, then that

learner is added into all of the similar hyper-spheres and the center, radius and density of all

the hyper-spheres are updated accordingly.

• If the learner resides outside of the existing hyper-spheres, then a new hyper-sphere is cre-

ated by setting that point as center of that hyper-sphere. The average of the radii of all exist-

ing hyper-spheres becomes the radius of the new hyper-sphere.

3.4 Recommendation process

While computing recommendations, a learner can reside in one, many or no hyper-spheres.

In the case of a learner being similar to one or many hyper-spheres, then the most similar

hyper-sphere is selected. In this situation, the value of the distance between the learner and

the hyper-spheres is normalised by dividing it with the density of selected hyper-spheres.
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Recommendations are then computed for the learner by using the weighted average of all the

similar hyper-spheres. In the situation where there is no similar (distance of learner from cen-

ter of hyper-sphere is more than the radius) hyper-sphere, the most similar hyper-sphere will

be selected from all existing hyper-spheres and the value of the distance between the learner

and the hyper-spheres will be normalised by dividing it by the density of that hyper-sphere.

Recommendations are then computed by using the weighted average of all the similar hyper-

spheres.

3.5 Example case study

To understand the working of the proposed algorithm, a step by step process is demonstrated

below through an example.

3.5.1 Training process. Fig 1. shows that at the start of training process when there is no

existing hyper-sphere NoR-MOOCs will create a new hyper-sphere and set the first point L1

as the center of the hyper-sphere.

When the second point L2 arrives during the training process, there will be two possible

scenarios. Fig 2 shows the first scenario, if point L2 is not similar to an existing hyper-sphere

then a new hyper sphere will be created and L2 will be set as the center of that hyper-sphere.

Fig 3 shows the second scenario, if point L2 is similar to an existing hyper-sphere, then the

center of that hyper-sphere will be updated and the density of hyper-sphere will be incremen-

ted by 1.

When the third point L3 arrives then there will be three possibilities. Fig 4 shows the first

case if point L3 is similar to one of the existing hyper-spheres (e.g. h1). Then the center of that

hyper-sphere will be updated and the density of the hyper-sphere will be incremented by 1.

Fig 5 shows a further scenario if point L3 is similar to both of the existing hyper-spheres

(i.e. h1 and h2). In this situation, the center of both hyper-spheres will be updated and the den-

sity of the hyper-spheres will also be incremented by 1.

Fig 6 shows the third case, if point L3 is not similar to any of the existing hyper-spheres

then a new hyper-sphere will be created and L3 will be set as the center of that hyper-sphere.

For all the remaining points in the training data-set the same scenario will work as of third

point L3 until the number of processed data-points equal to generation size. After that the

Fig 1. The first point will become the center of the hyper-sphere.

https://doi.org/10.1371/journal.pone.0245485.g001

PLOS ONE Novel online Recommendation algorithm for Massive Open Online Courses (NoR-MOOCs)

PLOS ONE | https://doi.org/10.1371/journal.pone.0245485 January 22, 2021 6 / 21

https://doi.org/10.1371/journal.pone.0245485.g001
https://doi.org/10.1371/journal.pone.0245485


radius of every existing hyper-sphere will be updated as the average of similarity of all the

points that were added into the hyper-sphere during that generation as shown in Fig 7.

3.5.2 Recommendation process. During the recommendation process for testing point

T1, there are two possibilities. Fig 8 shows the first case if test point T1 is similar to one or

many hyper-spheres then the value of the distance between T1 and the hyper-spheres is nor-

malised by dividing it by the density of the selected hyper-spheres. Recommendations are then

computed for T1 by using the weighted average of all the similar hyper-spheres.

Fig 2. Second point is not similar to existing hyper-sphere.

https://doi.org/10.1371/journal.pone.0245485.g002

Fig 3. Second point similar to existing hyper-sphere.

https://doi.org/10.1371/journal.pone.0245485.g003

Fig 4. Third point is similar to one of the existing hyper-spheres.

https://doi.org/10.1371/journal.pone.0245485.g004
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Fig 5. Third point is similar to both of the existing hyper-spheres.

https://doi.org/10.1371/journal.pone.0245485.g005

Fig 6. Third point is not similar to any of the existing hyper-spheres.

https://doi.org/10.1371/journal.pone.0245485.g006

Fig 7. Radius of all the existing hyper-spheres will be updated after generation.

https://doi.org/10.1371/journal.pone.0245485.g007

Fig 8. Test point T1 is similar to one or many hyper-spheres.

https://doi.org/10.1371/journal.pone.0245485.g008
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Fig 9 shows the second case if test point T1 is not similar to any of the hyper-spheres in the

training set, then the nearest hyper-sphere will be selected. In this situation, the value of the

distance between the T1 and hyper-spheres is normalised by dividing it by the density of

the selected hyper-spheres. Recommendations are then computed for the T1 by using the

weighted average of the hyper-spheres.

3.6 NoR-MOOCs adaption with an increase in the data-set

An important feature of NoR-MOOCs is that it can work well with new data and doesn’t need

any re-training. In the case of a new data point, it compares it with existing hyper-spheres and

if the new data point is similar to any of the existing hyper-spheres, it adds the new data point

to that hyper-sphere; otherwise it creates a new hyper-sphere. In this way it updates the exist-

ing trained model without the need to re-train the whole model.

Algorithms 1 and 2 outline the training and recommendation processes respectively.

Let l 2 D represents all learners and h 2 H represents all hyper-spheres. In the beginning,

the hyper-sphere is empty i.e. H = ϕ, so the first point will make first the hyper-sphere. The

Center c of the first hyper-sphere will be created using the first point. It is assumed that each

hyper-sphere shows a specific group g (g 2 G where G represents the set of all groups) of learn-

ers having similar interests.

3.7 Distance between learner and hyper-sphere

In Eq 2, the term d(ch, ln) denotes the distance between learner ln and the center of hyper-

sphere ch. For computing distance, we compute similarity between c and ln. These two values

are inverse of each other, hence if the similarity of two points has a high value it means that dis-

tance between them will be zero. The similarity function is shown as follows:

Sim ¼

( 1

Dis if Dis 6¼ 0 ;

MaxSim otherwise;
ð1Þ

Here MaxDis shows the maximum distance or zero similarity between any two points. In Pear-

son’s Correlation, results can be negative, hence 1 was added to all the similarities to make the

results positive. For more information, please refer to our previous work [33].

Algorithm 1 NoR-MOOCs training
Input: labeled training set < (l1, g1), (l2, g2), . . . (ln, gn) >, where
lx 2 D, gx 2 G. Radius r of every hyper-sphere h is denoted by rh and rd

Fig 9. Test point T1 is not similar to any of hyper-spheres in the training set.

https://doi.org/10.1371/journal.pone.0245485.g009
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is a default radius value. Value of rh is regenerated after every gen-
eration of size S.
Output: R is a triple < (c, dh, gh) >, here c shows center of hyper-
sphere, dh shows the density of hyper-sphere, and gh 2 G shows group of
hyper-sphere. n denotes size of data-set D
1: Initialise H  ;, dh = 0
2: for x = 1, 2, . . .::, n do
3: hin  false
4: for (h 2 Hg) do
5: if (d(lx, h) � rg) then
6: hin  true
7: Add point lx in hyper-sphere h by updating center ch and Den-
sity of hyper-sphere dh
8: of hyper-sphere.
9: end if
10: end for
11: if hin  false then
12: if x == 1 then
13: Create a new hyper-sphere h and compute center ch of hyper-
sphere from lX
14: Hg  Hg [ h
15: Initialize dh  1, rh = rd
16: end if
17: else
18: Create a new hyper-sphere h and compute center ch of hyper-
sphere from lX
19: Hg  Hg [ h
20: Initialize dh  1, rh = Sum(rh)/|Hg|
21: end if
22: if x == S then
23: Update radius rh of all hyper-spheres as the mean of existing
radius and
24: similarity between center of hyper-sphere and all the points
that were added
25: in that hyper-sphere during this generation.
26: end if
27: end for

A detailed interpretation of training algorithm 1 is given below:

• When this algorithm starts running it will initialize an empty set H containing all the hyper-

spheres that will be created in training process. It will also set the density of hyper-spheres as

zero as shown in line 1 of the algorithm.

• From line 2 to 27, the proposed algorithm runs a loop over all the data points in the data-set

to put them into hyper-spheres.At line 3 it sets hin variable to false to make sure each point

will become part of at least one hyper-sphere.

• From line 4 to 10 a loop iterates over all hyper-spheres and calculates the distance of every

data-point from the center of the hyper-sphere. At line 5 it checks if distance is less than or

equal to the radius of the hyper-sphere then at line 6 it sets hin as true showing that this point

now resides in some hyper-sphere. Line 7 and 8 put that data point into a corresponding

hyper-sphere and updates the center and density of the hyper-sphere.

• In line 11 the algorithm checks the value of hin. If it is false, there can be two possibilities

either this is first point so H = ϕ or this point does not reside in any of the existing hyper-

spheres. In the case of the first point the algorithm will create a new hyper-sphere and makes
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that point as the center of the hyper-sphere. It will also assign 1 as the value of the density of

hyper-sphere and the radius will be set as the default radius value as shown at line 13 to 15. If

a point does not reside in the existing hyper-spheres then a new hyper-sphere will be initi-

ated but the radius is set as the average of the radii of all existing hyper-spheres as shown on

line 20.

• The algorithm updates the radius of all updated hyper-spheres after a certain number of

data-points called generation. At line 22, this algorithm checks the number of data-points

processed so far and if it is equal to the size of generation then the algorithm will update the

radius of all updated hyper-spheres as the average of their radius and the average distance of

all the data-points that entered into a hyper-sphere during generation.

Algorithm 2: NoR-MOOCs Recommendation
Input: testing set < l1, l2 . . ., ln > consists of testing points. R is a
triple < (c, dh, gh) > in which c is center, dh is weight o, and gh 2 G
is group of hyper-spheres. rg8g2G shows dynamic radius of each group
g 2 G.
Output: g 2 G
1: Initialise hg  ; 8g 2 G
2: hin  false, s  ;
3: for < (c, dh, gh) > 2 R do
4: if (d(ln, c) � rg) then
5: hin  true
6: hg  hg [ h
7: end if
8: end for
9: if hin = false then
10: for (h 2 H) do
11: Find distance of all hyper-spheres from the point ln.
12: select hyper-sphere with least distance from test point and
point it in hg.
13: end for
14: for (h 2 hg)do
15: Normalize distance by dividing it to to that density of that
hyper-sphere.
16: Compute recommendation by giving high weight to the hyper-
sphere having high
17: normalized distance value.
18: end for
19: end if

A detailed description of the recommendation algorithm 2 is given below:

• First the recommendation algorithm will initialize an empty set hg that will contain all of the

hyper-spheres in which a test point resides as shown on line 1.

• To keep track of whether a point matches any of the existing hyper-spheres or not a variable

hin is set to false as shown on line 2.

• From line 3 to 8 a loop is created over all existing hyper-spheres. In this loop the distance of

the test point is measured with the center of all hyper-spheres and if the distance is less than

the radius of the hyper-sphere then hin is set to true and the hyper-sphere is added in hg and

now these hyper-spheres will be used for recommendation.

• At line 9 the algorithm checks the value of hin. If it is false that means this testing point does

not exist in any of the existing hyper-spheres. In this case, it would select a hyper-sphere that

is nearest from the test point and put it in hg as shown on line 11 and 12.
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• From line 14 to 18 a loop iterates over all the hyper-spheres in set hg. At line 15 it normalizes

the distance with the density of a hyper-sphere then computes a recommendation by giving

higher weighting to the hyper-sphere having a high normalized value as shown on line 16

and 17. To understand this, assume P shows the set of hyper-spheres in which lx resides. The

algorithm will take the density of hyper-spheres in the set P and normalize the value of the

distance of that point by dividing it by the density. This is shown in the Eq 2.

Nor ¼
dðch; lnÞ

f
; ð2Þ

The algorithm then sorts the values of Nor in descending order and computes results for the

test point giving high weighting to the hyper-spheres having high Nor values while comput-

ing recommendations.

NoR-MOOCs normalizes the distance of every point with the density of that hyper-sphere

because in this way it will obtain higher values for the hyper-spheres that are nearest to the test

point and have high density. The rationale behind this is that a denser and nearer hyper-sphere

can be a good source of recommendation for the test point. Fig 10 shows a flow diagram of the

Fig 10. Flow diagram of training and recommendation process.

https://doi.org/10.1371/journal.pone.0245485.g010
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training and recommendation process. As shown in Fig 10, each data point is processed only

once in the training process. While computing a recommendation the distance of every test

point is normalized with the density of that hyper-sphere.

4 Experimental evaluation and results

4.1 Experimental setup

4.1.1 Data set. To evaluate the working of the NOR-MOOCs, we used the COCO [34]

data-set. This is a research-purpose-only data set, which includes data from Udemy https://

www.udemy.com/., one of the global marketplaces for MOOCs. We used this data set because

according to the best of our knowledge only this MOOC data set contains the rating of courses

along with other attributes of courses [20].

In the COCO data set, each course can have no or many ratings while every learner should

have rated at least one course. Table 1 shows the characteristics of the real COCO data set.

To reduce the sparsity of the data set, we considered learners who have at least 10 ratings.

After re-sampling the data set, there were 37K learners, 30K courses and 600K ratings. Fig 11a,

shows the trend in the numbers of ratings per course. Although, the number of ratings per

course is decreasing there are still a number of courses that have large numbers of ratings. Fig

11b shows the distribution of learners per the number of provided ratings. It can be observed

from Fig 11b that a large number of learners have given less than 10 ratings. The red color in

Fig 11 shows the data that we have removed to decrease sparsity.

Table 1. Characteristics of COCO data-set.

Characteristics COCO Dataset

Number of learners 2,546,865

Number of courses 43,113

Number of ratings 4,584,313

Rating scale 0 to 5

Sparsity 0.99583

Highest number of ratings given by a user 1159

Highest number of ratings given to a course 57,346

https://doi.org/10.1371/journal.pone.0245485.t001

Fig 11. Rating distribution of COCO data-set. Highlighted data is removed to decrease sparsity.

https://doi.org/10.1371/journal.pone.0245485.g011
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4.1.2 Evaluation methodology. For the evaluation of NOR-MOOC algorithm, we used

5-fold cross validation. We further divided the training set into training and validation sets to

evaluate the sensitivity of the parameters. We used 80% of the data for training and 20% for

validation.

4.1.3 Performance evaluation metrics. In this study, we used predictive and classification

accuracy metrics to benchmark our algorithm with traditional algorithms K Means and Col-

laborative Filtering based recommender systems [35]. Mathematical formulas of all the metrics

are given in Table 2. A description of the metrics is as follow:

Predictive accuracy metrics: Predictive accuracy metrics measure how accurately the system

predicts a course that a learner will rate, i.e. it shows how close the predicted rating is to the

actual rating given by the learner. We have used Root Mean Square Error (RMSE) and Cov-

erage to measure predictive accuracy of NoR-MOOCs algorithm.

• Root Mean Square Error (RMSE) represents the square root of the differences between the

predicted rating by NoR-MOOCs and the actual rating given by the user.

• Coverage measures the proportion of courses from all courses in the data set that the sys-

tem can recommend. It can be measured by simply calculating the percentage of all the

courses that the system can recommend. It is a very important metric as a system having

low coverage is less valuable because the system cannot give the recommendation for all

the courses in the data set.

Classification accuracy metrics: Measures how many times a system accurately recommends

a good item (the item that the user really likes) to the user. This evaluation metric is useful

in the situation where the system has to recommend good items or lists of items to the user

from the items available in the system. This metric includes Precision, Recall, Receiver

Operating Characteristic (ROC) and F1 which we used for the evaluation of our algorithm.

• Receiver Operating Characteristic (ROC) model tries to measure the level to which a rec-

ommender system can effectively differentiate between a good and a bad item. The ROC

model considers only two classes for items i.e. good items (of interest to the user) and bad

item (in which the user is not interested).

• Precision is a measure of the total number of true positives divided by the total number of

elements predicted.

• Recall is defined as the number of true positives divided by the total number of samples.

Table 2. Mathematical formulas of metrics that were used to evaluate the NoR-MOOCs algorithm.

Metric Formula

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jDtest j

XjD
test j

i¼1

ðpi � aiÞ
2

v
u
u
t

pi is the actual rating, ai is the predicted rating and Dtest is the test data.

Precision tp
tpþfp

here tp is true positives and fp is false positive.

Recall tp
tpþfn

here tp is true positives and fn is false negative.

F1 2ðPrecisionXRecallÞ
PrecisionþRecall

https://doi.org/10.1371/journal.pone.0245485.t002
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• F-measure (F1) is the harmonic mean of precision and recall. F-measure provides a value

of 1 in the case of a perfect recommendation, whereas in the case of the worst recommen-

dation, it gives a value of 0.

We also designed a random recommender algorithm for the trained model and compared

the remaining evaluation metrics with random recommender systems, K-Means and Collabo-

rative Filtering.

4.2 Results

This section presents a detailed discussion on the experimental results.

4.2.1 Tuning optimal parameters of rating based algorithm. Below we describe the tun-

ing of important parameters i.e the similarity measure method, radius size and generation size.

• Similarity Measure Methods Different similarity measure methods are compared to choose

the best results for the algorithm. The inverse of distance measure is used to compute simi-

larity. Pearson’s Correlation distance measure (PCC), Pearson’s Correlation distance mea-

sure with default votes (PCCDV), Vector Similarity (VS), and Vector Similarity with default

votes (VSDV) were compared [36]. Fig 12 shows the comparison of RMSE in all similarity

techniques. PCCDV gave better results in terms of RMSE than the other techniques so this

was used to compute similarity for the subsequent experiments.

• Generation Size After every generation, the radius of all hyper-spheres is recalculated on the

basis of the number of points that enter the system during the generation. The size of genera-

tion is selected after tuning the algorithm to get optimal results. From Fig 13 it can be

observed that the value of RMSE is very high for a small generation size, whereas with the

increase in generation the value of RMSE started decreasing. Our algorithm showed best

results at the generation size of 3000. We have used this size for remaining experiments.

• Optimal Radius Value When the first hyper-sphere is created, there is no way to calculate

its radius so this algorithm uses a default value as the radius for the first hyper-sphere. Fig 14

Fig 12. Comparison of PCC, PCCDV, VS and VSDV in term of RMSE. PCCDV gave best results.

https://doi.org/10.1371/journal.pone.0245485.g012
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Fig 13. Tuning of generation size to get optimal results. A generation size of 3000 produced the best results.

https://doi.org/10.1371/journal.pone.0245485.g013

Fig 14. Tuning for the optimal radius value: It can be observed that at 0.001 our algorithm showed the best results.

https://doi.org/10.1371/journal.pone.0245485.g014
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shows tuning of the default value of the radius. RMSE is used to select the best value. It can

be observed that value of RMSE is minimum at 0.001 and after that it became constant. So

we select 0.001 as the optimal radius value.

4.2.2 Performance comparison with K-Means and random recommender. We designed

a random K-Means based recommender and a Collaborative Filtering based recommender

system to compare results. We compared results in terms of Coverage, RSME, ROC, Precision,

ReCall and F1 measure. Our algorithm out-performed K-Means and a random recommender

in terms of Coverage, RMSE, and ROC as shown in Table 3. Coverage of the rating based algo-

rithm is 60% greater than K-Means and Collaborative Filtering whereas it is 80% greater than

a random algorithm. As the COCO dataset is very sparse, coverage and RMSE of NoR-

MOOCs is good because it uses fuzzy clustering in that a data-point can belong to more than

one hyper-sphere. This allows hyper-spheres to have a high number of data points which helps

in generating accurate recommendations. On the other hand, K-Means keeps every data-point

in one cluster which causes a decrease in the chance of getting a recommendation for every

learner due to the sparsity of the data-set and it also decreases the quality of the recommenda-

tion. A Collaborative Filtering based recommender system utilizes ratings of similar users for

computing recommendations which is greatly dependant on the sparsity of the data-set.

RMSE and ROC of NoR-MOOCs are better than K-Mean because Nor-MOOCs gives

weight to all related hyper-spheres and chooses the hyper-sphere with the higher number of

data-points and the most similar hyper-sphere which helps in choosing the appropriate hyper-

sphere for recommendation. Fig 15 shows precision, recall and F1 of all algorithms. The error

bars in Fig 15 represent the standard deviations. From Fig 15 it can be observed that Recall of

NoR-MOOCs algorithm is higher than that of the other three algorithms. Precision and F1 of

NoR-MOOCs algorithm is also superior to the K-means, Collaborative Filtering and random

recommender systems.

4.2.3 Significance of the results. To evaluate the significance of the results, we performed

a simple t-test and a paired t-test evaluation.

A t-test is a statistical test that is used to compare the means of two groups of values. It

determines whether a hypothesis has an effect by comparing results of that hypothesis with

actual values. In our case we have compared ratings recommended by our algorithm with

actual ratings given by the user.

The two-tailed, paired t-test with a 99.9% confidence level has been applied to evaluate the

performance of NoR-MOOCs, K-Means, Collaborative Filtering and a random algorithm. The

results of the simple t-test and the paired t-test for all the algorithms are shown in Table 4. For

α = ±0.001 and df =1 the results of the t-test and the paired t-test should be less then 3.090

and 3.291 respectively.

Results of the proposed algorithms are within range of acceptable values to prove that

the difference between the rating predicted by the algorithm and the actual rating is not

significant.

4.2.4 Complexity. The space complexity of our algorithm is also linear with the number

of observations (e.g. course, learner and rating). We can decrease space complexity by using a

Table 3. Comparison of proposed algorithm with random, K-Means and Collaborative Filtering in terms of coverage, RMSE, and ROC.

Method Coverage RMSE ROC

NoR-MOOCs 99.99 0.7908 0.9367 ± 0.002639

K-Means 39.37 0.8359 0.7478 ± 0.004676

Collaborative Filtering 33.40 0.8374 0.37254 ± 0.004554

Random 17.30 0.8123 0.7212 ± 0.005394

https://doi.org/10.1371/journal.pone.0245485.t003
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sparse structure for storing the dataset. The time complexity of NoR-MOOCs is linear with

respect to the number of clusters and the points in the cluster. The time complexity of the pro-

posed algorithm is O(nm), where n < |U| is the average number of ratings given to a course

and m < |I| is the average number of ratings by a learner.

While K-Means complexity is linear it is also iterative. Moreover, seed selection impacts its

complexity and it may get stuck in local optima with random seeds, for more information

please refer to our previous work [9].

In addition to time complexity, in certain cases, when there is large amount of data,

K-Means requires extensive memory which might not be pragmatic.

5 Conclusion

Traditional recommendation algorithms have been used to make recommendations for learn-

ers in MOOCs. However, these systems do not scale well with the increase in data and more-

over on the arrival of new data these systems need to be retrained making them costly in terms

of time and storage. Therefore, these systems are not practical for recommender systems

where data is increasing continuously, i.e. MOOC recommender systems. In this paper, a new

algorithm has been proposed, namely a ‘rating based MOOC recommender system’, that is

incremental and scales well with available data. These experimental results show that the

Fig 15. Comparison of F1, precision and recall of NoR-MOOCs, random, K-means algorithm and Collaborative Filtering.

https://doi.org/10.1371/journal.pone.0245485.g015

Table 4. Comparison of the simple t-test and paired t-test values of the proposed algorithm with k-means, Collaborative Filtering and random algorithm.

Test TypeMethod NoR-MOOCs K-Means Collaborative Filtering Random

Simple t-test 2.95 3.82 3.99 3.89

Paired t-test 3.19 4.93 5.22 5.11

https://doi.org/10.1371/journal.pone.0245485.t004
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NoR-MOOCs algorithm is more accurate, scalable, and has better coverage compared with

traditional systems. Batch algorithms such as K-Means and Collaborative Filtering give good

results but these algorithms are very expensive and require retraining with the arrival of new

data points.

NoR-MOOCs is very flexible and can work with different types of data. The results of the

rating based algorithm are better than K-Means and a random algorithm; however, the algo-

rithm still requires further improvement. Different variants of this algorithm can be designed

to further improve the results. Radius is one important parameter of this algorithm that could

be calculated using different methods to improve the results. One potential avenue of future

research is to improve this algorithm so that it can perform recommendations on the basis of

learners’ characteristics (e.g. demographics and behaviour).
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Trends and Advances in Information Systems and Technologies. Cham: Springer International Pub-

lishing; 2018. p.1386–1396.

PLOS ONE Novel online Recommendation algorithm for Massive Open Online Courses (NoR-MOOCs)

PLOS ONE | https://doi.org/10.1371/journal.pone.0245485 January 22, 2021 20 / 21

https://doi.org/10.1162/neco.1992.4.6.888
https://doi.org/10.1162/neco.1992.4.6.888
https://doi.org/10.1162/neco.1991.3.2.213
http://www.ncbi.nlm.nih.gov/pubmed/31167310
https://doi.org/10.1007/s12652-017-0466-8
https://doi.org/10.1186/s40537-019-0169-4
https://doi.org/10.1016/j.eswa.2018.09.053
https://doi.org/10.1016/j.eswa.2018.09.053
https://ieeexplore.ieee.org/document/8005400
http://wrap.warwick.ac.uk/72925/
https://doi.org/10.3233/IDA-150316
http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/memorybased.html
http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/memorybased.html
https://doi.org/10.1016/j.eswa.2013.11.010
https://doi.org/10.1016/j.eswa.2013.11.010
https://doi.org/10.1371/journal.pone.0245485


35. Zhang S. Information Overload and Online Collaborative Learning: Insights from Agent-Based Model-

ing. In: Proceedings of the Fifth Annual ACM Conference on Learning at Scale. L@S ’18. New York,

NY, USA: Association for Computing Machinery; 2018. Available from: https://doi.org/10.1145/

3231644.3231701.
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